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THE THERMAL EFFECT ON CONICAL SHELLS
OF LINEARLY VARYING THICKNESS"
by

Chin Hao Chang 2

ABSTRACT 3 5 /18
A study of an isotropic conical shell of linearly varying thickness under

a surface temperature is made, The thermal effect on the shell is represented

by an equivalent load. Asymptotic particular solutions due to the thermal load

are obtained. One may combine these solutions with the complimentary solutions

of the shell obtained in a previous report [1] 3 to constitute a set of complete

solutions. A numerical example of a semi-circular cone frustum subjected to

temperature functions that are constant along the meridians and have a A/‘/
sinusoidal distribution in the circumferential direction is given. -/‘/
Introduction

Analytical solutions of conical shells including thermal effect so far
are not available. In this report an attempt is made to get an asymptotic

solution of an isotropic conical shell with linearly varying thickness by

1 This work was sponsored by George C. Marshall Space Flight Center,
NASA, under Contract NAS 8-11155 with the University of Alabama.

2 Agsociate Professor of Engineering Mechanics, University of Alabama.

3 Numbers in brackets designate references at end of report.
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following the method developed in a previous report [1] in which the basic
equations and complimentary solutions of these equations have been given.
These solutions can be applied here without any alteration. Thus the par-
ticular solution of the system of equations due to a thermal effect on such
shells will be sought.

The thermal effect may be represented by an equivalent load which
will be referred to as a thermal load. The thermal load will be derived in
the next section. The derivation is started by considering a shell of
revolution which in general has two principal curvatures in two respective
membrane directions. Letting one of the two curvatures vanish and
specifying the other, the thermal load for a conical shell is obtained.

The so-derived thermal load has components in all three directions of the
reference coordinates used.

The temperature distribution considered is assumed to be a linear
unction of the normal coordinate and an arbitrary function of the two
membrane coordinates. Such temperature distribution is commonly used
in shell theory. For instance this was the case assumed for cylindrical
shellsin [2].

It is shown in this study that, for asymptotic solutions, the temperature
variation in the normal direction is negligible. The asymptotic solutions
are discussed. The solutions of a particular case of constant temperature
distribution along the meridians of the conical shell and of sinusoidal
distribution in the circumferential direction are presented. Combining

these solutions with the complimentary solutions of the shell obtained in
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the previous report, a numerical example of a semi~-circular cone frustum
is given. The displacements, stress resultants and stress couples of the
cone frustum are presented graphically. It is found that the effect of such

a thermal load is quite similar to a lateral normal load.

The Thermal Loads
Let @ and © be a set of orthogonal curvilinear coordinates describing
the middle surface of a shell of revolution with a set of principal radii r @
and ry - When the classical Duhamel-Newmann law of thermoelasticity [3]

is used, the stresses, strains and temperature assume the following relations
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where O @ and O o are normal stresses, € @ and € normal

o
strains in the @ and © directions, O-9¢ and € g are shearing
stress and strain respectively, T is a temperature function and /3 is
the coefficient of linear expansion. 4

In what follows the relations for the part of the additional stresses
associated with the temperature function T only will be concerned because

those for the other part are supposedly known. The additional stresses may

be expressed in the forms

Symbols other than those defined in this report follow those given
in [1].



T E
O3 =-1-v T(& 0 2
T_ _EB
Ty = -1 TS, 6, 2 @)
and assume
T(@B, ©, z)="T, (@, Q)+zT1(¢, 0) (3)

where the coordinate z is in the normal direction of the middle surface

positive outward. The corresponding membrane stress resultants N®T,

NQT and stress couples M¢T, M QT per unit length due to the stresses

(2) defined by
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may be expressed in the following forms
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The foregoing expressions may be converted into those for conical

shells; simply let

r =m, e=&, r =s8cotd (6)
e e
and the results are
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For conical shells with linearly varying thickness using t = 6 s,

expressions (7) become
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where k= —— . When these stress resultants and couples are substituted
12
into equilibrium equations (4) of reference '1: and denoting the additional
T T
terms by P T, P and P one has
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The above three expressions may be considered as the three components

of the thermal load in the respective directions,

Asymptotic Solutions

It has been discussed in [ 1! that for thin shells the asymptotic

solutions are pertinent for practical purpose. In what follows asymptotic

particular solutions of the shell due to the thermal load will be sought.
Retaining the terms of the lowest order of k the thermal loads (9)

are simplified to the following form:



Note that the temperature function T

PT—-E'QS—[T52+TB]

s  1-V 0 0
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1 is not involved in these expressions.

For asymptotic solutions, the set of membrane equations may be used.

Using the dimensionless variable y as independent variable to replace the

s, the three equilibrium equations of membrane theory including the thermal

loads (10) referring to equations (42) of reference [ 1] may be given in the

following forms
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Let

W) Cos nwe
T = i el
o Qn_y D sin ©4 (12)

where Qn and u) are prescribed constants presumably real and finite.
n

The particular solutions of equations (11) may be assumed in the following

fashions.
*
T An™' sin nme
U —Any cos ©
*-1
VT B "n " cos DnTe )
=By sin (13)
*
wr = ¢ An7l o5 nme
0 sin o,

in which coefficients An’ B and Cn are to be determined. On Substituting
n

expressions (12) and (13) for equations (11), and on factoring out the

sinusoidal functions then setting

AN¥=w +3 (14)
n n

one will have three linear algebraic equations for three unknowns An, Bn
and Cn’ and the equations can be solved by the Cramer's rule provided that
A I’: does not make the determinant of the equations vanish. When u)n =0,
A I’: = 3 is one of the roots which will make the determinant vanish as has
been shown in [ 1]. And physically this represents the case in which the
temperature is constant along meridians. In such case the solutions which

are obtained by the same method as for the lateral normal uniform load given

in [ 1] are shown below.
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in which d 1 d2 b and c are constants to be determined. When the assumed

solutions (14) combined with (12) are substituted into equations (11) one can

show that
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The corresponding stress resultants due to the thermal loads are readily

obtained by use of the elastic law. The results are given as follows.
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The stress couples induced by such thermal loads are of higher order,
thus negligible. Combining the solutions’(14) and (16) with the complementary

solutions obtained in [1] , one has the complete solutions for this case.

Numerical Example
Take the semi-circular truncated cone which has two generators simply
supported with the smaller circular end fixed and the other end free as dis-

cussed in [1] as an example. The same parameters are assumed that

Ly
and/ = =0.90 (17)

Numerical results for n=1 and 2 are computed so that one can use them

a =175, UV =

W [

for the types of symmetrical and asymmetrical distribution of temperature
similar to those of wind loads discussed in reference [ 1] . The results

are given in the form

sin nTO
cos
1

F {y,9)=1f (y) n=1and2 (18)
n n

t
in which the function fn(y) are presented in Figs. 1 to 10 for I’: = 0. 004,

0. 006 and 0. 008.
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