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1

INTRODUCTION

The preliminary phase of the investigation of the propagation charac-
teristics of a finite amplitude pressure wave, as pertaining to the conditions
existing in the exhaust of a rocket nozzle, has been concerned with qualitative
and, to some extent, quantitative analysis of the predominant dissipation
terms, These dissipation terms, as evidenced by recent developments, may
contribute heavily to the nonlinear wave radiation of rocket exhausts,

In this phase of the investigation, emphasis was placed on pinpointing,
by means of general qualitative analysis, those regions of rocket exhausts in
which the rate of entropy production is maximized. Thus, the present formu-
lation is directed toward the analysis of those regions in which the physical
processes are highly irreversible, with a consequent strong coupling between
the mechanical and thermodynamic phenomena. It follows that those processes
in which no entropy production occurs are automatically excluded from our
consideration,

In terms of the mathematical formulation, the aforementioned approach
implies a strong coupling between the momentum equation {(mechanical con-
ditions) and energy equation (thermodynamic conditions). The derivation of
the governing equations in Section I of this report results in a wave equation
(mechanical conditions) whose forcing function, in terms of entropy gradients,
depends primarily upon dissipation processes; i, e., entropy production rates.
As a consequence, the present approach tends to supplement the contemporary
investigations on the subject.!

The preceding formulation points to the fact that, subject to future
experimentation and within the framework of this analysis, the presence of
Mach discs in a rocket exhaust nozzle may constitute the predominant acoustic
propagation regions of the flow field, due to the high rates of entropy produc-
tion there. This is true irrespective of cold or hot flow conditions—the
temperature difference having the effect of magnifying the phenomena.

Other regions in which dissipation rates are predominant, even though
not quite of the same order of magnitude as those in the Mach-disc transition
regions, are the oblique shock layers formed in the rocket exhaust flow field.
To analyze these regions for the case of high pressure-ratio rocket exhaust,
recent hypersonic continuum mechanics developments have been employed and
are presented in Section II of this report. An analysis of power-law oblique

1
Refer to References and Bibliography.
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shocks for small angle of inclinations tends to predict that the entropy close
to the axis of symmetry increases rapidly, whereas the pressure remains
quite uniform there. Because of the much higher entropy in layers near

the axis, the temperature must be high and the density low. In this formula-
tion, the transition properties are used as boundary values for the similarity
solution of the wave equation,

In Section III of this report, the reflection properties of the pressure
waves emanating from a rocket exhaust have been studied through use of char-
acteristics in the physical and hodograph planes, with a view toward finding
the point of coalescence of the pressure waves, which are reflected from the
free boundary. These numerical computations result in a theoretical predic-
tion of the shock wave shapes emanating from the rocket nozzle.

Regions in which entropy generation takes place through vortex interac-
tion seem, within the framework of this analysis, to be of lesser importance
in supersonic flow. They only become primary factors in acoustic excitation
in subsonic flow, when no localized high-entropy production regions (i.e.,
shock fronts) exist.

The formal derivation of the forcing function, in terms of the dissipation
processes presented in Section I, is based upon the assumption of the existence
and continuity of the functions up to and including second derivatives as well
as nondeviation from thermodynamic equilibria of the medium. In reality, the
regions of high entropy-production rates are very often distinguished by their
departure from thermodynamic equilibrium, especially in highly supersonic
rocket exhausts and in the presence of nearly normal shock layers;i.e.,

Mach discs, Under these conditions, the conventional entropy definition based
upon nondeviation from thermodynamic equilibrium usually is not sufficient,
In such cases, the entropy function must take into account the energy states

of the individual particles (i.e., atoms and molecules) since the rate of relax-
ation time to achieve local equilibrium varies, depending upon the molecular
and atomic structures and the processes involved. In regions of high excita-
tions, thermodynamic equilibrium may not be fully established because
relaxation time may be considerably longer than the reciprocal of the mean

of the collision frequency of the gas particle for the translational degree of
freedom. Under such conditions of chemical flow processes, the entropy
function has to be treated by statistical methods.

On the other hand, even when the chemical equilibrium is very nearly
attained (i, e., when the rate of dissociation of molecules into atoms can be
assumed to be equal to the rate of production of new molecules by recombina-
tion), there is a marked difference in the irreversibility of the process when
transmission through a shock wave occurs. In Section IV of this report, a
quantitative analysis of such transmission phenomena for binary collisions is
presented for two different values of the mass fraction parameter. For

-2 -
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1

comparison purposes, the transition values of entropy production for frozen
flow (i.e., chemically inert flow) also have been included. It is seen that
entropy production is considerably higher when dissociation and recombina-
tion take place, even under the conditions of chemical equilibrium., In
addition, the entropy production rate is a strong function of the mass fraction;
i.e., of the ratio by weight of atoms dissociated to the total weight of atoms
and molecules, However, since this mass fraction depends explicitly upon
the gas temperature, it follows that entropy production in a rocket exhaust
tends to be a strong function of temperature.

Within the framework of this analysis, the marked difference between
the chemically inert (cold) flows and dissociation and recombination phenom-
ena (higher temperature flows) can be formally regarded as contributing
significantly to the acoustic propagation of the medium, From the initial

computations in Section IV, this dependence upon the temperature and Mach
number of the rocket exhaust becomes self-evident.
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I. FORCING FUNCTION FOR FINITE AMPLITUDE
PRESSURE WAVE GENERATION

A volume, V, is considered to consist of an acoustic medium in a
stationary state in which a smaller volume, v, is so imbedded that v consists
of a violently disturbed medium. While in V the entropy is a well-defined
thermodynamic variable, the same is not true for the disturbed volume v due
to the nonequilibrium states. To circumventthis difficulty in a formalistic way,
the pressure function is defined as being made up of scalar functions p; and
Py, the first relating only to isentropic charges in V
ing the nonisentropic processes in v. Note also that the velocity vector u
vanishes identically in the volume V and exists only in v,

and tha sarand dacerih
2l ¥V, adlill vl € SCL0NUG GQCSI 1o

From the equations of motions we have

dp 9
3t * oy (09) = 0 ()
0 9 9
— ) F — Qe ) = — . 2
5t (PYy) 5x] (pujuy) 5x; (crlj) (2)
de de au; 3 oT
P—+puj——=0’ij g (k ) +Q
ot 9% a%;j 09X 6xj
(3)
S=S(p, T)
where
X4 = cartesian space-variable component
t = time
P = density
uy = cartesian velocity component
i = stress tensor
e = internal energy
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T = temperature
Q = heat sources
S = (entropy)

For the case of a homogeneous and isotropic medium we have

2
o5 = - P 63j + '3'H Zyk 6ij +u Eij (4)

where Z;; equals the strain rate, 5ij equals the Kronecker §, and p equals
the viscosity coefficient,

When the medium in question is not a function of temperature, then,
(under thermodynamic equilibrium conditions) the energy equationisuncoupled
from the remaining equations of motion, and mechanical conditions dominate
its behavior. However, in the case of violent physical and chemical proc-
esses, this uncoupling of the equations of motion may lead to physically
questionable results. In this formulation, when high-energy entropy produc-
tion rates are considered, such uncoupling seems to be unwarranted.

Next, the continuity and momentum equations are combined into one
wave equation form, Using the definition of the pressure function for the
stationary and disturbed regions, the momentum equation becomes

9 2 9p ] aP2 9
— (pui) + a2 —& = - Z_(puju;) - e (Ui 5
5 (Pui) T2 5y axj(PuluJ) x| % (pij) (5)

with
2 -
q"ij = _3'“ “kk 6ij Ml —ij

Now, by cross-differentiating the continuity and momentum equations
with respect to t and x; respectively, and by subtracting, the following will
result:

2 252
ap-aap:i i(pu.u.)-i- - — () (6)

2 axgdxy  dxy |8xy ) axg 8% i

ot
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Now let

d 9 oui auj ou;
a_xJ- (pujuj) = uj 8—xj(pu3) + (puj) 5

where the two last identical terms cancel each other. Then, note that

ouj ou; ou

pu pu = pu = 3] ) 6 ) ]
] 8XJ‘ ] 9x; ] 9%, [ n “jm im O)n

¢ c aUm
Pk “amk % Toxg

with €1ik being the alternating tensor. Note that in vectorial notation

aU.m

pgijk enmkuj'éq= puxi) (7)

can be written where

u velocity vector

I

vorticity vector
Again, for the nonisentropic region v

apz oh as

X3 axi- x4

(8)

in which h equals enthalpy. Under these conditions, the wave equation in
equation (6) becomes

2 2 au oh 95
8_;_a2 0P - 9.l pe.. ku___m_ p(ao_T )
5t axiaxi axi ijk nm ) 9xp x4 axi

(9)

- + é?i(q)ij)'uia—t

Here, hy =h + -% ujui refers to total enthalpy. In vectorial form this becomes
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2 — - hag —
9 p-aZVZp =Vi{-puxl{ +p(Ahy - TVS)+Fj -u % (10)

at2

— ]
where Fj = — (xpij) represents the viscous terms. Equation (10), therefore,
ox;
J
represents the required relation.

This equation is now formally simplified by focusing attention on entropy
production regions. In this case, note that the total enthalpy terms represent-
ing the stagnation temperature remain constant even when crossing a shock
wave. Since this would correspond to the highest entropy jump in the case of
a supersonic rocket exhaust, this term may conceivably be disregarded.

In a formalistic manner, the viscous term may also be looked on as
contributing to the entropy production gradient through the energy equation,
since, in the absence of heat transfer and heat sources

T dS _

2. 11
pdtqb (11)

where ¢ is the dissipation function, governed by viscosity.

Thus, the following equation is obtained:

a2 —
___Ff.- azvzp =-yv4{f+ ptvs (12)
at?
—- - — ap
cE=(puxl -u—
P at

where the function f in the forcing function represents the contribution of
density gradient and vorticity, and the second pTVS represents entropy
production gradients coupled with the temperature and density functions.

For the case of highly supersonic flow, attention is concentrated on the
shock layer regions where the entropy jump seems to be the greatest con-
tributing factor. In any case, the generating function for the equation can be
written in the form

ar1 =
G=.-2 ZJ‘J“S‘—V f+p TVS}av (13)
4ma T
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where the integral is taken over the disturbance region, and the retarded
potential solution is implied.

It should be noted that this formalistic derivation holds true when the
dependent variables (i.e., the physical processes) are continuous up to and
including second derivatives., Thus, shock-layer conditions may be con-
sidered in the neighborhood of the shock wave but not in the shock itself, It
follows that the contribution of the jump conditions must be treated as a
special case.

It is also apparent that the unknown forcing function cannot be found
from equation (13), and that, for its properties and variations in the neighbor-
hood of a shock layer, available solutions in fluid flow theories must be

utilized to apply them to the case of variable distributions in a highly hyper-
sonic rocket exhaust. Thus, use is made of the available solutions in which
the properties of these unknown functions are coupled intrinsically with the

energy equation to obtain a physical picture of the regions considered,

SID 65-933
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II, THREE-DIMENSIONAL HYPERSONIC
ENTROPY PRODUCTION!

In this section consideration is given to the investigation of conditions
governing entropy production in regions adjacent to the shock layer, when the
angle of inclination of the wave is small with respect to the stream direction
at infinity. The partial differential equations governing the nonlinear axis-
symmetric flows are given by

3p 1 3 [ duy\
+ — —{(pur) = uy,
ot T ar(p ) gk 1 ox )
du
9 1
_V+V8_V 1 9p =g' Uy, — (14)
ot ar p agr ax
ds as ou)
—_— = o't ,
st~ ar & \"l' 5
with the boundary conditions behind the shock yg being given by
Pg 2y 1 \dYs y-1
Py T oy+ 1\ a2/ at v+ 1
a2/ 2
p vy-1 2 dyg
i R — (15)
P, y+ 1 v+ 1 dt

2
a
2 dyg / dys :
VS = 111 -
v+ 1 dt dt
The terms g, g', and g'' on the right-hand side of equations (14) are of

second-order magnitude and can be neglected in accordance with the hyper-
sonic disturbance theory behind the shock wave,

1
Based upon References 1 through 5,

- 11 -
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For a strong shock, the boundary conditions may be reduced by omitting

a2/ dy, 2
the terms of order & to result in

2
2 dYS Y+1 2 dYS
Ps = p s Ps= w7 Pos Vg = T\ ¢
s vy-1 0 dt 5 y-1 S v+ 1 dt

By introducing a transformation of variables

P P R P v M - 16
_f’;’ -'p—s, —"TS",T]-E (16)

and by anticipating a self-similar solution, it is assumed that

= P : = R = v 17
P=Ps ) P 7 Ps Rim) ¥ Vs Vi) an
as a consequence of which we obtain, from equations (14)
YsY¥ 2 v-1 p'
_— - Vs o e —
)Vt yFr Vo0 VY y+1 R
Ys
Ysi’.s 2 P’ R’
2 3 + V -n — -y —1=0 (18)
Ys v+ 1 P R

1]
o

2 2 Vv
— V -7 R' + RIV' + —
Yy+1 y+1 n

where the prime and dots signify derivatives with respect to n and t,
respectively, For a self-similar solution to exist, the time dependent terms
must be a constant, This calls for the shock-layer equation corresponding

to a power-law yg ~ Xo . Once the exponent o is specified, P, R, and V are
determined completely from the equations

=12 -
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V_'y+1nl+y-lP_lo—y+1=o
i 2 ) Vv 2 RV o 2
[ r1 [ yr 1 -
v.JY — X2 v+ Zl=0 (19)
i 2 P R
y+1 |R' v
- | — + ' =
[V 5 n]R V' o+ /71 0
with the boundary conditicns P(1} s R(1) = V(1) = 1 at n = 1. Except in a few

cases, an explicit solution to the problem cannot be obtained. Numerical
integration must be carried out inward from the shock at n = 1.

The investigation of solutions indicates that, close to the axis of
symmetry, the entropy tends to infinity, whereas the pressure is finite. This
is because, in the neighborhood of the axis, the gas has passed through a
much stronger part of the shock wave (Mach disc) at an earlier time and thus
has gained a much higher entropy. Since, to this approximation, the entropy
function is conserved on the streamline (except at the shock transition
where it takes a large jump), this higher entropy gain persists and
is carried by the fluid particles along their paths. Because of the much
higher entropy, the temperature in layers near the axis must be very high
and the density very low, since the pressure there is finite. Thus, due to
low density, the fluid acceleration produces negligible pressure gradients.
Consequently, the pressure remains quite uniform throughout the layer,

The numerical integration of equations (18) which points to the presence
of the entropy layer cannot be extended to the analysis of this layer since it
is generated by almost normal shock conditions in the neighborhood of flow
axis (blast wave analogy with no body present). Thus, the conditions of
strong, blunt, shock layers, with the consequent high-entropy production,
must be treated in a separate manner.

- 13 -
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III. REFLECTION PROPERTIES OF PRESSURE WAVES

The determination of flow properties and entropy production rates in
a supersonic rocket exhaust for chemically inert flows (using the method of
characteristics and the equations of continuum mechanics exclusively), in
the form of an explicit approximate expression in the forcing function of the
nonlinear wave equation, calls for knowledge of the shock-layer shape form-
ing in the wake of the underexpanded nozzle. The reflection properties of
the pressure waves formed in the exhaust gas and emanating from a super-
sonic axisymmetric nozzle can be studied to a high degree of approximation
by the numerical methods of characteristics.

In this formulation, the method of characteristics has been utilized to
investigate the reflection patterns of the pressure waves from the free
boundaries. Special emphasis has been placed upon determining the
coalescence pattern of pressure waves after reflection from the free bound-
ary has taken place. This approach allows for the analytical numerical
tracing of the intercepting shock patterns to be approximated at a later
stage, if so desired, by an analytical expression, based upon numerical
results,

The physical considerations of the phenomena are as follows. As the
gas accelerates from the sonic condition at the throat of the nozzle, expan-
sion fans are formed and those fans directed outward and upward strike the
jet boundary. Since this is basically a free boundary, the expansion fans
reflect from it in the opposite sense and become compression waves. More-
over, due to the convex form of the free boundary, these compression waves
eventually coalesce into a plume shock layer., The computations have been
carried out for very high pressure ratios to accentuate the effect; but the
method remains identical for all higher than critical pressure ratios, and
extension to lower pressure ratios is immediate,

The computations are based upon a cylindrical coordinate system
{i.e., x, r) where the x axis is coincident with the axis of symmetry of the
flow and, if P and p indicate pressure and density in addition to u and v (the
velocity components along the x and r axes respectively), Euler's equations
are given by

du, du_ 12P
Yax " Var T T poax
2
ox or p or
- 15 -
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and the equation of continuity is

d(pu) _ 3lpv) | pv
r

ox or =0 (21)

The total enthalpy, hp, is constant along each streamline and the equation

dht dhp
u8x+v3r=O (22)

is valid everywhere, while the entropy, s, is represented by the equation

Y ax or

=0 : (23)
and is valid everywhere except for passage through a shock wave.

The velocity of sound, C, for the general case along a streamline is

given by
/0P
C = -
< 39)

s=const

= /z—P = VyRT (24)
o]

The relation between pressure and density in an ideal gas having Cp and

C, constant is given by
s-s; >
-55 —
P: C,
%=—1?eCV=Ce (25)
P pi

where Pj, p;j, and s; are the initial conditions and Y = Cp/cv-

Because of equations (22) and (23), the initial conditions and, therefore, C
remain constant along each streamline. From equations (24) and (25) the
following relations are obtained

3P C? 5s 5 9p clotncC
8x—pCp8x+C 8'_x+p7 9x (26)
& C_2§§+Czap+ c’otnc (27)
8y_pCp or or Py or

- 16 -
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The relationships among entropy, total enthalpy, and vorticity component

normal to the streamline for axially symmetric flow are given by

(Fxcurl®) o fi = - v (X .29
- dx oOr
and, therefore,
av _ou 19T c? s
9x dr v 0On yRv on

By combining equations (20) to (24), (26) and (27) the expression

av / 2\ uv/&u.av\ v o
\"_} r\' "2 o \er Tax) Ty T

is obtained. It is convenient at this point to define the.functions

1
-1
Yy = -1V (l-wz)
Y-1
L.|Jr = ru(l-wz)
V. -u
fy) = ——=

Y
r(l-wz) -1

with w = v/vl, i.e., ratio of the local velocity to limiting velocity.
Utilizing equations (31), (32), and (33), equation (30) can be put into the

following form

EE. Jw o g Efi ff
- c qJxx c2 Yxr c2 Lprr T r

-17 -
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Following the procedure of Ferri (References 6 and 7), we define

H = 1-u2/C?
L =1-v2/c2
K = -uv/C2
and, Y+1
N = - lp—: - rz(l-wz)y-l<§>- 1 £(y)

Thus, equation (34) may be written

Hy  +2Ky__+ Ly +N =0

and
We &
dx  Wxx T ¥xr dx
e o, dr
ax  Yxr T Yrr ax

The simultaneous solution of equations (38) through (40) will yield

dr K K2 L
(a) "5 \/'z "H
I,II H
K .[K2 L N
-_— — o — el
Wyex +<H jz72 H>¢xr+H 0

Upon substitution of

u = VCosb

S = VSin®6

C = VSinp
- 18 -
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equation (41) transforms to

dr
— = tan (6 £p) (46)
<d"> 1,11

The positive sign refers to the first family or left-running characteristics,
whereas the negative sign refers to the second family or right-running
characteristics.

(curl 9xV _ L Grags = — 52 (47)
c vR yRdn

yield

Sinp Sin® tanp dx | Sindp  dx S

Cos (6%p) r Cos(G:hp)c_lr_x;{?{

%V:i:ta.npde- =0 - (48)

The Mach number is a more convenient parameter than the nondimensional
velocity ratio W; therefore

dw av dM
—_— = e = (49)
w v M<1+Y—;1Mz>
and equation (48) transforms into
dM Sinp Sin6 dx
+ - e o
Y-1. o de Cos (6%p) r
(l + > M ) M tanp
.3 (50)
e Sin’n S dx_
tan o Cos (B=u) YR dn
Now, since
Qs 1
Sin = &
2
Me-1
Cosp == (51)
tan u = !
M? -1
(Equation 51 cont next page.)
- 19 -
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¢ .M
P y-1
(51)
<<_iic> _ Cos (exp)
dn 1,11 Sin
and, therefore, equation (50) becomes
VMZ- 1 aM dx VM2 -1 ds
1 * d6 - > > + > =0 (52)
(1 + YT M2>M (VM® -1 Coto = 1) (y-1) M

Following the nomenclature of Reference (8), equations (46) and (52) may be
expressed in finite difference form. For the first family or left-running
characteristic,

A6 = AAM - BAx + CAS (53)

Ar

i

Ax/K (54)
For the second family or right-running characteristic,

A6 = -AAM + bax - CAS (55)

Ar = AAX. (56)

The preceding formulation defines the general scheme of the procedure
undertaken to analyze reflection properties of pressure waves in the exhaust
nozzle, based upon finite difference methods. Further details are based
-upon References 8, 9 and 10. However, specific mention of the procedure of
applying Prandtl-Mayer flows to the corner regions of the nozzle will be
made.

If equation (39) is employed to compute the flow conditions in the

immediate vicinity of a sharp corner, e.g., the lip of the nozzle, the terms
containing dx and ds vanish and equation (52) reduces to

+do = dM (57)

and, upon integration, yields

+0 = Y_.+.1 ta.n-l X—;—i (Mz-l) - ta.n-1 VMz-l + Const (58)
VY

Y-l
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Now, the Prandtl-Meyer angle (v), through which the stream turns in
expanding from a sonic condition to a supersonic Mach number, is

v o= \/1—3 tan‘l\/%hl (M2-1) - tan™ " VM2-1 (59)

Corner type flow occurs in the vicinity of the nozzle lip (Figure 1), and
the amount of turning is determined by the initial and final Mach number at
the nozzle lip. The final Mach number is determined from the ratio of the
ambient to total chamber pressure; and since, for isentropic flow, this
pressure ratio is directly a function of the final Mach number, Y, it can be
expressed as

b (1421 a2) v (60)

fa—y

Equation (59) also indicates that v is a function of the Mach number. There-
fore, knowledge of the pressure ratio is equivalent to knowledge of the final
v and, hence, knowledge of the total turning angle of the flow around the
nozzle lip. The boundary Mach number becomes infinitely large as the

JET BOUNDARY

SHOCK

NOZZLE

————

_ _ _ _ __JET
CENTERLINE

INVISCID STREAMLINES

Figure 1. Physical Characteristics of the Primary Wavelength of
a Supersonic Jet from a Contoured Nozzle
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boundary pressure is reduced; in this case, the Prandtl-Meyer angle corre-
sponding to the boundary Mach number would approach the maximum value
of v defined by

_ +1 T
Y MAX ‘< %ﬂ' )2 (61)

At very low or very high temperatures and pressures, the assumption of an
ideal continuum fluid is not likely to be valid; however, the results may be
used as a guide.

It is noted from the results of this analysis that, as the pressure ratios
tend to infinity (Figure 2) the angle between the nozzle tip and the jet
boundary grows to such an extent that a flow reversal phenomenon is
encountered. The approach includes provisions for rotational flow, of
primary importance in entropy generation. The internal nozzle flow has not
been considered: even when the nozzle is contoured to provide an isentropic
expansion, entropy charges are accounted for in the region bounded by the
plume. These charges are a consequence of the presence of vorticity and
are also due to the Rankine-Hugoniot jump conditions across the shock.

The characteristic solution was programmed for the IBM 7090 com-
puter with provisions to obtain cathode-ray tube (CRT) plotting of the
characteristics, streamlines, and constant Mach lines. The computations
were carried out along left-running characteristics, starting at the nozzle
tip. The number of divisions at the nozzle exit and tip is directly a function
of the accuracy desired. Provisions were also made to increase the number
of divisions in the flow field to compensate for the divergence of the original
characteristics as the tendency of divergence increases.

The applicability of the characteristic solution is limited to the appear-
ance of the Mach disc in the flow which cannot be accounted for from the
present formulation; however, the linear theory provides a guide to the
applicable range of the solution, since it calls for the diameter of the jet at
the primary wave length to be equal to the nozzle diameter. This condition,
therefore, provides a limit of the applicability of the solution, and it deter-
mines the extent of downstream validity of the characteristic plot before the
subsonic region behind the Mach disc is reached.

The region of entropy production in the wake of the rocket exhaust for
high pressure ratios obtained from the aforementioned characteristic solu-
tion has been programmed with provisions to obtain CRT presentation of the
characteristics, streamlines, and constant Mach number lines.
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Initial computations were functions of the choice of nozzle (i.e., for a
conical nozzle, the nozzle spherical surface is chosen, whereas for a bell
nozzle, the exit plane is utilized); however, any arbitrary right-running
characteristic with known flow conditions may be used as an input to the
program.

Assuming the nozzle exit conditions (e.g., x, r, M, 6, and s) are
known, the exit plane is divided into an arbitrary number of equal parts,
depending upon the accuracy desired. Through each such point, left- and
right-running characteristics emanate. In the vicinity of the nozzle lip,
corner-type flow prevails and the initial and final Prandtl-Meyer angle may
be computed; this, in turn, is divided into a number of equal parts for use in
the program.

Examples of the type of solutions of programmed analysis have been
computed., The present results have been obtained using the weak shock
assumption. CRT plots of streamlines and corresponding left-running
characteristics as functions of R/R0 and gc/xo are shown in Figure 2 for
various free stream conditions, The data listed at the top of each
streamline plot indicate the conditions under which the case was computed.
For convenience, the nomenclature is defined here as follows:

GAMA - == Ratio of specific heats

PT/PAMB -- Ratio of jet total pressure to free stream ambient

pressure

THETAN -- Angle of nozzle lip measured from horizontal in radians
MESH -- Imposed grid size on radius of nozzle

LIP -- Imposed divisions on total turning angle

Investigations regarding the Mach disk and second Mach diamond are
logical extensions of the present analysis which may be used as a basis for
a secondary approach in the vicinity of the subsonic segment of the flow
since, in this region, the present approach of the method of characteristics
does not apply.

Some considerations of the flow behind the Mach discs and their
entropy productions for the case of chemically inert (cold) flows and chemi-
cally reacting (high-temperature) flows are given in the next section of this
report,
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Iv. CHEMICALLY REACTING FLOWS

FLOW CHEMISTRY IN HYPERSONIC SHOCK LAYERS FOR NONEQUILIB-
RIUM GAS DYNAMICS!

In the presence of strong shock waves in hypersonic flow, the dis-
sociation of gas molecules often occurs and makes a marked contribution to
entropy production in the shock region. In addition, the nonequilibrium
state of the gas is often carried along the streamline into the flow field be-
hind the shock, causing the chemical nonequilibrium conditions to persist
in the flow region. A short summary of the basic thermodynamic principles
of these phenomena is presented in this section as a contribution to higher
entropy production through collision phenomena and a consequent chemical
flow instability which may contribute to aerodynamic sound generation,

The thermodynamic state of a gas mixture at a point in a nonuniform,
unsteady field is determined completely by the local values of the two vari-
ables pand T, or p and T, if all internal processes take place rapidly
(i.e., if the relaxation time is short), in which case, the thermodynamic
equilibrium is attained locally. The rate of approach to local equilibrium
varies, depending on the molecular and atomic structure and the processes
involved, For a specified time scale in particular, thermodynamic equilib-
rium may not be fully established.

In many gas dynamics problems, thermodynamic equilibrium time can
be considerably larger than the reciprocal of the mean of the collision fre-
quency of the gas particle for the translational degree of freedom. In this
case, it is possible to treat each component in different internal states as
an isolated thermodynamic system whose exchange of energy with the other
systems is slow. Such a treatment can be carried out, however, only if
the equations specifying the rate of exchange, excitation, or de-excitation
of the internal processes are fully known. Nevertheless, the rates associ-
ated with the excitation and de-excitation processes of a molecular rotation,
vibration, dissociation (in air, dissociation involves not only the simple
decomposition and recombination of the oxygen and nitrogen molecule, but
also the formation of NO and other components), and ionization differ so
widely that it may be possible to treat the principal nonequilibrium processes
one at a time.

Based upon References 1, 3, 6, 7, 8, and 9.
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In most works on flow chemistry, the rotational, vibrational, and
electronic states of the atom and molecule are assumed to be in equilibrium
at the translational temperature T. This assumption is adopted here.

The mass fraction of each gas species i is represented by Cij. Con-
sidering only chemical nonequilibrium, the thermodynamic state of the gas
may be specified by the variables p, T, and C; s. Of course, to distinguish
the gas sample completely, the initial values of these variables must also be
specified.

By definition

C. =mmn, 2 C., =1, Zn, =n, p= 2 m.n, (62)
i i i

where n; is the number fraction of the species i, and m; is the mass per

particle of the species i.
The equation of state for a perfect gas is

P = nkT = Zp, = PTZR.C, (63)
iti 17171
where P, is the partial pressure. Also

R, = ﬁ (64)

where M is the molecular weight and £ the universal gas constant,
(R equals 1.98717 cal/mole-°K).

The specific internal energy of the gas is

e = 2Ce, (65)
iii
with
T

e.-e. = | (c) at (66)
0 0

where (Cy)i_. is the heat of formation per unit mass of the species (at
absolute zero), and (Cy)i is the specific heat of that species at constant
volume. Thus, by definition (C,); does not include heat of formation.
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And now

T
hi = i Cpi dT + (hi)0 (67)

Note that (hj)o equals (ej)o and that ej and hj are functions of tempera-
ture, T, alone, since each species, taken by itself, is a caloric perfect gas.

Since each component of the mixture considered has a uniform tem-
perature and pressure and the processes of exchange with other systems
are slow, there exists an entropy function S;:

1
T dS, = de, +p, d(o—\ (68)

\Yy

According to Gibbs, a specific entropy for the mixture can be defined
as

= Z
S = 2CS, (p,, T) (69)

which is completely specified by p, T, and C;. This definition of entropy is
not generally the same as the ordinary one used in thermodynamics; i.e.,

- [
PATH

which can be defined by p, T, and C; only for a gas in full thermodynamic
equilibrium since the integrals depend on the path. Thus, only in full
equilibrium does

S.. =8 (71)

Moreover, in full thermodynamic equilibrium, there exists a free energy, F,
and the thermodynamic potential function, G, so that

F
G

1]

E-TS

H - TS (72)

1t

The second law of thermodynamics is that for any process with volume
and temperature fixed §F =2 0. Alternatively, with p and T fixed6G 2 0.
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The stoichiometric equations 2Hj + Oy ==2H20, 2N = N,, etc., may
be generalized into the form

(3} :
Z,7A, =0 (73)
iiti
(3)
where v; is the number of moles of the species A;, which is required for the

completion of the reaction. For example, in the equation

2H, +O_ =2H_ O

2 2 2
V|=2;A1 =H2
V! = l;A2 = O2 (74)
v = -2;A3 =HZO

In equilibrium, the gas composition is determined completely by
p and T, For each stoichiometric equation there is an equilibrium constant,
K associated with the partial pressure, p;, so that

v(j)
g(p.) i = K(T) (75)
i 1

which is only a function of T. There are as many equilibrium constants as
stoichiometric equations. With the aid of the requirement that the total
number of the same atomic species must be conserved in chemical reaction,
the composition C;, or the partial pressure p;, can be completely deter-
mined. The fact that the root mean square of equation (10) is independent of
p; (the mass action law) may be anticipated from equation (8) which may be
rewritten

Na Ng

> 1 = 1
i=1 Vifis=ie Yy B (7¢)

where v‘i and v}' are now both positive integers, because in equilibrium the
rate of conversion from Ai§ to By ;8 must balance that from B1§ to AIS The
former is proportional to the probablhty of finding the reaction partners
together; thuvs, it is proportional to (BJ) . Similarly, the latter is propor-
tional to (p;j) !, and it follows that K should be independent of the pressure.
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The manner in which K depends on T can be deduced from classical
thermodynamics. In practice, the absolute value of K can be most expedi-
ently computed in terms of the partition function in statistical mechanics,
using partition functions determined separately for translation and rotation,
vibration, and electronic excitation from the quantum atomic theory.

In the standard treatment of the equilibrium constant, the fact that for
a specified volume and temperature, the free energy, F, attains a minimum
in equilibrium (8 F20), or alternatively that for a specified p and T, the
potential G becomes a minimum in equilibrium (G 20) may be used. An
alternative derivation of K (T) versus T may be obtained, based strictly on
the assumption of equilibrium, and bypassing the use of the minimum
principle and thus, the second law of thermodynamics.

The preceding statistical thermodynamic model allows one to take into
account the nonequilibrium entropy production in regions where violent
physical processes occur. It would seem only reasonable that, in the case
of aerodynamic sound generation for rocket exhausts where strong shock
waves of high intensity occur, these processes, which cannot be treated by
means of continuum fluid mechanics alone, should be investigated.

v

CHEMICALLY REACTING GASES

When flow chemistry is taken into consideration, the dynamic behavior
of any gas varies between an infinitely fast reaction (chemical equilibrium)
and an infinitely slow reaction (chemically inert flows). It then follows that
the nonequilibrium behavior of the gas will always be intermediate between
these two extremes. In comparing entropy productions of chemically reac-
ting flows in equilibrium to those of chemically inert flows, it is of special
interest to consider the transition properties of the gas through a highly
irreversible Mach disc of a rocket exhaust. This comparison should give
indications of the difference in order of magnitudes of hot (reacting) and
cold (nornreacting) flows as far as the entropy production through a Mach
disc transition is concerned.

The following analysis of chemical flow kinetics (References 13
through 23), under the assumptions of a binary collision model (i.e., binary
collision of atoms and molecules predominates and determines the thermo-
dynamic gas state), is presented to give a qualitative picture and quantitative
analysis of the contribution of chemically reacting flows to the entropy
production where transition through a Mach disc of a rocket exhaust is
concerned,

Assuming that the dissociation of the molecule, Ap,, into two atoms,
A, is caused by a collision between the molecule, Ay,, and a second body,
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and that recombination follows a simultaneous encounter between two atoms,
A,, and the same second body, the stoichiometric equation describing the
flow is given by the equation (Reference 20)

K¢

A +X
m

2 Aa. + X (77)
r

where the quantity, X, denotes the second body.
For this reaction the stoichiometric coefficients are

1

v =1 v, =0 V‘}<

v;,;n=0 v;=2 v;(

1]
—

where the v; are defined in relation 74.

Since the quantity, X, is not affected by the chemical reaction
(Reference 20)

Cy=Ca+Cp =1
2M, = M|

Mm
My = 1+C,

This follows from the fact that the molecular weight of X is the mean
molecular weight of the mixture, namely, Mp,/{1+C,).

The rate of production of the atomic species, ‘:’a’ is given by
(Reference 20)

|& (1-ca) - .7 (78)

where M

<4Kr p2(1+Ca)) (79)

where subscript e refers the condition at chemical equilibrium,
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For the ideal dissociating gas, the equilibrium composition, C

given by (Reference 17)
[ . ]
5 -
R_T
Cae _ pd ™

TC.. " B P (81)

aer 18

where Pgq equals the characteristic dissociation density which is constant for
the ideal dissociating gas (Reference 17) and D, equals the dissociation energy.

Comparison of equations (80) and (81) shows that

b R T

K = T“‘ exp - (82)

Substitution of equation (82) into equation (78) results in
[ Dm
R, T

M, m

©, = ——|(1-C )f_c_l_ exp -c? (83)
a t a Jo] a

The species continuity equation for the atomic species may now be written in
the form (Reference 20)

[ Dm ]
R_T
dC, d Mm pd m

Pu ax T dx (pCaU,) = t (1-Ca) exp "G (84)

As mentioned previously, t may be interpreted as a characteristic reaction
time with the following significance.

If the reaction occurs very rapidly, the value of C,; will differ only
slightly from the local equilibrium value. In the limiting case, as t approaches
zero, the bracket on the right-hand side of equation (84) must approach zero.
The limiting case in which t is effectively zero (infinitely fast reactions) is
called equilibrium flow, and the composition of the mixture is governed by
equation (81).

For infinitely fast reaction, the dynamic behavior is very slow in com--
parison with the dissociation and recombination rates and results in a balance
of the latter throughout the flow.

At the other limit, t may be so large (very slow reaction) that the rate
of production, &5, is effectively zero. The gas may then be considered chem-
ically inert and is usually referredto as a chemically frozen flow. In this
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case, the dynamic behavior of the gas is so rapid in comparison to the chem-
ical changes that the latter exert little influence on the chemical composition
of the gas mixture.

In any analysis of chemical nonequilibrium flow, the chief difficulties
arise from the nonlinear coupling between the gas dynamic equations and the
chemical relaxation equation. However, in the two extreme cases of frozen
or equilibrium flow, the chemical relaxation equation is reduced to a very
simple form, thereby simplifying the analysis.

GENERAL EQUATIONS OF CHANGE

The equations (Reference 20) governing the Mach disc (normal shock)
transition of a mixture of atoms and molecules which behave individually as
perfect gases, are as follows:

Mixture Continuity Equation

The mixture continuity equation

d(pu) _
ax 0 (85)
which has the first integral
pu = (pu)o = m = constant (86)
Species Continuity Equation
The species continuity equation for the ith species is
;4 :
PU g T ax PCU;) = vy (87)
where
d)i = rate of production of ith species
Ci = mass fraction of itP species
u = mean flow velocity
U, = diffusion velocity of the ith species
uj = u+t+ U
ey =1
i
% N U1 =0
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The species continuity equation does not have a simple first integral due to
the fact that pj is a complicated function of the flow variables,

Momentum Equation

The momentum equation is
du _dp 4 (i )d_u
"udx"<1x+<1x[3“*k dx (88)

which has the first integral

2
2 u
B b (Buex) e Polo -
-+ P (3K g T3t R =P (89)
Energy Equation
The energy equation is
ih+“—2 —(i +k)‘—iXd—“ 9 [q, += p:h, U (90)
PUax 2 ) =3t dx dx ~dx |Tx 7§ Piti i]

which has the first integral

2
2 u
u 4 du _ o Q
Pu<h+z—>- (3erK)ugy ot 3 ekl po“o<‘"‘o *‘z—> =7 0D

The quantity, qy, for a binary mixture of molecules and atoms may be
written as (Reference 20)

- )\d_T +p(u, -u) Da’ PaUa M
U = ~tqx TPVaTUmlppCC T \M_ M,

Fourier heating + Dufour effect
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. *

where
DaT = thermal diffusion coefficient
D, ., = binary diffusion coefficient
M = My, M, /{Cpy M, +C5 Ma)
N\ = thermal conductivity
but,
u, - u = (u +Ua) -(u+ Um) =U, -U
and
ZpUp=0
i
thus

Pa Ua (Uy 'Um) =" pUa Um

and the Dufour effect is seen to be of the order U, U .. Stated otherwise,
the Dufour effect is proportional to the square of the diffusion velocity and
may be neglected. The energy equation becomes

|

2
2 u
4 du dT o Q
Pu<h +’“z—>- (Fre) uge- Mo + 3 PhU = ey, <ho t2 > 2 92

Upstream and downstream of the shock all the gradients, dT/dx,
dv/dx and dCa/dx, just vanish and the boundary conditions may be evaluated
in terms of the integration constants

3

1]
o
o

=
o

oo,
"
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from equations (86) through (89), and equation (92), respectively. The con-
ditions at the upstream end point, x = -», will be denoted by the subscript
()1 and the downstream positions, x = +o, by the subscript ( )g2.

Thermal Equation of State

For the thermal equation of state, using Dalton's Law of partial
pressures, the total pressure of a mixture of different species can be
expressed as

P= z p
T Ui
where
P KT = n, KT 93)
p; = m, =04 (
For the case of a pure diatomic gas, equation (93) becomes

P =(1+Ca) pr— T = (1+Ca)pR_T (94)
m

where

Caloric Equation of State

The caloric equation of state may be an equation for the internal energy,
the enthalpy, or the specific heat, The enthalpy of the ith species is given
by (Reference 2)

hy = (e - e0) +0= (95)

-39 -
SID 65-933



NORTH AMERICAN AVIATION, INC. SPACE and INFORMATION 8YSTEMS DIVISION

where e; is the specific internal energy for the ith species

+(e.) +(e))

i~ (ei)transla.tion i’rotation i’vibration
(96)
Tr v
e, =-e, +e, +e,
1 1 1 1

The quantity, e°, is the heat of formation of the ith species and pi/p;is

given by the thermal equation of state. The equilibrium values for
eit, e, and eY are derived from statistical thermodynamical considerations
(Reference 3)

eit = %—RiT
el =RyT (97)
w
o) = |~ —|RiT
(ekT 1)
where
h* = Planck's constant

For the case of an ideal diatomic gas, the atoms and molecules both have
an average translational energy, 3/2 RijT, but molecules have, in addition,
an average rotational energy, RiT, and vibrational energy which varies
from zero to 1/2 RiT, Therefore, from equations (95), (96), and (97), we
obtain:

5
h =5 RaT + D,

(98)
1 v
hrn =5 RT + e
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where

e = -D
a m
e © =0
m
but, for a diatomic gas,
R =2R
a m

resulting in

a m m
(99)
h =k R T
m m m
where (k,,) is a function of temperature ranging between no vibrational
excitation 7/2 and completely excited 9/2 (Reference 4). The specific
enthalpy for the mixture may be written
h=ZC.h,=Ch +C h (100)
i i1 a a m m

Using the relationZ C. =C_. + C_=1and h_, and h_ 'given by equations (99),
g = € =Gy m a m & y eq (99)

oy
I

Ca[5RmT +Dm] #(1 - Cy) k R_T

(101)

jon
1

[ + (5 - ) Co| RenT +C, D,

Based upon the preceding thermodynamic considerations and the
equation of change, the transition properties of the entropy function can be
evaluated for chemically inert and chemically reacting flows,
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ENTROPY TRANSITION PROPERTIES
The specific entropy of the mixture is given by
1
TdS =de +p d(j) (102)
where
e =3R, T+ Ca.Dm (103)
Differentiation of equation (103) yields
de = 3Rde + Ddea (104)

and equations (104) and (103) then yield

R T anT

/ D
45 54l +< m>dCa-(1+Ca)(§-pﬂ> (105)

For the case of chemically reacting equilibrium flow relation (81)
provides

P R_T
a m
= — 06
a
and
Pm 15 <-p£> (107
a
- 42 -
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is then obtained. Under these conditions, the entropy function in
equation (105) becomes

1-C
ds dT a PD dp
R C 3—T—+log > dCa + log <—p—->dca-(1+ca)-;— (108)
m Ca

Whence, by integration, we obtain the chemically reacting entro equation
y g g y €q

S-S
o
—Fqn— =3log T + Ca(l-ZIOgCa) - (I-Ca)log(l-ca)

(109)

p
- (1+Ca)1og<p_D—>

From equation (109) the transition properties of the entropy function
across the normal Mach disc of the rocket exhaust are given by

1.C 2C

01 01
So2 - So1 _3 1o Toz ‘1o (1'C01) (C01)
R =208 \T g 1-C 2C__ T
m 01 (1-C...) 02 (C ) 02
02 02
(110)
PD Vo2

Equation (110) is plotted in Figure 3 of this report for two values of the
mass fraction parameter Cj,.

For the case of chemically inert or frozen flows the mass fraction
parameter remains invariant when transition through the Mach disc
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Figure 3. Entropy Production

occurs, Thus, Cq] is identical with Cp2 and under these conditions,
equation (110) results in

S -5 T v
02 01 2 2

m 1 1

Equation (111) is plotted in Figure 3 for comparison between the two
cases of chemically reacting and chemically inert flows, The plots are
shown as a function of YM2, The sample calculations were performed for
the following values of the mass fraction parameter:

C

01 0.1835

(112)

C

01 0.5050

The results of the plots indicate that, for the same initial mass fraction,
the entropy increase in chemically reacting equilibrium flow is roughly double

- 44 -
SID 65-933




NORTH AMERICAN AVIATION, INC. (@ SPACE and INFORMATION SYSTEMS DIVISION

that of the chemically inert flow for lower values of the parameter YM%,
Moreover, the entropy increase for equilibrium flow is effected, to a large
extent, by the mass fraction parameter whereas for frozen flow this effect

is almost nil, The transition properties of the velocity ratios versus the
parameter YM2 for chemically inert and chemically reacting flows are shown
in Figures 4 and 5, respectively.

0.8 —
0.6 }—
o
Vo2
0.4 }—
0.2 }—
0 l | | |

] 5 10 , 50 100 500 1000
(YM) )

Figure 4. Velocity Ratio (V()/V(;) for Chemically Inert Flow
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1 5 10 50 100 500 1000
(7M2)0]

Figure 5. Velocity Ratio (V(g1/V(,) for Chemically Reacting
(High Temperature) Flow
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V. SUMMARY AND CONCLUSIONS

The investigation of propagation characteristics of a finite amplitude
acoustic pressure wave, during the phase reported here, has been concerned
with the qualitative identification of the regions of predominant entropy pro-
duction rates in the rocket exhaust, The derivation of the forcing function of
the radiating nonlinear wave equation (Section I) in terms of the dissipating
qualities of the rocket exhaust (entropy production) exhibits a close relation
between the forcing function and the energy equation as well as the equation
of state of the medium, Thus, within the framework of this analysis, the
mechanical conditions (conservation of mass and momentum equations) are
insufficient for a mathematical development of the problem at hand,

The formal derivation of the forcing function, as presented in this
report, has the additional shortcoming of assuming the existence and conti-
nuity of the dependent variables up to and including second derivatives in the
region considered. This restriction limits the application of the derivation,
unless provisions are made to extend the formalistic meaning of t{e deriva-
tion to processes that exhibit highly irreversible features and discontinuous
jump conditions in the regions of interest, As a matter of fact it is thése
irreversible features and jump conditions, appearing in the supersonic ro
exhausts, that are of greatest interest, within the framework of this analysis;
by virtue of their contribution to entropy production in the flow field.

Sections II and IIIof this report, discuss the investigation of conditions
governing the flow of the exhaust gas after transition through an oblique shock
has taken place. The shape of the shock layer formed by the expanding gases
emanating from the nozzle is determined by considering the reflection prop-
erties of the expansion waves upon hitting the free boundary., Their
coalescence points along the boundary determine the initial shape of the shock
region before the formation of the Mach disc,

Likewise, hypersonic theory considerations with initial conditions
assumed to be known from oblique shock transition relations, indicate the
existence of an entropy layer near the axis of symmetry in which the
temperature is high, the density low, and the pressure finite.

It was also found expedient, when considering the Mach disc transition
properties, to introduce chemical flow kinetics into our considerations. This
was due to the appearance of dissociation phenomena in the exhaust gas,
caused by the excessive temperatures of the emanating gas and the high
collision rates of atoms and molecules during shock transition phenomena,
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_A comparison between the entropy production of chemically reacting flows to
that of chemically inert flows has been attempted in Section IV.

In the addendum to this report a mathematical derivation of partial
correlation principles is presented to be used as necessary in the subsequent
investigations,

Within the framework of this investigation, based upon the concept of
dissipative phenomena, it appears that for the case of high pressure-ratio
rocket exhausts, the regions contributing most to propagation of a finite
amplitude pressure wave for given initial conditions may roughly be tabu-
lated in the sequence of their respective contributions as follows:

1. Normal shock layers (Mach discs)
2. Oblique shock layers
3. Viscous shear layers and vortex regions,

From consideration of the contributions of the normal shock layer, it
appears that chemical reactions in the shock layer itself, taking place due
to partially dissociated hot exhaust gas, are of primary importance; even
for low Mach numbers and a small fraction of dissociated mass the entropy
production increases significantly, Computations (Figure 5) indicate that
the entropy production in the transition region is more than doubled as soon
as critical pressure ratios are reached., This would tend to indicate that,
barring the contribution of other terms inthe forcing function (temperature-
density product), the acoustic intensity of a hot exhaust should be at least
three decibels higher than that of a cold exhaust, the increase being approxi-
mately uniform within the range of the parameter (YM?2) shown in Figure 5.

It also appears that the entropy gain of the particles, attained during
transition phenomena, persists and is carried into the flow field by the
streamlines, causing a high entropy gain of the fluid (as the axis of the rocket
exhaust is approached) behind the first shock layer formation (Sections II and
II1). This indicates that in the case where chemical equilibriumis notattained
in the transition phase, the nonequilibrium values will "freeze'' on the
streamlines and the adjustment to equilibrium flow will take place by a sudden
irreversible release of the dissociation energy with a large increase of
entropy, and a Mach number decrease in the successive transition layer.

The overall aspects of these phenomena will have to undergo individual
analysis for quantitative results and analytical predictions.
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ADDENDUM: PARTIAL CORRELATIONS AND RESIDUAL VARIANCES

The appearance of a nonlinear forcing function in the aerodynamic noise
problem formulation results in a general treatment of the solution by means
of statistical correlation principles. (See Bibliography.) In the present
formulation, an attempt is being made to obtain as much pertinent information
as possible from extraneous sources and from the physical aspects of the
problem which conform to the present approach., Certain aspects of uncou~
pling multiple correlation coefficients, however, serve to generate mean
statistical products which are mutually independent and thus cause removal of
variations due to higher order random variables.! These aspects are con-
sidered in the following development: since any random physical variable is
suitable for application to the following formulation, the random velocity
function used here can be regarded as a representative quantity; its use does
not contradict the generalization of the procedure to other random variables.

Two- and three-dimensional random velocity fields are considered in
this derivation and are generalized to any number of dimensions. The concept
of two-dimensional partial correlations is trivial, except for exceptional cases,
but it will be treated here because of its importance in the general theory.
THE TWO-DIMENSIONAL RESIDUAL VARIANCE

Let u; (i = 1,2) represent two random velocity components so that:
where [x,t;] and [x;,t;] are any points distinct from one another in the three

dimensional space-time field. Under these conditions the three second-order
expectations of the random variables u; and u, are given by the integrals

E (“f) = fdul fduz (“12> fu),u,)

E(uu,) = fdulfduz (w u,) £(u, u)) (A. 2)

E (uzz) = /dulfduz <u22> fla),u,y)

1Cramer. H, Mathematical Methods of Statistics, Princeton University Press (1961),

Charater, C,V.L. Vorlesungen ueber die Grundzvege der Mathematischen Statishe, Lund (1931),
Jeffreys, H, Theory of Probability. Oxford (1939),

Feller, H, An Introduction to Probability Theory and its Application, Wiley (1962),
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where f(u),u;) is the distribution frequency function of the two random
variables u, and u,.

If the means, m; and m,, are assumed to be zero, then relations A, 2
represent the quantities which define the correlation coefficient p), between
the two variables, which may be written

E (uluz)

P12~ \/E<u12) VE (u,)2

(A. 3)

However, if the means, m) and mj, are different from zero, relation
A. 3 does not hold true since the independence of the two variables u, and u,
will not cause pj, to vanish—a fact upon which the concept of the correlation
is based.

Next, consider the straight line in the uj and u, planes.

e

Uy = 512u2+ o (A. 4)

where $;, and a are constant parameters and the subscripts of Bi. denotes
that i = 1 is the independent variable and j = 2 is the variable to w']hich the
coefficient ﬁij is attached.

Now form the difference

s

cu¥ ey - ] A.
b Wl M B WA Bl (4.5)

which is the difference along the u; direction of a particle of mass dp at
(1y,us) and the straight line A. 4,

To find the best estimate of the random variable u; in terms of the
line A.4, consider the mean square regression:

(“1 " P - “)2 (A.6)

It is convenient at this point to introduce the mean variables u; and u,,
assumed constant, and write relation A. 6 in the form
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= E

2
(ul-ﬁl)-ﬁlz(uz-ﬁz) +(T1'1-B121_,1'2- a)} (A.7)

e - 2 2 —- — 2
E (ul-ul) = E (ul-ul) ‘+[312E (uz uZ) l+(u1-ﬁlzu2 o) E(1)
28 El(u -TV(u - (3. -8 - T, -l
2By, ‘\ RS .12)| +2\‘11 P10, cz/)E\u1 ull
- 2(3, -B),T, a)p12E|u2 uzl (A.8)

Again denoting the mean moments of the distribution by A; and )‘ij
(i=1,2):(j =1,2) for first and second moments respectively and noting that,
by definition of the mean, all moments )‘i =0(i-1,2), relation A.8 may be
written

2

2
b —- - 2
E (“1 o) ) ] =N TR Mg 2B M, T (T 26,0, ) (A.9)

where the last expression is a consequence of the fact that E(1) = 1.

In order to find the coefficients B}, and a which will make the expres-
sion in A.9 a minimum, the variational principles will be applied. Here,
however, both ¢ and B are parameters which do not depend upon their deriva-
tives. Hence, the variational operator &6 becomes simply the differential
operation itself. Thus by differentiating with respect to the two parameters
involved, the following expressions are obtained:

2B phap m 2Ny m 2 (T =BT - a) T, =0

(A.10)

n
o

2(T) - By, T, -a) (-1)

From the second equation,

() - By, T, - @) = 0 (A.11)
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and so the first equation in A.10 becomes:
Blz xzz - )\12 =0 (A.12)

from which it may be inferred that
— (A.13)

Relation A.13 represents the value of the coefficient B which will make
the mean square in A.9 a minimum.

For future generalization, the derived expression will be considered in
a more concrete form. For this purpose, the second-order-moment

matrix M given by
A A
M= <)\11 )\12> (A.14)
21 22

Now if the determinant of this matrix is denoted by the symbol A and
the cofactor of )\ij by Aij’ then

is introduced.

A=
5 M Mo
(A.15)
ATk & Mre
Note that relation A.13 may be written
M2 A €21 €15 Mij
‘312=)\ = - A = - x (A16)
22 11 “1i €15 “ij

Moreover, because of symmetry, \
may be written in the form

12 = )\21, the preceding equation
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N A € € )N
I U U S T TRt
=3 = - = - (A.17)

22 AZZ 1i 1j )\ij

The notation in A.17 will be used as the more symmetric one since it
can be generalized to the form

- €.. €., \
B =- = - elk 631 )\K‘ (A.18)
J i ik “ig “k4 '

The above relations will also be expressed in terms of the correlation
coefficient of the two variables u; and u,. By definition of the correlation
coefficient,

M2 Mo

p = T =
12 ~/x11 VN, o T,

(A.19)

where the terms o; are the variances of the respective random variables;
hence

A AN, o=c N =0 (A.20)

127 P12%1% M1 %1 M2 T

Relation A/17 may also be written

p
12 1
B,, = -0 0 = - p (A.21)
12 1 2 0'2 0'2 0'2 12
Introducing the determinant
P11 P2| | oP2
P=| " =l =€y P P o (A.22)
21 P22 P21 1
and the cofactors
(A.23)

Pii =ik 50 P
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gives
. P
1 12
B, =- "7 5 (A.24)
12 Ty P11
Generalizing the subscripts yields
"y
Pis = 7. P (A.23)
j i

It should be noted that the summation convention will be implied only in
connection with the tensozial notation, e. g., ‘ijk )‘jk' etc., and not with the
expressions for determinants and cofactors.

Thus, in at least two dimensions the mean variance of the expression

(“1 “1)

takes on its minimum value when the coefficient (312 becomes

2

E = E

(u:l -ﬁlzuz-a)zl (A.26)

N TR Wb b (A.27)
12 All o, Pll'
or generally
Sl 0Ty
Pl2""XK.°" 5 B, (A-27)
ii j i
Referring to relation A.9 where it was shown that
ES 2 2 2
E - .l = - T, - u. - .
- uy MatPraMaa BN T @ BT ) (4.28)
Moreover, for a minimum mean square
A o, P
12 1 " 12
B,,=-——=- — —,; (T-B,.T,-2)=0 ' (A.29)
12 !
A11 75 P11 1272
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Hence relation A.28 becomes

2 A A
12 12
E (ul-ul> .}_x“+ = Ny P2 A, (A.30)
min A 11
. 11
which yields
2
2 \ )
12 12
E (“1"11) .")‘114’ 2 M2272%2% . Mz
min Noo 22
2 2
M2 M2
=M tw. T éx
22 22
M
= (A.30A)
22
-
& Mitea Mz A S M M
E (ul-ul) = > = - _ (A.31)
min 22 11 €15 €15 ™ij
Moreover, in terms of the correlation matrix,
A 0"2 0’2 T T
M1 Mz P119 P127172 1129 % 2171 P12 %2
A: = = =0
o1 Moz ¢ o2 o2 1 )
P21 % %2 P22 %2 P21 % %2 0. T, —=
21725
or, in terms of A.304,
] . 2 2 2
E<u_u=:=)_ 2 P12%1 % _ 2 2. 2 P _ 2,
17 % P11 %1 2 =% 0P P2l TP T
o 11
2
(A.32)
since P11 =P, = 1.
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Hence

E (u u'>zl-—A—o-2'i
1. 2 All 1 P11
(A.33)
A.. o. P
= .- __r_1
B1_] A, . P
ij j it
In terms of the correlation coefficient p > = p 2}, relation A.33
becomes
2
) e (e )
E (ul-ul> \—0'1 1-p ), (A.34)

Hence, when p 12 = %1, it is when the variables are perfectly correlated
that the mean square variance of the above expression vanishes. On the
other hand, when the two variables are independent, p 12 = 0 and the mean
variance is the total variance of the variable uj.

Consider now the line of best fit given in accordance with previous
assumptions by

ul =B12u2+ o, (A.35)
from relations A.11 and A.17
@ =u) =P Uy
(A.36)
e I G
12 A % Pn

where the terms T;, i = 1,2 are the mean velocities.

Hence relation A.35 may be written

. =_A12u+_+A12_ Ay, _
1 Ay o2 ] A, 2 1~ A

[
]
el
[]
=

[e—
o
[—
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or alternately

A o, P
: 12 1 12
u, -U, = - +— (u,-U,)) = - — —— (u,-17,) (A.37)
1 1 A11 2 2 T, P11 2 2
Generalizing the preceding derivation,
£ o-i Pl
u =T o= - — = (u -T) (A.38)
i i o, P.. )
J il

Specifically considering the line of best fit of up with respect to uj, it
can be deduced from relation A.38 that

0

sk o
N R TR (A.39)
1 T2z
Hence the two possible combinations in two dimensions are given by
g ool P12 (=T
- =- = 5— (u,- ;
1 1 o, P11 2
(A.40)
u' T, = 2——PZI(u -T,)
2 2 o Poy 1 1
Noting that in the case Py = P, =1 and Py, = P,, = P),, then
“ g o4 L (u, -%,)
17T T Pz T
(A.41)
< * ) =4 :% ( -q )
ey o P12 1Th

Hence the equations for the two regression lines of best fit are
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U.l - U.l _ p u2 - u2
0‘1 12 0'2
(A.42)
S R e
! P12 %2

Both lines pass through the center of gravity or the mean velocity point
(d}; U,). They can never coincide unless p = %l.

When p = 1, the whole mass of the distribution is situated on a straight
line given by any one of relations A.42. On the other hand, when p = 0,

u, TU U, = u, (A.43)

and the lines become parallel to the axes and pass through the center of
gravity,

It will now be shown that the residual variance is completely uncorre-
lated with any of the subtracted variables. Consider the quantity

Efu,(u

2(9 "By ) (4-44)

Since the variable u; is subtracted from the variable u) the expectation
of (uj - Pz -a)is given by A.44 and it should be zero if no correlation exists.

Put relation A.44 in the form
= uz(“l'f’lzuz'“)| =E |(uz'ﬁz)[(u1 U - FS12(“2’32)]
* (ul'ﬁlzuz'a)] +Ez[(u1'31)
"By Uy Ty) Fluy =By pu, - “)]

This obviously becomes
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+ T (T

5 -a)E (1)

17 P12

and since all first order means must vanish and E(1) = 1, then

| 1 r 2\
E|“2‘“1"312“2'°‘)| = El(“z'ﬁz)(“l'ﬁl)] - B E i(“z'ﬁz) |

AR SPAPRLY (A.43)

Now for minimum value, the previously derived relations are
introduced:

A12
(ul-ﬁlzuz-a) = 0; f312=- —A—I (A.46)

Hence relation A.45 may be written

— - _ 2
Eluy(y -plzuz-a)lmin B El(ul 'ul)(“z'“z)] - B12E[(“2'“2) l
A
_ 12
')‘12'512)‘22’)‘12+A11"22
\
21
=N - =S N =nl -
12 L, 22 12~ 21
=h - A, =0 (A.47)

Hence it is inferred that the residual variance of A.45 vanishes identically.
From the preceding derivation, in accordance with A.47, it is also inferred
that
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E fu, (a - B a)l

"
=
e
—_
—_
[\
)
et
NV
™
—_
[yY)
=
e
oo
1
|
N\-/
(48]

1" P12%2

min

|
=
e
™
]
cl
o
=
—_
]
o]
p—
]
oW
—
oD
e
[\N]
]
c
o
—

(A.48)
Hence in all future generalizations the constant ¢ can be dispensed with and

by referring all variables uj to their mean the line, plane or hyperplane of
the closest fit can be generated by the relation

n
u - z pklul; (A.49)
2=1

with £ # k.

The preceding considerations immediately stipulate that

) ) 2
Elu, (v -ﬁ12u2)| =E ‘(“2 "Ppup) vy - Fs12“‘2)| =E ‘(“1 B!

min
(A.50)

where it has been assumed that the variables uj (i = 1,2) are referred to their
means Uj respectively.

Thus

E

Q
1
&1
e
[v—y
[]
<l
—_
[
—
£l
P—
1
™
—
o~
[
1
e
N\_/

Uy Byaus T

1}
=
1

[
—

[t
—

]
™
—
[

[

oY
1)

[
oy
—

N

(A.51)

Moreover the above deductions are, as has been shown, a consequence of the
derived important principle that the residual variance of a random variable
is completely uncorrelated with any of the subtracted variables.
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THE THREE-DIMENSIONAL RESIDUAL VARIANCE

In sequence to the previously considered two-dimensional random
velocity field, let u; (i = 1,2, 3) be three random velocity components such
that

u, =y (_Jil,tl); u, =u, (§Z,t2); u, = u3(_>53,t3) (A.52)
Moreover, let T (i = 1,2, 3) be the respective mean value of the
velocity u; and then form the difference
Ny.23 = (@ -Pppuy - Brguz-@) (A.53)
Consider the minimum expectation of the mean square
Elu -p. u_ -p u-aIZ-E[( )2] (A.54)
Y17 P12%2 T Prsts = =123 .

The complete analysis of the previous section will now be re-derived for the
case of three random variables and the derivation generalized to higher order
dimensions.

Thus relation A.53 may be written in the form
2 _ - Zl 2 - 2] 2 [ - 2]
By 23) "E[(ul'“l) ”3121;-:[(“2 W)}t A3 E[(uy -

_ — - 2
¥ [“1 - BT, - Py '“] E(1)

" 2P E I(“l '31)(“2'32)] ) 2‘313}5[(“1 'El)(“3'ﬁ3)]

28, B, E[(u,-T,) (4, -T,)] (A. 55)

+2(3) - B2 Uz - B13 U3 -G)IE(u1 -Uj) - E(up -Tp) B2 - B13E(u3 -33)]
110 Ho ”0

Hence since all the mean expectation E(u; - ;) = 0 by definition of the
mean and E (1) = 1, the above variance can be written in the form
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2 2 2
E(”l.za) = T ﬁ12x2.2 * B13 )‘33 B Zﬁlz"lz - 281303

2

+ 25 [#3 (A56)

12P13M 23 T T Bty By ats -

Now in order to find the coefficients [31- and a for a minimum value of
the above expression, the variational principle is applied for each variable
separately to get

2B, Npy T 2B N5 T 2(T) 2B T, - BT ) (-T,) - 2N, = 0
2B Mgy T 2B N5 H 2 (T -8 T, B ST @) (-TUy) - 2h 5 =0
2(T) Py, U, Bygug-a)(-1) =0
(A.57)
Applying the last relation to the first two yields
Prat22 * Pistas " M
Biahag P Biathas = Mg
or (A.58)
NP T AP TA,
NagPip T A3 B3 Mg
Thus, the following is inferred:
Mz Mas M2 Moz
M1z Mas M3 Mg
P P Ps T L (A.59)
22 23 22 23
Moz Mg Moz Mas
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Now introduce, as before, the determinant matrix

and the cofactors

A

ij

1
= —¢
2

ikgejmn)‘km Mn

Under these conditions the coefficients Bij are given by

s - R
12°A" P13 A
or
6 - “1k0 “2mn “km Mn 8 = . 12 “3mn “km Mfn
12 “Ixf Imn “km “gn 23 “1k2 S1mn “km M n
Moreover

11 12

21 22

31 32

Hence, if

13

23

33

P21 P22 P23

P31 P32 P33

o a

P11 %1 P12 %1 %2 P13 91 %3

g, 0

P21 91 72P22 %9 Pa3 7 %3

2

71 93 P32 % T3 P33 %3

P31 %1

P11 P12 P13
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then, with the respective cofactors Pjj,

2
= . = : = o~ P (A.65
Ap=0 0, 0,P 0 Ag=o, 0,0, 5 Ay =0, 9P )

Hence relation A. 63 may also be put in terms of the correlation coefficients:

2
A 7 T P12=_°1 P2 (4. 66)
Pla"-a1TT °° T2z P T2 P .
11 11
3
and also
A9 Ppg (A.67)
Pi13*" 11 ""73 P '
11
Hence generally irrespective of dimensions,
Aij cJ'i P1J
p1J=' — =-0'_,P (A, 68)
ii j ii

where no summation convention is used in the subscript of the cofactors,

Now consider the residual variance given by

2 2 2
N ; N =2B._ A
ENy 23) . F Mt Pp M P B g Ryt 2P M t2P 3 Mg
(A.69)

- - - 2
t 2By Byg Mz tluy - By uy - Biyuy =)

For a minimum, it is necessary that in accordance with A.57 and A.57
and A.68,

)2

min

E(n

2
= - -2
1.23 MLt PR Nt B g gy m 2B 5 A, m 2P A

(A.70)

¥ Zﬁlz F313 )\23

with the terms f8 ij s given in A, 68,
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This yields

2 1
EM) 23)min = A [(‘“11)‘11 YA Ay P A A

1
+— (A, A _ A _ +A. Ay Mg

A1 T2tz T A
(A.71)
T2 e fa2 T M3 s a3
T2A M5 A
4
But
] _
+ + = = =
A M A M A M3 TAG M T T g €hrs Apr Ags Ajj
(A.72)
= € )\ =
ik Mi M2y M = A
Moreover,
A A
1182 M2 T Al M P A Ay A TA A Ay,
+ 2 = +
Az A3 Ra3 TR A A A3 A A8
(Summation convention used.) This becomes:
A A N t+HA A . A € A Ao, A
12 15 M2 T3 M A3 T2 M2 Ses Mar M2y Mas
(A.73)

| —
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Noting that in all terms of the last expression the subscript 2 is
repeated, a determinant expression is obtained whose two rows or two
columns are identical. Hence the above terms vanish identically for all
repeated subscripts, i.e., subscripts 2 and 3 in A.73.

It follows immediately that relation A.7]1 becomes

E { = = (A.74)

N23) T A

Moreover, it the residual variance is considered,

Ef(u) -u)) [(ul - :1)2] - By (v muy) - By (ug - uy) ] -
=E [(“1 - E1)2] Pra B [(“1 up) (uy - Gz)] - Pys [(“1 '-‘;1)(‘*3'33)]_
AP M By A, (A.75)

Now, using relations A.68 in this expression yields the minimum
variance:

Eq(uy - u1)[(“1 mup) s By (uy mug) - By (uy - u3)] ‘ -
AN A
12 *12 13 1
= A + = —
117 T A T3 My T A A M TR M TR A
11 11 11
= —Aﬁ— (A.76)
11

Hence it is inferred that

E [(“1.23)311111]: E [(“1 sy s By (uy muy) - By g (ug - uy)
2
tluy - Brauy - Bpguy -) (A.77)
= E a
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This shows that the subtracted variables have a vanishing variance
as stipulated above. This can also be seen by considering

2 - - - -
E [(”z.la) ] =E [(“2 - uy) (up - = B, (uy - up) - By 5 (g - “3)} =

1 1
= ¥z Ca, N -
2 123 [‘ jrs *2r M2 )‘35} z ‘132 {EJI‘S 3r " 2s X2j]- 0

(A.78)

due to repeated subscripts 2 and 3.

1 .
A Ao e o qea o~

ence, genceradizing to nigner dimen
residual variance of any subtracted variable is uncorrelated and thus
it must vanish identically,

Tod ~le o ne

- P R [P P S, B - I S R I
] i0mnsS wWe agalll deduce Lhal Lne

o

Hence it has been shown that

A fori=1
] 1 < Al
E {u n ceeo} = —— 2 A, A =
Poleed A& OIE 0 fori=2,3,....
(A.79)
This relationship in terms of the correlation matrix yields
= A = =
A= My A2y Ma Tk Py Pay Pakd Y192 T3 95 %G Ok
(A.80)
2 2 & 2 2 2
- = P
T 92 93 [€ ijk P11 P2; p3k] 71 %2 73

where P is the determinant of the correlation matrix pij'

On the other hand, consider the cofactor

1 1
A _— = - €
1172 “1jk “1mf Mjm Mg TZ Uk S1m2 Pim Pr2 (%5 Tm Tk 72!

(A.81)
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Now the subscripts jm and kf can take on two values only, 2 and 3,
so that they form the following combinations (m = £: j = k):

2
0‘20‘3 m = 2; g = 3; j=2; k = 3;
2 2
= = =2 = ;
v, 0, m = 3; L =2 j ; k =3
(A.82)
2 2
= 2 = = =
v, T4 m = 2; 3; j=3; k =2;
0'2 0’? m = 3; L=2; j=3; k =2;
Hence
1 1 2
A - - = - . d A8
1177 1k “1dk “1m2 kg 7 T2 T3 15k “1me Pim Pre (4.83)
and
2 2 2
2
e [u , ] T T T3 A 2 A2 “iik Pij P2y Pk
1 1,237 T T 2 2 Tl A, L e PP
N < 8
T, U, A11 11 ik " 1mf Pjm Tk
(A.84)

which formulae may be generalized to n dimensions.

Now the correlation between the variables u} and up2 is measured by
the correlation coefficient P12 which is sometimes called the total correla-
tion coefficient of u} and up. However if u} and up are considered in con-
junction with n-2, further variables Uz, Ufeeeoon. u,, the variation of the
remaining variables may be examined. Consider now the residuals

(A.85)

=
]
W
o
"
j
[\
]
g
—
w
=
()
1)
™
—
S
o]
N
ko)
—
=
=
o]
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In accordance with the previous derivation, these residuals represent
those parts of the variables uj and uj; respectively which remain after
subtraction of the best linear estimates in terms of Uge v iennnenn. u,. Hence,
the correlation coefficient between these two residuals may be regarded as a
measure of the correlation between uj and up after removal of any part of

the variation due to the influence of the remaining variables U3, Ugeseon.n u,.
The coefficient of the residuals in A, 85 will be referred to as the partial
correlation coefficient of uy) and up with respect to uz, ug....... u,, and

denoted by the notation P12.3 Hence, by A. 85

. E|”1.34...n“2.34...n|
n 2 2
E| =] |
\/ "1.34...n]7 12,34, ..n

which is an ordinary correlation coefficient between two random variables
A. 80, From relation A, 86 the above coefficient will be derived for the
four-dimensional case and generalized immediately to .the case of n-
dimensions. Thus let uj, up, uz and uy be four random variables. Then
consider the correlation

(A. 86)

_ E("1.34 q.2.34) (A, 87)

o
12. 34 > 2
E("l. 34>E<”2. 34)

Note that
Bl 340034 = E{(“l - Br3ug - Prgug) (uy - Bygug - Byuuy)
B AlZ B 513)‘23 B ‘323)‘13 - B24)‘14 - By Ay
A - :
t B3 Postay v By Py Ryt By Py B By Ay,

- 75 -
SID 65-933



NORTH AMERICAN AVIATION, INC. SPACE and INFORMATION SYSTEMS DIVISION

Thus

B A - i _
E(N) 53T 340 = Mo - Pr3tas - Pratay - Paszhis - Paghyy

+ ByaBaatay t Brafogtay + BraPostay v PryPoryyy
(A. 88)
Hence for a minimum it is necessary that
S Ay3 t Pyghyg t Pyt =0
SR VIR CYREVI S PYRIPEL I
- Mgt Brghggt Prgtyy = 0
- Mgt Prghgyt Praty, =0 (A. 89)
Hence
Pashas + Paglay = A3
Pastag * Pagtag = 2o (A.90)
Brstas * Pratas = A3
Pratse * Pratas = Mg (A.91)
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Solving the above for the terms ﬁi, gives

.

Na3 My3 N33 Ro3
Nog My Ny Moy
a3 © Pag = (A.92)
N3z A3y Nz Ry
Ng3 Mgy Mgz Mgy
\ X )Y \
M3 M43 N3z M3
A
Ma Mg Nag Mg
P13 © Bra = (4.93)
N3z Mg Mz Ays
Nag Myy Nig Ngg
Now consider the matrix
M1 M2 M3 Mg
Mot Mz Moz Moy
A= (A.94)

31 M3p M3z May

Na1 Mz a3 Mg

Thus if Aij - kf denotes the cofactor determinants of the elements ij
and kf respectively, it is deduced from A.92, A.93 and A.94 that
; AMiszz o Mies
23 Az A
A
11.24
11.22
(Equation A.95 cont next page)
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(M) 34 M2.34) 12
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.14
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Az2.13
Azz 11

A2z 14
A

11.22 (A.95)

in A.88 gives

A11.23

A2z

A

A N
l3+

11.24 14
M2z

Az2.13
A

+

A
22.11 23

A22.13 A11.23
A

Arai11 M2z

Aoy t A
11 24 33

A

.13 711,24 A

Az 13 Mir2s

A N3yt

11 7711.22 33

AZZ.ll A11.22.

A

.13 7711.24 A A

22

Aso

22.14 11.23
A

A
34 22.11

A

43
.11 711,22

A11.22

.14 A11.24:

+
A

Now, noting that A1} 22 =

1

E ) 34M34) 7

All,ZZ

1
+

22.

(A.96)

x44]

As5 11, put relation A.96 in the form

11 A11.22

A11.22 )\12 N All.23 )‘13 N A11.2.4 M4

1

A11.22

* A11.22

¥ A'11.24

¥ A11.24

A Aryoz Ao213hes

11.22

A

22.14 A A

A 11.23

24 T 22.13 *33

A A

11.23 A

N

22,13 M3a T 22.14 M43

Aooa "44] (A.97)
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Mizz Mzt 23 Mz A i2a Mia T Ji*ij Agjon™ ~ g T Ay, (A98)
since:
M2 M3 Mg
j=2 Mifoia1 Tt (Mg Mz Mgyl T Ay 7oA, (A.99)
Mgz Mgz hgg

by reference to relation A.94.
A.97 gives

Ayzas |A

+ A

A
J

11.22 P23t

22.14 IA11.22 Nog t

4
+
12213 2 A2 Mot Boza
<

Considering also the second expression in

A A

11.23%33 T Ay 24 >‘43\

A A

11.23 N34 T 11.24’*44' = (A.100)

>

e

j=2

SSPWIRI I

and both expressions vanish identically, since the subscript j is summed over

2, 3 and 4, giving

11

N

A

23 Mg Mz Ma Mo
33 Mgl Do T M3z N3y Mg (A.101)
43 Mg Mgz Mg Mg

so that the terms X22, N\23, and A4 are replaced in Aj] by A23, 33 and X34,
which is identical with X33, N33 and N34, and so that the two rows in All.Zj
)‘3_]' become identical and the determinant vanishes. Similarly for All.Zj

Ngj-

Hence relation A.97 becomes
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E ) =

(N} 34 M2.34 T T N (A.102)

Consider next the expression

2
2
E |”1.34l =E lup - pyuy - By “E['ul(“1'513u3'ﬁ14“4)
(A.103)
=My Pra My Py
But it is also true that
; YRE
13 A0
(A.104)
; Ayriia
14 A4 22
Hence
E|2 |--—--—1 [A A A ]Alos
N34 TR 11.22 M1 T A2 13 M3 T Ay 140 4] (A103)
Y11.22 «
=1 lA N.. A M.+ A N ]
TR, zzamMn T feaastisT faaa s

Referring to relation A.101, it is noted that the above is equivalent to
substituting for Ay}, N3] and A4] the terms Mj), N\)3 and A4, which again
leave Ajy5 unchanged. Hence

4 A
E | le——> x. 4 22 (A.106)
n U — . L. s e .
2.34 A“.22 =1 ij T22.ij A11.22
jE2
. . 2 .
Generalizing to relation E ('fl 2.34> gives
4
E (nz ): 1 N A = Nt (A.107)
2.34 j 2y '
Aioafm 84 Mg

- 80 -
SID 65-933




/&\

NORTH AMERICAN AVIATION, INC. @ SPACE and INFORMATION SYSTEMS DIVISION

Hence considering the partial correlation coefficient

-

. ) E(M) 34 M5 34)
12.34 ~ \/ ( 2 ) 2
EMy 34 E("z.34)

it follows from A.102, A.106 and A.107 that

(A.108)

A
A A
2z _ 12 (A.109)

VA2 A1 VA1) A

A11.22

2
[

Pl2.34 =~

In terms of the correlation coefficients,

Hence

12

P -5 —
12.3¢ P P,

(A.110)

For the case of three dimensions, considering the matrix

P11 P12 P13
Pp= P21 P22 Pp3 (A.111)

P P P

31 32 33

.81 -
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it follows that

Py P

“Pr2 = o p21 - (Pya Py = Pro) = P, - PrLP o (AVL12)
33 P31
since 933 = 1; also
Pl) = Paafiz - PasPi = (1-P5)
Paz = Prifa3 - Pi3fs = <1 - Pl'_%) (A.113)

Hence for the three-dimensional case the correlation coefficient
becomes

Py = PP
. _ 12~ "13"23 (A.114)

e \/(1 i p1§> (1- pzi)

and similarly for other dimensions,

It is noted that in the case of uncorrelated variables, say when

P = P

12 3 (A. 115)

12

and the partial correlation coefficient is equal to the total correlation
coefficient,

Now consider briefly the definition of a multiple correlation coefficient,
The residual is defined by

n
¢
N1.23....n = Y - JZZ 5ijuj = (u; - ) (A.116)
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where

n
u.>:< = z g..u,
1 j=2 B

Now among all linear combinations of u;, i = 2..... n, it is the
coefficient ul which has the maximum correlation (or a minimum value)
with respect to u

~ -

i-

The correlation coefficient

- (A.117)

P e
1(23..... n) \/ E(ui )E (ual )2

is the measure of correlation between u; and the totality of all the remaining
variables. This coefficient will be referred to as the multiple correlation
coefficient between ujy and u; (i =2, 3......n).

Consider now the quantity

%

E(“1“1> ={E uley =My 53 ) = Blegyy) - Eluny)
A
S U S (A.118)
11 7R
by previous derivations. Also,
E(uz) = E(uu) = A
1 1™ 11
W) ) A ‘
(4,7) = Btapuy -1y 5 9 = A - A (A.119)
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Hence

A - _j\—— A
) . 1 An _ 11ty A (A. 120)
1(234..n) ~ r Al A (X -A) ’
I o A 11'"™11 11
l 11 11 A
11
This yields
. ) Mty A AT T . A
1(23...n) \/A11“‘11A11 “A) A A1 M1
Hence
A P
p = 1 - —L2 = 1 -—o (A.121)
1(23...n) \/ A1 Pl

for general application in n-dimensions,
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