SPO PRICE \$	
SFTI PRICE(S) \$	
•	4.00
Hard copy (HC)	7.00
Microfiche (MF)	1.00

NASA CR-54742 MRB 5009Q1

ff 653 July 65

Quarterly Report No. 2

STUDY OF FUEL CELLS USING STORABLE ROCKET PROPELLANTS

18 May to 17 August 1965

bу

R. F. Drake, L. F. Athearn, R. E. Chute, J. C. Orth, and J. O. Smith

prepared for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

CONTRACT NAS3-6476

MONSANTO RESEARCH CORPORATION BOSTON LABORATORY Everett, Massachusetts 02149 Tel: 617-389-0480

NOTICES

This report was prepared as an account of Government-sponsored work. Neither the United States nor the National Aeronautics and Space Administration (NASA), nor any person acting on behalf of NASA:

- A) Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or
- B) Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method or process disclosed in this report.

As used above, "person acting on behalf of NASA" includes any employee or contractor of NASA, or employee of such contractor, to the extent that such employee or contractor of NASA, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to this employment with such contractor.

Dissemination outside the contracting government agency or to recipients other than Government defense contractors not authorized.

Request copies of this report should be referred to:

National Aeronautics and Space Administration Office of Scientific and Technical Information Washington, D. C., 20025 Attention: AFSS-A Quarterly Report No. 2

STUDY OF FUEL CELLS USING STORABLE ROCKET PROPELLANTS

18 May to 17 August 1965

bу

R. F. Drake, L. F. Athearn, R. E. Chute J. C. Orth, and J. O. Smith

Prepared for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

31 August 1965

CONTRACT NAS3-6476

Technical Management
NASA Lewis Research Center
Cleveland, Ohio
Space Power Systems Division
Robert B. King, Technical Manager

MONSANTO RESEARCH CORPORATION BOSTON LABORATORY Everett, Massachusetts 02149 Tel: 617-389-0480

SUMMARY

This quarter the catalyst screening programs for Aerozine-50 reforming and N_2O_4 decomposition have continued. Four systems are presently contemplated for Aerozine reforming. These systems and the present hydrogen yield efficiencies for each are:

- (1) Low temperature decomposition = 17.6%.
- (2) Medium temperature decomposition = 1.4%.
- (3) High temperature steam reforming-single catalyst = 29.2%.
- (4) High temperature steam reforming followed by NH₃ decomposition and CO shift reaction = 55.0% (estimated).

Four more catalysts active for the decomposition of N₂O₄ have been uncovered. However, none showed much activity below 700°C. An accelerated screening program is outlined for this task.

Several catalysts active for the electro-oxidation of UDMH have been tested. However, Rh is still the best overall catalyst. Testing of this catalyst in a 3×3 in. cell definitely indicated that a diffusion barrier will be required to prevent excessive decomposition of the fuel on the electrode.

An MRC carbon electrode with a higher than normal carbon matrix density was tested with N_2O_4 . The diffusion rate through this electrode was not substantially reduced by this method.

TABLE OF CONTENTS

			Page
I.	INT	RODUCTION	1
	Α.	BACKGROUND	1
	В.	PROGRAM ORGANIZATION	1
	С.	SCOPE OF THIS REPORT	4
II.	TAS	K I. AEROZINE-50 REFORMING STUDIES	5
	Α.	BACKGROUND	5
	В.	LOW TEMPERATURE DECOMPOSITION	5
	C.	MEDIUM TEMPERATURE DECOMPOSITION	6
	D.	HIGH TEMPERATURE STEAM REFORMING OF UDMH	6
		 Hydrogen Output	11 13 13 13
	E.	STEAM REFORMING OF AEROZINE-50 AT HIGH TEMPERATURE	18
	F.	WORK PLANS	18
III.	TAS	SK II. DECOMPOSITION OF N2O4	21
	Α.	BACKGROUND	21
	В.	RESULTS AND DISCUSSION	21
	С.	FUTURE PLANS	28
IV.	TAS	SK III. DIRECT REACTANT USE	31
	Α.	SUBTASK 3.1. CATHODE OPTIMIZATION	31
		1. Background	31 32 35
	B.	SUBTASK 3.2. AEROZINE-50 ANODE DEVELOPMENT .	36
		 Background	36 37

TABLE OF CONTENTS (Continued)

	<u> </u>	Page
3	. Characterization of Rh Electrodes Future Plans	40 45
	UBTASK 3.2 DESIGN AND TEST 1/3-FT ² LECTRODES	48
	Background	48 48
V. REFER	ENCES	50
APPENDIX I.	Heat Balances for Aerozine-50 Reforming Systems	51
APPENDIX II.	A. UDMH Steam Reforming Data	55
APPENDIX II	B. Aerozine Steam Reforming Data	106
APPENDIX II	I. N ₂ O ₄ Catalyst Data	114
APPENDIX IV		139
APPENDIX V.		140

LIST OF FIGURES

Figur	e No.	Page
1.	Program Work Plan and Event Chart NAS3-6476	2
2.	NAS3-6476 Phase I PERT Chart	3
3.	N2O4 Reactor Flow Diagram	22
4.	Multiple N ₂ O ₄ Reactors Schematic	29
5.	Polarization Characteristics of Electrode 72493	33
6.	Aerozine-50 Anode Test Cell Construction	42
7.	Aerozine-50/02 Cell Test Stand	43
8.	Self-Decomposition of Aerozine-50	44
9.	Polarization Characteristics of Electrode 72468-A	46

LIST OF TABLES

No.		Page
1.	Low Temperature Decomposition of UDMH, N_2H_4 , Aerozine-50	7
2.	Medium Temperature Aerozine-50 Decomposition Tests	10
3.	Material Balance Example for UDMH Steam Reforming	12
4.	Extrapolation of Hydrogen Efficiencies for High Temperature Steam Reforming of UDMH	14
5.	High Temperature Steam Reforming of UDMH	16
6.	Steam Reforming of Aerozine-50	19
7.	N ₂ O ₄ Reforming Data	23
8.	N ₂ O ₄ Diffusion through Electrode 72493	34
9.	Aerozine-50 Electrode Catalyst Test Results	38
10.	Two-hour Run of Rh/C Anode	47
A-1	Heat Balance for System 1 at 25°C, Basis 100 g Aerozine-50	51
A-2	Heat Balance for System 2 at 100°C, 175°C, and 250°C for 100 g Aerozine-50 Input	52
A-3	Heat Balances for Systems 3 and 4 at 400°C and 500°C, Assuming 100 g Aerozine-50 and 50% H ₂ 0 Excess	53

I. INTRODUCTION

A. BACKGROUND

This is the second quarterly report in the third stage of an investigation whose objective is to develop a fuel cell operating on storable rocket propellants as primary or secondary reactants. Work on the previous contract (NAS3-4175) largely concerned the investigation of a number of possible systems and cell configurations and culminated in the construction and long-term testing of two cell types. One configuration used N_2H_4 dissolved in KOH electrolyte as the fuel and gaseous O_2 as the oxidizer. The other system used N_2H_4 dissolved in H_3PO_4 electrolyte as the fuel and gaseous N_2O_4 as the oxidizer. Both systems were developed to the point where System Designs were submitted to NASA specifications (ref. 1).

The present contract calls for the investigation and development of cells operating on gaseous N_2O_4 and Aerozine-50 as direct reactants, and for a reforming capability to use these reactants to produce O_2 - and H_2 -rich feedstreams for fuel cells. The construction and operation of working reformers and cells are the objectives of this work.

B. PROGRAM ORGANIZATION

The project consists of three phases, to be performed roughly in series. The overall work plan shown in Figure 1 illustrates the major tasks to be performed. Detailed working plans for Phase I have been developed and are illustrated in Figure 2. There are three major tasks in this phase: reforming of Aerozine-50, catalytic decomposition of N_2O_4 , and electrode development for direct reactant use. Each task has been further broken down into subtasks which represent the actual work being done to complete the task successfully.

Figure 1. PROFRAM WORK PLAN AND EVENT CHART NASZ-6476

PERT CHART

Figure 2. MAS\$-6476 Phase I

C. SCOPE OF THIS REPORT

This report covers work done on the subtasks listed below.

Subtask Number	Description	Work Status
1.1	Assemble Aerozine-50 Reformer	complete
1.2	Run Initial Screening Tests	60% complete
2.1	Assemble N ₂ O ₄ Catalytic Reactor	complete
2.2	Run Initial Screening Tests	40% complete
3.1	Cathode Optimization	50% complete
3.2	Develop Aerozine-50 Anode	50% complete
3.3	Design 1/3-ft ² Electrodes	90% complete
3.4	1/3 ft ² Electrode Tests	not started
3.5	Analytical Procedures (N2O4)	75% complete
3.6	Analytical Procedures (Aerozine-50)	50% complete

II. TASK I. AEROZINE-50 REFORMING STUDIES

A. BACKGROUND

The objective of the Aerozine-50 reforming studies is to produce a hydrogen-rich feed stream suitable for use in a fuel cell. The maximum amount of hydrogen will be produced from steam reforming the Aerozine-50. Theoretically, 9.8 moles of H₂ can be derived from 100 grams of fuel plus 60 grams of steam. In practice side reactions and incomplete reactant use reduce yields by various amounts depending on the catalyst and conditions.

The four systems listed below are under consideration at this time. Each has certain advantages with respect to heat inputs required, hydrogen yields and efficiency, complexity and reliability.

System 1: Low temperature decomposition of the fuel at 30 to 100°C in the liquid phase. Only the hydrazine component can be decomposed, and the maximum H₂ efficiency is 32%.

System 2: Medium temperature decomposition at 100 to 250°C in the vapor state where the reaction might proceed faster. The maximum efficiency is again 32%.

System 3: High temperature steam reforming from 300 to 500°C, using a single catalyst and reactor. Depending on side reactions, the possible efficiency is 100%.

System 4: High temperature steam reforming followed by reaction zones (or separate reactors) to decompose NH₃ and to convert additional CO to maximize the H_2 yield. The maximum efficiency is 100%.

The choice of system will depend not only on the actual H₂ efficiencies realized in the experimental work, but also on factors such as weight, volume, complexity, energy requirements, and the end use requirements. As a start on acquiring some of this information, heat balances have been worked out for each system and are included in Appendix I. The experimental work in support of each system is described in the following paragraphs.

B. LOW TEMPERATURE DECOMPOSITION

The work done to date (and the pertinent literature) bears out two facts:

- (1) Only the N_2H_4 fraction is decomposable in the temperature range considered.
- (2) N_2H_4 can decompose either to H_2 and N_2 or to NH_3 and N_2 .

The extent of each reaction depends on the catalyst used. NH_3 formation can seriously limit the H_2 yields.

The reactor system used to evaluate catalysts in this work has been described in the First Quarterly Report (ref. 2). Briefly, it consists of a reaction flask and a gas analysis train. The fuel is added batchwise to the catalyst in the flask and gas volumes are measured and analyzed by VPC after scrubbing out NH3.

All data on catalysts tested to date are included in Table 1. Two catalysts showed sufficient promise to warrant consideration: (1) a promoted Raney Ni-water slurry, and (2) Rh on various supports. Although the Ni catalyst gave the highest conversion to H_2 (88% compared to 55% for a typical Rh catalyst) the slurry form would be nearly impossible to use in a flow reactor system. The best choice, then, is the Rh catalyst supported on alumina, with which the H_2 efficiency obtained is 17.6% based on the total H_2 content of Aerozine-50, or 55% based on the decomposition of the N_2H_4 component alone.

C. MEDIUM TEMPERATURE DECOMPOSITION

The objective of this work is to improve the N_2H_4 decomposition rate and efficiency by operating at higher temperatures where the reactants are in the vapor phase. The tubular flow reactor described in the First Quarterly Report (for steam reforming) has been used to evaluate Pt, Pd, Rh, and Ni catalysts at 10 psig from $100\,^{\circ}\text{C}$ to $250\,^{\circ}\text{C}$ on pure Aerozine-50 feed. The results are presented in Table 2. No significant H_2 formation was found with any catalyst above $140\,^{\circ}\text{C}$ where only the vapor phase exists in the reactor. At $100\,^{\circ}\text{C}$, where Aerozine-50 is only partially vaporized, some H_2 production was realized with a Pd catalyst. These results seem to indicate that the vapor phase reaction proceeds mainly to NH_3 on the catalysts tested. The H_2 conversion efficiency with the Pd catalyst was only 1.4%. Great improvement is necessary for this system to be useful.

D. HIGH TEMPERATURE STEAM REFORMING OF UDMH

Steam reforming of UDMH was the subject of the main investigation under this task during the last quarter. This process has the potential for the highest $\rm H_2$ yields. However, in the temperature range considered (300° to 500°C), the thermodynamic equilibrium predicts mainly CH₄ and N₂ as reaction products. Thus, the reaction kinetics must be adjusted by the use of selective catalysts and proper conditions to promote the high $\rm H_2$ -yielding reactions.

There are a large number of possible reactions with this system. The most important now appear to be:

- 1. $(CH_3)_2NNH_2 \longrightarrow 2CH_4 + N_2$
- 2. $(CH_3)_2NNH_2 \longrightarrow 2C + 2NH_3 + H_2$

Table 1 LOW TEMPERATURE DECOMPOSITION OF UDMH, N2H4, AND AEROZINE-50

Notes I ml of slurry used	I ml of slurry used	1/8 in. tablets 1/8 in. tablets	Rate decreasing with time Rate decreasing with time	1/8 in. tablets 1/8 in. tablets	1/8 in tablets	1/8 In. usorets	Rate increasing
% N2H4 Decomposed	all - all all	• •	1 1	, ,			
M NeH, Converted to He		1 1	1.1	, ,		•	
Off Gas Hz/Nz Ratio		ı	. 1		,		
Specific Gas Rate, ml/min R *	11111	4.0	0.8	1		†••••	wwoa
Gas Rate, ml/min 1.0 0.2 21.4 28.3	2.5 2.5 225 560	0.9 negligible	1.4	0	negl1g1ble	1.1 negligible	7.7 8.2 0.0 7.0
Temp, °C 30 61 24 26	200 05±	30	30	30	30	30	% % % % %
Fuel UDMH UDMH N2H4	UDMH 50/50 UDMH 25% N2H4 75% UDMH	UDMH 50/50	05/05	HWCD	50/50	ир мн 50/50	N2H4 50/50 UDMH 50/50
Weight,	,,,,,,	2.25	1.80	0	2.2	9.99 9.99	,,,,,,, ,,,,,,,
Catalyst Type Raney Nickel water slurry No. 28, Raney Nickel Corp.	Raney Nickel water slurry with 0.3 g HgPtCle	Girdler T-242	N1 + Cu OXIGES Baker 0.5% Pt on Alumina, 1/8 in.	Tablets	Girdler T-505 0.05% Pd on Alumina	Girdler G-60 Promoted Nickel	Girdler T-325 reduced stabilized Nickel 1/8 in. tablets

* Per gram of cutalyst.

Table 1 (Continued)

	Welght,		Temp,	Gas Rate, ml/min	Specific Gas Rate, ml/min g*	Off Gas Hz/Nz Ratio	% NeHt Converted to He	% N2H4 Decomposed	Noted
Catalyst Type Girdler T-323 reduced	3.1	N2H4 UDMH	000	explosive 2.2	10.04	0.05	6.0	- 811	Explosive decomposition Stopped after 20 minutes Trace OM, in gas sample
1/8 in. tablets	- 1	20/20	3		4.0	,			Rate decreasing with time
Girdler G-52 reduced stabilized nickel on	2.2 3.8	05/05	0. 0. 0.	l.i negligible	5 1			•	
Sugelhard 5% Rh on Carbon Powder	0.7	N2 H4 UDMH 50/50 50/50	989 989 989 989 989 989 989	80 60 60 60 60 60 60 60 60 60 60 60 60 60	26.6 1.1 7.4 12.6 13.7	1.56	55	all all all	Rate decreasing with time
neker 0.5% Rh on	2.2	N2H•	29.9	8.8	1.3	1.56	55	811	1/8 in. tablets
Alumina	0.1	N2H4	F-64	5.50	243 136	1.6	57	all all	
Engelhard modicing	0.2	50/50	0.05		,	96.0	70.	811	das rate too fast to measure 3 ml of catalyst was used
T-325 Reduced Nickel Catalyst	2.3	N2H4 50/50	49.5 49.5	87.8	38.2	1.16	35		IDMH did not decompose
MRC Proprietary	0.1	UDMH 50/50	4.0.4 7.0.4	12.7	123	1.37	#5·	all	
Catalyst 77604-4	0.1	UDMH	49.5	16.8	0 268	0.70	15	811	UDMH did not decompose
Catalyst 77604-5	0.1	HWC)			089%	0.89	21.	a11	UDMH did not decompose
MRC Proprietary Catalyst 77604-1	0.1	50/50							

* Per gram of catalyst.

Table 1 (Continued)

Notes UDMH did not decompose	Heat treated in Ar 2 hr. Edecomp. on UDMH or 50/50	Heat treated in air 1 min.	No decomp on UDMH or 50/50	UDMH did not decompose	SECUMONOM TO SEE	UDMH did not decomposed becomp rate was very fast to explosive	
% N2H4 Decomposed all	10		0	. [6		all	
% N2H4 Converted to H2	10		.0	י י	67	50	
off das Hz/Nz Ratio 0.32			, ,		69.0	0.87	
Specific Gas Rate, ml/min R*	00		00	0	40g	۰,	
Gas Rate, m1/min 0 16.1	00		00	C	204	၁ ၊	
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	, G	50.0	50.0			50.0	
Fuel UDMH	HWGn	50/50	UDMH 50/50		од/ос 50/50	05/09	
weight,	0.1	0.1	0.0	1:5		0.5	
Catelyst Type	Catalyst //c)4-2	Thorium	Titanium		MRC Proprietary Catalyst 73578-A	MRC Proprietary	

* Per grain of octalyst.

Table 2

MEDIUM TEMPERATURE AEROZINE-50 DECOMPOSITION TESTS

Pressure: 10 psig

State of Aerozine	In Reaction	ලික හ ලික හ	11quid gas gas	liquid liquid gas	11qu1d gas
% of Maximum He From	N2H4	0.13	1.14 0 0.6	2.3 4.3 1.1 0.1	0.5
Moles He per 100 g	Aerozine	0.004	0.036 0 0.018	0.07 0.13 0.04 0.005	0.05
Moles N2H4		0.149	0.135 0.142 0.142	0.141 0.141 0.141 0.141	0.148
Input Aerozine	BZ III.	9.52	8.65 9.09 9.09	9.09 9.09 10.9	9.46
## # 100 m		0.1	0.2	0000	0.1
0081t10	3		9.0	0000	0.7
Gas Composition	VII4	00 00	9.6	0 0 9.6 17.3	8.7
Output G	21 21	94.1 89.7	82.2 90.1 76.8	47. 88. 81. 68. 69. 69. 69. 69. 69. 69. 69. 69. 69. 69	83.5 90.0
	112	0.0	2009 2014	24 24 1.00 1.00 0.00	7.1
Temp,		175 250	105 170 250	100 116 134 178	105
Catelvat	09 09 0	Engelhard 0.5% Pt on Alumina	Engelhard 0.5% Rh on Alumina	Engelhard 0.5% Pd on Alumina	Girdler G-49A Nickel, reduced stabilized

NOTES

In all tests liquid outputs could not be obtained under equilibrium conditions. Therefore, the % decomposition of N₂H₄ and UDMH is not known. However, in general only a small amount of N₂H₄ was decomposed at 100 and 175°C. Most was decomposed at 250°C.

- 3. $(CH_3)_2NNH_2 \rightarrow (CH_3)_2NH + 1/3N_2 + 1/3NH_3$
- 4. $(CH_3)_2NNH_2 \rightarrow C_2H_6 + 2/3N_2 + 2/3NH_3$
- 5. $(CH_3)_2NNH_2 + 2H_2O \longrightarrow 2CO + 2NH_3 + 3H_2$
- 6. $(CH_3)_2NNH_2 + 4H_2O \longrightarrow 2CO_2 + 2NH_3 + 5H_2$
- 7. $(CH_3)_2NNH_2 + 4H_2O \longrightarrow 2CO_2 + N_2 + 8H_2$

Efficiencies in this section are reported as per cent of maximum $\rm H_2$ available by reaction 7. Since only UDMH was fed to the reactor in these tests, the $\rm H_2$ yield from $\rm N_2H_4$ decomposition must be added to these results to extrapolate to Aerozine-50 yields. Actual reforming runs on Aerozine-50 are reported in a later section.

The tubular flow reactor, associated equipment, and operating procedure used in this testing were described in the First Quarterly Report. Data sheets on all runs made to date are included in Appendix II. Details on operating parameters, catalysts, analytical results, and calculated efficiencies and material balances are included for each run.

The following products are listed in the reactor output: UDMH, $\rm H_2O$, $\rm NH_3$, dimethyl amine (DMA), $\rm H_2$, $\rm N_2$, $\rm CH_4$, $\rm CO$, $\rm CO_2$, and ethane. Where carbon deposition is present the amounts are indicated.

All components except H_2O , NH_3 , DMA, and carbon were determined by direct analysis of the output, using gas chromatography. The water output was calculated from the difference between the input H_2O and the amount used to form CO, and CO_2 . The NH_3 , DMA, and carbon were determined by calculating mass balances (where possible) of each individual element entering the reactor. An example of the calculations for one of the runs is given in Table 3.

Using this method, complete mass balances have been obtained. The major criteria for determining the best catalyst and conditions are described below.

1. Hydrogen Output

Hydrogen output can be a maximum of 13.33 moles per 100 grams of UDMH input. This assumes that all the UDMH reacts to $\rm H_2$, $\rm N_2$, and $\rm CO_2$. The best yield obtained thus far is 3.89 moles of $\rm H_2$ per 100 grams of UDMH, with G-56B catalyst at 500°C and 50 psig, or 29.2% of maximum hydrogen output. The hydrogen efficiency should not be determined by total hydrogen input since the water is present in excess (50%). The water-to-carbon ratio will be varied in later tests.

Table 3

MATERIAL BALANCE EXAMPLE FOR UDMH STEAM REFORMING

Example:

G-56B Nickel Base Reforming Catalyst at 400°C, 50 psig

Input Conditions: 0.105 mole/hr UDMH, 0.823 mole/hr H₂0

Output Gas Composition (mole-%) after 1-1/2 hr: H_2 , 50.8; N_2 , 2.5; CH_4 , 18.6; CO, 0.3; CO_2 , 27.6; ethane, 0.2.

Output Gas (mole/hr): 0.319

% UDMH Reacted: 98.2

Elemental Balances:

- 1. Carbon Input = 0.210 g atoms
 Carbon Output = 0.150 from CH₄, CO₂, CO, and ethane
 + 0.004 from UDMH
 = 0.154 g atoms
 with 0.056 g atoms unaccounted for
- 2. Nitrogen Input = 0.210 g atoms
 Nitrogen Output = 0.016 from N_2 + 0.004 from UDMH
 = 0.020 g atoms
 with 0.190 g atoms unaccounted for
- 3. Hydrogen Input = 0.840 g atoms from UDMH + 0.354 g atoms from H_2O to form CO and CO_2 Hydrogen Output = 0.324 g atoms from H_2 + 0.237 g atoms from CH_4 + 0.004 g atoms from C_2H_6 + 0.016 g atoms from UDMH = 0.581 g atoms with 0.613 g atoms unaccounted for

By trial and error, if 0.010 mole DMA and 0.180 mole NH_3 are formed:

Hydrogen Output = 1.191 g atoms or 99.7% of input

Nitrogen Output = 0.210 g atoms or 100% of input

Carbon Output = 0.174 g atoms, leaving 0.036 g atoms for carbon deposition on catalyst.

2. Amount of CO Formed

This factor is important since CO can be shifted to $\rm CO_2$ easily at low temperatures, producing more $\rm H_2$.

3. Amount of NH3 Formed

This is important since $\rm NH_3$ can be decomposed to $\rm N_2$ and $\rm H_2$ under the proper conditions.

4. Carbon Deposition

This process produces H_2 but is undesirable because the catalyst will eventually lose its activity. This can be reduced by higher water-to-carbon ratios and higher pressures.

We believe it will be possible to convert all materials except CH_4 , ethane, and possibly dimethylamine to H_2 using two or three catalyst systems, thus greatly increasing the H_2 efficiency (System 4). However, this would add weight to the system and require different operating conditions (especially for NH_3 decomposition). For these reasons our preferred goal is the maximum H_2 output on a single pass through a single reactor (System 3). Table 4 lists the total H_2 efficiency for each test performed. Three values are shown corresponding to:

- 1. Actual experimental values of H2 efficiency.
- 2. H2 efficiency if CO is shifted to CO2.
- 3. H_2 efficiency if CO is shifted to CO_2 and if NH_3 is decomposed.

The best actual efficiencies (26 to 30%) have been obtained at 500°C, 50 psig, with a Ni-base catalyst (Girdler G56B), a Ni oxide catalyst (Girdler T-1144), and a ZnO on alumina catalyst (Harshaw ZnO701). The best extrapolated efficiencies (45-55%) for the system combining steam reforming with NH₃ decomposition and CO conversion occur at 400°C with the following catalysts:

- (1) Girdler T-310, 10% nickel oxide on activated alumina
- (2) Girdler Ni-base reforming catalyst
- (3) Girdler T-312 Ni and Cu oxides on alumina
- (4) Girdler T-1144, 50% nickel oxide

Table 5 shows the fraction of UDMH consumed by each of the seven possible reaction paths (equations 1 through 7) for each catalyst, as calculated from the observed products. The following general conclusions can be drawn from these data:

Table 4
EXTRAPOLATION OF HYDROGEN EFFICIENCIES FOR HIGH TEMPERATURE STEAM REPORMING OF UDMH
(Total input of 19.0 to 21.0 g per hour)

A Carbon Deposition 24 none none none	no he 25 17	none to none none	# 6	none 6 none	none 9	23	చి రా		
Hydrogen Efficiency If CO Shifted and If No. Decomposed, 26 16.8 26.9 36.8 53.9 53.9 56.8 57.9 57.9	4.56	51.6 51.6 4.0.9 79.9 77.2	21.5	27.6 28.2 29.8 28.1	, v.		30.7 28.1 43.1	37.0	
Hydrogen Efficiency If CO Shifted to CO2, \$\frac{2.5}{4.7} 21.2 21.2 21.2 21.3 23.8	#*O	10.1 119.4 119.4 20.6 22.4 22.4	1.3	4.2 13.5 17.4	no reaction	3.5	6.6	13.6	
Hydrogen Efficiency Actual, F 7.9 20.9 20.9 18.7	23.3	0.4 19.3 8.00 19.1 4.0 6.1 6.1 6.1	25.th	0.9 0.7 0.11	16.2	0.9 2.6.	000	15.51	
Pressure, 150 150 150 150	150	150 150 150 150 150 150 150	150	55.05.0 55.05.05.05.05.05.05.05.05.05.05.05.05.0	150	222	50	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	<u>`</u>
7.00 7.00 7.00 7.00 4.00	200 200	000 000 000 000 000 000 000 000	2000	00K 4 4	500	200		000 th	
Catalyst Data Girdler T-310 10% Nickel Oxide on Activated Alumina		Girdler G-56B Nickel Base Reforming Catalyst	6-hour test	Girdler G-43 0.5% Platinum on Alumina		us_rahaw Cu 2501	all cuo in chip Form	Girdler T-309 Pt Oxide on Activated	Alumina

Table 4 (Continued)

Catalyst Data	Temp,	Pressure, ps1g	Hydrogen Efficiency Actual, \$	Hydrogen Efficiency if CO Shifted to CO2, %	Hydrogen Efficiency 1f CO Shifted and All NHs Decomposed, \$	% Carbo Depositi
Girdler G-47 Promoted	300	50	0.2	0.2	0.6	::
Iron Oxide	600 004	52.55	6,6	יי מיר רים	13.5	11,
	4 C	150	13.0	13.6	25.2	none
	200	150	6.01	11.5	22.6	-
Leaforth mortal of the m	00%	05	6.4	5.6	2,45	none
T-512 Giraier Mickel	200	, 2 ,	ri q	2.1.2	14.1	none
on Alumina	004	120	18.9	21.0	100	none
	200	150	21.1 15.1	22.2 15.4	28.3	none
Harshaw ZnO 308 Zinc Chromate	300	20	8.6	8.6	25.7	5
Girdler T-1144 50% Nickel as Oxide on Oxide Base	300 400 500	200	22.6 23.6 28.3	23.8 23.8 28.6	15.4 52.9 33.6	16 14 · none
A	8	O.	15.1	15.2	40.2	43.5
Giraler 1-51/ 100 Cu Oxide on Alumina	74.00 000 000 000	202	17.8	test invalid	d 38.0	none
72 200 1050 20	300	0.5	0	0	o j	none
on Alumina	74.0 000 000	000	16.7 26.0	16.9	45.2 40.9	none
Norton Zeclite Cation Acidic	300 400	50	0.00	۱ (۷ ت تاریخ	15.7	, ra
	500	50	5.0	1:+		

Table 5 HIGH TEMPERATURE STEAM REFORMING OF UDMH

Moles of input UDMH reacting via equations 1 to 7. Calculations based on 100 moles UDMH input.

	e E	Pressure	Moles		Moles	IIDMH Bea	Reacting v	via Equa	Equation	
Catalyst	ပို့	psig	Unreacted	-	1 .		1		9	7
Girdler G-56B Nickel Base Steam Reforming Catalyst	700 700 700 700 700	150 150 150 25 150	66.7 0.6 0 0 0	4 10 10 10 10 10 10 10 10 10 10 10 10 10	24.5 17.1 00 00	26.7 10.0 11.6 0.7	000000	0000000	911744 900000000000000000000000000000000000	00000 n. 1000
T-310 Girdler 10% Nickel Oxide on Activated Alumina	700 700 700 700 700 700	50 150 50 150 50 150	18.8 2.0 1.5 0	0 4 9 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	~~ ~~ ~~	660 660 660 660 660 660 660 660 660 660	000000	001000	10.0 4.7.0 53.0 389.0	000001
Girdler G-43 O.5% Platinum on Alumina	700 700 700 700 700 700	150 150 150 150 150	17.1 37.0 2.3 2.1 0	1.6 Not er 6.3	34.2 nough gi 21.1 0.5 0.5	45.6 as produ 61.4 66.0 27.4 7.1	ced for 0 1.8	1.5 4.5 5.7 4.6	0 118. 19.7 17.0 22.0	0 0001
Harshaw Cu 2501 10€ Copper Ox1de	300 500 500	50 50 50	42.7 28.4 2.5	Not er 27.2 67.5	enough ga	as produced 40.2 16.5	ced for 1.7	analysi 0.3 2.3	1s. 2.2 1.1	100
Norton Zeolite Acidic Cation Type	300 400 500	500 500 500	60.6 13.0 0.5	Not en 16.0 68.8	nough ga 0.5 2.1	18 producec 54.8 1	tor for	analys 8.9 6.9	18. 20.5	00

* See reactions 1-7 in Section II.D.

Table 5 (Continued)

Catalyst	Temp,	Pressure, psig	Moles UDMH Unreacted		Moles 2	UDMH Rea	Reacting 4	via Equa	Equation **	
Girdler T-309 Pt Oxide on Activated Alumina	4 4 00 5 00 0	50 150 50 150	0000.1	10.04 0.00 0.00	23.50 5.60 5.50 5.50	57.1 68.0 15.0 9.7	0000 000	15.73 106.73	0 3.0 15.6	0000
Girdler G-47 Promoted Iron Oxide	600 600 600 600 600 600 600	50 150 50 150 150	28.5 28.5 1.0 1.0	10.0 31.3 39.9 55.0 63.5	11.0 12.0 5.2 6.6	54.0 38.4 27.7 18.8 8.1	0 1.0 1.7 4.0	0 - 4 - 4 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6	0 - 4 - 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0100%0
Girdler T-312 Nickel and Jopper Oxides on Alumina	WW44VV	150 150 150 150 150	7.00 1.00 1.00	たららの00 4 どの0 が4	000000	0.007 40.08 4.00.08 7.00.00	00000W 4 W	000041 5501501	246.7 246.7 26.7 26.5 26.5	000000
Harshaw Zn 0308 Zinc Chromite	300	50	12.6	5.2	5.2	57.6	0	0	19.4	0
Girdler T-1144 50% Nickel as Oxide	300 400 500	50 50 50	22.1 1.0 0	4.4 17.5 58.3	15.4 14.0 0	53.8 22.3 7.7	9.00	0.4 0.7 0.3	4.4 39.7 11.1	0 0 21.4
T-317 Girdler 10% Copper Oxide on Alumina	700 700 700 700	2002	8.000	5.5 Data w 50.2	43.5 wrong due 0	34.5 to hi 8.6	o gh carbo 3.1	0.4 on depo 19.5	15.3 sition. 18.6	0 0
Harshaw Zn 0701 10% Zn Oxiće on Alumina	300 400 500	N.W.V.	86 6.40	Not en 1.9 48.5	ough r 12.6 0	eaction 47.9 7.0	for ana 0 2.3	lysis. 1.1 2.5	32.8 33.5	6.1

* See reactions 1-7 in Section II.D.

- (1) All the catalysts cause NH₃ formation at 300 and 400°C. The amount produced decreases as the temperature increases; in some cases none is formed at 500°C with the pressures used in this study.
- (2) Methane production increases with temperature and pressure for most of the catalysts. The maximum found was 60 to 70% of the UDMH reacting by this path.
- (3) Carbon deposition occurs with many of the catalysts at 300 and $400\,^{\circ}$ C. This reaction produces H_2 , but is undesirable because of eventual catalyst fouling.
- (4) In some cases the direct formation of NH₃ from the elements appears to have occurred to some extent.

E. STEAM REFORMING OF AEROZINE-50 AT HIGH TEMPERATURE

The two best UDMH steam reforming catalysts, Girdler G56B and T-ll44, were tested on Aerozine-50. The data sheets for these tests are included in Appendix II and the results are summarized in Table 6. Comparison of these results with the data acquired with UDMH alone indicates that the fraction of UDMH undergoing steam reforming is reduced (at $500\,^{\circ}\text{C}$), and the amount of CH₄ formed and carbon deposited at $400\,^{\circ}\text{C}$ has also increased slightly. The net effect is a slightly reduced H₂ efficiency from the steam reforming reaction. However, a significant increase in NH₃ decomposition was found (24% for Girdler G56B and 56% for T-ll44), which tended to increase H₂ yield. The overall H₂ efficiency (including the N₂H₄ component of the fuel) was 27.0% for T-ll44 at $500\,^{\circ}\text{C}$, 50 psig.

We feel the overall efficiency of the system can be improved by optimization of the operating variables (temperature, pressure, input rates, and water excess amount used). A mixed catalyst system for both steam reforming and NH₃ dissociation would further improve H₂ production. However, a double zone reactor may be necessary if different temperature or pressure conditions are required for these two processes.

F. WORK PLANS

- (1) Finish the screening runs.
 - (a) Test molecular sieve (Norton-Zeolite) with 1% Ni + 1% Rh for UDMH steam reforming.
 - (b) Test Harshaw Zn 0701 (10% ZnO on alumina) for Aerozine-50 steam reforming.
 - (c) Test 5-15% Pd on alumina and silica gel for low temperature decomposition.

Table 6

STEAM REFORMING OF AEROZINE-50

Input Composition, wt-%: 23.1 UDMH 23.1 N2H4 53.8 H20

			٠.				
% UDMH To Steam Reforming	∞	0.1	36	1 # 1	33	35	15
% UDMH to CH4 and N2	۲		27	19	89	10	<i>L</i> 9
% UDMH to Deposition of Carbon	54	. 15	29	32	0	15	1
Hz Efficiency Assuming 90% Dissociation of NHs and CO Shift	43.5	47.3	60.3	64.9	50.4	57.6	4.1
Actual Hz Efficiency	3.2	0.3	14.2	15.2	22.8	16.2	27.1
& NH ₃ Dissociation	0	0	0	0	7₹	0.6	56
Pressure, ps1g	25	20	25	50	20	50	50
Temp,	300	300	001	001	200	00 1	200
() () ()	G55B	<u> </u>			1.0	T-1144	

- (2) Optimize the low temperature system, and test the best catalyst under the following conditions:
 - (a) Flow rate varied by 3 g/hr from 7 to 16.
 - (b) Temperature varied by 15°C from the best temperature of screening.
 - (c) Pressure varied by 10 psig upward until performance deteriorates.

Conduct a five-day, long-term test of the best system.

- (3) Optimize Aerozine-50 steam reforming. Test the best catalyst under the following conditions:
 - (a) Flow rate varied by 5 g/hr from 10 to 30.
 - (b) H₂0/C ratio varied from 2/1 to 6/1, or from stoichiometric to 200% excess.
 - (c) Temperature varied by 15°C from the best screening result.
 - (d) Pressure varied by 10 psig from the best screening result.

Conduct a five-day test of optimized conditions.

- (4) Investigate NH₃ decomposition systems.
 - (a) Select three or four NH_3 decomposition catalysts and try them (1) as intimate mixtures with reforming catalyst and (2) as a separate zone (same temperature and pressure).
 - (b) If results not good in (a), set up separate reactor and determine conditions required for decomposition, and calculate efficiencies.
- (5) Run any further tests required to supply information needed in choosing final system (Project Monitor).
- (6) Start breadboard reactor design.

III. TASK II. DECOMPOSITION OF N2O4

A. BACKGROUND

The objective of this task is to decompose nitrogen tetroxide to N_2 and O_2 by thermal and catalytic means to provide an oxygenrich stream for a fuel cell. The reactions for this decomposition and the present state-of-the-art were discussed in the First Quarterly Report. The reactor system has been designed with this information in mind, and tests made to date indicate that the system performs satisfactorily for screening catalysts.

Each catalyst is packed in a 3/4 in. ID stainless steel tube to the depth of 12 in. The remainder of the tube is then filled with porcelain chips to provide preheating of the gas stream and support for the catalyst bed. The test consists of installing this packed tube in the system as shown in Figure 3, and heating to four temperatures (200, 400, 600, and 800°C) while passing N_2O_4 . The time-delay tube operates at room temperature and permits the slow recombination reaction of undecomposed NO with oxygen to go to completion. The resulting NO_2 is frozen in the cold trap using Dry Ice and Triclene. Only oxygen, nitrogen and (in the case of some easily oxidized catalysts) nitric oxide pass through the cold trap to be measured and analyzed by gas chromatography.

The catalysts are held at each temperature for one hour while the gas evolution rate is determined. If, at the end of this period, the evolution rate is high enough to sweep out the sampling manifold of the gas chromatograph, three or more samples are analyzed. The tests on each catalyst usually require six to seven hours to complete.

B. RESULTS AND DISCUSSION

Twenty-two catalysts have been screened since the last Quarterly Report. Table 7 shows none of them has exhibited sufficient activity to be useful at temperatures below 750-800°C. Detailed data on all catalysts tested this quarter are included in Appendix III.

The screening tests have been performed using 20 grams per hour of N_2O_4 feed. At this feed rate, 100% decomposition of the N_2O_4 would yield 0.511 cu ft/hr of gas of the composition 66.6 mole % O_2 , 33.3 mole % N_2 . The highest gas evolution rate obtained to date is 0.32 cu ft/hr of a gas that approximates the 2:1- O_2 : N_2 mole ratio (see Test 77457-1, Table 7) which represents a conversion efficiency of 62.6%. This was obtained using a 0.5% platinum catalyst at 800°C. Extending testing of this catalyst has not been performed since the operating temperature was quite high. With other catalysts having some activity at 800°C, the gas evolution rate is reduced by at least 50% when the temperature is lowered to 700°C.

Figure 3. NgO4 Reactor Flow Diagram

Table 7 N204 REFORMING DATA

N₂O₄ Feed Rate: 20 g/hour

Notes	Wet test meter reversed as volume reduced during run.	Gas sample: O ₂ /N ₂ = 1.5 mole/mole 100% decomposition yield = 0.511 ft ³ /hr; N ₂ O ₄ decomposition 14.7%***	Gas sample: $0_2/N_2 = 1.95 \text{ mole/mole}$	Rate too low for VPC analysis	Rate too low for VPC analysis	Rate too low for VPC analysis	VPC analysis N2-F-H0 VPC analysis N2 + N0 Thermocouple opened	VPC analysis Ne and trace Oe Rate too low for VPC analysis
Run Duration, hours	0.75	1.0	7.0	1.0 2.0 1.0	1.50	1.0 1.0 1.0 1.0*	0.6	1.0 1.0 1.2 1.25 0.5
Gas Evolved, ft ³ /hr	0	0 0 7.5 x 10 ⁻²	13.2 x 10 ⁻²	0.1 x 10-2 0.2 x 10-2 0	0.45 x 10-2	0.18 x 10-2 0.02 x 10-2 0.25 x 10-2 0.8 x 10-2 0.4 x 10-2	31.2 × 10-2 41.0 × 10-2 1.2 × 10-2	2.8 x 10-2 0 0 0 9.4 x 10-2 3.7 x 10-2 1.4 x 10-2
Reactor Temp,	198	8 609 0009	800	200 400 600	800	200 400 600 800 800	202 400 600	200 400 600 800 750 700
<u>Catalyst</u>	Baker 0.5%Pd lot 3107	Baker 0.5%Pd lot 3107 Baker 0.5%Pd lot 3107 Baker 0.5%Pd lot 3107	Baker 0.5%Pd lot 3107	Pt-Rh gauze Pt-Rh gauze Pt-Rh gauze	Pt-Rh gauze	Norton Zeolon®H-BPS Norton Zeolon H-BPS Norton Zeolon H-BPS Norton Zeolon H-BPS	0-49A 6-19A 7-49A 7-49A	G-43 Pt G-43 Pt G-43 Pt G-43 Pt G-45 Pt G-45 Pt
Run No.	72102-1	72108-2 72108-3 72108-4	72105-1	72106-1 72106-2 72106-3	72107-1	77425-1 77425-2 77425-3 77425-4 77426-4	77429-1 77429-2 77429-3	77433-1 77433-2 77433-3 77433-4 77433-4

* Gas was measured after the first hour and after the next 3/4 hour in run 77426-4. ** Not steady state conditions.

Table 7 (Continued)

						S 3	
Notes	Rate too low for VPC analysis	Decreasing rate indicating oxida- tion of catalyst	Reactor blocked	Flow stopped at 33 minutes Flow stopped at 15 minutes	Flow stopped at 46 minutes No VPC analysis made	Rate falling after 23 minutes May be due to attempted temperature change and overshoot, no VPC analysis	Run terminated; trap's backed up Flow stopped at 17 minutes No VPC analysis made
Run Duration, hours	1.00	1.0		1.0	1.0 1.0 0.1 0.5	1.0 1.0 0.25 1.0 0.75	1.0
Gas Evolved, ft ³ /hr	1.0 x 10 ⁻² 0 0 1.2 x 10 ⁻²	5.1 x 10-2 0 0.1 x 10-2 0 0		2.7 x 10-2 2.5 x 10-2 0	3.7 x 10-2 0.7 x 10-2 0 4.9 x 10-2	3.2 x 10-2 4.8 x 10-2 28.0 x 10-2 1.6 x 10-2	0.7 x 10-2 0.8 x 10-2 0.4 x 10-2 0.0 x 10-2 3.2 x 10-2
Reactor Temp,	200 400 600 800	200 300 348 396 600 200-240	204	000 000 800 000	200 400 600 800 750	700 800 750 700 650	0000 0000 0000 0000 0000
Catalyst	T-309 T-309 T-309 T-309	Ag-Alumina Ag-Alumina Ag-Alumina Ag-Alumina Ag-Alumina Ag-Alumina	T-366	24-0 24-0 24-0 24-0 24-0	0.5% Pd 0.5% Pd 0.5% Pd 0.5% Pd 0.5% Pd	0.5% Pd 0.5% Pd 0.5% Pd 0.5% Pd 0.5% Pd	Cao Cao Cao O.5% Rh O.5% Rh O.5% Rh
Run No.	77436-1 77436-2 77436-3 77436-4	77437-1 77437-3 77437-4 77437-5 77437-6	77439-1	77440-1 77440-2 77440-3 77440-4	77441-1 77441-2 77441-3 77441-4 77441-4	77442-1 77442-2 77442-3 77442-4	77443-1 77443-2 77443-3 77444-1 77444-2 77444-3

Table 7 (Continued)

Notes	Catalyst oxidizing	from stopped and stages (as temperature was raised		Catalyst oxidizing			as evolution rat	ĭat gt	47% N ₂ 04 decomp	Hellum saturated with H_20 added at 10 x 10^{-2} ft ³ /hr	Flow stopped at 32 minutes	Flow stopped at 30 minutes	VPC - 1.95 to 1 mole ratio 02:N2 24% N204 decomposed**
Run Duration, hours	0.92	*	0.5	1.0	*	0.25	0.75	0.5	1.1	1.0	0000	1.0	1.0
Gas Evolved, ft ³ /hr	5.9 x 10 ⁻²	2.0 x 10 ⁻²	0 0 0.2 x 10-2	7.45 x 10-2	0	00	32.0 x 10-2	18.0 x 10-2	24.0 x 10-2	8.0 x 10 ⁻²	3.6 × 10-2 0 0 0	1.1 x 10-2	₩. ₩. ₩. ₩. ₩. ₩. ₩. ₩. ₩. ₩. ₩. ₩. ₩. ₩
Reactor Temp,	200	064-004	550-600 800	500	400-500	800	800	800	800	800	200 400 800	000	88000
Catalyst	Ag-Hg	[Ag-Hg	Ag-Hg Ag-Hg Ag-Hg	Pd-Hg	[Pd-Hg	Ра-Нg Ра-Нg	II-077 (0.5% Pt)	II-077 (0.5% Pt)	II-077 (0.5% Pt)	II-077 (0.5% Pt)	cu-2501 cu-2501 cu-2501	2000	Cu-0803 Cu-0803 Cu-0803 Cu-0803
. ON	77445-1	77445-2 thru	77445-12 77445-13 77445-14 77445-14	77447-1	77447-2 thru	77447-9 77447-10 77417-11	77457-1	77457-2	77457-3	4-15422	77450-1 77450-2 77450-3		77451-1 77451-2 77461-3 77461-4 77461-5

* Temperature program approximately 10°C/hour. **Not steady state conditions.

Table 7 (Continued)

Notes	18% N ₂ O ₄ decomposed** 11.8% N ₂ O ₄ decomposed**	Contained no Oz	Gradual temperature increase during	WPG-109 to 1 mole ratio 02:Nz	Nz - flow stopped after 30 minutes	N ₂ - flow stopped after 15 minutes	Nz - oxidizing catalyst Nz - oxidizing catalyst Flow stopped Too small for VPC	Flow stopped after 45 minutes Oxidizing catalyst	Oxidizing catalyst Flow stopped at 1 hour	45% N ₂ O ₄ decomposed** Linear program approximately 100°C/ hour rate given is maximum for 700-800° portion of test
Run Duration, hours	1.0	0.75	4.75	4.3	1.0	 	1.0	0000	1.1	0.75
Gas Evolved, ft ³ /hr	9.2 x 10 ⁻² 6.0 x 10 ⁻²	1.1 x 10-2	0	4.3 x 10-2	3.4 x 10-2	2.1 x 10 ⁻²	4.9 x 10-2 2.4 x 10-2 0.1 x 10-2 0.3 x 10-2	3.9 x 10 ⁻²	×	0.2 x 10 23.0 x 10-2 5.0 x 10-2
Reactor Temp,	750 700	200	400-600	800	200	0008 000 000	8600 8600 8600	8 000 000 8 000	200	800 800 200-800
Catalyst	Cu-0803 Cu-0803	MRC Pt-Hg	{MRC Pt-Hg	MRC Pt-Hg	Ag-101E	Ag-101E Ag-101E Ag-101E	Cu-O4O2T Cu-O4O2T Cu-O4O2T Cu-O4O2T	N1-4305E N1-4305E N1-4305E N1-4305E	-077 (0.5% -077 (0.5%	II-077 (0.5% Pt) II-077 (0.5% Pt) II-077 (0.5% Pt)
Run No.	77462-2 77462-3	77450-1	77450-2 thru	77450-12 77450-13	77452-1	77452-2 77452-3 77452-4	77453-1 77453-2 77453-3 77453-3	77454-2 77454-2 77454-3 77454-4		77455-3 77455-4 77455-5

** Not steady state conditions.

In many cases the gas evolution rates cannot be directly interpreted since the gas composition shifts during the test. More extended tests will be performed on the most promising catalysts after the screening program has been completed.

The noble metals have shown activity for decomposing N_2O_4 . The extent of this activity appears to be related to the support used or the method of application to the support. Tests 77^433 and 77455 illustrate this behavior. In both tests, the active material is platinum and the support is alumina. The catalysts were prepared by different suppliers and the performance difference at 800°C is obvious.

The palladium catalyst tested shows the same order of activity at 800°C as the best platinum catalyst. Test 77441 indicates the gas evolution rate change as the temperature is lowered. This catalyst is active in the 750-800°C range, and is only mildly active at 700°C. No activity is apparent at 650°C.

A test of the rhodium catalyst showed only mild activity at 800°C (see Test 77444).

The metals, nickel, copper, iron and silver, were tested. Where the reduced metal was the active material on the support, the metal was oxidized at 200 and 400°C by the N₂O₄ (see Tests 77429, 77437 and 77453). The gas evolved during this portion of the tests was mostly nitrogen. The composition shifted gradually to nitric oxide just before the flow stopped, indicating the oxidation of the catalyst was complete. Only trace amounts of oxygen were found. At higher temperatures these catalysts exhibited no activity for decomposing N₂O₄.

One of the catalysts, containing copper oxide on supported alumina, was active for N_2O_4 decomposition see Test 77461). This catalyst, although not as active as platinum or palladium catalysts, does not appear to have the great absorption for oxygen that caused the delay in operation observed with the Pt and Pd catalysts. The catalyst does display the typical decrease of activity as the temperature is reduced from 800°C (see Tests 77462-2 and 77462-3).

The acid zeolite and base-type materials exhibited no activity (see Tests 77426 and 77443). Some further work will be done by incorporating metal cations with the zeolite type materials.

Special catalysts have been prepared and tested in an effort to determine the nature of the decomposition reaction. In several cases oxidation of the catalyst was experienced during the tests and it was felt that if these metal oxides could be decomposed to liberate oxygen and the oxides reformed from the N_2O_4 stream, an oxygen exchange system could be developed. With this in mind silver catalysts were prepared along with amalgams of silver, palladium, and platinum. It was hoped that the amalgams would reduce the decomposition temperature of the oxides of platinum and palladium. These special catalysts exhibited only limited activity for the decomposition of N_2O_4 (see Tests 77441, 77445, 77447 and 77437).

Several tests have been made using small additions of water to the feed stream to determine the effect on the activity of the catalyst. The method chosen to introduce the water has been to saturate a stream of inert gas, argon and helium, with water and inject this stream at the base of the reactor tube. Several difficulties were encountered because of the high solubility of N2O4 in water. After these were corrected, runs 77457-1 through 77457-4 were made. The reactor was operated with a catalyst that had measured activity (in this case catalyst II-077 was used) until a steady state gas evolution rate was obtained. At this time the stream of water-saturated argon or helium was started at a rate calculated to add 0.1 to 0.5% water to the N_2O_4 input. both tests 77457-2 and 77457-4, the corrected gas evolution rate was lower than the measured rate taken just before the water was added. These results do not appear conclusive since the residence time for the system was changed considerably by adding the inert gases.

To check this technique more thoroughly, a microsyringe will be installed in the system, which will deliver 0.2 ml per hour of water to the input stream without adding the large volume of carrier gas used in previous experiments.

C. FUTURE PLANS

Since none of the catalysts tested to date have exhibited sufficient activity to be useful at lower temperatures, it was felt that a large number of new catalysts should be screened in the near future. A new four-reactor system has been designed (see Figure 4) and parts have been ordered to build it. When complete, the system will be operated on a 24-hour/day schedule using a temperature program from 200 to 800°C with automatic equipment to record the data. It is planned that four catalysts will be tested per day with enough time left during working hours to check the performance of the ones that exhibit the highest activity. Three weeks will be required to install this new system and check its operation.

Figure 4. Multiple N2O4 Reactors Schematic

Several new catalysts have been prepared that have higher concentrations of the active materials found most satisfactory in the screening tests. Since 0.5% palladium-on-alumina has shown activity, two new catalysts have been prepared that have 5.0% palladium on both alumina and on silica. These were made by soaking the support materials in palladium chloride solution of known concentration, drying them, and then reducing them with hydrogen at elevated temperature for several hours. A catalyst containing 15% palladium-on-alumina is now being prepared in this manner. Catalysts with 5 and 15% platinum will also be made within the next week.

Catalysts will also be made up using Fe_2O_3 , Bi_2O_3 , MnO_2 , CuO, $CaCO_3$, and activated carbon in various ratios as suggested by J. Zawadzki (ref. 3). These are ammonia oxidation catalysts that may also have activity for decomposing oxides of nitrogen at lower temperatures.

Several new catalysts will be made using precipitated silica gel to support reduced copper, copper-silver, and copper-gold alloys. These materials will also be deposited on alumina-silicate cracking catalyst support.

Another approach to testing basic type catalysts (CaO and MgO) will be made by heating the reactor to above the decomposition temperature of the nitrates of Ca and Mg. The temperature will then be reduced after the N_2O_4 feed is started.

IV. TASK III. DIRECT REACTANT USE

A. SUBTASK 3.1. CATHODE OPTIMIZATION

1. Background

The requirements for a good N2O4 cathode are as follows:

- (a) High electrochemical activity at as high a potential as possible.
- (b) Good coulombic efficiencies on a single pass of reactant through the electrode chamber.
- (c) Reproducible and predictable diffusion rates of N_2O_4 through the electrode plus a method of controlling diffusion rates.
- (d) A water back-diffusion rate less than or equal to stoichiometric water production.

Work on the previous contract (NAS3-4571) sufficiently covered the first requirement: the MRD carbon electrode has adequate polarization characteristics for this application. Work on the current contract has shown that coulombic efficiencies can be improved by proper manifold design aimed at reducing flow rates. This work is described in the First Quarterly Report. There is another area in which coulombic efficiencies can be improved. At present, the reaction product of the cathode reaction is NO:

$$N_2O_4 + 4H^+ + 4e^- = 2NO + 2H_2O$$

If: the reaction can be made to proceed as:

$$N_2O_4 + 8H^+ + 8e^- = N_2 + 4H_2O$$

twice as many amp-hours/g of N_2O_4 are theoretically possible. This calls for a catalyst screening program with the objective of promoting the second reaction.

The N_2O_4 diffusion rate through the electrode is important because any excess N_2O_4 above the electrochemical requirements can dissolve in the electrolyte with deleterious effects on efficiency. Two approaches are possible. One method is to control the amount diffusing to that required to maintain the electrochemical reaction. This will require knowledge of the factors affecting diffusion through the electrode and a program has begun to acquire this knowledge. Both temperature and pressure are "external" parameters that can influence the diffusion rate. There are also the "internal" parameters of

electrode porosity and composition. The objective of this work is to limit the diffusion of N_2O_4 through the electrode so that electrolyte contamination on open circuit is minimized and to match diffusion to cell current demand by metering the flow and controlling the N_2O_4 pressure. The equipment necessary to achieve this will have to be temperature compensated, since diffusion will be temperature dependent. Finally, since multicell modules will eventually be involved, and control of total N_2O_4 pressure to the module is certainly preferred over control of the supply to individual cells, the diffusion rate through individual electrodes must be reasonably reproducible from electrode to electrode. All these factors must be included in the program.

The second method of attack involves developing a hydrogen anode that can tolerate substantial quantities of nitric-nitrous acid in the electrolyte. A $\rm N_2H_4$ anode would be less efficient because of the formation of hydrazine-nitrate salts. The $\rm H_2$ would be produced from Aerozine-50 by steam reforming or low temperature decomposition. The cathode can operate either as a flow-through solution electrode with the $\rm N_2O_4$ dissolved in the electrolyte (a free electrolyte cell) or as a gas electrode operating on $\rm N_2O_4$ in a contained electrolyte cell. In either case, diffusion control is not necessary. This system is also attractive because contamination of electrolyte at the anode by UDMH or its reaction products is eliminated.

The back diffusion of $\rm H_2O$ vapor through the cathode is important in maintaining water balance in an operating module. In contained electrolyte cells operating on gaseous reactants, this is the only method that can be used. In other cell types, if all the water produced can be eliminated by this route, no auxiliaries (including phase separation devices) are required. Thus, the water transport properties of the electrode must be determined.

2. Results

Work during the last quarter centered on two aspects: the analytical method used to determine nitrites and nitrates in the electrolyte, and (2) the effect of carbon density and screen mesh size on electrode performance. A new analytical method has been developed for this work and the details are presented in Appendix IV. A series of cathodes with thicknesses varying from 0.025 in. to 0.030 in. and carbon matrix densities from 0.59 to 0.70 g/cc were made using stainless steel screens of 30, 20, and 16 mesh. The higher density cathodes were cold rolled in the uncured (wet) state. Additional densification will be realized by cold pressing after curing. All electrodes will be screened in the diffusion cell described in the First Quarterly Report, and electrochemical performance will be determined in the H_2/N_2O_4 3 x 3 in. cell also described in the referenced report. One electrode has been so tested and the results are presented in Figure 5 and Table 8. This electrode

Figure 5. Polarization Characteristics of Electrode 72493

Table 8

N₂O₄ DIFFUSION THROUGH ELECTRODE 72493

Electrolyte: 5M H₃PO₄ N₂O₄ Flow Rate Through Cell: 1.6-2.0 g/min

Temp,	N_2O_4 Pressure, in. H_2O gauge	Diffusion Rate, g N ₂ O ₄ /hr/cm ²
26	5.4	0.256
26	0	0.123
60	5 . 4	0.341
60	0	0.287
90	5.4	0.276
90	0	0.207

Stoichiometric Requirement:

100 ma/cm²: $0.089 \text{ g N}_2\text{O}_4/\text{hr/cm}^2$

200 ma/cm²: 0.178 g N₂O₄/hr/cm²

had the highest carbon density, but even so, the diffusion rate was 2-3 times the stoichiometric requirement for 100 ma/sq cm over the temperature range of 30-90°C. The polarization characteristics are deemed adequate for this service.

3. Work Plans

- (1) Fabricate test electrodes:
 - (a) Various densities and screen sizes (completed).
 - (b) Higher and lower carbon/Teflon ratios.
 - (c) Diffusion barriers: sprayed Teflon, precipited MnPO4.H2O, Kel-F oil.
 - (d) Four different carbon types.
- (2) Determine N₂O₄ diffusion rates on above electrodes as a function of pressure and temperature. Check out and standardize ultraviolet absorption analytical method.
- (3) Determine polarization characteristics of above electrodes in a 3 x 3 cell quick testing.
- (4) Set up and test H_2/N_2O_4 contained electrolyte cell and H_2/HNO_3-HNO_2 (dissolved N_2O_4) free electrolyte cell using double MRD-Pt electrode for anode. Determine if H_2 anode will run for long periods without degradation, steady state coulombic efficiencies.
- (5) Fabricate electrodes with different catalysts: Rh, Au, Ag, Ir, Ru, Pd, borides, silicides, NH₃ oxidation catalysts, Ag₂O-AgSO₄.
- (6) Set up test apparatus to determine N_2O_4 reduction products from 3 x 3 cell. Check out and debug. Determine presence of N_2 and/or N_2O_4 .
- (7) Run electrodes made in (5) in apparatus (6). Check for reduction below NO by detecting N₂ or N₂O in product stream. Include evaluation of the effect of FeSO₄ in electrolyte (complex NO and hold for reaction).
- (8) Run H_2O vapor back diffusion determinations on one or two of the most promising cathodes from above. Set up 3 x 3 cell with wet and dry bulb thermometers in outlet stream, run dry N_2 at a constant flow high enough to insure nonsaturation.

B. SUBTASK 3.2. AEROZINE-50 ANODE DEVELOPMENT

1. Background

The objectives of this task are to develop an electrode that will operate on Aerozine-50 as a direct electrochemical fuel with:

- (a) High electrochemical activity and little polarization.
- (b) High coulombic efficiencies with a single pass of reactant through the electrode chamber.
- (c) Little or no contamination of the electrolyte from unreacted fuel or from products of the reaction.

The first requirement dictated a catalyst selective for the reactions involved in the electro-oxidation of the components of the fuel. A catalyst screening program has been in progress to determine the activity of both UDMH and Aerozine-50 on a variety of prospective catalysts.

The achievement of the second objective hinges on two factors:

- (a) Minimization of the catalytic decomposition of N_2H_4 on the electrode which causes a loss of fuel efficiency.
- (b) Maximization of the ampere-hours output per gram of fuel.

The catalytic decomposition problem is susceptible to solution by electrode design; that is, by preventing direct contact of the catalytic surface of the electrode with large volumes of fuel. The coulombic capacity of the fuel can be greatly increased if some portion of the UDMH fraction can be utilized:

- 1.67 amp-hr/g of Aerozine-50 if only N_2H_4 is utilized
- 2.12 amp-hr/g of Aerozine-50 if N_2H_4 is utilized and UDMH is utilized in a 2e- oxidation
- 3.00 amp-hr/g of Aerozine-50 if N_2H_4 is utilized and UDMH is utilized in a 6e- oxidation

However, the desirability of promoting the electro-oxidation of UDMH depends on whether the reaction products are deleterious or difficult to accommodate in operating cells. Thus, the catalyst screening program has dual objectives:

- (a) To find a catalyst that will electro-oxidize both UDMH and N₂H₄ at a reasonably good mixed potential.
- (b) To find a catalyst that will electro-oxidize N_2H_4 efficiently but that is inert with respect to UDMH.

Promising catalysts uncovered in the screening program must be further characterized in larger cells in order to determine fuel coulombic efficiencies, long-term electrode performance, and the nature of the reaction products. In this testing various methods of reducing self decomposition of the fuel will be evaluated. Final definitive testing of the most promising electrodes developed will be accomplished in 1/3 sq ft cells in which fuel distribution and product removal systems, electrode support, and cell configuration parameters will be investigated.

2. Catalyst Screening Program

a. Experimental

The 1.3 sq cm cell and associated equipment used in this testing has been described in detail in our First Quarterly Report (ref. 2). Briefly, the fuel is dissolved in the electrolyte, which is pumped across the face of the electrode. This arrangement prevents the collection of gas bubbles on the electrode surface and reduces concentration polarization. IR-free potentials are determined with a Kordesch-Marko bridge. This method allows the true activity of the electrode to be determined free from diffusional effects and other physical limitations.

The catalyst powders are either commercially available or are made in-house by borohydride reduction of metal salts in solution. The latter process produces powders with very small particle size and high surface areas; they generally possess high catalytic activity. Test electrodes are made by incorporating the catalyst powders into MRD-type electrodes supported on Pt screen.

b. Results and Discussion

Thirteen catalysts were reported in the First Quarterly Report. The two that showed the best activity on UDMH fuel were Rh powder (Engelhard) and a proprietary MRC quaternary noble metal alloy catalyst (both gave 0.56 v vs. SHE at 100 ma/sq cm and 60°C). The best catalyst in short-term testing on Aerozine-50 fuel was the same Rh powder (0.13 v vs. SHE, 100 ma/sq cm, 60°C).

This quarter, 17 new catalysts have been evaluated and several of the original 13 have been retested on Aerozine-50. The results of these tests are presented in Table 9. Two new catalysts that performed as well as Rh on UDMH fuel were Ru-Rh alloys (50-50 and 75-25% composition by weight); they yielded 0.54 v vs. SHE at 100 ma/sq cm, 60°C. These catalysts also were active on Aerozine-50 (0.06 v vs. SHE, 100 ma/sq cm, 60°C). Ru, Ir, Ni₂B, Ru-Rh (25-75), and a proprietary five-component alloy (electrode 77628) all showed relatively poor activity on UDMH, and fair to good activity on Aerozine-50, making them candidates for the second objective of the screening program discussed above. The

Table 9 AEROZINE-50 ELECTRODE CATALYST TEST RESULTS

Temperature: Electrolyte:

60°C
5M H₃PO₄
3M in all cases, dissolved in electrolyte Catalyst/Teflon mixtures cured on Pt Screen, MRC laboratory made catalysts made by borohydride reduction of salts Fuel: Electrodes:

Electrode				vs SHE	Potentia at Ind Density	icated	
Code	Catalyst Description	Fuel	0	50	100	150	200
50-67226	Rh (Engelhard) - Standard Catalyst	UD M H A-50	0.34	0.51 0.04	0.55	0.59	0.63
71221-1	Ru (MRC laboratory made)	UDMH A-50	0.39	0.59	0.69	0.77 0.13	0.73 0.10
71221-3	Rh (MRC laboratory made)	UDMH A-50	0.46	0.52	0.59 0.15	0.62	0.65
71221-6	Ru-Rh (25-75) Alloy Catalyst (MRC made)	UDMH A-50	0.51	0.57 0.11	0.64	0.72 0.13	0.77
71221-7	Ru-Rh (50-50) Alloy Catalyst (MRC made)	UDMH A-50	0.35	0.47	0.54	0.57 0.07	0.61
71221-8	Ru-Rh (75/25) Alloy Catalyst (MRC made)	UDMH A-50	0.33	0.47	0.54	0.60 0.06	0.64
71221-2	Ir (MRC laboratory made)	U DM H A-50	0.39	0.74	0.84	0.95	1.00
71221-4	Os (MRC laboratory made)	UDMH A-50	0.42			tivity tivity	
71221-5	Mo (MRC laboratory made)	UDMH A-50	0.41		No Act	tivity tivity	
71221-9	Au (MRC laboratory made)	UDMH A-50	0.19		No Act	tivity tivity	

Table 9 (Continued)

Electrode			`	vs SHE	Potentia at Indi Density,	Lcated	
Code	Catalyst Description	Fue 1	0	50	100	150	200
56838	MRC Chelate Catalyst on Carbon Substrate	UDMH A-50	0.33	0.57	No Act 0.65	tivity	-
68729-3	Raney Nickel on Carbon on SS Screen	UDMH A-50	0.35 0.13		No Act		
73233-29	Ni ₂ B Catalyst	UDMH A-50	-0.02	0.25	No Act 0.29	tivity 0.30	0.30
73233-la	Co ₂ B Catalyst	UDMH A-50	0.36 -0.05	0.58 0.46	0.87 0.50	0.58	0.66
7,7628	5-Component Precious Metal Alloy Proprietary Catalyst on Carbon	UDMH A-50	0.53	0.69 0.17	0.78	0.21	0.23
77605	Pt-1% Mo Alloy Catalyst (MRC made)	UDMH A~50	0.53	0.75	0.84	0.44	0.49
70449-52	Pt-Rh (90-10) Alloy (MRC made)	UDMH A-50	0.55 0.21	0.69	0.75 0.50	0.56	0.60
73354-9 and -10	5-Component Precious Metal Alloy Proprietary Catalyst	UDMH UDMH	0.47 0.43	0.55 0.61	0.61 0.64	0.65	0.66 0.64
73354-6 and -7 and -8	4-Component Precious Metal Alloy Proprietary catalyst	UDMH UDMH UDMH	0.45 0.41 0.41	0.63 0.62 0.62	0.64 0.63 0.67	0.65 0.62 0.69	0.64 0.63 0.71
73354-4	Pt -Ru (30-70) Alloy (MRC made)	UDMH	0.36	0.57	0.66	0.74	0.81
77604-1 and -2	5-Component Precious Metal Alloy Proprietary Catalysts	UDMH UDMH	0.41 0.45	0.58 0.61	0.61 0.62	0.53 0.53	0.65 0.64

best of these at this time appears to be Ru (0.69 v with UDMH, 0.11 v on Aerozine-50, both vs. SHE at 100 ma/sq cm, 60°C). All five catalysts are worth following up for this application.

3. Characterization of Rh Electrodes

a. Experimental

In order to characterize promising electrodes by determining fuel coulombic efficiencies and long-term electrode performance, a test stand and 3×3 in. cell configuration were designed, constructed, and tested this quarter. The object of these designs was to trap and measure off-gases from the electrode reactions. Analysis of these gases is a preferred method of determining fuel efficiency. The reactions that can occur with the hydrazine component are:

Catalytic decomposition:
$$N_2H_4 \longrightarrow N_2 + 2H_2$$
 (8)

Electro-oxidation:
$$N_2H_4 \longrightarrow N_2 + 4H^+ + 4e^-$$
 (9)

The only likely reaction that might upset this analysis is the decomposition to ammonia:

$$3N_2H_4 \longrightarrow 4NH_3 + N_2 \tag{10}$$

The extent of this reaction can be determined by checking $\rm H_2/N_2$ ratios in the off-gases from open circuit testing; substantial excursions from a 2:1 ratio will indicate that reaction 10 is a significant factor.

The reactions of UDMH are more complex, with many more products involved (ref. 4). However, N₂ is the only gaseous product likely to be formed. In addition, our work on low-temperature decomposition of Aerozine-50 shows UDMH self-decomposition is nonexistent at temperatures of interest in this work. Thus, the participation of UDMH in the anodic reaction will be indicated by the volume of N₂ produced per ampere-hour of cell electrical output.

Calculation details on the effect of UDMH on the volume of N_2 produced per Ampere-hour are included in Appendix V. In general this factor will be a maximum at 7.4×10^{-3} ft³ of N_2 /Ampere-hour. This will occur only when N_2H_4 is the sole reactant at the electrode (UDMH an inert diluent), oxidizing as indicated by reaction 9. The participation of UDMH in the electrooxidation in any mode will decrease this factor. Thus values substantially below 7.4×10^{-3} are a strong indication of UDMH reaction. In practice it is necessary to account for N_2 produced by catalytic decomposition of N_2H_4 in calculating the factor. This can be accomplished by analyzing the off gases for H_2 and back calculating and subtracting the corresponding amount of N_2 using equation (8).

The Aerozine-50/ O_2 acid electrolyte cell design used to conduct these tests is shown in Figure 6. This is a free electrolyte cell with the electrolyte pumped across the anode surface. An ion exchange membrane (Ionics Inc. cation exchange membrane 61AZL-183) is used to prevent O_2 from the cathode entering the electrolyte, and to prevent exit of anode gases through the cathode.

The test stand used with this cell is shown in Figure 7. Provision is made for trapping anode off-gases whether from the fuel side of the electrode or from the electrolyte itself. The gas volume can be measured accurately with a Wet Test meter and analytical samples taken for VPC analysis. A controlled power supply and associated equipment is used to determine electrode performance and ampere-hour output.

b. Results and Discussion

Two electrodes containing Rh catalysts (Engelhard) have been tested to date. The first was a standard MRD Rh/Teflon electrode supported on a Pt screen. Catalyst loading was 0.3 g of Rh/in.2, and no provision was made to limit the contact of fuel with the catalytic surface. Pure Aerozine-50 was pumped to the anode chamber at a rate of 19 g/min. The self-decomposition rate of this electrode (measured on open circuit) was extremely high; at 40°C the gas evolution rate was 2.5 ft³/hour. The reaction is exothermic, and enough heat was generated in this test to raise the cell temperature sharply. The electrode was apparently damaged by the high temperature and subsequently leaked electrolyte badly. the electrochemical performance could not be determined on pure Aerozine-50. The catalytic activity of the electrode was reduced as shown by the results with the fuel dissolved in the electrolyte (0.43 v vs. SHE at 100 ma/sq cm, 60°C). This test decisively demonstrated the necessity of limiting the gross contact of the fuel with the catalytic surface by incorporation of suitable diffusion barriers.

The second anode tested consisted of an MRD Rh electrode, with the same catalyst loading as the electrode previously described, in conjunction with a MRD carbon electrode, 0.020 in. thick, with the carbon side toward the fuel and the catalytic side toward the electrolyte. The MRD carbon electrodes have been shown to be capillary membranes (passing vapors only). Thus, this electrode served as a vapor diffusion membrane in this test. The self-decomposition rate of Aerozine-50 on this electrode was determined as function of temperature as shown in Figure 8. At 40°C, the gas evolution rate on open circuit measured 4.4 x 10^{-2} ft³/hour, nearly two orders-of-magnitude below the rate found with the unprotected electrode. Duplicate VPC analysis on gas samples (taken during the 55°C test) showed a H_2/N_2 ratio of 1.8/1, close enough to the theoretical 2.0 to indicate little NH₃ formation.

Figure 6. Aerozine-50 Anode Test Cell Construction

Figure 7. Aerozine-50/02 Cell Test Stand

Figure 8. Self Decomposition of Aerozine-50 on Electrode 72468-A

Polarization characteristics were determined as a function of temperature as shown in Figure 9. The results are generally indicative of diffusion limitations. Tests at 55°C indicated the limiting current density with this electrode is 10 to 15 ma/sq cm. The results of a two-hour run at 55°C, 50 ma/sq cm, are given in Table 10. Several conclusions can be drawn from these test results:

- (1) The fuel diffusion rate through the carbon electrode is not sufficient to support 50 ma/sq cm. Future electrodes must provide more diffusion, but this will probably cause some increase in the self-decomposition rate.
- (2) The self-decomposition rate was greatly reduced during this test. This is most likely due to the low concentration of N_2H_4 at the electrode surface because of limited diffusion and the competing electrochemical reaction.
- (3) The change in N₂ volume per ampere-hour factor from the first hour of test to the second hour indicates a change in the dominant reaction at the electrode. This conclusion is supported by the change also observed in the electrode potential. However, the possible deleterious effects of reaction products has not been established in this test because of the poor diffusion characteristics.

4. Future Plans

- (1) Test different diffusion barriers with Rh electrodes: more porous carbon, stainless steel plaque, silica-gel/Teflon membranes.
- (2) Run long-term test on Rh: determine if UDMH active and if products can be tolerated.
- (3) Fabricate and test electrodes made with catalysts not active on UDMH but which worked well with Aerozine-50.
- (4) Evaluate results after above tests complete: if not satisfactory, start catalyst screening program again to discover new catalysts worthy of test, retest same in 3 x 3 cell.
- (5) Select best 1 or 2 electrodes, fabricate 7" x 7" electrodes and run tests in 1/3 ft² cells. Check efficiency and performance, determine proper fuel manifold geometry, test both contained and free electrolyte cell configuration.

Electrolyte: 5M H3PO4 pumped through cell Fuel:
Aerozine-50 metered to anode chamber at 19 g/min MRD-A Rh/C electrode, 0.060 in. thick, 0.3 g Rh/in.

Polarization Characteristics of Electrode 72468-A Figure 9.

Table 10 TWO-HOUR RUN OF Rh/C ANODE

Fuel:

Aerozine-50 pumped to

Electrolyte:

electrode at 19 g/min
5M H₃PO₄, pumped through cell
50 ma/cm²
55°C

Current Drain:

Temperature:

Time, hours	Potential vs SHE, volt	Cumulative Gas Volume, ft
0	-0.02	0
0.25	0.37	0.0072
0.5	0.35	0.0118
1.0	0.37	0.0185
1.5	0.47	0.0258
2.0	0.53	0.0280

Gas Sample VPC Analysis: Η2,

Calculated N2 Volume Factor:

First hour of test, $5.9 \times 10^{-3} \text{ ft}^3/\text{amp-hour}$ Second hour of test, $3.2 \times 10^{-3} \text{ ft}^3/\text{amp-hour}$

C. SUBTASK 3.2 DESIGN AND TEST 1/3-FT² ELECTRODES

1. Background

The contract work statement requires definitive electrode testing to be performed in 1/3-ft² half cells, with ultimate testing of all reactants of interest (including reformer products) in this size cell. Initial screening programs are being carried out in smaller cell sizes, but final testing of all promising developments will be performed in the larger cells. The cell frames and holders have been designed and four sets ordered. The manifold geometry has been approved by the Project Monitor and three flow plate thicknesses have been ordered. The first work with these cells will be to determine the effect of flow plate geometry and thickness on the coulombic efficiency of the N_2O_4 electrode. Previous work has shown the importance of gas Reynolds number on performance of these electrodes. Similar studies will be carried out with Aerozine-50. Finally, half cells operating on all reactants of interest will be demonstrated in this configuration.

2. Work Plan

- (a) Design and construct test stands including control and analytical equipment.
- (b) Fabricate N₂O₄ electrodes to be tested (2 or 3 most promising from initial program) and determine optimum operating parameters:

Reactant flow rate Temperature (40-100°C) Reactant pressures Three manifold plates

Measure:

Coulombic efficiencies at 100 ma/cm² Polarization characteristic 50-200 ma/cm² Electrolyte contamination

In addition, measure H_2O back diffusion at temperatures $40-100\,^{\circ}\text{C}$ with N_{Re} equivalent to flow rates used.

(c) Fabricate Aerozine-50 anodes to be tested (2 or 3 most promising); determine optimum operating parameters (flow rates, temperature, pressure, manifold plates).

- (d) Fabricate electrodes and run initial tests for following reactants:
 - (1) $O_2 + N_2$ in 2:1 mole ratio (simulated N_2O_4 reformer stream) on Pt MRD laminar electrode.
 - (2) H₂ + CO₂ + CO in ratios as determined from steam reforming data, on best catalyst found in dirty hydrogen work on another contract (ref. 5).
 - (3) H_2 from decomposition of Aerozine-50 ($H_2 + N_2$ in 2:1 mole ratio + UDMH at partial pressure = vapor pressure of UDMH at decomposition temperature), on Pt MRD electrode.
- (e) Depending on results in 3 x 3 cell testing: construct one full cell (either contained or free electrolyte) operating on H_2 and N_2O_4 (gas or dissolved in electrolyte). Determine coulombic efficiency over long-term run. Determine optimum operating parameters.

V. REFERENCES

- 1. J. C. Orth, "Study of Fuel Cells Using Storable Rocket Propellants", Final Report, Contract NAS3-4175, to be published.
- 2. R. F. Drake, "Study of Fuel Cells Using Storable Rocket Propellants", Contract NAS3-6476, Quarterly Report No. 1, NASA No. CR54428, 28 May 1965.
- 3. J. Zawadski, <u>Disc Faraday Soc.</u>, <u>8</u>, 140 (1950).
- 4. D. M. King and A. J. Bard, "The Electrochemistry of the Methylhydrazines", J. Am. Chem. Soc., 87:3, 419 (1965).
- 5. J. C. Orth, "Research to Improve Electrochemical Catalysts", Final Report, Contract DA-49-186-AMC-166(X), USAERDL, Fort Belvoir, Va., to be published.

APPENDIX I

HEAT BALANCES FOR AEROZINE-50 REFORMING SYSTEMS

In the following discussion and tables heats of reaction and heats for raising and lowering the temperature of reactants and products are given in kilocalories (Kcal). A positive sign indicates that external heat is needed to maintain the temperature of the system, and a negative sign indicates the system must reject waste heat.

SYSTEM 1

Only N_2H_4 decomposes to H_2 , N_2 and NH_3 . Table 1 shows the total heat balance at 25°C for N_2H_4 decomposing in various ratios of NH_3 and H_2 formation for 100 g Aerozine-50 input.

Table A-1

HEAT BALANCE FOR SYSTEM 1 AT 25°C,
BASIS 100 G AEROZINE-50

% N ₂ H ₄ Decomposing to NH ₃	% N ₂ H ₄ Decomposing to H ₂	Total System Heat Balance, Kcal
70	30	-35.71
40	60	-28.48
10	90	-21.33

Reactions: a.
$$N_2H_4(l) \longrightarrow N_2(g) + 2H_2(g)$$

$$\Delta H = -12.05 \text{ Kcal}$$
b. $N_2H_4(l) \longrightarrow 4/3 \text{ NH}_3(g) + 1/3 \text{ N}_2(g)$

$$\Delta H = -27.50 \text{ Kcal}$$

This indicates that effective cooling is needed to maintain temperature. Higher temperatures such as 60°C may be preferable since the fuel cell would probably operate at this temperature and the UDMH portion of the fuel could be used as a heat absorber.

SYSTEM 2

At temperatures of 100°C to 250°C, significant decomposition of UDMH to CH₄ and N₂ takes place. This adds more exothermic heat, which must be rejected. The reactions are:

		ΔH at 100°C as Liquid, Kcal	ΔH at 175°C as Vapor, Kcal	-
a.	$N_2H_4(l) \longrightarrow N_2 + 2H_2$	-12.79		
b.	$N_2H_4(g) \longrightarrow N_2 + 2H_2$		- 21 . 79	- 21 . 31
c.	$N_2H_4(l) \longrightarrow 4/3 NH_3 + 1/3 N_2$	-28.63		
d.	$N_2H_4(g) \longrightarrow 4/3 NH_3 + 1/3 N_2$		-37.92	-37.67
e.	$UDMH(l) \longrightarrow 2CH_4 + N_2$	-48.53		
f.	$UDMH(g) \longrightarrow 2CH_4 + N_2$		-54.91	-54.16

Table A-2 shows the overall heat balance for this system, assuming reactants are heated to operating temperature and products are cooled to $100\,^{\circ}\text{C}$. The basis is 100~g of Aerozine-50.

Table A-2

HEAT BALANCE FOR SYSTEM 2 AT 100°C, 175°C, AND 250°C

FOR 100 G AEROZINE-50 INPUT

Temp,	% N ₂ H ₄ to 4/3 NH ₃ + 1/3 N ₂	% N ₂ H ₄ to 2H ₂ + N ₂	% UDMH to 2CH ₄ + N ₂	Total Heat Balance, Kcal
100	70 40 10	30 60 90	5 5 5	-33.95 -26.53 -19.11
175	70	30	20	-39.02
	40	60	20	-31.70
	10	90	20	-24.41
250	70	30	50	-50.29
	40	60	50	-43.09
	10	90	50	-35.85

SYSTEMS 3 AND 4

Systems 3 and 4 include a variety of reactions. Those easiest to work from and having a basis in experimental fact are:

		ΔH at 400°C, Kcal	ΔH at 500°C, Kcal
a.	$UDMH(g) \longrightarrow 2CH_4 + N_2$	-52.40	-50.82
b.	$UDMH(g) \longrightarrow (CH_3)_2NH + 1/3 N_2 + 1/3 NH_3$	-29.66	-29.12
3.	$UDMH(g) + 2H2O \longrightarrow 2CO + 2NH3 + 3H2$	24.56	26.06
d.	$UDMH(g) + 4H_2O \longrightarrow 2CO_2 + 2NH_3 + 5H_2$	9.88	13.52
е.	$N_2H_4(g) \rightarrow 4/3 NH_3 + 1/3 N_2$	-36.87	-36.36
f.	$CO + H_2O \longrightarrow CO_2 + H_2$	- 7.34	- 6.27
g.	$NH_3 \longrightarrow 3/2 H_2 + 1/2 N_2$	12.46	12.47

Table A-3 gives the heat balances under different conditions for Systems 3 and 4. System 4 converts all CO and NH $_3$ from System 1 to H $_2$ and N $_2$.

All reactants are heated from 25°C to operating temperature, and products are cooled to 100°C, including the heat of condensation of unreacted H₂O.

Table A-3

HEAT BALANCES FOR SYSTEMS 3 AND 4 AT 400°C and 500°C ASSUMING 100 G AEROZINE-50 AND 50% H₂O EXCESS

Temp,	% N2H4 to NH3	% N ₂ H ₄ to H ₂	% U a	D M H 1	by r	eact	ions d+e	Heat Balance System 3, Kcal	Heat Balance System 4, Kcal
400	100	0	5	50	5	40	0	-22.68	10.48
400	50 .	50	5	50	5	4 Ô	Ô	- 9.71	10.48
500	100	50	60	0	2	20	18	-31.13	- 4.41
500	50	50	60	0	2	20	18	-18.16	- 4.41

Thus, under reaction conditions assumed for System 3 at $400\,^{\circ}\text{C}$ and $500\,^{\circ}\text{C}$, significant excess heat is present when N_2H_4 produces NH_3 only. About 50% less heat is present when 50% of N_2H_4 is producing H_2 . This heat would probably be needed to maintain temperature from heat radiation losses.

System 4 will need external heating at 400°C, but will be close to a balance at 500°C. Thus, a much higher H₂ efficiency must be realized from this system to supplant needed external power.

APPENDIX IIA

UDMH STEAM REFORMING DATA

Catalyst Norton Zeolite (cation type)	Temperature	, °c <u>300</u>	
Pressure, psig 50	Gas Volume	Rate, 1/hr	
Moles Gas Produced/Hr	% UDMH Used	39.4	
	UDMH	H ₂ O	Total
Feed Composition, mole-%	11.4	88.6	100
Feed Composition, g/hr	6.465	15.08	21.55
Feed Composition, mole/hr	0.1078	0.838	0.946
Total Output Composition, mole-%	: UDMH	H ₂ O _	
N_2H_4 NH_3 Dim	ethylamine	Н	<u> </u>
N ₂ CH ₄ CO	CO ₂		
Ethane Other			
(not including UDMH,	Composition: H ₂ O, N ₂ H ₄ , NH H ₄ <u>CO</u>	g or Amines	Ethane
1-1/2 hour:			
% H ₂ O Used: % Reforming Moles NH ₃ Formed/hr: Moles Dimethylamine Formed/hr: g atom Carbon Deposition/hr: Moles H ₂ per 100 g UDMH input: Moles H ₂ per 100 g total input:	cal to mas	% to culated complete s balance	CO:
Hydrogen efficiency =			
Note: Not enough gas produced f	or analysis		

Catalyst Norton Zeolite	Temperat	ure, °C_	400	
Pressure, psig 50	Gas Volu	ıme Rate,	l/hr	2.20
Moles Gas Produced/Hr 0.089	% UDMH U	Jsed 8	7.0	
	<u>UDMH</u>	H ₂ 0		<u>Total</u>
Feed Composition, mole-%	11.4	88.6		100
Feed Composition, g/hr	6.243	14.57		20.81
Feed Composition, mole/hr	0.104	0.80	9_	0.913
Total Output Composition, mole-%	: UDMH	1.4	H ₂ O _	77.1
N_2H_4 NH ₃ 7.3 Dim	nethylamine	5.6	. Н	2 0.1
N ₂ 2.5 CH ₄ 3.3 CO 1	L <u>.8</u> c	0.5)	
Ethono 04 Othon				
Ethane 0.4 Other		· · · · · · · · · · · · · · · · · · ·		
	Compositi H ₂ O, N ₂ H ₄ ,	ion: , NH ₃ or		
Output Gas (not including U DM H,	Compositi H ₂ O, N ₂ H ₄ ,	ion: , NH ₃ or		
Output Gas (not including U DM H, <u>H2 N2</u> C	Compositi H ₂ O, N ₂ H ₄ ,	lon: , NH ₃ or <u>CO</u>	<u>CO2</u>	Ethane
Output Gas (not including UDMH,	Compositing H ₂ O, N ₂ H ₄ , Compositing H ₂ O, Com	ion: NH3 or 20.8	5.8 % to	<u>Ethane</u> 4.8
Output Gas (not including UDMH,	Compositing H ₂ O, N ₂ H ₄ , Compositing H ₂ O, Com	ion: NH3 or 20.8 2.5 calculat	5.8 % to	<u>Ethane</u> 4.8
Output Gas (not including UDMH,	Compositing H ₂ O, N ₂ H ₄ , Compositing H ₂ O, Com	ion: NH3 or 20.8	5.8 % to	<u>Ethane</u> 4.8
Output Gas (not including UDMH, H2 N2 C 45 minutes: 1-1/2 hour: 3.0 28.3 % H2O Used: 3.6 % Reformin Moles NH3 Formed/hr: 0.074 Moles Dimethylamine Formed/hr: C	Compositing H ₂ O, N ₂ H ₄ , Compositing H ₂ O, Com	ion: NH3 or 20.8 20.8 calculate to compl	5.8 % to	<u>Ethane</u> 4.8
Output Gas (not including UDMH, H2 N2 C 45 minutes: 1-1/2 hour: 3.0 28.3 % H2O Used: 3.6 % Reforming Moles NH3 Formed/hr: 0.074 Moles Dimethylamine Formed/hr: 9	37.4 ng to CO ₂ : 0.057 0.001	ion: NH3 or 20.8 20.8 calculate to compl	5.8 % to	<u>Ethane</u> 4.8
Output Gas (not including UDMH, H2 N2 C 45 minutes: 1-1/2 hour: 3.0 28.3 % H2O Used: 3.6 % Reforming Moles NH3 Formed/hr: 0.074 Moles Dimethylamine Formed/hr: C g atom Carbon Deposition/hr: C	37.4 ng to CO ₂ : 0.057 0.001	ion: NH3 or 20.8 20.8 calculate to compl	5.8 % to	<u>Ethane</u> 4.8

Note: Output liquid highly colored indicating other compounds besides amines present

Catalyst Norton Zeolite	Temperature	e, °C500	
Pressure, psig 50	Gas Volume	Rate, 1/hr	6.460
Moles Gas Produced/Hr 0.263	% UDMH Used	99.5	
	<u>UDMH</u>	H ₂ O	Total
Feed Composition, mole-%	11.4	88.6	100
Feed Composition, g/hr	5.923	13.83	19.75
Feed Composition, mole/hr	0.0987	0.768	0.867
Total Output Composition, mole-9	%: UDMH O.O	5H ₂ O	70.5
N ₂ H ₄ NH ₃ 3.3 Dir	methylamine _	1.3	H ₂ 2.2
N ₂ 6.9 CH ₄ 13.4 CO _	1.3 002	0.6	
Ethane 0.4 Other			
Output Gas (not including UDMH, <u>H2</u> <u>N2</u> (H ₃ or Amine	s) <u>Ethane</u>
(not including UDMH,	H ₂ O, N ₂ H ₄ , N	H ₃ or Amine	
(not including UDMH, H ₂ N ₂ Q 45 minutes:	H ₂ O, N ₂ H ₄ , N	H ₃ or Amine	Ethane
(not including UDMH, H ₂ N ₂ Q 45 minutes:	H ₂ O, N ₂ H ₄ , NI CH ₄ CO 53.9 5.	CO ₂ 2 2.3	<u>Ethane</u>
(not including UDMH,	$H_{2}O$, $N_{2}H_{4}$, $N_{2}H_{4}$, $N_{3}H_{4}$, $N_{4}H_{4}$, $N_{5}H_{4}$, N_{5	$\frac{\text{CO}_2}{2}$ $\frac{2}{2 \cdot 3}$	<u>Ethane</u>
(not including UDMH, H ₂ N ₂ Q 45 minutes: 1-1/2 hour: 9.0 27.9 % H ₂ O Used: 3.4 % Reforming Moles NH ₃ Formed/hr: 0.037 Moles Dimethylamine Formed/hr:	$H_{2}O, N_{2}H_{4}, N_{2}H_{4}$ CH_{4} CO 53.9 CH_{4} CO CH_{4} CO	CO ₂ 2 2.3	<u>Ethane</u>
(not including UDMH, H ₂ N ₂ Q 45 minutes: 1-1/2 hour: 9.0 27.9 % H ₂ O Used: 3.4 % Reforming Moles NH ₃ Formed/hr: 0.037 Moles Dimethylamine Formed/hr:	H_2O , N_2H_4 , N_2H_4 , N_3H_4	GO2 2 2.3 Culated complete	<u>Ethane</u>
(not including UDMH, H ₂ N ₂ Q 45 minutes: 1-1/2 hour: 9.0 27.9 % H ₂ O Used: 3.4 % Reforming Moles NH ₃ Formed/hr: 0.037 Moles Dimethylamine Formed/hr:	$ \begin{array}{ccccccccccccccccccccccccccccccccc$	GO2 2 2.3 Culated complete	<u>Ethane</u>
(not including UDMH, H ₂ N ₂ Q 45 minutes: 1-1/2 hour: 9.0 27.9 % H ₂ O Used: 3.4 % Reforming Moles NH ₃ Formed/hr: 0.037 Moles Dimethylamine Formed/hr: g atom Carbon Deposition/hr:	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	GO2 2 2.3 Culated complete	<u>Ethane</u>

Catalyst Zn0701	Temperature,	°C 300	
Pressure, psig50	Gas Volume F	Rate, 1/hr	0.14
Moles Gas Produced/Hr 0.006	% UDMH Used	6.1	
	<u>UDMH</u>	<u>H20</u>	Total
Feed Composition, mole-%	11.4	88.6	100
Feed Composition, g/hr	6.402	14.94	21.34
Feed Composition, mole/hr	0.1065	0.830	0.937
Total Output Composition, mole-%:	UDMH	H ₂ O _	
N_2H_4 NH_3 Dime	thylamine	H ₂	2
N ₂ CH ₄ CO	CO2		
Ethane Other			
(not including UDMH, H		or Amines) <u>Ethane</u>
45 minutes:			
1-1/2 hour:			
% H ₂ O Used: % Reforming	to CO2:	% to	CO:
Moles NH ₃ Formed/hr:	,	culated .	
Moles Dimethylamine Formed/hr:	mass	complete s balance	
g atom Carbon Deposition/hr:)		
Moles H2 per 100 g UDMH input:			
Moles H ₂ per 100 g total input:			
Hydrogen efficiency =			
Note: Not enough gas produced for	or analysis.		

Temperatu	re, °C_400_	
Gas Volum	e Rate, 1/h	r <u>5.438</u>
% UDMH Us	ed <u>96.1</u>	
<u>UDMH</u>	H ₂ O	Total
11.4	88.6	100
6.402	14.94	21.34
0.1065	0.830	0.937
: UDMH	H ₂ O	61.8
ethylamine	4.6	H ₂ 12.8
.2 co	26.3	
H ₂ O, N ₂ H ₄ ,	NH ₃ or Amine	es) <u>Ethane</u>
1.7	1.0 38.	7 none
1.8	1.1 31.	6 none
g to CO2: _	32.8 % to	o CO: 1.1
,		
0.027		
2.22		
0.67		
	Gas Volum % UDMH Us UDMH 11.4 6.402 0.1065 Compositio H20, N2H4, H4 C0 1.7 1.8 g to CO2: 0.051 0.027 2.22	11.4 88.6 6.402 14.94 0.1065 0.830 6: UDMH 0.4 H ₂ 0 1ethylamine 4.6 2 CO ₂ 6.3 Composition: H ₂ 0, N ₂ H ₄ , NH ₃ or Aminom M ₄ CO CO ₂ 1.7 1.0 38. 1.8 1.1 31. 1.9 calculated to complete mass balance 0.051 0.027 2.22

Catalyst Zn0701	Temperatur	e, °C_50	00
Pressure, psig 50	Gas Volume	Rate, 1	/hr <u>11.79</u>
Moles Gas Produced/Hr 0.479	% UDMH Use	d 100	
	<u>UDMH</u>	H ₂ O	Total
Feed Composition, mole-%	11.4	88.6	100
Feed Composition, g/hr	6.402	14.94	21.34
Feed Composition, mole/hr	0.1065	0.830	0.937
Total Output Composition, mole-	%: UDMH	О н	20 53.6
N ₂ H ₄ NH ₃ 6.6 Di	methylamine _	0.6	H ₂ <u>18.1</u>
N ₂ <u>5.1</u> CH ₄ <u>8.5</u> CO	0.4 COa	6.9	
Ethane 0.2 Other			
Output Ga (not including UDMH,	s Compositior H ₂ O, N ₂ H ₄ , N		ines)
<u>H2</u> <u>N2</u>	CH ₄ CO	<u>co</u>	
$\frac{\text{H}_2}{\text{45 minutes:}}$ $\frac{\text{H}_2}{\text{43.3}}$ $\frac{\text{11.8}}{\text{11.8}}$.0 <u>23</u>	<u>Ethane</u>
45 minutes: <u>43.3</u> <u>11.8</u>	20.2 1		Ethane 0.5
45 minutes: <u>43.3</u> <u>11.8</u>	20.2 1	.0 23	Ethane 0.5 0.5 0.5
45 minutes: 43.3 11.8 1-1/2 hour: 46.3 13.0	20.2 1 21.6 1 can be calculated as $\frac{20.2}{21.6}$ $\frac{3}{21.6}$.0 23 .1 17 9.6 % alculated	Ethane 3.4 0.5 7.6 0.5 to CO: 2.5%
45 minutes: 43.3 11.8 1-1/2 hour: 46.3 13.0 % H ₂ O Used: 21.0 % Reformi	$ \begin{array}{c cccc} 20.2 & 1 \\ \hline 21.6 & 1 \\ \end{array} $ $ \begin{array}{c} \text{ca} \\ \text{to} \end{array} $.0 23 .1 17 9.6 %	Ethane 3.4 0.5 7.6 0.5 to CO: 2.5%
45 minutes: 43.3 11.8 1-1/2 hour: 46.3 13.0 % H ₂ O Used: 21.0 % Reformi Moles NH ₃ Formed/hr: 0.081	$ \begin{array}{c cccc} 20.2 & 1 \\ \hline 21.6 & 1 \\ \end{array} $ $ \begin{array}{c} \text{ca} \\ \text{to} \end{array} $.0 23 .1 17 9.6 % alculated complet	Ethane 3.4 0.5 7.6 0.5 to CO: 2.5%
45 minutes: 43.3 11.8 1-1/2 hour: 46.3 13.0 % H ₂ O Used: 21.0 % Reformi Moles NH ₃ Formed/hr: 0.081 Moles Dimethylamine Formed/hr:	$ \begin{array}{c} 20.2 & 1 \\ 21.6 & 1 \end{array} $ and to CO2: 3 $ \begin{array}{c} 0.0075 \\ 0 \end{array} $.0 23 .1 17 9.6 % alculated complet	Ethane 3.4 0.5 7.6 0.5 to CO: 2.5%
45 minutes: 43.3 11.8 1-1/2 hour: 46.3 13.0 % H ₂ O Used: 21.0 % Reformi Moles NH ₃ Formed/hr: 0.081 Moles Dimethylamine Formed/hr: g atom Carbon Deposition/hr:	$ \begin{array}{c} 20.2 & 1 \\ 21.6 & 1 \end{array} $ and to CO2: 3 $ \begin{array}{c} 0.0075 \\ 0 \\ 3.47 \end{array} $.0 23 .1 17 9.6 % alculated complet	Ethane 3.4 0.5 7.6 0.5 to CO: 2.5%

Catalyst T-317 Cu oxide on Alumina	Temperat	ture, °C_	300	
Pressure, psig 50	Gas Volu	ume Rate,	1/hr	4.431
Moles Gas Produced/Hr 0.180	% UDMH U	Jsed	99.2	
	<u>UDMH</u>	H ₂ O		Total
Feed Composition, mole-%	11.4	88.6		100
Feed Composition, g/hr	6.264	14.6	2	20.88
Feed Composition, mole/hr	0.1045	0.8	122	0.9167
Total Output Composition, mole-9				
N ₂ H ₄ NH ₃ 12.5 Din	nethylamine	3.2	_ H	2 <u>11.3</u>
N ₂ 1.5 CH ₄ 1.0 CO _	0.1	2.8		
Ethane 0 Other				
(not including UDMH,		NH ₃ or		
(not including UDMH,	H ₂ O, N ₂ H ₄ ,	NH ₃ or	Amines) <u>Ethane</u>
(not including UDMH,	H ₂ O, N ₂ H ₄ ,	NH ₃ or		<u>Ethane</u>
(not including UDMH, H ₂ N ₂ UDMH, H ₂ H ₃ H ₄ M ₂ UDMH,	H ₂ O, N ₂ H ₄ , C	NH ₃ or 00		Ethane none
(not including UDMH,	H ₂ O, N ₂ H ₄ , C	NH ₃ or O.5 14.9 calculat	17.3 % to	Ethane none
(not including UDMH,	H ₂ O, N ₂ H ₄ , CH ₄ 6.4 ng to CO ₂ :	NH ₃ or 0.5	17.3 % to	Ethane none
(not including UDMH, H ₂ N ₂ O 45 minutes: 1-1/2 hour: 66.8 9.0 % H ₂ O Used: 7.8 % Reforming Moles NH ₃ Formed/hr: 0.139 Moles Dimethylamine Formed/hr:	H ₂ O, N ₂ H ₄ , CH ₄ 6.4 ng to CO ₂ : 0.036	NH ₃ or O.5 14.9 calculate to compl	17.3 % to	Ethane none
(not including UDMH, H ₂ N ₂ O 45 minutes: 1-1/2 hour: 66.8 9.0 % H ₂ O Used: 7.8 % Reforming Moles NH ₃ Formed/hr: 0.139 Moles Dimethylamine Formed/hr:	H ₂ O, N ₂ H ₄ , CH ₄ 6.4 ng to CO ₂ : 0.036 0.091	NH ₃ or O.5 14.9 calculate to compl	17.3 % to	Ethane none
(not including UDMH, H ₂ N ₂ O 45 minutes: 1-1/2 hour: 66.8 9.0 % H ₂ O Used: 7.8 % Reforming Moles NH ₃ Formed/hr: 0.139 Moles Dimethylamine Formed/hr: g atom Carbon Deposition/hr:	H ₂ O, N ₂ H ₄ , CH ₄ 6.4 ng to CO ₂ : 0.036 0.091 2.0	NH ₃ or O.5 14.9 calculate to compl	17.3 % to	Ethane none
(not including UDMH, H ₂ N ₂ O 45 minutes: 1-1/2 hour: 66.8 9.0 % H ₂ O Used: 7.8 % Reforming Moles NH ₃ Formed/hr: 0.139 Moles Dimethylamine Formed/hr: g atom Carbon Deposition/hr: Moles H ₂ per 100 g UDMH input:	H ₂ O, N ₂ H ₄ , CH ₄ 6.4 ng to CO ₂ : 0.036 0.091 2.0	NH ₃ or O.5 14.9 calculate to compl	17.3 % to	Ethane none

CatalystT	<u>-31'/</u>		_ Temper	ature, °C	400		
Pressure, ps	ig <u>50</u>		Gas Vo	lume Rate	, 1/hr	3.016	
Moles Gas Pr	oduced/Hr _	0.123	_ % UDMH	Used _	100		
			UDMH	<u>H20</u>	<u>)</u>	Total	
Feed Composi	tion, mole-	%	11.4	88.6		100	
Feed Composi	tion, g/hr		6.264	14.6	2	20.88	
Feed Composi	tion, mole/	h r ể	0.104	5 <u>0.8</u>	12	0.917	
Total Output							
N ₂ H ₄	. NH ₃	D:	imethylami	ne	H	2	
Ns	CH4	. CO _		CO2			
Ethane	Other						
(not includi $\underline{H_2}$	N ₂	CH4	<u>CO</u>	<u>CO</u> 2	<u>Ethane</u>	
V	<u>H2</u> 37.8		8.4			•	
45 minutes:), c		10.1				
1-1/2 hour:	- 7• 7	9.1	10.1) <u>1.,</u> 0			
% H ₂ O Used:		Reform	ing to CO2	:	_ % to	co:	
Moles NH ₃ Fo	rmed/hr:			calcula			
Moles Dimeth	nylamine For	med/hr:		to comp ass ba			
g atom Carbo	n Depositio	n/hr:)	I			
Moles H2 per	. 100 g UDMF	I input:					
Moles H2 per	: 100 g tota	al input	:				
Hydrogen eft	Ciciency =						
	invalid due test.	to lar	ge carbon	depositio	on at 30	O°C which	affec

	-317		_ Tempera	ture, °C_	500	
Pressure, ps	ig <u>50</u>	:	_ Gas Vol	ume Rate,	1/hr	9.740
Moles Gas Pro	oduced/Hr	0.396	_ % UDMH 1	Used <u>lo</u>	0	
			<u>UDMH</u>	<u>H20</u>		Total
Feed Composi	tion, mole	-%	11.4	88.6		100
Feed Composi	tion, g/hr		6.264	14.62		20.88
Feed Composi	tion, mole	/hr	0.1045	0.81	2 _	0.917
Total Output	Compositi	on, mole	-%: UDMH _	0	H ₂ O _	58.6
N ₂ H ₄	NH ₃	7.2 D	imethylamin	e <u>0.8</u>	H	2 12.6
N ₂ 4.9	CH ₄ 8.9	co	3.5	CO2 3.4		
Ethane 0.3	Othe	r		· · · · · · · · · · · · · · · · · · ·		
(1			as Composit, H ₂ O, N ₂ H ₄	, NH ₃ or	Amines) <u>Ethane</u>
(145 minutes:	not includ	ing UDMH	, H ₂ O, N ₂ H ₄	, NH ₃ or		
	not includ	ing UDMH	. H ₂ O, N ₂ H ₄	, NH ₃ or	CO ₂	Ethane
45 minutes:	not includ H ₂ 37.6	ing UDMH Ne 14.5	CH4 (, NH ₃ or CO	10.2	Ethane
45 minutes: 1-1/2 hour:	hot includ <u>H2</u> 	ing UDMH N2 14.5 Reform	CH4	, NH ₃ or CO 10.3 19.3 calculat	10.2 % to	Ethane
45 minutes: 1-1/2 hour: % H ₂ O Used:	hot includ H ₂	14.5 Reform 0.085	CH4	NH ₃ or CO 10.3	10.2 % to ed	Ethane
45 minutes: 1-1/2 hour: % H ₂ O Used: Moles NH ₃ For	hot includ H ₂ 37.6 15.0 rmed/hr: _ ylamine Fo	ing UDMH N2 14.5 Reform 0.085 rmed/hr:	. H ₂ O, N ₂ H ₄	NH ₃ or CO 10.3 19.3 calculat to compl	10.2 % to ed	Ethane
45 minutes: 1-1/2 hour: % H ₂ O Used: Moles NH ₃ For	not includ H2 37.6 15.0 rmed/hr: _ ylamine Fo n Depositi	N ₂ 14.5 % Reform 0.085 rmed/hr: on/hr:	$\frac{\text{CH}_4}{26.5}$ ing to $\frac{\text{CO}_2}{0}$	NH ₃ or CO 10.3 19.3 calculat to compl	10.2 % to ed	Ethane
45 minutes: 1-1/2 hour: % H ₂ O Used: Moles NH ₃ For Moles Dimeth; g atom Carbon	hot includ H ₂ 37.6 15.0 rmed/hr: _ ylamine Fo n Depositi 100 g UDM	ing UDMH N2 14.5 Reform 0.085 rmed/hr: on/hr: H input:	.009 0 2.37	NH ₃ or CO 10.3 19.3 calculat to compl	10.2 % to ed	Ethane

Catalyst Girdler T-1144	Temperature,	C 300	
Pressure, psig 50	Gas Volume Ra	te, 1/hr	1.148
Moles Gas Produced/Hr <u>0.047</u>	% UDMH Used	77.9	
	<u>UDMH</u> <u>H</u>	<u>20</u>	Total
Feed Composition, mole-%	11.4 88	3.6	100
Feed Composition, g/hr	6.234 14	.55	20.78
Feed Composition, mole/hr	0.104	.808	0.912
Total Output Composition, mole-%	: UDMH 2.3	H ₂ O _	79.6
N_2H_4 NH ₃ 7.6 Dim	ethylamine 5.8	В Н	2 1.4
N ₂ 1.5 CH ₄ 0.9 CO 0) CO ₂	9	
Ethane 0 Other			
(not including UDMH,		or Amines	
+) minutes:			
7 7/0 have 28 6 30 J	10.5 none	70 1	
1-1/2 hour: 28.6 32.4	19.5 none	19.4	none
1-1/2 hour: 28.6 32.4 % H ₂ O Used: 2.2 % Reforming			•
% H ₂ O Used: 2.2 % Reforming	g to CO ₂ : 4.3	% to	•
% H ₂ O Used: 2.2 % Reforming Moles NH ₃ Formed/hr: 0.076	g to CO ₂ : 4.3	% to	•
% H ₂ O Used: <u>2.2</u> % Reforming Moles NH ₃ Formed/hr: <u>0.076</u> Moles Dimethylamine Formed/hr: <u>C</u>	g to CO ₂ : 4.3	% to lated mplete	•
% H ₂ O Used: <u>2.2</u> % Reforming Moles NH ₃ Formed/hr: <u>0.076</u> Moles Dimethylamine Formed/hr: <u>C</u>	g to CO ₂ : 4.3 calcu to co mass	% to lated mplete	•
% H ₂ O Used: 2.2 % Reforming Moles NH ₃ Formed/hr: 0.076 Moles Dimethylamine Formed/hr: 0 g atom Carbon Deposition/hr: 0	calcuto co056 .032	% to lated mplete	•

Catalyst <u>Gi</u>	rdler T-114	<u> </u>	Tempera	ture, °C_	400	
Pressure, psi	g <u>50</u>		Gas Vol	ume Rate,	l/hr	7.660
Moles Gas Pro	oduced/Hr <u>O.</u>	311	% UDMH	Used9	8.9	
			<u>UDMH</u>	H ₂ O		Total
Feed Composit	tion, mole-%		11.4	88.6		100
Feed Composit	tion, g/hr		5.916	<u>13.80</u>		19.72
Feed Composit	tion, mole/h	r	0.0985	0.76	7	0,866
Total Output N ₂ H ₄ N ₂ 0.9 0 Ethane 0.1	NH ₃ 14.1 CH ₄ 3.2 Other	CO _	methylamin 0.9 as Composit	cion:		H ₂ <u>16.4</u>
(:	not incluain	ig unitu,	12U, N2114	NII3 OI	MILLIC	
45 minutes:	<u>H2</u> <u>N</u>	<u>[2</u>	CH ₄	<u>CO</u>	<u>CO2</u>	Ethane
45 minutes:	H ₂ N	3.5	CH ₄ 6.8	<u>co</u> _5.1	<u>C0₂</u> 25.5	Ethane none
45 minutes: 1-1/2 hour: one	H ₂ N 59.1 54.9	3.5 2.9	CH ₄	<u>5.1</u> <u>1.0</u>	25.5 25.6	Ethane none 0.3
1-1/2 hour:	H ₂ N 59.1 54.9 57.3	3.5 2.9 3.2	CH ₄ 6.8 15.2 11.1	5.1 1.0 3.1	25.5 25.6 25.1	<u>none</u> 0.3 0.2
1-1/2 hour: one	H ₂ N 59.1 54.9 57.3 21.6 %	3.5 2.9 3.2 Reformi	CH ₄ 6.8 15.2 11.1 Ing to CO ₂ :	5.1 1.0 3.1 39.6 calcula	25.5 25.6 25.1 % to	<u>none</u> 0.3 0.2
1-1/2 hour: one % H ₂ O Used:	H ₂ N 59.1 54.9 57.3 21.6 % rmed/hr: 0.	3.5 2.9 3.2 Reformi	CH ₄ 6.8 15.2 11.1 ang to CO ₂ :	5.1 1.0 3.1 39.6	25.5 25.6 25.1 % to ted lete	<u>none</u> 0.3 0.2
1-1/2 hour: one % H ₂ O Used: Moles NH ₃ Fo	H ₂ N 59.1 54.9 57.3 21.6 % rmed/hr: 0.1	3.5 2.9 3.2 Reformi 153 ned/hr:	CH ₄ 6.8 15.2 11.1 ang to CO ₂ :	5.1 1.0 3.1 39.6 calcula to comp	25.5 25.6 25.1 % to ted lete	<u>none</u> 0.3 0.2
1-1/2 hour: one % H ₂ O Used: Moles NH ₃ Fo	H ₂ N 59.1 54.9 57.3 21.6 % rmed/hr: 0.1 ylamine Form	3.5 2.9 3.2 Reformi 153 med/hr:	CH ₄ 6.8 15.2 11.1 Ing to CO ₂ : 0.022 0.028	5.1 1.0 3.1 39.6 calcula to comp	25.5 25.6 25.1 % to ted lete	<u>none</u> 0.3 0.2
1-1/2 hour: one % H ₂ O Used: Moles NH ₃ Fo Moles Dimeth g atom Carbo	H ₂ N 59.1 54.9 57.3 21.6 % rmed/hr: 0. ylamine Form n Deposition 100 g UDMH	3.5 2.9 3.2 Reformi 153 med/hr: n/hr: input:	CH ₄ 6.8 15.2 11.1 1ng to CO ₂ : 0.022 0.028 3.02	5.1 1.0 3.1 39.6 calcula to comp	25.5 25.6 25.1 % to ted lete	<u>none</u> 0.3 0.2

Catalyst GIF	dler T-11	L44	Temperat	ture, °C_	500	· · · · · · · · · · · · · · · · · · ·
Pressure, psig	<u>50</u>		Gas Volu	ume Rate,	1/hr	11.77
Moles Gas Prod	duced/Hr <u>(</u>	o.4784	% UDMH t	Jsed <u>l</u>	00	
			<u>UDMH</u>	<u>H20</u>		Total
Feed Compositi	lon, mole-	%	11.4	88.6		100
Feed Compositi	ion, g/hr	•	5.820	13.5	8	19.40
Feed Compositi	ion, mole/	hr	0.097	0.7	<u>54</u>	0.851
Total Output (
N ₂ H ₄	NH_3 2.3	Di	methylamin	e <u>0.7</u>	_ F	I ₂ 19.3
N ₂ 7.0 CH	H ₄ 9.9	_ co _	0.2	CO25.5		
Ethane none	_ Other	· 	 			
(no			as Composit H ₂ O, N ₂ H ₄		Amines	s)
I	H ₂	Na	CH4	CO	CO2	
		•	CH ₄ 9		_	<u>Ethane</u>
45 minutes:	38.4	13.5	CH ₄ 18.5	1.1	28.5	Ethane none
45 minutes:	38.4 45.9	13.5 16.7	18.5 23.7	0.5	28.5 13.2	Ethane none none
45 minutes: _ l-1/2 hour: _	38.4 45.9 17.1 %	13.5 16.7 Reformi	18.5 23.7 ng to CO ₂ :	1.1 0.5 32.5 calcular	28.5 13.2 % to	Ethane none none
45 minutes:	38.4 45.9 17.1 % med/hr: 0	13.5 16.7 Reformi	18.5 23.7 ng to CO ₂ :	1.1 0.5 32.5	28.5 13.2 % to ted lete	Ethane none none
45 minutes:	38.4 45.9 17.1 % med/hr: 0	13.5 16.7 Reformi .026 rmed/hr:	18.5 23.7 ng to CO ₂ :	1.1 0.5 32.5 calculato comp	28.5 13.2 % to ted lete	Ethane none none
45 minutes: 1-1/2 hour: % H ₂ O Used: Moles NH ₃ Form	38.4 45.9 17.1 % med/hr: 0 lamine For Deposition	13.5 16.7 Reformi .026 rmed/hr:	18.5 23.7 ang to CO ₂ : 0.008 none	1.1 0.5 32.5 calculato comp	28.5 13.2 % to ted lete	Ethane none none
45 minutes: 1-1/2 hour: % H ₂ O Used: Moles NH ₃ Form Moles Dimethy: g atom Carbon	38.4 45.9 17.1 med/hr: 0 lamine For Deposition 100 g UDMF	13.5 16.7 Reformi .026 rmed/hr: on/hr:	18.5 23.7 ng to CO ₂ : 0.008 none 3.77	1.1 0.5 32.5 calculato comp	28.5 13.2 % to ted lete	Ethane none none

Catalyst Zn0308	Temperature, °C	300
Pressure, psig 50	Gas Volume Rate	e, 1/hr <u>3.417</u>
Moles Gas Produced/Hr 0.139	% UDMH Used	87.5
	UDMH H2C	<u>Total</u>
Feed Composition, mole-%	11.4 88.6	100
Feed Composition, g/hr	6.354 14.8	21.18
Feed Composition, mole/hr	0.106 0.8	0.930
Total Output Composition, mole-%: N_2H_4 NH_3 9.2 Dime N_2 1.3 CH_4 1.1 CO O Ethane O Other	ethylamine 5.8	H ₂ 6.9
(not including UDMH, F		
(not including UDMH, F	H_2O , N_2H_4 , NH_3 or	Amines) CO2 Ethane
(not including UDMH, F	H ₂ O, N ₂ H ₄ , NH ₃ or H ₄ CO	CO ₂ Ethane
(not including UDMH, F	H ₂ O, N ₂ H ₄ , NH ₃ or H ₄ CO	CO ₂ Ethane
(not including UDMH, F	H ₂ O, N ₂ H ₄ , NH ₃ or H ₄ CO B.O none	<u>CO2</u> <u>Ethane</u>
(not including UDMH, F H ₂ N ₂ CH 45 minutes:	N_2N_4 , N_3 or N_2N_4 , N_3 or N_4 N_3 or N_4 N_4 N_4 N_5 or N_2N_4 N_4 N_4 N_5 or N_2N_4 N_4 N_4 N_5 or N_2N_4 N_4 N_5	CO2 Ethane 29.6 none % to CO: 0
(not including UDMH, F	H ₂ O, N ₂ H ₄ , NH ₃ or H ₄ CO B.O none g to CO ₂ : 19.4	CO2 Ethane 29.6 none % to CO: O ated olete
(not including UDMH, F H ₂ N ₂ CH 45 minutes: 1-1/2 hour: 52.6 9.8 8 % H ₂ O Used: 10.0 % Reforming Moles NH ₃ Formed/hr: 0.097 Moles Dimethylamine Formed/hr: 0	H ₂ O, N ₂ H ₄ , NH ₃ or $\frac{\text{H}_4}{\text{H}_4}$ $\frac{\text{CO}}{\text{none}}$ The standard control of the company of the	CO2 Ethane 29.6 none % to CO: O ated olete
(not including UDMH, F H ₂ N ₂ CH 45 minutes: 1-1/2 hour: 52.6 9.8 8 % H ₂ O Used: 10.0 % Reforming Moles NH ₃ Formed/hr: 0.097 Moles Dimethylamine Formed/hr: 0	$\frac{1}{20}$, $\frac{1}{120}$, $\frac{1}$	CO2 Ethane 29.6 none % to CO: O ated olete
(not including UDMH, F H ₂ N ₂ CH 45 minutes: 1-1/2 hour: 52.6 9.8 8 % H ₂ O Used: 10.0 % Reforming Moles NH ₃ Formed/hr: 0.097 Moles Dimethylamine Formed/hr: 0 g atom Carbon Deposition/hr: 0	120, N ₂ H ₄ , NH ₃ or H ₄ CO 3.0 none 3 to CO ₂ : 19.4 calculate to comp mass base 0.011 1.15	CO2 Ethane 29.6 none % to CO: O ated olete

Note: Zinc chromite catalyst was attacked and prevented further testing at higher temperatures.

Catalyst Cu2501	Temperatur	e, °C <u>300</u>	
Pressure, psig 50	Gas Volume	Rate, 1/hr	1
Moles Gas Produced/Hr	% UDMH Use	ed 57.3	
	UDMH	H ₂ 0	Total
Feed Composition, mole-%	11.4	88.6	100
Feed Composition, g/hr	6.402	14.94	21.34
Feed Composition, mole/hr	0.1065	0.830	0.937
Total Output Composition, mole-%:	UDMH	H ₂ O	
N ₂ H ₄ NH ₃ Dime	thylamine _		H ₂
N ₂ CH ₄ CO	COa	2	
Ethane Other			
(not including UDMH, H H2 N2 CH 45 minutes:	<u>CO</u>	NH ₃ or Amine	Ethane
1-1/2 hour:			
% H ₂ O Used: % Reforming	; to CO2: _	% to	CO:
Moles NH ₃ Formed/hr:		lculated complete	
Moles Dimethylamine Formed/hr:		ass balance	
g atom Carbon Deposition/hr:)		
Moles H2 per 100 g UDMH input:			
Moles H2 per 100 g total input:			
Hydrogen efficiency =			
Note: Not enough gas production at higher temperatures.	for measure	ement. Cata	lyst attacke

Catalyst <u>T-310 N10</u>	Temperat	ture, °C_	300	•
Pressure, psig50	Gas Volu	ıme Rate,	1/hr	1.32
Moles Gas Produced/Hr 0.054	% UDMH t	Jsed 8	1.3	
	<u>UDMH</u>	H ₂ O		Total
Feed Composition, mole-%	11.4	88.6		100
Feed Composition, g/hr	5.73	13.37		19.10
Feed Composition, mole/hr	0.0955	0.74	3	0.839
Total Output Composition, mole-%:	UDMH	2.0	H ₂ O	77.4
N ₂ H ₄ - NH ₃ 8.0 Dime	thylamine	6.6	_ 1	H ₂ 2.0
N ₂ 1.2 CH ₄ 0.6 CO 0	<u>. </u>	002 2.1		
Ethane none Other				
Output Gas (not including UDMH, H	H ₂ O, N ₂ H ₄		Amine	Ethane
45 minutes:	-			
1-1/2 hour: 33.0 20.7	9.6	1.0	35.7	none
% H ₂ O Used: 5.3 % Reforming	g to CO2:	10.1	% to	CO: 10.3
Moles NH ₃ Formed/hr:0.073)	calculat to compl		
Moles Dimethylamine Formed/hr: 0	.060 }	mass bal		
g atom Carbon Deposition/hr: 0	.010			
Moles H ₂ per 100 g UDMH input: 0	.31			·
Moles H ₂ per 100 g total input: 0	00			
	.09			

Catalyst <u>T-310 Ni0</u>	Temperatur	e, °C	400
Pressure, psig 50	Gas Volume	Rate, 1/	nr <u>6.31</u>
Moles Gas Produced/Hr 0.257	% UDMH Use	d 98.5	
	<u>UDMH</u>	<u>H20</u>	Total
Feed Composition, mole-%	11.4	88.6	100
Feed Composition, g/hr	5.73	13.37	19.10
Feed Composition, mole/hr	0.0955	0.743	0.839
Total Output Composition, mole-%:	UDMH O.	1 H ₂ (56.9
N ₂ H ₄ NH ₃ <u>12.7</u> Dime	ethylamine _	4.8	H ₂ 56.9
N ₂ 0.6 CH ₄ 0.5 CO 0.	3 CO2	8.3	
EthaneO Other			
(not including UDMH, I	Composition H ₂ O, N ₂ H ₄ , N		
(not including UDMH, I	H ₂ O, N ₂ H ₄ , N	H ₃ or Ami	
(not including UDMH, I	H ₂ O, N ₂ H ₄ , N H ₄ CO	H ₃ or Ami	Ethane
(not including UDMH, I	H ₂ O, N ₂ H ₄ , N H ₄ CO	CO ₂	Ethane .6 none
(not including UDMH, I	H ₂ O, N ₂ H ₄ , N H ₄ CO 2.0 g to CO ₂ : ca	CO ₂ 1.3 32 14.0 % alculated	Ethane 2.6 none to CO: 1.7
(not including UDMH, In H2 N2 CI 45 minutes:	H ₂ O, N ₂ H ₄ , N H ₄ CO 2.0	CO ₂ L.3 32	Ethane 2.6 none to CO: 1.7
(not including UDMH, In H2 N2 CI H2 N2 CI H2 M2 CI H2 M2	H ₂ O, N ₂ H ₄ , N H ₄ CO 2.0	H ₃ or Ami: CO ₂ 1.3 32 14.0 % complete	Ethane 2.6 none to CO: 1.7
(not including UDMH, In H2 N2 CI 45 minutes: 1-1/2 hour: 61.8 2.3 % H2O Used: 23.0 % Reforming Moles NH3 Formed/hr: 0.128 Moles Dimethylamine Formed/hr: 0	$\frac{\text{H}_2\text{O}, \text{N}_2\text{H}_4, \text{N}_2\text{H}_4}{2.0}$ g to $\frac{2.0}{2.0}$ catoma	H ₃ or Ami: CO ₂ 1.3 32 14.0 % complete	Ethane 2.6 none to CO: 1.7
(not including UDMH, In H2 N2 CI 45 minutes: 1-1/2 hour: 61.8 2.3 % H2O Used: 23.0 % Reforming Moles NH3 Formed/hr: 0.128 Moles Dimethylamine Formed/hr: 0 atom Carbon Deposition/hr:	H ₂ O, N ₂ H ₄ , N H ₄ CO 2.0 g to CO ₂ : ca to ma 2.79	H ₃ or Ami: CO ₂ 1.3 32 14.0 % complete	Ethane 2.6 none to CO: 1.7

Catalyst <u>T-310 NiO</u>	_ Temperature,	°C <u>500</u>	
Pressure, psig 50	_ Gas Volume Ra	te, 1/hr	9.55
Moles Gas Produced/Hr 0.388	_ % UDMH Used	100	
·	<u>UDMH</u> <u>H</u>	<u>20</u>	<u>Total</u>
Feed Composition, mole-%	11.4	3.6	100
Feed Composition, g/hr	<u>5.73</u> 1	3.37	19.10
Feed Composition, mole/hr	0.0955	0.743	0.839
Total Output Composition, mole	-%: UDMH <u>O</u>	H ₂ O _	57.4
N ₂ H ₄ - NH ₃ 6.2 D	imethylamine <u>O</u>	<u>.3</u> H	2 13.2
N ₂ 5.7 CH ₄ 11.0 CO	0.4 CO2	5.7	
Ethane 0.3 Other			
(not including UDMH	as Composition: , H ₂ O, N ₂ H ₄ , NH ₃		
45 minutes: 33.9 13.4			_
1-1/2 hour: 36.6 15.6	30.3 1.1	15.6	0.7
% H ₂ O Used: <u>16.8</u> % Reform	ing to CO ₂ : <u>31.9</u>	% to	CO: 2.1
Moles NH ₃ Formed/hr:0.067	calcu	lated	
Moles Dimethylamine Formed/hr:		mplete balance	
g atom Carbon Deposition/hr:)		
Moles H2 per 100 g UDMH input:	2.49		
Moles H2 per 100 g total input	:_0.74		
Hydrogen efficiency = 18.5%			

Catalyst <u>T-310</u>	Temperat	ure, C_		
Pressure, psig 150	Gas Volu	me Rate,	1/hr _	1.83
Moles Gas Produced/Hr 0.074	% UDMH U	sed <u>9</u>	7.6	
	<u>UDMH</u>	H ₂ O		Total
Feed Composition, mole-%	11.4	88.6		100
Feed Composition, g/hr	6.11	14.26		20.37
Feed Composition, mole/hr	0.102	0.79	2	0.894
Total Output Composition, mole-%	: UDMH _	0.2	H ₂ O _	74.3
N ₂ H ₄ - NH ₃ 12.1 Dim	ethylamine	6.2	- H ₂	3.2
N ₂ <u>0.8</u> CH ₄ <u>0.7</u> CO	0.6	202 2.1		
Ethane 0 Other				
Output Gas (not including UDMH,	H ₂ O, N ₂ H ₄	, NH ₃ or		
(not including UDMH,	H ₂ O, N ₂ H ₄	, NH ₃ or	<u>CO2</u>	Ethane
(not including UDMH,	H ₂ O, N ₂ H ₄	, NH ₃ or	<u>CO2</u>	Ethane
(not including UDMH, $\frac{\text{H}_2}{\text{45}}$ minutes: $\frac{43.2}{\text{11.0}}$	H ₂ O, N ₂ H ₄	NH ₃ or 00 8.6	27.8	Ethane none
(not including UDMH,	H ₂ O, N ₂ H ₄	NH ₃ or 20 8.6 10.3	27.8 27.8 % to 0	Ethane none
(not including UDMH, H2 N2 C 45 minutes: 43.2 11.0 1-1/2 hour: % H2O Used: 6.1 % Reforming	H ₂ O, N ₂ H ₄ , 9.4 ng to CO ₂ :	NH ₃ or 8.6	27.8 27.8 % to 0	Ethane none
(not including UDMH,	H ₂ O, N ₂ H ₄ , 9.4 ng to CO ₂ :	NH ₃ or 8.6 10.3 calculato comp	27.8 27.8 % to 0	Ethane none
(not including UDMH, H2 N2 C 45 minutes: 43.2 11.0 1-1/2 hour: % H2O Used: 6.1 % Reforming Moles NH3 Formed/hr: 0.121 Moles Dimethylamine Formed/hr:	H ₂ O, N ₂ H ₄ SH ₄ 9.4 ng to CO ₂ : 0.062 0.048	NH ₃ or 8.6 10.3 calculato comp	27.8 27.8 % to 0	Ethane none
(not including UDMH, H2 N2 C 45 minutes: 43.2 11.0 1-1/2 hour: % H2O Used: 6.1 % Reforming Moles NH3 Formed/hr: 0.121 Moles Dimethylamine Formed/hr: g atom Carbon Deposition/hr:	H ₂ O, N ₂ H ₄ 9.4 9.4 o.062 0.048 0.52	NH ₃ or 8.6 10.3 calculato comp	27.8 27.8 % to 0	Ethane none

CatalystT->10	Temperatur	e, °C 400)
Pressure, psig 150	Gas Volume	Rate, 1/hr	9.19
Moles Gas Produced/Hr 0.374	% UDMH Use	d 98.4	
	<u>UDMH</u>	<u>H₂O</u>	<u>Total</u>
Feed Composition, mole-%	11.4	88.6	100
Feed Composition, g/hr	6.11	14.26	20.37
Feed Composition, mole/hr	0.102	0.792	0.894
Total Output Composition, mole-%	: UDMH O	1 H ₂ O	49.5
N ₂ H ₄ NH ₃ <u>15.6</u> Dim	ethylamine <u>(</u>	0.4	H ₂ <u>15.0</u>
N ₂ 0.9 CH ₄ 6.5 CO 0.	<u>4</u> СО 2	10.1	
Ethane 0.2 Other			
(not including UDMH,		H ₃ or Amine	s) <u>Ethane</u>
	<u>H4</u> <u>CO</u>		
45 minutes: 48.7 2.5		.5 27.6	
1-1/2 hour: 45.4 2.6	19.8 1	.0 30.6	
% H ₂ O Used: 29.3 % Reforming	ng to CO2: <u>5</u>	5.9 % to	co: 2.0
Moles NH ₃ Formed/hr: 0.177		alculated	
Moles Dimethylamine Formed/hr:	0.005 m	complete ass balance	
g atom Carbon Deposition/hr:)		
Moles H2 per 100 g UDMH input:	2.79		
Moles H2 per 100 g total input:	0.83		
Hydrogen efficiency = 20.8%			

Catalyst T-310 N10	Tempera	ture, 'C_	500	
Pressure, psig 150	Gas Volu	ume Rate,	1/hr	11.53
Moles Gas Produced/Hr 0.469	% UDMH 1	Used <u>l</u>	00	
	<u>UDMH</u>	<u>H20</u>		Total
Feed Composition, mole-%	11.4	88.6		100
Feed Composition, g/hr	6.11	14.26	<u> </u>	20.37
Feed Composition, mole/hr	0.102	0.79	92 _	0.894
Total Output Composition, mole-	%: UDMH _	0	H ₂ O _	54.0
N ₂ H ₄ - NH ₃ 6.0 Di				
N ₂ 5.7 CH ₄ 11.2 CO _				
Ethane 0 Other				
Output Ga (not including UDMH,	s Composit H ₂ O, N ₂ H ₄	ion: ,, NH ₃ or	Amines)
(not including UDMH,	H ₂ 0, N ₂ H ₄	ion: , NH ₃ or	Amines) Ethane
(not including UDMH,	H ₂ O, N ₂ H ₄	, NH ₃ or	<u>C02</u>	Ethane
(not including UDMH, <u>H2</u> <u>N2</u> 45 minutes: <u>37.7</u> <u>13.9</u>	H ₂ O, N ₂ H ₄	., NH ₃ or CO 1.0	<u>CO2</u> <u>19.2</u>	Ethane none
(not including UDMH, H ₂ N ₂ 45 minutes: 37.7 13.9 1-1/2 hour: 40.5 14.3	H ₂ 0, N ₂ H ₄ <u>CH4</u> <u>28.2</u> <u>28.0</u>	., NH ₃ or CO 1.0 0.8	002 19.2 16.4	Ethane none none
(not including UDMH, $\frac{\text{H}_2}{\text{45 minutes:}}$ $\frac{\text{N}_2}{37.7}$ $\frac{13.9}{}$	H ₂ 0, N ₂ H ₄ <u>CH4</u> <u>28.2</u> <u>28.0</u>	., NH ₃ or CO 1.0 0.8 37.7 calcula	CO ₂ 19.2 16.4 % to	Ethane none none
(not including UDMH, H2 N2 45 minutes: 37.7 13.9 1-1/2 hour: 40.5 14.3 % H2O Used: 19.9 % Reformi	H ₂ 0, N ₂ H ₄ <u>CH4</u> <u>28.2</u> <u>28.0</u>	., NH ₃ or CO 1.0 0.8	CO2 19.2 16.4 % to ted lete	Ethane none none
(not including UDMH, H2 N2 45 minutes: 37.7 13.9 1-1/2 hour: 40.5 14.3 % H2O Used: 19.9 % Reformi Moles NH3 Formed/hr: 0.070	H ₂ O, N ₂ H ₄ CH ₄ 28.2 28.0 Ing to CO ₂ :	., NH ₃ or CO 1.0 0.8 37.7 calcula to comp	CO2 19.2 16.4 % to ted lete	Ethane none none
(not including UDMH, H2 N2 45 minutes: 37.7 13.9 1-1/2 hour: 40.5 14.3 % H2O Used: 19.9 % Reformi Moles NH3 Formed/hr: 0.070 Moles Dimethylamine Formed/hr:	H ₂ O, N ₂ H ₄ CH ₄ 28.2 28.0 Ing to CO ₂ :	., NH ₃ or CO 1.0 0.8 37.7 calcula to comp	CO2 19.2 16.4 % to ted lete	Ethane none none
(not including UDMH, H2 N2 45 minutes: 37.7 13.9 1-1/2 hour: 40.5 14.3 % H20 Used: 19.9 % Reformi Moles NH3 Formed/hr: 0.070 Moles Dimethylamine Formed/hr: g atom Carbon Deposition/hr:	H ₂ 0, N ₂ H ₄ CH ₄ 28.2 28.0 Ing to CO ₂ :	., NH ₃ or CO 1.0 0.8 37.7 calcula to comp	CO2 19.2 16.4 % to ted lete	Ethane none none

Catalyst <u>G-56B</u>	Temperatur	e, °C <u>500</u>)
Pressure, psig 25	Gas Volume	Rate, 1/hr	8.02
Moles Gas Produced/Hr 0.326	% UDMH Use	ed 100	
	<u>UDMH</u>	<u>H20</u>	Total
Feed Composition, mole-%	11.4	88.6	100
Feed Composition, g/hr	6.36	14.84	21.20
Feed Composition, mole/hr	0.106	0.824	0.930
Total Output Composition, mole-	%: UDMHO_	H ₂ O	62.1
N ₂ H ₄ - NH ₃ 10.1 Di	methylamine _	0.5	H ₂ 14.5
N ₂ 3.6 CH ₄ 5.6 CO C	0.2 CO:	3.4	
Ethane 0 Other			
(not including UDMH,	s Composition H ₂ O, N ₂ H ₄ , D	NH ₃ or Amine	es) <u>Ethane</u>
15			
45 minutes:			
1-1/2 hour: 53.2 13.2	20.5).6 12.6	none
1-1/2 hour: 53.2 13.2	20.5 Cong to Co2:		
1-1/2 hour: 53.2 13.2	ng to CO2:		
1-1/2 hour: 53.2 13.2 % H ₂ O Used: 10.2 % Reformi	ng to CO2:	19.3 % to	
1-1/2 hour: 53.2 13.2 % H ₂ O Used: 10.2 % Reformi Moles NH ₃ Formed/hr: 0.120 Moles Dimethylamine Formed/hr:	ng to CO2:	19.3 % to alculated o complete	
1-1/2 hour: 53.2 13.2 % H ₂ O Used: 10.2 % Reformi Moles NH ₃ Formed/hr: 0.120 Moles Dimethylamine Formed/hr:	ng to CO ₂ : c 0.006	19.3 % to alculated o complete	
1-1/2 hour: 53.2 13.2 % H ₂ O Used: 10.2 % Reformi Moles NH ₃ Formed/hr: 0.120 Moles Dimethylamine Formed/hr: g atom Carbon Deposition/hr:	ng to CO ₂ :	19.3 % to alculated o complete	

catalyst d-job Ni base ie- Temperature, C joo
Pressure, psig 50 Gas Volume Rate, 1/hr 0.73
Moles Gas Produced/Hr 0.030 % UDMH Used 33.3
<u>UDMH</u> <u>H₂O</u> <u>Total</u>
Feed Composition, mole-% 11.4 88.6 100
Feed Composition, g/hr 6.31 14.61 21.02
Feed Composition, mole/hr 0.105 0.823 0.928
Total Output Composition, mole-%: UDMH 7.3 H20 84.7
N ₂ H ₄ NH ₃ 1.8 Dimethylamine 2.9 H ₂ 0.3
N ₂ 1.4 CH ₄ 0.9 CO none CO ₂ 0.6
Ethane none Other
Output Gas Composition: (not including UDMH, $\rm H_2O$, $\rm N_2H_4$, $\rm NH_3$ or Amines)
H ₂ N ₂ CH ₄ CO CO ₂ Ethane
45 minutes: 9.0 42.3 28.6 none 20.0 none
1-1/2 hour:
% H ₂ O Used: 1.5 % Reforming to CO ₂ : 2.9 % to CO: none
Moles NH ₃ Formed/hr: 0.017 calculated to complete
Moles Dimethylamine Formed/hr: 0.028 mass balance
g atom Carbon Deposition/hr:
Moles H2 per 100 g UDMH input: 0.05
Moles H ₂ per 100 g total input: 0.014
Hydrogen efficiency = 0.4%

Catalyst G-56B	Temperature,	°C400	
Pressure, psig50	Gas Volume Ra	te, 1/hr _	7.84
Moles Gas Produced/Hr 0.319	% UDMH Used	98.2	
	<u>UDMH</u> <u>H</u>	20	Total
Feed Composition, mole-%	11.4 88	3.6	100
Feed Composition, g/hr	6.31	·.61	21.02
Feed Composition, mole/hr	0.105	.823	0.928
Total Output Composition, mole-9	%: UDMH 0.2	H ₂ O	55.8
N ₂ H ₄ - NH ₃ 15.6 Dia	methylamine 0.9) H ₂	14.0
N ₂ 0.7 CH ₄ 5.1 CO	0.1 CO2	7.6	
Ethane 0.1 Other			
(not including UDMH,			
(not including UDMH,	H ₂ O, N ₂ H ₄ , NH ₃ CH ₄ CO	<u>CO2</u>	<u>Ethane</u>
(not including UDMH,	H ₂ O, N ₂ H ₄ , NH ₃	<u>CO2</u>	<u>Ethane</u>
(not including UDMH,	H ₂ O, N ₂ H ₄ , NH ₃ CH ₄ CO 17.4 0.6	<u>CO₂</u> 27.7	Ethane none
(not including UDMH,	H ₂ O, N ₂ H ₄ , NH ₃ CH ₄ CO 17.4 0.6 18.6 0.3	<u>co₂</u> 27.7 27.6	Ethane none 0.2
(not including UDMH, H ₂ N ₂ 45 minutes: 52.0 2.2 1-1/2 hour: 50.8 2.5	H ₂ O, N ₂ H ₄ , NH ₃ CH ₄ CO 17.4 0.6 18.6 0.3 ng to CO ₂ : 41.9 calcu	CO2 27.7 27.6 % to C	Ethane none 0.2
(not including UDMH, H ₂ N ₂ 45 minutes: 52.0 2.2 1-1/2 hour: 50.8 2.5 % H ₂ 0 Used: 21.5 % Reforming	H ₂ O, N ₂ H ₄ , NH ₃ CH ₄ CO 17.4 0.6 18.6 0.3 ng to CO ₂ : 41.9 calcuto co	<u>co</u> 2 27.7 27.6 % to 0	Ethane none 0.2
(not including UDMH, H ₂ N ₂ 45 minutes: 52.0 2.2 1-1/2 hour: 50.8 2.5 % H ₂ 0 Used: 21.5 % Reformi Moles NH ₃ Formed/hr: 0.180 Moles Dimethylamine Formed/hr:	H ₂ O, N ₂ H ₄ , NH ₃ CH ₄ CO 17.4 0.6 18.6 0.3 ng to CO ₂ : 41.9 calcuto co	CO2 27.7 27.6 % to 0	Ethane none 0.2
(not including UDMH, H ₂ N ₂ 45 minutes: 52.0 2.2 1-1/2 hour: 50.8 2.5 % H ₂ 0 Used: 21.5 % Reformi Moles NH ₃ Formed/hr: 0.180 Moles Dimethylamine Formed/hr:	H ₂ O, N ₂ H ₄ , NH ₃ CH ₄ CO 17.4 0.6 18.6 0.3 ng to CO ₂ : 41.9 calcuto comass 0.010 0.036	CO2 27.7 27.6 % to 0	Ethane none 0.2
(not including UDMH, H ₂ N ₂ 45 minutes: 52.0 2.2 1-1/2 hour: 50.8 2.5 % H ₂ O Used: 21.5 % Reforming Moles NH ₃ Formed/hr: 0.180 Moles Dimethylamine Formed/hr: g atom Carbon Deposition/hr:	H ₂ O, N ₂ H ₄ , NH ₃ CH ₄ CO 17.4 0.6 18.6 0.3 ng to CO ₂ : 41.9 calcuto comass 0.010 0.036 2.57	CO2 27.7 27.6 % to 0	Ethane none 0.2

	Catalyst G-56B Ni base steam	Tempera	ture, °C_	500	
	reforming cataly Pressure, psig 50		ume Rate,	1/hr	11.93
	Moles Gas Produced/Hr 0.485	% UDMH	Jsed	100	
		UDMH	<u>H20</u>		Total
	Feed Composition, mole-%	11.4	88.6		
	Feed Composition, g/hr	5.72	13.35		19.07
	Feed Composition, mole/hr	0.0953	0.74	<u> 16</u>	0.8369
	Total Output Composition, mole-%	: UDMH _	0	H ₂ O _	51.3
	N ₂ H ₄ _ NH ₃ 4.7 Dim	ethylamin	e <u> </u>	- н	2 20.1
	N ₂ 6.4 CH ₄ 10.1 CO C	2.4	CO ₂ 7.1	-	
	Ethane 0 Other				
	Output Gas (not including UDMH, <u>He</u> <u>Ne</u> C	H ₂ O, N ₂ H ₄		Amines) Ethane
	(not including UDMH,	H ₂ O, N ₂ H ₄	, NH ₃ or		
4-hr	(not including UDMH, H ₂ N ₂ C	H ₂ O, N ₂ H ₄ H ₄ 25.13	, NH ₃ or		Ethane
4-hr	(not including UDMH, H2 N2 C 45 x x x x x x x x x x x x x x x x x x x	H ₂ O, N ₂ H ₄ H ₄ 25.13 22.85	NH ₃ or CO 1.00 0.9	17.75 16.14	Ethane none none
4-hr	(not including UDMH,	H ₂ O, N ₂ H ₄ H ₄ 25.13 22.85	1.00 0.9 40.8	17.75 16.14 % to	Ethane none none
4-hr	(not including UDMH,	H ₂ O, N ₂ H ₄ 25.13 22.85 ng to CO ₂ :	NH ₃ or 00 1.00 0.9 40.8	17.75 16.14 % to	Ethane none none
4-hr	(not including UDMH, H ₂ N ₂ C **Examinates: kxk/2xhoux: 40.35 15.78 2 average 45.77 14.35 2 % H ₂ O Used: 21.7 % Reforming Moles NH ₃ Formed/hr: 0.052	H ₂ O, N ₂ H ₄ 25.13 22.85 ng to CO ₂ :	1.00 0.9 40.8 calculate comp	17.75 16.14 % to	Ethane none none
4-hr	(not including UDMH, H ₂ N ₂ C **Examinates: **Location	H ₂ O, N ₂ H ₄ 25.13 22.85 ng to CO ₂ :	1.00 0.9 40.8 calculate comp	17.75 16.14 % to	Ethane none none
4-hr	(not including UDMH, H2 N2 C **Examinates: **Location tests: **Loc	H ₂ O, N ₂ H ₄ 25.13 22.85 ng to CO ₂ :	1.00 0.9 40.8 calculate comp	17.75 16.14 % to	Ethane none none
4-hr	(not including UDMH, H2 N2 C **Examinations: **Locations to a construction of the c	H ₂ O, N ₂ H ₄ 25.13 22.85 ng to CO ₂ :	1.00 0.9 40.8 calculate comp	17.75 16.14 % to	Ethane none none

CatalystG-JOB	Temperat	cure, C_	500	
Pressure, psig 50	Gas Volu	ume Rate,	1/hr _	13.30
Moles Gas Produced/Hr 0.541	% UDMH t	Jsed	±00	
	<u>UDMH</u>	H ₂ O	<u>, </u>	<u> Fotal</u>
Feed Composition, mole-%	11.4	80.6		
Feed Composition, g/hr	6.31	_14.6	1 2	21.02
Feed Composition, mole/hr	0.105	0.8	<u> </u>	0.928
Total Output Composition, mole-9	6: UDMH _	0	H ₂ O <u>5</u> 1	.3
N_2H_4 - NH_3 $\frac{4.7}{}$ Dir	methylamine	0	. H2	20.1
N ₂ 6.4 CH ₄ 10.1 CO C),4	02 7.1		
Ethane O Other				
(not including UDMH,		NH3 or	Amines)	Ethane
	17.7			_none_
1-1/2 hour: 49.5 14.2				
		<u> </u>	14.2	none
% H ₂ O Used: <u>19.2</u> % Reforming				
		36.7	% to Co	
Moles NH ₃ Formed/hr: 0.056		36.7	% to Co	
Moles NH ₃ Formed/hr: 0.056 Moles Dimethylamine Formed/hr:	ng to CO ₂ :	36.7 calculat to compl	% to Co	
Moles NH ₃ Formed/hr: 0.056 Moles Dimethylamine Formed/hr: g atom Carbon Deposition/hr:	o }	36.7 calculat to compl	% to Co	
g atom Carbon Deposition/hr:	$ \frac{0}{0.013} $ 4.25	36.7 calculat to compl	% to Co	

Catalyst <u>G-56B</u>	Temperat	ure, °C_)
Pressure, psig 150	Gas Volu	me Rate,	1/hr	3.81
Moles Gas Produced/Hr 0.155	% UDMH U	sed <u>9</u> 0	.4	
	<u>UDMH</u>	H ₂ O		Total
Feed Composition, mole-%	11.4	88.6	<u></u> .	100
Feed Composition, g/hr	6.465	15.085	<u> </u>	21,55
Feed Composition, mole/hr	0.108	0.839	<u>) </u>	0.947
Total Output Composition, mole-%	: UDMH	0.1	H ₂ O _	68.3
N ₂ H ₄ - NH ₃ 13.5 Dim	ethylamine	4.2]	H ₂ 6.9
N ₂ 0.8 CH ₄ 2.1 CO	1.0 C	02 3.2		
Ethane O Other			 	
Output Gas (not including UDMH,			Amine	s)
(not including UDMH,	H ₂ O, N ₂ H ₄ ,	NH3 or	Amine:	s) <u>Ethane</u>
(not including UDMH,	H ₂ O, N ₂ H ₄ ,	NH ₃ or 1	CO2	<u>Ethane</u>
(not including UDMH,	H ₂ O, N ₂ H ₄ , H ₄ C	NH ₃ or A	00 ₂ 20.3	<u>Ethane</u>
(not including UDMH, $\underline{H_2}$ $\underline{N_2}$ \underline{C} 45 minutes: $\underline{49.4}$ $\underline{7.1}$	H ₂ O, N ₂ H ₄ , H ₄ C 14.5	NH ₃ or A	20.3 22.5	Ethane none
(not including UDMH, H ₂ N ₂ C 45 minutes: 49.4 7.1 1-1/2 hour: 49.0 6.0	H ₂ O, N ₂ H ₄ , H ₄ C 14.5	NH ₃ or A 80 8.6 7.2 16.2 calculat	20.3 22.5 % to	Ethane none
(not including UDMH,	H ₂ O, N ₂ H ₄ , H ₄ C 14.5 14.7 g to CO ₂ :	NH ₃ or 100 8.6 7.2	20.3 22.5 % to ed	Ethane none
(not including UDMH,	H ₂ O, N ₂ H ₄ , H ₄ C 14.5 14.7 g to CO ₂ :	NH ₃ or A 8.6 7.2 16.2 calculat to compl	20.3 22.5 % to ed	Ethane none
(not including UDMH, H ₂ N ₂ C 45 minutes: 49.4 7.1 1-1/2 hour: 49.0 6.0 % H ₂ O Used: 9.7 % Reformin Moles NH ₃ Formed/hr: 0.150 Moles Dimethylamine Formed/hr:	H ₂ O, N ₂ H ₄ , H ₄ 14.5 14.7 g to CO ₂ : 0.046 0.053	NH ₃ or A 8.6 7.2 16.2 calculat to compl	20.3 22.5 % to ed	Ethane none
(not including UDMH, H ₂ N ₂ C 45 minutes: 49.4 7.1 1-1/2 hour: 49.0 6.0 % H ₂ O Used: 9.7 % Reformin Moles NH ₃ Formed/hr: 0.150 Moles Dimethylamine Formed/hr: g atom Carbon Deposition/hr:	H ₂ O, N ₂ H ₄ , H ₄ C 14.5 14.7 g to CO ₂ : 0.046 0.053	NH ₃ or A 8.6 7.2 16.2 calculat to compl	20.3 22.5 % to ed	Ethane none

ing catalyst		ure, <u>C40</u>	00
Pressure, psig 150	Gas Volu	me Rate, 1/h	r <u>7.72</u>
Moles Gas Produced/Hr 0.314	% UDMH U	sed <u>100</u>	
	<u>UDMH</u>	<u>H₂O</u>	<u>Total</u>
Feed Composition, mole-%	11.4	88.6	100
Feed Composition, g/hr	5.41	12.63	18.04
Feed Composition, mole/hr	0.0902	0.702	0.792
Total Output Composition, mole-%:	UDMH	0 H ₂ 0	51.6
N ₂ H ₄ - NH ₃ 15.6 Dime	thylamine	1.1	H ₂ <u>14.0</u>
N ₂ 0.8 CH ₄ 7.0 CO	<u> </u>	0 ₂ <u>9.8</u>	
Ethane 0.1 Other			
Output Gas (not including UDMH, F H2 N2 CF	H ₂ O, N ₂ H ₄ ,		
45 minutes: <u>42.6</u> 2.5			
1-1/2 hour: 43.91 2.5			
% H ₂ O Used: <u>27.6</u> % Reforming	to CO2:	<u>53.9</u> % t	o CO:_O
Moles NH ₃ Formed/hr:0.153)	calculated to complete	
Moles Dimethylamine Formed/hr: O	.011 }	mass balance	
g atom Carbon Deposition/hr: _)		
Moles H2 per 100 g UDMH input: 2	56		
Moles H ₂ per 100 g total input: 0	.77		
Hydrogen efficiency = 19.1%			

Catalyst <u>G-56B</u>	Tempera	ture, °C_	50	0
Pressure, psig150	Gas Vol	ume Rate,	1/hr	11.03
Moles Gas Produced/Hr <u>0.448</u>	% UDMH	Used	100	
	<u>UDMH</u>	<u>H20</u>		Total
Feed Composition, mole-%	11.4	88.6		100
Feed Composition, g/hr	5.70	13.31		19.01
Feed Composition, mole/hr	0.0950	0.73	9	0.834
Total Output Composition, mole- N ₂ H ₄ NH ₃ 5.4 Di	_		-	
N ₂ 5.9 CH ₄ 10.9 CO	.0	CO ₂ <u>6.2</u>		
Ethane 0 Other				
(not including UDMH,		, NH ₃ or		
(not including UDMH,	H ₂ O, N ₂ H ₄	, NH ₃ or	<u>C0</u> 2	<u>Ethane</u>
(not including UDMH,	H ₂ O, N ₂ H ₄ CH ₄ 26.3	, NH ₃ or CO none	<u>CO</u> 2	Ethane none
(not including UDMH, H2 N2 45 minutes: 38.0 13.0 1-1/2 hour: 43.0 14.5	H ₂ O, N ₂ H ₄ CH ₄ 26.3 27.1	, NH ₃ or CO none none	22.6 15.4	Ethane none none
(not including UDMH, H2 N2 45 minutes: 38.0 13.0 1-1/2 hour: 43.0 14.5 average % H2O Used: 18.7 % Reformi	H ₂ O, N ₂ H ₄ CH ₄ 26.3 27.1 Lng to CO ₂ :	none 36.3 calculat	22.6 15.4 % to	Ethane none none
(not including UDMH, H ₂ N ₂ 45 minutes: 38.0 13.0 1-1/2 hour: 43.0 14.5 average % H ₂ O Used: 18.7 % Reforming Moles NH ₃ Formed/hr: 0.060	H ₂ O, N ₂ H ₄ CH ₄ 26.3 27.1 Lng to CO ₂ :	NH ₃ or CO none none	22.6 15.4 % to	Ethane none none
(not including UDMH, H ₂ N ₂ 45 minutes: 38.0 13.0 1-1/2 hour: 43.0 14.5 average % H ₂ O Used: 18.7 % Reforming Moles NH ₃ Formed/hr: 0.060	H ₂ O, N ₂ H ₄ CH ₄ 26.3 27.1 Ling to CO ₂ :	none none 36.3 calculate to comp	22.6 15.4 % to	Ethane none none
(not including UDMH, H2 N2 45 minutes: 38.0 13.0 1-1/2 hour: 43.0 14.5 average % H2O Used: 18.7 % Reformi Moles NH3 Formed/hr: 0.060 Moles Dimethylamine Formed/hr:	H ₂ O, N ₂ H ₄ CH ₄ 26.3 27.1 Ing to CO ₂ :	none none 36.3 calculate to comp	22.6 15.4 % to	Ethane none none
(not including UDMH, H2 N2 45 minutes: 38.0 13.0 1-1/2 hour: 43.0 14.5 average % H2O Used: 18.7 % Reformi Moles NH3 Formed/hr: 0.060 Moles Dimethylamine Formed/hr: g atom Carbon Deposition/hr:	H ₂ O, N ₂ H ₄ CH ₄ 26.3 27.1 Ing to CO ₂ : none 3.39	none none 36.3 calculate to comp	22.6 15.4 % to	Ethane none none

Catalyst <u>G-43</u>	Temperatur	e, °C	300
Pressure, psig50	Gas Volume	Rate, 1/hr	0.495
Moles Gas Produced/Hr 0.020	% UDMH Use	d 83.3	
	<u>UDMH</u>	<u>H₂O</u>	Total
Feed Composition, mole-%	11.4	88.6	100
Feed Composition, g/hr	5.97	13.92	19.89
Feed Composition, mole/hr	0.0995	0.773	0.873
Total Output Composition, mole-%	: UDMH1.	,8H ₂ O	80.2
N ₂ H ₄ NH ₃ <u>ll.l</u> Dim	ethylamine _	4.8	H ₂ 0.8
N ₂ 0.7 CH ₄ 0.3 CO 0	0.3 002	0	
Ethane O Other			
(not including UDMH,	Composition H_2O , N_2H_4 , N	H ₃ or Amine	Ethane
45 minutes:			
1-1/2 hour: 37.2 31.8	16.4 1	1.5 none	none
% H ₂ O Used: <u>0.4</u> % Reforming	g to CO2:() % to	co: <u>1.5</u>
Moles NH ₃ Formed/hr: 0.107	1	lculated complete	
Moles Dimethylamine Formed/hr: _		ss balance	
g atom Carbon Deposition/hr:	0.068		
Moles H2 per 100 g UDMH input: (0.13		
Moles H2 per 100 g total input:	0.04		
Hydrogen efficiency = 0.9%			

rembere	icure, c	400	
Gas Vol	ume Rate	, 1/hr	1.48
% UDMH	Used 97	•7	
<u>UDMH</u>	H ₂ O		<u>Total</u>
11.4	88.6		100
6.05	14.1	<u> </u>	20.18
0.101	0.7	<u>85</u>	0.886
UDMH _	0.2	H ₂ O _	74.7
thylamin	e <u>6.3</u>	_ н	2 2.4
.0	CO ₂ 1.7		
•			
20, N ₂ H ₄	, NH ₃ or		
		<u>CO2</u>	Ethane
			0.7
7.6 to CO2:	16.5	28.7	0.7
7.6 to CO2:	8.4 calculat	28.7 % to	0.7
7.6 to CO2:	8.4	28.7 % to	0.7
7.6 to CO2:	8.4 calculat	28.7 % to	0.7
7.6 to CO ₂ :	8.4 calculat	28.7 % to	0.7
7.6 to CO ₂ : 062 041	8.4 calculat	28.7 % to	0.7
	Gas Vol % UDMH UDMH 11.4 6.05 0.101 UDMH thylamin	Gas Volume Rate, % UDMH Used 97 UDMH	11.4 88.6 6.05 14.13 0.101 0.785 UDMH 0.2 H ₂ 0 thylamine 6.3 H Composition: 20, N ₂ H ₄ , NH ₃ or Amines

	remberacar	e, °C <u>300</u>)
Pressure, psig 150	Gas Volume	Rate, 1/hr	0.57
Moles Gas Produced/Hr	% UDMH Use	d 63.0)
	<u>UDMH</u>	H ₂ O	Total
Feed Composition, mole-%	11.4	88.6	100
Feed Composition, g/hr	5.59	13.03	18.62
Feed Composition, mole/hr	0.093	0.724	0.817
Total Output Composition, mole-%:	UDMH	H ₂ O	
N ₂ H ₄ NH ₃ Dime	thylamine _		H ₂
N ₂ CH ₄ CO	CO ₂		
Ethane Other			
O touch Can	0		
(not including UDMH, H H ₂ N ₂ CH 45 minutes:		H ₃ or Amine	Ethane
(not including UDMH, F	H ₂ O, N ₂ H ₄ , N H ₄ CO	M ₃ or Amine <u>CO</u> 2 ———————————————————————————————————	<u>Ethane</u>

Not enough gas produced for valid gas analysis.

Catalyst G-45	_ Tempera	ture, °C	400
Pressure, psig150	_ Gas Vol	ume Rate,	1/hr 3.02
Moles Gas Produced/Hr 0.123	_ % UDMH	Usea <u>98</u>	.0
	<u>UDMH</u>	H20	Total
Feed Composition, mole-%	11.4	88.6	100
Feed Composition, g/hr	5.63	13.12	18.75
Feed Composition, mole/hr	0.094	0.729	0.823
Total Output Composition, mole	-%: UDMH _	0.2	H ₂ 0 69.2
N ₂ H ₄ - NH ₃ 10.8	imethylamin	e <u>6.7</u>	H ₂ 5.6
N ₂ 1.2 CH ₄ 1.3 CO	1.1	CO ₂ 4.0	_
Ethane 0 Other			
(not including UDMH <u>H2 N2</u>			mines) <u>Ethane</u>
45 minutes:			
1-1/2 hour: 42.2 8.8	10.0	8.5	30.4 0
% H ₂ O Used: <u>11.7</u> % Reform	ning to CO2:	19.7	% to CO: <u>5.3</u>
Moles NH ₃ Formed/hr: 0.100)	calculate to comple	
Moles Dimethylamine Formed/hr:	0.062	mass bala	
g atom Carbon Deposition/hr:)		
Moles H2 per 100 g UDMH input:	0.93		
Moles H2 per 100 g total input	:_0.28		
Hydrogen efficiency = 6.9			

Catalyst G-42 Pt	Temperature	e, °C	500
Pressure, psig 150	Gas Volume	Rate, 1/hr	9.02
Moles Gas Produced/Hr 0.367	% UDMH Used	100	
	<u>UDMH</u>	H ₂ O	Total
Feed Composition, mole-%	11.4	88.6	100
Feed Composition, g/hr	5.91	13.79	19.70
Feed Composition, mole/hr	0.0985	0.766	0.865
Total Output Composition, mole-%:	UDMH) H ₂ O	60.1
N ₂ H ₄ _ NH ₃ <u>5.1</u> Dime	thylamine (0.6	H ₂ <u>11.6</u>
N ₂ 6.1 CH ₄ 11.2 CO (0.8 002	4.3	
Ethane 0.2 Other			
Output Gas (not including UDMH, H <u>H2</u> <u>N2</u> <u>CH</u>		or Amine	s) <u>Ethane</u>
Output Gas (not including UDMH, H	120, N2H4, NH		
Output Gas (not including UDMH, H <u>H2</u> <u>N2</u> <u>CH</u>	120, N ₂ H ₄ , NH	<u>CO</u> 2	
Output Gas (not including UDMH, H H2 N2 CH 45 minutes:	120, N ₂ H ₄ , NH 14 <u>CO</u> 33.9 2.4	<u>CO</u> ₂	<u>Ethane</u>
Output Gas (not including UDMH, H	to CO ₂ : 23.	<u>CO2</u> 12.7 9 % to	<u>Ethane</u>
Output Gas (not including UDMH, H	$120, N_2H_4, NH_4$ $14 $	<u>CO2</u> 12.7 .9 % to	<u>Ethane</u>
Output Gas (not including UDMH, H	$120, N_2H_4, NH_4$ $14 $	202 12.7 9 % to culated complete	<u>Ethane</u>
Output Gas (not including UDMH, H H2 N2 CH 45 minutes: 1-1/2 hour: 32.2 18.3 3 % H2O Used: 13.3 % Reforming Moles NH3 Formed/hr: 0.056 Moles Dimethylamine Formed/hr: 0.	to CO ₂ : 23.	202 12.7 9 % to culated complete	<u>Ethane</u>
Output Gas (not including UDMH, H H2 N2 CH 45 minutes: 1-1/2 hour: 32.2 18.3 3 % H2O Used: 13.3 % Reforming Moles NH3 Formed/hr: 0.056 Moles Dimethylamine Formed/hr: 0. g atom Carbon Deposition/hr:	to CO ₂ : 23. cal to mas	202 12.7 9 % to culated complete	<u>Ethane</u>

catalyst Pt oxide in alumina	Temperature	400	
Pressure, psig 50	Gas Volume	Rate, 1/hr	1.41
Moles Gas Produced/Hr 0.057	% UDMH Used	96.9	
·	UDMH	H ₂ O	Total
Feed Composition, mole-%	11.4	88.6	
Feed Composition, g/hr	5.88	13.71	19.59
Feed Composition, mole/hr	0.098	0.762	0.860
Total Output Composition, mole-%:	UDMH 0.3	H ₂ O _	75.1
N ₂ H ₄ NH ₃ <u>12.9</u> Dime	thylamine <u>5</u>	<u>.7</u> I	H ₂ 2.2
N ₂ O.4 CH ₄ O.2 CO _3	00 ₂	0	
Ethane 0 Other			
(not including UDMH, H			
(not including UDMH, H	120, N ₂ H ₄ , NH	<u>002</u>	Ethane
(not including UDMH, H	120, N2H4, NH	<u>002</u>	
(not including UDMH, H	20, N ₂ H ₄ , NH CO 52.	<u>CO₂</u> 9 none	Ethane none
(not including UDMH, H	120, N ₂ H ₄ , NH 14 CO 1.9 52. 10 CO ₂ : 0	CO ₂ 9 none 6 none % to	Ethane none none
(not including UDMH, H	$120, N_2H_4, NH$ $14 $	CO2 9 none 6 none	Ethane none none
(not including UDMH, H	$120, N_2H_4, NH$ $14 $	CO2 9 none 6 none % to	Ethane none none
(not including UDMH, H	to CO ₂ : O cal to mas	CO2 9 none 6 none % to culated complete	Ethane none none
(not including UDMH, H H2 N2 CH 45 minutes: 36.0 7.2 3 1-1/2 hour: 36.1 7.2 4 % H2O Used: 3.9 % Reforming Moles NH3 Formed/hr: 126 Moles Dimethylamine Formed/hr: _0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	CO2 9 none 6 none % to culated complete	Ethane none none
(not including UDMH, H H2 N2 CH 45 minutes: 36.0 7.2 3 1-1/2 hour: 36.1 7.2 4 % H2O Used: 3.9 % Reforming Moles NH3 Formed/hr: 126 Moles Dimethylamine Formed/hr: 0.0 g atom Carbon Deposition/hr: 0.0	$ \begin{bmatrix} 120, & N_2H_4, & NH_4 \\ 14 & & CO \\ 152. & & 52. \\ 156 & & & \\ $	CO2 9 none 6 none % to culated complete	Ethane none none

Pt oxide in alumina	Temperatu	re, 'C <u>500</u>	
Pressure, psig50	Gas Volum	e Rate, 1/h	r <u>3.66</u>
Moles Gas Produced/Hr 0.149	% UDMH Us	ed <u>100</u>	
	<u>UDMH</u>	H ₂ O	Total
Feed Composition, mole-%	11.4	88.6	100
Feed Composition, g/hr	6.01	14.03	20.04
Feed Composition, mole/hr	0.100	<u>0.77</u> 9	0.879
Total Output Composition, mole-%:	UDMH O	H ₂ O	70.11
N ₂ H ₄ - NH ₃ 14.6 Dime	ethylamine	1.4	H ₂ 7.8
N _{2 1 3} CH _{4 2 4} CO	2.3 CO	20	
Ethane 0 Other			
Output Gas (not including UDMH, I			es)
H ₂ N ₂ CI	H ₄ CO	<u>CO2</u>	<u>Ethane</u>
45 minutes: <u>49.6</u> <u>7.9</u>	14.6	26.0 1.6	0.2
1-1/2 hour: <u>56.1</u> <u>9.2</u>	17.4	17.1 nor	ne 0.2
% H ₂ O Used: 3.3 % Reforming	g to CO2: _	0% to	0 CO: 12.5
Moles NH ₃ Formed/hr: 0.157	7 9	alculated	
Moles Dimethylamine Formed/hr:	0.015 } n	o complete ass balance	
g atom Carbon Deposition/hr:)-118_)		
Moles H2 per 100 g UDMH input: _1	1.40		
Moles H ₂ per 100 g total input:	.42		
Hydrogen efficiency = 10.5			

Catalyst Pt Oxide	Tempera	ture, 'C_	400	
Pressure, psig 150	Gas Vol	ume Rate,	1/hr	1.52
Moles Gas Produced/Hr 0.062	% UDMH	Used 9'	7.9	
	UDMH	H ₂ O		Total
Feed Composition, mole-%	11,4	88.6		100
Feed Composition, g/hr	5.82	13.58	<u> </u>	19.40
Feed Composition, mole/hr	0.097	0.75	<u>5</u> 4 _	0.851
Total Output Composition, mole-9	: UDMH _	0.2	H ₂ O _	74.4
N ₂ H ₄ NH ₃ 11.9 Din	nethylamin	e <u>6.9</u>	_ I	H ₂ 1.6
N ₂ 0.5 CH ₄ 0.4 CO	3.4	co ₂ <u>0.6</u>		
Ethane 0 Other	•		,	
Output Gas (not including UDMH, <u>Hz Nz</u> C	H_2O , N_2H_4	, NH ₃ or		
45 minutes: 22.8 6.3				
1-1/2 hour: 24.3 8.3				
% H ₂ O Used: <u>5.8</u> % Reforming	ng to CO2:	3.0	% to	CO: 17.0
Moles NH ₃ Formed/hr: 0.114)	calculat	ed ete	
Moles Dimethylamine Formed/hr:	0.066	to compl	ance	
g atom Carbon Deposition/hr:	0.016			
Moles H2 per 100 g UDMH input:				
The same of the sa	0.26			
Moles H ₂ per 100 g total input:	_			

Catalyst Pt oxide on alumina	Tempera	ture, °C_	500	
Pressure, psig 150	Gas Vol	ume Rate,	1/hr <u>8</u>	.07
Moles Gas Produced/Hr 0.328	% UDMH	Used 100	0	
	<u>UDMH</u>	<u>H20</u>	:	Total
Feed Composition, mole-%	11.4	88.6		100
Feed Composition, g/hr	5.58	13.0	2	18.60
Feed Composition, mole/hr	0.093	0.7	23 _	0.816
Total Output Composition, mole-9	€: UDMH _	0	H ₂ O 6	0.0
N ₂ H ₄ NH ₃ 7.8 Dir	methylamin	e <u>0.9</u>	H ₂	60.0
N ₂ 4.6 CH ₄ 8.8 CO	3.6	CO ₂ 2.8		
Ethane 0.4 Other	•			
Output Ga (not including UDMH,	s Composit	ion: . NHa or	Amines)	
<u>H</u> 2 <u>N</u> 2	CH4	<u>co</u>	<u>C02</u>	Ethane
	<u>30.0</u>	<u>10.8</u>	002 7.6	Ethane
$\frac{\text{H}_2}{\text{45 minutes:}} \frac{\text{N}_2}{34.0} = \frac{17.6}{17.6}$	CH4 30.0 28.1	<u>10.8</u> 	<u>CO₂</u> 7.68.8	Ethane
H ₂ N ₂ 45 minutes: 34.0 17.6 1-1/2 hour: 35.5 14.7	CH4 30.0 28.1 ng to CO2:	10.8 11.6 15.6 calculat	CO₂ 7.6 8.8 % to C	Ethane
H ₂ N ₂ 45 minutes: 34.0 17.6 1-1/2 hour: 35.5 14.7 % H ₂ O Used: 13.3 % Reformi	CH4 30.0 28.1 ng to CO2:	<u>10.8</u> 11.6 15.6	7.6 8.8 % to 0	Ethane
H ₂ N ₂ 45 minutes: 34.0 17.6 1-1/2 hour: 35.5 14.7 % H ₂ O Used: 13.3 % Reformi Moles NH ₃ Formed/hr: .081	CH4 30.0 28.1 ng to CO2:	10.8 11.6 15.6 calculat	7.6 8.8 % to 0	Ethane
H ₂ N ₂ 45 minutes: 34.0 17.6 1-1/2 hour: 35.5 14.7 % H ₂ O Used: 13.3 % Reformi Moles NH ₃ Formed/hr:081 Moles Dimethylamine Formed/hr:	CH4 30.0 28.1 ng to CO2:	10.8 11.6 15.6 calculat	7.6 8.8 % to 0	Ethane
H ₂ N ₂ 45 minutes: 34.0 17.6 1-1/2 hour: 35.5 14.7 % H ₂ O Used: 13.3 % Reformi Moles NH ₃ Formed/hr:081 Moles Dimethylamine Formed/hr: g atom Carbon Deposition/hr:	CH4 30.0 28.1 ng to CO2: .009	10.8 11.6 15.6 calculat	7.6 8.8 % to 0	Ethane

Catalyst T-312	Temperatu.	re, °C_	300	
Pressure, psig 50	Gas Volum	e Rate,	, 1/hr _	2.34
Moles Gas Produced/Hr 0.095	% UDMH Us	ed	92.9	······································
	<u>UDMH</u>	H ₂ 0		Total
Feed Composition, mole-%	11.4	88.	<u>6</u>	100
Feed Composition, g/hr	5.91	13.	79	19.70
Feed Composition, mole/hr	0.0985	0.	766	ن.86 <u>5</u>
Total Output Composition, mole-% N ₂ H ₄ NH ₃ 10.3 Dim N ₂ 1.0 CH ₄ 0.5 CO C Ethane 0 Other	o.5 CO	6.8 2 <u>3.7</u>	_ H ₂	•
output Gas	Compositio	n:	Amines	
(not including UDMH,	H ₂ O, N ₂ H ₄ ,	NH ₃ or		
(not including UDMH, <u>H2</u> <u>N2</u> <u>C</u>	H ₂ O, N ₂ H ₄ ,	NH ₃ or	CO2	Ethane
(not including UDMH,	H ₂ O, N ₂ H ₄ , CO 5.8	NH ₃ or	29.3	Ethane none

Catalyst T312	_ Temperature	, °C <u>400</u>	
Pressure, psig 50	_ Gas Volume	Rate, 1/hr	6.27
Moles Gas Produced/Hr 0.255	_ % UDMH Used	99.3	
	<u>UDMH</u>	<u>H₂O</u>	Total
Feed Composition, mole-%	11.4	88.6	100
Feed Composition, g/hr	5.91	13.79	19.70
Feed Composition, mole/hr	0.0985	0.766	0.865
Total Output Composition, mole	-%: UDMH <u>0.1</u>	H ₂ O	58.5
N ₂ H ₄ NH ₃ 12.3 D	imethylamine 4	88	H ₂ <u>14.2</u>
N ₂ <u>0.8</u> CH ₄ <u>1.1</u> CO	1.7 002	6.5	
Ethane O Other			
(not including UDMH		s or Amine	
(not including UDMH	, H ₂ O, N ₂ H ₄ , NH <u>CH4</u> <u>CO</u>	or Amine	Ethane
(not including UDMH	, H ₂ O, N ₂ H ₄ , NH <u>CH₄</u> <u>CO</u> 3.8 6	CO ₂	Ethane none
(not including UDMH	, H ₂ O, N ₂ H ₄ , NH <u>CH4</u> <u>CO</u>	CO ₂	Ethane none
(not including UDMH	, H ₂ O, N ₂ H ₄ , NH CH ₄ CO 3.8 6 4.4 7	CO ₂ .6 33.	Ethane none none
(not including UDMH	$\frac{\text{CH}_4}{3.8}$ $\frac{\text{CO}}{4.4}$ $\frac{3.8}{7}$ $\frac{4.4}{3}$ $\frac{7}{3}$ cal	CO2 .6 331 261.5 % to	Ethane none none
(not including UDMH	$\frac{\text{CH}_4}{3.8}$ $\frac{\text{CO}}{4.4}$ $\frac{3.8}{7}$ $\frac{6}{1}$ $\frac{4.4}{1}$ $\frac{7}{1}$ $\frac{3}{1}$ $\frac{1}{1}$ $\frac{1}{1$	CO ₂ .6 331 26	Ethane none none
(not including UDMH	$\frac{\text{CH}_4}{3.8}$ $\frac{\text{CO}}{4.4}$ $\frac{3.8}{7}$ $\frac{6}{1}$ $\frac{4.4}{1}$ $\frac{7}{1}$ $\frac{3}{1}$ $\frac{1}{1}$ $\frac{1}{1$	GO2 .6 331 26. 4.5 % to culated complete	Ethane none none
(not including UDMH	(1.4) $(1.4$	GO2 .6 331 26. 4.5 % to culated complete	Ethane none none
(not including UDMH H2 N2 45 minutes: 53.2 2.9 1-1/2 hour: 58.4 3.4 % H2O Used: 20.1 % Reform Moles NH3 Formed/hr: 0.129 Moles Dimethylamine Formed/hr: g atom Carbon Deposition/hr:	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	GO2 .6 331 26. 4.5 % to culated complete	Ethane none none

Catalyst <u>T312</u>	Temperature, C_	500
Pressure, psig 50	Gas Volume Rate,	1/hr <u>9.73</u>
Moles Gas Produced/Hr 0.396	% UDMH Used 100)
	UDMH H ₂ O	<u>Total</u>
Feed Composition, mole-%	11.4 88.6	100
Feed Composition, g/hr	5.91 13.7	79 19.70
Feed Composition, mole/hr	0.0985 0.7	<u>0.865</u>
Total Output Composition, mole-%	: UDMH O	H ₂ O 55.8
N ₂ H ₄ NH ₃ 7.7 Dime	ethylamine 0.7	H ₂ <u>14.9</u>
N ₂ 4.9 CH ₄ 8.9 CO 0	0.8 CO ₂ 6.3	<u></u>
Ethane 0.2 Other		
Output Gas (not including UDMH, I	Composition: H ₂ O, N ₂ H ₄ , NH ₃ or	Amines)
(not including UDMH, I		
(not including UDMH, I	H_2O , N_2H_4 , NH_3 or H_4 CO	CO2 Ethane
(not including UDMH, I	H ₂ O, N ₂ H ₄ , NH ₃ or H ₄ CO 22.6 2.0	CO2 Ethane 24.3 0.7
(not including UDMH, I	H ₂ O, N ₂ H ₄ , NH ₃ or H ₄ CO 22.6 2.0 25.0 2.3	CO2 Ethane 24.3 0.7 17.2 0.6
(not including UDMH, I H ₂ N ₂ CI 45 minutes: 39.5 11.7 2 1-1/2 hour: 42.0 13.0 2	H_2O , N_2H_4 , NH_3 or H_4 CO 22.6 2.0 2.3 g to CO_2 : 34.5 calculat	CO ₂ Ethane 24.3 0.7 17.2 0.6 % to CO: 4.6 ed
(not including UDMH, In H ₂ N ₂ CI 45 minutes: 39.5 11.7 2 1-1/2 hour: 42.0 13.0 2 % H ₂ 0 Used: 18.9 % Reforming	H_2O , N_2H_4 , NH_3 or H_4 CO 22.6 2.0 2.3 2.5 calculate to complete t	CO2 Ethane 24.3 0.7 17.2 0.6 % to CO: 4.6 ed
(not including UDMH, In H ₂ N ₂ CI 45 minutes: 39.5 11.7 2 1-1/2 hour: 42.0 13.0 2 % H ₂ O Used: 18.9 % Reforming Moles NH ₃ Formed/hr: .086	H_2O , N_2H_4 , NH_3 or H_4 CO 22.6 2.0 2.3 2.5 calculate to complete t	CO2 Ethane 24.3 0.7 17.2 0.6 % to CO: 4.6 ed
(not including UDMH, In H ₂ N ₂ CI 45 minutes: 39.5 11.7 2 1-1/2 hour: 42.0 13.0 2 % H ₂ O Used: 18.9 % Reforming Moles NH ₃ Formed/hr: .086 Moles Dimethylamine Formed/hr: 0		CO2 Ethane 24.3 0.7 17.2 0.6 % to CO: 4.6 ed
(not including UDMH, In H2 N2 CI 45 minutes: 39.5 11.7 2 1-1/2 hour: 42.0 13.0 2 18.9 % Reforming Moles NH3 Formed/hr: .086 Moles Dimethylamine Formed/hr: 0 g atom Carbon Deposition/hr:		CO2 Ethane 24.3 0.7 17.2 0.6 % to CO: 4.6 ed

Alumina Alumina	omremperature,	C_300
Pressure, psig150	Gas Volume R	ate, 1/hr <u>1.37</u>
Moles Gas Produced/Hr 0.056	% UDMH Used	96.5
	<u>UDMH</u>	H ₂ O Total
Feed Composition, mole-%	11.4	88.6
Feed Composition, g/hr	5.65	13.17 18.82
Feed Composition, mole/hr	0.0942	0.732 0.826
Total Output Composition, mole-%:	UDMH 0.3	н₂076.6
N ₂ H ₄ _ NH ₃ <u>8.3</u> Dime	thylamine $\frac{8}{2}$.4 H ₂ 0.9
N ₂ 1.8 CH ₄ 1.1 CO	0.1 CO ₂ _	2.4
Ethane Other		
(not including UDMH, F		or Amines) CO2 Ethane
45 minutes: <u>14.1 28.3</u>		
1-1/2 hour:		
% H ₂ O Used: % Reforming	g to CO2:	% to CO:
Moles NH ₃ Formed/hr:		ulated omplete
Moles Dimethylamine Formed/hr:	\ mass	balance
g atom Carbon Deposition/hr: _)	
Moles H2 per 100 g UDMH input:		
Moles H2 per 100 g total input:_		
Hydrogen efficiency =		

Catalyst <u>T312 Ni + Cu Oxides</u>	Temperature	, °C_400	
Pressure, psig 150	Gas Volume	Rate, 1/hr	6.29
Moles Gas Produced/Hr 0.256	% UDMH Used		99.0
•	<u>UDMH</u>	<u>H₂O</u>	Total
Feed Composition, mole-%	11.4	88.6	100
Feed Composition, g/hr	5.65	13.17	18.82
Feed Composition, mole/hr	0.094	0.732	0.826
Total Output Composition, mole-%	: UDMH O.1	H ₂ O _	57.7
N ₂ H ₄ NH ₃ <u>12.3</u> Dime	ethylamine <u>4</u>	.21	H ₂ <u>14.3</u>
N ₂ 1.1 CH ₄ 1.7 CO 1	1.6 CO ₂	7.2	
Ethane 0 Other			
(not including UDMH, 1	Composition: H ₂ O, N ₂ H ₄ , NH	3 or Amines	
(not including UDMH, 1	H_2O , N_2H_4 , N_1H_4	or Amines	<u>Ethane</u>
(not including UDMH, 1	H_2O , N_2H_4 , N_1H_4 CO 6.2 4.9	$\frac{\text{CO}_2}{3}$	Ethane none
(not including UDMH, 1 <u>H2</u> <u>N2</u> <u>C1</u> 45 minutes: <u>51.9</u> <u>3.6</u>	H ₂ O, N ₂ H ₄ , NH H ₄ CO 6.2 4.9 6.5 6.2	3 or Amine: <u>CO2</u> 33.127.7	Ethane none none
(not including UDMH, 1 H ₂ N ₂ Cl 45 minutes: 51.9 3.6 1-1/2 hour: 55.3 4.4 4 4 4 Moles NH ₃ Formed/hr: 0.122	H_2O , N_2H_4 , NH_4 CO 6.2 4.9 6.5 6.2 cal	3 or Amine: <u>CO2</u> 33.127.7	Ethane none none
(not including UDMH, I H ₂ N ₂ CI 45 minutes: 51.9 3.6 1-1/2 hour: 55.3 4.4 % H ₂ O Used: 21.6 % Reforming Moles NH ₃ Formed/hr: 0.122 Moles Dimethylamine Formed/hr:	H_2O , N_2H_4 , NH_4 CO 6.2 4.9 6.5 6.2 cal	27.7 37.8 % to	Ethane none none
(not including UDMH, 1 H ₂ N ₂ Cl 45 minutes: 51.9 3.6 1-1/2 hour: 55.3 4.4 4 4 4 Moles NH ₃ Formed/hr: 0.122	H_2O , N_2H_4 , NH_4 CO 6.2 4.9 6.5 6.2 cal	CO ₂ 33.1 27.7 37.8 % to culated complete	Ethane none none
(not including UDMH, I H ₂ N ₂ CI 45 minutes: 51.9 3.6 1-1/2 hour: 55.3 4.4 % H ₂ O Used: 21.6 % Reforming Moles NH ₃ Formed/hr: 0.122 Moles Dimethylamine Formed/hr:	$ \begin{array}{ccccccccccccccccccccccccccccccccc$	CO ₂ 33.1 27.7 37.8 % to culated complete	Ethane none none
(not including UDMH, 1 H ₂ N ₂ Cl 45 minutes: 51.9 3.6 1-1/2 hour: 55.3 4.4 20 Used: 21.6 % Reforming Moles NH ₃ Formed/hr: 0.122 Moles Dimethylamine Formed/hr: 0 g atom Carbon Deposition/hr:	$ \begin{array}{ccccccccccccccccccccccccccccccccc$	CO ₂ 33.1 27.7 37.8 % to culated complete	Ethane none none

Catalyst T312 Ni + Cu Oxides on	Temperature, °C 500
Pressure, psig 150	Gas Volume Rate, 1/hr 8.46
Moles Gas Produced/Hr 0.344	% UDMH Used 100
	UDMH H20 Total
Feed Composition, mole-%	11.4 88.6 100
Feed Composition, g/hr	<u>5.65</u> <u>13.17</u> <u>18.82</u>
Feed Composition, mole/hr	0.094 0.732 0.826
Total Output Composition, mole-9	6: UDMH <u>0</u> H ₂ O <u>60.1</u>
N ₂ H ₄ NH ₃ 6.3 Dir	nethylamine 0.7 H ₂ 11.0
N ₂ 5.6 CH ₄ 11.0 CO	0.2 CO ₂ 5.0
Ethane 0.3 Other other	
(not including UDMH,	S Composition: H ₂ O, N ₂ H ₄ , NH ₃ or Amines) CH ₄ CO CO ₂ Ethane
(not including UDMH,	H_2O , N_2H_4 , NH_3 or Amines) CH_4 CO CO_2 Ethane
(not including UDMH,	H_2O , N_2H_4 , NH_3 or Amines) CH_4 CO CO_2 Ethane
(not including UDMH,	H ₂ O, N ₂ H ₄ , NH ₃ or Amines) CH ₄ CO CO ₂ Ethane 28.3 0.5 22.4 0.9
(not including UDMH,	H ₂ O, N ₂ H ₄ , NH ₃ or Amines) CH ₄ CO CO ₂ Ethane 28.3 0.5 22.4 0.9 33.1 0.7 15.2 0.8 Ing to CO ₂ : 27.7 % to CO: 1.17 calculated
(not including UDMH,	H_2O , N_2H_4 , NH_3 or Amines) CH_4 CO CO_2 $Ethane$ 28.3 0.5 22.4 0.9 33.1 0.7 15.2 0.8 and to CO_2 : 27.7 $\%$ to CO : 1.17 $Calculated$ to complete
(not including UDMH,	H_2O , N_2H_4 , NH_3 or Amines) CH_4 CO CO_2 $Ethane$ 28.3 0.5 22.4 0.9 33.1 0.7 15.2 0.8 and to CO_2 : 27.7 $\%$ to CO : 1.17 $Calculated$ to complete
(not including UDMH, H ₂ N ₂ 9 45 minutes: 31.6 16.3 1-1/2 hour: 33.2 16.9 % H ₂ O Used: 14.6 % Reforming Moles NH ₃ Formed/hr:	H_2O , N_2H_4 , NH_3 or Amines) CH_4 CO CO_2 $Ethane$ 28.3 0.5 22.4 0.9 33.1 0.7 15.2 0.8 and to CO_2 : 27.7 $\%$ to CO : 1.17 $Calculated$ to complete
(not including UDMH, H ₂ N ₂ 9 45 minutes: 31.6 16.3 1-1/2 hour: 33.2 16.9 % H ₂ O Used: 14.6 % Reforming Moles NH ₃ Formed/hr:	H_2O , N_2H_4 , NH_3 or Amines) CH_4 CO CO_2 $Ethane$ 28.3 0.5 22.4 0.9 33.1 0.7 15.2 0.8 and to CO_2 : 27.7 $formula to constant the complete mass balance CH_4 CO CO_2 CO_3 CO_4 CO_5 CO_$

Catalyst <u>G47</u>	Temperatur	e, °C <u>300</u>)
Pressure, psig50	Gas Volume	Rate, 1/hr	1.135
Moles Gas Produced/Hr 0.046	% UDMH Use	<u>75.1</u>	
	<u>UDMH</u>	<u>H₂O</u>	Total
Feed Composition, mole-%	11.4	88.6	100
Feed Composition, g/hr	6.02	14.06	20.08
Feed Composition, mole/hr	0.100	0.781	0.881
Total Output Composition, mole-%:	UDMH 2.	5 H ₂ O	82.0
N ₂ H ₄ NH ₃ 4.9 Dime	thylamine _	5.7	H ₂ 0.1
N _{2 2.6} CH _{4 2.1} CO C	CO2	_0	
Ethane 0 Other			
(not including UDMH, H		H ₃ or Amine	
H ₂ N ₂ CH			
45 minutes: 3.5 54.0 42	2.5 -		
1-1/2 hour: 2.9 53.7 43	3.4		
% H ₂ O Used:O % Reforming	; to CO2: _C	% to	0:0
Moles NH ₃ Formed/hr:047		lculated complete	
Moles Dimethylamine Formed/hr:	.054 ma	ss balance	
g atom Carbon Deposition/hr:	.022		
•			
Moles H ₂ per 100 g UDMH input: O	.03		
Moles H ₂ per 100 g UDMH input: 0 Moles H ₂ per 100 g total input: 0	_		

Catalyst G-47 Iron Oxide	remperature,	400	
Pressure, psig50	Gas Volume Rate	e, 1/hr <u>3</u> .	10
Moles Gas Produced/Hr 0.126	% UDMH Used	87.6	
	UDMH H2C	<u>To</u>	tal
Feed Composition, mole-%	71.4 88	.6 10	00
Feed Composition, g/hr	5.96 13	.90	19.86
Feed Composition, mole/hr	0.099 0	.772	0.871
Total Output Composition, mole-%			•
N ₂ H ₄ _ NH ₃ _ 6.1 Dim			
N ₂ 3.8 CH ₄ 6.3 CO C	0.2 CO ₂ 0.	3	
Ethane 0.1 Other			
(not including UDMH,	-		Ethane
(not including UDMH,	H ₂ O, N ₂ H ₄ , NH ₃ O	<u>CO</u> 2	Ethane
(not including UDMH, <u>H2</u> <u>N2</u> <u>Q</u> 45 minutes: <u>13.4</u> <u>31.4</u>	H ₂ O, N ₂ H ₄ , NH ₃ or CH ₄ CO 2.1	<u>CO</u> 2	Ethane 1.0 1.0
(not including UDMH, <u>H2</u> <u>N2</u> <u>Q</u> 45 minutes: <u>13.4</u> <u>31.4</u>	H ₂ O, N ₂ H ₄ , NH ₃ or CH ₄ CO 47.5 2.1 48.9 1.9	CO2 1	1.0
(not including UDMH, H ₂ N ₂ 9 45 minutes: 13.4 31.4 1-1/2 hour: 11.9 29.8	H ₂ O, N ₂ H ₄ , NH ₃ of CH ₄ CO 47.5 2.1 48.9 1.9 ng to CO ₂ : 4.1 calcul	CO2 1 4.6 6.5 6.5 5 to CO ated	1.0
(not including UDMH,	H ₂ O, N ₂ H ₄ , NH ₃ or CH ₄ CO 47.5 2.1 48.9 1.9 ng to CO ₂ : 4.1 calcul to com	CO2 1 4.6 6.5 6.5 to CO ated plete	1.0
(not including UDMH, H ₂ N ₂ Q 45 minutes: 13.4 31.4 1-1/2 hour: 11.9 29.8 % H ₂ O Used: 2.5 % Reforming Moles NH ₃ Formed/hr: 0.060 Moles Dimethylamine Formed/hr:	H ₂ O, N ₂ H ₄ , NH ₃ or CH ₄ CO 47.5 2.1 48.9 1.9 ng to CO ₂ : 4.1 calcul to com	CO2 1 4.6 6.5 6.5 to CO ated plete	1.0
(not including UDMH, H ₂ N ₂ Q 45 minutes: 13.4 31.4 1-1/2 hour: 11.9 29.8 % H ₂ O Used: 2.5 % Reforming Moles NH ₃ Formed/hr: 0.060 Moles Dimethylamine Formed/hr:	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	CO2 1 4.6 6.5 6.5 to CO ated plete	1.0
(not including UDMH, H ₂ N ₂ Q 45 minutes: 13.4 31.4 1-1/2 hour: 11.9 29.8 % H ₂ O Used: 2.5 % Reforming Moles NH ₃ Formed/hr: 0.060 Moles Dimethylamine Formed/hr: g atom Carbon Deposition/hr:	$H_{2}O, N_{2}H_{4}, NH_{3} o$ CH_{4} CO 47.5 2.1 48.9 1.9 $CAlculate community and community $	CO2 1 4.6 6.5 6.5 to CO ated plete	1.0

Catalyst G-47 Iron Oxide	Temperature, C 500
Pressure, psig 50	Gas Volume Rate, 1/hr 8.37
Moles Gas Produced/Hr 0.340	% UDMH Used 99.5
	UDMH H2O Total
Feed Composition, mole-%	11.4 88.6 100
Feed Composition, g/hr	6.05 14.13 20.18
Feed Composition, mole/hr	<u>0.101</u> <u>0.785</u> <u>0.88</u> 6
Total Output Composition, mole-%:	UDMH 0 H ₂ O 62.8
N_2H_4 _ NH ₃ 4.4 Dime	thylamine <u>1.7</u> H ₂ <u>9.5</u>
N ₂ 6.1 CH ₄ 10.5 CO 0	.5 CO ₂ 4.0
Ethane 0.4 Other	
(not including UDMH, H	Composition: 20, N ₂ H ₄ , NH ₃ or Amines)
H ₂ N ₂ CH	4 CO CO2 Ethane
45 minutes: 32.9 19.0	33.9 1.4 11.7 1.2
1-1/2 hour: 30.9 19.6	34.0 1.4 12.9 1.2
% H ₂ O Used: <u>11.7</u> % Reforming	to CO2: 21.8 % to CO: 2.5
Moles NH ₃ Formed/hr: 0.049	calculated
Moles Dimethylamine Formed/hr: 0.	to complete mass balance
g atom Carbon Deposition/hr:)
Moles H ₂ per 100 g UDMH input: 1	. 74
Moles H ₂ per 100 g total input: 0.	.52

Catalyst <u>G-47</u>	Temperatur	e, °C <u>300</u>	
Pressure, psig 150	Gas Volume	Rate, 1/hr	0.26
Moles Gas Produced/Hr 0.011	% UDMH Use	d 0.5%	
	<u>UDMH</u>	H ₂ O	Total
Feed Composition, mole-%	11.4	88.6	100
Feed Composition, g/hr	5.91	<u>13.79</u>	19.70
Feed Composition, mole/hr	0.0985	0.766	0.865
Total Output Composition, mole-%:	UDMH	H ₂ O	·
N ₂ H ₄ NH ₃ Dime	ethylamine _		Н2
N ₂ CH ₄ CO	CO ₂		
Ethane Other			
Output Gas (not including UDMH, F <u>H2</u> <u>N2</u> <u>C</u> F		H ₃ or Amine	
45 minutes:			
1-1/2 hour:			
<pre>% H₂O Used:</pre>		% to alculated complete ass balance	CO:
Hydrogen efficiency =			

Not enough gas produced to analyze

Catalyst G-47 Iron oxide	Tempera	ture, °C	400
Pressure, psig 150	Gas Volu	ume Rate,	1/hr <u>3.30</u>
Moles Gas Produced/Hr 0.134	% UDMH t	Jsed <u>77</u>	.7
	<u>UDMH</u>	<u>H₂O</u>	Total
Feed Composition, mole-%	11.4	88.6	100
Feed Composition, g/hr	5.63	_13.12	18.75
Feed Composition, mole/hr	0.094	0.72	9 0.823
Total Output Composition, mole-%	: UDMH _2	2.2	H ₂ 0 77.0
N ₂ H ₄ _ NH ₃ 3.5 Dim	ethylamine	e <u>2.7</u>	H ₂ ().9
N ₂ 4.7 CH ₄ 8.1 CO O	.2 (0.4	_
Ethane 0.2 Other	 		
Output Gas (not including UDMH, 1	H ₂ O, N ₂ H ₄	, NH ₃ or A	
(not including UDMH, i	H ₂ O, N ₂ H ₄	, NH ₃ or A	CO2 Ethane
(not including UDMH, 1 H2 N2 C	H ₂ O, N ₂ H ₄ H ₄ 9	, NH ₃ or A	CO2 Ethane
(not including UDMH, 1 H2 N2 C	H ₂ O, N ₂ H ₄ H ₄ 9 55.9 56.2	NH ₃ or A	202 Ethane 3.4 1.3 2.9 1.2
(not including UDMH, 1 H ₂ N ₂ C: 45 minutes: 6.6 31.3 1-1/2 hour: 6.5 32.8	H ₂ O, N ₂ H ₄ H ₄ 9 55.9 56.2 g to CO ₂ :	NH ₃ or A CO 1.5 1.3 2.1 calculate	202 Ethane 3.4 1.3 2.9 1.4 % to CO: 1.1
(not including UDMH, 1997) H2 N2 C: 45 minutes: 6.6 31.3 1-1/2 hour: 6.5 32.8 1-1/2 hour: 6.5 45 Reforming	H ₂ O, N ₂ H ₄ H ₄ 9 55.9 56.2 g to CO ₂ :	NH ₃ or A CO 1.5 1.3 2.1	202 Ethane 3.4 1.3 2.9 1.6 % to CO: 1.1 ed
(not including UDMH, 142 N2 C) 45 minutes: 6.6 31.3 1-1/2 hour: 6.5 32.8 % H2O Used: 1.4 % Reforming Moles NH3 Formed/hr: 0.032 Moles Dimethylamine Formed/hr:	H ₂ O, N ₂ H ₄ H ₄ 9 55.9 56.2 g to CO ₂ :	NH ₃ or A CO 1.5 1.3 2.1 calculate to comple	202 Ethane 3.4 1.3 2.9 1.6 % to CO: 1.1 ed
(not including UDMH, H ₂ N ₂ C: 45 minutes: 6.6 31.3 1-1/2 hour: 6.5 32.8 % H ₂ O Used: 1.4 % Reforming Moles NH ₃ Formed/hr: 0.032 Moles Dimethylamine Formed/hr: g atom Carbon Deposition/hr:	H ₂ O, N ₂ H ₄ , H ₄ 9 55.9 56.2 g to CO ₂ :	NH ₃ or A CO 1.5 1.3 2.1 calculate to comple	202 Ethane 3.4 1.3 2.9 1.6 % to CO: 1.1 ed
(not including UDMH, H ₂ N ₂ C: 45 minutes: 6.6 31.3 1-1/2 hour: 6.5 32.8 % H ₂ O Used: 1.4 % Reforming Moles NH ₃ Formed/hr: 0.032 Moles Dimethylamine Formed/hr: g atom Carbon Deposition/hr:	H ₂ O, N ₂ H ₄ H ₄ 55.9 56.2 g to CO ₂ : 0.006 0.15	NH ₃ or A CO 1.5 1.3 2.1 calculate to comple	202 Ethane 3.4 1.3 2.9 1.6 % to CO: 1.1 ed

Catalyst <u>G-47</u>	Temperature, C	500
Pressure, psig 150	Gas Volume Rate	, 1/hr <u>7.71</u>
Moles Gas Produced/Hr 0.313	% UDMH Used	98.9
	UDMH H2O	Total
Feed Composition, mole-%	11.4 88.4	5100
Feed Composition, g/hr	5.9113.	79 19.70
Feed Composition, mole/hr	0.09850.	7660.865
Total Output Composition, mole-%:	: UDMH 0.1	H ₂ O <u>64.6</u>
N ₂ H ₄ NH ₃ Dime	ethylamine <u>0.7</u>	H ₂ 8.0
N ₂ 5.9 CH ₄ 11.6 CO 0	.4 CO ₂ 3.0	
Ethane 0.2 Other	·	·
(not including UDMH, I		
(not including UDMH, I	H ₂ O, N ₂ H ₄ , NH ₃ or	CO ₂ Ethane
(not including UDMH, I	H ₂ O, N ₂ H ₄ , NH ₃ or H ₄ CO 39.0 0.9	CO2 Ethane 11.6 0.9
(not including UDMH, I <u>H2</u> <u>N2</u> <u>C1</u> 45 minutes: <u>27.3</u> <u>20.3</u>	H ₂ O, N ₂ H ₄ , NH ₃ or H ₄ CO 39.0 0.9 39.8 1.2	CO2 Ethane 11.6 0.9 10.4 0.8
(not including UDMH, I H ₂ N ₂ CI 45 minutes: 27.3 20.3 1-1/2 hour: 27.4 20.4 % H ₂ O Used: 9.0 % Reforming	H ₂ O, N ₂ H ₄ , NH ₃ or H ₄ CO 39.0 0.9 39.8 1.2 g to CO ₂ : 16.5	CO2 Ethane 11.6 0.9 10.4 0.8 % to CO: 1.9
(not including UDMH, I H ₂ N ₂ CI 45 minutes: 27.3 20.3 1-1/2 hour: 27.4 20.4 % H ₂ O Used: 9.0 % Reforming	H ₂ O, N ₂ H ₄ , NH ₃ or H ₄ CO 39.0 0.9 39.8 1.2 g to CO ₂ : 16.5	CO2 Ethane 11.6 0.9 10.4 0.8 % to CO: 1.9
(not including UDMH, In H2 N2 CI 45 minutes: 27.3 20.3 1-1/2 hour: 27.4 20.4 20.4 Moles NH3 Formed/hr: 0.059 Moles Dimethylamine Formed/hr: 0	H ₂ O, N ₂ H ₄ , NH ₃ or H ₄ CO 39.0 0.9 39.8 1.2 g to CO ₂ : 16.5	CO2 Ethane 11.6 0.9 10.4 0.8 % to CO: 1.9
(not including UDMH, In H2 N2 CI 45 minutes: 27.3 20.3 1-1/2 hour: 27.4 20.4 20.4 Moles NH3 Formed/hr: 0.059 Moles Dimethylamine Formed/hr: 0	H ₂ O, N ₂ H ₄ , NH ₃ or H ₄ CO 39.0 0.9 39.8 1.2 g to CO ₂ : 16.5 calcula to comp mass band.	CO2 Ethane 11.6 0.9 10.4 0.8 % to CO: 1.9
(not including UDMH, In H2 N2 CI 45 minutes: 27.3 20.3 1-1/2 hour: 27.4 20.4 20.4 20.4 20.4 20.4 20.4 20.4 20	H ₂ O, N ₂ H ₄ , NH ₃ or H ₄ CO 39.0 0.9 1.2 g to CO ₂ : 16.5 calcula to comp mass ba 0.013 .46	CO2 Ethane 11.6 0.9 10.4 0.8 % to CO: 1.9

APPENDIX IIB

CatalystG	- 56B		Tempera	ture, °C_	300		
Pressure, ps	ig <u>25</u>		Gas Vol	ume Rate,	1/hr	2.677	-
Moles Gas Pro	oduced/Hr _	0.109		Used 9 ¹ Used <u>10</u> 0 <u>H</u> 20		<u>N2H4</u>	Total
Feed Composi	tion, mole-	-%	9.4	73.0		17.6	100
Feed Composi	tion, g/hr		4.75	11.0	16_	4.75	20.56
Feed Composi	tion, mole,	/hr	0.0792	0.6141	<u>L</u> 2	1484	0.8420
Total Output						57.8 H _{2.2.9}	
N ₂ 6.1				•		·2 _2.9	
Ethane Trace			· · · · · · · · · · · · · · · · · · ·	002			
(:	not includ: H ₂	ing UDMH,	-		Amines	s) Ethane	
45 minutes:	30.7			5 . 6	7.4		
1-1/2 hour:				5.3	4.0	0.1	
one % H ₂ O Used:	27.1	57.8			5.7	0.1	
	_3.0 /	o merorum	18 00 005.	3.9	% to	co: <u>3.8</u>	-
Moles NH ₃ Fo			ng 00 002.	calculat	ted	co: <u>3.8</u>	•
Moles NH ₃ Fo	rmed/hr: O	.2731	7		ted lete	co: <u>3.8</u>	-
	rmed/hr: Q	.2731 rmed/hr: (7	calculate to comp.	ted lete	co: <u>3.8</u>	-
Moles Dimeth	rmed/hr: Q ylamine For	.2731 rmed/hr: <u>(</u>	0.0480	calculate to comp.	ted lete	co: <u>3.8</u>	-
Moles Dimeth	rmed/hr: O ylamine Fo: n Deposition	.2731 rmed/hr: (on/hr: (ozine inpu	0.0480 0.0376 at: 0.31	calculate to comp.	ted lete	co: <u>3.8</u>	

Catalyst <u>G-56B</u>	Temperatur	e, °C <u>400</u>		
Pressure, psig 25	Gas Volume	Rate, 1/hr	7.221	
Moles Gas Produced/Hr 0.2	94 % UDMH Use % N ₂ H ₄ Used <u>UDMH</u>		N ₂ H ₄	Total
Feed Composition, mole-%	9.4	73.0	17.6	100
Feed Composition, g/hr	4.75	11.06	4.75	20.56
Feed Composition, mole/hr	0.0792	0.6144	0.1484	0.8420
Total Output Composition, m	nole-%: UDMH <u>O</u>	H ₂ O _	45.2	
N ₂ H ₄ 0 NH ₃ 28.1	Dimethylamine <u>C</u>).7	H ₂ <u>11.7</u>	
N ₂ 5.7 CH ₄ 3.8	CO _ O _ CO2	4.8		
Ethane O Other	<u> </u>			
	nt Gas Composition JDMH, H ₂ O, N ₂ H ₄ , N		3)	
H ₂ N ₂	CH ₄ CO	COz	Ethane /	
45 minutes: <u>44.6</u> <u>22.0</u>	<u> 13.8 r</u>	none 19.6	none	
1-1/2 hour: 45.3 22.0 22.0	0 15.4 n	none 17.4 none 18.5	none none	
% H ₂ O Used: <u>16.9</u> % Ref	orming to CO2: 34	% to	CO: 0	
Moles NH ₃ Formed/hr: 0.3178		lculated		
Moles Dimethylamine Formed/	'hr: <u>.0075</u>	complete ss balance		
g atom Carbon Deposition/hr	·: 0.0456			
Moles H ₂ per 100 g aerozine	input: <u>1.39</u>			
Moles H ₂ per 100 g total in	put: 0.64			
Hydrogen efficiency = 14.2				

Catalyst <u>G-56B</u>	Temperatu	re, °C <u>/300</u>		
Pressure, psig50	Gas Volum	ne Rate, 1/hr	1.832	
Moles Gas Produced/Hr 0.074	% UDMH Us			
	% N₂H₄ Us <u>UDMH</u>	H ₂ O	N_2H_4	Total
Feed Composition, mole-%	9.4	73.0	17.6	100
Feed Composition, g/hr	<u>4.6</u> 9	10.92	4.69	20.3
Feed Composition, mole/hr	0.0781	0.607	0.1464	0.831
Total Output Composition, mole-%	: UDMH 2	7 H ₂ O	58.8	
N ₂ H ₄ 0.4 NH ₃ 30.9 Dim	ethylamine	0	H ₂ <u>0.3</u>	
N ₂ 6.1 CH ₄ 0.8 CO	<u>o</u> cc	2 0		
Ethane 0 Other	·			
Output Gas (not including UDMH,	Composition N ₂ N ₄ ,		s)	
<u>H2</u> <u>N2</u> <u>C</u>	H ₄ CC	<u>CO2</u>	<u>Ethane</u>	
45 minutes: <u>5.3</u> <u>84.7</u>	10.0 n	one none	none	
1-1/2 hour: 4.0 84.8	10.9	0.3 none	none	
% H ₂ O Used: O.1 % Reformin	g to CO2: _	0 % to	CO: <u>O.1</u>	
Moles NH ₃ Formed/hr: 0.319		alculated		
Moles Dimethylamine Formed/hr: _		o complete nass balance		
g atom Carbon Deposition/hr: Q	_089)			
Moles H2 per 100 g aerozine inpu	t: <u>0.032</u>			
Moles H2 per 100 g total input:0	.015			
Hydrogen efficiency = 0.3%				

Catalyst <u>G56B</u>	Tempera	ture, °C <u>+4</u> C	00	
Pressure, psig 50	Gas Vol	ume Rate, 1/	hr <u>6.855</u>	,
Moles Gas Produced/Hr _0.279	% UDMH % N2H4 UDMH	Jsed <u>98.3</u> Used <u>100</u> <u>H₂O</u>	NaH4	Total
Feed Composition, mole-%	9.4	73.0	_17.6	100
Feed Composition, g/hr	4.60	10.72	4_60	19.92
Feed Composition, mole/hr	0.0767	0.5955	0.1438	0.8160
Total Output Composition, mole	e-%: UDMH <u>o</u>	.l H ₂	0 43.5	
N ₂ H ₄ O NH ₃ 30.4	Dimethylamin	0.5	H ₂ <u>12.5</u>	
N ₂ 4.7 CH ₄ 2.6 CO	0.4	02 5.3		
Ethane Trace Other				
Output C (not including UDMF	as Composit H, H ₂ O, N ₂ H ₄		nes)	
$\underline{\text{H}_2}$ $\underline{\text{N}_2}$	CH ₄	00 CO ₂	Ethane	
45 minutes: <u>49.6</u> <u>23.6</u>	8.8	1.6 16	none_	
1-1/2 hour: 49.0 18.2	10.2	1.6 20	0.9 0.1	
% H ₂ O Used: <u>20.3</u> % Reform	ning to CO2:	38.0 %	to CO: 2.9	-
Moles NH ₃ Formed/hr: 0.3318	7	calculated		
Moles Dimethylamine Formed/hr:	0.0050 }	to complete mass balance		
g atom Carbon Deposition/hr:	0.0490			
Moles H2 per 100 g aerozine in	nput: 1.49			
Moles H ₂ per 100 g total input	:0.69			
Hydrogen efficiency =15.2				

Cacalyst <u>G-50B</u>	Tempe	rature, c_	500	_
Pressure, psig50	Gas V	olume Rate,	1/hr <u>12.02</u>	
Moles Gas Produced/Hr 0.489		H Used 10 4 Used 10 H ₂ O		Tota
Feed Composition, mole-%	9.4	73.0	17.6	100
Feed Composition, g/hr	4.60	10.72	4.60	_19
Feed Composition, mole/hr	0.0767	0.5955	0.1438	0.8
Total Output Composition, mol	e-%: UDMH	0	H ₂ O <u>42.4</u>	
N ₂ H ₄ 0 NH ₃ 15.7	Dimethylam	ine <u>0</u>	H ₂ <u>17.6</u>	
N ₂ 11.0 CH ₄ 8.9 CO	0.1	CO ₂ 4.	3	
Ethane 0 Other 0				
(not including UDM) <u>He</u> <u>Ne</u>	<u>CH4</u>		CO ₂ Ethane	
45 minutes: 40.8 25.0	20.3	none	13.9 none	_
1-1/2 hour: 43.2 27.6 One 42.0 26.3	22.3		6.6 none none	
% H ₂ O Used: <u>16.9</u> % Reform	ming to CO	2: <u>32.5</u>	% to CO: 0.7	
Moles NH ₃ Formed/hr: 0.184	-	calculate		
Moles Dimethylamine Formed/hr	: _0	to comple		
g atom Carbon Deposition/hr:)		
Moles H2 per 100 g aerozine i	nput: 2.23	•		
Moles H ₂ per 100 g total inpu	t: <u>1.03</u>			
Hydrogen efficiency = 22.8%				

Catalyst Gir	dler T-114	4	Tempera	ture, °C	400	and the second s	
Pressure, ps	ig <u>50</u>		Gas Vol	ume Rate	, 1/hr	6.923	
Moles Gas Pro	oduced/Hr	0.2814	% UDMH % N ₂ H ₄ <u>UDMH</u>	Used 9 Used 10 H ₂ 0	0	N ₂ H ₄	<u>Total</u>
Feed Composi	tion, mole	-%	9.4	73.0		17.6	100
Feed Composi	tion, g/hr	,	4.576	10.6	<u>58</u> _	4.576	19.81
Feed Composi	tion, mole	/hr	0.0763	0.59	<u> 21</u>	0.1430	0.8114
Total Output	Compositi	on, mole-	%: UDMH _	0.4	H ₂ O _	45.6	
N ₂ H ₄ O	NH ₃ 25	<u>.4</u> Di	methylamin	ne <u>2.4</u>	_ н	2 <u>13.7</u>	
N ₂ 6.0	CH ₄ 1.4	_ co _	0.6	CO ₂ <u>4.3</u>			
Ethane 0	Othe	r					
(not includ	ling UDMH,	as Composit	4, NH ₃ or			
1	<u>H2</u>	<u>N2</u>	CH ₄	<u>CO</u>	CO2	Ethane	
45 minutes:							•
avg - 2 hr:	52.4	23.1	5.5	2.4	<u>16.6</u>	0	-
% H ₂ O Used:	16.9	% Reformi	ing to CO2	30.6	% to	CO: 4.4	-
Moles NH3 Fo	rmed/hr: g	2740)	calcula to comp			
Moles Dimeth	ylamine Fo	rmed/hr:	0.0264	mass ba			
g atom Carbo	n Depositi	lon/hr:	0.0227	·			
Moles H ₂ per	· 100 g aei	rozine in	put: <u>1.61</u>				
Moles H2 per	100 g tot	al input	0.74				
Hydrogen eff	iciency -	16 296					

Catalyst <u>Girdler T-1144</u> Ter	mperature, °C <u>500</u>
Pressure, psig 50 Ga	S Volume Rate, 1/hr <u>13.175</u>
· · · · · · · · · · · · · · · · · · ·	UDMH Used <u>98.8</u> N ₂ H ₄ Used <u>100</u> MH <u>H₂O N₂H₄ Total</u>
	9.4 73.0 17.6 100
Feed Composition, g/hr 4.5	76 <u>10.658</u> <u>4.576</u> <u>19.8</u>
Feed Composition, mole/hr 0.0	763 <u>0.5921 0.1430 0.8114</u>
Total Output Composition, mole-%: U.	DMH 0.1 H ₂ O 45.9
N ₂ H ₄ O NH ₃ 8.1 Dimethy	lamine 1.0 H ₂ 20.9
N ₂ 13.7 CH ₄ 8.5 CO 0.2	CO ₂ <u>1.7</u>
Ethane 0 Other 0	
Output Gas Com (not including UDMH, H_2O , H_2 N_2 CH_4	
(not including UDMH, H ₂ O,	N ₂ H ₄ , NH ₃ or Amines)
(not including UDMH, H_2O , H_2 N_2 CH_4 45 minutes:	N ₂ H ₄ , NH ₃ or Amines)
(not including UDMH, H_2O , H_2 N_2 CH_4 45 minutes:	N ₂ H ₄ , NH ₃ or Amines) CO CO ₂ Ethane
(not including UDMH, H ₂ O, H ₂ N ₂ CH ₄ 45 minutes: avg - 2 hr: 46.1 30.6 19.0	N ₂ H ₄ , NH ₃ or Amines) <u>CO</u> <u>CO₂ Ethane</u> <u>O.4</u> <u>3.9</u> <u>O</u> CO ₂ : <u>13.4</u> % to CO: <u>1.4</u> Calculated
(not including UDMH, H ₂ O, H ₂ N ₂ CH ₄ 45 minutes: avg - 2 hr: 46.1 30.6 19.0 % H ₂ O Used: 7.4 % Reforming to	N ₂ H ₄ , NH ₃ or Amines) CO CO ₂ Ethane O.4 3.9 O CO ₂ : 13.4 % to CO: 1.4 Calculated to complete
(not including UDMH, H ₂ O, H ₂ N ₂ CH ₄ 45 minutes: avg - 2 hr: 46.1 30.6 19.0 % H ₂ O Used: 7.4 % Reforming to Moles NH ₃ Formed/hr: 0.0968	N_2H_4 , NH_3 or Amines) $\begin{array}{cccccccccccccccccccccccccccccccccccc$
(not including UDMH, H ₂ O, H ₂ N ₂ CH ₄ 45 minutes: avg - 2 hr: 46.1 30.6 19.0 % H ₂ O Used: 7.4 % Reforming to Moles NH ₃ Formed/hr: 0.0968 Moles Dimethylamine Formed/hr: 0.01	N ₂ H ₄ , NH ₃ or Amines) CO CO ₂ Ethane O.4 3.9 CO ₂ : 13.4 % to CO: 1.4 calculated to complete mass balance 17
(not including UDMH, H ₂ O, H ₂ N ₂ CH ₄ 45 minutes: avg - 2 hr: 46.1 30.6 19.0 % H ₂ O Used: 7.4 % Reforming to Moles NH ₃ Formed/hr: 0.0968 Moles Dimethylamine Formed/hr: 0.01 g atom Carbon Deposition/hr: 0.00	N ₂ H ₄ , NH ₃ or Amines) CO CO ₂ Ethane O.4 3.9 CO ₂ : 13.4 % to CO: 1.4 calculated to complete mass balance 17

APPENDIX III

N2O4 CATALYST DATA

APPENDIX III

CATALYST DATA

Type Number: G-43

Manufacturer: Girdler

Classification: Reduction of Nitrogen Oxides

Temperature Range: Not specified

Active Material: Platinum Promoted

Substrate or Support:

Size: 1/4"x 1/4"

Shape: Tablets

Additional Information: Highly active, physically rugged. Presently

in commercial use in petrochemical industry.

Type Number: T-1144 Manufacturer: Girdler

Classification: Experimental

Temperature Range:

Active Material: Nickel Oxide 50% Nickel

Substrate or Support: Refractory Oxide

Size: 3/16"x 1/8"

Shape: Tablets

Type Number: T-310 Manufacturer: Girdler

Classification: Experimental

Temperature Range: Not specified

Active Material: Nickel Oxide 10-12% nickel

Substrate or Support: Activated Alumina

Size: 3/16" x 1/8" Shape: Tablets

Additional Information:

Type Number: T-366 Manufacturer: Girdler

Classification: Experimental

Temperature Range: Not Specified

Active Material: Copper 50%

Substrate or Support: Kieselguhr

Size: Powder Shape:

Additional Information: Stabilized to be non-Pyrophoric.

Type Number: T-317 Manufacturer: Girdler

Classification: Experimental

Temperature Range: Not Specified

Active Material: Copper Oxide 10-12%

Substrate or Support: Activated Alumina

Size: 3/16" x 1/8" Shape: Tablets

Additional Information:

Type Number: T-315 Manufacturer: Girdler

Classification: Experimental

Temperature Range: Not Specified

Active Material: Copper Oxide (3 to 4%)

Substrate or Support: Activated Alumina

Size: 3/16" x 1/8" Shape: Tablets

Additional Information: Active material concentrated in thin

outer layer.

Type Number: T-313 Manufacturer: Girdler

Classification: Experimental

Temperature Range: Not Specified

Active Material: Nickel 3-4%, Copper 0.2%

Substrate or Support: Activated Alumina

Size: 3/16" x 1/8" Shape: Tablets

Additional Information: Active materials concentrated in thin

outer layer.

Type Number: G-31 Manufacturer: Girdler

Classification: Steam Reforming

Temperature Range: 950°-1150°C

Active Material: Nickel

Substrate or Support: Alumina

Size: 5/8" to 1-1/2 Shape: Lump

Additional Information: High activity may have to be crushed for trials.

Type Number: ICI-35-4 Manufacturer: Girdler

Classification: Ammonia Synthesis

Temperature Range: Not Specified

Active Material: Triple Promoted Iron Oxide

Substrate or Support:

Size: 2-8 mm Shape: Granules

Additional Information: Long life - High or low temperature operation -

Poisoned by sulfur or oxygen compounds.

Type Number: G-56 Manufacturer: Girdler

Classification: Ammonia Dissociation and Steam Reforming

Temperature Range: Not Specified

Active Material: Nickel

Substrate or Support:

Size: 5/8 x 3/8 Shape: Raschig Rings

Type Number:

Manufacturer: Engelhard Industries

Classification:

Ammonia Dissociation Type

Temperature Range:

N/S

Active Material:

Platinum 90%, Rhodium 10%

Substrate or Support: Wire

Size:

Shape: 80 mesh gauze

Additional Information:

Type Number: H-BPS-55 Manufacturer: Norton Company

Classification:

Acid

Temperature Range:

100-650°C

Active Material:

Synthetic Zeolites

Substrate or Support:

Size: 1/16

Shape:

Pellets

Type Number: G-49A

Manufacturer:

Girdler

Classification:

Hydrogenation

Temperature Range:

N/S

Active Material:

Reduced Nickel

Substrate or Support: Kieselguhr

Size: $3/16 \times 1/8$

Shape:

Tablets

Additional Information:

Type Number:

Manufacturer:

Classification:

Temperature Range:

Active Material:

Substrate or Support:

Size:

Shape:

Type Number: 73578-B Manufacturer: MRC

Classification: Proprietary

Temperature Range:

Active Material: Same as 77604-1

Substrate or Support: On special substrate

Size: Powder Shape:

Additional Information:

Type Number: T-325 Manufacturer: Girdler

Classification: Experimental

Temperature Range:

Active Material:

Substrate or Support: No support

Size: 1/8 Shape: Tablets

Additional Information:

Like G-49B only in tablet form.

Type Number:

Manufacturer:

MRC

Classification:

Temperature Range:

Active Material:

Titanium

Substrate or Support:

Size:

Powder

Shape:

Additional Information:

Heat treated in air for 2 minutes at 700°C.

Type Number:

73578-A

Manufacturer: MRC

Classification:

Proprietary

Temperature Range:

Active Material:

Same as 77604-1

Substrate or Support: Shawinigan black

Size: powder

Shape:

Type Number: 77604-2

Manufacturer:

MRC

Classification:

Proprietary

Temperature Range:

Active Material:

Substrate or Support:

Size:

Powder

Shape:

Additional Information:

Type Number:

Manufacturer: MRC

Classification:

Temperature Range:

Active Material:

Thorium

Substrate or Support:

Size:

Powder

Shape:

Additional Information:

Heat treated in argon for 2 hours at 700°C.

Type Number: 77604-5

Manufacturer:

MRC

Classification:

Proprietary

Temperature Range:

Active Material:

Substrate or Support:

Size:

Powder

Shape:

Additional Information:

Type Number: 77604-1

Manufacturer: MRC

Classification:

Proprietary

Temperature Range:

Active Material:

Substrate or Support:

Size: Powder

Shape:

Type Number:

Manufacturer:

Engelhard

Classification:

Temperature Range:

Active Material:

Rhodium metal

Substrate or Support: none

Size: Powder

Shape:

Additional Information:

Type Number: 77604-4 Manufacturer: MRC

Classification:

Proprietary

Temperature Range:

Active Material:

Substrate or Support:

Size: Powder

Shape:

Type Number: N1-4305E Manufacturer: Harshaw

Classification: Acidic Hydrogenation and Desulfurization

Temperature Range:

Active Material: Nickel-Tungsten

Substrate or Support: Alumina

Size: 1/8" Shape:

Additional Information:

Type Number: Ag-0101E Manufacturer: Harshaw

Classification: Oxidation of methanol

Temperature Range: N/S

Active Material: 3.5%-4.0% Silver

Substrate or Support: Alumina

Size: 1/8" Shape:

Type Number: Cu-0402T Manufacturer: Harshaw

Classification: Hydrogenation

Temperature Range: N/S

Active Material: Copper Chromite

Substrate or Support: Alumina

Size: 1/8" Shape: Tablets

Additional Information:

Type Number: Cu-2501G Manufacturer: Harshaw

Classification: Dehydrogenation

Temperature Range: N/S

Active Material: Copper Carbonate

Substrate or Support: Silica

Size: 1/8" Shape:

Type Number: Cu-0307T Manufacturer: Harshaw

Classification: Oxygen or Hydrogen Removal

Temperature Range: N/S

Active Material: CuO 99%

Substrate or Support: None

Size: 1/8" Shape: Tablets

Additional Information:

Type Number: Cu-0905T Manufacturer: Harshaw

Classification: Chlorination

Temperature Range: N/S

Active Material: CuCla

Substrate or Support: Alumina

Size: 1/8" Shape: Pellets

Type Number: MRC-Ag Manufacturer: Monsanto

Classification: Proprietary

Temperature Range: 300°-400°C

Active Material: 0.2-0.4% Silver

Substrate or Support: Alumina

Size: 1/8" Shape: Chips

Additional Information: Borohydride Reduced

Type Number: MRC-Ag-HG Manufacturer: Monsanto

Classification: Proprietary

Temperature Range: 300°-400°C

Active Material: Silver and Mercury 0.2-0.4%

Substrate or Support: Alumina

Size: 1/8" Shape: Chips

Additional Information: Borohydride Reduced

Type Number: T-309

Manufacturer: Girdler

Classification: Experimental

Temperature Range:

N/S

Active Material: Platinum Oxide

Substrate or Support: Alumina

Size: $3/16 \times 1/8$

Shape: Tablets

Additional Information: Platinum Oxide Concentrated in thin

outer layers

Type Number: T-366

Manufacturer: Girdler

Classification: Experimental

Temperature Range: N/S

Active Material: Copper 55%

Substrate or Support: Kieselghur

Size:

Powder

Shape:

Additional Information: Stabilized

Type Number: G-49A Manufacturer: Girdler

Classification: Hydrogenation

Temperature Range: N/S

Active Material: Reduced Nickel

Substrate or Support: Kieselguhr

Size: 3/16 x 1/8 Shape: Tablets

Additional Information:

Type Number: G-43 Manufacturer: Girdler

Classification: Reduction of Nitrogen Oxides

Temperature Range: N/S

Active Material: Platinum Promoted

Substrate or Support:

Size: $1/4 \times 1/4$ Shape: Tablets

Additional Information: Highly Active

Type Number: G-47 Manufacturer: Girdler

Classification: Ammonia Dissociation

Temperature Range: 850-980°C

Active Material: Iron Oxide

Substrate or Support:

Size: 1/4" Shape: Spheres

Additional Information: High Space Velocities

Type Number: Manufacturer: Engelhard

Classification:

Temperature Range: N/S

Active Material: 0.5% Palladium

Substrate or Support: Activated Alumina

Size: 1/8 x 1/16 Shape: Cylinders

Type Number:

Manufacturer:

Fisher Scientific

Classification:

Temperature Range: N/S

Active Material:

CaO

Substrate or Support:

Size: 1/4"

Shape: lump

Additional Information:

Type Number:

Manufacturer: Engelhard

Classification:

Temperature Range: N/S

Active Material: 0.5% Rhodium

Substrate or Support: Alumina

Size: 1/8"

Shape:

Pellets

Type Number: MRC-Pt-Hg Manufacturer: Monsanto

Classification: Proprietary

Temperature Range: 200 - 800°C

Active Material: 0.2 - 0.4% Pt-Hg

Substrate or Support: Alumina

Size: 1/8 in. Shape: Chips

Additional Information: Borohydride Reduced

Type Number: Ag-OlOlE Manufacturer: Harshaw

Classification: Methanol Oxidation

Temperature Range: 200 - 800°C

Active Material: Silver

Substrate or Support: Alumina

Size: 1/8 in. Shape: Extruded pellets

Type Number: Cu0402T Manufacturer: Harshaw

Classification: Hydrogenation

Temperature Range: 200 - 800°C

Active Material: Copper Chromite CuO-35%

Cr₂O₃-389

Substrate or Support:

Ba0-10%

Size: 1/8 in.

Shape: Tablets

Additional Information: BaO stabilized

Type Number: Ni-4305E Manufacturer: Harshaw

Classification: Hydrogenation

Temperature Range: 200 - 800°C

Active Material: Nickel Tungsten Sulfides 4.5%N. 9.5%W

Substrate or Support: Alumina

Size: 1/8 in.

Shape: Extruded pellets

Type Number: II-077

Manufacturer: Engelhard

Classification:

Temperature Range: 200 - 800°C

Active Material: 0.5% Pt

Substrate or Support: Alumina

Size: 1/8 in.

Shape: Extruded pellets

Additional Information:

Type Number: Cu2501G Manufacturer: Harshaw

Classification: Dehydrogenation

Temperature Range: 200-800°C

Active Material: Copper Carbonate 6%

Substrate or Support: Silica

Size: 4-10 mesh Shape: chip

Type Number: Cu-0803 Manufacturer: Harshaw

Classification: Oxygen Removal

Temperature Range: 200 - 800°C

Active Material: Copper Oxide

Substrate or Support: Alumina

Size: 1/8 Shape: Tablets

Additional Information:

Type Number:

Manufacturer:

Classification:

Temperature Range:

Active Material:

Substrate or Support:

Size:

Shape:

APPENDIX IV

ULTRAVIOLET SPECTROPHOTOMETRIC DETERMINATION OF NITRITE-NITRATE

This method of quantitative determination of Nitrite-Nitrate in acid solution makes use of the distinct absorption bands in the UV region for these materials.

Absorbance maxima are at 357 m μ for nitrite and at 301 m μ for nitrate. Nitrate does not absorb at 357 m μ ; therefore, no correction for absorption is necessary. However, nitrite does absorb at 301 m μ , and correction is necessary for nitrate analysis.

A Cary Recording Spectrophotometer, Model 14M with matched 1.00-cm quartz cells was used. The solvent used was 2.5M H₃PO₄ diluted from 85% J. T. Baker Reagent-grade phosphoric acid.

Absorption data for NO_2 - and NO_3 -ions were obtained. Beer's law was followed and was used to obtain the following equations:

1)
$$A_{357} = 46.9[NO_2-]$$

2)
$$A_{301} = 3.80[NO_2-] + 7.76[NO_3-]$$

Since cell length is 1.00 cm, no correction is necessary and absorption constants are molar absorptivities.

Utilizing the following formula for solution of N_2O_4 , the quantity of N_2O_4 is easily calculated:

$$N_2O_4 + H_2O \longrightarrow HNO_2 + HNO_3$$

In the presence of air, some or all of the nitrous acid will oxidize to nitric acid

$$2HNO_2 + O_2 \longrightarrow 2HNO_3$$

Therefore, the nitrite-nitrate concentrations will not be equimolar but may be easily corrected as follows to determine N_2O_4 concentration:

$$[N_2O_4] = \frac{[NO_2-] + [NO_3-]}{2}$$

APPENDIX V

CALCULATIONS OF VOLUME N2/A.H. FACTOR FOR AEROZINE-50 ELECTROOXIDATION

The test conditions used (described in section IV, B, 3) correspond to excess fuel conditions: any component of the fuel may be used in any proportion with the unreacted components discarded. There are four reactions which can take place:

oxidizes by a 4 electron process to yield 1 mole of H-1 N2H4 N₂ per mole of N₂H₄ reacted

oxidizes by a 6 electron process to yield 1 mole of U-1 UDMH Na per mole of UDMH reacted

U-2 UDMH oxidizes by a 2 electron process yielding no N2

U-3 UDMH oxidizes by a 4 electron process yielding no N2

The justification for the UDMH reactions is found in ref. 4. No apriori assumptions can be made, any or all of these reactions can take place, any or all may contribute to the Ampere-Hour capacity of the cell. Calculation of capacity and volume factors leads to the following:

Species reacting	Reaction Code	A.H/gm Reacting	ft ³ N ₂ /gm reacting
N2H4	H-1	3.35	24.7×10^{-3}
UDMH	U-1	2.68	13.1 x 10 ⁻³
UDMH	U-2	0.89	0
UDMH	U-3	1.78	0

w = g UDMH reacting by reaction U-1

u = g UDMH reacting by reaction U-2

y = g UDMH reacting by reaction U-3 z = g N₂H₄ reacting by reaction H-1

v = number of 1/1000 ft3 of N2 produced per A.H. The Amperehours produced by any or all of the possible anodic processes is given by:

A.H. = 2.68 w + 3.35 z + 0.89 u + 1.78 y

The volume of N_2 produced at the same time is:

 $ft^3 N_2 = 13.1 \times 10^{-3} \text{ w} + 24.7 \times 10^{-3} \text{ z}$

There are three possible conditions to be analyzed:

- 1. N₂H₄ the only reactive component
- 2. Both UDMH and N2H4 active
- 3. UDMH the only reactive component

Case 1 N2H4 the only reactive component.

In this case w=u=y=0 and A.H. = 3.35 z and ft³ N₂ = 24.7 x 10^{-3} z for l A.H.:

$$z = 1/3.35 = 0.30 g$$

Substituting this value into the volume equation:

$$ft^3 N_2 = 24.7 \times 10^{-3} (0.30) = 7.4 \times 10^{-3}$$
; $V = 7.4$

Now the objective of the remaining analyses is to show that this value of V = 7.4 cannot be obtained with any conditions.

Case 2 Both N2H4 and UDMH active

For V to equal 7.1, the volume of N2 produced in 1 A.H. must equal 7.4 x 10^{-3} ft³

Thus for 1 A.H.

$$7.4 \times 10^{-3} = 13.1 \times 10^{-3} \text{ w} + 24.7 \times 10^{-3} \text{ z}$$

rearranging and combining terms:

$$z = 0.30 - 0.53 w$$

substituting this expression into the A.H. equation:

A.H. =
$$2.68 \text{ w} + 3.35 (0.30-0.53 \text{ w}) + 0.89 \text{ u} + 1.78 \text{ y}$$

rearranging and combining terms:

A.H. =
$$1.0 + 0.90 \text{ w} + 0.89 \text{ u} + 1.78 \text{ y}$$

Now the assumption behind this equation was that 1 A.H. produced 7.4 x 10^{-3} ft³ of N_2 . The only case in which this is satisfied is for w=u=y=0, i.e., the UDMH does not participate in the reaction in any manner at all. Thus if N_2H_4 is active at all, the maximum V is 7.4 and this occurs when N_2H_4 is the only active species. The participation of UDMH in the reaction in any mode will decrease V.

Case 3 UDMH the only reactive component

In this case N2H4 does not participate in the reaction at all

and the two general equations are:

A.H. =
$$2.68 \text{ w} + 0.89 \text{ u} + 1.78 \text{ y}$$

ft³ N₂ = $13.1 \times 10^{-3} \text{ w}$

Again for V to equal 7.4, the volume of N_2 produced in 1 A.H. must equal 7.4 x 10 3 ft 3 . Thus for 1 A.H.:

$$7.4 \times 10^{-3} = 13.1 \times 10^{-3} \text{ w}$$

$$w = 0.565 g$$

substituting into the ampere-hour expression:

$$A.H. = 2.68 (0.565) + 0.89 u + 1.78 y$$

or A.H. =
$$1.51 + 0.89 u + 1.78 y$$

The assumption again was that 1 amp-hour produced 7.4×10^{-3} ft³ of gas. However, this cannot occur for any actual values of u and y. The maximum V which can occur if N_2H_4 is inactive is at u=y=0 where V = 4.9.

These analyses have indicated that V values below 7.4 indicate participation of UDMH in the electrode reaction, while V=7.4 (within experimental error) indicates N_2H_4 is the only participant.