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by 

2 Chin Hao Chang 

3 9 ’ 8  
ABSTRACT 

A study of an isotropic conical shell of linearly varying thicknese under 

a surface temperature is made. The thermal effect on the shell is represented 

by an equivalent load. Asymptotic particular solutions due to the thermal load 

are obtained. One may combine these solutions with the complimentary solutions 

of the shell obtained in a previous report ( 1 3 to constitute a set of complete 

solutions. A numerical example of a semi-circular cone frustum subjected to 

temperature functions that are constant along the meridians and have a 

sinusoidal dietribution in the circumferential direction is given. 

Introduction 

Analytical solutions of conical shells including thermal effect so far 

are not available. In this report an attempt is made to get an asymptotic 

solution of an isotropic conical shell with linearly varying thickness by 

This work was sponsored by George C.  Marshall Space Flight Center, 
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following the method developed in a previous report [ 1 I 

equations and complimentary solutions of these equations have been given. 

These solutions can be applied here without any alteration. Thus the par- 

ticular solution of the system of equations due to a thermal effect on such 

shells will be sought. 

in which the basic 

The thermal effect may be represented by an equivalent load which 

will be referred to a s  a thermal load. 

the next section. 

revolution which in general has two principal curvatures in two respective 

membrane directions. 

specifying the other, the thermal load for a conical shell is obtained. 

The so-derived thermal load has components in all three directions of the 

reference coordinates used. 

The thermal load will be derived in 

The derivation is started by considering a shell of 

Letting one of the two curvatures vanish and 

The temperature distribution considered is assumed to be a linear 

fmction of the nnrrnal coordinate and an arbitrary function of the two 

membrane coordinates. 

in shell theory. 

shells in C2 1. 

Such temperature distribution is commonly used 

FOP instance this was the case assumed for cylindrical 

It is shorn in this study that, for asymptotic solutions, the temperature 

variation in the normal direction is negligible. 

a r e  discussed. 

distribution along the meridians of the conical shell and of sinusoidal 

distribution in. t h e  circumferential direction a re  presented. 

these solutions with the complimentary solutions of the shell obtained in 

The asymptotic solutions 

The solutions of 8 particular case of constant temperature 

Combining 
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the previous report, a numerical example of a semi-circular cone frustum 

is given. 

cone frustum a re  presented graphically. It is found that the effect of such 

a thermal load is quite similar to a lateral normal load. 

The displacements, stress resultants and stress couples of the 

The Thermal Loads 

Let 0 and 0 be a set of orthogonal curvilinear coordinates describing 

r0 the middle surface of a shell of revolution with a set of principal radii 

and r8 . When the classical Duhamel-Newmann law of thermoelasticity [3] 

is used, the stresses, strains and temperature assume the following relations 

where q0 and g, a re  normal stresses,  and E ,  , normal 

strains in the 0 and €9 directions, and are  shearing 

stress and strain respectively, T is a temperature function and is 

the coefficient of linear expansion. 

e0 
f i  

4 

In what follows the relations for  the part of the additional s t resses  

associated with the temperature function T only will be concerned because 

those for the other part a re  supposedly known. The additional s t resses  may 

be expressed in the forms 

Symbols o ther  than those defined in th i s  r epor t  follow those given 4 

in [ l l .  
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and assume 

where the coordinate z is in the normal direction of the middle surface 

positive outward. The corresponding membrane stress resultants N a  T , 

per unit length due to the stresses T 
c3 ’ M8 

NeT and stress couples M 

(2) defined by 

may be expressed in the following forms 

“ 3  T 
N -  

QI 12 

T 2  
Et r 1 t  

NeT = - 12 

T 
M =  EP r T + - I -  t2 

12 rQI 
@ 1-u 1 1 

M =  S I T l + . - -  To ’ t2 
- # 1-v re’ 12 
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The foregoing expressions may be converted into those for conical 

shells; simply let 

r =a, e= a ,  r = s c o t 4  
e 0 

and the results are 

N T =-"B[T0] 
0 1- v 

For conical shells with linearly varying thickness using t = 6 s, 

expressions (7') become 

2 M T =  E86 k 'To" tana + T i s  s 1-1) 1 

M T =- E 6 6  k[Tls3] 
e 1-7) 
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where I C =  - 6 2  . When these stress resultants and couples are substituted 
12 

into equilibrium equations ( 4  ) of reference ' 1 and denoting the additional 

I terms by Ps , P and one has 
r 

T T T 
P = ( s N s  ) '  - Ne 

S 

1 2 3 = - [ T s2 + TOs -t. 3kT s tan a + kT * s tan a 1-v 0 1 1 

T T T 2 T  tan q + 2s(M ) *  + s (M ) - *  P = sN r 8 S S 

m{ T s2 t a n q  - k (s5Tl + 8 s  4 T + 12s  3 T ) 
1 1 

- _ -  
1-v 0 

4 * .  3 .  2 
+ (s To + 6 s  T + 6 s  T ) tan a 

0 0 

T T T P = s(Ne )' s e c q  - (Me )' t a n a  sec q 

= - * [ (s2T ' )  + k T , '  s 3 1  tan q sec a 

0 

1 -v 0 1 J 

The above three expressions may be 

of the thermal load in the respective 

considered as the three components 

directions. 

Asymptotic Solutions 

It has been discussed in L 1 that for thin shells the asymptotic 

solutions are pertinent for practical purpose. 

particular solutions of the she l l  due to the thermal load will be sought. 

In what follows asymptotic 

Retaining the terms of the lowest order of k the thermal loads (9) 

are simplified to the following form: 



p = -  
1 -u S 

T = -+u E 8  [ T s2 tan a ] 
'r 0 

I = -3 [ s2~01 sec u 
'0 

7 

Note that the temperature function T is not involved in these expressions. 
1 

For asymptotic solutions, the se t  of membrane equations may be used. 

Using the dimensionless variable y as independent variable to replace the 

s, the three equilibrium equations of membrane theory including the thermal 

loads (10) referring to equations (42) of reference [ 1 ] may be given iii the 

following forms 

+ ( 2 - ~ ) v ,  8 s e c a  +w, n s e c a t a n u  = ( I + V ) / ~ L ~ ~ T ~ , ~  seca 

(1 1) 

3 1 2  3 I+ v yu, s e c u - - ( l - V ) u ,  secu + - y  v, + q y v ,  
8 QY 2 8 4 YY Y 

2 1 +- 1-v vYQQsec  u - ( l - l / ) v + - V y w ,  t a n a  - ( l - V ) w t a n a  
2 2 Y 

= ( l + y ) B L y 2 [  i y  T + T  0 ] 0, Y 

u, secu + - v y v ,  1 + v + w t a n a = ( l + U ) P  L y 2 T o t a n q  
8 2 Y 
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Let 

where Q and a re  prescribed constants presumably real and finite. 

The particular solutions of equations (11) may be assumed in the following 

fashions. 

n n 

A *  -1 
T n cos !LE! 

V = Bny e sin 

cos nne 
1 

T A*,-1 
w = c y  sin e n 

in which coefficients A B and C are to be determined. On substituting 

expressions (12) and (13) for equations (ll), and on factoring out the 

n' n n 

sinusoidal functions then setting 

A * = &  + 3  
n n 

one will have three linear algebraic equations for three unknowns A , B 

and Cn, and the equations can be solved by the Cramer's rule provided that 
n n  

does not make the determinant of the equations vanish. When L3 = 0, 
n 

A * = 3 is one of the roots which will make the determinant vanish as has 

been shown in [ 1 7 .  And physically this represents the case in which the 

n 

temperature is constant along meridians. In such case the solutions which 

a re  obtained by the same method as for the lateral normal uniform load given 

in [ 11 are shown below. 
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Let 

2 sin n a Q  

1 
UT = [ dl + d 2 lny] y cos 0 

2 cos n r e  wT = c ( l +  1ny) y 
Q1 sin 

in which d d b and c are constants to be determined. When the assumed 

solutions (14) combined with (12) are substituted into equations (11) one can 

show that 

1 2  

c =  tan " d 2  a 

The corresponding s t ress  resultants due to the thermal loads are readily 

obtained by use of the elastic law, The results are given as follows. 

T COS n a Q  
sin - N = [ (1 +2) b - m t '  (dl - d2)] y2 

S 1 - v 2  

n n Q  2 cos - 
sin 0 1 

NQ - -l,t/2 [ V(l +z/) b - m(dl - d2)] y 



. -  

l o  

The stress couples induced by such thermal loads a re  of higher order, 

thus negligible. Combining the solutions'(l4) and (16) with the complementary 

solutions obtained in [ 11 , one has the complete solutions for this case. 

Numerical Example 

Take the semi-circular truncated cone which has two generators simply 

supported with the smaller circular end fixed and the other end free as dis- 

cussed in [ 1 as an example. The same parameters are assumed that 

0 
a = 75 , 1/ = A  and/+ = 0 . 9 0  

3 

Numerical results for n = 1 and 2 are computed so that one can use them 

for the types of symmetrical and asymmetrical distribution of temperature 

similar to those of wind loads discussed in reference [ 11 . 
are given in the form 

The results 

sin 11x8 
F (Y3 Q ) = f  ( Y )  cos n =  1 and2 

n @1 n 

t 
in which the function f (y) are presented in Figs. 1 to 10 for - = 0. 004, 

0.006 and 0.008. 

n R 
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