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. The magnetization curves for specimens containing

superparaﬁagnetic particles are considered. It is shown that
the curves may differ from a Langevin function because of
particle anisotropy, particle interactions and because of the
presence of a size distribution of particles. The various
causes of particle anisotropy are qonsidéred, and magnetiza-

‘tion curves for specimens with cubic and uniaxial anisotropy

A\

are presented. The magnetization curves depend on the sign
of the anisotropy energy and in the case of a negative uni-
axial anisotropy (prolate spheroids) the resulting curves
may differ very considerably from a Langevin function.

A graphical technique is deveioped whereby it-is pos-
sible to separate out the effects of the size distributién,
the particle interaction and the particle anisotropy;} Thus

it is possible to obtain quantitative values for both the

. v

particle shape and the size distribution.
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THE MEASUREMENT OF SUPERPARAMAGNETIC PARTICLE

SHAPES AND SIZE DISTRIBUTIONS

R. M. Asimow

Introductiqn

In the particle size range below 100A it is quite diffi-
cult to obtain quantitative size and shape information on
precipitate particles. All of the available ﬁechniques have
their limitations; however, quantitative applications of super-
paramagnetism have not been developed as fully as possible due
to a lack of analysis of the complete magnetization curve.
lWith such an analysis it appears possible to obtain from a
single magnetization curve of a specimen containing randomly
oriented SPM (superparamagnetic) pa%ticles a quantitative

volume distribution and a description of the particle shape.t

tA quantitative technique for determination of size distribution
has been previously developed by Weil and Gruner.l Their tech-
nique is experimentally more difficult to apply than the one
discussed in this paper as it requires magnetization measure-
ments over a very large temperature interval. Furthermore, it
is necessary to know the type of anisotropy and particle shape

before it can be applied. 1In their application it has been as-

" sumed that at 0°K the specimen remnance is R = 0.5I, where I,

is the saturation magnetization. This is only true for prolate
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spheroids, for other shapes and anisotropies different coef-

ficients are required. As shown later in this paper, for

flat oblate spheroids with a negative cubic crystalline aniso-

tropy energy the appropriate constant is 1//2.

.zation curve that can be expressed by a Langevin function

An isolated isotropic SPM particle should show a magneti-

2

I/Ig = ctnh(HVIG/KT) - kT/HVIg [1]
where I, is the saturation magnetization, V the particle volume,
H the appliéd field, T the particle temperature, k the Boltzmann
éonstant, and I the magnetization in the direction of the ap-
plied field. Such behavior is rarely if ever observed in actual
systems. One explanation for this' is that the SPM particles
do possess a significant anisotropy and thus the magnetic energy
associated with the particle dépends on the direction of mag-
netization in a more complicated way than for the isotropic
particle of Eq. [1].

In general the magnetic energy E of an isolated SPM particle
embedded in a nonmagnetic matrix can be expressed as a sum of
several contributions.

E = Ey + Eq + Eg + E| (2]
where Eh is the extérnal field energy, Ej the energy resulting

from the particle demagnetizing factor, Es the magnetostriction

energy, and'Ec the crystalline anisotropy energy. 1In each term

s
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we consider only the part dependent on the orientation of the
magnetization vector and the particie axes as the shape of the
magnetization curve will be determined by these contributions.
Following the same procedure used in deriving the Langevin

function, we can write for a collection of noninteracting ran-

domly oriented particles in thermal equilibrium

2 7 ) .
on J&w J cosPsinf exp(~E(P,a,w,6,n)/kT]dn
I . 1 , 0
Eo 4T J ds J sinada m T —

° ° Idw I sinp exp[-E(P,a,w,6n)/KkT]dn
0 0 :

(3]

where I. is the saturation magnetization of the specimen and

i

the angles are defined in Fig. 1. In order to predict the mag-
netization curve we have to evaluate E(f,0,w,6,n) where § is a
function of the other angles, and carry out the integration. We
start by looking aﬁ each of the terms in Eq. [2].

Field Energy

Eh = -H‘VT.A.SCOSQ

~—a
£~
[—

Demagnetizing Energy

In order to obtain a fairly simple expression for this
term we will consider only pafticles which are ellipsoids of

revolution and thus have uniaxial apisotropy. The angular
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dependent part of the demagnetizing energy is given by3

Eq = ﬂV182[<3N/4ﬂ) - l]coszn_ (5]

1)

where N is the demagnetizing factor along the principal axis.
This term will be positive for oblate spheroids and negative
for prolate spheroids.

Crystalline Anisotropy Energy

Most of the 8PM particles studied have cubic crystal struc-

ture so we can write, neglecting higher order terms®

2_ 2 2_ 2 2 2
E, = K.V(n1 n," + 1, n3. + 3%, )

- where the nj. are direction cosines and K is the anisotropy

constant. In terms of the angles defined in Fig. 1, this equa-

L

tion can be written as

E, = KV(sin4nsin22w + sin22n)/4 (6]

This term may be positive or negative depending on the sign

of K.

Magnetostriction Energy

To evaluate this term in a straightforward manﬁer we make
several addiﬁional assumptions; the SPM particles have isotropic
magnetostriction and elastic constants, the elastic constants
are identical with those of the matrix anﬁ the particle has a

lattice similar to and is coherent with the matrix.t Thus, if

fFrom a theoretical point of view,myhe only restriction ..

N
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required on the elastic constants is that the matrix be
elastically isotropic; however, the calculations become
exceedingly laborious unless the additional restrictions

are imposed.

it were not for the constraining effect of the matrix and
the magnetostriction strains, the region of the specimen
which becomes the particle would undergo a homogeneous di-
latation. Due to the coherency stréins, there is strain
energy present in both the particle and the matrix.

For the unconstrained particle we can write the trans-

formation strains egjon formation of the particle as

el = e .. +e,
1] 1] 1] '
where e® is the magnitude of the hydrostatic strain, 6ij is

a Dirac delta function and egj‘are the magnetostriction

Strains. 1In terms of the angles defined in Fig. 1, the mag-

netostriction strains are given by equations of the type4

m 2 1.
€4 = (3v/2) (cos™n - T)
where ¥ is the isotropic magnetostriction. constant and
e§3 is the normal strain along the polar axis.
Eshelby7 has shown that the strain energy of the particlé

and matrix is

‘\
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Eelas (V/z)pijeij

where p%j are the homogeneous stresses in the part:icle.s’6
He has further derived the formulae necessary for calculation
I

of pij' The strains in the particle due to the constraint

of the surrounding matrix are given by
cC . T
i35 ™ 5ijkl k1
where the Sijkl can readily be calculated in terms of the de-
magnetizing factors of the particle. The stresses in the

particle are then calculated from the relation

I C T C T
- ) - o) ! -
pij (e e’) i3 + Zu(eij eij)
where eC and eI are the scalar parts of egj and eg,, and A

and u are the Lame elastic constants. Using these results

and assuming ev,<<e°, we can express the angular dependent
© %i3

part of the elastic strain energy as

- 3 oy 1-2Cy /3N _ 2
E, s Ve Y“(ETTZ> (ZF 1}008 n (7]

where ( is Poisson's ratio. This term will be either positive

or negative depending on the sign of e°Y, and the particle

shape.

- These results need perhaps a small amount of explanation

»
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in view of the fact that it has been recently stated in an
 analysis of a somewhat similar problem that magnetostriction
can never give rise to uniaxial anisotropy in coherent pre~
cipitates in FCC metals./ If an ellipsoidal region on trans-
forming to a particle undergoes a homogeneous dilatation only,

8 We

then the strain energy is independent of particle shape.
now add small additional strains due to magnetostriction and
find that the change in strain energy of the system depends

on the iniﬁial shape of the ellipsoid and on the orientation

6f the magnetostriction strains with respect to the ellipsoid.
The’result shows that the strain energy of the system is mini-
mized if the magnetostriction strain is of the opposite sign és

the transformation strain along the short axes of the particle.

Magnetization Curves of Anisotropic Particles

On reviewing the various energy terms, we see that both
E; and Ey exhibit uniaxial anisotropy whereas Ec has a cubic
symmetry. In order to simplify the calculation of magnetiza-
tion curves it is convenient to consider the two types of
symmetry separately. First we consider the solutioﬂ to Eq. [3]
for a system of particles possessing crystalline anisotropy
only. The required integration must be carried out numerically
and the results can be expressed in terms of two dimensionless

energy parameters



I/To = £(HI V/KT, KV/KT) (8]

Magnetization curves for positive values of KV/KT are shown
~in Fig. 2a, and for negative values of KV/KT in Fig. 2b. 1If
the particles are to be in fact SPM, then uppér and lower
limits exist for KV/KT since the energy barrier for magnetiza-
tion reversal.éannot exceed about ZOkT.2 For negative K, the
energy barrier for rotation from one <1lll> direction to an-
‘other is K/;Z and for positive K the barrier for rotation

from a <100> direction to another is K/4 (reference &4 Fig.
12-24). Thus it follows that -240 <KV/KT =80. From Fig. 2a
and 2b it is seen that for -10 <KV/KT <5 there is a negligible
deviation of the magnetization curve from that of a Langevin
function. Thus for temperatures gréater than about 24Th where
Th is the lowest temperature at which no hysteresis is observed
in the magnetization curve, it is certainly safe to neglect
the effect of cubic anisotropy.

Looking at the uniaxial energy terms, we have

2 _
Ed +ES Eu Co.ﬁ n . (9]

where
2 _é'ti_._ o 1= Zg §§_ - 1 A r-|01
E, = iIs s YT 4:) S )] [10]

If E is negative, the energy minimum, in the absence of an
u .

applied field, occurs along the particle polar axis and the
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energy barrier to magnetization reversal is given simply by
Ey- On the other hand, if E, is positive then the energy
minimum occurs at the particle equator and there is no energy
barrier. Thus the limits on E, for SPM behavior are -20<Eu/kT<oo,
In order to obtain magnetization curves with Eu/kT as a param-
eter, it is again necessary to resort to numerical integration.

A series of such curves are shown in Fig. 3a for positive Eu
and in Fig. 3b for negative E,. It as of interest to note that

as pointed out by Bean9

the limiting slope as H - 0 is inde-
pendent of the anisotropy term in both Figs. 2 and 3. 1In the
case of extremely large negative anisotropies (very large needle-

like particles) each particle acts like a quantum moment of spin

1/2 1

e}

that the magnetization vector is either parallel or

9 In this limiting case the -

antiparallel to the particle axis.
magnetization can be obtained by a simple series expansion and
the result is shown for comparison in Fig. 3b. For very large
positive ani;otropies (large plates), it is easy to show that at
high fields the limiting magnetization is 'm /4 and this value is
shown in Fig. 3a.

In sufficiently high fields the saturation magnetization is
unaffected by particle shape; however, as seen in Fig. 4, the
approach to saturation may be very slow for highly anisotropic
particles and the use of the limiting slope on a 1/H plot to
determine an average particle size as_suggested by Cahn can lead

to considerable error in these cases.l0 In both Figs. 2 and 3,
at intermediate fields increasing deviations E
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from Langevin behavior are exhibited as the anisotropy in-

creases and for either types of anisotropy considered separately

we can write

/I, = £(F,S) , (11]
where S is a dimensionless anisotropy energy and F is the
dimensionless field energy (HISV/kT). In most cases where the
particle shaﬁe differs significantly from a sphere, the uniaxial
anisotropy Ferm causes considerably greater deviations from the
Langevin fuhcfion than the cubic term. In the rest of this
paper, we will neglect the cubic term and assume only uniaxial
anisotropy to be present.

. Particle Size Distribution and Specimen Magnetization Curves

An additional explanation for experimentally observed
non-Langevin curves lies in the fact that invariably pafticles

present in any specimen cover some size distribution.t Thus,

tThis problem has been partialiy considered by Kneller and
others who have considered the effect of a distribution in

size of isotropic SPM particles.11

at any applied fieid, particles o
different average magnetization since both F and S are directly
'proportional to volume. In order to solve this problem we
will assume that the actual geometric shape of all particles

is identical but that the particle volumes follow a logarithmic

B

A
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normal distributiont
P(v) = (1/21m02)1/2 exp[-(1lnV - 1nV,)2/202]

(12]

tThis assumption is certainly arbitrary, but in order to
utilize a distribution function with more than two adjustable
parameters,.exceedingly accurate maghetization versus field
.measuremengs are required and the theory would have to be

correspondingly refined.

where o is the variance of the distribution and lnV, is the

. mean logarithmic particle volume. - Three parameters then com-
pletely represent the system of particles (N, V, and o) and

three pieces of experimental data a;e necessary to obtain them.
To see how this may be accomplished, consider the schematic
magnetization'curve shown in Fig. 5. From the analysis by Cahn 10
vlit is easy to show that on defining an HL as shown we have the

relation

HIs(ﬁ/V) /KT = 3H/H - [13]

where,gi is the mean squared particle volume and V is the
mean particle volume (V # V, unless ¢ = 0). This statistic
is independent of any assumption regarding the distribution
function of particle sizes and is also independent of particle

shape. In order to obtain two other pieces of information we

. arbitrarily choose fractional magnetizations of I/I, = 0.5
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and I/I, = 0.85 and determine the corresponding applied fields.

By combining Eqs. [11] and [12] we obtain
o -]

where it is to be remembered that F and S are proportional to
V, and F anq'g are the values of F and S calculated using the
mean particle volume. For a logarithmic normal distribution

the following relations exist

V =y, exp(c2/2) | (15a]
_E/V -V, exp(oz) [15b]

We can thus express ¢ in terms of 3H/HL and V,. Given I/I,,

we can eliminate V,and write
I/I, = .5 = gl(3H/HL,?,‘§) (16a]

/I, = .85 = g,(3H/H,F,5) [16b]
On numerically solving [16] we obtain the curves shown
in Figs. 6 and 7 which may be used to determine N, o, and V,
for any specimen containing uniaxial SPM particles in the
'.following way. From experimental data, 3H/HL.is known for
I/I, = 0.5 and 0.85. Thus one knows wﬁich curve in either
Figs. 6a and 6b (oblate spheroids) or Figs. 7a and 7b (prolate

spheroids) corresponds to the specimen but one does not know
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the location on the curve. However, the ratio of the two

applied fields H(.5)/H(.85) is known experimentally and thus

all that is necessary is to determine which pair of points on

the two curves have the same ordinates and have abscissa which

are in the above ratio. Then So and;F can be read off either

curve ahd V;'g, c and N calculated from the relations

V = FKT/HIg
t § = Soexp(o -22-)

1
o= [2 1n<}—;§-)12

3 \nav s 8

One ambiguity arises in this procedure:

[17a]
[17b]

(17c¢]

S 22 Jue®y)"l + 1}

(17d]

in order to

know whether to use Figs. 6a and 6b or Figs. 7a and 7b it is

necessary to know if Eu is positive or negative, that is if

the particles are oblate or prolate spheroids. This problem

can be resolved by some additional information such as electron

microscopy or by a determination of Ty,.

From Th’

the anisotropy

energy can be calculated and thus the type of particle aniso-

tropy can be determined.

Particle Interactions

One additional cause of non-~Langevin behavior must be con-

sidered. If the concentrationuof,SPM'partiéles“is;highAenougﬁ
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there may be significant particle interactions so that the
. system as a whole possesses a Curie temperature. This possi-
.bility can be readily checked experimentally since as previously
pointed out the initial slope of the magnetization curve is un-
affected by particle anisotropy. Thus if magnetic measurements

are made at two or more temperatures, the reciprocal of the

4+
s

initial susceptibility when plotted versus the absolute tempera-
tures shoul@ intercept the origin if the interactions are negli?
gible. If the intercept is not at the origin but indicates a
Curie temperature 6 then from the simple Weiss theory the
particle interactions may be taken into account. It follows
from this theory that the magnitude of the internal field is
.given by NI where " '
| N = 8/%p(T - 8) (18] -~

-and X is the initial susceptibility at temperature T |
(x7 = Io/Hy). Thus provided the magnetization curve is
measured at a temperature greater than 6 all the previous
discussion is still valid provided that the experimental curve
is simply replotted against H'+ NI rather than versﬁs H.

If the measurement temperature is below 6 then the mag-
netization curve should exhibit remanence which points out the

interesting fact that there are two possible causes of hysteresis

in SPM specimens. Barring the formation of a sort of super
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domain structure (domains formed from many SPM particles) this
latter type of hysteresis curve shou}d show a discontinuity
in I for fields in the neighborhood of the coercive force. Be-
cause  the coercive force is a function of particle size;
in an actual specimen such'a discontinuity would not be observed.
Experimental Procedure

A Au - 8.73 at pct Co polycrystalline sheet specimen

0.011 in. thick and about 1/2 in. square was used for the ex-
perimental work. After solution treating at 982°C for one
hour in vacuum, the specimen was water quenched and aged for
various times at 202°C. Magnetization measurements were made
at 77°K in fields up to 10,000 oersteds and at 298°K in fields
up to 16,000 ocersteds using a Foner12 type magnetometer. Mag-
netization curves for a specimen aged 6,635 minutes are shown
in Fig. 8. From a plot of reciprocal susceptibility versus
temperature it was found that 6 = 20°K. In determining further
parameters from the magnetization curves the appropriate cor-
rection according to Eq. [18] was used. On the scale of Fig.
8 this correction is not detectable. J

In order to calculate N from Eq. {17d] the numerical
values listed in Table I have been used. The quantity which
invélves the greatest uncertainty is y as there is no direct

measurement on FCC Co. Fortunately the final calculation of

particle eccentricity is not sensitive to Y as the magneto-

-
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striction energy is considerably smaller than the demagnetizing
energy. Another estimate of Y can be obtained from the work of
Rodbelll%4 who determined the quantity d 1nK/ d e® = 4.1. This
result coupled with the analysis of Kittell8 and assuming
elastic isotropy yields a value of Y:= -1.8x10"%. The value
listed in the table has been used in the calculations. For
the quantit; which involves elastic constants, the average of
the result for Au and for Co is used. Inserting these values
in Eq. [17d]'§e find

N = (4n/3) [1..55x10'7k'1‘(§/_\i) + 1]
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Table I. Values of Physical Parameters
for Au-Co Specimens
3 .
Quantityg Value. Comments Reference’
I {1422 cgs | value for bulk HCP Co at 20°C 4(p. 867)
b there appears to be little differ-
{ ‘ ence between saturation value for
¢ FCC and HCP Co and also the value
appears to be nearly independent of
¢ size down to very small sizes (see
é ref. 13)
CAu 20-42 15(p. 614)
Cco 10.32 value for HCP polycrystalline 16(p. 109)
§ material
Hau %.28:{1012 computed from values of elastic 15(p. 614)
ldynes/cm?| constants for polycrystalline Au at
| 20°C
| ,
{
Moo ‘75.81x1012 computed from values of elastic 16(p. 108)
ldynes/cm? |constants for polycrystalline HCP
; Co at 20°C
: {
e® -0.14 obtained from difference in lattice | 17(p. 646)
; parameters of FCC Co and Au
Y -10x10"° {obtained from measurements on FCC 7
Co particles in Cu

Previous work using electron microscopy has indicated

that the precipitate in this system is essentially platelike

and thus Fig. 8 was analyzed in conjunction with Figs. 6a and

6b.19 Using Eqs. [17a,b,c and d] the results shown in Table II

were obtained.
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Table II. Results of Magnetic Analysis

Temperature S, s ' v N/bn o
°K cex1021
77 14 25 29.1 .96 1.07
298 9 | 11.8 21.7 1.17 A
Discussion

The comparison of results obtained at two different
temperatures should be a sensitive test for the validity of
the analysis. ‘It can be seen in Table II that the values of
V, N/&m, and o which should be identical for the two tempera-
‘tures agree within about * 15%. Probably the most important}
reason for the lack of better agreement is the‘difficulty in
" obtaining an accurate value of the s;turation magnetization.
No doubt, the use of higher fields would greatly alleviate
this problem. The procedure adopted for determining the satura-
‘tioﬁ magnetization is shown in Fig. 9. Two extrapolation
techniques were used: (1) the final experimental slope was
extrapolated to infinite field and (2) after roughly deter-
mining the particle size, the limiting slope neglecting particle
anisotropy (Cahn analysis) was drawn in from the highest at-

tainable experimental field. The average of the two extrapo-

lated values was used.

\\‘
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While it might seem that the agreement between the two
temperatures is not particularly good, it should be pointed
out that the values of V calculated using the present pro-
cedure..are an order of magnitude larger than those obtained
. by simple extrapolation of the final experimental slope.

The maximum meaningful value for N/4m is one, corresponding

to a completely flat oblate spheroid. Within the experimental
accuracy i; must be concluded then that the particles are es-
sentially disks which confirms the analysis by Gaunt. Un-
fortunately in this system, the magnetic analysis could not

be extended over a large range of aging times; at shorter
times the uncertainty in the saturation magnetization was too
great whereas at longer times hystefesis appeared in the mag-
netization curve at 77°K so that it was not possible to
determine a Curie temperature.

Gaunt has already speculated on the reasons for the large
remanence and coercive force observed in the Au-Co system.20
In view of the additional information gained from the present
investigation some additional comments can be madé.‘>Gaunt
has observed that tﬁe ellipsoid axes of the particles are
coincident with the <100> directions. Thus for a stable single

domain particle, on reducing the magnetic field after satura-

tion, the magnetization vector rotates to the lowest energy
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éosition in the equatorial plane of the obléte spheroid. This
is the <110> axis nearest the magnetic field vector for negative
crystalline anisotropy. In this case it can be shown that the
remanence for a random array of stable single domain particles
is given by

R=1I,//2
If an oblate.spheroid is to be stable, then the energy barrier
for'rotatiqn of the magnetization vector in the equatorial
plane (KV/A) must exceed 20kT. Thus V> -80KT/K = 0.773x10™ 18cc

6 from the work of Bean13 and Rodbe1114).

at 77°K (K = -1.1x10
For particles which were aged longer times, it was attempted

to explain the remaﬁence at 77°K on this basis, assuming that
the Curie temperature did not changé. V and ¢ were obtained from
the 298°K magnetization curve and thus the fraction of stable
single domain particles at 77°K could be calculated. It was
found that thé remanence predicted on this basis was far less
than that experimentally observed. This tends to confirm
Gaunt's conclusion that strong particle interactions are re-
sponsible for the remanence. On the other hand thié does not
appear to be the entire answer since even in the magnetization

curves shown in Fig. 8 there is a very small amount of remanence

at 77°K and yet the Curie temperature is well below 77°K.
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It is of interest to note that in the Cu-Co system most

observers have concluded that, in the absence of aging in a

magnetic field, the as aged SPM particles are nearly spherical

in shape.zo

Thekanisotropies determined from these particles
by various techniques are consistent,with the crystalline aniso-
tropy of FCC Co.13’14 It has also been observed by Becker and
others that $agnetization curves taken at different temperatures
superimpose very well when plotted against H/T. In fact this
has been suggested as a criterion for spM. 21 Actually, how-
ever, if anisotropy is important, then one should not expect
this superposition, but, in fact, at high fields a low tempera-
ture curve should fall below a high temperature one on an H/T

- plot. This follows since the parameter S is independent of
applied field and inversely proportional to T. Thus at con-
stant H/T and decreasing T, the effect is to go to larger
absolute values of S at constant F which invariably causes
I/I_, to decrease. In the Cu-Co system; calculation shows that
for crystalline anisotropy only, Ty = 20°K for a particle of 502
radius. Thus for the work reported in the literatufe where H/T
superposition was observed, the measurement temperatures were
sufficiently above T

h

importance. In contrast, in the present investigation, where

so that anisotropy was of negligible

» uniaxial anisotropy was the dominant term, SPM behavior was

e e ey
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observed (no hysteresis in the magnetization curves) and yet

H/T superposition did not exist (see Fig. 8).
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Captions for Figures

Fig. 1 - The relative orientation of the applied magnetic
field H, and the magnetization vector I with respect
to the SPM particle axes Nl’ No, N3.

Dimensionless magnetization curves for specimens
containing SPM particles with cubic anisotropy and
random orientations. The anisotropy energy param=-
eter VK/kT is positive in (a) and negative in (b).

Fig. 2

Fig. 3 - Dimensionless magnetization curves for specimens
containing SPM particles with uniaxial anisotropy
.and random orientations. The anisotropy energy
‘parameter E /kT is positive in (a) and negative
in (b).

Fig. 4 - Saturation magnetization curves for specimens
with a negative uniaxial anisotropy.

Fig. 5 - Schematic magnetization curve showing definition
of H; and other important field values. Note that
it is assumed by some extrapolation technique I,
is obtained.

Fig. 6 =~ Curves of S versus F with 3H/H, as a parameter
for oblate spheroids (E positive). (a) I/I_ = .5,
u

(b) I/I, = .85. Note that as F increases S also
increases, that is for a constant magnetization as
the anisotropy increases, the field also increases.

Fig. 7 - Curves of S versus F with 3H/HL as a parameter for
prolate spheroids (E negative). (a) I/I, = .5,
(b) I/I, = .85.

Fig. 8 - Magnetization curves at 298°K and 77°K for a Au-Co
specimen aged 6,635 win.

Fig. 9 =~ High field magnetization 'data plotted versus 1/H.

‘ : The two extrapolation procedures used are shown. The
dotted line shows the limiting slope calculated on
the basis of the average particle volume and the
dashed line is simply an extrapolation of the final
experimental slope.
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