View metadata, citation and similar papers at core.ac.uk brought to you by i CORE

provided by NASA Technical Reports Server

- s S . " N ¢ R
+ 3 2;1' il ); ' S 1.‘_‘;1-:;‘-=i i
) ’ L 513" & PRI VI B R

~ [EN

- - . -
N65-35259
EFFICIENT 1%P5CURSIVE ESTIMATION OF THE

* 3 PARAMETERS OF A COVARIANCE FUNCTION1
//

David J. Sakrison J VASH Mj‘d&ﬂfo

University of California
7 L
(A o0z

1. Introduction. We consider the situation in which an observer

Berkeley, California

sequentially makes observations, each of T seconds duration, of a

zero-mean gaussian (normal) process, W(t). We assume here that s
successive observations are identically distributed and statistically

independent of one another. We consider the case in which the .
covariance function of the process is of a known form which depends

upon the values of M unknown scalar parameters, @@y,

The observers objective is to use the known functional form of the

. covariance function and the sequence of observations to estimate

the values of the a-parameters which pertain to the process being
observed

In many applications, the amount of data to be processed is
extraordinarily large, and the computational aspects of an estimation
method become crucially important. A situation which
this setting (and indeed was the motivation for this work) is one in
radar (or radio) astronomy. Here a signal is periodically scattered
(or continuously radiated) from a target such as a planet. Due to the
scattering (or radiating) properties of the target, a zero-mean

gaussian process is a good model for the received signal. One of
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target's parameters (e. g., the range and rate of rotation of a planet).
In this situation the total duration of observation ranges from ten to
several hundred hours, yet even for the longer observation times,
the quality of the estimates of some of the parameters of interest is
never any more than satisfactory. Thus in this situation, both
computational simplicity and asymptotic efficiency are of paramount
importance, and one is led to find estimation methods having both of
these qualities.

Stochastic approximation methods such as the Robbins-Munro [10]
and Kiefer-Wolfowitz [8] methods, being recursive, are inherently
computationally convenient. If one uses the original methods with
fixed gain sequences, a . the fastest rate of convergence is obtained
with a sequence of the form a = A/n, providing A is sufficiently
large. However, the asymptotic variance of the estimates is of the

form

A%/n(2AG - 1)

in which G depends upon the unknown value of the parameter to be
estimated [ll:l Thus proper choice of A is quite important in
obtaining the smallest possible variance, ;ret is difficult because of
the dependence of G upon theunknown parameter value. Gardner [5]
and Alberts [1]1 improve on this situation by considering nonfixed

sequences of the form

n

an = A Yn/ zl hn
me=

for a variety of choices of the ' and hn' Their work is still in
flux, but at present their methods do not yield asymptotically

efficieni estimates when applied to the problem considered here

1A joint publication is in the process of preparation.
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(Gardner has one method that is asymptotically efficient but whose
computational complexity increases with the iteration number). For
this reason, we consider here a modified Robbins-Munro method
(which is essentially a stochastic Newton-Raphson method) in which

the gain sequence is of the form

a_ =g/n

in which g is a function only of the previous estimate. This method
requires more in the way of regularity conditions than the work of
Albert and Gardner. However, for application to the problem
considered here, these conditions are in general justified, and the
method leads to estimates that are asymptotically efficient.

We proceed as follows. In Section 2 we present a modified
Robbins-Munro procedure and prove that the mean-square error in
the sequence of estimates tends to a certain limiting value. In
Section 3, we return to the problem of specific interest, estimating
the parameters of a covariance function, and derive explicit expres-
sions for the partial derivatives of the log liklihood function and for
the elements appearing in the Crameér-Rao inequality. We then
discuss sufficient conditions under which the method described in
Section 2 is applicable and point out that, when the method is

applicable, it leads to estimates that are asymptotically efficient.

2. A modified Robbins-Munro method. Let g denote an unknown

M-dimensional vector parameter and let an’ n=12,3,"--, denote
a sequence of M-dimensional vector valued random variables which
are identically distributed and conditionally independent. We assume

that each observation in the sequence, Yn’ can be evaluated for any

!
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choice, m,
i(g{), the i-th component of X (@), i=1,2,---,M, and
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(2.1) m(e) = E {Y (9} .

We assume there is a value of the o parameter, say @, for which

(2.2) m(9) =0
and we assume further that @ is known to lie in the interior of some
bounded rectangular subset A of RM; i.e., Oi € (ai’bi)(ai and bi
finite). We wish to use the sequence of observations, Xn(gn)’ to
determine 9.

We denote by G(g) a suitably chosen M by M matrix whose
properties will be described later, and we consider the modified

M-dimensional Robbins-Munro procedure described by the two

equations

2.3 —a +2Gla)Y

(2-3) Dnl = %t Glan)Tnlay)

and
Mnel,i M, i < [310Pi]

(2.4) @i T 3 if nn+1,i<ai i=12,"",M.
b; o, 20

We now state formally our assumptions on the structure of Y(a). We
denote the transpose of a matrix by a prime and use the usual notation

for the Euclidean inner product and norm.

ASSUMPTION 1. The :{n(g) are identically distributed and
conditionally independent for all n and the components of the Xn(g)

have bounded moments of all finite order for all o ¢ A.



ASSUMPTION 2. There exists an ¢ > 0 such that

Oie[ai+e,bi—e:| -oo<a§_ai<bi_<_b<oo

1 = l, 2, ’ yM
ASSUMPTION 3.
om. (@)
b, =-E {y ;0v s@}=-by0 1i=L2
J a=0

the matrix G(a) is symetric and has an inverse, H(a), for all

€ A and
H(9) = GT1@) = B(@) = [by0)] -

ASSUMPTION 4. There exists a K, and K, 0<K S K < oo
such that

Kolla - 0114 -(a - 9)'Glaim(@ S Ky [la - 0]|?
for all ae A.

ASSUMPTION 5.

G(g)m(a) = -(2 - 8) + L

with
1 2
lell< 5K, lle - ell5 K< @
and
(¥ @G 3
ELY, @G @G@Y @} = 2 guld+ T
with
|T|—<—-k2||£§'9|[> K2<(D

(note that Assumption 3 is requisite for the two statements of this

assumption to hold at a = 9).



The main result of this section is the following:

THEOREM 1. Assumptions 1-5 imply

M
E {|le, - 0lI°} =1 2 g@ o ),y

We now give the proof of Theorem 1; at the conclusion of the proof we
give a slight extension, Theorem 2, which concerns the convergence

of the components, a

’

PROOF OF THEOREM 1. Subtracting 0 from both sides of
Equation (2. 3), taking the norm of both sides of the resulting equation,

andnoting that G is symetric, yields

(2.5) | 2 ik

_ 2 !
= |la, - 0l|" +Z (e, - 9 Glg)Y (2)

Hnn+l -8

+i—2 ¥! (2 )G'(e) Gla ) Y_(a,)-

~nNn

Note that Assumption 2 implies that with certainty

- > -
(2.6) R AR
using this inequality in Equation (2.5) and taking E { : |c~yn} of
both sides of the resulting equation gives

(227 E{lle,, -0ll%le,} < lla, -0ll°- 2, - 9 'Gla)mla,)

+= E { Y (e)G (2)G(a) Y (e ) |2, } -
n

Applying Assumption 5, this inequality weakens to




(28 E {lla,y-0ll%le,} £ a-Dlle, - oll®+ ®/mlle, - oll’

~n

+1—_Z }If k(0 + (Kz/nz)Hgn - oll-
n k=1

For brevity we will denote

o by =E {lle, - 0ll?}

M
(2.9) P =k§1 g(9) X, | =1lle, - o

Taking expected values on both sides of inequality (2. 8) and using the

Schwartz inequality on the last term, we have

(2.10) bn+1 < bn(l -%) +(K1/n) E { [an3} +—+(K2/ 1/2

Now the only situation of interest is the one in which

E { Y (2)G'(2)Gla) Y (a) }

is strictly greater than zero in an ¢ neighborhood about 6. We will
show later that under this condition bn cannot approach zero faster

than 1/n; thus

! 3
(2.11) (&, /% ¢ K, /n 2p . K< .

Now, the H6lder inequality implies



E{lx 1’} =& {|x |V/™ |x |®m-1/m}

¢ £(9/9) {|x |@D/m] gl/at) fy |(@)(3m-1/m)

setting (q+l)/qm = 2

(212 E{|x >} < @M {x |2} /9 {|x 9]

Substituting inequalities (2.12) and (2.1l) into (2.10) yields

gllx 19t | (H/a+)
R N N }] +
b
n <

sml |

n+l— "n

Our task is now to find a bound for the last term inside the brackets
in inequality (2.13). Applying inequality (2. 6) to Equation (2.5), raising
both sides of the resulting equation to the p-th power (p an integer), taking
E { Ign} on both sides of this equation, and applying Assumption 1
yields

(219 E {|x_|®Plg } £ 1%, | -2 |x |?P Ve - 0)'Gle m(a,)

2p-14
2p |x_| P
+ > CE 7
= n
C1<oo, 2£=2,3,""",2p
For convenience we will denote
(2.15) = E {|x [P} = {]la -oll”}



Applying Assumption 4 to inequality (2.14) and taking expected values

.

yields

2p 2p _
216 P 2 (- nKO ) 2P F 2 G p2PE/n?

We now need a recursion inequality in the opposite direction for bn;
unfortunately, the fact that our search procedure is confined to a
bounded interval will here entail an undue amount of unpleasant

manipulation. Let

mn-'~

(2.17) - Z, (a) = G(a) Y (a)

and I denote the identity matrix. Then the recursion procedure can

be defined by the single equation

(2-18) 2h+l1 T %n —'ﬁl- [I - In(gn’ Zn)] Zp(a))

~n ~n

in which In is a diagonal matrix whose k-th entry is

= i - - 4 < -
(2.19) In,k 0 if Ian,k a.k|n___Zn,k(ozn)__n]bk an,kl

between 0 and 1 otherwise.
Now subtract @ from both sides of Equation (2.18) and take the norm of

both sides; if we then take E {E { ign}} and use Assumption 4, we

obtain

(2.20) E {Ilgn+1- 9“2}2_ E {Ilgn- ol|%} (l-ZK;)/n)

2E {lg, - 9'F {Lie 22 (e, }}r 5 RD0.




-

We must investigate the second term in this inequality. Let

(2.21) Tlag ) =1 if a +e /2<an’k< b, -¢€/2

0 otherwise.

Now when Jk(an,k) = 0, we can write
(2-22) |E {In,kzn,klgn}ié' E {|Zn,k| |C~1/n}S K4,k

in which we have used Assumption 1. Now if Jk(an k) is one

. 2 ‘ 2
.23 |E{1, , 2z ,la}l & f 12, ldP& = f 12, il "dP
|Zn,k[‘>—nE 2 |Zn,ki2ne/2
<K o
and

(2-24) [E {{e | - O))E { L 1, k%0 )}
< !E{ (an,k - Ol - J1<(a’1r1,l«:))E{ In,an,klgn}} I

+ |E { (Qn,k - gk){éan,k)E{In,an,klgn}}[

¢E o i = Okl - Tl WKy )

+E{ia -le_ /n}

E1/2

¢ V2] (@, - 007 Iy (B2 {0 - e, NP} K, /n]

in which we have used the Scwhartz inequality. Now using Assumption 2

and the Tchebyshev inequality

-10-



@25 E{a- e, 02} = E{0 - Te, )

<P { o, - olzerzkedy B (o, , - 907

K, = max {4/5 2} K K. = max K

k=1,2, -, M 4,k 5 k=1,2, ", M 5k

we have, combining inequalities (2. 24) and (2. 25)
(2.26) |E {(an’k -op E{1_ . 2z i la} }

SK E{(e, o - Qk)z }+ ‘Ks/n)El/Z{(“n k" gk)z }

If we substitute inequality (2. 26) into inequality (2. 20), we obtain

(2.27) b o 2b, 1 - 2(Kq + K4)/n]

M
1 1/2 2
+—nz R - (2 K, /n) kz=1 E {(an’k-ek) }].

But Assumptions 1 and 4 are sufficient to show via the usual arguements

that

E {lle, - gliz}iKM n P 8>, ky < -

Thus there is an N_ such that for n> N_ the last term in inequality

0 0
(2.27) is positive and
(2.28) b_.>b_ [l -2(K)+K,)/a] +R/2n" n 2N,
' n+l n 0 4 ’ =0

-11-



This inequality, together with Chung's second Lemma [2] implies that bn
cannot approach zero faster than 1/n. We will use this to weaken inequality

(2.26) to
229 |E{(a, -0 E{L . Z ' la )} &KE] N 00 }-

Substituting this result into inequality (2. 20) and omitting the positive term,

we finally obtain

(2. 30) by =b, [l- Z(K(') + K6)/n].

Now

[1-2c/n] = [1+3C/n] [1+C/n -6 (C/n)?]™h
Thus, if we let N1 be the smallest integer such that
6(K6 +K,) <N,
then for n > N1 we can invert inequality (2. 30) to yield
(2. 31) 1/bn+1 (1/b ) 1+ 3(K + Ké)/n:] n2 N

Combining inequalities (2.16) and (2. 3l) yields for n2N1

(2.32)  BZP /b & (1 - 2pK /n) 1 + 3K} + K()/n] 2P /b .

+[1+3(K +K)/N] 2 C BZPE bnnf.

Noting that Hgn - 9|| is bounded and that bn cannot go to zero

faster than 1/n, this can be weakened to

-12-



(2. 33) ;3§I’+l/bn+1 < (1- [ZpKO - 3(Ky + Kg)]/n) Bip/bn
+ K, (p)/n®

for n > Nl' The constants KO, KO', and K6 are all independent of p;

we thus let Py be the smallest integer such that ZpOK0 - 3(K;) + K6)—>- 2

and set K7(p0) = K Then applying Chung's first Lemma [2] to the

7
resulting recursive inequality

Zpo 2
(2. 34) B, /bn < K7/n + 0(1/n7) < K8/n for n > N;
We now returnto inequality (2.13) and set q + 3 = Zpo and
Yy = [2(p0 - l)] -1, where 0 <y < 1/2 since Zp0 > 4. Then sub-
stituting inequality (2. 3.4) into (2.13)

1+ 2
(2.35) b ., < b [1-2/n+ Kqy/n Y]+ P/n

n_>Nl K9<oo

Now for a recursion relation of the form

(2. 36) X < (l-a

k41 X, + €

k) k k

it is well known that if 1 - ay is positive for all k > N, then

n-1
(2.37) X S AN PN o1 P2, fkPioN-a
k=n
in which
n
(2. 38) an = _// (l—aj) N <m <n
j =m+l
1 m=n

-13-



Using the convexity of log x we have for 0 < aJ. < 1 that log (1 - a.J.)
< -aJ., thus

n

in+

2
for all n > N2 and let N = max Nl’NZ . For the recursive
inequality (2. 35) we thus have

Let N, be the smallest integer such that 0 < + 2/n - K9 /n\(-'-1 <1

n-1

(2.40) B_ _ | < exp {- (2/k - Kg/kY+1) };n’mz N

=m+1

Bounding the sum by appropriate integrals and setting C = Kg/y,‘
yields

(2.41) B < m+1/m?{exp c/m¥} mn > N

m,n-1

Substituting the appropriate quantities from inequalities (2. 35) and

(2.41) into inequality (2. 37) yields

(2.42) b_ < by (N/n)? exp(C/NY)

2 n-1 >
+ (P/n") (1 +2/k + 1/k%) exp (C/kY)

k=

Z

n >

The sum appearing in this inequality can be bounded by

n-1
(2.43) % < n-N + [ Cexp (G/tY) - 1] dt
= J L 2
N-1
n-1
+ exp[C/(N-1)Y] f (2/t +1/t%) at
N-1

-14 -



In the range of intereset for the integral, we can use the bound
exp{C/tY} -1 < t™Y (exp[C/(N-1Y] -1) (N - 1Y/C

Using this bound to evaluate an upper bound for the first integral in
inequality (2.43), and evaluating the second integral directly, we can

substitute the result into inequality (2. 42) to yield finally
(2. 44) b < P/n + K, /'Y n > N
) n — 10 =

This completes the proof of Theorem 1.

We now seek bounds on the individual terms E {(an’ K " Gk)z},
k =1,2,...,M. We could obtain such a bound for the k = q term
by subtracting the Cramer-Rao bounds for the terms k # q from the
right-hand side of the bound of Theorem 1. However, since the 0k
are not unbiased, these Cramer-Rao bounds would require the evaluation
of the partials of the bias terms. This is an unpleasant prospect, and
we consider another approach.

Consider defining the unknown ¢ parameters by the new set of

variables
(2.45) B = Cg

in which C 1is a non-singular matrix. In terms of the B variables,

the pertinent quantities are

H(a) = C'H(B)C, Gla) = ¢! G(B) (C')_1
(2.46)
Y(@) = C'Y () and m(2) = C'm (p)
in which ' denotes transpose. These expressions follow directly from

the definitions of the quantities involved and the relation

8/ 0a; :ji cy; /3B i=12,...,M.

-15-




Using the relations (2.45) and (2. 46) one can verify directly
that the first recursion relation for the En is identical in form to
Eq. (2.3). Also, if (and only if) C is diagonal, then the second
recursion relation for the Pn is identical in form to Eq. (2. 4).
Direct evaluation using Eqgs. (2.45) and (2. 46) also shows that
Assumptions (1), (2), (3), and (5) hold either directly or in suitably
equivalent form for the P variables when C is symetric (and hence
in particular when C 1is diagonal). Regarding Assumption (4), let

C be diagonal and let 6, = CG' Then

~

(2.47) (B - 85)" G(B) ™ (P)

U
R
]
'@
Q
Q
Q
g
@
Q
3
®

But by Assumption (4) each individual term in this sum is non-negative,

thus
2
(2.47) Crninfe - 8)' Gla) m (@) < (B - 8)'G(B) m (B)
C® (a-8)' Gla) ma)
—_ max '~ ~ ~—

in which

2. . 2 2 _ 2

Cmin ‘krfllnz M %k’ “max _kTalxz N
Similarly

L2 . 2 2 2 2
(2.48) (ic o H - ll" < Ha -0 lI7 < /el e - gl

-16-




Combining inequalities (2.47) and (2.48) shows that Assumption (4)

again holds in the P coordinates with K_ replaced by KO (Cfnin/cfnax
' - 2 2
and KO replaced by KO (Cmax/cmin)'

We can now state

THEOREM 2. Assumptions (1) - (5) imply

0 )

E{(an,i - ei)z} < g;; (8)/n +<0(n_(l+y>: y>1 i=12,...,M.

PROOF OF THEOREM 2. From the above discussion, it follows
that Theorem 1 still holds for any nonsingular diagonal transformation of

the original coordinates; thus

2.4 S 2 g i -6.)%b < (1 2 g..(8) + K(C)@/ntTY
(2.49) i; i Ellay i-8)7p< (1/n) 121 ci g;;(8) + K(C)(1/n" " Y).

1

Now pick M sets of the < with

(2.50) ch =1 j =1,2,...,M
J_ .
c; =1 i £
1+e0 i = 0<eo<l
i = 2,3, » M; i =12, » M

Then the relations of inequality (2.49) for these M choices of the C

matrix are expressed

h S ()2 E { 6.)" o)/n| = f(C
(2. 51) 121 (c]) @, ;- 87} - g;@®/n| = £C)

with

0 < £C) < K(Cj)/n1+Y

-17-



But the M x M matrix of c‘; appearing in the set of M linear

Eqﬁations (2.51) is nonsingular; this set may be solved to yield

2 M
E {(an,i - ei) } = gii (9)/1'1 + JZ]- qij f(CJ)

A e A R R A A A S s R R e s i A RS ASRTRNR AR R e R R RIS A R e b S KRS A R

for the covariance problem, We turn in this section to the problem of
direct interest; estimation of the parameters of a covariance function.
Our goal is two-fold: to obtain expressions for the partial derivatives
of the covariance function and the matrix appearing in the Cramer-
Rao bound, and to determine conditions which are sufficient to
guranatee that the theorems of Section 2 are applicable here.

We begin by introducing the model that we consider and the
necessary notation. We assume that our observed process W(t)

is the sum of the information bearing signal S(t) which depends

on the parameters Qs Aps e ees Ay plus an interfering "'white"
gaussian noise process N(t), specifically.
Condition (i). W(t) = S(t) + N(t) in which S and N

are independent zero-mean gaussian processes. The process N

is "white' in the sense that for any square integrable f£(t) and g(t)

T (T T
E{f [ N(t) N(s) g(t) f(s) dt ds} = Nj g(t) £(t) dt
o Jo 0

and, for all square integrable h(s,t)

T T N
E fo j; 171 N(t,) N(s,) h(t;, s;,) dt .. .dt ds).. .dsN}

2N t

1
4aiiT >

T (T N
:ZI f TT n(e,)at...dty

0 0 i=1

N times

-18-



in which the sum is over all ways in which N variables can occur
as 2N arguments.

As before, we let a be the M dimensional vector whose com-
ponents represent the possible values of the parameters @, @

P IERERE-IPF
and 8 denote the valueof o that actually pertains to the process being
observed. The process W(t) is observed on the disjoint time intervals
Il’ IZ’ 13, ..., each of duration T. We denote the functional dependence

of the covariance function of S(t) on «a by ¢s(t,s,a), t, se [O,t]. Thus

(3.1) E{WtWS} = 9 (t- T, 85 - 71,8 + NG&(t- s)

n

t,s,e I ; 7_ the initial point of I ; n=1,2,3,...
n n n

in which the dirac-delta function is to be regarded as a distribution
on the space of continuous functions.

Let q,:n(t, (Z) and )\n (g) be the Karhunen-Loéve expansion
corresponding to ¢s (t, s, g); i.e., the q;n(t, a) and )\n (Cf) are the

normalized eigenfunctions and eigenvalues of the integral equation

T ..
(3. 2) )\n(g) L];n(r, cz) = ‘/; ¢s (r, s, q) an(s, a) ds 0<r<T

n=12...

We take the likelihood function of @ based on an observation
W(t), te [0, T] , to be the ratio of the '""probability density for W(t)"
under the hypothesis that the observation was at level a to the
"probability density for W{(t)'" under the hypothesis th;t W{(t) was
noise alone. It is shown@,gthat the natural log of this likelihood

function is given by

-19-



(3.3) L) = (1/2N) 21 an[\n(cj)/\n(g) +1{‘
[¢ o)
- 1/21n[]7‘ I}n(‘i‘) + N/N]:]
n=1
in which
T
(3. 4) WJ- = jo Y (6, 2) W(t) dt

(we will shortly make an assumption sufficient to guarantee the con-
vergence in the mean square of the sum in Equation (3. 3)). If we

define the function

o0
(3.5) h(s,t,a) = n; [\n(q)/\n(q) + Ny (t @) (s, @)
which is the solution of the integral equation

T
(3.6) Nh(r,t, a) + f ¢s(r, s, a) h(s,t, a)ds = ¢S(r,t, a)ir, te [O, T] .
- 0 - - ol

Then ({(a) can be written
T T feo)
(3.7) L(a) = (1/ZN)[ j h(s, t, o) W(t) W(s)dtds -1/ 2 ln{:j—]—[Tn(g) + N/NJ:I :
- 0 0 n=1

We will use the following convenient notation for certain partial

derivatives

) = 8/80; o (L, s, @) hi(t,s, @) = 8/da, hit,s, q)

(PN
x

_e-

-
w
10

W(t,s, @) = az/aai 8aj[h(t,s, )] -

-20-



Our attention will be confined to situations satisfying the

following conditions:

Condition (ii). © 1is known a-priori to lie in the interior

of a bounded rectangle A (in RM).

Condition (iii). Samples of W(t) on each of the intervals

Il’ IZ’ 13, ... are all identically distributed and samples
from distinct intervals are statistically independent.

Condition (iv). For all ae A, the functions h{t,s, a),

hl(t s, ), and 4) (t,s, a) are continuous in t and s
on [0 T:I [0 T:l and the functions ¢ (t, s, @) and
w(t, s, @) are L, on [0,T] x[0,T] for i,j=12,...,M.

Having stated the above conditions, we can proceed with ob-
taining concise expressions for the partial derivatives of £(a)
and the second moments of these quantities. These will be of
interest in their own right and in showing that f(g) possess certain
regularity properties. Following this, we describe a set of var-
iables which will relate our problem at hand to the recursive
estimation method of the second section. Lastly, we state the
remainder of the conditions required to guarantee that the statements
of Theorems 1 and 2 apply to the present situation.

We start somewhat obliquely by multiplying both sides of
Equation (3.5) by ¢m(s, a), integrating both sides of the resulting
equation with respect to s over [0, TJ , and noting that (since

the q;n(s,oz) are L, on O0,T )we can interchange integration

2
and summation; thus

T (@)
(3.09) f h(s,t, @) 4 (s @)ds = xR Yt @)

0 mo~ te [:0, T]
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Let us now take the partial of both sides of this equation with
respect to a; and assume for the moment that the derivative of
the integrand exists and that interchange of integration and dif-
ferentiation is justified. This yields, upon rearrangement of

terms

0 )\m(g) T i
(3.10) A @ TN G (t, @) -j’ hi(r,t, @) y_(r, @)dr

A (@) T :
T TN @ TN Ym0 +f h(r,t, @) y_ (r, a)dr.
m -~ 0

If we regard this as an integral equation in the unknown function
q;r; (t, ), the properties of h(r,t, ) assumed in Condition (iv)
guarantee that Lpnll (t, @) 1is LZ on [0, T] for all ae A. Thus,

. i T -
since ¢, h, h”, and b, are all L2 on [O, T:l X [O,T] for all

ae A, the function

9
—a—a [h(s,t, a/) LIJm(S, g)]
5 ~
is L1 on [0, T] X [0, T:l and the interchange of differentiation and
integration was justified [3] Now multiply both sides of Equation
(3.10) by LJer(t, o) and integrate with respect to t over [O, T] .

Noting by Condition (iv) and our comments above that h(r,t) Lpr;

(r, a)
L]Jm(t, a) is L1 on [0, T] X [0, T] , we can apply Fubini's Theorem
to the second term on the right-hand side of the equation and interchange
order of integration. By Equation (3. 09) the two terms on the right-

hand side of the resulting equation cancel and

9 N (@) T Ty ,
G e R C fo joh(r,t,cpq)m(r,qwm(t,q)dtdr
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Carrying out the indicated differentiation, multiplying both sides of
the resulting equation by )\m(oz) + N/N, and summing yields

[0 0] m 1 (o0}
(3.12) 2 N (@ + N]=g z
m=1 ~ m=

T T .
f f h'(r, t, @) (T, @) b_(t, @) dtdr
0 Jo ~ ~ ~

The function hl(r, t, ) is assumed continuous in r and t for all

ae A; thus

o) me(g) 1 T T ;
(3.13) —_— E\ () + N:I: ———f f hi(r,t, a)
m2:1 9a; m- NJo Jo ~
1 (T T
[N S(t -r) + ¢S(t,r, a):] dt dr = Wf f h(r,t, a)¢w(t,r,a)dtdr .
- 0 0 - -

Now return to Equation (3.7) and take the partial derivative with

respect to @

T T . o)
(3.14) L&) - f f hi(s, t, @) W(t) W(s) - >
i 0 “0 - n=1

O\ (2)
e [ [ + V]

We have interchanged differentiation and integration since, by the
continuity of hl(s,t, @) and the structure of W imposed by Condi-

tion (i), the random variable
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5 T (T T (T .
o= f f W(t) W(s) h(s,t, ) dtds - f [ W(t) W(s) h'(s,t, «)dtds
. ~ ~
i o “o o Jo

has all moments of finite order equal to zero. The sum in Equation
(3.14) converges by virtue of Equation (3.13). Combining Equations
(3.13) and (3.14), we have finally

04 (q) 1 T T i
(3.15) e~ TN f f hi(s,t, a)[W(t) W(s) - ¢W(t, s, a)] dtds .
i 0 0 - -

We now wish to evaluate the matrix appearing in the Cramer-

Rao bound. Let

(3.16) Bla) = [bj;(@)] ; by () = E{azfcf‘f) %ﬂ‘j«z) }

Using Equation (3.15) and Condition (i), we have

T . .
_ 1 1 J
(3.17) bij(q) = 2 ffJf hi(t, s, @) h'(u, v, a)

[0t 0) & (s,v,0) + & _(t,v,8) ¢_(s,u,8) ¢ (5,0 ¢ (u,v,6)

- ¢W(t, s, a) ¢w(u, v, g)] dt ds du dv

in which we have used q;w symbolically. Using the symmetry of

the functions involved, this reduces, for o = 6, to

(3.18) b..(8) = — UTﬁhi(t s,0) hi(u, v, 8) & _(t,u, 8) &_ (s, v, 8)dtds dudy
Y . ; ij - b ,~ ’ ,~ W ? ,~ W 2 ’~ .

- 2N°  JJ 0o~

N

We seek a simpler form for this expression. To minimize the manip-

ulation we use the (symbolic) form
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q)W(t’ s, Q) = N 6(t - S) + ¢S(t’ s, ‘Z)
and will formally interchange operations. These interchanges could
be justified by lengthier operations, for example, we rewrite Equa-

tion (3. 6) as

T
(3.19) _/(; ¢ (r. s, @) h(s,t, @) ds = ¢ (r,t, a)

multiply both sides of this equation by hl(r, 9, 9) ¢>W(q, t, 8), take
the partial 8/8aj, and evaluate at o = 8 . This yields

. T .
(3.20)  hi(r,q,8) ¢_(q.t,8) f hl(s,t,8) ¢ _(r,s,6) ds
0 2 2
. T .
+ hi(r,q,0) ¢_(q.t, e)f h(s,t,8) J (r,s,0) ds
: 2 2 S

= 6)(r,t,0) hi(r,q,0) ¢ _(a,t, 6)

Now integrating both sides with respect to r,q, and t, inter-
changing order of integration in the second term, using Equation
(3.19)to cancel terms and comparing with Equation (3.18) yields

finally
R L j
(3.2)  b(O) = 5y fo fo h'(r,t,8) ¢) (r,t, 0) dr dt .

Now let us make the definition

- 0 £ (2)
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From Equation (3.15) and Condition (i) we have

It

T
1 .
(3. 23) mi(g) >N j;f hl(s,t,g) [¢W(t, s, 0) - ¢W(t, s,g)] dt ds

T .
-——-ZlN j;f hl(s,t,g)[‘i’s(t,s,g) - ¢s(t,s,g):| dt ds .

Let us now take the partial derivative of both sides of this equation,

noting that Condition (iv) justifies the interchange of operations [3]

1

T ..
(3. 24) -—a%j- m, (@) = Zl_N fof B (s,t,0) [6,(t,5,8) - & _(t,s,a)] dt ds

T, . .
- —Z'I_I\T j(;f hl(s,t,cf)[¢‘]s(t,s,zz)]dt ds

and hence

8
S
I

T
1 i j
(3.25) - —— (e X J;Ih(s,t,g)cbs(s,t,g) dt ds

= b, (8)

Equations (3.15) and (3. 25) constitute the principal results of
this section. The equality of 8/8aj m, and -bij will be of interest
in considering the recursive estimation procedure. The expressions
for the bij (9) /are of interest in that they appear in the Cramer-Rao
inequality: if 6 is any unbiased estimate of 8 based on W(t),

. ~ m
te 0,T , then

(3.26) c'E{(B-0 (6 -0} c>c B
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in which prime denotes transpose and ¢ is an arbitrary column
vector. Our expressions above have been obtained for an obser-
vation on an arbitrary time interval. If the time interval in these
expressions is taken to be a composite of n subintervals, each
of length T; W(t) on one subinterval is taken to be statistically
independent of W(t) on the other subintervals; and gn taken to
represent an arbitrary unbiased estimate of 8 based on W({(t) on
the composite interval, then Equation (3. 26) becomes
(.20 ¢ E{, - 0@, -9}c >4 'BO
in which the elements of B(8) are given by Equation (3. 25),
the integration being over a single subinterval of length T.

We now turn to applying the recursive method of Section 2
to the problem of interest. We will take gn(g) to be the M-dimen-
sional vector-valued observation whose i-th component is 94 /Bozi

evaluated on the interval In at the level a; i.e.,

1 T T
(3.28) Y ;@ = 5§ fo fo hi(t, s, a) [W(t + ) W(s + 7

- ot s,a)] dt ds

As in Section 2, we denote

m(a) = E{Y ()}

~—~

Note that by Equation (3.23) m(6) = 0

Let H(a) be the M x M matrix whose i-jth element is

) T (T :
(3:29)  hl@) = g f [ h' (t, s,a) qnjs(t,s,g) dt ds
~ o Jo
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and let gij () denote the elements of G(a) = H-l(af). This matrix
G will be the G matrix of Section 2. Note that, comparing Equa-
tions (3. 25) and (3. 29)

(3.30) G(e) = B7(8)

Thus, when the assumptions of Theorem 1 are satisfied for the above
choice of H(a) and Xn(cz), Theorem 2 and inequality (3. 27) show
that the estimates, ay o generated by the method of Section2 have
a mean square error equal to that of the ""best possible' unbiased
estimate.

Three remaining conditions are sufficient to guarantee that
the Y'n(g) and G(Cf) defined above satisfy the assumptions of

Section 2 and thus guarantee that the statements of Theorems 1 and

2 are applicable here. These are,

Condition (v). H(a) is invertible and the elements gij (a), of

the inverse are uniformly bounded for all ae A .

Condition (vi). For all a¢ A

8

82. g K1
g..(a) m.(a) < <
8ak5a£ i1 ij'= ji= v
for i,k,2 = 1,2,..., M,

and

a
Iﬁj b (a) g.. (@) g, (@)
8011 i, fk=1 ik'S’ 2t Bkl

for ¢ =1,2,..., M

Condition (vii). We assume that Assumption (iv) of Section 2

holds directly for G(a) and m(a) as defined here.
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Condition (vi) could be reudced to a more basic condition on the
higher-order partial derivatives of h(t, s,a) and ¢s(t, s,a);
however, this seems of dubious value. Regarding Condition (vii),

note that by Equations (3. 25) and (3. 30)

lim (¢ - ' Glg) m(@) = lm | - 9”2
a— 0 a— 6
so that Condition (vii) always holds in some region about o = 6.

~

That it hold throughout A requires that G(e) m(a) represent the
gradient of a convex surface. We will conside:this condition
relative to an example in Section 4.

We now proceed to show that Assumptions 1 - 3 and 5 of
Section 2 are satisfied.

First we remark that Assumption 1 follows directly from
Conditions (iii) and Conditions (i) and (iv). Assumption 2 has been
directly restated as Condition (ii). Assumption 3 follows immed-
iately from Equation (3. 25) and Condition (v).

Assumption 5, requires a little manipulation. Noting that

m(8) = 0, we have

=0+ Bla - @)

o<p<l
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Upon applying Equations (3. 25) and (3. 30) and Condition (vi) we

have

M
(3.32) 2 g..(@) ma) = -(a. - 0.) + ¢

in which |gi l < (Kl/ZW) ”%-9”2
whence

(3.33) Gla) m(a) = -(@-8) + ¢

- HIECCIERET

Lastly, using Equation (3. 30)

(.39 E{Y'(@ @G Ya}= 2  E{j@Yia}e;
1,], =
M
= 1; L P (@) gl

by (0) 8;,(9) g;5(8)

Jk(

M 5 M ‘
¥ b (2) g :(2) g, (2)|| (@, - 8))
ZZ‘I 8zZ [i,%k:l ik'Z' =it 2k ] £ !

z =0+ fa-0)

0<p<l

M
Z Bk (8 + m

in which l”l < K, “g - g“
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Thus our functions G((f)’ {rj(g), and B(g{) satisfy Assumption 5.
Although the set of conditions set forth in this section makes
certain stringent requirements on the existence of higher order
derivatives, the first six conditions are essentially regularity
conditions which can reasonably be assumed to hold for models
representing those physical problems of greatest interest. Con-
dition (vii), however, is another matter; it essentially deliniates
which situations can be handled by the modified Robbins-Munro
method. To show that the class of problems satisfying this con-
dition is not vacuous, we consider a simple example in the next

section.

4. Computational aspects; an example. In this section we wish to
briefly comment on some of the computations required by the recur-
sive estimation procedure and give consideration to Condition (vii)
relative to a simple example.

The recursive procedure requires computation of the quantities

T (T .
1 i
(3.28) Yn, i(qf) :<—2—>]0 jo dt ds h(t, s,g) [W(t + -rn) W(s + .Tn)

= ¢W (t,S,(z)]

i=12,..., M.

Each of these quantities can be separated in the obvious way into
two terms, only one of which depends on \the received signal, W(t).
Using the fact that hi(t,s,cz) is symetric in t and s (which
follows from the symmetry of the covariance function), this term

cain be cxpressed in the form [___6], [9]
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T t .
f dt W(t) I ds W(s) h'(s, t, @) i=1,2,...,M
0 0 ~

()
N
and thus can be computed in real time as the signal, W(t), is
received.

Note that our procedure depends upon being able to solve the
integral Equation (3. 6) for h(r,t,g). In the case in which S(t) is
a sample of a stationary process with a rational spectral density,
the solution to this equation is known [4:], [12] . Moreover, our
procedure is particularly useful in the case when the noise is
much stronger than the signal (since then ''good'' estimation requires
the processing of large amounts of data). In this case, it is usually

true that
(4.1) Kl(a) << N
in which Xl(a) is the largest of the eigenvalues associated with

¢ s('c, s,a). Thus in this situation, h(t,s,a) is given to a good

approximation by

(4. 2) hit,s,e) = <—1\}—> ¢ (t, s, a)

Lastly we consider an example, and investigate Condition
(vii) relative to this example. Let S(t) be a gaussian Markoff
process of zero-mean and unknown variance and time constant.
This process is observed in the presence of gaussian zero-mean

"white' noise, so that

(4.3) ¢_(t,s,@) = 8(t-s) +(t,s,a) =5(t-5) +e exp{-az |t - s|}

in which we have taken N =1 for convenience. Our objective is to

measure 91 and 62, the values of g and a, actually pertaining
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to the process being observed. For this case the function h(t, s, a)
is known explicitly [7], [9] . However, in most cases of physical
interest, the noise is much stronger than the signal; i.e.,

o
1 << 1

(4. 4) %,

and the observation interval T 1is usually long compared to the

correlation time of the process; i.e.,

(4.5) aZT >> 1
The conditions expressed by inequalities (4. 4) and (4.5) imply
that the condition stated by inequality (4.1) holds, and hence that
the approximation given by Equation (4. 2) is good. For compu-
tational convenience, we assume that these two conditions are met
and use the approximation of Equation (4. 2) in investigating Con-
dition (vii).

Using this approximation, we obtain (after much calculation)

the approximate relation

(8] - @) e‘g +[92(a2 - 0,)] - ayle, - 9))

[92 + (e, - 92/2]2

(4.6) Gla)m (a) =

(62 - a’z) el (az)z

[92 + (a, - 92/2:]2

so that
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(4.7 (@ -0 Gl@ m (@) = (@ - 0)° 6202[92 + e, - ez)/zj -2

+ (e, - 62)2 Ql(afz)z/afl + ayay - 91)/4]

':92 + (e, - 92)/2:]'2

Thus (noting that by assumption aZ/al >> 1) as long as the search

is confined to strictly positive values

O<e1§al; 0 < ¢ < «

Condition (vii) will be satisfied.
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