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Equilibrium configurations between density and topographic surface irregularities

in a purely elastic earth model.

Abstract

35307

A two dimensional purely elastic earth model is used to study elastic
equilibrium configurations between density and topographic surface irregularities
(mountains). Given a density deficiency 6}909>Q the shape of the mountain in
equilibrium with 6}909y) is determined by specifying that the vertical displacements
due both to the mountain and 6fﬂ&thnish at the surface. The compression due to

density irregularities is evaluated and numerical examples are given. /ééZJﬂ:
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In a previous paper (Durney, Stresses induced in a purely elastic earth model
under various tectonic loads, to be published, hereafter referred to as I) we
calculated the stresses in the mantle and crust of the earth by density variations
or by topographic surface irregularities. A two dimensional model was adopted,
all quantities being constant in a direction perpéndicular to the X=y plane. The
Y axis was chosen horizontally from left to right and the‘y axis vertically up.
The equations for the stresses were solved for arbitrary density distributions and
surface loads, which were shown to be equivalent to mountains if their height
was small compared to their width. Consideration of equilibrium situations provides
a good method for treating elastic problems in the earth where body forces and
surface loads (mountains) are important (this was done in (I) in the case of the
isostatic adjustment of a continent and a density deficiency beneath.)

In the present paper our aim is to study more in detail these equilibrium

configurations between surface loads and density irregularities. Consider the

case of figure (1) where the density deficiency (SP(X))’) is supposed to be

xiD)?
-~/ |
given. To perform the calculations we shall take gf)(x))’) = ‘O, (0) 7”’, d) 2 ‘

y=17X)

SP%y)

féj,wre. 4



wher:a ’7(@1)" 1 for Cl.?)’z ¢ and zero otherwise. We shall determine the
mountain profile )’:)/(X) such that the displacements due to both the surface
load —3’?0(0)7’()() and the density deficiency SP(XI)’) vanish at)/—"—‘O .
This is an equilibrium situation that could have arisen, for example, due to
plastic flow. The curve >'=)’(X) does not give the elastic displacements due
to (SP(X,)’) ; these are infinite in a plane geometry. In (I) we saw that
this is due to the fact that the elastic displacements are mainly determined
by the very long wavelengths of the Fourier spectrum of e-(X/D)z(ch(xly)=
J. -(X/D)l .
P,(O)’?(e, )E )It will be seen further on that )’::)/(X) , on the other hand,
does not depend strongly on these long wavelengths as long as the depth of
(S-P(x/)’) is not too large; the use of a spherical geometry would not a.l‘ter
significantly the shape of the curve >/== }/(X) .

We shall proceed to solve the elastic equations for (.U(X/)’)= u)'/x (X/)/)—

| J Uy (X o Uy (x
u)l/)' (XIY) ( UX,X (X))')z 5;(7(//)/ u",}’ (x/),)= é___)( /)’)/ w (X/)')
is the only non vanishing component of the vector ’_ci_}()(, )’)‘—"- Va Y (X/)’)

in the two dimensional case). It will be shown that the Fourier transforms

of U’)’ (X, 0) can be very simply expressed in terms of the Fourier transform

of WI(X 0), Uy (x,7) amd. Qy (><,7) are the hornjzmtaj wnol Mcaf cam/oommts
of the daste cl.&stPoLw"wnts.

Solutions of the elastic equations

The equations for the displacements can be written in any of the following

forms (Sokolnikoff 1956)

1 vt +F =0
HV 41 UH-’L) - (1a)
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— VAgJ+(A+2ﬂ)Vz}+f=o

(1b)
(A+2p)7ig + h+p) Taw + £=0
(1c)
For the body force we take f= (0/ - 9’ SF(X/)/)) and we shall restrict
ourselves to SF (X/)’)-'-" P, (Y)COT)@X . Fourier integrals will then be

used in the case of more general density distributions. Taking the curl of

(1b) we obtain

pVPw+ T f=0 (2

We shall again restrict ourselves to the two dimensional case (all quantities
being independent ofj ) and solve the elastic equations with boundary conditions
expressing that the forces at the plane )’=0 are equivalent to a pure vertical
load: ]0" (X)= ) and f)/ (x)= —j« fg(O)}’(X)j /Q)/ (x) is the weight of
a mountain of profile >/=)/(X) and density Fo (0)

It is easily seen that these boundary conditions give rise to the following

relations for )/=O

A
Uy x (x,0)= 3 w(x 0) 3)

U./,)/ (X/ 0)= .-2—:‘1 (F)/ (X)- A &(X/ 0)) (3b)

If (_U(xjy)= LU(); ﬁ) 4"47&)( is substituted into (2) a differential
equation is obtained for W(Y, &) Writing that (WY, )@) vanishes for large

depths it is found that

wiy &)= - ﬁﬁ’e@{é‘lﬁf cly/iff’p, ly) al/+ wig,R)e®

= W (yR)+ w(o,&)eﬁ)’ “



UJ(Q&) is the value of W(y/ &) at )’=O and must be determined from the

boundary conditions (3). The equation (1b) gives for 'l}()/, ﬁ) (l}(ylx)‘: L?—()}&)C{X)&X)

&(}/ £)= N m) w’{)g k)

(5)

with LU'()’/ &) — ,a_iu ()'I ﬁ)

If we define Uy (X y)= Wiy, B) sindX , Uy (Xy)= viy,B)coo BxX
#)’ (X)'—'—' - 3’ Fo (0) 7’1’%) cod éx then the boundary conditions

(3) can be written:

vig R)=- 55 wio &)

(6a)
vV'ig k)= - gpioye)  wigk))
QM 2R (h+2u) (6b)

To determine UJ(e &) we proceed in the following way: equation (lc¢) for
V()'/&) is solved with the boundary condition (6a) (and, of course no dis-
placements at infinity); relation (6b) determines then UJ(O/ @) . Performing

the calculations 1t is found that

w(o k)= 2] &w()g&)Q&/d/-i' 3’/14(:'7 )[/p/v)e‘b)’d/

+ y(R)ps (O)J (#)

We shall specialize the above formulas for the case /0)1 (X)=O (the plane

()
~(ern)?

)/-_- o is a free surface) and a density excess of the form 8P( )’)=PI (0)7(@ cl)e

?(? Cl) 1. for C[> >’> Q and zero otherwise). The problem being

linear it is enough to write the expressions for the case SP( )}2) p,lO)G()’-?)P_
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Where 8()"?)=l for )’_>_ e and zero for/(f. After some calculations it

is found that

(e 2
WX y)= 711‘12/ w(y, B)rinRx e'(&b/z) db (8a)
with LU(” é)'—‘ w,()’,&)'f’ UU{O/&)Q ‘B/ where
w iy k)= PO [(,_ Ry e®r,~Rr Ay _
1y, R) Z&%[(ie £ (e e ))(9(/ P)
o R0, -&e
- (i_' ) e&)/ 8{?")’) (8b)

and

34 N2 _ kY
wio k)= Z__.g’io)[i+e (&0-1)+ A—’;—/fU e 2]

(8¢)

Identically 39’()(,}’) is given by

>0 _(e>12)?
19'(xj)/)= _% / 49’()} B)coskX ¢ ) (9

where 1}(); &) can be obtained from (5) by using expressions (8b) and (8c).
It is now easy to calculate the displacements for )"0 ; with the help of

(6a) we obtain

_ wio, b -(BoI2)*
ll/(x/o)" - ,2[}:/ / )Cméx e d & (10)



Expression (10') gives thus the elastic displacements at)’:O due to a density

deficiency of the form
-(x1D)*
Splxy €)= 0 (0)O(y-)e (xim)
From the above formulas it is also easy to calculate the displacements due to
[Tees Bx yit) d &
a mountain of profile = /M({X)= cod
p 3' 7 ) ) Y
and density f%(O) They are given by
) (% 0)=- FL0 “‘7/")/ C“&X g,(ﬁ) d& (1)
.?lu. (Af/l)

We calculate now and thus such that the displacements due to
)/ d (X h th he displ d

both the mountain of profile )’:}’(X) and the density deficiency 5P (x/)’)—':

2
p' (O)’Q 2 d.) - (x/D) vanish for )/ (O . For simplicity we take

a square density deficiency with 2D=L= d e , the vertical and horizontal
dimensions of Splx,)l) are, in this case, approximately equal. For )l_-_-. )’(X)

it is then obtained:

__Lpio) [ -+ tdlL

y(x)= 27 pyi0) /e

{[(:-H/L)(i-e-f)_ -t __j_t 4+ A= e‘} dt
+ +.21u,

This expression gives thus the profile of the mountain of density fo (O
-(xID)R

cod (tx/L) s
(12)

in elastic equilibrium with a density deficiency Sf) (X,)’)- F, IO) 7{?/ J)

(:2-.D"= J" e) It is seen that as long as CI.IL is not very large, small
(i.e. long wavelengths) do not play a predominant role; in this case the plane
model is a good approximation to the spherical geometry. On the other hand if
d/L >> _’L it cannot be expected that the plane model will give valid results

because the horizontal dimension of y(X) becomes very large in this case.
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Anotl;er Sit;lp].e way of obtaining expression (12) is noticing from (3a) that
if u,/ (X/ O)‘-’-O then also wa 0):0 We can thus solve the elastic
equations with the boundary conditions (.U(X/ 0)-"—‘0 a/nd f;( (X/ O_)"'-—" O
(no shear stresses). The vertical load -l:)—/ (X/O) cannot, now, be fixed arbitrarily

but it is determined from the above boundary conditions. The result obtained in

this way gives a force equal to —jﬂ,lO))’(X) with 7’()() given by expression (12)

Geophysical Applications
In figure (2) we have plotted expression (12); the profile of the mountain in
elastic equilibrium with a square density deficiency of horizontal and vertical
dimensions equal to 200 km (/L = 200 km.) for different depths of Sf)o;/v) (d=@ 4100
and 200 km.) . The rapid flattening of the mountain with increasing aL is to be
noticed. The mass of the mountain in each case remains nevertheless constant and

equal to the mass due to the density deficiemcy. The mass of the mountain is found

by (12) to be M(/(x)): /7—7. /'2 //0’ IO)//-Z On the other hand the total
mass due to the density deficiency is given by M(SF)"—'— [ﬁ- sz)/ (0)/.2
The cancelation of M(}’(X)) and M(SP) is a consequence of the fact that the
elastic displacements due to the mountain and (SF (5)’) are finite. 1In a
plane geometry finite elastic displacements imply zero total mass (I).

We have written the expression of /(X) for the case of a square density
deficiency; another case of interest arises when &'—'0 (c.f. Fig. 1) and D> /e/
In this limit it is easily shown that y(x) is given by Y (X)~ g_&_li)) e-(x/D)Q
In (I) we arrived at this result by writing that the stresses due top‘?:{noe)mountain
and the density deficiency compensate for I)’l) ‘e' that is, that the mountain

and the density deficiency are in isostatic equilibrium.

In figure (3) we have plotted contours of constant compression and dilation

for a density irregularity of the form JP(X,)’)—"-'- P, (0) [7 (‘-700@?7? 0) +

n (- 4004m - JoO&m)] e"(xlb)z with D=lp0Am ond [lo)=-3.5 r/em 3/ 8 P(x/)/)



consists thus of a square density deficiency of 200 km. on each side, the top
coinciding with the surface )/='-O and an identical square density excess at a

depth of 200 km. (Fig. 4)

400 #m

200 Bm
In the region near the surface there is dilation at the center and compression
at a distance of about 200 km. from the center. 1If we take a demsity irregularity
consisting only of the density excess of figure (4) (thé lower part) we find also
a compression (txx ( 0/ 0)+ C)’/ (O/ O)) of about 185 bars at
the center; as Z'77[O/O) is zero this, compression is due to the large value

of the horizontal stress 'Cx (QO)
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