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ABSTRACT

g540°

This study examines in detail the practicability of heating spacecraft
batteries to extend their capabilities into the ultra-low temperature

space applications. Several acceptable design concepts are established
using systematic evaluations of batteries, heat sources, thermal controls
and mission interfaces. Potential applications are determined and new
technology required for hardware design is defined. A development

plan for new technology is presented.

Preliminary heated battery designs for two types of thermal requirements

are investigated and model analyses are presented detailing technical
performance.
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1. INTRODUCTION

The purpose of this study was to investigate (without performing
laboratory tests) the feasibility of heating batteries to extend their useful -
ness in space applications involving very low ambient temperatures and
to establish the requirements of the system interface for low temperature
batteries in space-probe systems. The study involved a systematic
evaluation of all aspects of the problem including the types of batteries,

heat sources, thermal controls, and mission interfaces.

Results and conclusions from this study, potential applications of
the results, and missing technological links are reported; and recom-

mendations for future devellopment of new technology are presented.
1.1 STUDY DESCRIPTION AND WORK STATEMENT SUMMARY

The study perforrned under Contract NAS 3-6018 was a research
program to develop a low temperature battery design for deep space

probes.

The study was divided into three phases as follows:

Phase I - State-of-the-Art Survey
Phase II - Analysis
Phase III - Development Program Definition

The work statement summary for each phase of the study is as

follows:

o Phase I - State-of-the-Art Survey

a) A literature search conducted to determine approaches
and parameters previously investigated, was directed
toward heated battery systems which ena‘gle battery
operation to -73° C with potential to -143" C.

b) An industry survey, conducted to determine related
areas where unreported work is being done, included
isotope heater development, chemical heating system
development, and other pertinent technology.

c) Feasible battery heating methods were isolated; the
selection was based on a comparative analysis of
space mission requirements.



d) Based on the above searches and analysis, a Phase II
Analysis Plan was prepared.

o Phase II - Analysis

a) Space systems requirements for batteries were
investigated to determine energy requirements,
mission durations, thermal system design restric-
tions, tentative mission temperature extremes,
system and battery heat requirements, dynamic
environments, and startup requirements.

b) Basic battery heater properties were analyzed by
comparing heat sources, thermal control methods,
applicable batteries and battery packaging methods.

c) Heated battery designs were integrated by empirical
methods and by computer simulators to determine
feasibility.

d) The more practical heated battery systems were
selected and further analyzed in depth to establish
performance and design limitations in terms of
mission duration, heat requirements, radiation
shielding, electrical performance, and physical
characteristics.

e) Safety and logistics problems of handling and using
battery heaters on the ground and in a space vehicle
were investigated and defined.

f) The battery designs and analysis missions selected
for finalization were reduced to computer and
empirical models and their constants fixed for
purposes of preliminary design feasibility studies.

o Phase III - Development Program Definition

a) The preliminary design concepts established in
Phase II were evaluated for status of technology
required to reduce them to working breadboards.

" The limits of technology were established for the
general heated battery case, and the requirements
for development of new technology were defined.

b) A final report, submitted herein, was prepared.
1.2 SUMMARY OF WORK COMPLETED

The study of the feasibility of heating batteries for space
applications was conducted under the guidelines of the above Work State-

ment Summary. The results of the Phase I state-of-the-artsurvey are
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reported in detail in Section 2, and the analysis of heated battery
applications and designs is reported in detail in Section 3. Definition

of a heated battery development program is presented in Section 4.

To briefly summarize the applications for heated batteries in
space, the following comparison of various types of space missions
versus potential battery heating methods was developed to enable selec-

tion of the more pertinent areas for detailed analysis.
a) Types of Space Missions for Batteries
1) Nonoperative, unactivated, long-duration standby
2) Nonoperative, activated, long-duration standby
3) Continuous discharge at low rates

4) DPeriodic discharge at high rates, open-circuit
standby for short periods

5) Periodic discharge at high rates, open-circuit
standby for long periods

6) DPeriodic discharge at high rates, trickle-charge
standby for long periods

7) Periodic discharge at high rates, high-rate
recharge during short periods

8) Nonoperative, unactivated, end-of-mission
activation and short high-rate discharge

9) Nonoperative, activated, open-circuit standby,
end-of-mission low- to medium-rate discharge.

b) Methods of Heating Batteries
1) Bootstrap heating
2) Electrical heating - battery energy

Self heat
Heater

3) Electrical heating - power system energy
4) Radioisotope heating

5) Cryogenically-stored fuels

1-3



6) Storable fuels and propellantsv

Monopropellants
Hypergolic propellants

7) Pyrotechnic and catalytic combustion heating.

Table 1-1 contains a comparison of the best theoretical methods of
heating batteries for space missions. From the table it is apparent that

there are, basically, two low temperature épplications for batteries:
a) Long-term, continuous-heat, and

b) Short-term, rapid warmup with sustained heating
for short periods,
Low temperature heated battery systems were, therefore, investi-
gated in greater detail with the objective of establishing design concepts of
heaters for both of the above applications by means of a study based upon

the work statement.

1.3 RESULTS AND CONCLUSIONS

The study resulted in an accumulation of information and analyses
which conclusively demonstrate the feasibility of operating present state-
of-the-art battery cells in environments as low as -143°C, with potential
of operating at even lower temperatures. Heaters are used to maintain

the batteries at an acceptable operating temperature by one of two

methods:

a) Maintaining batteries continuously at acceptable
operating temperatures through the use of constant
heat sources and active thermal controllers (most
acceptable method found).

b) Warming batteries, stored at extremely cold temper-
atures, at the end of a long storage period. (The
study has shown that this may be feasible if technol-
ogy can be developed to support the assumptions
that a battery can be stored in the frozen condition
and successfully heated using chemical cartridge
heaters or other high-rate heating methods.)

The study has further established the need for low temperature

batteries in space missions and the technology required to develop

the batteries to the prototype level.

1.3.1 Available Technology

In general, the basic technology required for battery design,
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heater design, and low temperature heated battery systems design is
available, though the search of the literature and survey of the industry
showed that the technology for 1) active thermal control, 2) storage of
batteries at temperatures below -54° C, and 3) activation of high-rate
heat sources at temperatures below -54° Cis limited. Paragraphs 1.4
and 1.5 discuss the areas of technology which need to be developed before

a battery can be designed for low temperature deep space probe missions.

The following paragraphs outline the available technology for

batteries, heaters, thermal controls, and system designs.
1.3.1.1 Batteries

For typical space probe missions, it is apparent that only a few
of the batteries presently in use or under development are applicable.
The silver-zinc battery is applicable for 1-year missions, requiring
limited cycling and has remote activation potential for extending the
mission length significantly if means of storing the battery at low
temperatures can be found. The silver-cadmium battery affords an
excellent potential for 1 to 3 year missions. The nickel-cadmium
battery is the most attractive for long duration missions of 3 to 5 years,
and has a 10-year potential. The ammonia battery affords potential as a
reserve for low temperature operation but is extremely difficult to
handle and means must be found for remote activation. The zinc-mercury
battery affords potential as a primary battery for mission durations of

up to 3 years.

Batteries can be provided with a capability of supplying energy
densities of 10 to 30 watt hours per pound (whr/lb) at high rates if operated
in a temperature range of 4 to 38° C, and offer the potential for extending
the energy density to 100 whr/lb for low-rate missions. From the study
it is apparent that all of the batteries are capable of use in deep space
probes; but the nickel-cadmium battery presently is the most acceptable,
and the silver-cadmium battery is the second most acceptable. The
question of sterilization was investigated briefly but no conclusive data

were available which would cause the above conclusions to change.
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1.3.1.2 Heaters

The investigation of potential methods of heating batteries for space
applications resulted in the conclusion that the following three types of

heaters were promising:

a) Electrical heaters deriving energy from a space vehicle
primary power system.

b) Radioisotope heaters utilizing Pm-147 and Pu-238 radio-
isotopes.

c) Chemical cartridge heaters using combinations of metals
and oxidizers in sequenced firings. (This type of heater
wouyld require new technology to extend ignition below
-54" C and to develop methods of controlled sequential
burning for time periods in excess of 10 to 100 hours.)

The heaters investigated were limited to types which could be
operated in space and would be capable of supplying 5 to 50 watts of heat
at controlled rates over periods of days to years. The general ground
rules for selection of heaters were based on heating requirements to main-
tain batteries between 4 and 38° C in low temperature space environments

of -40 to -184° C.

The technology for electrical heating with power supply energy is

readily available. The following are typical:

a) Current technology: Present resistive heaters, insulation
materials, and active thermostatic temperature controls
are adequate, with minimum development, for space
applications. Present heaters used in missile programs
are available from most battery manufacturers.

b) Proposed designs: Electrical heaters would be incorporated
into an egg-crate aluminum structure capable of providing
uniform heat distribution (5.60 C gradients maximum)
similar to the Orbiting Geophysical Observatory battery de-
sign (NASA Contract NAS 5-899). The design would utilize
internal resistance heaters surrounding the cell blocks and
external insulation and platform standoffs to isolate the
battery from its environment. The weight and volume
penalties for this approach are negligible compared to
present spacecraft battery designs.

c) Operating time for electrical heaters is limited by the ability
of the primary power system to provide the necessary energy.

d) The feasibility of applying electrical heaters to most space
missions is poor. The added increment of the primary power
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system is costly to provide, and it may be impossible dur-
ing eclipse or other low power periods when heating is
most desirable. The use of electrical heating is the opti-
mum choice if power system energy is available without
increased cost and during periods in which the battery is
exposed to low temperature. The technology presently
available is sufficient and no new research is required to
implement the concept.

The technology for radioisotope heating is presently being developed;

however, new technology, summarized in paragraph 1.4 of this report,

will be required for the specific application of radioisotope heating to

batteries.

The study developed the following conclusions about the ap-

plication of radioisotope heaters to battery heating:

a)

b)

c)

Current technology is in the development stage; the work
remaining to develop battery heaters appears to be
straightforward.

The proposed design developed by the study is essentially
an internal isotope core mounted in a heat plate for heat
distribution. The combination battery cell group and heater
baseplate would be insulated from its environment with
superinsulation and standoffs. An active thermal control
will be required to regulate the heat flow from the battery
to its environment to avoid overheating the battery during
warmer temperature cycles. The weight and volume
penalties for this design would be approximately 10 per-
cent for a 600 watt-hour nickel-cadmium battery. The
design concept is shown in Figure 1-1.

The operating time for the heater would be in excess of
10 years without significant degradation.

The most desirable method, found during the study, of
heating batteries in space is by means of the radioisotope
heater. The heater would permit full time control of
battery temperature, never permitting the battery to be
exposed to intolerably cold environments. The technology
required to design the heater into a battery is under de-
velopment, with a few problems still requiring research.
(One such problem is to define the interfaces between the
battery cells and the heater, and between the heated
battery and sensitive radiation detection instrumentation. ) Radio-
isotope capsules of the types recommended by the study
have been evaluated and the materials necessary to in-
corporate the capsules into heaters are available. The
feasibility of the use of radioisotope heaters to augment a
spacecraft control system by providing heat to a battery
is apparent. The feasibility of the use of such a heater
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as a primary thermal control system is high for limited
applications, including steady-state low temperature
environments; cycling low temperature environments with
short-period high temperature exposure, in which the
period is not of sufficient duration to raise the overall
system temperature above the maximum acceptable
battery operating temperature.

The technology required to use chemical cartridge heaters as
battery heaters in space applications has not been developed. Further
investigation of the chemical cartridge as a battery heater resulted in the

following conclusions:

a) Chemical cartridge heating in its current form is limited
in scope and in application in _space. It is limited to a
minimum temperature of -54° C, a life of approximately
1 to 2 years of storage, and requires a significant im-
provement in technology to obtain controlled heating rates
for periods in excess of 10 to 100 hours.

b) The proposed design for warmup application is an egg-
crate core configuration with a matrix of cartridges and
battery cells similar in concept to that shown in Figure 1-2.
The configuration for steady state temperature control is
essentially the same as the radioisotope concept, placing
the cartridges on a baseplate to minimize temperature hot
spots in the cell block. The design would incorporate
sequential firing devices and a communication logic command
system to control the rate of ignition and burning. Weight
and volume penalties could not be specifically determined
but were estimated to be approximately 12 percent to r%ain-
tain a 600 whr nickel-cadmium battery at 4 C ina -27" C
environment (31 percent in a -184" C environment) for
10 hours of heating. The penalty for warmup was compa-
rable for a 4-hour warmup period.

c) The operating time for this device is limited to 10 to 100
hours maximum because the logic required to control
the heating rate and the number of firing devices required
prohibits long-life controlled heating, and the heater
weight becomes prohibitive at 100 hours (50 to 60 pognds
for 600 whr nickel-cadmium battery at 4~ Cin a -27° C
environment).

d) The feasibility of using this device as a battery heater is
poor. The method will require extensive basic research
and development of heater materials, sequencing methods,
battery to heater interface techniques and ignition.
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It was obvious from discussions in the literature and from the
results of the study that extensive new technology will be required to
apply this type of heater with controlled rates to a temperature sensitive
battery. (The study could not conclusively show that this type of design
would work nor could it prove that it would not.) Section 4 contains a
development program which would further define the capability of the

design and determine if it is feasible to use it for space applications.

It was concluded from the above results that the most desirable
method of heating batteries in space is to use surplus electrical power
from the primary power system if it is available. The power system
increment required will be 5 to 50-watts. The second choice is to use
a 5 to 50-watt radioisotopé heat source with an active thermal control
element. The second choice was found to offer excellent potential for
long-life heating requirements as well as for applications in which the
battery must always be in a condition to deliver transient energy demands.
The last choice is to use chemical cartridge heating if it can be developed,
if batteries can be safely frozen, and if adequate thermal control can be

achieved during a short duration warmup.

1.3.1.3 Thermal Controllers

Numerous investigations were conducted to find passive and active
thermal control devices which have been developed and could be used
with low temperature batteries. The search of the literature and survey
of industry did not disclose any devices which would meet all of the
requirements. Several devices were investigated extensively and the
following conclusions were reached:

a) The technology required to insulate batteries has been

developed but the simple use of insulation for the
application in question results in a single-point design
which is incompatible with nearly every conceivable space

mission, since most of the missions involve temperature
cycling and a varying spacecraft environment.

b) Heat pipes have possible merit in the future. It was
concluded, however, that the technology of such devices
is still in the development stage and no conclusions can
be drawn at this time for the application.

c) Bimetallic thermal switches were investigated at some
length. It was concluded that the devices do not offer
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potential for the present application because the
thermal conductivity through the device is low and

the conducting area which can be provided using the
devices on a battery package did not meet the require-
ments for controlling battery thermal inputs and
dissipation. The devices also suffer acute thermal
conductivity problems in vacuum; a reliable mechanism
for making the interfaces thermally conductive has not
been developed.

d) Because the study of existing technology provided no
significantly useful devices for low temperature battery
application, several new ideas were generated as part
of the study. The devices were investigated using
mathematical models and their feasibility was demon-
strated with expected performance far superior to that
of any other device studied. Details of the devices are
disclosed in Section 5. It was concluded from the investi-
gation that bellows-actuated thermal switches offer
the best potential method of controlling battery heat
input and dissipation to maintain acceptable battery
temperatures in ambient temperatures as low as -240~ C
and as high as +260° C.

The available technology on thermal controllers which could be used
for low temperature battery applications is very limited and will have to
be developed further before a practical low temperature heated battery
design can be developed. The recommended approach is to investigate
and develop either, or both, the use of bellows combined with materials
whose change of state at high temperature results in expansion of the
bellows, and a high pressure mechanical contact with high thermal
conductivity or whose change of state results in increased thermal
conductivity of the filler medium in conjunction with a heat switching
action of the bellows thermal switch. Such a device would isolate the
battery from its mounting surface when the environment is extremely
cold and would tie the battery directly to the mounting platform when

the battery temperature becomes excessively hot,

1.3.1.4 Low Temperature Battery Systems

No technology (other than the ammonia battery system) could be
found on a low temperature battery system for space applications. The
ammonia battery system offers some potential but has not been fully

developed for space systems requirements.
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Technology developed for heating batteries for terrestial applications
is limited to a minimum temperature of -54° C. The technology is
not directly applicable to space missions because the heat transfer
medium in space is primarily conduction whereas on Earth it is primar-
ily convection. In addition, the packaging technology used on Earth
cannot be used on a spacecraft or in a space environment because of
dynamic environment requirements which prevent complete thermal

isolation of the battery package from its environment with insulation.

The study proceeded with further investigation into low tempera-
ture systems, and into development of the technology, to define the
requirements for a heated low temperature battery system for space
missions. The technology was drawn from existing space appli-
cations and projected estimates of system designs for future missions.

Details are presented in Sections 2 and 3 of this report.

1.3.2 System Requirements for a Low Temperature Space Battery

The system requirements for a low temperature space battery
are summarized in the form of design specifications. The detailed
analysis and requirements leading to the specifications are presented
in Section 3. The requirements are referenced to the following

general ground rules developed in the study:

1.3.2.1 System Definitions

For cold environments, use a heated battery system consisting
of a heat source compatible with specific mission requirements, an
active thermal control, and an integrated high-conductivity cell block

configuration and thermally insulated battery package design.

For hot environments, rely on a spacecraft thermal control
system design. This approach is not a part of the battery problem
considered in this study and is excluded from consideration in the

following specifications.

1.3.2.2 General Temperature Requirements

Spacecraft surface temperatures range from -240 to +260° C. This

general environment is applicable for all missions considered.

Local battery environments within a spacecraft or experiment

package range from -40 to +38° C. (Certain exceptions would require
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a range of -240 to +38° C.) The study found this range to be typical of
that which a spacecraft thermal control system would be required to

provide for electronic equipment in general.

Battery operating temperatures range from 4 to 38° C. The study
found that outside of this range, the performance of standard space

batteries dropped sharply.

1.3.2.3 Heating Requirements

The study found that, in general, heat supplied at 5 to 50-watts
would be sufficient to maintain a battery in its normal operating tempera-

ture range when exposed to the temperature specified above.

The specifications which follow are essentially battery design
criteria which are intended to form an outline for accumulating technology
required to design a low temperature battery based upon the above ground

rules. It is general in nature and defines the extremes to be anticipated.

1.3.2.3.1 Capacity. The battery system in general will provide 50 to
1,500 whr of energy at discharge rates of C/100 to C over the temperature
ranges specified below. The voltages which can be expected as a re-
quirement for power system loads should be between 20 and 50 volts.
Voltage regulation would normally be between 1+10 and +30 percent from
nominal bus voltage to the end-of-discharge voltage over the temperature

range specified.

1.3.2.3.2 Size and Weight. Battery weight should be 10 whr/lb nominal,

with design goals of 30 to 50 whr/lb for end-of-mission primary batteries
and on-the-line standby batteries having less than 1 year of life.

Figure 1-3 presents a summary of nominal size and weight of standard
space batteries. A low temperature battery should meet such require-

ments.

1.3.2.3.3 Operating Temperature. A thermal environment for a low

temperature space battery is expected to fall within the range of -240 to
+38° C for the external battery package. The range should be expected to
be extended to +260° C using multiple active thermal controls. When the
battery is operating on the line in a discharge or charge mode, the

temperature differential within the battery cell groups should not
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exceed 5.6° C in the above ranges to provide for adequate cell balance.
The study has shown that the typical lower temperature for a battery in
a spacecraft would be approximately -40° C and that a 5 to 50-watt
heater would have to be provided in order to maintain the battery in a
useful temperature range (4 to 38° C). In addition, any heated battery

design using radioisotopes must be safe for re-entry and mission-abort

conditions.

1.3.2.3.4 Nonoperating Temperature. A battery system in a non-

operating condition should be capable of being stored at a temperature
as low as -184 or -240° C. If it is to be operated in a mission which
will not require power until some extended future date, the battery
system must be capable of either being warmed from the storage con-
dition to an operating temperature of 4 to 38° C within a period of 4 to
8 hours or of continuously maintaining the cell block at an acceptable

operating temperature.

1.3.2.3.5 Dynamic Environment. The following dynamic environment

is typical for a low temperature battery system:

a) Complex Motion Vibration:

Sinusoidal Gaussian Random
Frequency Acceleration Frequency PSD Level
Axis (cps) (g, 0-peak) (cps) (g”/ csp)
All 5to 250 3to 5 20 to 2000 0.1

250 to 400 5to 6.5
400 to 3000 10 to 13

Vibration displacement should be limited to 0. 4-inch
double amplitude.

b) Spacecraft Mode Response Vibration: Same general re-
quirements as above except as follows for sinusoidal

vibration:
Axis Frequency (cps) Acceleration (g, 0-peak)
All 50 to 250 20

c) Linear Acceleration: Fifty g should be considered in the design.




d) Shock: The following should be considered in the design:

Thrust Axis 50 +5 g
2 to 6 msec pulse period

Transverse Axes 25 g
4 msec pulse period

For certain hard lander missions, shocks on the

order of 100 to 200 g of the same form described

above should be expected.
1.3.2.3.6 Radiation. If a heated battery design uses a radioisotope
heat source, the combination of radiation from the source and the
attenuation of the battery materials should provide a radiation-free
window which is compatible with the low sensitivity radiation detectors
which are anticipated for the mission. (Paragraph 3.2 outlines some

typical detectors.)

1.3.2.3.7 Packaging. The heated low temperature battery system
should be designed as an integrated package which could be securely
mounted to a typical spacecraft platform and which would be capable of

operation in any environment specified above.

1.3.2.3.8 Activation and Startup. Activation and startup of a low

temperature battery in space should be automatic upon command enable
signals from an external source of command. Activation must be
initiated over the full range of temperature specified above for any
battery stored in a nonoperating condition. A battery normally main-
tained in the operating temperature range and in on-line standby should
be capable of immediately supplying energy for transient load demands
and would require no heating startup functions (except for thermostatic
controls provided to regulate the temperature of battery heating

blankets using power system energy).

1.3.2.3.9 Life. Life of a low temperature battery system in space

should be 3 to 5 years of operation with a goal of 10 to 20 years. Certain

specific missions will require an operational life as low as i year; it is

anticipated that such missions will be in the minority.

The above specifications summarize the capabilities required for

a low temperature battery in space. They are by no means all-inclusive
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in detail but they do establish the ground rules from which preliminary
designs can be established and toward which new technology can be
developed. It was found in the study that new technology will have to

become available before the above requirements can be met.

1.3.3 Potential Applications

The potential applications for heated low temperature batteries in
space probes were examined in the study. It was conclusively shown
that requirements exist for a heated low temperature battery with an
active controller and may exist for a storable low temperature battery
capable of being warmed up to operating temperature. A brief listing

of the applications is shown in Table 1-2.

1.3.4 Design Concepts

Two basic design concepts were developed in the study:

a) A long-term continuous-duty battery which would
remain continuously on the bus and would be main-
tained within its normal operating temperature
range at all times.

b) A long-term low-temperature storable battery
capable of being warmed up at end-of-mission,
followed by a short duty cycle while the battery
is maintained within its normal operating temper -
ature range.

The conceptual model for the long-term, continuous-duty battery
is shown in Figure 1-1. The design envisioned for the long-term
storable battery is similar except that the source of heat for warmup
will have to be interspersed between the cells as shown in Figure 1-2.
The entire battery system in each case would be insulated from the
surrounding environment with superinsulation and low thermal conduc-
tivity standoffs. Figure 1-4 shows the performance of the conceptual
model of a long-term, continuous-duty battery used in a Mars Lander
model. The performance shown demonstrates the feasibility of the

concept.

Several similar models were developed using the above design
concepts in potential space applications including a deep space probe,

and Mars soft lander and hard lander models. The technology was
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Table 1-2. Potential Mission Applications for

PLANETARY MISSIONS

Low Temperature Batteries

Estimated
Mission Date

Lunar Landers 1967 - 1970
Lunar Beacons and Lander Experiments 1969 - 1971
Mars Orbiter 1969
Mars Landers 1975 - 1980
Small Space Laboratories 1970
Large Space Stations 1975
Earth Orbiters with Local Cold Spots 1970
PROBES
Galactic Probes 1971
Advanced Pioneer Missions 1970
Near-Asteroid Probes 1972
Mercury Probes ‘ 1972
Deep-Spaée Planetary Probes 1973
Far-Asteroid and Comet Probes 1974
Jupiter Probes 1975
Jupiter Flyby 1979
Saturn Flyby 1980 - 1985
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available to thoroughly examine the long-term, continuous-duty design
concept which was proven to be theoretically feasible. The long-term
storable design could not be proven feasible because the technology

required to investigate the design in detail is not available.

To summarize, the study has shown that the use of standard,
available, sealed, space batteries with heat sources in extremely low
temperature environments is feasible and is also compatible with near-
Earth high-temperature environments. Computer models of basic
design concepts are defined in detail in Appendix C (the final input
program for the computer models has been submitted to NASA Lewis
Research Center under separate cover). It can be concluded from the

study that there is a technological need for a heated low temperature

battery by 1967 or 1968.

1.4 NEW TECHNOLOGY REQUIRED

The new technology required to provide the necessary background
for designing a low temperature battery for a specific mission is pre-
sented in detail in Section 4. The study found the following technology

to be required before a final flight design can be completed.
a) Long Term, Continuous Operation Battery

1. The radiation attenuation characteristics of
various battery geometrics and materials are not
available for analysis and comparison with accept-
able spacecraft-instrumentation tolerance levels.

2) Thermal control has not been developed for pro-
viding active control of battery temperature in
cycling or changing environments.

3) Battery packaging concepts capable of structurally
withstanding extremely low temperatures with
nearly constant, room ambient internal tempera-
tures have not been developed.

4) The design concept for a low temperature, con-
tinuous operation battery (developed as part of
the study) will require a laboratory feasibility
demonstration. The computer simulation feasi-
bility demonstration was positive, but the assumed
constants must be verified experimentally.
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b) Long Period, Cold Storage, End of Mission, Warmup
Battery

1) The effects of very low temperature storage on
batteries are not adequately known to determine
feasibility of this design concept.

2) Short term, warmup devices which are compatible
with batteries and which can be used at low temper-
ature have not been developed. Such devices must
heat a battery from a low temperature (-29 to
-1840 C) to the operating temperature (4 to 38° C)
in 4 to 8 hours uniformly and without high battery
temperature gradients. The devices must be
capable of reliable initiation and control to -184° C.

3) Active control of heat and battery temperature when
internal dissipation or environmental temperatures
cause the temperature of the battery to rise beyond
its upper operating temperature limit is not avail-
able. This technology is missing for both types of
battery systems and for electronics packages in
general.

4) No technology on the performance of this system
concept is available. Computer models cannot
be developed until the basic technology above has
been developed in order to provide basic assumptions
for analysis. The final system concept technology
must be acquired before a flight design can be
initiated in order to define interfaces, performance,
and design limits.

The acquisition of the basic technology discussed above is pre-
requisite to proceeding further with low temperature battery designs for
future missions. The development program recommended for acqui-
sition of the necessary technology is summarized in the following

paragraph of this report.
1.5 RECOMMENDED PROGRAMS TO DEVELOP NEW TECHNOLOGY

The programs recommended to develop the new technology neces-
sary for future design and application of heated low temperature

batteries for space missions are defined in Section 4.
The programs recommended are outlined below:
a) Long Term, Continuous Operation Battery

1) Constant heat source radiation and configuration
studies using batteries as attenuators.
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2) Development of constant heat source.

3) Development of thermal controller for heat rate
control.

4) Studies of material compatibility for battery packaging.

5) Fabrication of prototype battery and test for continu-
ous operation in cycling and/or steady-state low-
temperature environments.

b) Long Term, Cold Storage, End of Mission, Warmup
Battery

1) Investigation of effect of low temperature storage and
warmup on standard battery designs.

2) Development of a storable low temperature battery
with warmup capability.

3) Development of a thermal controller for heat rate
control and distribution.

4) Fabrication of prototype battery and test for low
temperature storage and end-of-mission warmup
in a low temperature environment.

The schedule for development of new technology required to meet
projected need dates is shown in Table 4-2. The design goals for the
programs should be completion of prototype evaluation by the end of
1967 for the storable battery and the end of 1968 for the continuous

operation battery.

1-24




2. LITERATURE SEARCH AND INDUSTRY REVIEW

During Phase I, survey trips to various industrial and Governmental
organizations were made to obtain the latest data available as related to
low temperature battery and heater technology. Appendix A and the
classified Appendix D contain a listing of these trips with a brief summary
of the results obtained. Details of the information pertaining to this

study is discussed within the appropriate technical sections.

The literature search conducted was aimed at four main areas of

study--1) battery technology, 2) battery heating methods, 3) thermal

control technology and 4) published space mission requirements. A
bibliography of those documents relating to this study is given in

Appendix B.

The results of the literature search and industry survey are

given in the following paragraphs.

2.1 BATTERY TECHNOLOGY

A literature search and analysis of the state-of-the-art of battery
performance as a function of temperature was conducted. The results
of this work established the typical ranges of operation which a heated
battery would have to meet in order to operate satisfactorily in low
temperature space environments. A brief discussion of theoretical
effects of temperature on batteries and a detailed discussion of different
types of batteries, battery characteristics, and heater compatibility

follows.

2.1.1 Temperature Effects on Electrochemical Battery Systems

Temperature has several independent effects upon the operation of
any electrochemical battery system. The effects are divided, for
convenience, into three categories:

Effect upon emf
Effect upon electrolyte conductivity

Effect upon electrode kinetics
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2.1.1.1 Temperature Effect upon EMF

The effect of temperature upon emf is accurately expressed by the

following thermodynamic relationship (Reference 1) :

8Eo
as = -NF\57)p (1)

This relationship is used in the determination of entropies of reac-

tion. In most working battery systems,

oE
—0
aT /P
is found to be negative, so that a reduction in temperature results in

small increases in emf .

2.1.1.2 Temperature Effect upon Electrolyte Conductivity

The effect of temperature upon electrolyte conductivity has been
treated theoretically for dilute aqueous solutions., Although some effort
has been made to extend this treatment to concentrated solutions, theo-

retical predictions of conductivity have not been accurate.

An approximate empirical relationship (Reference 2) between
conductivity of aqueous solutions and temperature which may be useful in

obtaining estimates of temperature-induced changes in conductivity is:

Kp = K18°C[(1 + B(T -.18°C)] (2)
where
Ky = Electrical conductivity at temperature T.
B = Constant approximately equal to 0. 025 for bases and

and 0.016 for acids.

This relationship holds only when the composition of the electrolyte
remains unchanged. As the electrolyte approaches the freezing point,
composition changes occur which cause further changes in electrolyte
conductivity. Upon total freezing the electrolyte conductivity is, for all

practical purposes, negligible.




2.1.1.3 Temperature Effect upon Electrode Kinetics

The effect of total electrolyte freezing upon the performance of the
battery after it is reheated will vary with battery construction and type.
In batteries not specifically designed to accommodate electrolyte freezing,
physical deterioration of the cell cases, separators, and electrodes is
likely to occur due to the expansion of water upon freezing. If large
amounts of free electrolyte are available, freezing may rupture cell

cases. If all of the electrolyte is immobilized in the separators and porous

electrodes, freezing may result in perforation of the separators by ice
crystals and will cause partial or total disintegration of the electrode
structure. The extent of damage will vary according to the structural
strength of the electrodes and the rate of freezing, which affects the size

of crystals formed.

No test data could be provided to substantiate this hypothesis.

2.1.2 Thermal Characteristics of Existing Battery Systems and
Battery/Heater Compatibility

Virtually all batteries display a variation in capacity, load voltage,
and current delivery capability with temperature. This relationship is a

function of the discharge rate, minimum acceptable end-of-charge voltage,
and regulation required.

Temperature values used in this text are defined as follows:

a) Minimum Safe Temperature: The temperature at which
the battery will deliver only negligible currents at
normal operating voltages and below which permanent
damage may occur to battery structure.

b) Minimum Practical Temperature: The temperature at
which some capacity deterioration occurs at practical
discharge currents. The battery still delivers more than
half of its true capacity.

c) Minimum Recommended Temperature: The temperature
at which negligible deterioration of capacity occurs at
practical discharge currents.

d) Maximum Extended Temperature: The maximum
temperature at which the battery may be stored or
operated for long periods (days, weeks, etc.)

e) Maximum Safe Temperature: The maximum temperature
at which the battery may be stored or operated for short
periods of time (one hour or less).
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2.1.3 Zinc-Silver Oxide Batteries

Zinc-silver oxide cells are sufficiently variable from type to
type and from manufacturer to manufacturer that there is no single
relationship between performance and temperature general enough
to express the behavior of the cells,

These variations are due to differences in plate thickness, number
of plates, separator layer thickness, number of separator layers, and
quantity of electrolyte used. The differences in design and construction
are due to differences in the performance, storage and cycle life, etc.,

required to accomplish specific missions.

In general, primary silver-zinc batteries are designed for short
time use. By storing short life batteries in the activated condition
better performance will be achieved in the low temperature region than
will be achieved with silver-zinc batteries designed for longer storage
and service life. However, the short-use batteries are more
sensitive to over -temperature. Batteries designed for long cycle-life
secondary use are usually constructed with multiple layers of
separators and reduced in electrolyte content so that their performance
at low temperature is degraded. Data on low temperature performance

and high temperature deterioration are shown in Figures 2-1 through 2-3.

For a preliminary evaluation of the usefulness of manually-
activated primary silver-zinc batteries in a specific thermal environment,
the following data are presented with the understanding that these are

representative of only one of the many types of silver-zinc batteries. ‘

~2E. |
Minimum Safe Temperature -65
Minimum Practical Temperature 0
Minimum Recommended Temperature +50
Maximum Extended Temperature +100
Maximum Safe Temperature +165

For accurate information about specific battery properties, it is
necessary to test specific batteries with a knowledge of the time- !
temperature and service-life profile since thermal degradation factors |

are cumulative with time.

2-4




OUTPUT CAPACITY (%OF INSTALLED CAPACITY)

50°F
60°F
70°F
80°F

90°F

100°F

110°F

120°F

0 10 20 30 40 50 60 70

ACTIVATED STAND TIME (DAYS)

Figure 2-1. Silver-Zinc Primary Battery Capacity Available
as a Function of Activated Stand Temperature
and Time (1963 Capability - ESB DATA (Unpublished)
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2.1.3.1 Mechanisms of Deterioration

There are several deterioration mechanisms in silver-zinc

battery cells.

2.1.3.1.1 Solubility of Zinc Oxide (Reference 3). As the battery is

discharged, the negative plate is converted from zinc metal to zinc oxide
which in turn dissolves in the potassium-hydroxide electrolyte to form
solutions of potassium zincate. These solutions readily become super-
saturated, particularly on subsequent cooling, and the zinc oxide or
potassium zincate may tend to precipitate out in areas removed from the
negative plate. Carried away from the negative electrode, this material,
is unavailable on recharge for reconversion to zinc metal and a loss in
capacity of the negative plate results. In addition, the large concen-
tration of dissolved potassium-zincate provides raw material for growth of
whiskers of zinc which may short circuit the battery. In cells designed
for long cycle life, the total quantity of electrolyte is reduced to mini-
mize the removal of active material from the negative plate, which

degrades low temperature performance.

2.1.3.1.2 Solubility of Silver Oxide (Reference 4. 5. and 6) Silver

oxide from the positive electrode is soluble and tends to be removed from

the positive plate. If allowed to reach the negative plate or certain
insulators, layers of metallic silver may be deposited causing possible

shorting of the electrodes.

Advantage is taken of the oxidizing nature of the dissolved silver
ions to remove the silver from the electrolyte by interposing multiple
layers of cellophane or other separator materials between positive and
negative plates. The cellophane reacts with the dissolved silver ions to
form metallic silver which is deposited in the cellophane. The presence
of the cellophane does, however, decrease ion mobility; thus, separator
materials which physically impede the transport of silver may also be

used, usually in combination with reactive separators.

2.1.3.2 Methods of Heating

Silver-zinc batteries of the manually activated type have been
heated electrically with strip or blanket heaters, which are powered ‘

either externally or with power from the battery itself. ‘
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Automatically-activated batteries have been heated during activa-
tion by incorporating a heat exchanger in the activation mechanism,
through which heat generated in the pyrotechnic gas generator is trans-
ferred to the electrolyte immediately prior to dispensing it into the cells

(Reference 7).

Pyrotechnic or rapid chemical heating of activated silver-zinc

batteries by external application of heat has not been reported.

2.1.4 Silver Oxide-Cadmium Batteries (References 8 and 9)

The silver-cadmium system has a lower voltage and a higher
chemical stability than the silver-zinc. This system is normally used
only as a long life, secondary battery since the silver-zinc primary
system shows considerable weight advantages over the best silver-cadmium

battery.

This systems basic construction is similar to that of the silver-
zinc system, utilizing plates of various thicknesses depending upon
multiple layers of cellophane or other cellulosic materials for removal
of dissolved silver from the electrolyte and for prevention of migration
of particulate material between electrodes. Because of the similar con-
struction and electrolyte composition, the deterioration rate due to
sensitivity to temperature is also similar to that of the silver-zinc cell
deterioration rate; i.e. cell performance increases with higher

temperature and decreases at lower temperature,

For applications in which the silver-cadmium must be cycled
rapidly (i.e., charged and discharged within a relatively short time),
the performance of the battery suffers greatly due to reduction in
temperature. Because of the batterys inability to accept high-rate
charge at low temperatures without developing terminal voltages so
high, the danger of excessive gas evolution exists, Figures 2-4 through
2-9 show the performance of silver-cadmium cells over a range of
temperatures in which the batteries were charged and discharged at
moderate rates at various temperatures. The loss in capacity is
primarily due to the inability to charge at safe voltages. Even at
room temperature, silver-cadmium cells may show a serious deterior-

ation in charge acceptance due to the use of excessive currents. As a
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result, the minimum acceptable environmental temperature is very
strongly dependent upon the charge currents required. By charging
slowly over long periods, discharge performance at low temperatures

may be optimized.

For a preliminary evaluation of silver-cadmium battery applica-
bility at commonly-used charge and discharge rates (C/10 charge and

C/2 discharge), the following temperature limits are suggested:

°F
Minimum Safe Temperature -65
Minimum Practical Temperature +20
Minimum Recommended Temperature +50
Maximum Extended Temperature +100
Maximum Safe Temperature +165

Heating methods which are acceptable for use with silver-cadmium
cells will depend to a great extent upon the cell case construction, since
this type of cell is available in both plastic and metal cases with
ceramic seals. In general, the plastic-cased cells are not practical for

use with high rate heating devices.

2.1.5 Nickel-Cadmium Batteries (Reference 10)

The nickel-cadmium system has a higher overall plateau voltage
than the silver-cadmium lower plateau (1.2 volts versus 1.0 volt)
This system, based upon present methods of construction,‘ has a lower

practical energy-density.

This systems performance at normal discharge rates (in the C/5 to
C range) is best in the range of 15 to 25°C, and falls at lower temperatures
due to: 1) increased polarization, 2) heat-induced spontaneous decomposi-
tion of the tri-valent nickel-oxide at higher temperatures and 3) loss of
charging efficiency at elevated temperatures. At very low discharge
currents, the system will give useful capacity at temperatures as low
as -40°C. Figures 2-10 through 2-14 show the variation in performance
with temperature, based upon a voltage-limited charge at constant

current.
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Safety during the charging process in a sealed, electrolyte-
starved, nickel-cadmium cell is dependent upon the ability of the cell
to accept an overcharge at a potential below that at which hydrogen gas
is generated. The current acceptance of the cell at any voltage falls with
decreasing temperature as shown in Figure 2-15, and the survival of
the cell at low temperatures is dependent upon the suitability of charge

control devices and the amount of time available for charging.

2.1.5.1 Heating and Temperature Control

No extensive work has been reported in heating nickel-cadmium
batteries although they are readily heated by means of environmental
control devices, such as electric heating blankets. Since most sealed
nickel-cadmium cells for aerospace use are packaged in ceramic-sealed,
welded, stainless steel containers, they are capable of withstanding local
external overheating for short periods better than the plastic-cased

silver -zinc and silver -cadmium cells.

Batteries have been constructed in which the distribution of heat
from cell to cell and throughout the battery structure is controlled by

lightweight heat conductors built into the battery structure, such that
with a 25-watt heat throughout, a differential of less than -5.6° G can be

measured between the hottest and coldest external areas of the battery.

2.1.5.2 Deterioration Mechanisms

Deterioration of capacity in nickel-cadmium cells is poorly
defined but appears to be associated with microstructural changes

in the active materials of the electrodes.

Catastrophic short-circuit failures have been observed due to: 1)
shedding of granular nickel from portions of the electrodes which punc-
ture the separators, 2) a process by which the brazing allow of certain
types of cells is attacked and redeposited, short circuiting the ceramic
terminal insulators and 3) chemical attack of the separator by the
electrolyte in the presence of an oxidizing agent (Reference 11). The
temperature at which the latter reaction occurs is raised by the
introduction of nylon and polypropylene separators which are more

resistant than the original cellulose type.
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For pretiu....ary evaluation of the usefulness of sealed nickel-

cadmium batteries, the following data are suggested:

oF

Minimum Safe Temperature -70

Minimum Practical Temperature +20
Minimum Recommended Temp-

ature +50

Maximum Extended Temperature +100

Maximum Safe Temperature +125

2.1.6 Zinc-Mercuric Oxide Batteries

The zinc-mercuric oxide system can be of practical use only
as a primary cell system because the product of cell discharge is
metallic mercury which undergoes irreversible mechanical changes
due to coalescing of the liquid mercury globules although the electrodes
are chemically reversible. The zinc electrodes also display similar

reversibility problems as in the zinc-silver oxide system.

In the currently used commercial structure, the zinc-mercuric
oxide cell is only useful as a low rate cell (from 10 to 100 hour rates),

although high rate structures have been designed.

Its performance varies more rapidly with temperature than similar
high-rate structure cells due to the larger interelectrode spacing, which
magnifies electrolyte-conductivity effects. Therefore, in order to
increase shelf life, the electrolyte must be saturated with potassium
zincate and the zinc electrode amalgamated with mercury which reduces
electrolyte conductivity at low temperatures and increases polarization

by requiring diffusion of zinc through a surface layer of mercury.

Figure 2-16 shows a typical relationship of capacity and tempera-

ture at various discharge rates (Reference 12).

2.1.6.1 Heating

Zinc-mercuric oxide batteries have been heated electrically from
outside sources and by their own energy. Pyrotechnic-type heaters

have been used in the form of replaceable cylindrical cartridges and as
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builtin heaters for heating the batteries from -51°C to operating tempera-
ture in a few seconds. However, internal battery temperatures in local
areas rose to approximately 204°C and use of these heaters was limited.
Common use of these cells in hearing aids worn in an inside pocket has

also resulted in their being warmed with body heat.

2.1.6.2 Deterioration Mechanisms

Mercuric oxide reacts with the cellulose of the absorbent separator
in the presence of koh solutions to produce mercury and the oxidation
products of cellulose. The rate of reaction increases with temperature
until, at temperatures from 204 to 232° C, it occurs with explosive
violence. In order to improve cell shelf life, barriers of parchment
paper, microporous plastics, or polyvinyl alcohol are used to separate

the cellulose from the mercuric oxide.

Zinc reacts slowly with koh in the presence of trace impurities or
the metallic cell top to evolve hydrogen gas, a reaction which is also
accelerated with temperature. The gas generated is vented off by a |
valving action built into the cell container, Gas generation rates are re -
duced by amalgamation of the zinc (increasing the hydrogen overpotential |
at the surface) and by saturation of the electrolyte with potassium

zincate (one of the reaction products).

For a preliminary evaluation of the usefulness of the zinc-

mercuric oxide cell, the following typical values are suggested:

°F
Minimum Safe Temperature -65
Minimum Practical Temperature +40
Minimum Recommended Temperature +60
Maximum Extended Temperature +115
Maximum Safe Temperature +200

2.1.7 Liquid Ammonia Batteries

Considerable effort has been expended during the last few years to
develop batteries that use liquid ammonia, containing dissolved thiocyanate, ‘

as the electrolyte. A variety of anode and cathode materials have been |
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2. 1.8 Nonaqueous Electrolyte Batteries (References 13 and 14)

Considerable effort is being expended on batteries using non-
aqueous electrolytes in an effort to achieve higher energy densities by
taking advantage of the higher output voltages of materials such as
lithium and aluminum previously not usable with aqueous electrolytes.
These batteries (which use as electrolytes various organic solvents such
as butyryl lactone, propylene carbonate, dimenthyl sulfoxide, and others,
plus ionizable solutes such as lithium chloride and aluminum chloride,
and gaseous solutes) may have some advantage over aqueous electrolyte
cells at low operating temperatures (in the case of solvents with low
freezing points). However, the conductivity of these electrolytes falls
with decreasing temperature (Figures 2-17 through 2-19), and battery
voltages fall comparably. We found no published data indicating the
relative contribution of ohmic resistivity polarization, activation
polarization, or concentration polarization, but it is expected that all

three types of polarization will increase with decreasing temperature.

Typical nonaqueous cell discharge data shows a shift in current
density of one to two orders of magnitude when decreasing the tempera-
ture from +25 to -30°C (Reference 15) and of three orders of magnitude
at -55°C, where available current densities are measured in micro-
amperes per square-centimeter rather than milliamperes per square-

centimeter,

Heating and other temperature control measures should be no more
difficult to apply to cells with organic nonaqueous electrolyte than to
ordinary cells, except that additional caution may be required to assure
that autoignition of the more flammable species of electrolytes does not
occur. The organic base electrolyte cells do not appear to be in a
sufficiently advanced state of development for any extensive work to have

been done in the area of heating methods.

The following temperature limits are suggested tentatively, but
may vary considerably with different electrolyte and electrode

combinations.
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tested among which are the following (see supplementary Bibliography -

Appendix B):
Anode materials

Lithium
Magnesium
Zinc

Calcium (in solution in
circulating electrolyte)

Cathode materials

Metadinitrobenzene
Silver Chloride
Lead Peroxide
Sulfur (in solution)

Mercuric Sulfate

Because of the low freezing temperature of ammonia, low tempera-
ture performance of the liquid ammonia cells is far superior to that of any
other cell type yet developed. However, handling problems, high internal
pressures, potentiality for leakage of highly toxic and corrosive gases,
and relatively short shelf-life of the system in its present form,
make the liquid ammonia battery promising in the near future only

as a reserve~type battery.

Based upon currently available data on liquid ammonia batteries,

the following limits of operation are suggested:

°F
Minimum Safe Temperature No data
Minimum Practical Temperature -65
Minimum Recommended Temperature -65
Maximum Extended Temperature No data
Maximum Safe Temperature +165

Heating liquid ammonia reserve batteries may present special
problems due to the difficulty in leading heat into the battery structure

without interfering with the wrap-around ammonia reservoir.
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2.1.8 Nonaqueous Electrolyte Batteries (References 13 and 14)

Considerable effort is being expended on batteries using non-
aqueous electrolytes in an effort to achieve higher energy densities by
taking advantage of the higher output voltages of materials such as
lithium and aluminum previously not usable with aqueous electrolytes.
These batteries (which use as electrolytes various organic solvents such
as butyryl lactone, propylene carbonate, dimenthyl sulfoxide, and others,
plus ionizable solutes such as lithium chloride and aluminum chloride,
and gaseous solutes) may have some advantage over aqueous electrolyte
cells at low operating temperatures (in the case of solvents with low
freezing points). However, the conductivity of these electrolytes falls
with decreasing temperature (Figures 2-17 through 2-19), and battery
voltages fall comparably., We found no published data indicating the
relative contribution of ohmic resistivity polarization, activation
polarization, or concentration polarization, but it is expected that all

three types of polarization will increase with decreasing temperature.

Typical nonaqueous cell discharge data shows a shift in current
density of one to two orders of magnitude when decreasing the tempera-
ture from +25 to -30°C (Reference 15) and of three orders of magnitude
at -550C, where available current densities are measured in micro-
amperes per square-centimeter rather than milliamperes per square-

centimeter,

Heating and other temperature control measures should be no more
difficult to apply to cells with organic nonaqueous electrolyte than to
ordinary cells, except that additional caution may be required to assure
that autoignition of the more flammable species of electrolytes does not
occur. The organic base electrolyte cells do not appear to be in a
sufficiently advanced state of development for any extensive work to have

been done in the area of heating methods.

The following temperature limits are suggested tentatively, but
may vary considerably with different electrolyte and electrode

combinations.
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SPECIFIC CONDUCTIVITY (OHM ™! ¢ m™1 x 10 =3
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TEMPERATURE (°C)

Figure 2-17, Effect of Temperature on Specific Conductivity of
Saturated LiF, LiPF, Propylene Carbonate Solution
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Figure 2-18.
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Effect of Temperature on Specific Conductivity for the Solution Propylene
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CONDUCTIVITY (OHM = cm =1 x 100)
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Figure 2-19. Specific Conductivity of Ethyl Pyridinium
Bromide-2A1C1; with 67 Weight Percent
Toluene
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Minimum Safe Temperature *
Minimum Practical Temperature -20
Minimum Recommended Temperature +20
Maximum Extended Temperature *
Maximum Safe Temperature *

*Data not found; expected to be highly variable between
different electrode-electrolyte combinations.

2.1.9 Secondary Fused-Salt Electrolyte Systems (Reference 15)

Fused-salt electrolyte systems offer considerable potential for
operation of batteries in low temperature environments, if an adequate
heat source, temperature control system and insulation can be carried

along. Fused-salt battery technology is divided into two parts:

a) The Thermal Battery: A reserve type heated by pyro-
technics and useful only for very short periods of

time (a maximum of 10 to 15 minutes)

b) The Fused-Salt Battery: A secondary type requiring
a continuous heat source but useful for an indefinite

period as an energy-storage bank for varying loads.

The fused-salt secondary batteries have the advantage of high
unit cell voltages available with nonaqueous systems and have higher
electrolyte conductivities than any other system, including aqueous elec-

trolyte systems (Figure 2-20).

Disadvantages in a low temperature environment include the need
for molten salt containment materials, insulation weight, and large amounts

of heat energy to maintain the battery in a molten condition.

One possible concept which could be promising is the combination of
a radioisotope thermoelectric power supply and a battery in which the
waste heat from the primary power source is used to maintain the battery

in the molten condition.
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The fused-salt secondary battery is in the laboratory crucible stage;
however, sufficient promise is shown to warrant further development
since the combination of a relatively high impedance radioisotope power
supply and a low impedance battery is attractive for long-term missions

in which temperature control of ordinary batteries presents problems.

The choice of electrolytes and electrodes for the fused-salt
secondary battery is still broad. As a result, the operating conditions
cannot be well defined. However, the broad range of operating conditions
would be approximately 400 to 800° C which falls at or near the cold junc-
tion temperature range of the more advanced thermoelectric and ther-

mionic generators.

2.1.10 Thermal Batteries

Thermal batteries are reserve primary batteries using fused-salt
electrolytes and are intended for use over short times at temperatures

from -54° C up.

The limitations on the temperature range over which thermal
batteries can be used are unrelated to the battery itself and are a function
of the reliability of ignition of the heating component at low temperatures,
the danger of self-ignition at high temperatures, and the deterioration of

ignition squib and heater material over extended storage at high

temperatures. OF
Minimum Reliable Ignition Temperature -65
Maximum Extended Temperature +185
Maximum No-Fire Temperature +300

2.1.11 Other Battery Systems

Many other electrochemical battery systems exist but appear to
offer no advantage over the above battery systems for low temperature
application. Those considered but not investigated in detail in this study.

are the following:

Cadmium-Mercuric Oxide
Lead-Acid
Zinc-Manganese Dioxide (both acid and alkaline)
Nickel-Iron
Zinc-Copper (Daniel cell)
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2.2 HEAT SOURCES TECHNOLOGY
During Phase I a survey of various methods of providing heat to
batteries was conducted. A discussion of the findings of this survey is

presented in the following paragraphs.

2,2,1 Heater Technology

Through the investigation of literature on the operation of batteries
in Arctic environments, the latest technology of battery heating, by
addition or storage of heat, has been established. The methods that

have been reported are:

~ o 1 4 CEIT i TVem el e
2.2.1.1 Warm Environment Technology

Several methods of heating batteries, by placing them in warm
environments , were discussed in the literature reviewed. One methodis
where portable batteries are worn by personnel in the form of a waist-
coat and are kept warm by body heat (Reference 16). Obviously this
method is not applicable to unmanned space systems. Another method
is where batteries are placed near high dissipation components in a
spacecraft, such as the transmitters, converters, and thermal
dissipation heat fins for control of primary power. Itis noted, however,
that this practice is often not feasible because of spacecraft balancing
problems and high temperature problems in the near-Earth region of

space.

2.2.1.2 Bootstrap Heating Technology (Reference 17)

In bootstrap heating, the battery is short circuited and heat is
evolved in the battery cells due to dissipation of the electrical energy

stored in the battery. When the battery has been brought to operating

the short circuit is removed and normal battery operationis

temperatiure, the shor
continued. This method will work only if the battery has, at theminimum
storage temperature, sufficient activity to produce heat at a rate higher
than the rate of heat loss from the battery. The lowest practical limit
for bootstrap heating of most alkaline batteries is estimated at -29°C,
Bootstrap heating is more practicable for the nickel-cadmium secondary
than the primary batteries but is not commonly used, being likely to

damage most types of batteries.
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2.2.1.3 Electrical Heating Technology

Where external power is available from the primary power system
of a space vehicle, batteries may be heated electrically. If insulation
of high quality is used, power required for heating is quite small
(on the order of 5 to 50 watts). If heat is applied continuously, electrical
heating has the advantage of being readily controllable; the heaters
usually take the form of woven fiberglass blankets or strips containing
heater wires and thermostatic controls. Batteries using this type of
heating are standard hardware on many missile programs requiring
battery warmup before launch. No application of electrical battery heat-
ing from external sources could be found (for low temperature operations)

in published documents on spacecraft design.

2.2.1.4 Heat Evolution Technology (Self-Heating Effect)

There are several sources of heat evolution within a battery which
may occur at different times in the normal operational cycle of a second-

ary battery. These are:

2.2.1.4.1 Reversible Heat. For any chemical reaction at equilibrium

(in which AH, the molar enthalpy change, is equal to the total heat
evolved when the reaction proceeds spontaneously), if the reaction is
performed electrochemically, the total available electrical work, AG,

is given by the equation.
AG = AH - TAS.

Thus, if the reaction is performed reversibly at constant temperature,
pressure, and mass, the total molar enthalpy change (AH) will be
divided between AG (the available electrical work) and TAS (the reversible

heat evolved to, or absorbed from, the surroundings).

If the reaction entropy change (AS) is positive, heat will be evolved
during the reaction. If AS is negative, the system will absorb heat, pro-
ducing more electrical work than the heat content change; this additional

electrical work is derived from the heat absorbed from the surroundings.

Upon reversal of the reaction (as in battery charge), the sign of
the entropy changes since in any cyclic equilibrium reaction in which the

system returns to its original state,
bAS = 0
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and an equivalent amount of heat is absorbed or evolved so that the net

reversible heat evolved over a complete equilibrium battery discharge-

charge cycle is zero.

Since
BEO
AS = -Ne F 5T | P
where:

Ne = Electron change in the reaction
v = Faradawvwle ~rAnctant
E Faraday's constant
E = Open-circuit or reversible potential

AS is positive when the temperature coefficient of voltage is negative and
the battery cell evolves heat on discharge (reabsorbing it on charge). In
systems with positive temperature coefficients of voltage, the reaction

is reversed — heat absorption occurring on discharge and heat evolution

on charge.

2.2.1.4.2 Heat Evolution Due to Irreversibility. When a battery is

operated at appreciable currents, the condition of reversibility no longer

applies and an additional quantity of heat is evolved due to the resistive

losses in the cell. While these losses occur as ohmic, activation, and
concentration gradient potential drops, they may be lumped as a total
potential drop equal to the difference between Eo (the reversible potential)
and E (the measured voltage at the cell terminals). The power dissipated

as heat in the battery is then equal to
P=(E_-E) (.
v

On charge, the current reverses direction and, consequently, sign; the
result is a net evolution of heat, regardless of current direction due to

the departure from reversibility.

2.2.1.4.3 Heat Evolution Due to Side Reactions. Other reactions may

occur within the battery simultaneously with or after the normal charge-
discharge reactions. Depending upon the nature of the reaction, heat may

be absorbed or evolved. One notable special case is a cyclic side-reaction
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in which no net change occurs in the chemical state of the cell; all of the
electrical energy used to drive this reaction appears as heat. An example
of the reaction is the oxygen-evolution recombination reaction occurring

within a nickel-cadmium sealed cell on overcharge.

2.2.1.4.4 Self-Heat Evolution. The use of battery self-heat evolution

for spacecraft applications is practiced in several spacecraft designs. A
typical use is in the OGO spacecraft which utilizes the internal dissipation
of the battery on overcharge and the dissipation of the battery on discharge
to maintain the battery within an operating temperature range of 15 to
35°C. This is accomplished by overcharging the 12 ampere-hour, 22-cell
nickel-cadmium battery at the C/40 rate (10 watts/pack) and averaging
the overcharge heat with the discharge heat generated for an overall
thermal dissipation average of 15 to 20 watts during each orbit. The bat-
tery typically shows endothermic heat characteristics during the initial
part of the charge, thus balancing out part of the high dissipation rate
which occurs during the discharge cycle. The rate of heat generated dur-
ing the charge cycle is controlled by thermostatic switches which control
the charge control system and prevent constant voltage charging after the
temperature reaches 35°C, which reduces the dissipation to the pre-
selected 10-watt level. This method of heating the nickel-cadmium battery

in a low temperature environment is directly applicable to this study

provided that the external power source has the necessary power to ac-
complish the task and provided that the battery can stand the necessary
overcharge current. This method is not practical for silver-zinc or

silver-cadmium batteries because they cannot be overcharged at signifi-

cant rates.

A further review of test data which has been accumulated by
several battery test groups has verified that heat generated on charge is
not useable except in the overcharge condition. Very cold batteries

(below freezing) will not accept high charge rates which reduces the amount

of energy which can be returned to the battery or which will result in

heating within the battery. A sample calculation of the heat generated on

discharge is predicted as follows:
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- o
AS = NeF 3T at very low currents
P
AP = (Eo - E)I for significant discharge currents
o= 1.31 nickel-cadmium
1.38/1.15 silver -cadmium
1.82 silver-zinc
E=1.21 nickel-cadmium at C/2
1.28/1.05 silver -cadmium at C/2
1.45 silver-zinc at C/2

Therefore, as a first order approximation, the heat loss during discharge

is as follows:

Nickel-cadmium (140-watt rate; 350 whr battery)
heat loss = {'twatt rate or 8 percent losses

Silver -cadmium upper plateau (150-watt rate; 350 whr battery)
heat loss = 12-watt rate or 8 percent losses

Silver -cadmium lower plateau (140-watt rate; 350 whr battery)
heat loss = 13-watt rate or 9 percent losses

Silver-zinc upper plateau (150-watt rate; 350 whr battery)
heat loss = 27-watt rate or 10 percent losses

Measured data roughly approximates the above theoretical results.
Therefore, as a rule of thumb for comparisgn within thes study_: the
following criteria were established. For normal discha:Lrge rates, the
internal dissipation of a battery can be assumed to be on the order of
10 percent of the discharge rate of the battery. However, it is noted
that this approximation is merely an average and will be much less fo1
low rates and fully charged batieries and may be much higher forhi
rates and nearly expended batteries or batteries that have been dis-

charging for long periods.

Using the above guidelines, the following analysis shows the

amount of heat available for heating a battery using its own dissipation:

Heat Available = 0.1 Dattery Capacity
Discharge Time

2-39




For a 600-whr battery at

1i00-hour rate, heat = 0.6 watts
6.0 watts
4 -hour rate, heat = 15.0 watts

10-hour rate, heat

The estimated heat requirement to maintain an insulated 600 -whr
nickel -cadmium battery at 4 ©Cina -29 C ambient is 15 watts
(Reference Figure 3-7). The estimated feasible operating time, there-

fore, is 4 hours maximum.

It is concluded from the above analysis that self-heating with
battery internal dissipation at low discharge rates (less than C/4 to c/2
discharge rates and at these rates only for short periods of 2 to 4 hours)
is not practical. It is noted as part of this conclusion that at tempera-
tures below 4° C, a battery will not provide energy (at the above rates)

at an acceptable energy to weight capability.

2.2.1.5 Chemical Heating Technology

Chemical heating has been applied to current batteries in many
forms; however, the major applications for operation of batteries at
low temperatures have been limited to the heaters discussed below.
Published literature on chemical heating of batteries in space is non-
existent although there are several discussions on the application of
cryogenically-stored fuels and other fuels in space which may offer

some merit for battery heating.

2.2.1.5.1 Fuel Burning Heaters. Fuel burning heaters which use

gasoline or propane and air to produce a flame have been used under
Arctic conditions. Under emergency military field conditions, fires of
wood, mortar shell propellant powder, dung, and other combustibles
have also been used. However, none of these methods can be used in

space battery applications.

Where short term heating in space (10 to 100 hours) may be required,
several cryogenically-stored fuels and oxidants might be considered.
For example, hydrogen and oxygen vented from the propellent tanks

could be combined catalytically in a flameless reaction, then ducted to




the battery case where the water vapor would condense and impart its
latent heat of vaporization to the battery. The liquid water would be
wicked away and dumped overboard or stored. Figure 2-21 shows the
design concept. As part of this study, several fuels were analyzed.

Their characteristics are noted below for information purposes.

a) Cryogenically-Stored Fuels

H, + 0, ->H,0 (g)

A'H = 57,798 calories/mole = 5,779 Btu/pound
(as the heat of reaction)

b) Storable Fuels and Oxidants

Several storable fuels and oxidants were found which
offer some possibility of application for heating.
These are broken down into two categories —
monopropellants and hypergolic bipropellants.

1) Monopropellants

Hydrazine (40 percent NH, 1050 Btu/pound
decomposed)

Hydrogen Peroxide

(to water vapor) 690 Btu/pound
(to liquid water) 1250 Btu/pound

2) Hypergolic Bipropellants

N,O, + Substituted Hydrazines

274
(to water vapor) 3000 Btu/pound
(to liquid water) 3400 Btu/pound
C1F3 + Substituted Hydrazines 3000 to 3500

Btu/pound

Several problems exist when using the above fuels in space. The first
is difficulty with the melting point which limits the temperature at

which the fuel can be used. These melting points are:

o
HZOZ 31" F
o

N2H4 327 F

o
NZOZ 11.8" F
Mixed substituted hydrazines -65 to -76° F
Monomethyl hydrazines -56° F
CiF, -147° F

(Boiling point, + 52° F)
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Figure 2-21. Schematic Diagram of Combustion-Heated Battery

Installation Using Hypergolic Fuels
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In addition to the melting point problem, the following are other problems

as noted in the literature:

a) CIF, is highly corrosive, giving reaction products
containing hydrogen-floride which is also extremely
corrosive and difficult to contain.

b) The above fuels having inert reaction products also
have high melting points requiring heat to make
them available.

c) Metering of the fuels is a serious problem at low
rates such as would be required to heat batteries.
The maintenance of combustion is also a problem
area. Control of stoichiomeiry oi reactants tc
achieve the value of heat output desired requires
accurate metering. Metering orifices in the low
energy levels required would be pin-holes, sub-
ject to clogging.

d) Those reactants which deliver water as a reaction
product may not be allowed to condense to a liquid
state. Water must be vented overboard in the
vapor state in order to avoid ice formation within
the vehicle and around the periphery of the vehicle.

e) The technology of maintaining low-level flames in

space has not been developed. Therefore, if this

method is to be considered for heating batteries,

further refinements in technology will be required

before an adequate assessment of the feasibility

of using them can be made.

A brief analysis of the theoretical limitations of heating with

stored fuels and oxidants shows the application of these heaters to be
time limited by weight. This analysis is given in the following para-

graphs.

Assume a heat requirement of 20 watts. Then, selecting the
heat of reaction of a typical hypergolic bipropellant as discussed above,

the fuel weight requirement per day is as follows:
20 watts x 24 hours x 3.413 = 1,640 btu/day required

1640/ (3, 000 btu/pound) = .55 pound/day at 100% efficiency
(3, 000 btu/pound is for C1F3)
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Adding tankage, combustion chamber and plumbing as 50 percent
of theoretical energy plus 2 pounds for the combustion chamber, the
following weight equation was formulated:

Heating time 5x .55 1b/day + 2 pounds

Heater weight =

If the heater weight maximum is selected as 25 percent of battery
weight for a 600-whr nickel-cadmium battery, the maximum heating

time at the 20-watt rate would then be 11.8 days.

Therefore, the use of storable fuels and oxidants is not practical
for heating batteries in space because of the technical obstacles dis-
cussed above and the basic fuel weight versus heating period limitations

demonstrated in the above analysis.

2.2.1.5.2 Chemical Cartridge Heaters. Dry chemical cartridge

heaters consist of a cartridge containing a cake or powder mass of dry
solid materials which is ignited by a squib or primer device and which p
reacts exothermically. These cartridges have been used in the past to

heat batteries by several methods.

a) One method is to bury the cartridge in the battery
and to use the heat evolved to warm the battery
rapidly from storage temperature to room temper-
ature. However, this method may result in high
local temperatures on the order of 210 to 260° C ‘
or higher and is thus limited in its applicability |
to high energy space batteries because it can
damage the plate and separator materials, and
cause high-energy battery reactions to go to com-
pletion in the form of shorted cells.

b) Another method is to attach cartridges to the |
mounting platform of the battery and heat the ‘
entire battery mass from an external heat source.

This method appears to be the only method appli-

cable for low temperature battery applications

in space since it is the only way of controlling the

rate of heat applied to the battery and controlling

the gradients within the battery to keep the battery
cell performance balanced.

The exothermic materials used are combinations of materials
such as zirconium, magnesium, aluminum, and boron and oxidants such

as barium chromate and inert materials with high melting points.




Table 2-1 compares a list of metals versus oxidants and their respective
heats of reaction. While some of these heaters are slower than others
and may be slowed further by including in the mixture an inert material
of high heat capacity, the reaction is usually complete within seconds.

It is not practicable within the limits of present published technology

to slow the reactions further or to attempt to develop heaters of this
type which will achieve gentle heat for hours or days. The application
of the heaters is, therefore, limited to short-time warmup or to pulse
heating methods which might be extended over periods up to approxi-

mately a week, depending upon the weight penalty which can be allowed.

Other types of heating cartridges exist which release heat at
slower rates. These are based on an oxidation reduction reaction be-
tween organic intervals and an oxidant in the wet or dry state, reactions
between air and organic materials, or heat of hydration released by
the slow addition of water to calcium-oxide. However, these methods
of heating have not been developed to the point where they can be used

in a low temperature environment in space.

By the use of battery insulation and several heating cartridges
which are fired sequentially by a set of thermostatic controls, it is
considered feasible to maintain a battery at operating temperature
for hours or days. Figures 1-1 and 1-2 outline the basic designs
which could be used separately or integrated for warmup and temper -
ature control. It is believed, with further analysis and technology,
that controlled warmup from low temperatures is feasible using this
method if some kind of thermal controller can be provided to distri-
bute the heat and control the rate of heat application to the battery.
This approach will be discussed further in the Phase II ana
2.2.1.5.3 Thermally-Activated Fused-Electrolyte Batteries. Thermal
batteries are assembled with the electrolyte, in the form of a solid
salt, and are activated by squib ignition of a solid exothermic material.

The evolved heat melts the electrolyte and the battery operates for a

short time until it has cooled or until the reactants are exhausted.

Normal operating times are on the order of 3 to 5 minutes with a maxi-

mum practical use time of approximately 15 minutes. Once cooled,
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it is not practical to reactivate these batteries in their present state

of development. It may be feasible to use this type of battery to warmup
a low temperature battery by using its electrical energy to heat a
battery heater blanket and simultaneously use its exothermic reaction
energy to supply heat to the battery mounting platform, thus raising

the battery interface temperature as well as the battery heater temper -
ature in a relatively short period of time. Since this combination
appears to offer very limited attraction for space application, it was

not considered in the Phase Il analysis.

It should be remembered that chemical cartridge heaters and
thermal batteries will require an electrical ignition pulse or mechanical
percussion action to initiate the exothermic reaction. At low external
environmental temperatures (-54 to -730 C), ignition can itself become
a serious problem which may make it impossible to use these devices

for heating low temperature space batteries.

2.2.1.6 Nuclear Heater Technology

The direct conversion of nuclear decay radiation to heat is one of
the most fundamental phenomenon of atomic energy. It was not one of
the earliest applications because of the initial high cost, limited inventory
of radioisotopes, and general reluctance to use radioisotopes if other
fuels would serve the purpose. For these reasons, isotope heating was
first used in electrical power -producing generators, such as the radio-
isotope thermoelectric generator (rtg). The need for electricity in remote
terrestrial and deep sea applications, and later in space, brought about a

general acceptance of isotopes as a source of thermal energy.

In order to meet the anticipated need for isotopes, the U.S. Atomic
Energy Commission has sponsored extensive materials and radiation
studies so that selective isotopes may be safely and efficiently used for
diverse purposes. Since heat production ranked high as a potential appli-
cation, many hundreds of different radioisotopes were investigated. In-
creased usage has prompted detailed studies of fuels, production, encap-
sulation, containment, terrestrial and aerospace safety, ground handling
and costs. Although a continuingAneed exists for the advancement of

knowledge in the nuclear field, much has already been accomplished
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through the substantial expenditure of funds by industry and Government.
These funds have enabled novel applications of isotopes (such as space
battery heating) to be examined promptly at a moderate cost. Accurate
estimates, based solely upon prior art, may be made as to the feasi-
bility, reliability, safety and cost of the concept. Necessary experi-
mental effort may then be expended to resolve specific problems

associated with the proposed application.

Continuing interest by the AEC in application of radioisotopes for
research, industry and the military is evidenced by the cooperation
extended to researchers in the form of technical data, professional

assistance and the loan of sealed sources to qualified and licensed users.

Radioisotope production, which started at the Oak Ridge National
Laboratory in the late 1940's, has grown from tracer-level quantities to
thermal megawatts on an annual basis. The ORNL facilities have been
augmented by the vast potential at Hanford which will soon have a full-
scale production facility for fission products (including promethium)
under the direction of private industry. The Mound National Laboratory
artificial radioelement facility will be augmented in a similar manner
by the Hanford partitioning to private industry. It is the intention of the
AEC to keep pace with increasing demands for isotopes by the most
expedient means, thereby permitting potential users to anticipate fuel

for new, larger and more numerous applications.

Applications involving the projected use of radioisotopes have a
choice of hundreds of radioisotopes, each possessing individual proper-
ties. Factors such as the mission purpose, mission duration, power
density (specific activity), fuel quantity, decay mode, and attendant
radiation influence the selection. A radioisotope heat source for space
battery heating must be evaluated for conformance to the following

selective specifications:
e Useful life in excess of 1 year

e Fuel availability for from 5 to 50 watts (thermal)
per mission

e Acceptably low radiation level to obviate heavy
shielding




e Established preparation and encapsulation technology
e Conformance to aerospace safety criteria
e Acceptable cost.

2.2.1.6.1 Projected Availability of Isotope. The U.S. Atomic Energy

Commission has made a rigorous study of the properties, abundance,
and estimated costs for potential applications of individual ratioisotopes.
AEC findings are periodically made available, along with the compound
forms most generally suited to present applications. The same general

requirements cited above for battery heat sources also apply to many

- ” A
power aev

isotopic ces and advantage can be taken of prior effort.

Table 2-2 lists the eight most attractive heat-producers scheduled for,
or in, production. It would be prudent to make a selection from this
table, and thereby comply with the second requirement on the above list.
While it must be understood that Table 2-2 represents a ''best estimate"
of future production levels, battery heater fuel requirements are so
nominal that production at any reasonable level will ensure sufficient

material for initial application(s).

2.2.1.6.2 Radioisotope Characteristics. A review of Table 2-3 shows

the half-life, decay mode and power density of eight radioisotopes. Five
of the eight could provide a suitably long half-life for the proposed
mission, as cited in the first item on the specification list. Of these
five, Sr-90 and Cs-137 would present a shielding problel:n due to their
energetic bremsstrahlung radiation levels. Cm-244, an alpha emitter,
exhibits a substantial neutron flux from a spontaneous fission side
reaction. While its high power density will ensure Cm-244 a vital role
in future space power, power density alone is not a decisive criterion
for battery heating; and Cm-244 would not be attractive for this appli-
cation. The remaining two radioisotopes, Pm-147 and Pu-238, possess

attractive half-lives and adequate power densities.

The fission product, Pm-147, is a radioisotope of an element not
found in nature. It decays by emitting a soft beta particle and a very
weak gamma ray; therefore, shielding weight would be small. Pu-238
is primarily an alpha emitter; and where slight neutron level is tolerable

to instrumentation, it should be an excellent choice. Those missions
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Table 2-2. Projected Radioisotope Availability for Power Applications*

SrR=90 2l 2l 4 ne L&
Cs=137 17 17 hs.3 1.3 h8.3
Ce=1hy 30 30 800 $00 300
Pu=147 2.30 1.00 2.16 1.8 5.4
Pu=-233 5 7 9 11 13
Ci=2LL 0 0 O 13 13
Ciu-2k2 2.6 120 120 120 120
Po=210 IR 14 140 140 140

“ForecasT BY THE U.5.A.E.C.
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which cannot tolerate neutrons may be satisfied by Pm-147. Both fuels,
therefore, satisfy the third requirement in the specification list. In
addition, Pu-238 satisfies the fourth and fifth requirements since it has

already been used for space power. Pm-147 has an established production
technology, and encapsulated fuel increments have been fabricated at

the Oak Ridge National Laboratory. Aerospace safety evaluation, al-

though incomplete, is under investigation.

2.2.1.6.3 Radioisotope Costs. The individual cost of any component

for space use is of extreme importance. Cost is listed last in the table
of specifications only because it is a malleable item. Table 2-4 shows
projected and present isotope costs. These are subject to reduction
based upon increased demands for space electric power systems.
Because there are no power programs requiring Pm-147 in quantity, its
current cost is relatively high ($485/watt). However, its low radiation
level appears attractive for manned missions from both biological and
weight aspects. The projected price of $91/watt reflects future use.

The AEC has suggested that supply may initially lag the indicated demand
and that for near -future requirements, its use as a battery heater be
limited to those missions having a low neutron tolerance. The higher
cost of Pu-238 is partially offset by its long useful mission-life (10 years)
without appreciable reduction in power. This price quoted is for highest
power density material necessary for electric power applications. A
lower purity fuel would also be applicable for battery heating. The power
density of the oxide shown in Table 2-3 is about four times as great as
for Pm-147; therefore, even with void space, some latitude exists for
the dilution of plutonium while maintaining power density equivalent to
that of Pm-147. Fuel cost is not necessarily a governing factor in
assessing battery heater cost. Fuels requiring massive gamma or
voluminous neutron shields can result in costly heater configurations

although the isotopes contained may be modest in price.

2.2.1.6.4 Decay Processes and Their Effect on Isotope Selection.

Listed third in the foregoing specifications for ideal battery heater fuel
is an acceptably low radiation level. Radiation above a tolerable limit
requires shielding. Most missions are weight limited and the require-

ment for dead weight shielding can seriously reduce the attractiveness of
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radioisotope use to a mission. It, therefore, is appropriate that the
nuclear processes which give rise to radiation be briefly reviewed so

that the candidate battery heater fuels may be evaluated.

Radioisotope decay energy is derived from the instability of a
radioactive atom and occurs during its transmutation to the ground
state of the isotope of a different element. During decay, an energized
particle is usually emitted (K-capture being an exception) from the
nucleus. In the case of the fission product Pm-147, a beta particle
(mass and charge the same as an electron) is ejected whose energy is
0.23 million electron volts (mev). When the particle impinges upon a
target or shield, part of that energy is converted to heat while the
remainder gives rise to spectrum penetrating rays, known as
"bremsstrahlung radiation'. A moderate shield of high atomic number
(Z) material can attenuate the beta particle, converting it to thermal
energy. Inthe case where the shield is thin or a low Z material is
used, the ray may give up some of its initial energy to ionization and

escape through the shield.

The second phenomenon cited above which follows transmutation
is the reduction of the excited state of the daughter product. In going
from an excited state to a ground (stable) state, one or more gamma
rays of energies totaling the excited level are emitted. Once ejected
from the nucleus, these rays are indistinguishable from an X-ray or a
bremsstrahlung ray described above. Therefore, the economical
accumulation of heat from radioactive decay depends upon the efficiency
of particle attenuation while minimizing bremsstrahlung. Where fission
products are employed, external shielding may be required with thick-
ness commensurate with the energy of the beta particle. In most appli-
cations the contribution by gamma ray heating is negligible, and
additional shielding is used not to collect heat but to reduce the gamma
radiation to a level tolerable to humans or electronic components.
While all matter will attenuate radiation, the prudent selection can

minimize size, weight, and cost, while optimizing integrity.

The second group of heat-producing materials is the useful
isotopes of the artificial heavy radioelements. The decay modes of

these radioisotopes are more complex and also potentially more useful.
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Those presently considered for heat source applications are limited
to Po-210, Pu-238, Cm-242, and Cm-244. The naturally occurring

alpha emitter, Po-210, is also produced artificially in quantity, but
its short half-life (138 days) limits its mission applications. Pu-238,

Cm-242, and Cm-244 each have two separate and simultaneous decay
modes. The first, alpha particle emission, is a useful source of heat.
An alpha particle is ejected from a radioactive nucleus during trans-
mutation. The alpha has the same rest-mass as a helium nucleus
(4.0039), being composed of two protons and two neutrons. The alpha
particle has a plus-two charge. Since its rest-mass is 8, 000 times
that of a beta particle, ejection from a nucleus imparts considerably
more energy {mev) to it than is possessed by a beta pariicle, alithough
its velocity is less than the beta. Alpha attenuation mainly occurs
within the fuel material itself, and external shielding no greater than
several thicknesses of ordinary paper would stop any particles that
escaped from the source surface. Unlike betas, alpha particles do not
give rise to bremsstrahlung when attenuated in an absorber. For these

reasons, alpha emitters usually make excellent heat sources.

The alternate decay modes of Pu-238, Cm-242 and Cm-244 are a
spontaneous fission process. Most simply explained, the unstable
nucleus ejects particle fissions into a) two fragments or fission products,
b) fast neutrons (2 or 3), and c) an energy release in the form of heat
and gamma radiation. For use in heat sources, this decay mode is
highly undesirable since it complicates the shielding picture by the
presence of fast neutrons. Fortunately, the half-life of this decay
mode is much longer than for alpha decay (Pu-238 fission occurs once
for each 4 x 107 alpha emissions), resulting in a nuisance-value neutron
flux from small sources. However, where the Pu-238 quantity ap-
proaches hundreds or thousands of thermal watts, the neutron level can
be serious enough to require special additional shielding. Body
tolerance (and that of sensitive instrumentation) is 10 times lower for
fast neutrons and 2 times lower for thermal neutrons than for gamma

rays of equivalent energies.

Another important consideration to the evaluation of alpha-emitting
heat sources is known as a '"tunneling effect". It was stated earlier

that an alpha particle may be attenuated by a thin shield, with a total
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energy conversion to heat. However, it has been found that when a

sufficiently energetic alpha particle interacts with certain target nuclei
it can, under certain conditions, be absorbed into the nucleus. When

this occurs (for example, in O-17 and -18), an alpha-neutron reaction
results and neutron radiation occurs. The radiation is most noticeable
when the radioisotope is in a compound form, whose anion is susceptible
to the alpha-neutron tunneling effect. It follows that careful selection

of the compound form can minimize the reaction. Because the suscepti-
ble isotopes of such target elements are usually of low abundance and the
probability of reaction is also low, the neutron flux from the tunneling

effect is quite modest.

A final consideration prerequisite to the use of alpha emitters,
although unlikely to be a concern to battery heating, is critical mass.
It is well known that when sufficient mass of Pu-239 is brought together,
criticality is reached and an uncontrolled nuclear reaction occurs. It
was postulated that those artificial radioisotopes whose nuclei contained
even-odd neutrons and protons by number would possess relatively low
critical masses. However, it was recently found that Pu-238 contains a
critical mass that is quite low, despite its even-even distribution of
neutrons and protons in the nucleus. This leads to the conjecture that

Cm-242 and Cm-244 may also require careful re-evaluation.

The above considerations would not affect battery heating, pro-
vided the thermal flux were below several kilowatts. It should not,
therefore, be construed as a constraint to this development program.
Mention is made of criticality solely to present the reader with a complete

image of the decay modes of the candidate fuel materials.

2.2.1.6.5 Summary. The maintenance of optimized battery temperature
in the space environment, by means of radioisotope heating, has been

reviewed and found to be feasible with present-day technology.

Two radioisotopes which appear particularly attractive for this
application are Pm-147, a beta-emitting fission product, and Pu-238,
an alpha-emitting artificial radioelement. The radiation aspects of these
two isotopes appear to be entirely safe (with the quantities anticipated for

use) from a biological and electronic viewpoint, and no problems to
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ground support personnel or to telemetéring equipment are expected with

heat sources in the 0 to 50 watt range,

Radiopromethium is attractive for several reasons:
a) the absence of strong gamma radiation,
b) a high melting compound form,
c) no stable isotopes found in nature.
Therefore, its presence on the surface of other planets would be readily

explainable by future explorers.

A low cost fuel form of Pu-238 is less expensive than the cheapest
fossil-fuel on the basis of dollars per watt-years of output. It also

possesses no naturally occurring isotopes or strong gamma radiation and

the slight neutron flux may be attenuated.
2,3 THERMAL CONTROL SYSTEMS TECHNOLOGY

Battery heating applications may be classified into two broad
categories based upon heating rate.

a) Situations where the ambient environment tends to be

cold but does not fluctuate widely, either due to static

conditions or an independent thermal control system.

In these instances it is only necessary to heat the
battery at a fixed rate.

b) Situations where the ambient environment fluctuates
widely, either due to dynamic conditions or the inability
of a spacecraft temperature control system to cope with
all possible conditions.

These classifications are of the most elemental thermal interest
and do not take into consideration the total amount of heating required

or the nature of the primary source of heat energy.

The first category is the simplest of the two, and the design
problem evolves finally into a choice of the rate of heating, the nature
of the heat source, and the mechanical and thermal design of a heated

battery package. A typical application for such a battery thermal
controller appears to be a Mars-landing mission.

The second category involves situations in which the heated battery,
under the worst of conditions, must fend for itself completely. Perhaps

a more realistic situation is one wherein the ability of the battery to
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exercise some control over its own temperature is used to augment an
overall spacecraft thermal control system. The most obvious application
appears to be probes such as missions deep into the asteroid belt and the

Jupiter flyby. In addition to the design problems of the simpler heated
battery, there is the additional problem of the battery temperature

control system.

Selection of a thermal controller divides into two branches indicated

by the previous battery classifications:

a) Constant-Rate Heating

1) Selection of heat rate and source based on the
nature of the mission

2) Thermal design of a heated battery package,

b) Variable-Rate Heating

1) Definition of limits of heat rates

2) Selection of a heat source compatible with heat
rates and mission

3) Selection of battery thermal control concepts

4) Thermal design of a complete heated battery
assembly.

The tasks associated with the first category are standard and

consist mainly of assuring that adequate heat transfer paths exist to
supply and distribute heat at the required rates and temperatures and

that design margins are adequate.

Under the second category, the primary emphasis is on the

selection of battery control concepts which include:

a) Thermal Switches, The intent is to consider sys-
tems whose physical configurations and thus, thermal
configurations are substantially altered by temperature
gradients or differences so as to make or break con-
tacting heat transfer areas, Devices with which such
alterations may be achieved (discussed in the literature)
are:

1) Bimetallic elements,




b)

d)

f)

2) Differential expansion structures, and
3) Liquid or gas actuators (bellows and diaphragms).

Superinsulation. Superinsulation, basically a radiant
heat shield in a vacuum, exhibits changes in conductivity
due to the absence or presence of either pressure or
atmospheric gases. A large amount of published liter-
ature exists on this method of thermal control, but details
will not be discussed here since an analysis of an appli-
cation as discussed in the Phase II section of this report
lends itself better to understanding the application of
superinsulation technology in space.

Heat Pipe. This is a device under current development
employing liquid-to-vapor phase-change phenomena

to effect heat transfer. The device is potentially capable
of transferring heat at high rates across small tempera-
ture differentials. The device is at the feasibility
development level and will be analyzed further in the
Phase II discussion.

Liquid-to-Solid Phase Change Phenomena. Patent No.
2,984,727, assigned to the GE company, defines a
temperature and heater control device capable of main-
taining temperature within narrow limits.

Heliotropic Devices. Heliotropic devices to collect and
funnel solar energy are feasible for probes in the

near and central reaches of the asteroid belt. Either
absorbers or reflectors may be considered.

High Temperature Thermal Radiation Sources. High
temperature sources (e.g., radioisotopes) are rela-
tively insensitive to local environment, By suitable
shields and controls, such a device could reject most
of its heat to space when heat is not needed, or trans-
mit significant amounts of heat to critical (spacecraft)
locations when required.

Open Loop Systems, These are defined loosely as
localized temperature control systems which depend
upon externally available energy or matter for their
operation. Should the external source be depleted,
the system becomes inoperative. Examples of such
systems are pyrotechnic, catalytic, or combustion
heaters; gas-operated control mechanisms; and con-
trol mechanisms operated by external electrical
power,




2.4 SPACE MISSION REVIEW

The principal activity during Phase I of the low temperature battery
study thermal analysis was the examination of the ranges of battery
environments under two general conditions. These conditions were those

experienced in a) space probes and b) landing on other planets.

Before examining the thermal aspects of the heated battery in
detail, it is important to consider the need for such a device. It was
found that spacecraft components generally have two different temperature
limits; nonoperating (standby) and operating. Typical temperature-
sensitive components of spacecraft have nonoperating limits of -40 to
+65(S C and operating limits of about -18 toA38O C; while typical batteries,
as has been shown, have limits of +4 to 38° C. Thus, independent of
any special requirements for the battery, there must be a spacecraft
thermal control system which maintains a minimum temperature of at

least -40° C.

In reality, it is unlikely a spacecraft would be maintained in a non-
operating state in flight for extended periods of time. For a variety of
reasons, it is considered necessary to keep the spacecraft '"on'" continu-
ously or at least turn it "on' frequently. In the case of a deep space
probe, for example, even if its primary mission is the collection of data
at a distant planet, it is necessary to communicate with the spacecraft
frequently during the transit portion of the mission for tracking purposes
to check on the state of its health, to switch to redundant components
where necessary, and to collect scientific data in mid-course. The
spacecraft thermal control system must, therefore, maintain an en-

vironment within the operating range for most components (-29 to +38° C).

Since the battery is frequently the most temperature sensitive of
the components, it will normally be located within the temperature-
controlled region of the spacecraft. The utility of the heated battery is
now apparent; it permits the spacecraft thermal control system to
maintain a lower limit of -18° C (suitable for most components) while the
battery heater, with appropriate insulation, maintains the battery above
its minimum required temperature of 4° C. Without the battery heater
the entire spacecraft environment would have to be maintained over the

narrower battery limits.
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When the battery heater is sized to maintain the battery above its
4° C minimum for all conditions of the mission, it is likely to cause the
battery to overheat above its 43° C upper limit for some portion of the
mission. For a deep space probe, overheating might occur, for example,
when the spacecraft is exposed to a higher sun level or when the power duty
cycle causes an increased internal temperature. The need, therefore,
arises for a controllable heater to avoid exceeding the battery's upper
limit, For an electrical heater, this is achieved simply by means of
a thermostatic switch. As discussed elsewhere, a radioisotope heater

has many outstanding advantages for this application; but since the radio-

isotope source contincusly dissipates heat, a mechanical means must be
provided to control the heat source. Such active battery heaters are

described in detail in Section 3.

In order to quantitatively examine typical battery environments, it
was necessary to consider specific spacecraft or landing capsule configu-
rations. Hypothetical configurations are presented in this report
which exclude a multitude of other considerations which more specifically
define a mission and the means of its accomplishment. The following
discussions detail the effort and conclusions derived under the Phase I

program,

The battery environment in space is determined by the spacecraft
thermal control system which in turn must be designed for a specific
mission and spacecraft configuration. We have assumeé, however, on
the basis of the above discussion that battery temperature control limits
are generally more stringent than limits placed on other equipment and

may require means of separate control.

The following missions were considered as possible applications
where the use of a heated battery would be advantageous and which might

typify the requirements for using a heated battery:

Solar Probe

Mars Lander

Mercury Dark Side Lander
Asteroid-Belt Probe
Jupiter Flyby
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Of these five missions, examples of all but the last were analyzed
at least briefly during the Phase I information search, to determine the
feasibility of using heated batteries and to obtain reference data from
which a heated battery design could be evolved. The Jupiter flyby, from
the thermal viewpoint, is actually a maximum penetration into the aster-
oid belt and would probably incorporate most features of probes capable

of lesser ranges.

Some of the vehicle configurations considered in this preliminary
analysis are as follows:
a) Current spin-oriented Pioneer-type spacecraft designs

(probes toward the Sun or closer reaches of the asteroid
belt)

b) Mars lander with an active thermal control system
c) Mercury dark-side lander with a passive thermal con-
trol system.

In order to provide a reference for preliminary analyses, it was ‘
assumed that battery heating would be available from a self-contained ‘
constant heat source and that regulation of the overall temperature level
of a complete spacecraft system, including the batteries, was available
using a spacecraft thermal control system. The battery heater eases the
task of the thermal control system but does not assume the function of
thermal control to any marked extent. Under these assumptions, the most

attractive applications were limited to missions typified by the following:
a) Mars lander

b) Mercury dark-side lander of small size and limited
lifetime

c) Asteroid-belt probe ranging to about 3,0 AU maximum.

Analysis of solar probe missions did not reveal any readily apparent

regimes for using self-contained heated batteries.

Preliminary analyses of asteroid belt probes indicated that Pioneer-
type probes beyond 3.0 AU would experience serious low temperature
problems, and additional active thermal controls in the battery spacecraft
interface may be reqﬁired. Missions to the further reaches of the aster-

oid belt, as well as the Jupiter flyby, can take advantage of a heated
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battery with a self-contained, self-controlled heat source. Also, such a
battery could be useful to improve the overall spacecraft thermal control

system for missions with lesser thermal extremes.
Specific mission analysis results are discussed below:
a) Solar Probes. Spin-oriented (Pioneer -type) probes

and a sun-shielded configuration were considered for
distances ranging from 0.2 to 1.0 AU.

From the thermal viewpoint, it is noted that Pioneer is
a rotating cylinder covered by solar cells; internal
equipment platform temperatures are controlled by a
temperature -sensitive louver system. Solar array
temperatures, as an index of internal temperatures,
are shown in Figure 2-<22. The effecis of partial sil-
vering of the solar arrays (to obtain low temperatures
closer to the Sun) are shown in Figure 2-23. It was
concluded that the basic Pioneer design is already
capable of missions ranging in distance from 0.4 to
1.0 AU without the necessity for heated batteries

since overall temperature levels are mild, and equip-
ment power dissipation can be distributed so as to
provide local temperature adjustments where necessary.

The sun-shielded configuration considered the use of a
heated battery to maintain reasonable temperatures
immediately after launch. However, since the margin
of tolerable solar heating as the vehicle approached
the sun was quite small, it was extremely doubtful that
this particular configuration would be a successful
application.

It was thus concluded that solar probes were not a
promising field of application for heated batteries, and
no further analysis was conducted,

b) Mars Landing Capsule. The general thermal design
features and some design data for a Mars landing
capsule are shown in Figures 2-24, 2-25 and Table
2-5. Martian surface temperatures are shown in
Figure 2-26. The capsule power profile is given in
Figure 2-27.

The resulting capsule temperatures, as also shown in
Figure 2-27, assume normal cyclic operation. It is
evident that the resulting temperatures are too high,
and that the louver system is largely ineffectual,
working near its upper limit., However, these defi-
ciencies can be corrected by suitable and obvious
changes in the thermal design of the capsule, such as
lowering external solar absorptivities, decreasing
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Figure 2-22. Solar Array Temperatures of a Spin-Oriented Solar Probe.
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Figure 2-24. Proposed Thermal Control System for a Mars Lander
Study Model
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Table 2-5.

DIMENSIONS

RAD1US

Het1GHT oF CONICAL SHIELD

Assume Design Parameters for Mars

Landing Capsule Study Model

LENGTH OF CYLINDRICAL SECTION

DEPpTH OF SPHERICAL BortTOoM

SEGMENT
LOUVER AREA

WEIGHTS

BATTERIES

PLATFORM AND ELECTRONICS

EQUIPMENT

THERMAL PROPERTIES

CONi1CAL SHIELD

LOuVvERS

CYLINDRICAL SECTION

BorToMm

PLATFORM

MuLTi1=LAYER

INSULATION

2-68

20 INCHES
16 INCHES
10 INCHES
10.4 incHES

16 x 16 InCHES

Two AT 11 POUNDS EACH

100 POUNDS TOTAL

EXTERNALAE = 0.32/0.8
INTERNAL € = 0.8
0.20 < € < 0.7k

Actuation Range 48°F (croseo)
10 92°F (FuLL OPEN)

ExTERNAL #/€ = 0.32/0.1
Externat € = 0.1
Core k/L = 1.0 BTU/HR—FTZ—OF

UpPER FACE SHEET (FIBERGLASS)
k/L—> O

LOWER FACE SHEETZ(éLUMINUM)
K = 90 BTu/HrR—F1"— F/F1

1 LAYER OF 1 MIL ALUMINIZED
MYLAR

9 LAYERS OF 3 MiL DEXIGLAS
MATERIAL

8 Lavers oF 0.25 MIL ALUMINUM
FOIL

TOTAL BLANKET THICKNESS 3/16 IncH
k/L = 0.03 BTU/HR‘FTE—OF
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Figure 2-26. Martian Surface Temperatures for Preliminary Studies
(Reference 18) .

2-69



140

120

100

80

60

TEMPERATURE SF

40

POWER DISSIPATION ~ WATTS

20

Figure 2-27.

— SUNRISE

— MIDNIGHT

— SUNRISE

— NOON

— MIDNIGHT
— SUNRISE
— NOON

— NOON
“T—SUNSET

AVG. BATTERY AND
EQUIPMENT TEMPS. —

})
(

LOUVER TEMP.
|

TRANSMISSION
SPIKE (TYP) —»

T

_
s POWER DISSIPATION

|

_.I*

L_JL

6 12

18 24

30 36 42 48 54

ELAPSED TIME ~HOURS

Mars Capsule Study Model Temperatures and Power Cycles During Summer

60

2-70




d)

insulation thicknesses, increasing external emissivi-
ties, or increasing louver areas. However, these
measures must be balanced against the probability of
operation under less favorable conditions than the
Martian summer,

Figure 2-28 shows the ability of the battery heaters

to maintain reasonable temperatures in the event that
transmission spikes are omitted from the power cycles
for extended periods. It is seen that the battery heater
dissipation results in acceptable temperatures, ensur-
ing the continued life of the capsule during periods of
idleness.

Mercury Dark-Side Lander. The protection of the
Mercury landing capsule during the transit period, as
opposed to operations on the dark side of Mercury,
may be extremely difficult due to possible drastic
changes in the local environment. During transit, the
capsule approaches the Sun to a distance of 0,31 to
0.47 AU, so that the local intensity of the solar
constant has increased to a value of 5 to 10 times over
that in the vicinity of the Earth, On the dark side of
Mercury, however, there is no sunshine at any time,
and the a.na.bient temperature is extremely low, per-
haps -240~ C. There is little surface atmosphere.

A simple. but highly arbitrary scheme has been
postulated to maintain the capsule in suitable condi-
tion for transit and Mercurian surface conditions. By
shielding the capsule from the Sun during transit, but
otherwise exposing it to the space environment, the
conditions it encounters on Mercury will not be greatly
changed.

In the simplest case, the capsule may be a sphere
containing a heated battery and other electronic
components. If the average total heat dissipation is

30 watts, the required insulation conductivities and
capsule size may be estimated as shown in Figure 2-29

Asteroid-Belt Probes., Figure 2-30 shows a section of

a spin-oriented, Piomeer-typc vehicle somewhat medi-
fied for penetration to the inner regions of the asteroid
belt, Figure 2-31 shows the variation in the effective
values in the solar constant experienced by such a

vehicle,

The external temperatures experienced by such a

vehicle are shown in Figure 2-32, By suitable

internal modifications, it is estimated that the current

thermal design would enable penetration to 2.0 AU.

The addition of a heated battery with a radioisotope

heating element, would probably increase this .
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NOTES: 1)
2)
3)

4)
5)

SPHERE HELD ABOVE SURFACE BY

LOW CONDUCTIVITY SUPPORTS.

TOTAL INTERNAL POWER DISSIPATION =
30 WATTS CONSTANT.

K/Z = SUPERINSULATION CONDUCTIVITY

BTU/HR-FT2-°F, IN SEALED, EVACUATED BATTS.

0 = APPROXIMATE INSULATION THICKNESS,
INCHES.
EXTERIOR EMISSIVITY = 0.8.

800 g

600

400

200

INTERNAL TEMPERATURE ~°F

0.2

1.5
RADIUS ~FEET

Figure 2-29. Temperatures and Radii of Insulated Spheres at
the Dark Side of the Planet Mercury
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Figure 2-30. Pioneer-Type Vehicle (Modified for use as
Asteroid-Belt Probe)
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penetration to about 3.0 AU since equipment heating
would be less dependent on the availability of power
from the solar cells.

To summarize the potential applications for a heated low tempera-

ture battery in space, the following listing of potential missions is

included to provide the reader with knowledge of the breadth of the

requirement for this type of battery.

Deep Space Probes

1) Pioneer missions beyond 2.0 AU

2) Jupiter missions

3) Asteroid-belt probes

Planetary and Lunar Landers

1) Mars hard-lander experiment packages

2) Mars soft-lander vehicles

3) Lunar landers experiencing lunar days and nights

4) Jupiter atmospheric penetration probes or hard
lander experiment packages

5) Jupiter soft lander vehicles

6) Any other lander experiencing extreme tempera-
ture cycles or low temperature environments

Planetary and Lunar Battery Standby and Storage in
Uncontrolled or Semicontrolled Environments

1) Beacons
2) Emergency batteries for survival

3) External energy storage for crowded space
laboratories

4) Other applications paralleling Earth Arctic
conditions

5) Earth orbiters with batteries located in remote
areas.
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The above list is by no means all-inclusive but does include the
missions being planned or considered for the future. The requirement for
a low temperature battery in these missions is premised not merely on
the need to maintain a battery at a normal operating temperature of 4 to
38° C but also on the high probability that this battery will simplify the
thermal control system design for these missions and may, in fact, make
it possible to use a high energy battery where it would otherwise not be
practical. More detailed analyses of some of these missions are con-
tained in the Phase II analysis and will show the effect achieved with a
small amount of heat on the probable performance of a battery in these
types of missions. The major considerations which will be included in

this study are
a) Mission requirements
b) Thermal systems and tradeoffs
c) Power system tradeoffs
d) Heating methods tradeoffs

e) Heated battery system design.
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2.5 LITERATURE SEARCH AND INDUSTRY SURVEY CONCLUSIONS

On the basis of the technology found pertaining to the use of batteries

in low temperature space applications, the following conclusions were

drawn before entering the Phase II analysis:

a)

b)

c)

Numerous potential applications exist for low tempera-
ture battery designs in space missions., The appli-
cations fall into three general areas:

1) Deep space probes

2) Planetary and lunar landers
3) Planetary and lunar battery standby and stora
uncontrolled and semicontrolled environments

These categories require a low temperature battery for
either extended periods of operation in low temperature
environments or periods of operation in low-temperature/
high temperature cyclic environments in which the
battery cannot be controlled totally with the spacecraft
thermal control system,

Present battery technology limits acceptable operatmg
temperatures to a temperature range of 4 to 38° C

with minimum battery survival temperatures to -54° C.
This range for operation can be extended but the
penalties for extension are severe in terms of life

and energy/pound. Extension of the -54° Climit cannot
be justified on the basis of technology reported to date.

Heat sources evaluated in this survey which are appli-
cable to low temperature battery applications include
the following:

1) Electrical heating using surplus power system
energy

2) Radioisotope heating using an active thermal control
regulator

3) Chemical cartridge heating for limited time periods
and under limited environmental conditions.

The remaining methods of heating analyzed offer very
little merit for application toa low temperature space
battery. Of the most promising sources listed above,
the constant heat sources appear most attractive for
major emphasis in the Phase II analysis. However, a
limited amount of additional analysis effort was expended
to evaluate the other heating methods to the point where
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the limits of technology could be defined, but
implementation of these methods into designs was
not attempted.

d) The literature reviewed on thermal control systems
was not conclusive. There were no promising
methods of controlling heat delivered from a constant
source to a black box in cycling environments.
Therefore, it was decided to place additional emphasis,
in the Phase II study, on analyzing potential thermal
controllers and developing the necessary theoretical
models to verify their feasibility.

This concludes the Phase I literature search, industry survey,

and preliminary conclusions which premised the Phase II analysis.
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3. ANALYSIS

This section of the report deals with the analyses which were con-

ducted to determine the system requirements for:
a) Low temperature environments in space
b) Heat sources for batteries in space environments

c) Control of the heat transmitted to and from a battery during
its operation in space, and

d) Development of models for types of space missions which
appear most in need of heated low temperature battery
designs.

The analyses, reported herein, were necessarily brief because of the

limitation in the scope of the study, but an attempt was made to cover

as many of the battery design problems and interfaces as possible and
to develop the technology which was available into a feasible design for
a low temperature battery for space applications.

3.1 SYSTEM REQUIREMENTS FOR LOW TEMPERATURE
ENVIRONMENTS

3.1.1 Battery Requirements

A study was undertaken to determine the requi‘rements for batteries
in various types of space missions involving low temperature environ-
ments. In order to estimate the size of batteries, several mission power
requirements analyses were made. These are typified by the analyses
reported herein for a 20-watt Mars lander, a 100-watt Mars lander, a
100-watt Jupiter flyby and a 1000-watt roving vehicle. Table 3-1 contains
the information required to generate a power profile and power loading
schedule for the 20-watt lander; it is estimated that 2 3 ampere-hour
(approximately 80 whr) battery would be required to support the mission.
Table 3-2 contains similar information for the 100-watt lander; it is
estimated that a 20 ampere-hour (approximately 500 whr) battery would
be required. Table 3-3 represents the 100-watt flyby, in which the
battery would be used primarily to deliver transient loads and intermittent
pulses; it is estimated that 6 ampere-hour (approximately 160 whr) bat-
tery would be required. Table 3-4 represents the 1000-watt roving vehicle

in which the battery size could vary drastically; it is estimated that a
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Table 3-1. Mars Lander, 20-Watt Power Source

ASSUMPTIONS:

20-WATT SoLAR ARRAY POwerR GENERATOR

DaTAa STORAGE UNIT 0.3 warTT
DigiTAL TELEMETRY UNiT 1.0 waTT
TIMER 0.4 warrt
CoMMAND RECEIVER 1.5 WATTS ’
3.2 wATTS ConNTINUOUS LOADS
3.2/0.75 = 4.3 warrs (0.75 = CONVERTER EFFICIENCY)

EXPERIMENTS

5 WATTS
TRANSMITTER = 60-waTT INPUT (15 70 20 WATTS RADIATED)

23-HOUR, 56=MINUTE DAY = 24 Hours
DAYLIGHT PERIOD = 11 HOURs, 58 MiNuTES = 12 HOURS

LANDER CAPSULE RELAYS DATA TO ORBITER iIN A 6-HOUR ORBIT.
INTERROGATES ONCE PER ORBIT.

240 wHR INPUT PER DAY.

100.4 WHR STEADY STATE
LOADS PER DAY

12.0 Hours x 20.0 waTTS

(4.3 watts) (24 Hours)

]39.6WATT’HOURS AVAILABLE FOR BATTERY CHARGE AND NON-
CONTINUOUS LOADS

139.6 x 0.65 = 90.5 whr storep (0.65 = BATTERY
EFFICIENCY)

TRANSMITTER = 60 WATTS
EXPERIMENTS = 5 WATTS
60 + 5 = 65 watts 65/0.85 = 71 WATTS NON=CONTINUOUS

LOADS

90.5 WATT-HOURS/T1 WATTS = 1.28 Hour = 6.5 MiNUTES/DAY OF
NON=CONT INUOUS LOAD OPERATION

4 |NTERROGATIONS PER DAY OF 19 MINUTES EACH.
BatTerYy Si1zineg 52 WHR N1GHT LOADS (conTinuoOuUS)
LL.5 wHR NIGHT TRANSMITTER LOADS
96.5 WHR
96.5 wur/28 voLts = 3.4 ampERE-HOURS
Use 5 AMPERE-HOUR NICD BATTERY AT APPROXIMATELY 70% DEPTH OF

DISCHARGE
Battery WEiGHT = (22 ceLLs)x(0.55 tBykert)x (1.2 PackaGING

FACTOR) : 14,6 pounDs

Ba1TERY HEAT Evorution (ESTIMATED)

DURING 4.3-wATT DiscHARGE = O.U4 warr
DURING 69.3=WATT DISCHARGE = | WATTS
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Table 3-2. Mars Lander, 100-Watt RTG Power Source

ASSUMPT | ONS::
100-WaTT RTG Power GENERATOR
Desire TV pPicTurRE, 1.5 X 106 BITS PER PICTURE
NON=DIRECTIONAL ANTENNA
LANDER BROADCASTS TO 6=HOUR ORBITING SATELLITE
TRANSMITTER POWER = 100 waTTs (1,500 BITS/SECOND ESTIMATED)

LOADS (ConTt)
Dicitar TELEMETRY UNIT 2.0 WATTS

DATA StorRAGE UNIT 2.0 WATTS

CoMMAND RECEIVER 2.5 WATTS

TIMER o4 warT
6.9 WATTS

6.9/0.75 = 9.2 watts  (0.75 = CONVERTER EFFICIENCY)
9.2 WATTS X 24 HOURS = 221 WHR STEADY STATE LOADS
ENERGY ACCUMULATED/DAY = 100 wATTS x 24 Hours = 2,400 whr

LEss STtANDBY LOADS 221

' 2,179 whr
Times 0.65 (BATTERY EFFICIENCY) x0., 65
AVAILABLE FOR TV TRANSMISSION 1,416 wur

TOO-WATT TRANSMITTER REQUIRES 350-WATT INPUT.
350/0.85 = 412 warrs  (0.85 = CONVERTER EFFICIENCY)
1,416 wir/412 watrs = 3.4 Hwours
(3.6 picTures/nour) (3.} HOurs) = 12 picTURES/DAY

OR = 3 PICTURES/ORBIT

BATTERY STORAGE REGQUIREMENTS ARE:!
1,416 wur/U = 354 wur
354 wHr/28 voLTs = 12.7 AMPERE~HOURS

BATTERY WEIGHT = (22 ceuts)(1.9 uBs/ceLL) (1.2 PACKAGING
FACTOR) = 51 LBS

BATTERY HEAaT EvoLuTIiON
~/
DuriING 9.2-WATT DISCHARGE = 0.9 warTT
~/
DURING U421.2-WATT DISCHARGE = 42  warTs
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Table 3-3. Jupiter Flyby, 100-Watt RTG Power Source

ASSUMPTIONS:

LOAD

100-wATT RTG TRANSMITTER

10-WwATT TRANSMITTER

16=F00T DISH-ANTENNA

AT 10 wATTS == 850 BITS PER SECOND

AT 100 watTs == 8,500 B8iTS PER SECOND

BASIC MISSION IS PHOTOGRAPHIC PLUS DATA MEASUREMENT.

ASSUMPT | ONS:

CAMERA OPERATION T PICTURE 60 waTTS 5 MINUTES

DeveLor anND DRy 1 PicTURE 7O waATTS 30 MiINUTES
7

PHoTO READOUT T PICTURE 30 WATTS} 3 MINUTES

TRANSMI T T PICTURE 350 waTTS)

1.5 x 106 = 1.77 x 102 = 2.94 = 3 minuTES

8.5 x 103

ALTERNATIVELY, IF A 10-WATT TRANSMITTER 1S USED

p h
HOTO READOUT 30 warrs 30 MINUTES

e

i

TRANSMIT 35 WATTS

STeEADY=-STATE LOADS

ATTITUDE SENSORS 1.0 warrT
Commano DisTrRIBUTION UNIT 0.9 warTt
CoMMAND RECEIVERS 2.5 wATTS
DecobpeRrs 1.0 warT
DiGgiTAL TELEMETRY UniT 1.0 watry
DATA StORAGE UNIT 0.5 waTrT
EXPERIMENTS .0 WATTS
11.5 watTs
AVERAGE CONVERSION EFFICIENCY = 0.75
TOTAL STEADY=STATE POWER = 11.5/0.75 = 15,3 wATTs
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Table 3-3. Jupiter Flyby, 100-Watt RTG Power Source (Continued)

CONTINUOUS DATA TRANSMISSION == 10=WATT TRANSMITTER
35 waTTs/0.85 = UW1,1 watrs
TOTAL POWER WHILE NOT PHOTOGRAPHING = 56.4 watts

TOTAL REMAINING POWER FOR BATTERY RECHARGE =
100.0 - 56.4 = U43.6 warrs

POWER REQUIRED DURING PHOTOGRAPHIC CYCLE

66?YWATL§-(EXPEBIMENTS OFF) _ 9.3 WATTS
10=-WATT TRANSMITTER
(coMMAND RECEIPT, HOUSE-
KEEPING, ETC,) = 41.1 waTTs
50.4 waTtTs
CAMERA = 60 wat7s/0.85 = 70,6 wATTS
121.0 waTtTs
NeT POWER FROM BATTERY = 21.0 WaATTS
DEVELOP == STEADY=STATE LOADS,
10-WATT TRANSMITTER 50.4 watTs
DEVELOPER
70 wat15/0.85 82,5 watTs
132.9 waATTS
NET Power FROM BATTERY = 32.9 WATTS
PHOTO READOUT AND TRANSMIT
STEADY=STATE LOADS 9.3 waTTsS
PHoto Reapout, 30 watTs/0.8 37.5 waTTS
TrRansMiT 350 watTs/0.9 390.0 WATTS
436.8 watTs
NET Power FrROM BATTERY = 336.8 watTs

TOTAL BATTERY ENERGY REQUIRED
105 wATT=MINUTES
990 WATT=MINUTES
1000 WATT-MINUTES

21.0 WwATTS X 5 MINUTES
32.9 waTtts x 30 MINUTES
336.8 WATTS X 3 MINUTES

ToTAL 2096 WATT-MINUTES

OR 35 WATT—HOURS

W
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Table 3-3. Jupiter Flyby, 100-Watt RTG Power Source (Continued)

AT 65% RECHARGE EFFICIENCY, TOTAL INPUT REQUIREMENT TO BATTERY =
53.8 WATT-HOURS

AT U3.6-waTT 1NPUT, RECHARGE Time = 1.27 HOURS
TotaL CycLe TIME
CAMERA 5 MINUTES
Deveror 30 MINUTES
READOUT AND TRANSMIT 3 MINUTES
RECHARGE _lé MINUTES

114 minuTES
orR 1 PICTURE PLUS 3.9 X 106 EXPERIMENT DATA BITS EVERY

2 HOURS.
BatTerRY size (Assuming 50% DEPTH OF DISCHARGE) =
35/0.5 = 70O wHr
70 wHr/28 voLTs = 2.5 AMPERETHOURS ‘= 3 AMPERETHOUR
BATTERY

WEIGHT = 7.9 POUNDS

HOWEVER, THIS SIZE IS INADEQUATE TO DELIVER 452 watTs

(16.2 AMPERES); THEREFORE, THE BATTERY MUST BE SIZED FOR CURRENT
DELIVERY.

A CONVENIENT SHORT TIME DISCHARGE RATE WITH ADEQUATE VOLTAGE

REGULATION 1s 3C To 4C,

16.2/3 = 5.4 AMPERE-HOURS (NEAREST SI1ZE IS 6 AMPERE~HOURS)
WEIGHT

15.9 pounDS

HeaT Evorution (ESTIMATED)

POWER FROM BATTERY EstiMATED HeaT (WATTS)
PHOTOGRAPHIC 21 2.3
PrROCESS ING 33 3.5
TRANSMIT 337 {2
RECHARGE -5k -1 (aBsorsED)
OVERCHARGE -5 5
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Table 3-4. Mars Lander, 1 KW Power Source

ASSUMPT TONS :
1 KW RTG POWER SOURCE MounNTeED OUTBOARD OF THE MAIN VEHICLE,

s

BATTERY ENERGY STORAGE USED FOR PEAK LOADS
VEUICLE ROVES ON COIMAND, WITH LOW QUALITY TV

100 x 100 vLines, 3 GRAY LeveELs, 1 #eaie/10 sEcoins

VEHICLE HALTS, iRA
. ( ..

5U1TS S1GI=OUALITY 93 LTURE,
(1.5 x 109 girs/pacr

CTURE)
CRICHTED SUMFLOWER ANTEMHA HOUNTCD O STABILIZED PLATFLEL OV
VEHICLE. TRAUSMITS UIRECTLY TO EARTH.

COTHER CxPERIMENTS == 300 wATTS, USED GilLY wWHEN VEHICLE 15 HALTED,

TWO TRAHSMITTERS —-

T Low BIT-RATE == 20 WATTS RADIATEL POWER
1 #iGH B1IT-RATE == 200 WATTS RADIATED POWER
BOTii OPERATE AT 55,0 EFFICIENCY,

DrRive POWER == 1.5 xw == spiec 2 Fr/sic wa LEVEL.

ANTENNA ORIENTATION AHD STABILIZATION

GYRO REFERCHCE PLATFORM 35 WATTS
ANTEHNA STABILIZATICN DRIVE (150 w AvG P50 WAaTTS
2)0"WAIT PLAK)

TV CAMERA = LOW KLSGLLUTIO. 1O waTTs
PEG RLSTLUT U T ATT

U 2., WATTS
uol = RECORD - WATTS
- PuLayvBACK B wATTS




Table 3-4. Mars Lander, 1 KW Power Source (Continued)

COMMAND RECEIVERs

STEERING =— 20 WATTS AVERAGE
250 WATTS PEAK

MISCELLANEOUS STEADY=STATE LOADS

PowerR DURING VEHICLE TRAVEL

CONDITIONED

LocomMoT 10N 1,500
STEADY=STATE LOADS = MjsSc. 10
- DTU 2.5
- COMMAND 0.5
Rec,
STLERI NG 20.0
GYrRO RUFERENCE 35.0
ANTENNA OTABILIZATION DRIVE 150.0
TV CaMERA 10.0
TrRANSUMITTER (20 waTTsS) 57.1
SPOTLIGHTS 200.0
TotaL Raw PoweRr
LEss RTG OQureur
STORED ENERGY REQUIREMENT
BAsE Powewn wHEM VEHICLE 1S HALTED
STEADY=STATE LOADS = Mjsc. 10
- DTU 2.5
- CSMMAND 0.5
EC.
GYrRO REFERENCE 35.9
l2austirTer (20 waTTS) 571

ToTAL Raw PowLnr
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Table 3-4. Mars Lander, 1 KW Power Source (Continued)

Power DURING EXPERIMENT OPERATION

Base Power 134.3 watTs
DATA STORAGE UNiT 15.0 (80%) T, ue 15.0
DATA PLAYBACK 40.0 (20%) SHARING 10,0
EXPERIMENTS 300.0 379.0

534.3 watTs

Power DurRING HIGH ReEsoLuTion TV

Base Power 134.3 watts
DATA STORAGE 15 (80%) T, ue 15.0
DATA PLAYBACK Lo (20%) SHARING 10,0
TV CAMERA 15 18.7
TRANSMITTER (200-waTTS) 570 715.0
SPOTLIGHTS 200 200.0
ToraL Raw Power 1,093.0
Less RTG Ourtpur 1,000.0
POwER FROM BATTERY 93.0 watrts

ANALYSIS OF TRANSMITTER CAPABILITY
TRANSMITTER CAPABILITY == WiTH 16=POINT DISH

20 WATTS == ESTIMATED 3,500 BITS/SECOND FROM SURFACE
OF MARS TO EARTH,

Low quatiTy TV -= 100 x 100 x 3 == 30,000 8175

At 1 FRAME/10 SECONDS, TRANSMITTER REQUIREMENTS ARE
3,000 BiTs/sec.

HigH=QuaLITY TV == 200 waTTS =" 35,000 B1TS/SECOND
Requireo (1.5 x 107)/(3.5 x 107) = 0.43 «x 10° = 43 sec/FRAME
PICTURE TRANSMISSION = <1 MINUTE
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Table 3-4. Mars Lander, 1 KW Power Source (Continued)

ProrosSED CYCLE
VEHICLE TRAVELS PRE-SET DISTANCE OF O 10 50 FEET AT
2 FT/SECOND.
BATTERY DRAIN = 1.016 kw FOR 25 seconps = 0.28 AMP-HOURS.

VEHICLE HALTS, TRANSMITS 2 HIGH RESOLUTION TV PICTURES TO
SHOW PATH AHEAD S CLEAR.

BATTERY DRAIN = (93 WATTS X 2 MIN., TRANSMISSION TIME)/
(60 Mmin/HR x 28 vorts) T 0.11 AMP=HOURS

ToTrAL BATTERY DRAIN = 0.28 + 0.11 = 0.39 AMP=HOURS;
HOWEVER, BATTERY MUST BE SIZED FOR PEAK CURRENT.

MAX IMUM CURRENT = 1.016 xw/25 voLTs = 4O AMPERES.

IF WE ASSUME A MINIMUM RATE OF 2C, BATTERY CAPACITY
BECOMES 20 AMPERE=HOURS (MINIMUM).

LIMITING DISCHARGE TO 50% BEFORE RECHARGE EXCEPT 1IN
EMERGENCIES, AVAILABLE CAPACITY = 10 AMPERE~“HOURS.

VEHICLE WILL TRAVEL SLIGHTLY LESS THAN 1/4 MILE BETWEEN
BATTERY CHARGES, USING 20 AMPERE~HOUR BATTERY.

(10 ampere-HOUR TOTAL)/(0.39 AMP=HOUR/50 FT) £ 1,270 FT.

VEHICLE HALTS == RECHARGES.

IF VEHICLE 1S AT MINIMUM POWER = 134.3 wartTs,

THEN, POWER AVAILABLE TO CHARGE BATTERY = 1,000 - 134.3
865.7 wATTs.

865.7 watts/32 vouts (22 cewt NiCo) = 27 AMPERES.

CapaciTy requirep (eFF. = 0.8) = 10/0.8 = 12.5 AMP~HOURS
INPUT.

12.5/27.0 = 0.41 nour = 25 MINUTES (RECHARGE TIME PRIOR
To NEXT 1/4-MiLE TRAVEL).

POWER REQUIREMENT CHANGES WHEN VEHICLE LOSES SIGHT OF
gARTH (1.E., ANTENNA ORIENTATION sIGNAL). COMPUTER WILL BE
REQUIRED TO PREDICT EARTH POSITION RELATIVE TO VEHICLE
WHEN EARTH COMES INTO VIEW,




Table 3-4. Mars Lander, 1 KW Power Source (Continued)

QUIESCENT POWER LEVEL

MISCELLANEOUS 10 wATTS

DSU 0.5

DTU 1.0

COMMAND RECEIVER 2.5

GYRO REFERENCE 35.0

COMPUTER 150.0

ANTENNA SLEW 10 waTTs (AVERAGE) 250=WATTS PEAK
StiLL BELOW 1 KW, BATTERY WILL CHARGE OVERNIGHT. IF

VEHICLE USES EXPERIMENTS DURING RECHARGE PERIOD, RECHARGE
PERIOD 1S LENGTHENED TO

POWER AVAILABLE TO CHARGE BATTERY = 1,000-53h.3=465.7 WATTS
465.7 wat15/32 voLts = 14.6 amperes
12.5 aMPERE-HOURS/14.6 amperes = 0.86 nours T 51 minuTES

BATTERY HEAT OutPUT ESTIMATES

VEHIcLE TRAVEL Puase (25 seconps) 300 wATTS
HicH REsoLution TV (2 MINUTES) 10 WATTS
RECHARGE (HIGH RATE == 25 MINUTES) 5/ WATTS
(ABSORBED
RECHARGE (EXPERIMENTS ON == 56 MINUTES) 2.5 WATTS
ABSORBED)



battery on the order of 20 ampere-hours (600 whr or more) would be

required.

Figures 3-1 and 3-2 show the power profiles for two of the above
missions. From the profiles the power requirement can be visualized.
Analyzing the battery requirement further, we see that the typical battery
size is somewhere in the range of 3 to 30 ampere-hours for most applica-
tions. This requirement when compared with a mission duration fixes
not only the size but the type, because battery life is one of the main
limiting factors in selection of a battery for space applications. Typically,
any mission requiring a Battery life of less than a year could use a silver-
cadmium, nickel-cadmium, silver-zinc or zinc-mercury battery; if the
period is extended to two years, it is possible that a silver -cadmium
battery could be used and the nickel-cadmium battery could definitely
be used. If the mission duration is more than two years, the test data
published throughout the literature selects the nickel-cadmium battery.
The only exception to these criteria would be the requirement that a
battery be transported:unaétivated to the end of the mission and then
activated. Present technology has demonstrated that this type of opera-

tion using a silver-zinc battery may have a life of 3 to 5 years.

Based upon the above analysis, the next logical step is to compare
the sizes of batteries with their watt-hour and operating temperature
requirements. Under the assumption that the data presented in the Phase
I analysis and the conclusions drawn are valid, the lower temperature
limit selected has been restricted to -18° C for the purposes of this com-
parison. Figure 1-3 presents a general surmnmary of the available sizes
for the various types of batteries. The nomograph was used to size bat-
teries in accordance with the watt-hour requirements determined above
in order to determine heat required to sustain battery temperatures in

the operating range in a low temperature environment.

An additional step in the analysis was determination of the amount
of heat which the battery could be expected to supply during charge or
discharge. No heat would be available from a primary battery during |
the charge cycle; the thermal dissipation during the discharge cycle would J
be similar for both primary and secondary batteries. Figure 3-3 shows l

the estimated available internal heat generated versus overcharge and
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Mars Lander, 20-Watt Power Source, 3 Ampere-Hour
Battery, Real-Time Data Readout
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EX. 6 AH BATTERY ESTIMATED SELF HEAT

DISCHG AVG DISS. AT C/10 RATE = 1-2 WATTS
OVERCHG AVG DISS AT C/40 RATE = 5-6 WATTS
OVERCHG AVG DISS AT C/100 RATE = 1-2 WATTS

THE NET REQUIREMENT WOULD BE AN
ADDITIONAL 8~10 WATTS NOMINAL TO
MAINTAIN THE BATTERY TEMP. AT

40°F IN A-20°F ENVIRONMENT AND
20-30 WATTS IN A-300°F ENVIRONMENT

4 (REFERENCE FIG . 3-5 & 3-7)
|

o (NICD) @ 60°F)

z

-

<

oz
zZe o
0G \%«
=< A
xZ %
29 G
an \‘“

‘=
E<
3=z \QICD @ 40° F)
— AGCD

C C/2 C/5 C/10 C/20 C/40 C/100

DISCHARGE RATE AND CHARGE RATE

Figure 3-3. Estimated Average Internal Heat Generated Versus
Overcharge and Discharge Rate, 28 Volt Secondary
Space Battery
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discharge, for a 30-volt secondary space battery. The curves shown are
approximations and indicate the order of magnitude of heat expected from
the battery to support temperature control. The accuracy of the curves

is poor for any specific design because the rates, condition of the battery,
depth of discharge and other pertinent factors would have to: be considered.
Figure 3-3 includes an example of a 6 ampere-hour battery to permit the
reader to compare the order of magnitude of the heat available from the

battery during normal operations.

To provide balanced cell operation and to avoid local hot spots when
the battery is heated, it is desirable to maintain the cell differential
temperature from top to bottom and across the cell stack within 5. 6° C.
Temperatures within the differential must be maintained during charging
to prevent cell damage and are desirable for discharge as well to avoid

degradation of separators due to hot spots.

Once the foregoing information was accumulated, we were in a
position to proceed into the thermal analysis to establish system require-
ments for a low temperature battery. The analysis, in the next paragraph,
is based upon the conclusions, stated in the discussion of the search of
the literature, that the battery operating temperature should be limited
to 4 to 38° C, and that under no circumstances should the battery be
allowed to drop below -54° C. However, additional analyses were per-
formed in an attempt to examine the effect of an extremely low tempera-
ture environment on the battery design in the event that new technology
can be developed to support the hypothesis that batteries can indeed be
frozen and maintained at extremely cold temperatures, warmed up, and

used without serious degradation.

3.1.2 Thermal Requirements

This paragraph presents the analysis which was undertaken to deter-

mine the heat required to warm batteries from low to useful operating

temperatures and to sustain batteries within a useful operating temperature

range when the surrounding environment is extremely cold. As previously
noted, it is not expected that a battery placed in a normal operating
spacecraft would drop bel ow -40° C. Figures 3-4 and 3-5 show the
approximate heat required to warm a battery from the -29° C ambient to

+4° C in 4 hours, and to maintain the battery at a minimum of 4° Cin
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Figure 3-4. Heat Rate Required to Warm a Battery to
40°F in 4 Hours Starting at -20°F
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the ambient. The curves in the figures may be shifted in either direction
along the horizontal axis by a factor of approximately two depending upon
specific battery designs and spacecraft environmental control system
designs. However, the curves indicate that the battery sizes which are
anticipated for deep space probes and other space missions (from 50 to
1600 whr) would normally require from 5 to 30 watts of heat to maintain
the minimum operating temperature in a -29° C environment. The amount
of heat which would be required to warm a battery in a period of 4 hours
is significantly higher, even when continuously applied over the 4-hour
period. Sample calculations used to derive the curves are contained in

Appendix C.

Extending this analysis further to a more extreme environment
(-184° C was chosen based on the Work Statement goals for potential low
temperature battery operation), a theoretical computation was made to
derive the amount of heat required to warm a battery from a - 184° C
ambient to +4° C in 4 hours and to maintain the battery at a minimum of
+4° C in the ambient (Figures 3-6 and 3-7). Again the curves are in-
dicative of the order of magnitude of heat required but can vary by a

factor of two along the horizontal axis depending upon specific designs.

From this analysis it is seen that the heat required to keep the
smaller batteries (0 to 600 whr) warm in the given environment would be
on the order of 20 to 50 watts. The amount of heat required to warm a
battery from -184° C in 4 hours would be higher for small batteries and
increases rapidly with size to the poir;t where attempting to heat a
battery of more than 5 ampere-hours is not particularly feasible.
However, for the battery sizes anticipated for most space probes, it
feasible to use special mounting configurations (isolating
the battery from its environment) to maintain a battery in extremely
low temperature environments, within a useful operating range, with less

than 50 watts.

Based on these analyses, the following thermal requirements are

presented as criteria for designing a heated low temperature battery.
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Figure 3-6. Heat Rate Required to Warm a Battery to 40°F in 4 Hours
Starting at -300°F
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The battery heater should be capable of supplying 5 to 50 watts of heat

and of removing the heat from direct application to the battery in the near-
Earth space environment or in thermally cyclical environments. The
heat should, preferably,be provided by continuous heat sources or elec-
trical power dissipation sources. Only in very limited circumstances
would short-term warmup heating be desirable because once the batteries
are heated to the operating temperature they must be sustained within the
operating temperature range. From the thermal dissipation characteris-
tics of the battery, shown in Figure 3-3, it is apparent that the battery

cannot accomplish this function by itself.

The study of thermal requirements has shown that a battery being
heated in a space environment is an entirely different system from that
usually encountered in cold terrestrial operations because the means of
heat transfer is primarily by conduction through the mounting base or
mounting offsets and not by convection. Radiation, when insulation is
used, causes minimal heat loss compared to the conduction path. The
thought occurs that it would be wise to totally insulate the battery and
keep it completely isolated from its environment. In fact, such a proce-
dure could not succeed because the battery could not sustain dynamic
environments during launch and re-entry; it must be securely fastened
to the space vehicle to avoid serious damage to the battery and the vehicle.

Therefore, the heat losses cannot be eliminated but merely minimized.

In summary, the discussion of Section 2, concerning the expected
thermal environment of the battery in the space vehicle, is noted. The
conclusions presented in this report are, essentially, that in normal use,
the battery in a space vehicle will not encounter temperatures below
-40° C, and that in applications in which a battery might encounter tempera-
tures below -40° C, extremely complicated thermal control systems will
be required to maintain electronics as well as battery temperatures in a
useful operating range. The intent, then, of placing a heater in a battery
is to aid the thermal control system and to provide the means to isolate

the battery from nominally cold surrounding temperatures.
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3.1.3 Environmental Requirements

The environmental qualification requirements for space probes
specified below are derived from typical NASA specifications for space
probe missions. It is again noted that the levels specified are qualifica-
tion levels which are simulated conditions more severe than service
environments in order to provide assurance of detecting design deficien-
cies. However, the specified conditions are not expected to exceed nor-

mal design safety requirements.

3.1.3.1 Vibration

The battery would normally be vibrated in each of three mutually
perpendicular axes with one axis aligned in such a manner that the
acceleration vector is parallel with the thrust axis of the assembly. The
battery would be subjected to the vibration excitation defined below,

applied and measured at the mounting point of the battery:

a) Complex Motion Vibration

Sinusoidal Gaussian Random
Frequency Acceleration Frequency PSD Level
Axis (cps) (g, 0-peak) (cps) (g2/cps)
All 10 to 500 5.0 20 to 500 0.03
500 to 2000 10.0 500 to 2000 0. 07

- b) Spacecraft Mode Response Vibration

Frequency Acceleration
Axis (cps) (g, O-peak)
All 50 to 250 20

3.1.3.2 Linear Acceleration

While in a launch operative mode, the battery would normally be

subjected to a sustained acceleration environment shown in the table

below:
Acceleration Duration
Unit Orientation (g) (minutes)
Mounted in accordance 50.0 3.0

with Figure 3-8
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Figure 3-8, Unit Orientation, Linear Acceleration Test




The applied acceleration field would be measured at the midpoint of
the assembly. The battery, attached to the centrifuge through its normal
spacecraft mounting hardware at the separation frame between the space-
craft and the assembly, would be mounted in such a manner that the ap-
plied acceleration vector would equal the resultant acceleration vector of
the thrust acceleration and the spacecraft spin-induced acceleration. The
assembly would be mounted on an acceleration test fixture in such a manner
that the inboard edge of the assembly, as mounted in the spacecraft, would
face the inboard edge of the centrifuge test facility.

3.1.3.3 Shock

While nonoperating, the battery would be subjected to a total of
nine shocks — three shocks along each of three coordinate axes. The
shock machine would develop a terminal peak sawtooth acceleration
pulse of 6 plus 1 minus 0 microseconds duration with a peak acceleration
of 50 + 5 g. Shocks would be applied through the normal mounting pro-

visions of the battery.

The above specifications are supplemented by the following re-
quirements of an orbiting vehicle mission typified by the NASA Orbiting
Geophysical Observatory. The qualification requirements for this mission

are as follows:
a) Vibration

1) Sinusoidal Vibration

Sinusoidal vibration is applied individually along each
of three coordinate axes at a sweep rate of one-half
octave per minute through all frequencies shown in
the following tabulation:

Sinusoidal, One Sweep per Axis

50 to 400

Pk o -] A0
Lo TV
13

2) Random Vibration

Random vibration would be applied along each of
three coordinate axis individually in accordance
with the conditions tabulated below:

*Vibration displacement limited to 0.4-inch double amplitude.
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Random

b

s
20 to 2000 cps 0.1 gz/cps 12 minutes per axis

b) Acceleration

The OGO battery was subjected to an acceleration test while
operating under simulated boost phase conditions of load
and acceleration. The battery was centrifuged for three
minutes in each direction along each of three coordinate
axes as follows:

Thrust axis Y-Y 13 g
Transverse axis X-X 3g
Transverse axis Z-Z 3g

c) Shock

The OGO battery shock levels in the standby nonoperating
condition were as follows:

Thrust axis 45-g terminal peak sawtooth,
2.2 msec pulse period

Transverse axes 22-g terminal peak sawtooth,
(X-X and Z2-2) 4. 4 msec pulse period

One shock was applied along each axis through the normal
battery operating base.

It is concluded from the above specifications that the expected
environmental requirements for a battery for a space probe would be

as follows:

a) Complex Motion Vibration

Sinusoidal Gaussian Random
Frequency Acceleration Frequency PSD Level
Axis (cps) (g, 0-peak) (cps) (g2/cps)
All 5 - 250 3-5 20 - 2000 0.1
250 - 400 5-6.5
400 - 3000 10 - 13

#%Rolloff above 1000 cps at 13db per octave on an acceleration basis.
The overall level was greater than 11,3 g rms.
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Notes:

1) Vibration displacement shall be limited to 0.4 inch
double amplitude.

2) The sinusoid shall be swept at a rate of 0.5 octave per
minute,

3) The random vibration excitation shall be rolled off at
12 decibels per octave (on an acceleration basis) above
1500 cps.

4) The true g rms level for random excitation, excluding
sinusoidal energy, over the frequency range of 20 to
2000 cps shall be maintained within +10 percent.

b) Spacecraft Mode Response Vibration

Same as above

Axis Frequency (cps) Acceleration (g, 0-peak)

All 50 - 250 20

c) Linear Acceleration

The typical acceleration requirement which should be con-
sidered in designing a battery would be an acceleration
requirement of 50 g with the assembly mounted as shown in
Figure 3-8 for a duration of 3 minutes.

d) Shock

The design of a battery for space probe applications should
consider the shock requirement discussed below:

Thrust Axis 50t5¢g
2 to 6 msec pulse period

Transverse Axes 25 g
4 msec pulse period.

Going beyond these requirements, the study also investigated the
dynamic environment of soft landers and, briefly, of hard landers. The
requirements for soft landers are typified by information obtained on the

LEM vehicle and Surveyor as follows:




a) LEM Vibration

Sinusoidal Gaussian Random
Frequency Acceleration Frequency PSD Level
Axis (cps) (g, 0-peak) (cps) (g2/cps)
All + 10 - 500 5 10 - 500 0.03
500 - 2000 0. 07

It is noted that these requirements fall within the space
probe requirements established above.

b) LEM Shock

15 g peak sawtooth
11 £1 msec rise time
0 - 2 msec decay time

Total of 18 shocks
c) Surveyor
1) Transit and Lunar Approach

Vibration is within the requirements established in the
preceding sections of this discussion., Acceleration of
7 to 10 g along the mounting axis would be experienced.

2) Lunar Impact and Operation
Shock of up to 30 g is anticipated.

The specifications above for soft landers are within the require-
ments for batteries for normal space probes; other than verification of
the negative ''g" performance characteristic, no special investigations

are required.

An investigation of the requirements for a hard lander did not pro-
vide any real working data since no published data could be found. However,
discussion with spacecraft dynamic design groups led to the conclusion
that it would be reasonable to expect high level shocks on the order of 100
to 200 g for hard landers. The environments for launch and flight opera-
tions of space probes apply to hard landers as well; therefore, the only
additional requirement for the design would be to consider the high impact

shocks and methods of damping the shocks before they reach the cells.
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This concludes the dynamic environment studies conducted under

this contract.

3.1.4 Power System Requirements for Batteries

This paragraph includes a brief analysis and discussion of the re-
quirements for the use of batteries as parts of power systems in space
missions. Preceding sections of this report discuss the types of missions
expected for batteries. Under closer examination, the question arises,
why is the battery needed in power systems. Typically, the answers
were found to be as follows:

a) Batteries are usually required to supply transient loads
which are abnormally high compared to the average load

of the system and can thus be used to save power system
weight and complexity.

b) Batteries are required to supply spacecraft equipment loads
during periods when there is no power available from the
primary power source. For example, a spacecraft with a
solar array cannot supply primary power in eclipses; it
must rely on the battery.

c) If power supply degradation might occur due to micro-
meteoroid bombardment or radiation damage, batteries
are used to support failure analysis and to enable transfer
of certain experiments and loads to other operating modes
in order to sustain the mission. Batteries are also used
to support the last or critical part of the mission to obtain
the maximum experimental data which can be derived from
the mission.

d) Batteries which are used to support the end of the mission
might be remotely activated systems or other reserve
batteries. Such batteries would require activation energy
from a primary power system which would itself contain
a battery for the reasons mentioned above. Therefore, the
conclusion that the only requirement for a low temperature

A ~Af 4L~
batter‘,’ for Pr rcbes is at the ond of the mission is considered

to be erroneous. In a situation in which a tow-along vehicle
might be put into space in a nonoperative condition, it is
conceivable that a reserve battery system might be used to
supply the end of mission power, However, it is anticipated
that the checkout period once the vehicle is activated would
require from 5 to 7 days in order to verify that the system
is operating or to make necessary adjustments to the sys-
tem to obtain the desired performance, or both. Therefore,
the minimum heating period anticipated for this type of
vehicle would be 5 to 7 days plus a warmup period.
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In summary, the normally expected application of a battery in space
is that of on-line standby plus bus regulation. In this mode the battery is
not providing internal self-heat and if the environment drops below 4° c,
some type of heat‘ing would be required to keep the battery operational;
charging the battery below 4° C is extremely hazardous and the capacity
rating of the battery begins to drop severely below this point. The data

submitted in Section 2 supports this argument.

3.1.5 Activation and Startup in Space

The methods which might be used to activate a battery and start a
heater in space were analyzed. The first consideration for battery acti-
vation in space is provision of a circuit to accept ground commands to
preprogrammed functions into the spacecraft command and control system.
Once the commands are received, the activation or startup sequence must
be automatic and highly reliable, there being no means of surveillance

from the ground during these sequences.

To activate a battery in space requires different technology from
that presently used to activate batteries on the launch stand in missiles,
because of zero gravity and the fact that the system must be completely
sealed over a long life time. Therefore, new technology would have to
be developed for activation and provision made to warm the electrolyte
prior to activation, if the battery is below operating temperatures.
Cartridge heaters have been used to warm batteries on the ground and
could be applied in space provided the temperature of the system was
above approximately -54° C. To initiate the above sequence, an elec-
trical signal would be required which must be provided either by a primary

power system or by a battery.

The typical method of operating batteries in present space systems
is to activate the batteries and seal them before launch, designing the
batteries to operate over the required prelaunch and mission life. Using
this approach, the difficult problems of activation in space are avoided

and no startup specification would be required for the battery itself.

Heater activation in space can be accomplished easily, or may be

very difficult depending upon the type of heater being considered.

3-30




To activate an electrical dissipation heater, a simple thermostatic switching
element is required and existing technology is available. To use constant
heat sources in space in environments of other than steadily-decreasing
temperature or steady-state temperature, a thermal switch control

element is required to provide active control of the heat delivered to the
battery. Such a device is discussed in later sections of this report and,
after a more thorough analysis, it is apparent that the technology to

accomplish this function remains to be developed.

The final heating method considered, that of pyrotechnic
heating cartridges, presents much more complex problems. The cart-

ridges must be maintained within a useful operating temperature range

and an external electrical signal must be provided to heat an "electric

match' to the temperature required to initiate the chemical reaction.

The chemical activity of the cartridge goes to completion in a matter of
seconds; therefore, it is necessary to fire a series of devices sequentially.
Present technology has been developed to accomplish sequential firing in
ground applications, but the literature analyzed in this study could not be
extrapolated to a space system because the thermal problems and environ-

ments were entirely different.

An analysis was conducted to determine the means necessary in
space to activate and start up power and spacecraft systems. From the
analysis made, it is apparent that many of the spacecraft systems, as well
as certain transfer functions within the power system, cannot be started
unless there is a battery in the system to provide the transient loads,
which leads to the basic premise that it is necessary to keep the battery
on the line in its useful operating temperature range at all times in order
to provide for spacecrafi system stariup requirements. This
premise is used as an assumption for designing a battery for a low
temperature space application, thus narrowing the choice of methods to
that of either constant heat sources such as radioisotopes or to electrical

heaters which require additional power in the spacecraft power system.
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To conclude this brief analysis, the studies made and the literature
reviewed indicate that startup in space becomes increasingly complex
when periodic heating is used, and that the technology required to activate
batteries in low temperature space environments has not been developed.
The analysis showed that startup in a space environment below the freezing
point of batteries is not reliable for either the chemical heaters or the
battery. The analysis made it apparent that any startup functions in space
are to be avoided if at all possible, and that the use of continuous heat
sources or electrical heating to maintain batteries continuously within

a useful operating temperature range is highly desirable.

3.2 HEAT SOURCE ANALYSIS

A detailed analysis of heat sources, based on the requirements out-
lined in paragraph 3.1.1 for battery performance and in paragraph 3.1.2
for thermal requirements, is presented in this paragraph. The analysis
is limited to the heat source characteristics which are applicable to low

temperature battery systems in space.

3.2.1 Bootstrap Heating

As discussed in the literature survey section of this report, boot-
strap heating is severely limited in application. Its use is not feasible
below -29° F, and it results in a large loss of capacity (approximately
30 to 50 percent) when used even under the most ideal conditions. It is,
therefore, ruled out as a method of heating batteries in space and was

not considered further in the study.

3.2.2 Electrical Heating - Battery Energy

As discussed briefly in the Phase I section of this report, the use
of battery energy for electrical heating, other than bootstrap heating, can
be applied in three ways:

a) Overcharge dissipation controlled by overcharging
secondary batteries from the primary power system

b) Heating the battery with its internal dissipation
during discharge




c) Heating the battery through a thermostatically controlled
heater blanket using its own energy, which is more efficient
than bootstrapping if adequate thermal control is provided

Looking into the methods further, the following facts could be ac-
cumulated in deciding which types of heating methods were feasible and

which type to use.

3.2.2.1 Overcharge Self-Heating

Overcharge dissipation control is feasible for one type of battery
only, the nickel-cadmium. It is limited to thermal dissipation correspond-
ing to the C/40 rate maximum above 4° ¢ (C/10 rate above 16° C). Figure
3-3 shows a curve of heat dissipation versus overcharge rates which can
then be specified for battery size. For example, a 12 ampere-hour,

22 -cell nickel-cadmium battery, overcharged at the C/40 rate at 4° c,
will dissipate approximately 10 watts, which is available internally to
maintain battery temperature. It should be noted, however, that the
operation of the battery in the charge mode before entering overcharge
is endothermic and the battery is quite capable of absorbing heat from
its environment and thus can cool rapidly to lower temperatures where
charging difficulty will be encountered. This happens when it can least
be afforded because in typical power systems, excess energy is not
available to heat the battery during charge; the batte‘ry cannot heat itself

and still absorb and convert electrical energy to stored energy.

To conclude, heating a battery with its overcharge characteristic
is feasible for limited applications. It is not feasible for any system
other than the nickel-cadmiumn battery because no other system satis-
factory for space can be overcharged at significant charge rates. A
nickel-cadmium battery may be maintained at 4° C in environments as
low as -29 to -40° C if the battery size is larger than approximately
400 whr (comparison of C/40 dissipation rates for nickel-cadmium
batteries with Figure 3-5 heat requirements). This method is not

feasible for lower temperatures.
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3.2.2.2 Discharge Self-Heating

Heating a battery with its internal dissipation during discharge
is feasible in certain modes of operation. As already discussed under
bootstrap heating, battery warmup using battery discharge self-heat
is not feasible. However, maintaining battery temperature during
discharge is feasible provided the battery is already in the useful
operation temperature range and the discharge rate is approximately
10 to 20 times higher than the heat rate required to keep the battery
within its useful operating temperature range. This statement is based
on the theoretical calculations presented in the Phase I study (i.e.,
internal dissipation rate is approximately 10 percent of battery discharge
rate) and on calorimetry test results on the nickel-cadmium and silver-
cadmium battery reported in the literature. As a general rule, it is
concluded that heating the battery during discharge is feasible but not
practical for space applications in a low temperature environment
because it cannot be used to warm the battery and it requires very large
battery capacities to sustain the discharge rates necessary to maintain
battery temperature over extended periods of time. In other words, the
losses from the large battery increase, increasing the rate of heat
dissipation required within the battery, thus increasing the capacity

required of the battery and load required to keep the battery warm.

3.2.2.3 Electrical Heaters

The practice of using the battery energy to heat the battery with a
heater blanket is much more efficient than attempting to heat by boot-
strapping or internal losses because all of the energy removed from the
battery in the form of electrical energy and the heat dissipation within
the battery during discharge can be accumulated as heat for the battery,
ignoring losses to the environment. It is, therefore, considered feasible
for short periods of time to maintain battery temperature using this
method, and also to warm up a battery in a low temperature environment
provided that the battery temperature is not lower than -29° C nominal
and -40° C in the worst case. The method can be accomplished by
insulating the battery and using thermostatic controls to regulate battery

temperature.
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The limitations of this method were analyzed as follows:

Battery Warmup -- Nickel-Cadmium Battery
Heat Rate
Battery Required Internal Net Heat Capacity
Size (Fig 3-4) Dissipation Required Required
(whr) (watts) (watts) (whr) (% of Rating)
200 15 1 56 28
600 42 4 152 25.3
1,600 108 10 392 24.5

Conclusion: The capacity increment required for warming a nickel -
cadmium battery in space is 25 to 30 percent of its rating. Warmup from

o .. . . .
temperatures of less than -29 to -40" C is not feasible with this method.

Sustained Heating -- Nickel-Cadmium Battery

Heat Rate Required Net Heat Required % Capacity
Battery (Watts) (Watts) Required Per Hour
Size -29°Cc  -184°C  -29°Cc .184°c  -29°Cc -184°C
(whr) (Fig 3-5) (Fig 3-7)
200 8 21 7 19 3.5 10
600 14 70 13 63 2.2 11
1,600 28 -- 25 . -- 1.6 --

Conclusion: The use of battery energy to keep a battery at 40° F in
an environment of -29° C is feasible for periods of 10 to 30 hours (assum-=

ing a 50 percent depth of discharge load requirement) =~ 4 to 5 hours

in a -184:o C environment,

3.2.3 Electrical Heating - Power System Energy

Electrically heating low temperature batteries using power system
energy is an ideal solution if it is possible. The main restriction on this
method is availability of the power; one of the typical limiting features in
spacecraft design is the power-versus-weight-versus-cost tradeoff.

For example, Figures 3-9 and 3-10 show sample weight tradeoffs using
power system heating versus radioisotope heating, to maintain battery
temperature. Figure 3-11 shows a cost tradeoff using solar array power
versus rtg power versus radioisotopic heating to provide from 0 to 100
watts of power to heat a battery. It has been our experience, and we
believe the experience of NASA and the Air Force, that surplus power

to heat a battery in a low power spacecraft is not practical because of
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WEIGHT ADVANTAGE (LBS)
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Figure 3-9. Weight Advantage of a Direct Radioisotope
Heater Over Electric Heating Versus
Required Spacecraft Electric Equipment Power
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weight and cost limitations, and power system degradation redundancy
requirements. Going further into the method, heating the battery is
easily accomplished by insulating the battery and providing a dissipative
insulated heater package in the battery package with thermostatic controls
regulating the delivery of electrical energy to the dissipation unit. This
method of heating can be improved by adding an active thermal controller
between the battery and its mounting interface (environment) to reduce
the power required. The benefits from the method are covered more

thoroughly in the Thermal Control section of this report.

It is concluded that heating batteries electrically with power system
energy is indeed the optimum way provided the electrical energy is avail-
able from the power system when it is needed, and the weight and cost
penalties can be tolerated. It must be remarked at this time that power
system energy is usually not available in Earth orbital satellites during
eclipse, nor is it available in a vehicle which does not have its power
system activated in storage or in transit with the mother ship. There-
fore, caution should be used in assuming that this method is ""always

available to heat the battery."

3.2.4 Radioisotope Heating

As discussed in Section 2 of this report, the feasibility of radio-
isotope heating in space vehicles has been demonstrated. It appears
that two radioisotope sources are available and applicable to heat
batteries in low temperature space environments; this paragraph of the
report investigates the two heat sources further, including an analysis
of radiation, heat production, physical characteristics, radiation
interfaces with space applications, biological interfaces, electronics
interfaces, instrumentation interfaces, and source encapsulation. A
discussion of a radioisotope battery heater conceptual design is included
to evaluate the best method of using the isotopes. A discussion of the
feasibility of handling and of safety criteria involved in such use of

isotopes is included.
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3.2.4.1 Evaluation of Pm-147 and Pu-238 Heat Sources

Tabular isotopic power data present the outstanding characteristics
of various isotopes such as principle decay mode, power density of pure
materials, and decay rays and particles associated with the atom in ques-
tion. Before a particular radioisotope can be used, its characteristics
as a heat source, such as chemical purity, nuclear purity, source power
and capsule power densities, must be studied because such characteris-

tics may present specifications wholly different from those cited for the

atomic nuclei in question.

3.2.4.1.1 Radiation Aspects of Pm-147. Microcurie specimens of

Pm-147 display the true characteristic decay processes of this radio-
isotope. A relatively low maximum-energy (0. 22 mev) beta particle is
ejected from the nucleus and the atom transmutes mainly to the ground
state of stable Sm-147. Beta particles are emitted in a continuous
spectrum from zero to maximum energy (0.22 mev). In extremely thin
samples of Pm-147, the beta range exceeds the sample thickness so that
virtually no secondary radiation is observed and no measurable heat is

generated within the sample.

Several changes occur in energy and flux when a multicurie quantity
of the radioisotope is prepared in a denser form. The formation of heat
within the source displays a conversion of energy which is the result of

a series of interim nuclear processes. A second change is the inadvertent
introduction of contaminating radioisotopes with individual decay modes

into the source.

Heat Production in Pm-147 Oxide. Less than half of the Pm-147

beta decay energy is available for heating. Part of the beta energy is
converted to heat while the complementary fraction is emitted simultane-
ously as a neutrino. As the beta passes through matter, it gives up
energy by elastic collision creating secondary ionization, until the beta

particle is captured by a positive ion.

Isotope heat results from the recombination of ions formed by the
passage of the beta through matter. Heat, in the form of phonon emission,

also occurs when a beta particle passes close to an atom or molecule,




giving up part of its energy to increase the amplitude of vibration of the
lattice structure. As the excited state decays by phonon emission, the
lattice returns to its natural frequency. Another source of heat arises
from the inelastic collision of a beta particle with a planetary electron.
Instead of creating an ion-pair, the beta replaces an orbital electron,
causing it to absorb energy and go to a higher orbit. The displaced elec-
tron subsequently falls to a lower energy state, giving rise to a photon.

This, in turn, creates ion-pairs which also recombine to yield heat.

Shielding for Pm-147. The process of Pm-147 beta decay is shown

in Figure 3-12. The short maximum range (0. 07 mm) of the beta in the

source suggests an absence of shielding requirements for this radio-

isotope. However, a process associated with beta attenuation that is
thermally nonproductive complicates the picture. When an electron is
accelerated in the electric field of the nucleus of an atom, it gives rise to
a ray. Possessing a continuous spectrum from zero to the maximum
energy of the beta, the ray (bremsstrahlung) has considerably greater
range than the beta and no finite attenuation thickness in the absorber.
Therefore, although no shielding is required for the 0. 22 mev beta
particle, shielding will be required to reduce the bremsstrahlung

radiation.

The energy and flux of bremsstrahlung associated with a 1-watt

heat source of Pm-147 oxide were measured and plotted and are shown in

Pm- 147 (a)

0 ‘T]/2=2.6 yrs

Beta =.0.223 mev (maximum energy)

~100 2/,

Sm- 147

Figure 3-12. Pm-147 Decay Scheme
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Figure 3-13. The spectral distribution ranges from 40 to 220 kev, a
maximum value for the Pm-147 beta particle. An energy peak at 120 kev,
is in agreement with similar bremsstrahlung energy values reported in
the literature (Reference 2), but erroneously reported (Reference 3) to be
a gamma ray from an excited state of the daughter, Samarium-147. (The
absence of a correspondingly lower beta energy of approximately 100 kev

fails to substantiate the assumption.)
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Figure 3-13. Differential Number-Energy Spectrum of a 1-Watt
Encapsulated Pm - 147 Source at a Distance of 1 m (Ref. 1)

The numerical integration of bremsstrahlung spectra shows
(Reference 1) that the flux of photons with energies between 0 and 220 kev
is 6.2 x 104 photons/cmz—sec at a distance of 1 meter from a l-watt
encapsulated source. A shield of 2 centimeters of lead would reduce this

9

flux by a factor of 7 x 10”. Therefore, a 20-watt (thermal) source (with
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2 centimeters of shielding) would have a photon flux of 0. 02 photons/cmz-
sec at 1 meter. Because the heat plate anticipated for a battery heater
would provide partial shielding and because double encapsulation capable
of withstanding terminal velocity impact would provide additional shielding,
the shadow shielding provided by the battery combines to exceed the 2
centimeters of lead shielding described above. Therefore, if a Pm-147
heat source could be obtained in an isotopically and elementally pure state,

shielding would present no problem.

3.2.4.1.2 Radiation From Pm-146 and Pm-148 Contaminants

Promethium is unique among fission products in that there are no
stable isotopes of the element. Although the Pm-147 fission yield from
U-235 is low (2. 16 percent) (Reference 2) as compared to other isotopes
such as Sr-90 (5. 77 percent), Cs-137 (6. 17 percent), or Ce-144
(5. 30 percent), the fission production of stable isotopes to these materials
dilutes their power density. All promethium is radioactive; unfortunately,
several other radioisotopes of promethium are formed simultaneously
with Pm-147. See Figure 3-14.

Ng 46 1.94yr (65°/0) pl46 1.9 yr (35°/,) ’SmMé
K  capture ﬁ
5.9 mb ( fission spectrum
2 1,000b neutrons only)
Nd 11.1 days . Pm]47 2.67 yr Sm
243b
5.4 days
Pm]48 Y > 5, 148
220b
v 48 42 days 148
pm 148 —» Sm
27,000b
' 149
Pml49 53 hr >Sm

Figure 3-14. Promethium Generation and Decay
Mechanisms (Reference 2)
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Pm-147 is obtained from the radioactive decay of Nd-147 as well as
by direct fission. Once formed, Pm-147 becomes subject to neutron

absorption in the reactor and transposes to other isotopes of promethium.

One such reaction, the absorption of a neutron followed by the ejection of
two neutrons from the nucleus, yields Pm-146 whose half-life approxi-
mates that of Pm-147. A second reaction involves the Pm-147 absorption
of a thermal neutron followed by the emission of a gamma ray to form
either Pm-148 or Pm-148m. The short half-life of Pm-148 facilitates its
removal by decay. The buildup of the isotope in the pile is restricted by
its subsequent (neutron, gamma) transposition to Pm-149 which has a

short half-life and decays to stable Sm-149.

The presence of Pm-146 or Pm-148 in quantity would increase the

the shielding required for Pm-147 and decrease its usefulness. All

three isotopes are chemically identical and cannot be separated by

chemical means. Electromagnetic separation is feasible but impractical.

a) Pm-146 Contamination Effect and Removal

The half-life of Pm-146 (1.9 years) closely resembles
Pm-147 (2. 67 years) so that the former cannot be
removed by the process of '"aging'. The Pm-146 effect
may be seen in Table 3-5 (Reference 4). The
radiation from 8. 37 x 10~4 percent of Pm-146

through 2 centimeters of lead would raise the
background to 1.2 rad/hour at 1 meter, as com-
pared to the less~than 1 millirad/hour from a

pure Pm-147 source. The increased radiation

is incompatible with nuclear detection equipment
aboard a spacecraft and presents a biological hazard
to personnel,

Means may exist for reducing the quantity of Pm-146
by "burning it out'" in the reactor. This might be
accomplished by subjecting the source to in-pile
thermal neutrons. Referring to Figure 3-14, Pm-146
can absorb a neutron and convert to Pm-147. The
cross-section for the reaction, though not known, is
believed (Reference 5) to be in excess of 1,000 barns
for thermal neutrons, as compared to a 0.0059 barn
fission-spectrum neutron cross-section for the

(n, 2n) conversion of Pm-147 to Pm-146.

The lesser value for Pm-146 shown in Table 3-5 was
measured for the Yankee Reactor, whereas the larger
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value was calculated. Future power reactor Pm-147
sources may contain 4 x 10-4 percent of Pm-146
(Reference 5).

An increase in photon energy attributable to Pm-146
is shown in Figure 3-15. The data plotted were
limited to the 100 to 800 kev energy region (Reference
1) and show only Pm-146 gamma ray peaks. As
expected from the decay scheme (Reference 6) shown
in Figure 3-16, the peaks are for the 453 and 745
kev photopeaks from the internal transition decay
mode (65 percent) to Nd-146 and the 749 kev gamma
(35 percent) from the excited state of Sm-146.
Alth~gh the abundance of Pm-146 gamma rays is
markedly less than from Pm-147 bremsstrahlung,

2 centimeters of lead shielding (which would reduce
the bremsstrahlung by a factor of 7 x 109) would
reduce the higher energy Pm-146 gammas by a
factor of only 10 to 20. This leaves a flux of

3x 103 photons/cmz-sec at 1 meter for a 20-watt
source,

9

PHOTONS/ cm2 - sec - kev
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| Pm~ 147
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Figure 3-15. Differential Number-Energy Spectrum of the
Observed Contaminants in a 1-Watt Pm-147
Source at a Distance of 1 m (Ref. 1)
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b)

‘Pm-148 Contamination Effect and Removal

Referring to Figure 3-14, Pm-147 may convert to either
Pm-148 (T 2 = 5.4 days) or Pm-148 m (T1 2 = 42 days).
The thermal neutron capture cross-section 1/or either
reaction is about the same -220 to 243 barns, respectively.
Pm-148 is not formed by any other in-pile reaction or by
the decay of a radioactive parent.

To assess the radiation due to the presence of this isotope
in a Pm-147 heat source, one must examine both the beta
and gamma energies (Table 3-5). The former vary from
0.47 mev (40 percent) to 2. 5 mev (6 percent) with a total
of 15 percent of over 1 mev. From such highly energetic
betas, one can expect correspondingly high bremsstrahlung
radiation. In addition, gamma rays from the excited
states of daughter Sm-148 vary from 0.55 mev (92 percent)
to 1.46 mev (2 percent). Since bremsstrahlung of higher
energy are anticipated, the primary gamma rays pose a
lesser shielding problem.

The presence of small quantities of Pm-148 in a Pm-147
heat source could be catastrophic to shield. It has been
estimated (Reference 2) that a Pm-147 source aged less
than 2 years would require shielding comparable to Sr-90
or Cs-137 sources of equivalent thermal output.

The effect from 0.01 percent of Pm-148 in a 20-watt Pm-147
heat source is shown in Table 3-5. The dose rate at 100 cm
is 550 millirads through 2 centimeters of lead. This
radiation level would be incompatible with nuclear detection
equipment and biologically hazardous to ground-handling
personnel.

A Pm-147 heat source must be essentially free of Pm-148
for battery heating. One means of removal is by decay.
The half-life of Pm-148 is 5.4 days, and of Pm-148 m is
42 days; if the Pm-147 source is aged for 3 years, essen-
tially all of the 5.4-day material will have decayed away
and the longer-lived 148 m isomer will be reduced to 1.7

x 107° percent. Once formed (Figure 3-14), Pm-148 m
undergoes a reaction (n, gamma) converting to Pm-149

(53 hours). The thermal neutron cross-section for this
reaction (27,000 barns) is large when compared to the
Pm-148 m cross-section which serves to limit the amount
of Pm-148 m present in the reactor at any time; therefore,
it is reasonable to assume that the Pm-148 m will not con-
stitute a shielding problem although isolated high-energy
bremsstrahlung rays may occur. Fortunately, the flux
will be extremely low.




3.2.4.1.3 Radiocontaminants in Pm-147. It was stated earlier that Pm-

147 (being a fission product) must be separated from all other isotopes
formed. It is impossible to prepare pure promethium, but it is possible
to prepare Pm-147 free of measurable quantities of contaminating radio-
elements. Many elements separate readily while others (radioeuropium,
in particular) present greater difficulty; however, multiple separations
can remove all detectable europium at the cost of some Pm-147. The
necessity for its removal is dramatically shown in Table 3-5. A 20-watt

heat source of Pm-147 with low fractional percentages of Eu-152 and Eu-154

would constitute a near lethal dose if unshielded. Even with 2 centimeters

of lead shielding, the dose rate would be 20 rad/hour which is unacceptable.

Both europium isotopes possess long half-lives; neither can be
removed by source aging. Both emit betas with greater than 1 mev
energy and energetic bremsstrahlung radiation can be expected; therefore

shielding would be impractical and removal necessary.

3.2.4.1.4 Conclusions and Recommendations for Pm-147. Sufficient
work has already been performed at the Hanford and Oak Ridge National

Laboratories to establish state-of-the-art production for Pm-147. The

material produced to date has been prepared for applications other than
space heating. The ability in the future, to produce,thermal kilowatts
exists; interim production should satisfy immediate requirements for

limited numbers of 10 to 30 watt (thermal) sources.

The effect of radiocontaminants on shielding of Pm-147 is known
and has been measured. Techniques have been developed to selectively
remove the undesirable radioisotopes from Pm-147 by aging, burnout or

chemical separation.

The compound promethium oxide would provide an excellent fuel
form for space use, provided complete containment is required. Other
compounds, capable of burnup and dispersion are being inve stigated by

the AEC (Reference 7).

The level and flux of radiation anticipated from 10 to 30 watt heat

sources of Pm-147 (without including added shielding from heat block or




batteries) appear acceptable, provided certain specifications of purity

are met. These are:

Radioeuropium nil
contamination
Pm-146 less than

4 x 10-4 percent
Pm-148 nil

3.2.4.1.5 Physical Aspects of Pu-238 Fuel. The preponderance of

information relating to Pu-238 fuel is classified and has been discussed

in a classified addendum to this report. However, the physical char-
acteristics of the fuel may be presented because they influence re-entry

and hence aerospace safety.

The nuclear, physical and chemical characteristics of plutonium
and promethium define the materials of construction, as well as size,
weight, and geometry. Therefore, a comprehensive analysis of each

fuel is prerequisite to the preparation of conceptual designs.

Plutonium Dioxide Properties. Intended space use of plutonium

fuel requires the knowledge of many physical and chemical properties if
one is to satisfactorily maintain the isotope within a capsule, despite all
credible accidents or conditions. The following data are excerpts from

a recent Mound Laboratory data sheet:

e Physical Properties of Pu-0O,

Melting Point: No available data for Pu-238-0,
2280 +50° C Pu-239-0, (Ref 8)

2300° C Pu-239-0, (Mound
Laboratory)

Boiling Point: 4413° C Pu-238-0, (Vapor Pressure
Data)

Vapor Pressure: Log p(atm) =(-29,240 +530)/T
+(8.072 #0.239)




Density: Theoretical = 11.46 gm/cc

Sintered particles (1 hour)

800° C
900
1000
1100
1200
1300
1400
1500
2000

gm/cc

OO 003~ OO0t

.

™0 OoODNUTO Bk

ot

Note: Best plasma torch spheres obtained to date:

Pu-238-0, = 11.0 gm/cc
Pu-239-02 = 9.7 gm/cc
. Thermal Properties of Pu-0,
Heat of Vaporization: Pu-239-0;;
/_\‘Hdgs = 147.1 4.3
kcal/mole (1 atm He) (Ref 8)
Pu-239-0,;
AHpg9g = 1%53. 8 kcal/mole
(1 atm O5) (Ref 9)
Thermal Expansion Coefficient:
Pu-239-0, (Ref 10)
Temperature (O C) AL/L x 106
25 110
100 695
200 1380
300 2345
400 3355

Heat Capacity: Cp at 325°K = 17.4 cal/°K per mole

° Mechanical Properties

Hardness: Pu-239-0, = 1163 kilograms/mmz‘

(Mound Laboratory) (Ref 11)

Pu-239-0O, = 105 kilograms/mm?

Note: No variation from center to edge of sample
observed by Mound.

Crush Strength: Pu-238-0, (74-149u dia) => 1 kilogram
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Solubility
I x 10-9 gm/ml after 53 days in Maine sea water

(Mound Laboratory) (Ref 11)

2.76 x 10-8 gm/ml in sea water

Particle Properties

The values relate to the Mound method of fabrication.
Microspheres of plutonium dioxide are pressed and
sintered to form pellet sources. Therefore, theoretical
density cannot be reached (see above).

Packing Fraction: 37-250u dia Pu-239-O, spheres
= 75% packing fraction

Particle Size: 35-250p dia spheres have been
produced.

Radiation Characteristics of Pu-238-02

Specific Activity: 17.4 curies/gm Pu-238

Neutrons: approx. 4 x 104 c)nllsec/gm

Plutonium-238 Decay Scheme. Plutonium-238 has two distinct

decay modes. The principal decay is by alpha-particle emission, which

provides the energy for heat. The second decay is by spontaneous fis-

sion wherein the atom disintegrates into two radioisotope fragments,

accompanied by neutrons and the release of energy.

238 Alpha Decay of Plutonium

Half-Life: 86.4 years
Daughter: Uranium-234 (half-life: 2.5 x 105 yr)

Energy Distribution (Alpha):

Energy (mev) % Abundance
5.491 69
5.450 31
5. 352 0.13
5.208 0. 005
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Energy Distribution (Gammal:

Energy (mev) % Abundance
0. 0438 0.038

0. 099 8 x 10-3
0. 150 1x10-3
0.203 4 x 10-6
0. 760 5x 10-5
0.810 (0. 875) 2 x 10-3

° Spontaneous Fission of Plutonium-238

Half-Life: a. 3.8 x_10lo years
b. 4.9 x 1010 years

Products: Two fission products per fission are formed with
an isotopic abundance distribution similar to that reported
for U-235. In addition, 2 to 3 fast neutrons are emitted per

fission, plus energy in the form of heat and gamma radiation.

3.2.4.2 Radiation Interfacing With Space Applications

It has been shown that, although Pm-147 and Pu-238 represent
isotopic fuels with perhaps the least radiation problems, radiation must
be seriously considered as an undesirable by-product of all isotope appli-
cations. Interface problems from radioisotopes for use in space fall into

three categories:
a) Biological-level radiation
b) Electronics-level radiation
c) Instrument-level radiation

If high purity standards are maintained during the separation of
either fuel, the problems attendant upon shielding may be minimized.
However, it is not possible to produce either radioisotope with the com-
plete absence of contaminating adulterants, and it becomes necessary to
determine the level that must be endured or shielded against for hypo-

thetical missions requiring heated batteries.
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3.2.4.2.1 Biological-Level Radiation Interfaces. For heat of less than

100-watts, there will be no problem for ground-handling personnel from
either Pm-147 or Pu-238 sources, provided proper purity levels are
adhered to. Beta-gamma shielding is intrinsic to the construction of
nuclear heat blocks. First, the fuel pellets themselves serve as shields
for beta and (to a lesser degree) gamma rays; fast neutrons will not be
thermalized by the fuel. Next, the double encapsulation required for
containment of isotopes serves as final attenuator for the beta particles
and as additional absorber for gamma rays. In space applications, where
terminal velocity impact containment is required, and where complete
containment through re-entry may be required, capsule wall thickness
and alloy optimize shielding of the fuel within. Finally, a heat block,
required for the uniform distribution of heat to the battery, can be made
to provide excellent neutron thermalization and absorption and at least
some gamma attenuation. Because it is anticipated that the encapsulated
fuel cylinders would be sealed within the heat block at the fabricator's
facility, the block would become the basic unit at the launch site. With
either Pm-147 or Pu-238 fuel inside, the heat block may be handled by
qualified personnel with no injurious effect. Once mounted aboard the
spacecraft, because of further shielding by spacecraft components, the
block would present an even lower radiation level to personnel working

in the vicinity.

3.2.4.2.2 Electronic-Level Radiation Interfaces. Considerable investi-

gation was performed on the ANP (aircraft nuclear propulsion) program

to relate radiation damage to electronic components as a function of type
and quantity of dosage. To forecast the integrated dosages which elec-
tronic equipment aboard a spacecraft would receive is not possible until

a clearer definition of mission, equipment, configuration, and related
unknowns is provided; however, with the levels of beta-gamma or neutron-
gamma radiation that may be expected from 20-watt heaters of either

Pm-147 or Pu-238, it is unlikely that a serious problem would develop.

Shielding electronic equipment from radiation may be enhanced by
considering the battery itself as a shield. Additional attenuation may be
provided by positioning components of known insensitivity to radiation

between the heater and more sensitive devices. Similarly, the battery
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will not be likely to suffer damage from radiation, although this assump-
tion can and should be verified by experimental procedure. Semiconduc-
tors are the electronic components most prone to radiation damage, but
would be subject to space radiation as well as solar radiation which, in
certain cases, could be more detrimental than that which is anticipated
from the isotope battery heater. The radiation which reaches equipment
by the indirect beaming from scatter radiation is dependent upon the con-
figuration and materials of construction of the spacecraft and cannot be
estimated. Clearly, the effects of radiation on electronic equipment
should be determined by test procedure as a logical outgrowth of this
program.

a

3.2.4.2.3 Instrument-Level Radiation From a 1-Watt Pm-147 Source.

If the spacecraft which will employ heated batteries does not carry sensi-
tive nuclear detection devices aboard, the consideration of instrument-
level radiation will not apply. However, it is probable that in the follow-

101

ing mission cction and measurement of radiat and particies will
be among the prime requirements: (a) enroute to a distant planet and

(b) in the immediate vicinity of the objective.

Advantage may be taken of an investigation performed at the Jet
Propulsion Laboratory, Pasadena, California. An encapsulated Pm-147
source was studied to determine compatibility between the source and
various sensitive nuclear detection instruments for Mariner II-type mis-
sions. The fuel form employed was promethium oxide (unsuitable for
re-entry burnup), the inner double encapsulation (Reference 12) was
applicable only (see Figure 3-16) for terrestrial application, and the
outer flanged capsule arbitrarily (References 7, 8, and 13) assigned a
wall thickness. The source was '"well aged' and the photon energy levels
were those to be expected from the Pm-146 contamination. The investi-
gation being preliminary, no spacecraft component shielding was con-
sidered. The conclusions drawn were as follows:

a) Mariner II-type detectors could be operated at a distance
of one meter from a l-watt source with 0.64 cm of lead
shielding the source. Such detectors would operate with

0.32 cm of lead shielding, but the source effect would
have to be subtracted from the data obtained.



b) Additional shielding would be required for scintillators. Two
centimeters of lead would reduce bremsstrahlung by 7 x 109,
so that the flux at 1 meter would be less than 10~3 photons/
cmsec. However, the 450 and 750 kev gammas would be
reduced by only 10 to 20, leaving a residual flux of 100

photons/cm”sec, a value too high to allow measure-
ments of natural gamma rays (Reference 1).

The responses of Mariner II-type radiation detectors to the Pm-147
source are summarized in Table 3-6. The source used for the tests
was not designed for space application and was not provided with suf-
ficient thickness or type of capsule material to satisfy aerospace safety
requirements; therefore, the values in air are of only academic interest,
and those through lead more closely related to actual space requirements
although greater thickness may actually be required. However, it is
interesting to note that in every instance the count-rate for the Pm-147

source was from 1/4 to 1/20 the average count-rate sensitivity of the
detector.

Table 3-6. Response of Mariner II-Type Radiation Detectors to a
1-Watt Pm-147 Source

Avg.
Count-Rate
Count-Rate Mariner II-
At 1 m Type
Detector Absorber (counts/sec) (counts/sec)
Anton 213 Air 8.9
Anton 213 Air Plus 0.15 0.6
0.125 in Lead
RCL-10311 Air 216
RCL-10311 Air Plus 5.7 20
0.125 in L.ead
Ion Chamber Air 0. 0238
Ion Chamber Air Plus 0. 000125 0.002

0.125 in Lead

While the source is 1/20 that anticipated for use in space by the
study (20 watts), no attenuation by a heat block, battery or intervening
equipment is considered, although these components would be present

in the proposed application.
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3.2.4. 2.4 Estimated Radiation-Levels from a 20-Watt Pu-238 Source. It

is important to have an estimate of the anticipated '"conservative!
radiation levels for a 20-watt heat source of either Pm-147 or Pu-238;
however, any values obtained from extrapolation of other projects or
interpreted from classical data should be recognized as such. It is neces-
sary that an experimental investigation be conducted to determine actual
numbers that take into consideration additional attenuation from compo-
nents, scatter from the spacecraft, etc. It is also necessary to obtain
radioactive material from recent purification methods so that it may
illustrate the degree of contamination-induced radiation for near future

requirements.

Table 3-7 shows estimated radiation levels as a function of distance
for a 20-watt Pu-238 heat source. The values were extrapolated from
SNAP 9A data (Reference 14) and relate only to Pu-238. If contained re-
entry is required, a high melting compound of plutonium must be used

that may effect the neutron contribution by alpha-neutron tunneling.

Table 3-7. Estimated Radiation Levels from a 20-Watt Pu-238 Heater*
(neglecting shielding from battery and components)

Gamma Radiation | Neutron Radiation
Position (mr/hr) (mrem/hr)
Surface 3.45 10. 0
50 cm from center 0.08 0.4
100 cm from center 0.02 0.1

*Extrapolated from SNAP-9A data supplied by the Martin
Company, Baltimore, Maryland.

Additional radiation data may be obtained from Appendix D of this

report.

3.2.4.3 Source Encapsulation

Safety requires that large sources be encapsulated to prevent the
spread of particulate contamination, regardless of intended environment,
All such sources must be protected against rupture due to all foreseeable

incidents which might occur on land or in the ocean. If the application is
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for space, these criteria must be met in addition to any restrictions that

would comply with aerospace safety.

If the source is designed to burnup on re-entry, the device enclosing
it must be made to disperse and permit the capsule to be exposed to heat
above 200, 000 feet. Above this altitude, homogeneous dispersion of
micron-sized fuel particles will not pose a hazard to life. However, if
the capsule cannot be exposed to burning above 200, 000 feet, it must be
constructed so that it will remain intact upon impact with the Earth. If
complete containment is required, an ablative shield must be provided
external to the capsule (may be external to the device employing it) such
that protection against burnup is provided. Here again, the capsule must

be able to impact the Earth intact.

In order to provide protection to the fuel within, the capsule dimen-
sions, wall thicknesses, and materials must be carefully determined.
Because high temperature materials are not always inert to the fuel
material (at elevated temperatures), a double encapsulation array would
be used. Chemically inert inner material must be selected, while the
outer shell must possess high temperature structural strength. Because
capsule design data cannot be estimated but must be determined by an
exacting procedure, shielding cannot be estimated based upon capsule

wall thickness.

Encapsulation of source material presents an excellent opportunity
to reduce the radiation level without adding shield weight to the system.
Encapsulation confines beta and alpha surface emission to the capsule
and thereby decreases the volume in which the conversion of energy to

heat occurs.

Fuel capsule configurations have been received from the Mound and
Oak Ridge National Laboratories (Reference 7 and 15). The designs re-
flect present capability of pellet fabrication and encapsulation. Terminal
velocity impact protection has not necessarily been included because
mission requirements were not considered; however, the capsule designs
do include materials and wall thicknesses capable of safely containing the

sources in a terrestrial environment.

The plutonium heat source designs are included in Appendix D.
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3.2.4.3.1 Pm-147 Fuel Encapsulation. The design in Figure 3-17 shows a

doubly encapsulated promethium oxide source, predicated upon an outside
diameter of 5/8 inch and overall length of 1 inch, a size which permits

the fueling of 4 thermal watts at the indicated compound power density.

A capsule of this size would be desirable for applications requiring up to
50 thermal watts in a heat block configuration. The outer envelope may be
provided with additional wall thickness to withstand impact; or a group of
capsules may be inserted into a tube of proper thickness and this, in turn,

introduced into the heat block.

The assembly drawing indicates a concentration of spacers at one
end of the capsule to protect the fuel while heliarc-welding the lid
to the cup. Similarly, thick lids are required to ensure complete
containment. Advantage may be taken of capsule-end thicknesses to
reduce lateral gamma-ray intensity at both ends of the block. Dimension-
ing of the inner cavity was predicated upon the use of the oxide. If other
compounds of promethium are used, the power level from a source of this
size may be less or greater, depending upon the promethium content

per cc of pellet.

The indicated use of 316 low carbon stainless steel would permit

re-entry burnup of the cladding and exposure of the fuel. It has excellent

structural strength and may be welded with a rod of the same material
and resists corrosion in the event the capsule were to fall into water.
However, its compatibility to new compounds of promethium would require
verification before final selection could be made. Various alloys of the
Hastelloy series have been used successfully for terrestrial isotope

containment.

A second promethium oxide capsule design, shown in Figure 3-18,
a 1-watt source originally designed for JPL (References 12 and 16),
would be appropriate for low-level thermal requirements. Similar small
sources could be distributed uniformly throughout a heat block if less

than 10 watts were needed.
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The double encapsulation shape is approximately the same as above,
as are the wall thicknesses of each container. A second spacer, added
before sealing the outer can, may be eliminated and the capsule fore-
shortened appropriately. As in the design of Figure 3-17, dimensions
do not provide against terminal velocity impact. Cavity dimensions and
power level are based upon use of promethium oxide, rather than a more
readily burnable form of the fuel. As before, wall thickness may be
increased either in the outer encapsulant or by introduction of a third
tube capable of accommodating a series of 1-watt sources. One or more

such tubes may be sealed into the heat block.

3.2.4.3.2 Pu-238 Fuel Encapsulation. Being an alpha-particle emitter,

encapsulated Pu-238 tends to accumulate helium gas as a function of time,
by the mechanism of velocity loss of the alpha through interaction with
matter. As the velocity approaches zero, the alpha, with a positive
charge of 2, becomes a helium atom by attracting two planetary electrons.
Unlike gas evolution from valence change (upon decay), helium buildup
cannot be eliminated or even reduced by compound selection. Containment
becomes a function of capsule strength; however, selection of the com-
pound can have direct bearing upon compliance with the present philosophy
of intact and contained re-entry. In this case, a compound having a high
melting point is requisite because melting and volatilization add to pres-
sure buildup within the capsule. Many compounds which are chemically
inert when solid display corrosiveness when molten, attacking the capsule
liner and penetrating it. Molten metal fuels can also penetrate metal

liners by dissolving them and forming eutectic alloys.

Pu-238 metal is already a space electric power fuel and has been
thoroughly investigated. The metal as well as several compound forms
are available and others are being evaluated, including the oxide, carbide,
and nitride. In each a high melting compound is sought, together with a
possible increase in specific power without an increase in neutron evolu-

tion through the '"tunneling effect."
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Because of the relatively small quantity of Pu-238 which would be
required to provide from 5 to 50 thermal watts, the oxide might be accept-
able and provide material commensurate with present production methods

and prices.

A discussion of Pu-238 encapsulation may be found in the classified
appendix of this report. However, the presence of helium gas buildup
poses some interesting problems in capsule design. It is not entirely known
whether the gas evolved remains interstitially entrained in the fuel matrix,
or whether it accumulates within the capsule proper. Probably a combina-
tion of the two phenomena occurs, due to a time lag in diffusion through the
fuel. Whatever the mechanism, the intcrnal pressure of a heat capsule of
Pu-238 increases as a function of time; it becomes necessary to provide a void
space within the capsule for the gas to accumulate, and increased wall
thickness to prevent creep of the metal under pressure and at elevated
temperature. While this is 2 serious problem for high temperature thermo-
electric generators, it is lessened for our application by the very moderate

operational temperature of the battery heater.

The need for capsule void space decreases the power density of
the encapsulated plutonium fuel. As shown in Table 3-8, the specific
activity (watts/cc) of the metal form of a low concentration plutonium fuel
is 1. 71-~-nearly equal to promethium oxide. However, when both fuel
materials are encapsulated and a void space is provided for the plutonium, the
resulting capsule specific activity drops to 1,28. The longer half-life of
Pm-238 compensates for the drop as shown in Table 3-9. Because Pm-147
has a half-life of 2. 6 years, its initial specific activity degrades as a
function of mission time, while that of the plutonium remains fairly flat.
After 2 years the plutonium metal capsule has a greater specific activity
than the promethium capsule. If a 3-year mission were contemplated,
even plutonium oxide capsules would have a greater specific activity than
‘the promethium, a compensatory factor which tends to maintain the equiva-
lence of the two fuel forms for certain missions, while indicating the

superiority of each for selective mission objectives.
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Table 3-8. Physical Characteristics of Pm-147 and Pu-238 Heat Sources
Specific | Specific
Power Activity | Activity
Half-Life | Compound | Density | Density Fuel + Void
Isotope (yr) Form (g/cc) (wlg) (w/cc) (w/cc) |
Pm-147 2.7 Oxide 6.6 0.27 1.78 1.78
Pu-238 86 Oxide 11. 4 0.10 1. 14 0. 86
Metal 15.5 0.11 1.71 1.28
Table 3-9. Comparative Fuel Power Densities
Based on Mission Duration
Capsule Power Density
To After 1 Year After 2 Years
Isotope (w/cc) (w/cc) (w/cc)
Pm-147 1.78 1.37 . 07
Oxide
Pu-238 0.89 0. 89 0.89
Oxide
Pu-238 1.29 1.29 .29
Metal
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3.2.4.4 Radioisotope Battery Heater Design

The design concept of an isotope heated battery is predicated upon

the following parameters:
a) Quantity of heat required
b) Isotope used as heat source
c) Re-entry philosophy
d) Mission conditions

The source of heat for the battery should consist of a heat block
containing sealed fuel capsules within its cross-section thickness. If the
fuel must burn and disperse upon re-entry, it may be a segmented block
held together by readily combustible straps, with the block made from
the same material: magnesium or a thorium-magnesium alloy might be
employed. If the fuel must remain intact, the heater plate would be of
an ablative material. Neutrons might also be absorbed (if necessary) in the
heater block if the block were of a high neutron cross-section capture
material. A third consideration is contained re-entry of a Pu-238
source in which the sensitivity of the mission requires absorption of
neutrons. Careful selection of high temperature neutron shielding, such
as beryllium metal or beryllia, would provide for both requirements.
Where uniform heat transfer at high temperature with a low delta T is
required, ablator selection is not easy; however, because of the relative-
ly low battery temperature required (4 to 42° C), even a poor conducti-
vity ablator should not increase fuel temperature above 204° c. Capsules
for early flights of SNAP-9A (Pu-238) were designed to burn during re-
entry; the change to survival through re-entry has initiated rigorous
tests to ensure the containment of fuel., Battery heater technology can
utilize the results of such tests, thereby saving time and reducing the

cost of preflight acceptance testing.

Ideally, a nuclear heater should, with minimum radiation, deliver
maximum heat to the battery. In the space environment, heat must be
delivered by conduction or radiation. Tradeoffs are usually encountered
between the most economical means of heating and the most economical
means of positioning a nuclear source aboard a spacecraft, Four-pi

envelopment of the source by battery cells can ensure the former but not
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necessarily the latter economy, a seeming contradiction which stems

from the cross-section density of secondary cells, as well as the

apparent density of battery arrangements. Three configurations are

presented:

a)

b)

c)

A central source surrounded by a circle of cylindrical
cells.

Small heat sources sandwiched between individual
prismatic cells.

Strings of individual sources sealed into a heat block
common to an array of prismatic cells.

Descriptions of the configurations, shown in Figure 3-19, follows:

a)

b)

c)

Central Heat Source. Heat transfer from the source
To cells may be by conduction through a light-weight
heat block. When Pm-147 is used the block must be
able to disintegrate in order to expose the source for
burnup. With Pu-238, the block may serve as an
ablative shield and neutron absorber. With either
fuel, a gamma-ray "'shine'' would exist between cells,
providing only a marginal solid-angle for the posi-
tioning of nuclear detectors. This configuration is
further limited by the number of cells which may be
grouped around a single heat source. It would, how-
ever, permit end-on-end stacking of similar arrays
and does suggest a means of heating cylindrical cells
if they are required. Figure 3-19-A is a sketch of
this configuration. :

Sandwiched-Source. Maximum transfer of heat from
source to cell results from individual sources between
each cell of a stacked prismatic configuration of cells.
However, encapsulation of either Pm-147 or Pu-238
to resist terminal velocity impact would require the
fuel to be mounted in metal plates of from 5/8 to 1
inch in thickness. The resulting geometry would
elongate the battery stack and add to bracket require-
ments., If Pm-147 were employed, the entire con-
figuration must be able to disintegrate and expose

the interior sources to burnup. With Pu-238, pro-
vision must be made for ablative protection and
neutron absorption which would further enlarge the
overall dimensions. This configuration, shown in
Figure 3-19-B, would provide maximum gamma-ray
shielding along the major axis of the array.

Heat Block. The third heater configuration resembles
2 hotplate, in that the sources are encased within
a plate which is coupled to the underside of
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stacked prismatic cells. Although potentially less
economical thermally, better thermal control can

be exercised by this design. Overheating can become
a serious consideration where thermal control of a
battery is required. If insulation were placed on all
exposed surfaces of the heat block and active thermal
control introduced on one face, control may be exer-
cised. Figure 3-20 shows the estimated weight for
the heat block configuration.

Distributing individual encapsulated sources throughout
the cross-section of the block would provide additional
gamma-ray attenuation when using Pm-147 fuel. If

the block were made of magnesium or other readily
combustible metal and then segmented, the fuel could
be readily exposed to burnup upon reentry. The battery
array above the block would also serve as a gamma-ray
shield, subtending a large solid angle and providing a
major portion of the spacecraft volume for placement
of nuclear detection experiments. For Pu-238, the
block could be made of an ablative neutron absorber
such as beryllium. The liquid within the cells would
further reduce neutrons through the solid angle which
the battery subtends, permitting certain particle
detectors to be carried aboard.

Employment of a separate block permits the last minute
mating of nuclear source and battery, thereby easing the
problem of source storage during all prelaunch
operations.

Finally, the heat block design permits the use of cylin-
drical-shaped fuel pellets which is consistent with

present fabrication methods. Figure 3-19-C illustrates
this approach.

3.2.4.5 Aerospace Safety and Ground Handling Criteria

The safe utilization of radioisotopes is usually predicated upon
a) containment of the source material and b) attenuation of the radiation
from a source to an acceptable level. For space use, re-entry burnup
and dispersion above 200,000 feet of small quantities of radioactive
material will not constitute a hazard. If either requirement is met,
then the heat producing qualities of the source may be applied with
the same degree of confidence as other heat producing media. State
and federal laws provide rigid specifications which must be met

before using radioisotopes for any purpose. In addition, the use of
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radioisotopes to heat space batteries depends upon successful compliance

with specifications for the following before orbital flight:
a) Source shipment from ORNL/MNL to launch area
b) Residence at launch area
c) Transfer to vehicle compartment on pad
d) Liftoff
e) Preorbital flight

In each instance, the isotope must remain encapsulated despitefire,
explosion, impact, or other possible accidents. The encapsulant and
shield must also provide sufficient reduction of radiation to prevent
danger to life. One-watt encapsulated sources of either Pm-147
or Pu-238 do not pose a serious problem because the anticipated
(small) capsule size permits positive testing before actual use
by impact machines, fire simulators, etc. Large sources, such
as those required for thermoelectric generators are naturally more diffi-
cult to test. The last item on the foregoing list requires explanation;

a ''grey area'' exists between launch and orbit where environmental condi-
tions prevent the clear delineation between preorbital and orbital position.
Consider first, the return to Earth from an altitude of 75 miles (first-
stage premature burnout or engine failure). Air friction would not
provide a sufficiently high temperature to melt the battery heater and

fuel capsule; therefore, a capsule designed to withstand terminal

velocity impact would remain intact. If, on the other hand, a successful
orbit were achieved and the spacecraft ultimately decayed by pre-
determined criteria, the heater and ablator would either provide

ablative protection for the capsule, permitting it to survive impact on

the Earth, or the heater would immediately (and by design) disintegrate
and expose the capsule to upper atmosphere heating to disperse micro-
sized particles above 100,000 feet. The ''grey area' exists where

the flight has proceeded beyond first-stage burnout and ''coasting
altitude' but does not orbit; here a ballistic return to Earth cannot
guarantee burnup because insufficient heat will be experienced by the

capsule. Partial burnup can deposit (a) a damaged capsule or




(b) chunks of fuel on a relatively small area. Past policy has been to
launch the vehicle over water so that it will either orbit or fall back

into water.

3.2.4.5.1 Ground Handling Requirements. From the time of final

closure of the outermost encapsulation, the radiosotope may be consid-
ered a sealed source. Its transfer to other facilities for incorporation
into a battery heat block may be required to conform to ICC shipping
regulations governing radioactive materials. Once received by the
contractor (either at his laboratory or at the launch site) surveillance
and control must be exercised. A fireproof, explosionproof ex-
clusion area must be available for storage. Health-physics control of
the source must be guaranteed. Periodic inspection of the source con-
tainer or cask must be made, noting radiation level and the absence

of radioactive material on the surface.

Cask temperature must be controlled to prevent thermal excursion
of the source(s) within. Appropriate radiation detection and counting
equipment are required to determine the source condition. Pro-
cedures for the stepwise loading and unloading of the fueled heater aboard
a spacecraft must be drawn up and all personnel indoctrinated as to
their individual responsibilities. It is estimated tha:c a team of two men
(minimum) could satisfactorily perform all tasks associated with loading

a 20 watt (thermal) isotope battery heater aboard a spacecraft.

Promethium-147 Ground Handling Considerations. Before the

radiation level of a 1-watt source of Pm-147 can be determined, the
concentrations of Pm-146, Pm-148, and europium must be known. Since
the second may be present in a quantity which is dependent upon the age

of the fuel, an infinite number of potential radiation levels is possible.

Once a specific fuel batch has been earmarked, analytical and experi-
mental analyses will be requiréd to determine unit radiation level, which

in turn, will define the additional shielding required for shipping containers.
From a review of the literature (Reference 4), it seems reasonable to
predict that a 20-watt array of sealed Pm-147 sources could be held in

the hand for a short time without danger, the sole constraint being that

the Pm-147 be well aged and relatively free (less than 0.01 percent) from
europium contamination.
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The capsules may be loaded into the battery heater block at the
source fabricating laboratory or at the contractor's facility. The
relative desirability of loading at either location depends upon how the
battery is connected to the block and the subsequent testing; in either
instance, a permit will be required of the contractor for retention of

sealed sources because he will ultimately require possession of them.

Plutonium-238 Ground Handling Considerations. Through prior ex-

perience gained on the SNAP-3 and SNAP-9A thermoelectric generators, the
procedures for ground handling of plutonium sources (in quantities 30

times that anticipated for battery heaters) has been established. SNAP-3,
launched from Cape Kennedy, and all SNAP-9A launchings from Vanden-
berg provide documented experience at both the AMR or PMR.

The presence of neutrons from plutonium will require special
detectors. Wipe testing of the storage container will be similar to that
required for Pm-147. Pu-238 sources permit a more definitive forecast
of radiation level, and an unshielded array of l-watt capsules totaling

20 watts of Pu-238 will have an approximate combined radiation level of:
gamma: 2.5 mrad/hr @ 50 cm
neutron: 5 mrad/hr @ 50 cm

These values assume an encapsulation equivalent to 1-cm lead. Once
sealed into a heat block, the 20 watt source may safely be held in the
hand.

Ideally, the heat block could serve as ablative shield and neutron
thermalizer and absorber; however, the clever assembly of more than one

material may be required to achieve this goal.

3.2.4.5.2 Aerospace Safety Requirements. It has been demonstrated, at

least in theory, that it is more difficult to design for complete burnup )
than for absolute containment. As shown in the Pm-147 aerospace safety
considerations (3. 2.4.5), complete dispersion cannot be guaranteed for
all phases of flight due to the unique situation that exists in the ''grey
area''; therefore, evaluation of the design needed to contain plutonium

completely would be easier at this point.




Four hypothetical mission objectives have been assigned to the
battery heater program, representing (in theory) space and planetary

environments of extreme cold:

Mars Landing

Mercury Dark Side Landing
Asteroid Belt Probe
Jupiter Flyby

a) Terrestrial Return. In reviewing the appropriateness of

carrying a radioisotope source aboard a spacecraft on

any of the above missions, aerospace safety is the '
prime consideration. This evaluaiion is greatly simpli-
fied since all missions have the same prelaunch, pre-

orbit flight and parking Earth-orbit characteristics. There-
fore, no matter what ultimate objective the missions might
have, common protective requirements would cover either
fuel. The heat required for battery heating on any of the
missions is within an estimated 5 to 50 watts, sufficiently
_small to permit the specifications for land transportation,
launch site residency, and launch area handling, to be com-
‘mon to all. The chief difference in specifications would
arise from the use of Pm-147 or Pu-238 which have differ-
ent radiological characteristics and different radiation
properties, and would, therefore, require selective methods
of control. However, ground handling procedures of both
Pm-147 and Pu-238 have been established and immediate
benefits may be taken.

Capsules for either isotope must be designed to withstand

the terminal velocity impact that would be experienced by
failure to orbit; in addition, Pu-238 capsules must return: -
from orbit intact. Development will require analytical
dimensioning and experimental verification of adequacy.
Similar effort was performed for the SNAP-3 and SNAP-9A rtg
preflight acceptance tests and is a prerequisite to the use

of all radioisotope sources in space.

b) Extra-Terrestrial Flight., When the aspects of selective
containment (Pu-238) or burnup (Pm-147) have been
satisfactorily demonstrated, followon aerospace safety
constraints would apply to the beyond-Earth-orbit flight.
Serious consideration must be given to the safeguards
against the vehicle being fired from other than a tangential
attitude. Protective measures (Reference 17) can be
taken to prevent firing the vehicle toward Earth; the
technique has been employed on past exploratory missions.
Therefore, once the vehicle has been put into an Earth
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d)

orbit, it will either fire off, never to return, or will
misfire and gradually decay as in past satellite flights.
Re-entry data exist for a SNAP-9A which was designed to
burn and did so at the desired altitude with the desired
isotope dispersion. No case is known to the writer

of an isotope having been returned by ablative pro-
tection and complete containment; however, exhaustive
testing in simulated conditions is in progress. The
success of Project Mercury capsules indicates that it is
feasible.

All hypothetical missions considered for the  study involve
exploration beyond the Earth. Two of the capsules, the
Jupiter flyby and the asteroid belt probe, will remain in
space during the mission and eventually enter a solar
orbit, obviating further safety considerations. For

such missions, tangential Earth orbit escape would
constitute the extent of concern for safety.

Distant Planet Soft Landing. Those missions which will

soft-land on Mars or Mercury may be subject to extra-
terrestrial constraints.  The transfer of Earth-type

organisms to other planets is undesirable; much study
has gone into the possible methods (Reference 18) of pre-
venting this occurrence. The problem becomes one not
only of decontamination but of knowing the relative
efficiency of decontamination. To the biologist, a body
is either sterile or it is not.. Sterilization of an entire
spacecraft cannot be verified; however, several decon-
tamination methods appear promising. One method
involves the autoclav1ng of components for 24 hours at
approximately 135° C at 1 atmosphere pressure of
ethylene oxide. The sealed fuel capsules and heat block
would not experience degradation from this treatment
provided a heat path were maintained from block to
autoclave wall for the removal of isotope heat. The
presence of ethylene oxide would not affect the capsules
or the heat block. Care would be required to avoid the
removal or chemical damage to a silicone-type interface
film between the block and battery. Resistance of a
sealed battery to sterilizing conditions is not known and,
batteries being heat sensitive, would have to be inves-
tigated. The nuclear heating components would probably
be less sensitive to thermal-chemical sterilization than
the battery.

Distant Planet Impact. A final aerospace safety consideration
is of the possible impact upon a planet by an exploratory
spacecraft carrying radioisotopes aboard. Where the
atmosphere density is either negligible or unknown, the
braking quality of the gas envelope cannot be relied upon.
therefore, hard impact will result in (1) the burial of the
intact or ruptured fuel capsule of (2) a surface dispersion
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of the isotope. The former presents a near-ideal sit-
uation, as the source would be localized and essentially
''contained" by the strata of planetary crust surrounding
it; the latter could present problems by distributing
radioactivity which would mislead future explorers.

The selection of two radioisotopes (Pm-147 and Pu-238)
not found in nature on Earth affords high probability that
they would not be found as natural radioisotopes on other
planets of our solar system. Therefore, future analyses
of a planet's soil for radioactivity could deduct the contri-
bution from promethium or plutonium. Further, the small
quantity of radioisotope required for battery heating would,
if distributed over an impact area, be extremely difficult
to locate. Natural radioactive decay during a period of

10 half-lives would burn up all but one-tenth of one percent
of the original quantity. Pm-147 (2.6 year =

T]/Z') would decay to the above level in only 26 years;
Pu-238 would require 860 years. If this consideration
should be critical to the evaluation of a mission, then the
selection of Pm-147 would be appropriate.

3.2.5 Cryogenically-Stored Fuels

The analysis of cryogenically-stored fuels was confinea to that
discussed in Section 2 after preliminary investigation showed that the
type of heat-source using such fuel would be extremely limited in ap-
plication in space. The first reason for the limitation is the difficulty
of keeping cryogenically-stored fuels from leaking overboard. (Approx-
imately 0.1 to 0.2 1bs per hour for 10 to 100-hour vented tank systems —
10 to 30 1b tank weight). The second reason is that the technology required
to sustain low level burning rates and flames in space has not been de-

veloped and a more thorough investigation, therefore, is not practical.

To conclude, cryogenically-stored fuels do not appear to offer any
advantages for use with low temperature batteries nor does the develop-

ment of new technology appear to offer any further inducement.

3.2.6 Storable Fuels and Propellants

From the data given in paragraph 2.2 of this report, it is quite
obvious that storable fuels and propellants are not practical for use as low-
rate heaters, being extremely difficult to control. The technology required
to use them in space in this manner has not been developed and the
materials involved do not lend themselves readily to operation in the
environments under consideration. Most of the materials with reasonable

boiling points also have high freezing points and materials with low
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freezing points have very low boiling points. Materials that would
operate over the desired temperature range are so corrosive and
difficult to handle that the proposed application is considered infeasible.
Therefore, this type of heater is eliminated from further consideration

for battery heating.

3.2.7 Chemical Cartridge Heating

Chemical cartridge heating was investigated during the search of
the literature reported in Section 2 and is further analyzed in this para-
graph for warmup and short-term heating. Pyrotechnic heaters
are available and have been used in past battery designs to heat
the electrolyte before or during activation. However, no dis-
cussions exist in the literature on the use of pyrotechnics to directly
heat batteries in very low temperature environments. The discussions
of battery heating requirements set forth in Figures 3-4 and 3-6 in
paragraph 3. 1.1 show the average amount of delivered heat which would
be required from a pyrotechnic device to heat a battery from -29° C
to an operating temperature of +4° C and from -184° C to an operating
temperature of +4° C. To provide the required heat in a controlled
manner using a pyrotechnic device would be extremely difficult; for
example, to heat a 600 whr nickel-cadmium battery from -29 to +4° C
in 4 hours may require approximately 12 cartridges, with sequential
firing mechanisms weighing approximately 7 to 8 pounds. To heat the
same battery from -184° C would require approximately 68 controlled
sequenced firings and would weigh at least 40 to 45 pounds, which is
obviously unrealistic. A sample calculation, Table 3-10, provides

the reader with the means to determine the parameters.

After analyzing the literature, it was determined that it is possible
to operate cartridge-type pyrotechnic heaters in environments having
temperatures at least as low as -54° C; however, there are several prob-
lems which limit their application. One limitation is that a typical heater
can only survive exposure to high temperature (85°C) for approximately 12

weeks, or to 204° C for one week, without degradation.




Table 3-10. Sample Calculation, Estimate of Chemical
Heater Firings and W=ight

ASSUMPT | ONS
A. MAX1MUM ALLOWABLE BATTERY CELL HOT=SPOT TEMPERATURE = 1600 F

B. CARTRIDGES WiLL BE MOUNTED TO A GOOD THERMAL CONDUCTOR HEAT SINK
TO DISTRIBUTE HEAT FROM A 15‘SECONO HEAT INPUT,

c. 600 WATT=HOUR BATTERY, NICKEL=CADMIUM SYSTEM.

CALCULATIONS
BATTERY WEIGHT AT 10 WATT-HOURS/POUND = 60 POUNDS.
From Figures 3-U ano 3-6

HEAT REQUIREMENT TO WARM BATTERY
-20 10 +400 F = 160 wATT-HOURS

=300 1o +4O° F = 960 wATT-HOURS

ASSUME THE HEAT CAPACITY OF THE BATTERY IS SUFFICIENT TO ENABLE
WARMUP INCREMENTS OF APPROXIMATELY 5% F wWiITHOUT HOT SPOTS AND
EXCESSIVE HEAT LOSS. THE TYPICAL SPECIFIC HEAT FOR A SPACE
BATTERY 1S ESTIMATED 1O BE 0.16 10 0.18 Bru/1B-C F. THIs vALUE
IS BASED ON TRW EXPERIENCE WITH SIMILAR HETEROGENEOUS BODIES AND
THE DATA PUBLISHED BY THE A. D. LiTtTLe Comeany (REFERENCE 19 ).

To wArRM FrROM —20 710 +UO° F In 4 HOURS, 12 HEAT INCREMENTS ARE REQUIRED,
SIZED AS FOLLOWS:

(160 x 3.41)/(12 x 0.9) = 51 BTU/CARTRIDGE WHERE HEAT DELIVERY
EFFICIENCY TO THE CELLS 1S ASSUMED AT
90% OF THEORETICAL HEAT OF COMBUSTION

To warRM FrROM =300 70 +4OOF N 4 Hours, 68 HEAT INCREMENTS wiTH
DISPERSED CARTRIDGE LOCATIONS ARE REQUIRED, SIZED AS FOLLOWS:

(960 x 3.41)/(68 x 0.9) = 53 BTU/CARTRIDGE
TO DETERMINE HEATER WEIGHT FOR THE ABOVE CONDITIONS, THE FOLLOWING
ANALYSIS IS PRESENTED:

FrROM TABLE 2=1: A TYPICAL HEAT OF REACTION FOR SLOW-BURNING
(15 secoND) CARTRIDGES EQUALS 373 GRAM=CALORIES PER GRAM

(MOLYBDENUM AND LEAD CHROMATE) WAS SELECTED.

COMPUTING CARTRIDGE WEIGHT:
(373) (0.00116 watt-HOURs/G caL)(3.41) 1.48 Btu/Gram

EXOTHERMIC MATERIAL WEIGHT FOR 53 Bru = 36 GRAMS

ASSUME CARTRIDGE PACKAGING WEIGHT 1S 100% OF MATERIAL WEIGHT.
THEN, TOTAL EITHER 51 BTU OR 53 BTU CARTRIDGE WEIGHT EQUALS
(2 x 36 arams) (1 uB/U5SH graMs) 2 0.1616 pounpd
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Table 3-10. Sample Calculation, Estimate of Chemical
Heater Firings and Weight (cont.)

To HEAT FROM =20 1O +40° FHEATER WEIGHT = 12 CARTRIDGES PLUS
SEQUENCER IGNITERS PLUS BASEPLATE MOUNT. ASSUME == SEQUENCING WEIGHT
EQUALS CARTRIDGE WEIGHT AND BASEPLATE MOUNT EQUATES TO THE TOTAL
CARTRIDGE AND SEQUENCER WEIGHT FOR SIMPLICITY OF APPROXIMATION =

4 X TOTAL CARTRIDGE WEIGHT.
THEN, HEATER WEIGHT = U x 12 x 0,1616 = 7.6 pounos

To HEAT FROM =300 10 +40° FHEATER WEIGHT =

68 x 0.1616 x 4 = U43.5 pounps

FroM FieurRes 3=5 ano 3-7

HEAT REQUIREMENT TO MAINTAIN BATTERY AT 4o° f
-20° FENVIRONMENT = 14 watrts

-300° F'ENVIRONMENT = 7O WATTS

TO MAINTAIN THE BATTERY AT HOOF MiNiMuUM IN A =20° FENVIRONMENT

04 wur /uR) (3.41/0.9) = 53.2 Bru/ur

WHERE HEAT DELIVERY EFFICIENCY TO THE CELLS 1S ASSUMED AT 90% oOF
THEORETICAL HEAT OF COMBUSTION,

TO DETERMINE HEATER WEIGHT FOR THE ABOVE CONDITION, THE FOLLOWING
ANALYSIS IS PRESENTED:

(373)(0.00116 yur /6 caL)(3.41) = 1.48 Bru/cram

EXOTHERMIC MATERIAL WEIGHT FOR 53.2 BTU/Hour = 35 GRAMS/HOUR.

ASSUME CARTRIDGE PACKAGING WEIGHT 1S 100% OF MATERIAL WEIGHT, THEN
2 x 35 x (1 v8/U5U4 GraMS)

0.15 POUND/HOUR

53.2 BTU/HR CARTRIDGE WEIGHT

e

USING THE SAME WEIGHT FACTOR ASSUMPTIONS STATED LREVIOUSLY FOR
SEQUENCING AND BASEPLATE MOUNTS, HEATER WEIGHT = 0_6 POUNDS/HOUR

TO MAINTAIN THE BATTERY FOR EXTENDED TIME PERIOD, ESTIMATED WEIGHTS
ARE AS FOLLOWS:

TiME WEIGHT ESTIMATE

1 HOUR O.6 POUND + BASEPLATE FACTOR
10 HOURS 6.0 POUNDS
100 HOURS 60.0 POUNDS

o - o
ESTIMATED HEATER WEIGHT TO MAINTAIN A BATTERY AT 4OOF N A =3007 F
ENVIRONMENT

(JO wHrR/nour)(3.41/0.9) = 265 BTU/HOUR

EXOTHERMIC WEIGHT = 265 BTU/wour _ 4
1.08 Bru/Geram 19 crAMs/HOUR
Heater weioHT = 4(179/454) &£ 1.59 pounos/HOUR

3-78




To extrapolate these results downward in temperature was impossible
from the data available so no conclusion can be reached as to the ultimate

life of the device at lower temperatures.

Chemical cartridge heaters are ignited by using an "electric match'’;
i.e., the application of an electrical firing signal which essentially heats
the active materials of the heater to their ignition point. Once ignited,
the materials burn to completion. The process, shown in some data to
be sensitive to thermal shock, has successfully performed despite

thermal shocks from -62 to +100° C at rates which were not specified.

the application of pyrotechnic heating devices to warm batteries in low
temperature environments is not generally feasible; however, it may

be feasible to use them under the following circumstances:

a) Sustaining battery temperature in low temperature
environments for up to one week

b) Battery warmup from nominally cold environments on
the order of -29° to -54° C to operating temperatures,
with limited potential for warmup in colder environments.

These potential methods of using pyrotechnic heaters are further limited
by the assumption that an element will be available to control the rate

of the application of heat to battery cells, and are premised on the
assumption that cells can be stored in environments from -54 to -184° C
and possibly colder, without damage. There are no published data avail-
able to verify such assumptions; proof would require an accumulation

of new technology.

3.2.8 Summary of Heat Source Analysis and Methods for Space
Applications

From the above analysis, the follbwing summary is presented to
compile the data ifito a comparison of heating methods for various

time durations and to show tradeoffs required in the selection of the



above heat sources. The following table outlines potential battery

heating methods and conclusions derived on each:

Table 3-11. Potential Battery Heating Methods

Conclusions

BIOLOGICAL
Body Heat

Exothermic Bacteriological
Phenomena

CHEMICAL

Chemical Cartridge
Heaters

Heats of Fusion

-- Hydration

-- Chemical Reaction

Flame Heaters

Not applicable except in space suits

Not applicable

Limited applicability for short
term heating and battery warmup;
limited to one week of gentle
heating or rapid warmup from
environments as low as -54° C with
potential at lower temperatures

Not applicable; cannot initiate
reaction at low temperature

Not applicable; cannot be
controlled

Very limited applicability; tech-
nology has not been developed for
low-level flame heaters in space,
and development of technology is
questionable because of difficulty
in metering and limited storability
of fuels. The method is also in
doubt because of incompatible
freezing points and boiling points
of fuels with low temperature
battery applications.




Table 3-11. Potential Battery Heating Methods (Cont. )

Conclusions

MECHANICAL

Friction

Heat Pumps and Heat
Engines

Heat Pipes

ELECTRICAL

Bootstrap Heating

Battery Dissipation
(Discharge)

Battery Dissipation (Charge
and Overcharge)

Not applicable; too heavy and
complex

Not applicable; requires mechanical
energy which is typically not avail-
able in a spacecraft.

Potentially feasible; new technology
is being developed but is not ad-
vanced to the point where it can be
fully evaluated.

Very limited potential (not applica-
ble); exhausts battery rapidly and
does not heat a battery below

-299 C;very inefficient method.

Limited application; battery
internal dissipation on discharge
can be used to sustain battery
temperature if the discharge rates
are at least in the C/4 to C/2
range. Method cannot be

used for warmup, and is, there-
fore, limited to 2 to 4 hours of
battery operation.

Limited potential if power system
energy is available. Battery
dissipation during charge will not
sustain battery temperature until
the overcharge region is
approached. If the battery is too
cold during this period, it cannot
be charged. However, once
charged, a nickel-cadmium
system can use the internal
overcharge dissipation for heat-
ing if the battery is capabie of
accepting a high enough charge
rate. Method cannot be used

for silver-cadmium or silver-
zinc systems.
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Table 3-11. Potential Battery Heating Methods (Cont. )

Conclusions

Resistive Heaters

-- Battery Energy

-- Power System Energy

NUCLEAR

Radioisotope

Limited applicability for short
periods. More efficient than boot-
strap heating, may be used for
warmup if the battery temperature
is above -29°© C. Disadvantage is
the loss of battery capacity; if
required continuously over a
mission, the weight becomes
exorbitant (in excess of 7 tons for
20 watts on a Jupiter mission).

Feasible and recommended if power
system surplus energy exists.
However, there are significant
tradeoffs between providing
electrical system energy and
heating by other methods from

cost and weight standpoints. It

must also be considered that
certain types of power systems
cannot continuously provide energy
over the whole mission.

Excellent potential; the method
offers low-weight continuous -
heat and can maintain battery
temperature in a useful operating
range over a wide range of tem-
perature excursions, if used in
conjunction with an active thermal
controller. Disadvantage in
handling and possibly with radia-
tion for some very sensitive ra-
diation detection experiments.

An additional problem is safe
re-entry and containment.




A comparison of the crossover points of different types of heating
methods is presented in Table 3-12 to show the relative performance of
each type of heater versus time. From this analysis, it was concluded
that the following methods of heating are feasible for use with low

temperature batteries in extremely low temperature environments.

a) Electrical Heating Using Power System Energy with
Thermostatic Controls. The technology for this
method exists provided surplus energy is always
available from the power system and neglecting the
implications of cost and weight penalties.

b) Radioisotope Heating. This method of heating offers an
excellent potential with a minimum development of new
technology for providing a continuous heat source which
can be controlled to regulate the battery temperature
independent of orbits, eclipses, and losses of power
system surplus energy. The method is the most
efficient studied for this application.

c) Chemical Cartridge Heating. This method of heating
offers limited potential in that it is time-limited and
is not easily controlled. The method is based
on the assumption that a battery can be frozen,
warmed and used. The study could not support the
assumption with existing technology.

All other heating methods studied have very narrow applications for

low temperature space batteries and were, therefore, ruled out as not

worth further consideration.

3.2.9 Summary and Discussion of Limits of Technology

The primary limitations in the technology encountercd durin

study of heat sources were as follows:

a) Warmup heating systems applied to low temperature
batteries are dependent on the assumption that a
battery may be frozen and then warmed for later use.
The technology to support this assumption does not
exist in the literature surveyed.
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b) The technology to use radioisotope heaters for this
application is generally available but several questions
were encountered which cannot be answered within the
confines of the study. The questions are related
primarily to the radiation fields which would be
encountered when the heaters are used in conjunction
with battery packages in spacecraft systems.

c) The technology to use a pyrotechnic heater in a low
temperature space application for any extended period
of time has not been developed. To expand present
technology into a more usable method would require
additional development of the heater cartridges,
sequencing methods, and a thermal control regulator
which could be used to prevent overheating the cell
materials.

d) The technology required to use the other systems
eliminated from the study could not be determined.

Of the three prospective methods of heating batteries in low
temperature environments which have been isolated by the study, it
is apparent that greater development of new technology will be required
to use chemical heating methods than that required to use radio-
isotope heaters. To use the radioisotope heaters, new technology
will be required to determine radiation profiles versus battery design
configurations and to verify a safe launch and re-entry. The use of
electrical heating from existing power system energy should not require
further new technology for the heater or heat source; the technology is
available and fairly straightforward (resistive heaters and thermo-

statiscally controlled heater blankets).




3.3 THERMAL CONTROL ANALYSIS

During Phase II a detailed evaluation of various means of effecting
battery temperature control was conducted. Several concepts examined
during Phase I were eliminated from further consideration. Heliotropic
devices were not compatible with vehicles going away from the Sun
because the Sun's energy is not available when most needed. High tem-
perature radiation sources offered no advantage over hot plates of
moderate temperature, thus eliminating the use of radioisotopes or
other high temperature devices within the battery assembly. Open-
loop systems were considered but difficulty was encountered in devising
appropriate methods to be compatible with the entire vehicle system
and the possibility of freezing batteries and then reheating them. There-
fore, consideration of open-loop systems was limited to an analysis of
heat capacity under the Heat Source discussion above and some hypoth-
eses as to methods of applicaiion; the limits of technology were reached
very rapidly and it is therefore considered one of the areas to be studied
in greater detail for development of new technology in thermal control
systems and methods of operating standardized batteries at extremely

low temperatures.

Of the remaining concepts, it appeared that insulation would always
be necessary, but hardly sufficient. The heat pipe, a thoroughly adequate
device for temperature control, appeared most suited for situations re-
quiring cooling at high heat transfer rates rather than the usual battery
situation requiring heating at low rates. From these evaluations the
conclusion that a thermal switch utilizing the volumetric change of a
substance passing from the solid to the liquid state (or vice versa) was
the most promising method, particularly when used with a radioisotope -

fueled hot plate.

3.3.1 Battery Temperature Control by Thermal Switches

Thermal switches, as considered in this study, are systems whose
physical configurations, and thus thermal configurations, are sub-
stantially altered by temperature gradients or differences so as to make
or break contacting heat transfer areas. The definition has been further
expanded, in the present instance, to include in one complete and self-

contained system the following major elements:
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a) Battery
b) Battery heater
c) Battery temperature controller

Attention has been focused upon the temperature controller in

particular.

The basic physical phenomenon utilized for the actuation of these
thermal switches is the incremental change in volume of solids, liquids,
or gases due to change in temperature. Three specific manifestations

of this phenomenon are considered:
a) Distortion of bimetallic elements
b) Change in dimensions of heated structures
c) Change in volume of filled bellows or diaphragms

The present conclusions indicate that the degree of temperature
control obtainable by the first two methods is markedly inferior to

systems employing bellows or diaphragms.

Two bellows-actuated systems have been devised. -The function
of these systems is based upon the volumetric differences between the
solid and liquid phases of certain materials. The essential features of

the devices are described in Section 5, entitled New Technology.

In the overall context of the heated battery study, an application

for temperature-controlled batteries on missions directed away from

the Sun is highly desired. In particular, if a first-generation space |
probe is specified, it may be assumed that the spacecraft operates

at a relatively low power level, that the prime power source is either
the Sun or a small radioisotope thermoelectric generator, and that
spacecraft temperature control is dependent to a large degree upon
intercepted solar energy. Due to the decay in the intensity of the local
solar constant, it would probably be necessary to design the spacecraft
to operate with the highest (approximately 37° C) allowable internal
environment temperatures near the Earth. At the first destination of
interest (Mars, 1.52 AU) temperatures may still be acceptable
(approximately 0° C) although much lower. Further into the asteroid

belt, somewhere between 3 AU and the vicinity of Jupiter (5.2 AU),
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local and perhaps extensive regions of extreme cold (less than -20° C,
possibly as low as -75° C) may exist within the spacecraft. Thus, as
far as the battery package is concerned, its local environment changes
from an initially warm condition to an increasingly cold condition. It is
noted that the rather limited design of the first-generation probe would
have to be extended considerably, to include internal power and heat
sources of higher levels, in order to perform satisfactorily at extremely

deep penetrations.

The duration of the mission also affects the local battery environ-
ment of the spacecraft. The journey to Mars takes 8 or 9 months;
going across the asteroid belt to Jupiier would take about 2.7 years.
Deep space missions have several influences on the design of the battery
package. Some of the design factors are:

a) A separate battery heater must be located at or very

VL TR T
near the battery.

b) The heater element is very probably a radioisotope, in
order to perform for long periods without depriving
other equipment of energy.

c) The heater must operate continuously.

d) The heater tends to promote high battery temperatures
early in the mission.

e) Early in the mission, the battery and heater must be
thermally separated or a sink must be provided to
absorb excess heater output.

f) If the heat sink is the spacecraft structure, maximum
heater temperature is on the order of 150° F in order
to prevent overheating of other equipment.

The distortion of bimetallic strips or coils is frequently used to
effect temperature control. The amount of distortion is roughly pro-
portional to deviation of temperature from some reference value, the

structural flimsiness of the sensitive element, and its major dimensions.

The distortion obtained in small size (most practical) strips or
elements is well suited to control or actuate thermal systems. Two
examples are the operation of electrical switches and positioning of
the louvers of the Pioneer spacecraft thermal control system. It is
noted that the development of strong forces or large deflections are not

required in such applications.
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In the present case, a strong force would be required to push two
surfaces together under high pressure to obtain reasonably good contact
heat transfer coefficients in vacuum or thin atmospheres. Sealing the
elements in a pressurized container would improve the contact heat
transfer, but would in turn provide a thermal short circuit by heat con-
duction across the pressurizing gas. Large elements would tend to be

insensitive to temperature changes, if this improvement is considered.

It is considered that the disadvantages noted make the use of bi-
metallic elements undesirable. A possible heater control design
employing bimetallic discs is shown in Figure 3-21. The performance

of this heater control is not satisfactory.

Differential expansion structures are systems utilizing the linear
coefficient of thermal expansion (of metals) to press surfaces together
at low system temperatures and to hold them apart at high temperatures.
In concept, these devices would resemble a clamp whose jaws are the
battery and heater. Two or more temperature sensitive rods connecting
the '"jaws" would cause the heat transfer surfaces to either contact or
separate, depending upon the rod temperatures as defined by the battery
and heater. In contact position, heat would be transferred at a rela-
tively high rate across the contact interface; when separated, a small
leakage would exist by radiation across the gap and by conduction through

the control rods themselves.

In practice, however, several shortcomings are evident in the

design concept outlined. These are listed below:

a) The ideal control rod should have low thermal conductivity,
and a high coefficient of thermal expansion. Data examined
during this study indicate that metals having low conducti-
vities also have low expansion coefficients.

b) Since rod expansion in any case is relatively small,
dimensional tolerances in design are extremely small if
the rods are of reasonable length (6 to 12 inches).

c) Temperature control of the battery is sloppy, since
the control elements (rods) are actually sensitive to a

3-90




BATTERY

J NN

I

1

Figure 3-21. Cross Section of Battery Showing Action of Bimetallic
Temperature Control Buttons
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temperature which is the average of the battery and heater
temperatures.

d) The contacting surfaces must be smooth, even, and parallel.
Cold-welding could be a problem and temperature differences
between rods would destroy parallelism.

It is concluded, on the basis of these shortcomings, that extreme
difficulty would be encountered in development of a workable design and

therefore the concept is considered to be infeasible.

Bellows actuated by the volumetric response of a contained liquid
to temperature changes are considered to be undesirable because of the
small magnitude of the response. Gas-filled bellows, although more
sensitive, require extremely high pressure to develop the forces (in

response to temperature) required in the current applications.

An excellent response is available when certain materials pass
from the solid state to the liquid as the result of applied heat. Benzene,
which melts at 5.5° C, increases volume by 13.3 percent. It can be
seen that by placing solid benzene in a cylinder of 1-inch radius and 3
inches long, a theoretical increase in length of 0.4 inch is attainable if
the cylinder is allowed to expand only in the axial direction. Also, if
the ends of the cylinder are partly constrained, reasonably high pressures

and heat transfer coefficients can be developed.

The design features of a feasible battery temperature control device
is described in Section 5.0. If the heater has a relatively high heat dis-
sipation rate, it can be mounted between the battery and spacecraft struc-
ture to serve as a spacecraft heater as well. If the heat dissipation rate
is low, the battery may be mounted in the spacecraft on thermal standoffs,

and the heater(s) attached to one (or more) of the battery surfaces.

Although the concept is relatively simple, it is recognized that pro-
blems will arise in refinement of mechanical details, such as perfecting
sliding or moving members, and in designing a suitable bellows. The

design is believed to be within the limits of current materials technology.
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Three applications of the thermal expansion of materials have been
considered for use in the development of a thermal switch suitable for
battery temperature control. Only one of these applications which employs
a bellows and a material which changes from solid to liquid at a suitable
temperature, is considered to be acceptable. It is recommended that

this design is worthy of further study, and perhaps eventual exploitation.

3.3.2 Use of the Heat Pipe for Battery Temperature Control

Heat transport is accomplished by vaporization of the contained

fluid at a hot location and its condensation at a cold location. Vapor

transpor

[

is accomplished by the small pressure differences within the
system and liquid return by capillary action within the porous annular column
within the pipe. In physical appearance the heat pipe resembles a thick-
walled pipe of small bore, with the external wall and ends sealed from its
environment. The heat pipe will transfer heat at high rate until the cutoff
temperature (varies with the working fluid being used) is reached. When
the temperature is reached that solidifies the fluid, the device ceases to
function as a heat pipe and any remaining heat transfer is by conduction
through the materials alone. By choice of appropriate working fluids any
desired cutoff temperature may be oBtained; for instance, if water is used,
this temperature is 0° C. Although performance of the heat pipe at tem-
peratures slightly above the freezing point has not yet been proven, there

is no firm evidence to indicate that operation would be unsatisfactory.

TRW Systems has recently been studying the potentialities of the

heat pipe to determine whether further development should be pursued.

In principle, the device is a physically small, closed-loop system, which
utilizes phase change phenomena to transport heat at relatively high rates
across the small temperaiure differcntials it requires for operation. For
the present purposes, it has been assumed that successful development is
possible. Application of the heat pipe to battery temperature control has
been investigated. If successful development is achieved, the heat pipe
shows promise of being able to maintain satisfactory battery temperatures
over a wide range of ambient temperatures. The ambient may range from

hot to moderately cold.
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An application of the heat pipe as the temperature control device
within a heated battery assembly was analyzed on a simplified quantitative
basis. A configuration based on these components was devised and within
the limited bounds of the present analysis appeared capable of performing

satisfactorily.

Figure 3-22 shows a battery mounted inside a spacecraft structure.
A constant-rate heater has been placed on the upper side of the battery,
and the lower side of the battery is mounted on a plate attached to the
spacecraft structure. This plate is connected to a heat pipe which trans-
mits heat to a radiating plate. During the analysis, the spacecraft struc-
tural temperatures were assumed to be higher than is desired for the
battery. The objective is to maintain moderate battery temperatures even
though structural temperatures are high. The solution is to locate the
battery at a point on the mounting plate which is more responsive to the

operating temperature of the heat pipe than to the spacecraft structure.

Figure 3-23 shows the temperatures resulting from the configura-
tion described in Figure 3-22. As indicated, the heat pipe operates well
over a wide range of high structural temperatures. However, its opera-
tion at low structural temperatures is only fair over a relatively small

range.

The limited analysis performed demonstrates the feasibility of the
heat pipe for battery temperature control under high ambient temperatures.
Several other considerations become evident, such as, the consideration
of optimum battery support location relative to the mounting plate, the
choice of pipe material dimensions, and the choice of radiator size and
parameters. It is evident that for even the simplest of circumstances
there are many parameters which must be considered before an optimum
design can be specified because the heater is useful only over a small

portion of the environment range.
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BATTERY TEMPERATURE (°F)

200

NOTES:

1) BATTERY SUPPORT IS A 4" DIA. NARROW CIRCULAR BAND
LOCATED CENTRALLY ON A MOUNTING PLATE

2) HEAT PIPE KA/L (INOPERATIVE) =8 BTU/HR - °F

3) TEMPERATURE GRADIENTS BETWEEN HEATER, BATTERY,
AND SUPPORT ASSUMED NEGLIGIBLE

160

120

80

40

Figure 3-23.

80 120 160 200 240 280
AMBIENT TEMPERATURE ~°F

Battery Temperature as a Function of Ambient Structural
Temperatures Using a Heat Pipe for Temperature Control
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It is concluded that, in principle, the heat pipe is an excellent means
for depressing the temperatures of the battery environment if the ambient
temperature is high. However, since performance at low ambient tem-
peratures is limited, it is considered if the units are coupled with a tem-
perature controller, control could be extended to lower ambients and thus
wider ranges would be possible than with a simple heater alone. Unless
such a controller is justified, it seems doubtful that both a heater and a
heat pipe would be required over smaller ranges; either a heat pipe or

a heater being adequate by itself for most situations.

3.3.3 Uses of Insulation

An extensive analysis was conducted to illustrate the uses of multi-
layer reflective insulation. Results indicated that insulation alone pro-
vided essentially one-point thermal control unable to tolerate significant
deviations from a design point. It was further shown that with the addi-
tion of louvers for temperature control the tolerable range of environment
was widened considerably. Finally, it was demonstrated that even further
improvement was possible if a heater was added, as well as the louvers.

The following comments related to figures illustrate these points.

Figure 3-24: Maximum Rate of Insolation as a Function of Distance
from the Sun — The availability of solar energy decays
rapidly with distance from the Sun. At greater
distances, very little solar energy is available for
any purpose.

Figure 3-25: Approximate Transit Times versus Distance from the
Sun — At greater distances, long mission durations
accompany the lack of solar energy. A preferred
heat source is one which is independent of distance
or time, i.e., a radioisotope or a primary power
system heating increment.

Figure 3-26: Variation of Conductivity of Instalied Muitipie Layer
Reflective Insulation as a Function of Number of Re-
flective Layers — The efficiency of insulation is
limited by practical difficulties encountered in instal-
lation. If some insulation is good, more insulation
is not necessarily better, particularly in view of the
joint heat leaks which become significant when the
insulation k/f{ becomes small. Compensation for
these undesirable effects can be provided by a heater.

Figure 3-27: Temperature Effects on Multiple Layer Insulation - The
temperature level, as well as the temperature

3-97



INSULATION (BTU/HR-FT?)

500

400

300

200

100

Figure 3-24,

2 3 4 5

DISTANCE (AU)

Maximum Rate of Insolation as a Function of
Distance from the Sun
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K/ {(BTU/HR-FT2-0F)

NOTE: VACUUM CONDITION

0.015

0.010

0.005

Figure 3-26,

5 10 15 20
NUMBER OF LAYERS

Variation of Conductivity of Installed Multiple
Layer Reflective Insulation as a Function of
Number of Reflective Layers
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NOTES:
1) VACUUM CONDITIONS
2) BLANKET COMPOSED OF 9 ALTERNATE
LAYERS EACH DEXTER PAPER AND ALUMINUM FOIL

.030
o A0
Ny
e

.025 coW
APPARENT il
THERMAL
CONDUCTIVITY
BTU
HR-FTZ - °F .020

.015

0 50 100 150 200
HOT LAYER TEMPERATURE (°F)
Figure 3-27.

Temperature Effects on Multiple Layer Insulation Blanket
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difference, affects the performance of multilayer
insulation. In a vehicle operating at various
distances from the sun, this effect may be of
significant and undesirable magnitude.

Figure 3-28: Net Heat Loss from a Spacecraft Caused by an
Uninsulated Area - The spacecraft must comm-
unicate with or through its external environment,
as by antennae, sensors, or experiment apertures.
This necessity combined with attachment of the
insulation to complex surfaces and joints usually
results in localized areas that are insulated
poorly, if at all. Inspection of Figure 3-28 shows
that these areas could easily lead to intolerable
heat losses in a low powered spacecraft. A
radioisotope heater could make up for these losses
in a direct manner, where most required.

Figure 3-29: Control of Radiant Heat Flux by Louvers -
Approximate performance data is presented based
on the current Pioneer vehicle design. For a tem-
perature increase from 40° F to 100° F, heat
rejection increases by a ratio of 5:1.

Figure 3-30: Size and Power Effect on Internal Temperatures
of Insulated Spherical Spacecraft - Temperature
control of low powered spacecraft by insulation
alone, although adjustable to provide satisfactory
internal temperatures at a given distance from the
Sun, will result in unacceptable temperatures at
different distances. The addition of a simple
louver system can afford substantial improvement
in control if the spacecraft is properly oriented.
The further addition of a heater may be necessary
to obtain the degree of control required, depending
on vehicle size, insulation efficiency, and distances
from the Sun. The temperatures of large space-
craft are more difficult to control than those of
smaller ones. A small vehicle with a louver/heater
system can cope with greater distance than the
same system in a larger vehicle. However, con-
sideration of practical aspects of insulation reveal
a greater extreme in heater requirements as shown
in Figure 3-30, particularly for smaller spacecraft.
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HEAT LOSS (WATT/IN?)

0.2

0.1
0
NOTE:
1)  UNINSULATED AREA HELD AT
A CONSTANT TEMPERATURE
OF 70°F
-0.1 2) UNINSULATED AREA RECEIVES -
MAXiMUM RATE OF INSOLATION
3) AREA THERMAL RADIATION
PROPERTIES: at/€ = 0.8/0.8
-0.2
-0.3
-0.4
-0.5
1 2 3 4 5
DISTANCE (AU)
Figure 3-28. Net Heat Loss Caused by an Uninsulated

Area in a Spacecraft
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Figure 3-29.
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Control of Radiant Heat Flux by Louvers
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TEMPERATURE - °F

NOTES: [) SPACECRAFT INSULATION CONSISTS OF 6
ALTERNATE LAYERS EACH OF ALUMINUM
FOIL AND DEXTER PAPER.
2) EXTERNAL = 0.15/0.05.
3) AVERAGE CONTINUOUS LOAD IS 10 WATTS .
4) REFERENCE APPENDIX C.3 FOR MODEL DESCRIPTION

20" DIA. SPACECRAFT 60" DIA. SPACECRAFT
400 COMPLETELY INSULATED COMPLETELY INSULATED
300
\
200 ~

100 \
N

-100

LOUVERED TO OBTAIN 100°F AT 1.0 A.U.

100 ——

-100

-200

AS ABOVE PLUS 10 W HEATER

100 p=——x= \
0
\
N~
-100
-200
1 2 3 4 5 6 1 2 3 4 5 6

DISTANCE - A.U.

Figure 3-30, Size and Power Effects on Internal Temperatures of
Insulated Spherical Spacecraft
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General Comment - Batteries are generally less tolerant of low
temperatures than other electronic equipment, therefore, in
applications where spacecraft heating is required, it will
usually be advantageous to locate the heater at the battery,
since less heat is needed, better control of battery temp-
eratures is obtained, and useless heating of other equip-
ment is minimized. It has been demonstrated, thata 22°C
10-watt heater can readily maintain a typical battery at 4°~€
above its immediate environment.

From the background of the preceding information, it is possible to
construct a general power-size relationship for a class of spherical, rela-
tively well insulated spacecraft of the type considered. Figure 3-31 depicts
the relation between vehicle size, average power level, and mission dis-
tance. Given any two of the three variables, the third can be determined

within the ranges considered.

It is shown that the temperatures of relatively small spacecraft can
be controlled over long distances with a modest quantity of power. As the
spacecraft size increases, temperature control generally requires a sub-
stantial increase in power. The addition of a battery heater to make up for
any power deficiency would have three beneficial effects:

a) Directly increase nominal spacecraft range as
shown in Figure 3-31.

b) Permit the battery to be operated at temperatures
appreciably above the local levels.

c) Assuming that other spacecraft equipment can
operate satisfactorily at temperatures of less
than 4© C, an increase in distance or reduction
in power can be obtained.

3.3.4 Temperature-Controlled Battery Installations
and Performance in Space

Analyses were made on four applications of heated battery insta-
llations. The analyses considered two applications of the device described
in Section 5, one application of a closely related device, and an application
of a heater and louver system. Brief and simplified analyses represent

typical performance data on the operation of a radioisotope battery heater.
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NOTE:
1) S/C INSULATION - - 6 ALTERNATE LAYERS EACH, ALUM FOIL
AND DEXTER PAPER, K/f = .021 BTU/FT2 - HR - °F
' EXTERNAL /€ = 0,15/0,05
2) TEMPERATURE AT 1.0 AU = 100°F
3) TEMPERATURE CONTROL BY LOUVERS. LOUVER AREA &
0.03 SQ. FT. /WATT, LOUVER WT=2.8 LB/SQ. FT.
140 .
N © N )
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‘V.
120 -
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< I L
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Figure 3-31. Power to Size Requirements for Spherical Spacecraft

SPACECRAFT DIAMETER (INCHES)

Above 400F
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Battery temperatures were maintained within the approximate
range of 4° C to 38° C in a simulated spacecraft environment that varied
from -21° C to +24° C. The battery heater ratings were assumed to range
from 10 to 30 watts. The heaters were further assumed to be powered by
radioisotopes, and thus could not be turned off. In addition to maintaining
suitable battery temperatures in the midst of low ambient temperatures,
the heaters also delayed the formation of a low temperature environment.
The extent of this effect, however, could not be calculated since specific

spacecraft designs and missions were not available.

Unless a direct path to the external environment is available to
the battery heater, the interior of the spacecraft is also heated and must
be utilized for ultimate rejection of all or much of the battery heater out-
put. Numerous thermal interactions, most of which are unrelated to
battery operation, determine the overall battery environment; no general
definition of the interaction of the battery heater and spacecraft equipment
could be firmly specified. It was assumed that the maximum environment
temperature was about 100° C, but the circumstances determining this
level has not been defined. It was further assumed that it is desirable to
operate the battery above 4° C when the environment is below that temp-

erature.

The battery configuration considered is shown in Figure 3-32. Of
the four battery/heater configurations studied, No. 1 is identical to that
of Figure 5-1 in Section 5. The remaining configurations are shown in

Figures 3-33 to 3-35.

Table 3-13 provides the results of the study. Minor heat transfer
paths, such as by conduction through insulation caps or titanium rods of
small diameter were not considered, since they account for the transfer
of less than 1 watt under the worst condition, and somewhat less under

more favorable conditions.

Considering the configurations in turn, the following comments
are made. Configuration No. {, (Figure 5-1) is best suited for situations
requiring extensive heating of the mounting platform under all conditions,

thus requiring a relatively high heater power rating. A tolerable lower
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Figure 3-33. Schematic Diagram of Configuration No. 2 Battery Installation
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environment temperature would be considerably higher with a heater of

lower rating but identical in size.

Configuration No. 2 (Figure 3-33) is a variation of Configuration
No. 1 in which the mounting attachment is made to the battery pack rather
than to the hot plate. Although a heater with less power is used, its per-
formance is somewhat superior to the higher-powered heater of Config-
uration No. 1. As indicated previously, however, apparent superiority
may not be true on a complete systems basis. It is also noted that Con-
figuration No. 2 tends to distribute heat to more remote areas than Con-

figuration No. 1.

Configuration No. 3 (Figure 3-34) is thermally equivalent to Con-
figuration No. 2, with respect to the battery. Thermal contact is estab-
lished by fluid pressure, rather than by spring force, resulting in a simple
construction. These features are believed to be advantageous and a Dis-

closure of Invention covering Configuration No. 3 has been submitted.

Configuration No. 4 (Figure 3-35) is not related to the other three,
except for the presence of the heater. Itis, however, presented as an
established method of rejecting the heater output directly to the space
heat sink without intermediate heating of the spacecraft when temperature
levels are high and the louvers fully opened. Conversely, when tempera-
ture levels are low, the louvers are closed and most of the heater output
is directed to the spacecraft structure adjacent to the battery. As long as
this adjacent structure is maintained above 4° C, the battery temperature

will tend to be about equal or slightly higher.

In typical spacecraft structures, regions remote from the battery
could be considerably colder than 4° C under the circumstances, possibly
less than -18° C. In the absence of specific deta1l, however, these remote

temperatures cannot be further defined.

Batteries can readily be maintained at temperatures of 4° C to
38° C in a spacecraft environment that ranges from -21° C to +33° C, by
the use of radioisotope heaters ranging in power output from 10 to 30
thermal-watts. Either bellows-type or louver temperature controls may

be used.
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It should be noted that the environmental temperature limits quoted are
derived from conservative preliminary assumptions concerning controller
design features. A thorough design study would extend the tolerable range

of environment, particularly at the lower limit.

The results of a detailed analysis of battery temperatures are
shown in Figure 3-36. The lower temperatures show the system working
just below the limits of its control capacity. The higher temperatures
are at a point within the control range, and indicate the cyclic action of
the controller. It is estimated that the cyclic action indicated is exag-
gerated in amplitude as well as frequency, because of certain simplifi-
cations which were employed in the analysis to avoid computation cosis

not warranted for purposes of demonstration.

The recommended placement of the hot plate is between the battery
and the mounting platform. It is also feasible to place the battery between
the hot plate and mounting platform, but investigation has shown that this
arrangement leads to undesirable battery temperature gradients and is

less responsive to the ambient environment.

3.3.5 Heated Battery Configuration for Terrestrial Applications

Batteries heated by radioisotopes is a suitable method for terr-
estrial applications if satisfactory solutions to non-thermal problems
are available. The applications consist basically of either operation or
standby in frigid climates or other adverse temperature conditions.
Specific applications which might be considered include military aircraft
or automotive equipment, oceanographic and special-purpose buoys, and

meteorological data stations.

A thermal analysis has been made of a heated battery system
employing a 30-watt heater and the temperature control system described
in Section 5. The basic battery pack is shown in Figure 3-37. The battery
is assumed to be insulated and mounted as shown in Figure 3-38. The

temperature control details have been omitted from the illustration.

At an ambient temperature of 24° C, the maximum battery temp-
erature will be approximately 38° C. At any given low ambient temperature,

the battery temperature is influenced strongly by the detail design of the
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standoffs shown in Figure 3-38. (At high ambients the standoffs have a
smaller effect.) Table 3-14 lists battery temperatures for an ambient of
-50° C, considering several standoff designs. The temperature controller
will, of course, maintain a relatively constant intermediate battery temp-
erature over a range of ambients, as determined by the controller set

point. This is illustrated by Figure 3-39.

If a radioisotope-heated battery can be adequately shielded, or if
the level of radioactivity is low, many terrestrial applications are possible.
The life of isotope fuel in the battery heater may exceed that of several

batteries, and when necessary, the fuel can be replaced readily.
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Table 3-14., Battery Temperatures in an Ambient of -50° C
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)
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C. DBATTERY TEMPERATURES

MAY BE ADJUSTED FOR OTHER AMBIEN'{)S BY
ADDING THE DIFFERENCE BETWEENWN A GIVEHN AMBIENT AND —50 C.
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Figure 3-39. Battery Temperatures Using an Active Thermal
Controller and a Radioisotope Heater

3-118




3.4 SELECTION OF HEATED BATTERY SYSTEMS3
FOR MODEL ANALYSIS

This paragraph presents a brief summary of the analyses conducted
to select the battery system and battery system components to be imple -

mented into a model for further study.

3.4.1 Mission Considerations and Tradeoffs

Table 1-2 and Section 2. presented summaries of potential
missions which might be considered for low temperature battery appli-

cations, Of these missions it was decided to consider the following

for analysis:

a) Asteroid belt probe (deep space probe)
b) Jupiter flyby

c) Mars lander

d) Mars hard lander

e) Mercury probe and lander

f) Solar probe

After investigating these missions further in the literature search

and industry survey, it was found that the solar probe was not applicable.

The Mercury dark-side lander, a preliminary analysis of which
is reported in Section 2., was re-examined in depth as a possible
application for heated batteries. It was concluded that the problems
associated with defining a functionally sound vehicle were so complex
that relatively detailed assumptions and analyses concerning a heated

battery could not be justified.

In Section 2. it was stated that, for a simple Mercury lander
which approached the planet behind a sun shield, transit and planetary
conditions would be ideally equivalent, and an insulated sphere was
selected as a lander configuration. It was further noted that this
scheme was highly arbitrary. These points, and others, will now be
-considered further,

Figure 3-40 shows the hot-side temperatures (approximate) of

two simple Sun shields in the vicinity of Mercury. Temperatures at the
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perihelion (0. 31 AU) and aphelion (0.47 AU) of Mercury are presented.

Specifying surface properties that are reasonably stable (& = € = 0, 8),
the shield temperatures will range from 260° C to 425° C, depending

on configuration and distance from the Sun. Corresponding spacecraft
surface temperatures are lower, but there will be temperature potential
of several hundred degrees Fahrenheit forcing heat into the payload; the
resultant heat flux can be 20 to 50 watts, Internal dissipation forms

the balance of the spacecraft heat load, and is probably of the same

magnitude as the solar load.

In considering the mechanics of landing, it seems advisable to
approach the planet in its shadow for a considerable distance to avoid
exposing spacecraft surfaces to sunlight during landing maneuvers
(hot spots of 650° C could develop). Whatever precautions must be
taken to protect against impact damage add to the complexity of the

landing problem.

A thermal control method (other than Sun shields) which may be
employed is the application of massive thicknesses of fligh-temperature
multi-layer insulation. An insulation material consisting of alternate 1
layers of nickel foil and quartz fiber paper has been tested by the Linde
Company at temperatures up to 1200© C, The approximate weight re=-
quired to reduce solar heat loads is 5 1b/sq ft. If the insulation is to
be effective, on a planet as well as in space, additional thickness and
weight of insulation may be required because of thin atmosphere.

The temperature control system would have to adjust from an external
temperature in space of approximately 260° C, to one on the planet of

perhaps -240° C. Thermal control employing these methods is con-

A reasonably complete outline of a Mercury landing mission, and
the spacecraft or capsules r equired to accomplish it, is considered to
be beyond the scope of the present study. Consideration of a heated
battery for this mission, beyond what has already been done, seems

unjustified at this point,
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In reviewing the remaining missions, it was apparent that the
Jupiter flyby mission and asteroid-belt probe missions were essentially
the same. It was therefore decided to perform a model analysis of the

three following missions:

a) Jupiter flyby (deep space probe)
b) Mars soft lander

¢) Mars hard lander
These models are discussed in detail in paragraph 3.5.

In selecting the models it was necessary to consider various tradeoffs
in power system design in order to select the designs which would meet
the requirements for heated-low temperature batteries in general, since
the scope of the study could not possibly consider all designs. As part
of these tradeoffs, a comparison was made between heating costs versus
heater power requirements versus various methods of obtaining the
heater power. Figure 3-ll is a chart indicating this cost tradeoff.

A second tradeoff was made to compare the weight advantage of the

different types of heaters. This tradeoff is shown in Table 3-12.

When it became apparent that the major competitive heaters were
electrically powered type using excess power from the power system and
radioisotope heaters, a continuation of the tradeoff study produced a
comparison of the weight advantage of using direct radioisotope heaters
versus electric heaters for several different power requirements. This
study was based on the information presented in Figure 3-32 in the form
of a generalized power-to-size requirement for a spherical spacecraft.
Again the tradeoff was general in nature, because many innumerable
tradeoffs are possible by varying designs. The last tradeoff made was
to consider the availability of heat as the situation demands. In the
case of deep space missions where the temperature is continuously
decreasing, heat could be obtained from a steady-state heat source
because the power system would experience power source degradation
and an increase in the amount of power required to heat the entire
spacecraft over time. Therefore, there is a high probability that the
power available from a primary power system will be very limited at

the end of deep space missions.
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In evaluating lander missions, availability of power from the

primary power system to heat the battery is usually not possible during

periods when the battery should be heated because the spacecraft

or lander vehicle is cold and not illuminated. If an rtg is used

to supply the power, there may be enough power available; however,

it may be more desirable to add a separate heat source available
during these periods to reduce the size of the primary power system
and avoid having to carry up to.one hundred times the radioisotope,

in the primary power system, that would be required as a separatc
source to heat the battery. For hard landers, the difficulty in using
the power system as a heat source is even more apparent because

the power source should be small and might even be the battery itself
in order to stand the shock of landing. On the basis of the above
arguments and the above studies, it was concluded that the models to
be developed in the study would be restricted to those utilizing constant
heat sources and that, until advanced technology is available on batteries
to withstand freezing and on chemical heaters to operate in extremely
cold environments, no further consideration should be given to short
period heating studies because such heaters are generally not

adaptable to most space missions.

3.4.2 Battery Specifications

From the technical analyses conducted in the above paragraphs
the battery selected for analysis in the model was defined as follows:
a) The battery would be a secondary battery, probably
of the nickele=cadmium or silver-cadmium type.

b) The thermal conductivity of the battery should be on
the order of 25 Btu/hr-ftz-oF to minimize the temperature
differentials within the battery and to provide for balanced
cell operation.
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c) Battery construction should be such that the battery would be
mounted to a baseplate. The battery would be an integrated
thermal design structurally capable of withstanding the
dynamic environments epecified in paragraph.3.1. 3, and
capable of restraining each individual cell to intercell
pressure differential levels of 250 psi minimum.

d) The battery selected should conform with the whr/in3
nomograph specifications shown in Figure 1.3,

e) The battery selected should not require remote
activation in space and should be capable of
continuously operating on the bus to supply load
transients and bus regulation if necessary.

3.4.3 Heater Specifications

The heater design selected for detailed model analysis would be a

radioisotope heater utilizing either Pm-147 or Pu-238 radioisotopes.
The sources would be mounted in a heat sink capable of being applied to
the bottom of the battery. The heat source should provide for varying
the amount of heat installed in the heat source from 5 to 50 watts. If
an electrical heater is used, it must supply heat in accordance with the

same specifications as the radioisotope heater.

3.4.4 Thermal Controller Specifications

Thermal control specifications to support the above heaters are of

two types:

a) Thermostatic control switch which controls an
electrically heated thermal blanket would be required
for electrical heating. This type of switch is a
standard item used on present spacecraft designs,

b) To use a constant heat source such as a radioisotope,
a thermal switch would be required to regulate the
transfer of heat from the battery to its spacecraft
mounting surface. This controller should be capable
of varying the thermal conductivity across the mount-
ing interface from near zero to about 2 Btu/hr-ft2-° F,
This thermal switch should connect the battery to its
mounting surface when the battery becomes too hot
_(above 30° C) and should be capable of isolating the battery
from its mounting surface at any temperature below 5° C.
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3.4.5 Design Configurations

The design configurations selected for analysis is shown in
Figure 3-41. The figure shows the overall battery design, the heat
block design concept, a typical standard spacecraft battery design,
and a thermal control element, The models discussed in the next
paragraph in general make use of this basic design concept. Several
analyses were conducted to determine the proper arrangement of these
elements such as placing the heater on top of the battery and placing
the heater below the thermal controller., However, none of the
arrangements performed as well as the one selected, as defined in

the technical discussion in previcus paragraphs.
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3.5 MODEL ANALYSES

The following discussion summarizes the model analyses which
were conducted to verify feasiblity of the design concepts selected.
In general, the models demonstrated feasibility and established design
parameters for a low temperature battery.

3.5.1 Deep Space Probes (Analyzed in terms of a Jupiter flyby
configuration

The thermal capabilities of a particular spacecraft configuration,
described in Figure 3-42 were examined to determine if deep space
probes were for heated batteries. A temperature control system, de-
vised for the purposes of this study, is shown in Figure 3-43. In this
control system, the power versus size relationship to maintain
specific moderate internal temperatures is shown in Figure 3-44.
When the 100-watt power system design outlined in paragraph 3.1 was
superimposed on this model, it was found that no heater would be re-~
quired for the battery unless the battery was located in a local cold
spot area. However, for larger spacecraft or lower power missions,
Figure 3-44 establishes the expected crossover points where heaters
would be required., Note: Figure 3-32 previously discussed is an
extension of this concept for deep space probes using spherical space~

craft,

From these analyses and models, it was concluded that for deep
space missions battery heating may not only be highly desirable but
it may also be absolutely necessary for certain types of vehicles.
The heat may be provided directly and with the least dependence on
other spacecraft systems by using radioisotope heating sources sized
either toc heat the whole spacecraft system to a minimum battery
operating temperature level or to provide a differential temperature
between the spacecraft platform and the battery to maintain the
battery within its useful operating temperature range within the
spacecraft.

3-127



RTG
(3 PLACES)

DISH ANTENNA
EQUIP'T COMP'T
IN CENTER

Figure 3-42, Jupiter Flyby Configuration Selected for
Model Analysis

3-128




MULTILAYER INSULATION

INTERIOR COMPARTMENT
INSULATION

SUN-SENSING LOUVER
OVER-RIDE (2 PLACES)

EQUIPMENT
PLATFORM

/- LOUVERS (2 PLACES)
[ 1]

/

Figure 3-43. Section View of a Jupiter Flyby Vehicle,
Showing Temperature Control Components

3-129



POWER~WATTS

PRESENT DESIGN POINT\
100

INTERIOR TEMP = 40°F

80
REGION OF EXCESS
AVAILABLE HEAT
AT 5.2 A.U.
60 /
40 //
20 /
y REGION OF
HEAT DEFICIENCY
AT 5.2 A.U.

0 20 40 60 80 100
DIAMETER ~ INCHES

NOTE: REFERENCE DIMENSION
IS EQUIP'T COMP'T DIA.

Figure 3-44. Estimated Thermal Power Requirements for

Jupiter Flyby Vehicles

3-130




3.5.2 Soft Landers (Spacecraft Concept)

The temperatures of a battery in a Mars surface capsule similar to
that outlined in Section 2. of this report were analyzed in greater detail
using a computer model in conjunction with the TRW thermal analyzer
program, which is processed on the IBM 7094 digital computer. The
equations defining a thermal dynamic system are converted to an
analogous rc network which reflects the lumped parameter, finite
difference approximations that must be made in order to arrive at a
practical method of solution. Although the basic program is fixed in
form and general in nature, the specification of given networks was

unique for this case. An example of the thermal network employed in

w
¢

the analysis of the Mars soft lander is shown in Appendix C.

Figure 3-45 shows that even in a vehicle with low average power,
a battery heater of 7.5-watt capacity is capable of maintaining satis-
factory battery temperatures under cyclic ambient conditions such as
would be encountered on Mars. Of particular interest is the relation-
ship of the battery and platform temperatures for a 7.5-watt heater.
It can be seen that the average of the times at these two temperatures
would be nearly constant. It is also interesting to note the performance
of the battery with no heater and with excessive heat. With the addition
of a controller in conjunction with the heater to act as a thermal switch,
tying the battery to the platform when the battery temperature exceeds
a preset minimum temperature (in this case, 6° C), the battery tem-
perature can be maintained above that of the platform and a heated
battery without a controller by a significant amount. It was concluded
from this analysis that heating a battery in a soft lander spacecraft
was definitely feasible and may be absolutely necessary. This model
analysis was performed on a low power vehicle using the hattery speci-
fications indicated in Table 3-1. If the battery size or the spacecraft
size was increased without a power level increase, heating would become

imperative.
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3.5.3 Hard Landers (Battery Package Concept)

The analysis performed to study a single battery package concept
was that of a Mars hard lander (Figure 3-46). This system was devised
as a structurally stronger but thermally poorer configuration than the
Mars soft lander previously considered. In fact, this configuration might
be one which would be similar to a standby battery configuration, a
surveillance experiment or guidance beacon configuration. It was
assumed that fragile louvers had to be replaced by a bellows system
for thermal control and that the interior of the capsule could not be as
thoroughly insulated from the external environment as the previous model
due to structural requiréments. As a further restriction, it was assumed
that the battery heater must be capable of maintaining thermal survival
of the battery without depending on heat from any other source. The
design, shown in Figure 3-41, provides two bellows —one to control battery
temperature and the other to control overheating the hot plate. In
addition, a heat accumulator between the battery and heater provides a
further damping action to restrict battery temperature fluctuation. Both
the bellows and the accumulator employ substances undergoing phase
changes within the temperature ranges encountered. The thermal network
employed as the model for this analysis is shown in Appendix C. The
temperatures which this system maintained using a 30-watt radioisotope
heater are shown in Figure 3-47. Battery temperatures are held between
34 and 52° F while the ambient temperature fluctuates between -100 and
+77° F. Heater temperatures were kept at moderate levels. From this
analysis it was demonstrated that using a constant heat source in a hard
lander, which is essentially uninsulated in a cyclical environment, is
feasible. It should also be noted that no other method of providing for
the maintenance of operating and surviving temperatures could be found
for this application. Without proceeding into more detailed analysis,
but by comparing these results with those specified in paragraph 3.1,
wherein an analysis was made of the amount of heat required to keep
the battery warm in extreme low temperatures, it was concluded that
this system could be extended with some refinements to environments

as low as -300° F.
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Figure 3-46, Temperature Control Features Components of a Mars Hard Lander
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3.6 SUMMARY OF PHASE II WORK

During the Phase II analysis, the system requirements for a
low temperature battery were reviewed, defined, and condensed to the
point where they could be used for the development of a low temperature
battery system. Included in the system requirements analysis were
analyses of battery requirements per se, system thermal requirements,
dynamic environmental requirements, power requirements for various
types of systems and missions, availability of power for heat, and
activation and startup. Once the system requirements were established,
detailed analyses were then conducted on heat sources. The heat sources
which appeared to be good for low temperature battery missions were
isolated and defined: these were radioisotopes; electrical heaters using
primary power system energy; and, possibly, chemical cartridge heaters
for short interval warmup periods. Limits of technology were also
defined.

Thermal control analyses were conducted in some detail because
the technology has not been extensively developed, other than insulation,
for this particular type of application. .Several new systems were defined

and disclosed as new technology.

Once the above analyses were completed, heated battery systems
were selected for detailed analyses in empirical and computer models.
Selection considered mission tradeoffs and mission requirements;
battery specifications; heater specifications; thermal control specifica-
tions; and, finally, preliminary design configurations. The selection

of a heated battery system concept was successfully accomplished.

Once the system concept had been selected, model analyses were
conducted using the basic concept in a simulated deep space probe model,
a simulated hard lander (battery package concept) model, and a soft lander
(spacecraft concept) model. The results of the analyses with the models
in advanced reiterative computer processes demonstrated not only the
performance of the models within the limits defined but also the feasibility
of operating a heated battery system at very low temperatures, in
configurations which are also compatible with the normal anticipated

warmer environments which would be encountered in the near-earth part
of the mission or during warm portions of cyclical temperature environ-
ments.
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4. DEVELOPMENT PROGRAM DEFINITION

The development program required to provide the technology nec-

essary to design a battery for very low temperature space environments

(-73 to ~143° C) is outlined below. The outline was developed based on

the findings of the literature search and technical analyses detailed in

this report.

a)

b)

c)

d)

The development program is premised on:

Preliminary design concepts developed in the study.

Anticipated pertinent space milestones derived from official
NASA reports through 1966 and estimated through 1975 by
members of the aerospace industry including TRW, articles
published in journals and periodicals, testimony by NASA
officials to congressional officials, and conclusions based

on NASA published documents. (The information presented is
considered the best available estimate as of March 1965.)

Projected development milestones required to meet the above
space milestones.

Areas of missing technology revealed by the study.

4.1 PRELIMINARY DESIGN CONCEPTS

The preliminary design concepts established by the study, which

were developed to meet future requirements for heated batteries operating

in low temperature space environments, are as follows:

a)

A low temperature battery system design will be required
which consists of a high thermal conductivity cell assembly
to optimize cell balance, a heater assembly which can be
readily assembled to a battery and loaded with variable
amounts of heat energy sources, a thermal control

switch which can control the rate of heat delivered to the
battery and the rate of heat loss from the battery in cold and
hot environments, respectively, and an insulated battery
system package which minimizes undesired heat losses

to the battery surroundings and through the battery
mounting interface. Figure 3-44 shows the system concept
pictorially.
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b)

Two concepts of battery operation are envisioned:

1) One method is to store standard activated or unactivated
batteries in an extremely low temperature environment
in the nonoperating condition, reheat them to operating
temperature, and use them for short term, end-of-
mission operation.

2) The second method is to maintain the battery continuously
on the line in a normal operating condition (the most
typical power system method of utilization).

c) Use of radioisotope heaters in low temperature battery

d)

e)

f)

g)

systems for long duration missions and continuous in-
service requirements.

Control of the rate of heat delivery from an external heat
source to the battery and the heat loss from the battery
through its mounting interface using an active thermal
controller which is compatible with any of the following
heat sources:

— Radioisotopes heaters
— Chemical cartridge heaters
— Electrical dissipative heaters

The battery environmental design should be such that the
environmental interface would be at the system level.
Therefore, the battery system would consist of all of its
components within one package isolated from its environ-
ment through the thermal controller and standoffs.

The battery system should be capable of operation with
minimum change in steady-state or decreasing temperature
environments to -185° C; the same system design should be
capable of operating in fluctuating temperature environ-
ments from +38 to -185° C or lower without damaging the
battery and with provision for maintaining the battery in

its normal operating temperature range of 4 to 38° C at

all times.

The battery cell assembly should consist of standard, sealed,
secondary space batteries (in rare circumstances reserve
batteries may be considered) which are assembled into an
integrated cell assembly which has a unifgrm thermal con-
ductivity of approximately 25 Btu/hr -ft¢-" F/ft as a minimum.
It is desirable to keep the temperature gradient across the
battery cells and from the top to the bottom within -6° C to
avoid damaging the battery during charging operations.




The above design concepts establish the general system design
which has been developed by this study. Several of the above concepts
require development of new technology before they can be implemented

into a low temperature battery design.

4.2 ESTIMATED PERTINENT SPACE PROGRAM MILESTONES AND
PROJECTED DEVELOPMENT PROGRAM MILESTONES SCHEDULE
This section establishes an estimated schedule of pertinent space
mission program milestones toward which a low temperature battery
design program should be directed. It is based on data from numerous
information sources including members of the aerospace industry,
, testimony of NASA

officials to congressional committees,and NASA published documents.

articles published in journals and pericdicals

Table 4-1 is a list of the missions which may require availability of

low temperature battery technology. The table shows the estimated
launch dates and an estimated technology need-date in order to proceed

with design.

From the above space mission schedule, the following projected
low temperature battery development program milestone schedule has
been projected. The milestones are presented in terms of a work
statement summary for each milestone and the sequencing of the mile-

stones is shown in Table 4-2.

a) Low Temperature Battery Storage. Determine, by testing,
the effects of low temperatures to -185° ¢ on standard
battery designs. Activated secondary, reserve, and
the unactivated reserve batteries should be investigated.
Objectives of the investigation should be life degradation,
catastrophic failure modes caused by freezing, warmup
problems, optimum methods of storage, and improve-
ments required in cell design or packaging.

b) Low Temperature Storable Battery Development. Based
on results of the above study, develop batteries that can be
stored for extended periods at low temperatures to -185° C.
Part of the development should include optimization of
warmup heating methods for the various battery designs.
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Table 4-1. Mission Milestones for Potential Low
Temperature Battery Applications

Technology Mission
Need Date Date
Planetary Missions

Lunar Lander 1966- 1967-
1968 1970

Lunar Beacon and 1967 1969-
Lander Experiments 1971
Mars Orbiter 1966 1969

Mars Lander 1971+ 1975+
Small Space Laboratory 1967 1970
Large Space Station 1970 1975

Probes

Pioneer, 1.2 au — 1965
Galactic Probe 1968 1971
Advanced Pioneer Mission 1967 1970
Near-Asteroid Probe 1969 1972
Deep-Space Planetary Probe 1970 1973
Far-Asteroid Probe 1971 1974
Jupiter Probe 1972 1975
Jupiter Flyby 1975 1979
Saturn Flyby 1979 1983
Comets 1971 1974
Mercury 1969 1972

Target Date for Low Temperature Battery Prototype:
(1) Storage battery with warmup heater - 1967

(2) Continuous operation design with constant heat source -
1968
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c)

d)

e)

f)

Low Temperature Constant Heat Source Studies. Develop
the technology required to establish the radiation attenua-
tion characteristics of various battery configurations and
types of batteries:

1) Test the radiation characteristics of Pm-147 and Pu -238
fuel capsules containing sources from 5 to 100 thermal
watts.

2) Evaluate radiation fields surrounding a typical radio-
isotope heated battery configuration for compatibility
with scientific experiments carried aboard the
spacecraft.

3) Evaluate compatibility of various heated battery con-
figurations in spacecraft mockups and determine
radiation levels and patterns.

4) Optimize geometry for battery design.
Low Temperature Constant Heat Source Development.

Develop a constant heat source battery heater and test
the unit for safety and heated battery system compatibility.

Thermal Controller Technology Development. Develop a
thermal controller capable of isolating a heated battery
system from the spacecraft structure at low temperatures
and capable of conducting the heat from a heat source and
from battery internal dissipation up to rates of approxi-
mately 0. 4 watt/in2 battery baseplate area during warm
periods of operation.

1) Study experimental controller configurations based
on the analyses specified in the study.

2) Study controller working fluids for compatibility with
the desired working medium performance.

3) Investigate various bellows design configurations.

4) Build and test optimized controller configurations
for compatibility with battery operation in steady
state and cycling environments as low as .185°C
Determine heat requirements experimentally to main-
tain acceptable battery operation.

Material Compatibility Study. Build several low temperature

battery packages and study the structural compatibility
problems of material interfaces, battery mounts, tempera-
ture cycling heat losses, etc., in environments to - 1859 C.
Optimize material selections to provide necessary design
information for actual flight hardware development.
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g)

Prototype Design and Development. Design, fabricate and
test at least two low temperature battery systems. One
system should contain a constant heat source for extended
periods of operation and one system should be developed
for low temperature storage and end-of-mission warmup.
The units should be tested for electrical, thermal, and
dynamic performance and life.

4.3 NEW TECHNOLOGY AREAS RECOMMENDED FOR INVESTIGATION

This study has shown the need for development of new technology

required to support low temperature battery design for future missions

as follows:

a)

b)

c)

d)

e)

To store standard batteries at extremely low temperatures
and reheat them tc cperating temperatures without damage
from freezing. Determine the present limits of technology
and establish the necessary information required to demon-
strate failure modes and degradation versus low tempera-
ture and duration of storage at low temperature.

To install radioisotope heaters in low temperature battery
systems for long duration missions. The major new tech-
nology requirements include good radiation field measure-
ments for batteries used as shielding devices and in con-
junction with spacecraft systems and components, effects
of radiation on sensitive instrumentation, and a design for
safe launch and re-entry which can be ysed in the battery
system concept described above.

To design a thermal controller switch device which can
actively control the heat distribution from an active heat
source to an isolated black box mounted in or on a thermally
conductive structure. The technology for accomplishing
this function in space has not been successfully developed

to the level required for the application.

To develop the materials technology required for mounting
the battery to a spacecraft structural system which is
flexing under the stress of fluctuating temperature environ-
ments from +38 to -185° C. The technology required to
fully evaluate this problem was not available for this study
and would be required for either a heated battery or an
electrochemical low temperature battery.

To evaluate the feasibility of warming batteries from cold
to normal operating temperatures with cartridge heaters.
ThlS study could find very little existing technology below
-52° C and startup technology at temperatures as low as
-185° C is nonexistent.
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f) To design a fully-integrated battery system as discussed
earlier in this report. The technology for accomplishing
higher thermal conductivity within the cell pack should be
extended; once the technology required to design heater
assemblies has been established, the technology for in-
tegrating the heater into the system must be evaluated
further; once a thermal control switch has been developed
which can control rate of heat to the battery and rate of
heat lost from the battery, it should be integrated with a
heater and battery to determine the extent of its capabilities
in low and high temperature environments anticipated in
space probe missions; and the technology for minimizing
heat loss through battery standoff mounts which must have
structural capability should be investigated further to
develop adequate mounting methods in the interface between
the battery system and the spacecraft.

This concludes the statement of new technology recommended for
investigation. If stated problems can be investigated within the develop-

ment milestone schedule outlined, it is reasonable to expect that a low

temperature battery is feasible and can be used for future space missions.




5. NEW TECHNOLOGY

New technology developed under this contract was limited to
theoretical disclosures and conceptual ideas, there being no testing

authorized for reduction to practice.
5.1 BATTERY TEMPERATURE CONTROLLER

The battery temperature controller is shown pictorially in Figure 5-1.
It is designed to maintain battery temperatures at specific moderate levels
in ambient environments that range in temperature from close to the battery
upper limits on the high end to extremely cold levels on the low end. In
particular, the device is intended for use under the hard vacuum, zero
gravity conditions experienced by spacecraft, although it can also function

in the presence of atmosphere or gravity.

By suitable arrangement of the heater and temperature control
mechanism, the unit (of which the controller is an element) may be used
not only to heat the battery but also to eliminate localized cold regions in

the surrounding structure.

The phenomenon employed to operate the controller for the
expansion of a material undergoing change from the solid to the liquid

phase. The advantages of the device are as follows:

a) The temperature controller is completely self-contained;
no remote actuator or external source of power required
for operation.

b) The controller can function either in a simple on-off
mode or as a proportional controller.

c¢) The unit (battery, heater, and temperature controller)
can be located in unattended, remote, or relatively
inaccessible locations for long pericds of time,

d) The controller is simple and rugged in design, employing
well-known materials and fabrication techniques.

e) The device can be used on other equipment that possess
relatively large, flat surfaces.



With reference to Figure 5-1, the controller operates much like a
common vise, one jaw of which is the battery, the other is the heater.
The bellows are filled with a material such as benzene, which is a solid
at temperatures below 6°C. At higher temperatures, benzene melts to
form a liquid occupying 13.3 percent greater volume than in the solid state.
Using either suitable bellows design, or spring restraints, the bellows

are thus contracted when cold, and the battery is pressed against the hot
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/ PLUNGER YOKE
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~—7
(o] o]
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Figure 5-1. Bellows-Actuated Battery Temperature Controller

5-2




plate by means of the plunger and yoke. When heated, the bellows expand

and the battery moves away from the heater.

By placing either a flexible, gas-filled diaphragm, a batt of multi-
layer insulation, or several small bellows of various extended lengths
between the battery and hot plate, a proportioning effect may be obtained;
thus, the rate of battery heating is in direct proportion to demand. If no

filler is used, highly damped on-off operation is obtained.

Undesirable heat transfer paths are minimized by extensive use of
insulation, low emissivity surfaces, and materials of low thermal

conductivity,

The configuration of Figure 5-1 shows a relatively large hot plate.
In this instance, the hot plate would be mounted directly to the spacecraft

structure, thus heating the structure as well as the battery.
The novel features of this device are as follows:

a) The bellows not only actuate, but power the temperature
control system.,

b) The heater need not be turned off at high battery
temperatures,

c) The inherent mode of heating is in proportion to demand.

d) Proper configuration allows heating of several batteries,
or other equipment, at differing temperatures by a single
hot plate at a specific design temperature.

e) The control system will operate either in space or on
Earth,

5.2 TEMPERATURE CONTROL DEVICE

Figure 5-2 shows the conceptual model of a device designed to
maintain batteries or other equipment temperatures at specific moderate
levels in ambient environments that range in temperature from close to
the equipment upper limits on the high end to extremely cold limits on
the low end. In particular, this device is intended for use in environments
experienced by a spacecraft, although it can also function in planetary or
terrestrial environments. In general, it is intended for use with heaters
that operate at a constant but otherwise uncontrollable power level, such

as a radioisotope-fueled hot plate.
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By arrangement of the heater equipment, thermal resistance
device, and mounting surface in series, the temperature difference
between battery and mounting surface is controllable if the thermal
resistance is controlled. In the present instance, when the environment
is cold, the resistance is high. When the environmental temperature has
increased to some specified level, the movement of a filled bellows de-
creases the thermal resistance, thereby reducing the thermal potential

required to transfer the fixed heat flux from the battery.

The general problem solved is the same as in the first disclosure.
The same physical phenomenon is employed, which is the expansion of a

material undergoing change irom the solid tc the liguid phase.
The following advantages are cited, with particular reference to the
preceding Battery Temperature Controller section:

a) Relative movement between battery and hot plate is
eliminated.

b) Pressure on heat transfer surfaces is obtained by
- expansion of material inside bellows, rather than
by spring action. Higher pressures can be obtained.

c) Unwanted heat losses from the hot piate are easier to
contain.

With reference to Figure 5-2, the only moving part is the assembly
consisting of the bellows and return springs. The bellows are filled with
a material such as benzene, which is a solid at temperatures below 6° C.
At higher temperatures benzene is a liquid occupying 13.3 percent greater
volume than in the solid state. The bellows assembly is thus pressed
against both the battery and mounting platform when the battery temper-
ature is above 6° C, promoting flow of heat to the platform. When the
battery (and presumably the surroundings) is relatively cool, the
are contracted ‘by the return springs, and the flow of heat is retarded,
being constrained to pass through the titanium pads which have a low

thermal conductivity.

A proportioning effect may be obtained by using several bellows,
filled with materials liquifying at different temperatures. With only one

bellows, simple on-off operation is obtained, although highly damped.
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Undesirable heat transfer paths are minimized by extensive use of
insulation, low emissivity surfaces, and materials of low thermal con-
ductivity. A heat collection plate can be used to eliminate internal hot-

spots, and to direct the flow of heat to the bellows.

Both this disclosure and the preceding disclosure were analyzed as
part of the computer model studies conducted under this contract. The

final results using this controller in a model are shown in Section 3.5.
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APPENDIX A

TRIP REPORT SUMMARY



TRIP REPORT SUMMARY

Two industry survey trips were made under this contract for the
purposes of establishing the state of the art of battery operation at low

temperature and obtaining information on nuclear heater technology.

The institutions visited and a summary of the results of each visit

are as follows.
NASA /GODDARD SPACE FLIGHT CENTER (2 September 1964)

NASA /GSFC was visited to investigate the latest technology in the
measurement of thermal characteristics of battery cells and to determine
the accuracies being achieved in this field. Thermal data accuracy is one

of the restrictions in the design of a low temperature battery system.

Major discussions concerned measurement methods of the rates of
heat generation in batteries and the relationship of such measurements
to the thermodynamics and kinetics of the cells. After a review of the
TRW Systems approach (separation into reversible heat, irreversible
heat, and heat generated by side reactions), it was suggested that this
approach was fundamentally sound, but that some difficulty might be
encountered in predicting the state of charge of the cell to relate the

instantaneous rate of heat generation to the stage of charge.

A review was made of the heat-generation-rate measurement
apparatus used by GSFC at the American University. This is a constant
temperature flow calorimeter designed to measure heat removed or sup-
plied to the working cell at constant temperature by using thermopiles to
measure temperature gradients in a moving stream of fluid of known mass
flow rate and heat capacity. Sensitivities of 0.01 to 0.05 watt are pos-
sible, depending upon the working fluid which must be varied with the

temperature range of operation.
Rough draft copies of two papers were obtained:
"Heat Effects in Nickel-Cadmium Batteries"

"Thermal Effects of Nickel-Cadmium Batteries, '
Electrochemical Calorimetry III




CATALYST RESEARCH CORPORATION (3 September 1964)

The Catalyst Research Corporation was visited to discuss their pro-

grams on pyrotechnic heating and catalytic combustion heaters.

Pyrotechnic Heat Powders Heating. These powders,usually consist-

ing of a metal powder, an oxidant, and inert materials, are fabricated in
the form of paper. Metals such as Zr, Al, B, etc., and oxidants such

as Ba.CrO4 are used to produce exothermic reaction heat. Inert materials
are used to hold the molten reaction products in place for greater uniform-

ity of heat distribution. Specific material compositions are proprietary.

By adding inert diluents of high heat capacity, or by adjusting shape,
etc., it is possible to slow the rate of propagation of the exoithermic
reaction; however, this also results in reduced reliability of initiation
and maintenance of the heat-producing reaction at low temperatures.
Burning rates of pyrotechnics are variable from 0.1 to 24 inches per
second. For practical purposes, pyrotechnic heaters for batteries are con-

sidered to be instantaneous sources of heat and therefore must be stored.

Pyrotechnic heating is mainly employed in fused-electrolyte bat-
teries, although CRC has used it in at least one other major application.
Efforts to heat liquid-electrolyte cells directly have not been extensive,
particularly where rapid heating is required, since heater surface tem-
peratures of 1,5000 C are normal with pyrotechnic heating. CRC has
devised an automatically activated battery for low temperature operation,
in which the electrolyte is propelled by a gas generator through a heat
exchanger into the cells. Heat is provided to the exchanger by thermal
compounds and the heating rate and electrolyte flow-rate must be coordi-
nated for adequate heating of the electrolyte without boiling. CRC
measured heat capacities and heat flow rates of significant cell components
as a part of this program and supplied a copy of the final report including
these data.

Catalytic Combustion Heaters. CRC has studied catalytic combus-

tion heaters and has found that the catalytic reaction is difficult to initiate
and maintain (at very low environmental temperatures). A catalyst con-
sisting of CuO-MnO2 (precipitation formed) is being used in the develop-

ment of a heater to maintain 10° C in a -54° C environment for one week.
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No weight or volume objectives of this program were stated. Liquid or

gaseous fuels and air would be used.
U.S. ARMY ELECTRONICS LABORATORIES (8 September 1964)

The USAEL was visited to discuss Army research in low tempera-
ture batteries and heating methods used in Arctic environments. This

technology could offer much potential for space applications as well.

For some time, USAEL has been involved in methods of battery
heating, principally for maintenance of battery performance in the
Arctic. They did investigate briefly the use of radioisotope heaters for
batteries (with Martin Company) but did not continue the study beyond
the early conceptual stages due to apparent hazards involved in handling
radioisotopes in the field. No quantitative data not already published

were available. (See 13th Annual Power Sources Conference Proceedings.)

USAEL is in the process of investigating liquid-ammonia electrolyte
batteries but considers them useful only as reserve batteries at the
present time or in the near future. Storage in the unactivated condition
is a problem at elevated temperatures due to the high pressure of

ammonia. Activated storage also presents deterioration problems.

USAEL is unaware of any research on present day plate-structure
batteries, in which batteries are frozen to the point at which the electrolyte
becomes fully solidified. USAEL has a battery heating program at Ww.D.
Little Corporation (reported later). Most work on heated batteries has
been reduced since the development of the portable waistcoat battery.

This battery is maintained at operating temperature by body heat.
ARTHUR D. LITTLE CORPORATION (9 September 1964)

The Arthur D. Little Corporation was contacted to discuss their
current contract with USAEL on low temperature batteries. This survey
was restricted to operation of primary batteries in the Arctic and covered
the entire range of heating methods from human metabolism through
fermentation, phase change, flame heating, etc., including an evaluation
of radioisotope heating. This evaluation, based on Sr-90 heat sources,

resulted in a weight of 700 pounds of shielding to render the battery




package safe. Pm-147 was also suggested (weight 2.6 pounds). Two of
the most promising techniques suggested by ADL are combustion heating
(with some difficulty in maintaining flame at low temperature) and elec-
tric heating (using battery power to maintain itself at operating tempera-

tures with resistive heaters).

ADL has made an extensive study of battery insulation and the effect
of insulation and battery properties on rate of cooldown. Spent batteries
were used in these investigations. An equation for calculation of battery
temperatures (based upon the assumption that the rate determining process
is based upon insulation effectiveness) was tested, and indicated good agree-
ment with individual cells, but poor agreement with measured battery

cooling rates.

One of the chemical heaters evaluated by ADL, which appears to
be useful in some circumstances, is one in which a cartridge containing
wet chemical reactants is actuated by allowing the reactants to mix. Two
types of these reactions are:

1) Oxidation-Reduction Reactions--aluminum and perchlorate--
organic compounds and permanganate

2) Heat-of-Hydration Reactions-=-CaO + H,O «— Ca.(OH)2

2

ADL did not know of any instance in which the modern plate structure
alkaline battery had been frozen solid, but did know of an instance in which

Leclanche's cells had been frozen and restored to service.

AIAA CONFERENCE (Philadelphia - 4 September 1964)

This conference was attended to obtain the latest research informa-
tion on thermal characteristics of batteries and to discuss the applicability

of this information.

No data were available on survival of present day plate structure
batteries after freezing solid, although it was generally considered that the
freezing of electrolyte would result in some deterioration of the structure

of the plate electrodes.



Discussions were held on the feasibility of battery temperature pre-
diction using theoretical calculations of heat generation rates, plus thermal
conductivity calculation methods set forth in a paper presented by Drs.
Shair and Preusse. It was considered that data presently available would
not be accurate enough and that a combination of calorimetric and tempera-
ture-coefficient measurements would be necessary to provide an adequate
estimate of the overall entropy of reaction for calculation of reversible
heats. These data are not available in the physical-chemistry literature

for all types of cells.
NASA LEWIS RESEARCH CENTER (10 September 1964)

NASA Lewis Research Center was visited to discuss the low tem-
perature battery program with its sponsors. In addition, up-to-date in-
formation applicable to this contract was obtained from the NASA Lewis

Center.

Specific information was made available on the low temperature
ammonia battery being dev-eloped by Livingston Electronics, as well as

more general information on other NASA Lewis Research Center programs.

During this visit, Mr. Unger of NASA Lewis suggested that TRW
Systems consider the following missions as part of the low temperature

battery study:

Mars Lander

Asteroid-Belt Probe

Jupiter Flyby

Mercury Dark-Side Lander
AEC HEADQUARTERS (Germantown, Maryland) (4 November 1965)
AIAA SECRET SESSION ON SPACE NUCLEAR POWER SYSTEMS

(Philadelphia, Pennsylvania)
MOUND NATIONAL LABORATORY (Miamisburg, Ohio)

Information was obtained on Pu-238 and Pm-147 fuel forms, encap-
sulation technology and availability. Capsule designs were also discussed.

A general program objective orientation was given at both AEC installations.

Classified information received is contained in classified

Appendix D.
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APPENDIX C

ANALYTICAL METHODS AND SAMPLE CALCULATIONS

This appendix is included to present certain analytical methods and
sample calculations used to derive technical data withinthe report,
The methods and calculations provide the reader with the means to

verify the work accomplished.

C.1 ANALYTICAL METHODS

The complex analyses herein required the use of the TRW
Systems Thermal Analyzer Program which is processed on the high speed
digital computer IBM 7094. The equations defining a thermodynamic
system are converted to an analogous rc network which reflects the lumped-
parameter, finite-difference approximations that must be made in order
to arrive at a practical method of solution. Although the basic program
is fixed in form and general in nature, the specification of any given net-

work may be unique, as has been the case in the study.

An example of the thermal network reflected in the analysis of the
Mars Hard Lander is shown in Figure C-1. The network constraints are
further defined and established in Table C-1. Similar models were de-
signed for the Mars Soft Lander and Deep Space Probe missions. The
thermal response of the sample systems to a cyclical varying environment
or a trend change in environment was calculated using the IBM 7094
analyzer with numerous mathematical iterations. The results of these
mathematical iterations are temperature histories as displayed in Section 3

of the report text.
C.2 DERIVATIONOF THERMAL HEATING REQUIREMENTS

The following sample calculations including equivalent thermal
network (Figure C-2) were used to derive Figures 3-4, 3-5, 3-6, and
3-7. The calculation of radiation losses were shown to be negligible;
calculation of conduction losses which were significant to this problem
are reported. Two environments were considered, -20° F and -300° F,
because the mission studies performed concluded that these two tempera-

tures were applicable for a battery mounted within an operating spacecraft
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Table C-1. Network Nomenclature and Explanation

Legend

A~
—O—
—Z
+

Resistance No.

1

>

10

Thermal resistance, fixed value

Variable thermal resistance, single
variable

Thermal radiation resistance, two
variables

Fixed thermal capacitance, finite value
Variable thermal capacitance

Thermal capacitance, infinite value

Description

Convection spacecraft exterior to ambient:
R=1/hc A

Radiation, spacecraft exterior to ambient:

1

(12 +12) (T, +T,)
i "7 177

R =

oge. e, AF,.
1) 1)

Conduction, spacecraft insulation from
interior to exterior: R = f/KA

Radiation, platform to spacecraft interior
Convection,. platform to spacecraft interior

Conduction and contact heat transfer, platform
to spacecraft exterior: R = £/KA + 1/CA

Conduction and contact heat transfer, battery
to platform

Conduction, battery bellows

Conduction, rod between battery bellows
and accumulator

ON-OFF thermal switch controlled by battery bellows




Table C-1. Network Nomenclature and Explanation (Continued)

Resistance No. Description
11 Radiation, spacecraft interior to heater
12 Conduction, heater mounting
13 Conduction, heater bellows
14 ON-OFF thermal switch controlled by heater bellows
15 Convection, radiation plate to ambient
16 Radiation, plate to ambient
17 Radiation, spacecraft exterior to space

Specific Heat Fluxes

Q2 Solar energy absorbed by spacecraft exterior

Q7 Heater power

and a battery stored in a nonoperative condition outside of a vehicle

respectively. Figure C-3 shows the battery configuration analyzed.

Q
RADIATION v
T
T l L CONDUCTION
CONDUCTION

F ¢ C=2. Equivalent Thermal Network - No Controller
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Definitions

Characteristic Dimension of a

Cubic Battery L

Battery Volume V = L3

Battery Base Area A = I_J2

Battery Total Surface Area A = 6L2

Standoff Contact and Cross Section 2 > 2

Area A = 0.04L" (for L™= 25 in )
- 1 in® (for L¥< 25 in 2)

Radiation Loss Area (5%) a =0.05 (6L2) = 0. 3L2

Standoff Height A =0.75 inch

Standoff Conductivity K = 5 Btu/hr-ft%- °F/ft
(titanium)

Standoff Contact Coefficient C =50 Btu/hr-ftZ-OF

Steady State Heating Analysis

T, -T
4 4 1 -T2
Q=0 2 (T1 'T2>+ (T74CA) T (R/ZKE)

where

L = Length of one battery side, ft

O
"

Heater input, Btu/hr or watts

1
T, = Battery temperature, °F (40° F from Section 2)
T2 = Ambient temperature, OF (temperature of battery mounting platform)
A = Cross section or contact area of one standoff, ftz
C = Contact coefficient, Btu /hr-ftz— °rF
K = Thermal conductivity, Btu /hr—ftZ-OF/ft
g =0.1714 x 10'8 Btu/hr -ftz-oR4 (Stefan-Boltzmann Constant)

0.85 (emissivity)

A = Standoff height, ft




a = Radiation loss area (insulation efficiency), ftz
R = Thermal resistance

Changing the equation to a form which will operate with dimensions in

inches,
1 B 2 2
_ 2
=2.88 for L€ 25
2 = 45/L‘2 for L2.>_ 25
1KA”
= 1.80 for LZS 25
i £ B B 2 2>
m+4KA =R = 117/L" for L°> 25

1

4.68 for LZS. 25

Assume -300°F ambient

2
0.3L 4 4\ _ o
Qpg = o€ -m——) (Ti - T, ) = radiation loss

= 0. 188L2 Btu/hr

340

Uond = (T1 - TZ)/R =g = conduction loss
2 2
=2.9 L™ Btu/hr for L™ 2 25
=73 Btu/hr  for L%< 25
~ 2
Q, =(0.188L" +73) Btu/hr L2$25
= (0.0553L% + 21.4) watts
2 2
= (0.188L“ + 2.9L°) Btu/hr ) 12325

=. 9L2 watts J

Assume -20° F ambient

0. 076L2 Btu/hr

Q0
il

rad

0. 022.3L2 watts
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15
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cond

w
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2

0.5121L" Btu/hr for L2 >25

0. 151L2 watts for LZZ- 25
3.76 watts for L2-<— 25

(0.0223L% + 3.76) watts for L°< 25

(0.0223L% + 0. 151L%) watts for L2~ 25

-300° F Ambient Data Tabulation

0.0553L°2 0.9L2
0.9
51
90
201

-20° F Ambient Data Tabulation

0.0223L°% 0.1733L2

9.7
17.3
39.0

Watt-Hours
(Reference Figure 1-3)

AgZn AgCd
256 76.5
500 150

1,680 504

4,000 1,200

4,040

Q1 (watts)

22.3
22.8
51
90
201

01 (watts)

4.
4.
9.
17.
39.

QO W =~ N

NiCd

51
100
336
800

2,690




Warmup Calculations

Assume radiation losses negligible.

Let g = Heat Flux = Q1

C = Thermal capacitance
T = Temperature

t = Time

R = Thermal resistance

dT _qR - T + To
dt RC

e-t/RC -1 . T- To
qR
Spec weight = 0. 0625 1b/in3 for a AgCd battery (Reference Figure 1-3,
i-hour rate at 0° F)
Capacitance ’-_=."0.'-0106L3 Btu of assuming specific heat equals 0. 17 Btu/lb-
° F, the specific heat of a heterogeneous body. Measured
value of 0.22 for cells is reduced by battery structure

and stainless steel cell cases.

Assume a 5 x 5 x 5 inch battery at -300° F.

C =0.0106 (125) =1.33

R =4.68

t =4 hours

T = 40° F, final temperature

40 -(-300)

. . = -
e 1081L.33) =1 - crgy—
q 154 Btu/hr
45. 2 watts for a 150 watt-hour AgCd battery

1
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Results of Calculations for a 4-Hour Warmup Period,
Final Temperature = 40° F

-20° F Ambient -300° F Ambient
Q, Q, Q, Q
L (Btu/hr) (watts) (Btu/hr) (watts)
5 27.0 7.9 154 45.2
7.5 82 24 465 137
10 187 55 1,060 312

C.3 SIZE AND POWER EFFECTS ON INTERNAL TEMPERATURES
OF INSULATED SPHERICAL SPACECRAFT

The following analysis generates the graphical comparison pre-

sented in Figure 3-30,

Figure C-4 shows the analytical model used to develop a computer
model (submitted separately to NASA Lewis Research Center) to demon-
strate the variaﬁons of thermal control with insulation, insulation and
louvers, and insulation with louver control assisted by a heater. The
model considered solar insulation versus AU distance, a 10-watt steady-
state equipment load, various spacecraft diameters, and temperature
responsive louver control. The analysis consisted of establishing an
operating condition for a given model setup and then varying the condi-

tions to obtain the necessary points for the graphs shown in Figure 3-30.

C.4 WEIGHT TRADEOFF ANALYSIS

The following analysis was used to generate a comparison of the
weight advantage of a direct radioisotope heater over an electrical
heater (rtg power + conversion + heater weight) versus required space-
craft electric equipment power loads. Figure 3-31 provides the power

requirements to keep a spherical spacecraft above 40° F as follows:

C-10




solar

9 solar

08 . louvers

Hot Cold Node Description
Side Side
1 Space Sink
2 Subsolar Point of
Insulation Exterior
3 Other External
Insulation Points
l in Sunlight
v
7
8 Vehicle Internal

Shell & Equipment

9 Cold Side of
Insulation

Figure C-4. Spherical Spacecraft Model for Analysis of
Insulation, Louvers and Heater Combinations.
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Power Requirement versus Spacecraft Diameter

Distance Spacecraft Diameter
(AU) 30 in. 40 in. 50 in. 60 in.
2 8w 50w
2.5 67 126
3 47w 119 170
4 8w 105 168 200
5 68 150 195
6 119 186
7 167

Using data predicted for a Pu-238, 5-year life, intact re-entry RTG
(unpublished TRW data), the equivalent RTG weights for the above power

requirements are as follows:

RTG Weight Corresponding to Above
Spacecraft Diameter Power Level Requirements

Distance Spacecraft Diameter

(AU) 30 in. 40 in. 50 in. 60 in.
2 14 1b 36 1b
3 35 1b 42 63
4 14 1b 56 60 77
5 42 71 76 88
6 60 83 86
7 76

Using the above data, the RTG weight versus electric power re-.

quired is as follows:

Power RTG Weight
(watts) (1b)
20 24
40 32
60 40
80 47
100 54




Using a 60-inch spherical spacecraft, the power differential requirement

for each power level was computed as given:

Electric Heater Power Differential
Required versus Load

Distance Electric Load
(AU) 20 w 40 w 60 w 80 w 100 w
2 30 w 10 w - -- -
2.5 106 86 66 w 46 w 26 w
‘| 3 150 130 110 90 70
| 4 180 160 140 120 100

The heater weight for the same power requirement and distance

was then computed (Reference Figure 3-20) as follows:

Heater Weight Corresponding to Above
Heater Power Differential

Distance Electric Load
(AU) 20 w 40 w 60 w 80 w 100 w
2 3.41b 2.01b - -- --
2.5 8.2 7.0 5.71b 4.51b 3.11b
3 11.1 9.8 8.5 7.2 5.9
4 13.0 11.7 10.4 9.1 8.9

Using the above tabulated results, the weight advantage of the
radioisotope heater over the electrical heater at various spacecraft

power loads (60-inch diameter spacecraft) was computed as follows:

Weight Advantage - 60-Inch Spacecraft

Electric Load

Distance
(AU) 20 w 40 w 60 w 80 w 100 w
2 8.6 1b 2.01b -- -- --
2.5 30.8 24.0 17.3 1b 11.51b 5.91b
3 41.9 35.2 28.5 22.8 17.1
4 51.0 44.3 37.6 31.9 25.1

These results are shown in Figure 3-10. An identical analysis

process was used to derive Figure 3-9.
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