Fwet NAS 8-11155

GPO PRICE \$ \qquad
CFSTI PRICE(S) \$ \qquad

ff 653 July 65

THE THERMAL EFFECT ON CONICAL SHELLS OF LINEARLY VARYING THICKNESS

Prepared by
Chin Hao Chang

Submitted to
George C. Marshall Space Flight Center
National Aeronautics and Space Administration

THE THERMAL EFFECT ON CONICAL SHELLS OF LINEARLY VARYING THICKNESS

Prepared by
Chin Hao Chang

Submitted to

George C. Marshall Space Flight Center
 National Aeronautics and Space Administration

Bureau of Engineering Research
University of Alabama
University, Alabama
May, 1965

THE THERMAL EFFECT ON CONICAL SHELLS

 OF LINEARLY VARYING THICKNESS ${ }^{1}$by
Chin Hao Chang ${ }^{2}$

Abstract

35118

A study of an isotropic conical shell of linearly varying thickness under a surface temperature is made. The thermal effect on the shell is represented by an equivalent load. Asymptotic particular solutions due to the thermal load are obtained. One may combine these solutions with the complimentary solutions of the shell obtained in a previous report $[1]^{3}$ to constitute a set of complete solutions. A numerical example of a semi-circular cone frustum subjected to temperature functions that are constant along the meridians and have a sinusoidal distribution in the circumferential direction is given.

Introduction

Analytical solutions of conical shells including thermal effect so far are not available. In this report an attempt is made to get an asymptotic solution of an isotropic conical shell with linearly varying thickness by

[^0]following the method developed in a previous report [1] in which the basic equations and complimentary solutions of these equations have been given. These solutions can be applied here without any alteration. Thus the particular solution of the system of equations due to a thermal effect on such shells will be sought.

The thermal effect may be represented by an equivalent load which will be referred to as a thermal load. The thermal load will be derived in the next section. The derivation is started by considering a shell of revolution which in general has two principal curvatures in two respective membrane directions. Letting one of the two curvatures vanish and specifying the other, the thermal load for a conical shell is obtained. The so-derived thermal load has components in all three directions of the reference coordinates used.

The temperature distribution considered is assumed to be a linear function of the normal coordinate and an arbitrary function of the two membrane coordinates. Such temperature distribution is commonly used in shell theory. For instance this was the case assumed for cylindrical shells in [2].

It is shown in this study that, for asymptotic solutions, the temperature variation in the normal direction is negligible. The asymptotic solutions are discussed. The solutions of a particular case of constant temperature distribution along the meridians of the conical shell and of sinusoidal distribution in the circumferential direction are presented. Combining these solutions with the complimentary solutions of the shell obtained in
the previous report, a numerical example of a semi-circular cone frustum is given. The displacements, stress resultants and stress couples of the cone frustum are presented graphically. It is found that the effect of such a thermal load is quite similar to a lateral normal load.

The Thermal Loads

Let \varnothing and Θ be a set of orthogonal curvilinear coordinates describing the middle surface of a shell of revolution with a set of principal radii r_{\varnothing} and \mathbf{r}_{Θ}. When the classical Duhamel-Newmann law of thermoelasticity [3] is used, the stresses, strains and temperature assume the following relations

$$
\begin{align*}
& \left.\sigma_{\varnothing}=\frac{\mathrm{E}}{1-V^{2}}{ }^{r} \epsilon_{\varnothing}+\nu \epsilon_{\theta}-(1+\nu) \beta \mathrm{T}\right] \\
& \sigma_{\theta}=\frac{\mathrm{E}}{1-V^{2}}\left[\epsilon_{\theta}+\nu \epsilon_{\varnothing}-(1+\nu) ; \mathrm{T} ?\right. \\
& \sigma_{\Theta \emptyset}=\frac{E}{2(1+\mathcal{V})} \epsilon_{\Theta \varnothing} \tag{1}
\end{align*}
$$

where σ_{\varnothing} and σ_{Θ} are normal stresses, ϵ_{\varnothing} and ϵ_{Θ}, normal strains in the \varnothing and Θ directions, $\sigma_{\Theta \emptyset}$ and $\epsilon_{\Theta \emptyset}$ are shearing stress and strain respectively, T is a temperature function and $\bar{\beta}$ is the coefficient of linear expansion. ${ }^{4}$

In what follows the relations for the part of the additional stresses associated with the temperature function T only will be concerned because those for the other part are supposedly known. The additional stresses may be expressed in the forms

Symbols other than those defined in this report follow those given in [1].

$$
\begin{align*}
& \sigma_{\phi}^{\mathrm{T}}=-\frac{\mathrm{E} \beta}{1-\nu} \mathrm{T}(\phi, \theta, \mathrm{z}) \\
& \sigma_{\theta}^{\mathrm{T}}=-\frac{\mathrm{E} \beta}{1-\nu} \mathrm{T}(\phi, \theta, z) \tag{2}
\end{align*}
$$

and assume

$$
\begin{equation*}
\mathrm{T}(\varnothing, \Theta, \mathrm{z})=\mathrm{T}_{0}(\varnothing, \Theta)+\mathrm{z} \mathrm{~T}_{1}(\varnothing, \theta) \tag{3}
\end{equation*}
$$

where the coordinate z is in the normal direction of the middle surface positive outward. The corresponding membrane stress resultants $N_{\varnothing} T$, $N_{\Theta}{ }^{T}$ and stress couples $M_{\varnothing}{ }^{T}, M_{\Theta}{ }^{T}$ per unit length due to the stresses (2) defined by

$$
\begin{align*}
& N_{\varnothing}^{\mathrm{T}}=\int_{-\mathrm{t} / 2}^{\mathrm{t} / 2} \sigma_{\varnothing}^{\mathrm{T}}\left(1+\frac{\mathrm{z}}{\mathbf{r}_{\Theta}}\right) \mathrm{dz}, \quad \mathrm{~N}_{\theta}^{\mathrm{T}}=\int_{-\mathrm{t} / 2}^{\mathrm{t} / 2} \sigma_{\theta}^{\mathrm{T}}\left(1+\frac{\mathrm{z}}{\mathrm{r}_{\emptyset}}\right) \mathrm{dz} \\
& M_{\emptyset}^{T}=-\int_{-}^{\mathrm{T} / 2} \sigma_{\varnothing}^{\mathrm{t} / 2} \mathrm{~T}_{\varnothing}\left(1+\frac{\mathrm{z}}{\mathrm{r}_{\theta}}\right) \mathrm{zdz}, \quad \mathrm{M}_{\Theta}^{\mathrm{T}}=-\int_{-\mathrm{t} / 2}^{\mathrm{t} / 2} \sigma_{\Theta}^{\mathrm{T}}\left(1+\frac{\mathrm{z}}{\mathrm{r}_{\varnothing}}\right) \mathrm{dz} \tag{4}
\end{align*}
$$

may be expressed in the following forms

$$
\begin{align*}
& \mathrm{N}_{\varnothing}^{\mathrm{T}}=-\frac{\mathrm{Et}}{1-\nu} \beta\left[\mathrm{T}_{0}+\frac{\mathrm{T}_{1}}{\mathrm{r}_{\Theta}} \frac{\mathrm{t}^{2}}{12}\right] \\
& \mathrm{N}_{\Theta}^{\mathrm{T}}=-\frac{\mathrm{Et}}{1-\nu} \beta\left[\mathrm{T}_{0}+\frac{\mathrm{T}_{1}}{\mathrm{r}_{\varnothing}} \frac{\mathrm{t}^{2}}{12}\right] \\
& M_{\varnothing}^{\mathrm{T}}=\frac{\mathrm{E} \beta}{1-\nu}\left[\mathrm{T}_{1}+\frac{\mathrm{T}_{0}}{\mathrm{r}_{\phi}}\right] \frac{\mathrm{t}^{2}}{12} \\
& M_{\phi}^{\mathrm{T}}=\frac{\mathrm{E} \beta}{1-\nu}\left[\mathrm{T}_{1}+\frac{\mathrm{T}_{0}}{\mathrm{r}_{\Theta}} \frac{t^{2}}{12}\right. \tag{5}
\end{align*}
$$

The foregoing expressions may be converted into those for conical shells; simply let

$$
\begin{equation*}
r_{\theta}=\infty, \quad e=\alpha, \quad r_{\theta}=s \cot \alpha \tag{6}
\end{equation*}
$$

and the results are

$$
\begin{aligned}
& N_{s}^{T}=-\frac{E t}{1-\nu} \beta\left[T_{0}+\frac{t^{2}}{12} \frac{T_{1}}{8} \tan \alpha\right] \\
& \mathbf{N}_{\theta}^{\mathrm{T}}=-\frac{\mathrm{Et}}{1-V} \boldsymbol{\beta}\left[\mathrm{~T}_{\mathrm{o}}\right] \\
& M_{s}^{T}=\frac{E \beta}{1-V} \frac{t^{3}}{12}\left[\frac{T_{0}}{s} \tan \alpha+T_{1}\right] \\
& M_{\theta}^{T}=\frac{E \beta}{1-\nu} \quad \frac{t^{3}}{12}\left[\begin{array}{c}
T_{1}
\end{array}\right]
\end{aligned}
$$

(7)

For conical shells with linearly varying thickness using $t=6 \mathrm{~s}$, expressions (7) become

$$
\begin{align*}
& N_{s}^{T}=-\frac{E \beta \delta}{1-V}\left[T_{0} s+k T_{1} s^{2} \tan \alpha\right] \\
& N_{\theta}^{T}=-\frac{E \beta \delta}{1-V}\left[T_{0} s\right] \\
& M_{s}^{T}=\frac{E \beta \delta}{1-\nu} k\left[T_{0} s^{2} \tan \alpha+T_{1} s^{3}\right] \tag{8}\\
& M_{\theta}^{T}=\frac{E \beta \delta}{1-\nu} k\left[T_{1} s^{3}\right]
\end{align*}
$$

where $\mathrm{k}=\frac{\delta^{2}}{12}$. When these stress resultants and couples are substituted into equilibrium equations (4) of reference : 1 and denoting the additional terms by $P_{S}{ }^{T}, P_{r}^{T}$ and $P_{\theta}{ }^{T}$ one has

$$
\begin{aligned}
& P_{s}^{T}=\left(s N_{s}^{T}\right)-N_{\Theta}^{T} \\
& =-\frac{E \boldsymbol{\beta} \delta}{1-\nu}\left[\mathrm{T}_{0} \cdot \mathrm{~s}^{2}+\mathrm{T}_{0} \mathrm{~s}+3 \mathrm{kT} \mathrm{~T}_{1} \mathrm{~s}^{2} \tan \boldsymbol{\alpha}+\mathrm{kT} \mathrm{~T}_{1} \cdot \mathrm{~s}^{3} \tan \boldsymbol{\alpha}\right]
\end{aligned}
$$

$$
\begin{align*}
& =-\frac{E \beta \delta}{1-\nu}\left\{\mathrm{T}_{0} \mathrm{~s}^{2} \tan \boldsymbol{\alpha}-\mathrm{k}\left[\left(\mathrm{~s}^{5} \ddot{\mathrm{~T}}_{1}+8 \mathrm{~s}^{4} \dot{\mathrm{~T}}_{1}+12 \mathrm{~s}^{3} \mathrm{~T}_{1}\right)\right.\right. \\
& \left.\left.+\left(s^{4} \ddot{\mathrm{~T}}_{0}+6 \mathrm{~s}^{3} \dot{\mathrm{~T}}_{0}+6 \mathrm{~s}^{2} \mathrm{~T}_{0}\right) \tan a\right]\right\} \tag{9}\\
& P_{\theta}^{T}=s\left(N_{\theta}^{T}\right), \sec \alpha-\left(M_{\theta}^{T}\right)^{\prime} \tan \alpha \sec \alpha \\
& =-\frac{\mathrm{E} \boldsymbol{\beta} \boldsymbol{\delta}}{1-\nu}\left[\left(\mathrm{s}^{2} \mathrm{~T}_{0}{ }^{\prime}\right)+\mathrm{k} \mathrm{~T}_{1}{ }^{\prime} \mathrm{s}^{3} \tan \boldsymbol{\alpha}\right] \sec \boldsymbol{\alpha}
\end{align*}
$$

The above three expressions may be considered as the three components of the thermal load in the respective directions.

Asymptotic Solutions

It has been discussed in $[1]$ that for thin shells the asymptotic solutions are pertinent for practical purpose. In what follows asymptotic particular solutions of the shell due to the thermal load will be sought.

Retaining the terms of the lowest order of k the thermal loads (9) are simplified to the following form:

$$
\begin{align*}
& P_{s}^{T}=-\frac{E \beta \delta}{1-\nu}\left[\dot{T}_{0} s^{2}+T_{0} s\right] \\
& P_{r}^{T}=-\frac{E \beta \delta}{1-\nu}\left[T_{0} s^{2} \tan \alpha\right] \\
& P_{\theta}^{T}=-\frac{E \beta \delta}{1-\nu}\left[s^{2} T_{0}^{\prime} \sec \alpha\right] \tag{10}
\end{align*}
$$

Note that the temperature function T_{1} is not involved in these expressions.
For asymptotic solutions, the set of membrane equations may be used.
Using the dimensionless variable y as independent variable to replace the s, the three equilibrium equations of membrane theory including the thermal loads (10) referring to equations (42) of reference [1] may be given in the following forms

$$
\begin{align*}
& \frac{1-\nu}{8}\left[y^{2}{ }_{u, ~ y y}+3 y u_{y}-8 u\right]+\frac{1+\nu}{4} \text { yu, } \theta y \sec \alpha+u, \theta \Theta \sec ^{2} \alpha \\
& +(2-\nu) v,{ }_{\theta} \sec \alpha+w,{ }_{\theta} \sec \alpha \tan \alpha=(1+\nu) \beta \mathrm{L} \mathrm{y}^{2} \mathrm{~T}_{0, \Theta} \sec \alpha \tag{11}\\
& \frac{1+\nu}{8} \text { yu, }{ }_{\theta y} \sec \alpha-\frac{3}{2}(1-\nu) u_{\theta}, \sec \alpha+\frac{1}{4} y^{2} v,{ }_{y y}+\frac{3}{4} y v, y_{y} \\
& +\frac{1-\nu}{2} v,{ }_{\theta \Theta} \sec ^{2} \alpha-(1-\nu) v+\frac{1}{2} \nu y w, y \tan \alpha-(1-\nu) w \tan \alpha \\
& =(1+\nu) \beta L \mathrm{y}^{2}\left[\frac{1}{2} \text { y } \mathrm{T}_{0, \mathrm{y}}+\mathrm{T}_{0}\right] \\
& { }^{u},{ }_{\theta} \sec \alpha+\frac{1}{2} \nu y v{ }_{y}+v+w \tan \alpha=(1+\nu) \beta L y^{2} T_{0} \tan \alpha
\end{align*}
$$

Let

$$
\begin{equation*}
T_{o}=Q_{n} y^{\omega_{n}} \frac{\cos }{\sin } \frac{n \pi \theta}{\theta_{1}} \tag{12}
\end{equation*}
$$

where Q_{n} and ω_{n} are prescribed constants presumably real and finite. The particular solutions of equations (11) may be assumed in the following fashions.

$$
\begin{align*}
& \mathrm{U}^{\mathrm{T}}=\mathrm{A}_{\mathrm{n}} \mathrm{y}^{\lambda_{\mathrm{n}}^{*-1} \sin \frac{\mathrm{n} \pi \theta}{\theta_{1}}} \\
& \mathrm{~V}^{\mathrm{T}}=\mathrm{B}_{\mathrm{n}} \mathrm{y}^{\lambda_{\mathrm{n}}^{*-1}} \sin \operatorname{sos} \frac{\mathrm{n} \pi \theta}{\theta_{1}} \tag{13}\\
& \mathrm{w}^{\mathrm{T}}=\mathrm{C}_{\mathrm{n}} \mathrm{y}^{\lambda_{\mathrm{n}}^{*}-1} \operatorname{lin}_{\cos \frac{\mathrm{n} \pi \theta}{\theta_{1}}}^{\sin }
\end{align*}
$$

in which coefficients A_{n}, B_{n} and C_{n} are to be determined. On substituting expressions (12) and (13) for equations (11), and on factoring out the sinusoidal functions then setting

$$
\begin{equation*}
\lambda_{\mathrm{n}}^{*}=\omega_{\mathrm{n}}+3 \tag{14}
\end{equation*}
$$

one will have three linear algebraic equations for three unknowns A_{n}, B_{n} and C_{n}, and the equations can be solved by the Cramer's rule provided that λ_{n}^{*} does not make the determinant of the equations vanish. When $\omega_{\mathrm{n}}=0$, $\lambda_{\mathrm{n}}^{*}=3$ is one of the roots which will make the determinant vanish as has been shown in [1]. And physically this represents the case in which the temperature is constant along meridians. In such case the solutions which are obtained by the same method as for the lateral normal uniform load given in [1] are shown below.

Let

$$
\begin{align*}
& \mathrm{U}^{\mathrm{T}}=\left[\mathrm{d}_{1}+\mathrm{d}_{2} \ln \mathrm{y}\right] \mathrm{y}^{2} \sin \cos \frac{\mathrm{n} \pi \theta}{\Theta_{1}} \\
& \mathrm{v}^{\mathrm{T}}=\mathrm{by}^{2} \cos _{\sin } \frac{\mathrm{n} \pi \theta}{\Theta_{1}} \\
& \mathrm{w}^{\mathrm{T}}=\mathrm{c}(1+\ln \mathrm{y}) \mathrm{y}^{2} \begin{array}{l}
\cos \\
\sin
\end{array} \frac{\mathrm{n} \pi \theta}{\Theta_{1}} \tag{14}
\end{align*}
$$

in which $d_{1} d_{2} b$ and c are constants to be determined. When the assumed solutions (14) combined with (12) are substituted into equations (11) one can show that

$$
\begin{align*}
d_{1} & =-\frac{1}{2} \frac{m \beta L Q_{n}}{1-\nu}\left\{(1+3 \nu)-(5-\nu) \tan \alpha-\left[\frac{2}{3} \mathrm{~m}^{2}-\frac{1}{\mathrm{~m}^{2}}(1+\nu)\right](1-\tan \alpha)\right\} \\
\mathrm{d}_{2} & =\frac{1}{3} \frac{\mathrm{~m} \beta \mathrm{~L} Q_{\mathrm{n}}}{1-\nu}\left\{\left(1+4 \nu-\mathrm{m}^{2}\right)-\tan \alpha\left(7-2 \nu-\mathrm{m}^{2}\right)\right\} \\
\mathrm{b} & =\frac{1}{6} \frac{\mathrm{~m}^{2} \beta L Q_{\mathrm{n}}}{1-\nu}\left\{1-\tan \alpha+\frac{3}{\mathrm{~m}^{2}}[\tan \alpha(1-2 \nu)+1]\right\} \\
c & =\frac{m}{\tan \alpha} d_{2} \tag{15}
\end{align*}
$$

The corresponding stress resultants due to the thermal loads are readily obtained by use of the elastic law. The results are given as follows.

$$
\begin{align*}
& \mathrm{N}_{\mathrm{s}}^{\mathrm{T}}=\frac{\mathrm{E} \delta}{1-\nu^{2}}\left[(1+\nu) \mathrm{b}-\mathrm{m} \nu^{\prime}\left(\mathrm{d}_{1}-\mathrm{d}_{2}\right)\right] \mathrm{y}^{2} \cos \sin \frac{\mathrm{n} \pi \theta}{\theta_{1}} \\
& \mathrm{~N}_{\theta}^{\mathrm{T}}=\frac{\mathrm{E} \delta}{1-\nu^{2}}\left[\nu(1+\nu) \mathrm{b}-\mathrm{m}\left(\mathrm{~d}_{1}-\mathrm{d}_{2}\right)\right] \mathrm{y}^{2} \cos \frac{\mathrm{n} \pi \theta}{\sin } \Theta_{1} \\
& \mathrm{~T}_{\mathrm{s}}^{\mathrm{T}}=\frac{\mathrm{E} \delta}{4(1+\nu)}\left[\mathrm{d}_{2}+2 \mathrm{mb}\right] \mathrm{y}^{2} \sin \frac{\mathrm{n} \pi \theta}{\theta_{1}} \tag{16}
\end{align*}
$$

The stress couples induced by such thermal loads are of higher order, thus negligible. Combining the solutions ${ }^{\circ}$ (14) and (16) with the complementary solutions obtained in [1], one has the complete solutions for this case.

Numerical Example

Take the semi-circular truncated cone which has two generators simply supported with the smaller circular end fixed and the other end free as discussed in [1] as an example. The same parameters are assumed that

$$
\begin{equation*}
\alpha=75^{\circ}, \nu=\frac{1}{3} \text { and } \sqrt{\frac{\mathrm{L}_{1}}{\mathrm{~L}}}=0.90 \tag{17}
\end{equation*}
$$

Numerical results for $n=1$ and 2 are computed so that one can use them for the types of symmetrical and asymmetrical distribution of temperature similar to those of wind loads discussed in reference [1]. The results are given in the form

$$
\begin{equation*}
\mathrm{F}_{\mathrm{n}}(\mathrm{y}, \theta)=\mathrm{f}_{\mathrm{n}}(\mathrm{y}) \sin _{\cos } \frac{\mathrm{n} \pi \theta}{\theta_{1}} \quad \mathrm{n}=1 \text { and } 2 \tag{18}
\end{equation*}
$$

in which the function $f_{n}(y)$ are presented in Figs. 1 to 10 for $\frac{t}{R}=0.004$, 0.006 and 0.008 .

Acknowledgement

The author wishes to thank Mr. H. Y. Chu for his assistance in the programing of the numerical computations involved.

References

1. Chang, C. H., "On Conical Shells of Linearly Varying Thickness Subjected to Lateral Normal Loads," Progress Report I. Submitted to George C. Marshall Space Flight Center, NASA for Contract NAS8-11155 by Bureau of Engineering Research, University of Alabama, February 1965.
2. Flügge, W. and Conrad, D. A., "Thermal Singularities for Cylindrical Shells," Proc. Third U. S. Nat. Congr. Appl. Mech. , ASME, 1958, pp. 321-328.
3. Sokolnikoff, Z. S., "Mathematical Theory of Elasticity," 2nd ed., McGraw-Hill Book Co., New York, 1956, p. 359.

FIG. 1. DISPLACEMENTS W, V AND U
($N=1$)

FIG. 2 MEMBRANE FORCES $N_{\theta} T_{S}$ AND N_{S} ($N=1$)

FIG. 3 TRANSVERSE SHEARING FORCE $S_{s}(N=1)$

FIG. 4 TRANSVERSE SHEARING FORCE $S_{\theta}(N=1)$

FIG. 5 NORMAL MOMENT $M_{S} \quad(N=1)$

FIG. 6 NORMAL MOMENT $M_{S} \quad(N=2)$

FIG. 7 DISPLACEMENTS W, V AND $U(N=2)$

FIG. 8 MEMBRANE FORCES N_{θ}, Ts AND Ns
($N=2$)

FIG. 9 TRANSVERSE SHEARING FORCE $S_{s}(N=2)$

FIG. 10 TRANSVERSE SHEARING FORCE $S_{e}(N=2)$

[^0]: 1
 This work was sponsored by George C. Marshall Space Flight Center, NASA, under Contract NAS 8-11155 with the University of Alabama.

 2 Associate Professor of Engineering Mechanics, University of Alabama.
 3
 Numbers in brackets designate references at end of report.

