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ABSTRACT 

This t h e s i s   p r e s e n t s  a new computational  technique  for  constructing 

Lyapunov func t ions   for   es t imat ing   the  domain of   asymptot ic   s tab i l i ty  of 

non-linear  control  systems. A machine  program ass igns   f i gu res  of merit 

(based on t h e   s i z e  of the  s tabi l i ty-boundary estimates) t o   t h e  members 

of a set of Lyapunov func t ions  and then   searches   for   the  one  which 

maximizes t h i s  measure. The method is  app l i cab le   t o  a wide v a r i e t y  of 

non- l inear i t ies   bu t  it i s  p r i n c i p a l l y   a p p l i e d   i n   t h i s   t h e s i s   t o   r e l a y -  

con t ro l  systems,  which are no t   t r ac t ab le  by other  systematic  techniques 

such as t h e  method of Zubov.  The numer ica l   resu l t s  of a number of 

second-  and th i rd-order  examples are  presented,  including one  example 

with non-linear  plant dynamics  and  one  example with a saturat ion  charac-  

t e r i s t i c   i n   p l a c e  of the re lay .  

The t h e s i s  i s  broadly  divided  into two p a r t s .  The first  p a r t  

contains a discussion  of  the  motions of relay-control  systems and the  

technique   of   inves t iga t ing   the i r   s tab i l i ty  domains with Lyapunov func t ions .  

The second par t   conta ins  a discussion of e x i s t i n g  methods of generating 

Lyapunov func t ions  and a desc r ip t ion   o f   t he  new method, along with the 

examples. 

The method of constructing  lgapunov  functions  demonstrates marked 

advantages i n   t h a t  it is  not l imited t o  second-order  systems, it i s  not 

r e s t r i c t e d   t o  smooth o r  even  continuous  non-linearities,  and it e f fec -  

t ive ly   u t i l i zes   the   resources   o f   h igh-speed  machine  computation. 

iii 





ACKN0WL;E"ENTS 

s 

The au thor   expresses   h i s   thanks   to  Dr. I. Fliigge-Lotz f o r   h e r  

guidance and  encouragement  during the  course  of   this   research and t o  

D r .  J. V. Breakwell  and D r .  R. E .  Kalman f o r   t h e i r   h e l p f u l   c r i t i c i s m  

of the  manuscript .  He also  wishes  to   thank D r .  J.  J. Rodden f o r   h i s  

advice and a s s i s t ance ,   pa r t i cu la r ly   w i th  problems  of  numerical compu- 

ta t ion .   This  work was performed in   associat ion  with  research  sponsored 

by the  National  Aeronautics and  Space  Administration  under  Research 

Grant NsG-133-61 and was par t ia l ly   suppor ted  by the  General  Research 

Program  of Lockheed Missiles and  Space Company. Computer time was made 

ava i l ab le  a t  the   S tanford  Computation  Center  by  research  grant No. 

NSF-GP948 of the  National  Science  Foundation. 

V 





TABLE OF CONTENTS 

Page 
I . INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . .  1 

I1 . CLASSIFICATION OF THE MOTIONS  OF  FXLAY-CONTROL  SYSTEMS . . . .  3 

1 . Def in i t i ons  . . . . . . . . . . . . . . . . . . . . . . .  3 
2 . Motions . . . . . . . . . . . . . . . . . . . . . . . . .  6 

I11 . LYAPUNOV'S  DIRECT METHOD . . . . . . . . . . . . . . . . . . .  11 
1 . The Main Theorem . . . . . . . . . . . . . . . . . . . . . . .  11 
2 . Applicat ion of a Spec ia l  Lyapunov Function t o  

Relay-Control  Systems . . . . . . . . . . . . . . . . . .  12 

I V  . METHODS OF GENERATING LYAPUNOV  FUNCTIONS . . . . . . . . . . .  22 

1 . Exis t ing  Methods . . . . . . . . . . . . . . . . . . . . .  22 
2 . A Method Based  on a Steepest-Ascent  Technique . . . . . .  23 
3 . I l l u s t r a t i v e  Examples:  Second-Order  Systems . . . . . . .  27 
4 . Third-Order  Examples . . . . . . . . . . . . . . . . . . .  45 
5 . Non-Linear  Switching . . . . . . . . . . . . . . . . . . .  53 

V . EXTENSIONS OF TKE STEEPEST-ASCENT METHOD . . . . . . . . . . .  56 
1 . Systems  with  Saturation . . . . . . . . . . . . . . . . .  56 
2 . General  Non-Linearities . . . . . . . . . . . . . . . . .  61 

V I  . CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . .  62 

REFERFNCES . . . . . . . . . . . . . . . . . . . . . . . . . .  63 

APPENDICES 

A . Area  Calculation . . . . . . . . . . . . . . . . . . .  65 
B . Volume Calcula t ion  . . . . . . . . . . . . . . . . . .  72 

vii 



Figures  

2 -1 

2 -2 

2-3 

3-1 

3 -2 

3-3 

4 -1 

4 -2 

4 -3 

4 -4 

4 -5 

4 -6 

4 -7 

4 -8 

4 -9 

4 -10 

4 -11 

4 -12 

4 -13 

4 -14 

4 -15 

4-16 

4 -17 

LIST OF FIGURES 

Page 

Block  Diagram of the  Relay-Control  System with 
Linear  Plant and  Switching . . . . . . . . . . . . . . .  
'Trajectory  Direct ions a t  u = 0 f o r  Regular Switching . 
Trajec tory   Di rec t ions  a t  u . 0 f o r   S l i d i n g  . . . . . .  
S t a b i l i t y  Boundary  Determined  from a Lyapunov Function . 
The System  of Example 3.1 . . . . . . . . . . . . . . . .  
S t a b i l i t y  Boundary f o r  Example 3-2 . . . . . . . . . . .  
Flow-Diagram f o r  the Steepest-Ascent Method . . . . . . .  
Stab i l i t y   Boundar i e s   fo r  Example 4-1 . . . . . . . . . .  
The System  of Example 4.2 . . . . . . . . . . . . . . . .  
Stab i l i t y   Boundar i e s   fo r  Example 4-2 . . . . . . . . . .  
Typical  Corner Tangency f o r  Example 4.2 . . . . . . . . .  
Area  Versus Hll f o r  H and H22 of  Figure 4.5 . . .  
Motion  of the  Parameter   Point   in   the H Plane 

12 

1rH22 f o r  Example 4-2 . . . . . . . . . . . . . . . . . . . .  
S t a b i l i t y  Boundaries f o r  Example 4-3 . . . . . . . . . .  
Stabi l i ty   Boundar ies  for Example 4-4 . . . . . . . . . .  
Stab i l i t y   Boundar i e s   fo r  Example 4-5 . . . . . . . . . .  
The System  with  Non-Linear  Plant  of Example .4. 6 .  . . . .  
S t a b i l i t y  Boundaries f o r  Example 4-6 . . . . . . . . . .  
Third-Order  System  of Example 4.7 . . . . . . . . . . . .  
I n i t i a l  and Computed Stab i l i ty   Boundar ies   o f  Example 4-7 

I n i t i a l  and Computed Stabi l i ty   Boundaries   of  Example 4-8 

Third-Order  System  of Example 4.9 . . . . . . . . . . . .  
I n i t i a l  Boundary of Example 4.9 . . . . . . . . . . . . .  

v i  ii 

5 

7 

7 

13 

16 

19 

26 

29 

30 

32 

34 

35 

36 

38 

40 

42 

43 

44 

46 

47 

49 

50 

51 



Figures 

4-18 

4-19 

5-1 

5 -2 

A - 1  

A-2 

B- 1 

LIST OF FIGURES (Continued) 

Final Boundary of  Example 4-9 . . . . . . . .  
Initial and Final Boundaries  of  Example 4.10 . 
The Saturation  Function . . . . . . . . . . .  
Stability  Boundaries for Example 5.1 . . . . .  
Two-Dimensional Coordinate Transformation . . 
Definition  of  the Chord Length, S . . . . .  
Three-Dimensional Coordinate Transformation . 

Page 

. . . . .  52 

. . . . .  54 

. . . . .  57 

. . . . .  60 

. . . . .  66 

. . . . .  66 

. . . . .  66 

ix 

. 



I 

I. INTROD'JCTION 

The d i r e c t  method of Lyapunov i s  a technique  for  investigating.  the 

s t a b i l i t y  of a system of non-l inear ,   ordinary  different ia l   egmtions. .  [l], 
[ 2 ] , [ 3 ] +  In theory  the method i s  qui te  simple and  general; it cons is t s  

essent ia l ly   of   forming a s ign - def in i te   sca la r   func t ion   of   the  system's 

s t a t e  and  examining fo r   de f in i t eness   t he   s ign  of the  t ime rate of change 

of this   funct ion  a long t'ne sys tem's   t ra jec tor ies .  Because  of i t s  elegance, 

t he   d i r ec t  method has  been  the  subject  of much research i n  recent   years .  

It was o r i g i n a l l y  hoped t h a t  it would provide a powerful means of  studying 

the  s tabi l i ty   pr0pert i .e .s   of   non-l inear   control  syst.ems.  Considerable ex- 

perience,  however, has shown tha t   the   appl ica t ion   of   the  method i s  f a r  

from  simple  and  that  success  frequently  depends on t h e   s k i l l  and  persistence 

of  the user. 

An important   pract ical   appl icat ion  of   the  direct  method  which 

c ,urrent ly   suffers   notably from these  defects  i s  the  es t imat ion  of   the domain 

of as;ymptot,i.c s t a b i l i t y ,   t h e   s e t   o f   i n i t i a l  system s t a t e s  which with  in-  

creasing  t ime  re turn  to  a des i red   equi l ibr ium  s ta te   in  a cer ta in   wel l -  

behaved  fashion.  "he  particular  problems  that   arise  are  twofold:  First ,  

the  numerical.  testing  of a  Lyapunov function  to  determine  the  boundary of 

the  es t imate  i s  involved and in   general   not   feasible   to   perform by  hand 

i n  r e a l i s - t i c  examples.  Second,  there i s  no general  method for   sys tea-  

a t ica l ly   cons t ruc t ing  Lyapunov func t ions   t o  improve s t a b i l i t y  domaim 

est imates .  A so1:ution t o   t h e  f irst  problem was recently  found by Rodden 

[ 4 ]  when he  developed  and  used  numerical  techniques  to r3etermine s t a b i l i t y  

boundaries f o r  a wide variety  of  non-linear  control  systems.  Although 

much effort   has  been expended on the  second  problem, no e n t i r e l y  satis- 

factory  solution  has  been  found. 

O f  the  techniques which  have  been  developed for   generat ing Lyapunov 

func t ions ,   the   on ly   d i rec t  and t ruly  systematic  one i s  t h e  method of 

Zubov. 151 However,  one of i ts  chief   defects  i s  t h a t  i t  i s  not  applicable 

to  discontinuous  systems. The sub jec t   o f   t h i s   t hes i s  i s  a new, systematic 

technique  for   obtaining useful estimates of   the  domain of  asymptotic 
-x. 
Nu.mbers in   b racke t s   r e f e r   t o   t he   b ib l iog raphy  a t  the  end of the  

repor t  
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s t ab i l i t y   fo r   r e l ay -con t ro l   sys t ems ,  an  important  class  of  systems whose 

discontinuous  nature  excludes them  from the  treatment  by  Zubov's  method. 

This new t echn ique   u t i l i ze s   a s  a basis  the  numerical   procedure employed 

i n  Reference [41  for  determining  the  boundary  of  the  estimate;  an l'optimum" 

es t ima te   o f   t he   s t ab i l i t y  boundary i s  computed numerically by systemat- 

i ca l ly   s ea rch ing   fo r   t he   bes t  Lyapunov funct ion  within a spec i f ied   c lass ,  

the  functions  being  ranked  according t o  t h e   s i z e   o f   t h e i r   s t a b i l i t y -  

boundary  esti.mates. 

Although this   technique was developed  to overcome special  2roblems 

connected  with  discontinuous  systems, it i s  applicable  to  systems  with 

cont inuous  non-l inear i t ies   as   wel l .  It i s  hoped t h a t  though t h i s   t h e s i s  

w i l l  be principally  devoted  to  the  study  of  relay-control  systems,  the 

examples w i l l  a lso  serve as a kind  of   case-s tudy  for   the  appl icat ion of 

the  technique  to   other   c lasses  of non-linear  con-trol  systems. Some 

possible   extensions  of   the  method w i l l  be   out l ined  and,   in   addi t ion,   the  

extension  of  the method to  systems  with a saturat ion  type  non-l inear i ty  

w i l l  be   d i scussed   i n   de t a i l .  

This   problem  divides   i tself   natural ly   into two b a s i c   p a r t s .  The 

f irst  par t   cons is t s   o f   the  development of the  technique  of  analyzing 

Lyapunov funct ions for relay-control  systems.  In  Chapter I1 the   re lay-  

control  system i s  defined and i t s  spec ia l   mot ions   a re   qua l i ta t ive ly  

described and c l a s s i f i e d .  It i s  then shown in  Chapter I11 how t o  apply 

a spec ia l   c l a s s  o f  Lyapunov functions t o  these  systems;  the  conditions 

for   the   ex is tence   o f   these  Lyapunov funct ions  are   a lso  discussed.  The 

second  and  major par t   of   the   thesis   concerns  the  construct ion of  Lyapunov 

functions  for  producing  useful  stabil i ty  boundary  estimates.   In  Chapter 

I V  ex i s t ing  methods are   discussed and the  new technique  for  improving 

the   es t imate  employing t h e   c l a s s  of  functions  introduced  in  Chapter 111 

i s  presented,  along  with a number o f   i l h s t r a t i v e  second-  and  third-order 

examples.  Extensions t o  systems  with  saturation and o the r   non- l inea r i t i e s  

are  discussed  in  Chapter V. F ina l ly ,   t he   r e su l t s   a r e  summarized i n  

Chapter V I .  

- 2 -  



11. CLASSIF'ICATION  OF ' T H E  MOTIONS OF RELAY-CONTROL SYS"S 

1. DEFINITIONS 

The motions  of  relay-control systems were descr ibed ,a t   l ength  by 

Fliigge-Lotz [61 fo r   l i nea r   swi t ch ing  and  by  Maltz [ T i  and  Alimov [81, 
among others ,   for   wider   c lasses   of   switching  funct ions;  we sha l l   fo l low 

Alimov's more mathematical  treatment  in most of  our  development. 

The re lay-cont ro l  system i s  assumed t o   c o n s i s t   i n   g e n e r a l  of a non- 

l inear  t ime  invariant  plant  (containing  only  continuous  elements  without 

t ime  delay)  controlled  through a s ingle   idea l   re lay ,   the   sys tem so con- 

s t ruc ted   tha t   the   swi tch ing   func t ion  i s  continuous  in  t ime. The input  

i s  assumed t o  be  zero.  This  system  can  be  described  by an autonomous 

vec tor   d i f fe ren t ia l   equa t ion   of   the  form 

where 

- x i s  an n-dimensional   s ta te   vector .  

- F(5)  e(&)  are  con-tinuous  non-linear  vector-valued  functions 
of x - with   cont inuous   par t ia l   der iva tes ;  E(0) = 0 .  

(I(&) i s  a continuous  scalar  function  of x , the  switching 
funct ion,   wi th  a(x)  = 0 defining the switching 
surf   ace.  

- 

sgn(a)  i s  t h e  signum funct ion of u , to   be   p rec ise ly   def ined  
below 

I n   t h e  examples i n   t h i s  work the  switching  function w i l l  be   l i nea r  

so that   (2-1)  becomes 

m 

where - d i s  the  normal  to  the  switching  hyperplane.  Furthermore,  in 

most of t he  examples t h e   p l a n t  w i l l  b e   l i n e a r  and the   con t ro l  magnitude 

* 
Vector   quant i t ies   are   underl ined and  understood as col-ann matrices 

unless   otherwise  indicated.  The transpose i s  denoted  by a superscr ip t  T. 

- 3 -  



a constant,  “ .(X) = - b . The d i f f e r e n t i a l   e q u a t i o n  becomes 

j, = Ax + b sgn  [d  x] T 
” ” 

where A is an n X n matr ix   of   constant   coeff ic ients  and  b is a - 
constant  vector of n dimensions.   In   addi t ion,   the   s ta te   vector  w i l l  

be represented  in   phase  coordinates   (a l though  this  i s  not   requi red) ,   in  

which  xi+l = j, i = 1,2, ..., n - 1 . The di f fe ren t ia l   equa t ion   then  

takes  on the  following  special   form 
i ’  

0 

1 0 

0 

X 1 

X 2 

X n-1 

X n 
” 

” 

0 

0 

+ .  

0 

-1 
L -  

(2-4) 
The system  block  diagram i s  shown in  Figure  2-1.  

The block-diagram  representation of the  system  of  Equation  (2-3) 

cons i s t s  of a transfer  function  with  feedback  around it through a re lay ;  

t h i s   c h a r a c t e r i z a t i o n  may a l s o  be  viewed as an   a l t e rna t ive ,   bas i c  

d e f i n i t i o n  of the  system. A thorough  discussion  of  the  connection 

between the  black-box,  transfer-function model  and t h e   d i f f e r e n t i a l  

equat ion  character izat ion may be  found i n  Reference [l7]. It can  be 

shown tha t   t he   t r ans fe r   func t ion   co r re spond ing   t o  (2-3) i s  given by 

- dT(s I  - A)-1 - b . 
Equation  (2-4) i s  j u s t  one  of  a variety  of  possible  forms th i s  repre-  

sentation  can  take;  the  switching  function  has  been  taken i n  t h i s   c a s e  

t o  be  a l inear  combination of a l l  o f   t he   s t a t e   va r i ab le s .  Another  basic 

form  corresponds t o   i d e n t i f y i n g  CT with a s i n g l e   s t a t e   v a r i a b l e  (x,) , 
with 

- 4 -  
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vl 

I 

d +d  s+...+ ds"' - 
1 2  n + sn+ a n s"" +... + r 1 X I  r 

Fig. 2-1 Block Diagram of  the  Relay-Control System with Linear Plant  and Switching. 



A =  

b =  - 

d2 

d 
. n- 

0 0  0 

0 0  . o  

1 0  

0 

0 

0 0 1 

, and - d =  

-a 1 

-a - n-. 

-a n 

0 

0 

0 

-1 
” 

It is c l e a r  from the   f ac t   t ha t   t he   p reced ing   fo rmulas   con ta in  2n 

a rb i t r a ry   cons t an t s  (a1 ,.*., an ; dl ,..., d ) t ha t   t he   ex i s t ence  

of zeros   in   the  t ransfer   funct ion  between  the  re lay and the  system  output 
n 

has  no bearing  on  the  characterizations  discussed  above. 

The signum funct ion  is  the  mathematical   representation of  an  ideal 

relay,  which w e  def ine as 

, a > O  

sgn(a)  = , a = O  -1rcpr1 

This d e f i n i t i o n  i s  e q u i v a l e n t   t o   t h a t  commonly employed in   t he   r ep resen -  

t a t i o n  of Coulomb f r i c t i o n   ( s e e ,  fo r  example, Andronow and  Chaikin [9] 
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p.  108). It can  be  viewed as the  l imit ing  set   of   points   approached  by 

t h e   s e t  of po in t s  on the  saturat ion  funct ion  def ined  by 

+1 , u > l / k  

sat(a) = f; la/ 5 l / k  (2 -6 )  

u < - l /k  

as k-co and  thus i s  an  intui t ively  proper   choice.  Most importantly, 

th i s   def in i t ion   s impl i f ies   the   descr ip t ion   of   the   mot ions  o f  (2-1) on 

u = 0; a par t icular   advantage i s  t h a t  it crea tes  a wel l -def ined  equi l -  

ibrium at  x = 0 . - 

2. MOTIONS 

Solut ions  of  (2-1) w i l l  c l e a r l y  be well  defined  everywhere  except  in 

the  neighborhood  of u = 0 , where their   behavior  may be  invest igated 

by  deriving  the  equation  of  motion  in  terms  of a . Form t h e   t o t a l  time 

der ivat ive  of  u in   terms of the  switching  surface  gradient,  a row vector  

t o   ob ta in  

For values of s a t i s fy ing   t he   i nequa l i ty  

6 has  the same sign on both  sides  of  the  switching  surface so t h a t  a 

t ra jec tory   in te rsec t ing   the   swi tch ing   sur face  from a pos i t ive   (nega t ive)  

may be continued  into  the  region a negat ive  (posi t ive) .   In   terms of 

the signum charac te r i s t ic ,   the   " fan"  of  possible   tangent   vectors  (2-5) 
of   the   t ra jec tory   a t   the   swi tch ing   sur face   l i es   whol ly  on the  new s ide  

of  the  surface;  thus  any  value  of cp i n  Equation (2-5) a t  switching 

carr ies   the  s ta te   point   across   the  surface.   (See  Figure 2 - 2 ) .  In   order  

to   insure   the   un iqueness   for  - 2 f o r   t h i s  motion,  which we c a l l   r e g u l a r  

- 6 -  



Fig. 2-2 Trajectory  Directions at u = 0 for  Regular  Switching. 

Fig. 2-3 Trajectory  Directions at u = 0 for Sliding. 
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-switching, we a r b i t r a r i l y   d e f i n e  cp a t  (5 = 0 under  (2-8)  to  be +1 . 
( A s  a consequence  of  definition ( 2 - 5 ) ,  t he   pa r t i cu la r   va lue  assumed  by 

cp for   regular   switching on u = 0 i s  e n t i r e l y   a r b i t r a r y ;  we f i x  it a t  

+1 on ly   t o  make the  solution  to  (2-1)  formally  unique. ) 

For  those  values  of - x which s a t i s f y   t h e   r e l a t i o n s  

o r  

I dTAxl < 1 " dTb I f o r   t h e  system  described by (2-3) 

o r  

" dTb < 0 for  the  system  described  by  (2-3) 

(2-10) 

(2-10a) 

6 , from (2-7) ,  i s  oppos i te   in   s ign   to  u and  independent  of i t s  

magnitude;  thus  motions i n   t h e  neighborhood of the  switching  surface  are  

d r iven   t o   t he   su r f ace  and forced  to  remain  there  once  the  surface 

i s  reached,   for   as   long  as   (2-9)  and (2-10) hold.  The or ien ta t ion   of  

the  fan o f  tangent   direct ions on the  switching  surface  in  Fi.gure  2-3 

shows tha t   on ly  one of   these  tangent   direct ions  is   a l lowable,   corresponding 

t o  a unique  value  of 'p . This  constrained  motion i s  known as   cha t t e r  

i n   wes t e rn   l i t e r a tu re .  The  name der ives  from the  observed  behavior  of 

a p h y s i c a l   r e l a y   o p e r a t i n g   i n   t h i s  mode. Due to   small   t ime  delays  in  

switching,   the   s ta te   point   does   not   remain  precisely on the  switching 

sur face ;   ra ther  it "chat ters"   with a small  amplitude a t  a high  frequency 

from side  to   s ide  of   the   switching  surface.  On the  average  for  small 

t ime  delays  the  s ta te   point   for   the  physical   re lay  proceeds on the  

switching  surface  and  approximates  the  mathematical  idea.lizat.ion  proposed 

h e r e .   I n   S o v i e t   l i t e r a t u r e   t h i s  motion i s  r e f e r r e d   t o   a s   s l i d i r , g ;   t h i s  

terminology seems more in   keeping  with  our   ideal izat ion,   s ince  the 

preceding   resu l t s   indeed   imply   tha t   the   s ta te   po in t   " s l ides"  on the  

switching  surface.  The term  "sliding" w i l l  therefore  be  used  exclusively 

h e r e   t o   c l a r i f y   t h e   d i s t i n c t i o n  between idea l   " s l i d ing"  and physical  
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"chattering"  with i t s  high  frequency components of  motion. It should  be 

kept   in  mind,  however, that   the  behavior  of 'ma s l id ing  system  closely 

approximates a cha t te r ing  one f o r   s u f f i c i e n t l y  small. relay  imperfections.  

The output of the   re lay ,  cp , for a s l i d i n g   t r a j e c t o r y  may be  deter-  

mined by se t t ing   sgn(a)  = cp and b = 0 in   (2-7)  and solving for cp . 
The r e s u l t  i s  

(2-11) 

The equation of  moti.on f o r   s l i d i n g  may be  expressed  in   f i rs t -order  form by 

subst i tut ing  the  expression for cp from (2-11) fo r   sgn (o )   i n  (2-1):. 

For  (2-3)  the  equation i s  a l i n e a r  one 
m 

(2-13) 

(2-13a) 

on 

If phase   coordhates  (2-4) are  used,  sliding  motions  are  described  simply 

by the   (n-1)s t -order   d i f fe ren t ia l   equa t ion   in  x1 , 

(2-14) 

* 
u ( 5 )  : constant  and  dTx = constant   are   solut ions  to   (2-13)  and 

(2-13a),   respectively,   since-these  equations were derived from the con- 
d i t i o n  3 = 0 [eq.  ( 2 - 7 ) ]  ; the   auxi l ia ry   condi t ions  a(x) = 0 and dTx = 
0 are   thus  necessary  to   properly  constrain  the  solut ion  to   the  switching 
surface.  

" 
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(The cont inui ty   condi t ion  on .u r equ i r e s   t ha t  it contains  a t  most t he  

(n-1) s t  der iva t ive  of xl. ) 

Another   character is t ic   of   solut ions on u = 0 w i l l  b e  mentioned 

for  completeness. If, in   addi t ion   to   (2-9)   and   in   p lace   o f  (2-10) , 

t hen   t r a j ec to r i e s   i n t e r sec t ing   t he   swi t ch ing   su r f ace   a l l   l eave   t he   su r f ace ;  

po in ts  on the  switching  surface where this  condition  holds  have  been named 

" s t a r t i ng   po in t s "  [61, s i n c e   t r a j e c t o r i e s  may o r i g i n a t e   a t   t h e s e   p o i n t s  

but   never   arr ive  there .   Condi t ions  leading  to   the  exis tence of s t a r t i n g  

points   are   usual ly   avoided  in   the  design of relay-control  systems  and  thus 

are  normally of  no p r a c t i c a l   i n t e r e s t ;   s t a r t i n g   p o i n t s  w i l l  therefore  be 

ignored  here. 

If both (Vu)? " and (V&. " are  zero,   then 5 i s  a lso  zero from (2 -7 )  

and 'd must  be  examined in  order  to  determine  the  motion  in  the  neigh- 

borhood  of u = 0. This  case w i l l  a l so   no t  be considered  here;  conditions 

analogous  to  (2-9)  and  (2-10)  for a sl iding  motion  are  given by  Alimov [ 8 ] .  

conc~usion,  the  motions of (2-1) based on (2-5) may be  summarized 

as  follows:  Solutions  exist   everywhere,  and if (V& " 5 0 (no   s t a r t i ng  

po in t s ) ,   t r a j ec to r i e s   p roceed   i n  a wel l -def ined  direct ion  a t   each  point  

i n   t he   s t a t e   space ,  
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111. LYAPUNOV'S DIRECT METHOD 

1. THE MAIN THEOREM 

The idea of the  Direct  Method i s  wel l  known and  discussed  in   detai l  

i n  a number of  references 11 1, [2 1, [ 3  1, so tha t   on ly   t he   e s sen t i a l   r e -  

sults w i l l  be presented  here.  

Consider an ordinary  different ia l   equat ion  with a s ingle   equi l ibr ium 

a t  x = O .  

Let 3 - be   su f f i c i en t ly   we l l  behaved that   solut ions  of  (3-1) (given  by 

$(E', t )  w i t h   i n i t i a l   s t a t e  x and i n i t i a l  t i m e  t aken   as   zero)   ex is t  

everywhere. 

0 
- - 

The following  theorem  (see  Hahn[ll  and  LaSalleL21)  gives  sufficient 

conditions  for  the  determination  of a  subdomain of  the domain of  asymptotic 

s t a b i l i t y  of (3- l ) ,  which we w i l l  ca l l   s imply  the  es t imate   of   the   s tabi l i ty  

domain* : 

Theorem 1 The equilibrium  of (3- l ) ,  - x = 0 , i s  asymptot ical ly   s table  

( A .  S . )  i n  a  domain R i f   t h e r e  can  be  found a continuous  scalar  function 

V ( t o  be  called a  Lyapunov funct ion)  such t h a t  

(1) .V(x) i s  p o s i t i v e   d e f i n i t e   i n  R . 
(2)  V(x) - = constant is a closed  surface  bounding R . 
(3) ?(x) i s  negative  semi-definite  in R . 
(4 )  Q(2) does  not  vanish  identically on a t r a j ec to ry   o f  (3-1) i n  

R -  
p(k) i s  the   t ime  ra te  of  change of V evaluated on a t ra jec tory   o f  (3-1) 

* 
The equilibrium x = 0 i s  sa id   to   be   asymptot ica l ly   s tab le   in  a domain 

R i f  
" 

i .) For E t h e r e   e x i s t s  a 6 such t h a t  if l]xoll < 6 then 
< E: f o r   a l l  t > o - 

= 0 f o r   a l l  xo i n  R . - - 

- L L  - 

I 



The sur face   wi th   the   g rea tes t   va lue   o f  V = constant = C which 

sa t i s f i e s   t he   cond i t ions   o f  Theorem 1 gives  the  boundary  of  the  largest  

s tabi l i ty-domain estimate. In  Figure 3-1 t h i s   s u r f a c e  i s  the  one j u s t  

t angen t   t o   t he   su r f ace  = 0 and thus  has   the  largest   value  of  V of 

those  surfaces  lying wholly  within  the  space V I 0 . The determination 

of   th i s   boundary   in   p rac t ice  is a d i f f i c u l t   m a t t e r   i n   a l l   b u t   t h e   v e r y  

simplest   cases.  The numerical  techniques  developed  and  used  in  Reference 

[4 ]   fo r   de t e rmin ing   s t ab i l i t y   boundar i e s  for second-  and  third-order 

systems  have  been  used i n   t h i s  work i n   t h e   t e s t i n g  of   the V funct ions 

described below t o  de te rmine   s tab i l i ty   boundar ies   for   re lay-cont ro l  

systems. 

max 

2.  APPLICATION OF A SPECIAL LYAFUNOV FUNCTION  TO RELAY-CONTROL SYSTEMS 

Consider  as a cand ida te   fo r  a Lyapunov func t ion   for   (2-3)  a funct ion 

of the  Lur’e  form ( a  symmetr ic   quadrat ic   form  plus   the  integral   of   the  

nonl inear i ty)  

V = - 2 -  1 T  x Hx - + f sgn(u)da  

0 

v = L xT€k + a x sgn  (d x )  T  T 
2 -  - - ” 

(3-3) 

(It w i l l  be shown t h a t  (3-3) i s  a l s o  a su i t ab le   func t ion   fo r   (2 -2 ) . )  The 

t ime  ra te   of  change  of V , , on t r a j e c t o r i e s  of (2-2) must be 

evaluated  different ly   depending on whether o r  no t   t he   t r a j ec to ry  i s  con- 

s t r a i n e d   t o   l i e  on 

regular  switching 

sgn ( u )  = * 1 
V is given  simply 

ir = (vv)2 
” 

In  accordance  with 

the  switching  surface  in  a s l iding  motion.  For 

(3-4) 

by 

(3-5) 

the  convention  established  in  Chapter 119 t h a t  

sgn(u) = +1 i n   (2 -2 )  on u = 0 for ,   regular   switching,  w e  a l so   de f ine  

s g n ( a )   i n  (3-3) t o  be p o s i t i v e   f o r  0 = 0 . Thus (3-5) i s  unambiguous 

and  can  readily  be  evaluated  from (3-3) and  (2-2) t o  be 
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’/ 
/ 

/ 

V < O  

Fig. 3-1 S t a b i l i t y  Boundary  Determined from a Lyapunov Function 
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= [F(x) + 2 E ( x ) ]  + [ c ( x ) ~ H x  + d l?(x)]sgn(a) + d .(X) (3-6) T T T T - " - - "- 
If F(x)  and c (x )  are expanded i n  Taylor series 
" " 

F(x) = AX + O ( X  )* 2 
" - " (3-7 1 

and 

.(X) = b + CX + O ( X  ) 2 (3 -8 )  
" - " 

The constant term of  the  expansion (3-7) has been set equa l   t o   ze ro  

because  there i s  an  equilibrium  of (2-2) a t  x = 0 . can  then  be 

w r i t t e n  

0 = xTQx + k x sgn u + d b + O(x ) + O(x )sgn u + O(x) (3-9) T T 3 2 
2 -  - " " - - 

where 

Q = A H + H A  T 

and 

k = H b + A d  T - - - 
For t h e  l inear  p l an t  and constant  control  magnitude  case  of (2-3) t h i s  

equa t ion   s impl i f i e s   t o  

V = - x Q x + k x s g n u + d b  1 T  T T 
2 -  - " (3-9a 1 

For  s l iding,   s ince u = 0 , t h e  Lyapunov func t ion  assumes t h e  

simpler  form 

v = - x &  
s 2 -  - 

1 T  (3-10) 

(The subscr ip t  s denotes   quant i t ies   evaluated on a s l i d i n g   t r a j e c t o r y . )  

* 
O(xn)  denotes  vector-valued  functions  of x whose components are 
" - 

O(xn) - , terms of a t  least n t h   o r d e r  i n  t h e  xi . 
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Using (3-lo), t h e   s l i d i n g  mode veloci ty   given by (2-13),  and  the series 

expansion 

A 

F(x)  = Ax + O(x2) 
A 

" - " 
t h e  time rate of  change  of V i n  s l i d i n g  i s  

o r  

where 

" "T Q = A H + H A  
A 

For  the  system of (2-3),  equation (3-13) s i m p l i f i e s   t o  

(3-11) 

(3-13) 

(3-13a) 

i t h   s e v e r a l  The appl ica t ton  of t h e s e   r e s u l t s  w i l l  be i l l u s t r a t e d  w 

simp l e  examp le  s . 

Examp le  3 - 1. 

Consider  the  system  represented by the block  diagram  of  Figure 3-2 

and the   d i f fe ren t ia l   equa t ion*  

[j = 

Take as a poss ib le  Lyapunov funct ion 
r 1  

(3-14) 

. "  * ~ ~ ~~~ 

The uncontrolled  system is  unstable ,   wi th   roots  a t  +1 and -1 
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Fig. 3-2 The System of Example 3-1. 
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? may be  evaluated  for  (5 & 0 according t o  (3-9) as 

t = 2x x + (x1 + x2)sgn(2xl + x2) - 1 1 2  (3-16) 

Figure 3-1 shows the  regions  of   posi t ive  and  negat ive $ i n  the   p lane  

and a plot   of   the   curve V = C m a x  
From (2-9a) and  (2- loa)   s l iding will occur  on 2x1+x2 = 0 f o r  

(3-17 1 

Thus s l id ing   occurs   for   (2 /3)  > x2 > -(2/3) . The s l iding  equat ion is, 

from  (2 -13a), 

c. 

( A  can  a lso  be  easi ly   obtained by not ing   tha t  j, remains  equal t o  

and t h a t  on the  switching  l ine x = -2x or j ,  = -22 = -2x2 . )  
1 x2 

2 1 2 1 

Vs can  be  evaluated by d i f f e r e n t i a t i n g  (3-19) according t o  (3-18) : 

2 2 v = x ?  + x ;  = x x  - 2 x  = -  
s 11  2 1   1 2  2 4x2 (3-20) 

which i s  c l ea r ly   nega t ive   de f in i t e  on x = -2x - The regior? i n  

Figure 3-1 bounded  by V = C i s  therefore   an   es t imate   o f   the   s tab i -  
1 2 

max 
l i t y  domain s ince we have  demonstrated  that ? is negat ive  def ini te  on 

a l l  t r a j e c t o r i e s . *  

Examale  3-2. 

Consider  the same basic  system  with a different   switching  funct ion:  

~ X = X  
T 
" 2 - x1 

Take f o r  a Lyapunov func t ion   t he  same form 

(3-21) 

* 
The t r u e  s t a b i l i t y  domain f o r   t h i s  system is  shown l a t e r   i n   F i g u r e  b,-2 .  
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Then 

+ = 2x  x + (xl - 2x )sgn(x - xl) - 1 
1 2  2 2 (3-23) 

for   regular   switching.   Regions  of   posi t ive  and  negat ive V a r e  shown 

in   F igure  3-3 together   with a p l o t  of the  curve V = C . I n  t h i s  

example t h e  boundary  between  regions of pos i t i ve  and negative V does  not 

everywhere  consist  of  curves = 0 since  changes  sign  discontinuously 

a c r o s s   t h i s  boundary when it coincides with (5 = 0 Sl id ing  s t i l l  occurs 

for   th i s   sys tem  ( s ince   aga in  d b < 0 ), the  region  being  given by (2-9a) 

as 

m a x  

T 
" 

t h e  whole switching  l ine.  A may be  computed as   before .  
A 

0 , evaluated  by  different ia t ing (3-19) according  to   (3-25) ,  i s  
S 

2 2 v = x ?  + x ?  
S 1 1  2 2  = x1x2 + x2 = 2x2 ( 3-26 ) 

which is  p o s i t i v e   d e f i n i t e   a l o n g   t h e   e n t i r e  l i n e  x = x Thus 

Theorem 1 i s  n o t   s a t i s f i e d  for any  value  of V = constant and the  

s t a b i l i t y  domain est imate  i s  not  -valid.  

1 2 -  

This example i l l u s t r a t e s   t he   necess i ty   o f   i nc lud ing   s l i d ing   e f f ec t s  

i n  a  Lyapunov func t ion   ana lys i s ,   s ince   t he   pa r t i a l   ana lys i s  of t h i s  

example implied  s tabi l i ty ,   whi le   the  equi l ibr ium i s  c lear ly   uns tab le  

because   s l id ing   t ra jec tor ies   p roceed  away from  the  or igin.  

These  examples a l so   sugges t   the   fo l lowing   asser t ion :  The exis tence 

of a s t a b i l i t y  domain is determined by t h e   s t a b i l i t y  of t he   s l i d ing  

motion i n  the  neighborhood  of the  equilibrium, when s l i d i n g  is  present .  

This may be readily  demonstrated  as  follows: If s l i d i n g   e x i s t s ,  " dTb 
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o= 0 

Fig. 3-3 

I 

1.0 

I 
I 

- 0.5 V(0 

-1.0 

S t a b i l i t y  Boundary f o r  Example 3-2. 

- 19 - 



is  a negative number and thus  w e  can   f ind  a neighborhood of x = 0 , 
I I x I I  - < E with E s u f f i c i e n t l y  small, i n  which i n  (3-9) i s  everywhere 

negat ive,   for   any H . Thus any   pos i t i ve   de f in i t e  V of   the form (3-3) 

w i l l  be a Lyapunov funct ion  for   regular   switching.   Consider  now 2 and 

V f o r   s l i d i n g  : 

" 

- 

A 

2 = A x + o ( x )  2 
-S - " 

V = -  I- xTHx 
s 2 -  - (3-28) 

Let R be  an  orthogonal  transformation  from 2 t o  such  that   yn 

i s  normal t o  the switching  plane .* Then 

and 

(3-30) 

where  use i s  made of t h e   f a c t   t h a t   t h e   i n v e r s e  of an  orthogonal  matrix i s  

e q u a l   t o  i t s  t ranspose.  = 0 in  s l iding.   Therefore   the  yn  coordi-  

nate may be  neglected  and new n-1  s t . -order   equat ions  in  
i n  

- z = [y17y27.. . .7y  n-1 lT wr i t ten :  

2 &. = A ' z  + O ( Z  ) (3-31) - " 
and 

V = -  zTH'z 
s 2 -  - (3-32) 

where A '  = RAR A and H '  = RHRT wi th   the  n t h  columns  and  rows 

deleted.  If s l i d i n g  i s  stable  the  eigenvalues  of A '  must have  negative 

r e a l   p a r t s ,  and thus  by a well known r e s u l t  [11 it is  always  possible t o  

f ind  a set of p o s i t i v e   d e f i n i t e  H '  matr lces  t ha t  make 

* 
An example  of  such a transformation may be  found i n  Appendix B, 

where it i s  employed i n  a computation  of the volume within V = constant 
f o r  a th i rd-order  V of t h e  form (3-3). 
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= 1 zTQ'z + O(z ) 3 
2 -  - - (3-33) 

negal;ive d e f i n i t e  and thus  (3-32) a Lyapunov f u n c t i o n   f o r  (3-31) i n  a 
s u f f i c i e n t l y  small neighborhood of the   o r ig in .  If s l i d i n g  is  unstable, 

c l e a r l y  no s t ab i l i t y   r eg ion   ex i s t s   s ince   an   uns t ab le   t r a j ec to ry   o f  (3-31) 

leads away from  the  or igin.  This discussion  not  only shows t h a t   t h e  

s t a b i l i t y  of  sl iding  motions (when s l i d i n g   e x i s t s )  i s  a necessary  and 

s u f f i c i e n t   c o n d i t i o n   f o r   t h e   s t a b i l i t y  of (2-2) but also t h a t  a set of 

Lyapunov funct ions (3-3) always e x i s t s   t o  estimate t h e   s t a b i l i t y  domain 

of (2-2) when a s l id ing  mode is present .   (Note  that   in   the  second-order  

case it i s  actual ly   not   necessary  to   check cs s i n c e   i f   s l i d i n g  i s  

s t ab le ,  Cs < 0 f o r  any p o s i t i v e   d e f i n i t e  V . ) 
Complete cond i t ions   fo r  A.S. of  the  equilibrium  of (2-3) i n   t h e  

form (2-4) may be found i n  Anosov [lo]. In t e rp re t ed   i n  terms of t he   roo t  

locus  based on Figure 2-1 with a ga in  K i n   p l ace   o f   t he   r e l ay ,  a s ing le  

necessary  and  suff ic ient   condi t ion is tha t   t he   l ocus  of a l l   r o o t s  l i e  i n  

t h e  l e f t  ha l f   p l ane   i n   t he  l i m i t  as K+ m . 
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I V .  METHODS OF GENERATING LYAmJNOV FUNCTIONS 

1. EXISTING METHODS 

S i n c e   i n   g e n e r a l   a n   i n f i n i t e  number of Lyapunov fclnctions  e.xist for 
a particular  system,  the  problem of f ind ing  some Lyapunov funct ion i s  not 

d i f f i c u l t ,  However, the  problem of finding  one which g ives  a use fu l  

approximation t o   t h e   s t a b i l i t y  domain is a formidable  one  and a t a s k   t o  

which a number of  workers  have  devoted  their   at tentions,  among them 

Zubov[ 5 I,  Ingwerson 11J12 1 Schultz and  Gibson[l3 1, and  SzegU[lh 1. 

The Zubov technique  consis ts  of finding  approximate power series 

solut ions,  V , t o   t h e   p a r t i a . 1   d i f f e r e n t i a l   e q u a t i o n  

(4-1) 

where 5 ( x )  - (see eqLiation (3-1) has a power se r i e s   expans ion   i n  Y x 
about - 0 and e (x )  - i s  pos i t ive   semi-def in i te ,  The requirements  on 

3(x) exclude  discontinuous  system A further  disadvan-cage of t h i s  

method is  t h a t   t h e  convergence of t h e   s e r i e s   s o l u t i o n  I s  not  uniform 

and may be qu i t e  slow  and e r r a t i c  c4 I The speed  of  convergence is  very 

sens i t ive   to   the   choice   o f  8 which unfortunately nust. be  based  on 

experience. 

The most systematic method am% the   o the r s  i s  I n g i e r s o n ' s   i n  which 

the  Jacobian of 3 - i s  used, in analogy  with  the :l..:'Lnear c a s e ,   t o  form a 

matrix of second pa r t i a l   de r lva t . fves  of a sca1a.r  function which may be 

integrated  twice t o  form TT Although  the mefuhod i s  not  guaranteed t o  

work, t h e   r e s u l t s   a r e   q u i t e   o f t e n  good. LAke Zubov, however, a c r i t i c a l  

decis ion i s  involved i n  choosing a form for ; i n   f a c t   t h e   q u a n t i t y  

chosen i s  t h e  same in   bo th   cases :  The quadrat ic  or lowest-order terms 

of V . Again, in  Ingwerson's method success i s  dependent  on a good 

choice of these  terms, which depends,  apparently, on a combination  of 

perseverance  and  again  skil l   gained  through  experience.  

Unlike  Zubov's  method,  Ingwerson's t s  appl icable  t o  discontinuous 

systems. However, a r e s t r i c t i o n  imposed  by h i s   s p e c i a l   i n t e g r a t i n g  

procedure  prevents  the  nor_-linear Terms of g(2) from  appearing  in  the 



Lyapunov func t ion  with more than two d i f f e r e n t  state var iab les  as 

arguments. In   t he   r e l ay -con t ro l   ca se   t h i s  means tha t   the   swi tch ing  

surface  cannot  be made the  locus of d i s c o n t i n u i t i e s   i n  V V for   systems 

of   third  order   (containing a l l  t h ree  state va r i ab le s   i n   t he   swi t ch ing  

func t ion)  or higher .   Since  in   general   the   surfaces   bounding t r u e  
s t a b i l i t y  domains  have t h i s   l o c u s   o f   d i s c o n t i n u i t i e s   i n  their  gradients ,  

t h i s   r e s t r i c t i o n  limits the  scope  of  the method. 

- 

The techniques  of  Schultz and  Gibson  and SzegU a r e  less systematic 

than  that  of  Ingwerson  and amount to   po l i c i e s   r a the r   t han   a lgo r i thms ;  

t hese   approaches   ga in   i n   f l ex ib i l i t y  by requir ing more choice ,   sk i l l ,  

and indus t ry   o f   the   user .   In   genera l ,   they  suffer from a d e f e c t   i n  

common with  Ingwerson's; a l l  a t tempt   to   incorporate   the  system's  non- 

l i n e a r i t i e s   i n t o  a va l id  Lyapunov func t ion   i n  hope t h a t   t h e   r e s u l t i n g  

funct ion w i l l  happen ta be a usefu l   one .   ( In   the   case  where a demon- 

s t r a t ion   o f   g loba l  A.S .  i s  desired,  however, t h e   s e a r c h   f o r  a Lyapunov 

function  can be made more sys temat ic [ l3] . )  Two problems are associated 

wi th   th i s   approach:   F i r s t ,  it is d i f f i c u l t   t o   d e t e r m i n e  how good the  

resul t  is without knowledge  of the exact   solut ion.  Second, t he re  i s  no 

systematic way t o  improve t h e   r e s u l t s .   I n  a sense,   these methods a r e  

indirect .   Considerable   effor t  and ingenuity are expended  on  producing 

a Lyapunov function  of more or less complex  form; the   goa l  o f  achieving 

a useful  form i s  a t t a ined  ( i f  it i s  a t t a ined  a t  a l l )  only as a r a t h e r  

i n d i r e c t   r e s u i t  of the  generat ing  process .  A more d i r e c t  method,  and 

one more readi ly   appl icable   to   re lay-cont ro l   sys tems,  i s  the  subject   of  

the  remainder  of  this work. 

2. A METHOD BASED ON A STEEPEST-ASCENT TECHNIQUE 

This method has  two basic  elements: (1) a class   of  Lyapunov 

functions  depending on a set of  parameters  and (2)  a d i g i t a l  computer 

t o  "rank" the  funct ions  and  search  for   the  "best"   one  in  the c l a s s .   I n  

a sense it replaces   the  complex funct ions  of   other  methods with a multi-  

p l i c i t y  o f   s imp le   func t ions   and   subs t i t u t e s   fo r   t he   u se r ' s   sk i l l  and 

l imited time t h e   r e l a t i v e l y  unbounded indus t ry  of t h e   d i g i t a l  computer. 
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In   t he   ma jo r i ty   o f   app l i ca t ions   t he   "bes t t t  or most useful  

Lyapunov func t ion  is  t h e  one  which  produces  the greatest estimate of 

t h e   s t a b i l i t y  domain. A s u i t a b l e   f i g u r e  of merit f o r  a Lyapunov funct ion 

V , then, is t h e  hy-pervolume (ca l led   s imply   hereaf te r   the  volume and 

denoted  by I ) contained  within  the estimate of t h e   s t a b i l i t y  boundary 

given  by V = C . I n t u i t i v e l y  one f e e l s   t h a t   f r o m  among a set of 

Lyapunov func t ions  of a f ixed  form, the   func t ion  which i s  optimum i n   t h e  

sense of having   the   g rea tes t  volume w i l l  a lso  produce  the best s t a b i l i t y -  

boundary  approximation. 

m a x  

With a sufficiently  well-defined  performance  measure  depending on 

a set of  adjustable  parameters it i s  p o s s i b l e   t o   u s e  one  of t he  well- 

es tabl ished  surface-searching  techniques [I5 1 t o   f i n d   t h e   l o c a t i o n  of 

t h e  optimum in  parameter  space.  Such a procedure i s  made p o s s i b l e   i n  

t h i s   c a s e  by the  use  of  a computer  program for   determining  tangencies ,  

computing  volumes,  and  performing a numerical  search. 

Consider (3-3) as t h e  form t o  be  optimized for the   re lay  system 

(2-2). The poss ib le   pos i t ive   coef f ic ien t   mul t ip ly ing   the   t e rm on t h e  

r igh t   o f  (3-3) was a r b i t r a r i l y   t a k e n   a s   u n i t y   t o   f i x   t h e   s c a l e  of V ; 

the  adjustable  parameters  are  the  independent  elements  of  the  symmetric 

square  matrix H , of  which there  are  n(n+1)/2 . In   gene ra l ,   t he  

condi t ions   tha t   these   e lements  must s a t i s f y   a r e   n o t   v e r y   r e s t r i c t i v e ;  

f o r  example, for   second-order  A. S.  systems  with a s l i d i n g  mode any 

p o s i t i v e   d e f i n i t e  V of  the  form (3-3) is  a Lyapunov func t ion   fo r   (2 -2 ) .  

The l inear   form  of   the   swi tch ing   func t ion   has   been   pos tu la ted   to  

fac i l i t a te   the   computa t ion   of   the  volume within V = C , which may be 

performed  analyt ical ly   in   this   case;   the   computat ions  for   second-   and 

third-order   systems  are   performed  in  Appendix A and B. For a general  

non-linear  switching  function a numerical   integration  procedure would. be 

required.  Such a procedure i s  pract ical   for   second-order   systems  but  

becomes qui te  cumbersome and time consuming for   th i rd-order   sys tems.  

(Several   a l ternat ives   for   t reat ing  non-l inear   switching w i l l  be mentioned 

la ter .  ) 

max 

From  among  many existing  surface-searching  techniques a s teepes t -  
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ascent  method was s e l e c t e d   f o r  i t s  simplicity  of  mechanization. Let 

the  adjustable  parameters  be p i = 1,2, .. .m . ~ ( 2 , g )  is  a Lyapunov 

func t ion   fo r   t he  system under   cons idera t ion   for   va lues  of  p cons is ten t  

with  cer ta in   constraints .   ( In   opt imizat ion  problems  the optimum is  

of ten  located  on a c o n s t r a i n t   s u r f a c e ;   i n   t h i s  problem,  however, it was 

found t h a t  the funct ions on a cons t r a in t  boundary ordinar i ly   have a 

measure I of  zero  and  are  automatically  avoided by a systematic  search 

procedure. ) A t  a s t a r t i ng   po in t   g iven  by p (O) the   values   of   the  

performance  index I ( O )  and i ts  gradient  0 - 1"' = [aI/ap, . . . aI/apm] ( 0 )  

are computed  and a s t e p  of some pre-determined  magnitude is taken 

i n   t h e   d i r e c t i o n   o f  V I (O)  i n   t h e  p space. The loca t ion   of   the  new 

point  i s  given by 

i y  

- 

dsO 
- 

I f  I (l)> 1") t he  new poin t  i s  accepted  and the process is repeated 

with - p now as the  starting poin t .  If I (l)< 1") t h e   s t e p   s i z e  

i s  halved t o   d s l  = ds 12 and a new point  0 

is  t e s t ed ;  t h i s  procedure is cont inued   un t i l   e i ther  I(1)> 1") ( i n  

which case a new s t e p  i s  made a t   t h e   c u r r e n t   s t e p   s i z e )  or e l s e   t h e  

s tep   s ize   reaches  some pre-set  lower l i m i t  and the  search i s  terminated. 

Although I i s  eva lua ted   ana ly t ica l ly ,  the computation i s  cumber- 

some and t h e   r e s u l t  i s  not  obtained i n  a single,   closed  form.  Therefore 

the  gradient   of  I i s  computed numerically by successively  per turbing 

the  elements  of p . - 
A simplified  block  diagram  of  the en t i re  process i s  shown i n  

Figure 4-1. The block  labeled  "Find Tangency" contains  the  program 

descr ibed   in   de ta i l   in   Reference[&]  which  performs  the  rather complex 

computations of . B r i e f l y ,   t h i s  program car r ies   ou t   the   fo l lowipg  

operations,  beginning  with  given V and 5 functions  and a pre-determined 

s t a r t i n g   p o i n t   i n  s ta te  space: 

'max 
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Fig.  4-1  Flow-Diagram for the  Steepest-Ascent  Method. 
(The program is  started by assuming a vector E. ) 



A .  ) A point  on a surface ? = 0 is  found  by   e i ther   sp i ra l l ing  

outwards  from  the  origin if t h e   s t a r t i n g   p o i n t  i s  i n  a region of 

< 0 or ,  i f  ? is  i n i t i a l l y   p o s i t i v e ,  marching i n   s t e p s   i n   t h e  

direct ion  of   the  negat ive  gradient  of . 
B. ) A minimum of V i s  found  on t h e  0 = 0 surface  by a gradien t  

'max 

max 

search  process,  and t h i s  value  of V i s  accepted   ten ta t ive ly  as 

C. ) Optionally,   the program t r aces   ou t   i n t e r sec t ions  of V = C 

wi th   s e l ec t ed   p l anes   i n   o rde r   t o  tes t  t h e   v a l i d i t y  of the  tangency. 

If an  intersect ion  curve  passes   into a region  of   posi t ive ? , the   value 

Of 'max i s  r e j ec t ed  and the  search is begun a g a i n   f o r   t h e   t r u e ,   g l o b a l  

minimum of V on V = 0 . 
Considerable t i m e  may be  saved by de le t ing   pa r t  C .  ) whenever 

possible .  Thus, the  tangencies  found on perturbations  of - p were not 

ve r i f i ed  by p lo t t i ng ,   s ince   t hey  were n e a r l y   c e r t a i n   t o  be va l id  i f  t he  

nominal  tangency was va l id   i t se l f .   Deta i led   ver i f ica t ion   of   t angencies  

may a l so   be   de fe r r ed   t o   t he  f i n a l  r e s u l t  with  high  confidence if  t h e  

possible   mult iple   local   tangencies  may be   c l a s s i f i ed  and a d i rec ted  

search  performed  for  each  type,   with a consequent  selection  of  the 

lowest  value  of . This procedure was ca r r i ed   ou t   i n   p rac t i ce  and 

w i l l  be d i scussed   w i th   i l l u s t r a t ive  examples. 
'max 

Computation  time may a l s o  be  saved on per turba t ions  by  modifying 

t h e   s t a r t i n g   p o i n t   t o  be v e r y   c l o s e   t o   t h e  nominal  point  of  tangency 

i n  a region V > 0 , thus   e f fec t ive ly   reducing   the   t ime  requi red   to  

f i n d   t h e  new, per turbed  point  cf tangency. 

More o f   t he   de t a i l s   o f   t h i s   p rocess  w i l l  be d iscussed   in   the  

examples  which  follow. The numerical   calculations were performed  on t h e  

IBM 7090 computer f o r   e a r l y  examples  and  on the  Burroughs B5000 computer 

f o r  later ones. 

3. ILLUSTRATIVE EXAMPLES:  SECOND-ORDER SYSTEMS 

Second-order  examples will be  discussed a t  length first s ince   they  

o f fe r   t he   c l ea re s t   demons t r a t ion   o f   t he  method. 
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Example 4-1 

Consider  the  system  of Example 3-1 p ic tu red   i n   F igu re  3-2. 

2l = x2 

G2 = x1 - sgn( 2x1 + x2 ) (4-3) 

To s t a r t   t h e   p r o c e s s  H was t a k e n   i n i t i a l l y   a s   t h e   i d e n t i t y   m a t r i x .  

S ta r t ing   wi th  a s t e p   s i z e  of 0.5 a f t e r  eight i t e r a t i o n   s t e p s   t h e  

computation  terminated when the s t e p  s i z e  f e l l  below the   per turba t ion  

s i z e  ( .Ol) , which was taken as a lower l i m i t .  The r e s u l t s   a r e  shown 

in   F igure  4-2 where t h e   i n i t i a l  and f i n a l  " O p t i m u m "  s t a b i l i t y  domain 

est imates  are shown toge ther  with the true  (open)  boundary,  which is  

approximated  quite well over a large  region.  The t r u e  boundary was 

found  by  constructing  and  examining  phase-plane  trajectories. The 

computed boundary was given by = 1.913 . The computed  optimum 

H was 
'max 

which i s  c lear ly   indef in i te ,   demonst ra t ing  tha t  a p o s i t i v e   d e f i n i t e  H 

i s  not  necessary t o  produce a V of  the  form (3-3) which i s  pos i t i ve  

d e f i n i t e   i n  a f i n i t e   r e g i o n .  

Examde 4-2 

Consider  the  system  (also treated by  Ingwerson E12 I)* 

= x  1 2  

j, = - x  + x - sgn(xl + x2) (4-4) 2 1 2  

represented  in  block-diagram  form  in  Figure 4-3. Again H was taken 

* 
The uncontrolled  system  has a p a i r   o f  complex roo t s  

+ 1/2 k j ($3/2) . 
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stabil i ty  boundary, 

t” 
Fig.   4 -2   S tab i l i ty   Boundar ies   for  Example 4-1. 
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Fig. 4-3 The System of Example 4-2. 
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i n i t i a l ly   a s   t he   i den t i ty   ma t r ix .   F igu re  4-4 g ives   the   resu l t s   o f   the  

search  process   together   with  the  t rue  (c losed)  boundary,  approximated 

w e l l  by the  computed  boundary. The t r u e  boundary may be  found  by 

changing  the  sign  of t i m e  i n   t h e   d i f f e r e n t i a l   e q u a t i o n s  and in tegra t ing  

them forward  with a  machine i n t e g r a t i o n   r o u t i n e   t o   o b t a i n   t h e   s t a b l e  

limit cycle  which t h e   s t a b i l i t y  boundary becomes under  the  transformation 

of   t ime;   th i s  l i m i t  cycle may also  be  determined  analytically.  The 

computed optimum H was 

with Cmax = 1.759. 

I n  t h i s  problem  a phenomenon appears which degrades  the  convergence 

of the  search  process  near  the optimum. Two kinds of tangencies  occur 

i n  general   for  these  systems: a  normal o r  llsmoothlt  tangency  which 

was i l l u s t r a t e d  i n  Figure 3-1 and  a ltcornertt  tangency, a contact between 

V = cons t ,  and V = 0 surfaces  on a = 0 , i l l u s t r a t e d  i n  Figure 3-3. 

(As mentioned i n  Chapter III, the  V = 0 surface i s  described more 

accurately  as  the  boundary between regions of < 0 and > 0 , 
since  changes  sign  discontinuously  across  this  surface when it 
coincides  with a = 0 ). The smooth tangency i s  found  by  using  the 

tangency  search  with (3-3) and (3-9a)  with u # 0 . The corner  tangency 

may be  found s imi l a r ly  by replacing  sgn(a)   with  tanh(a a )  i n  (3-3) 

and (3-9a) (a is  a l a rge   pos i t i ve   cons t an t ) ,  $hus  approximating  the 

corner  tangency  by a smooth one. More accurately,  a separate  tangency 

search may be  performed  on a = 0 ; t h i s  amounts to   f ind ing   tangency  

between 

v = - X H X  
1 T  
2 -  - (4-5) 

and 
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H = -;:E:] ~Ttrue boundary 

Fig. 4-4 S t a b i l i t y  Boundaries for Example 4-2. 
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i n   t h e  subspace 

d x - 0  T 
" 

where  the 5 s ign  arises by  examining a small d i s t a n c e   t o   e i t h e r  

s i d e  of the  switching  surface.  This l a t t e r   p rocedure  was t h e  one  used 

for  these  second-order  examples,  where it reduces  simply t o   t h e   s o l u t i o n  

of a quadratic,  and thus  does  not  require use of  the  tangency-search 

program. 

A t yp ica l   co rne r   t angency   fo r   t h i s  example i s  i l l u s t r a t e d   i n   F i g u r e  

4-5. In   Figure 4-6 t h e  area I i s  p lo t t ed   a s  a funct ion of Hll f o r  

t h e  HU and H2* of Figure 4-5. All t h o s e   p o i n t s   t o   t h e  l e f t  of 

t h e  peak  correspond to   co rne r   t angenc ie s ;   t o   t he   r i gh t  of the  peak  the 

tangencies   are  smooth. The r e s u l t  of   the  two types  of  tangencies i s  

thus a sharp  r idge (shown o n l y   i n  one  dimension in   F igu re  4-6) i n   t h e  

performance  measure I . The search  procedure  drives  towards  the  ridge, 

"chatters"  slowly  on it toward  the optimum, and then  terminates  

prematurely. 

Performance  can  be  improved i n   s e v e r a l  ways. F i r s t   t h e   a l t e r n a t i v e  

use  of  tanh(a cr) for   sgn(o)   has   the  effect   of   rounding  the  r idges 

and speeding  convergence. Second, the  search  technique  could  be made 

sophis t icated enough to   fo l low  sharp   r idges .  The procedure  used i n   t h i s  

example in   effect   fol lowed  the  second  course:  when a computation  termi- 

na ted   a f te r   cha t te r ing   in   smal l   s teps   a long  a r idge ,   the   d i rec t ion  of 

the   r idge  was estimated  from  the  average  direction o f  t he   cha t t e r ing  

motion  and a new computation  begun after tak ing  a large s tep  a long  the 

r idge.  The p a t h   i n   t h e  Hll HZ2 plane f o r  t h i s  example i s  shown i n  

Figure 4-7. 

Fortunately  these  r idges are u s u a l l y   n o t   r e a c h e d   u n t i l   t h e   s t a b i l i t y  

region is f a i r l y  well approximated.  Ingwerson  points  out  [12]that  the 

proximity  between  the  curves V = C max and V = 0 i s  a rough  measure 

of  goodness  of  the  approximation of t h e   s t a b i l i t y  domain; a point  on the  

ridge  corresponds t o  V = C and f = 0 curves  with  four   points   of  

contact,   rather  than  the  usual  two9  thus  probably  producing a good 

estimate. 

m a x  
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Fig. 4 -5 Typical  Corner Tangency f o r  Example 4-2. 
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Fig. 4-7 Motion of the  Parameter Point  in the H -H Plane for Example 4-2. 11 22 



Example 4-3 

Consider  the  system 

j, = x  
1 2  

2 = - x - sgn(2xl + x2) 2 1 (4-6) 

By examining the  terms of V and 9 i n  d e t a i l  one f i n d s   r a t h e r   e a s i l y  

t h a t   t h e  Lyapunov func t ion  

1 T 1 3*0 v = - x  2 -  (4-7 1 

demonstrates  the  system to be   asymptot ica l ly   s tab le   in   the  large. 

H was a g a i n   t a k e n   i n i t i a l l y  as the   i den t i ty   ma t r ix .  The r e s u l t s  

are shown in   F igure  4-8; t h e   f i n a l  H was 

with  the  boundary  given by = 20.44 . Although t h i s  computed H 

was no t   c lo se   t o   t he  H of (4-7) (which i s  unique among functions  of 

the  form (3-3) in   p rov ing   g loba l   a sympto t i c   s t ab i l i t y )   t he   e s t ima te  

obtained  might be u s e f u l   f o r  some purposes. This est imate   could  a lso 

probably  be  improved  by  further  refinements in  the  computation  process.  

‘max 

Examnle 4 -4 

Let  the  system  be  given by* 

x = x  1 2  

j, = x - x - sgn(xl) 2 1 2  

* 
The uncontrolled  system i s  t h a t  of Example 4-1 with  the  addi t ion 

of some damping; t he   roo t s  are - 1/2 f &/2 . 
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Fig.  4-8 Stabi l i ty   Boundaries  f o r  Example 4-3. 
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No s l id ing   mot ions   ex is t   s ince  d b = 0 . An analysis   of   readi ly  

shows t h a t   f o r  (3-3) t o  be a  Lyapunov func t ion   fo r  (4-8) it is  necessary 

T 

I 

I t h a t  

" 

H22 = 1 (4-9) 

and 

l > H E > O  

H22 was the re fo re   he ld   f i xed   a t   un i ty  and the  search was begun a t  

The search  remained i n  the  allowable  region (4-9) without further 

cons t r a in t s  w i t h  t h e   r e s u l t i n g  H , 

p0.50 0.86 
H =  I 

L0.89 1.00 

producing  the  boundary shown i n  Figure 4-9 with 'max = 1.229 . 

Example 4 -5 

Consider  the  plant of Example 4-1 with a new switching  function 

i = x  

i 2 = x - sgn(xl + x2) 

1 2  

1 (4-10) 

An examination  of  phase-plane  trajectories  readily shows- t h a t  t h i s  

system is  A. S. i n  the i n f i n i t e   s t r i p  bounded  by x1 + x = f 1 . 
With t h i s   r e s u l t   i n  mind it is e a s y   t o  show (by a detailed  study  of 

t he  terms of V and ) that  t h e  Lyapunov func t ion  

2 
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t x 2  

Fig. 4-9 S t a b i l i t y  Boundaries for Example 4-4. 
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(4-11) 

prov ides   an   a rb i t r a r i l y   l a rge   e s t ima te  of t h e   s t a b i l i t y   r e g i o n   f o r  

s u f f i c i e n t l y  small p o s i t i v e  E . I n   t h e  limiting case  of E = 0 , 
v = c  and V = 0 coincide  but  V becomes semi-def ini te  and thus  

not a proper Lyapunov func t ion .  
max 

The r e s u l t s  of the   search   process ,   s ta r t ing   aga in   wi th  H = I , 
are shown in   F igu re  4-10. The computed H was 

0.70 

= [0.73 0 . 8 2 l  

0.73 

with Cmax = 1.234 . 

Example 4-6 

Consider now a system  with a non- l inear   p lan t ,  shown i n   F i g u r e  4-11, 

* = x1 3 - sgn(2xl + x2)  (4-12) x2 

The computed H was 

= E:::: 1.3J 

0.11 

w i t h   t h e   r e s u l t s  shown i n   F i g u r e  4-12. The boundary was given by 

C = 2.111 . The t r u e  boundary was found  by i n t e g r a t i n g  (4-12) back- 

ward from f inal   condi t ions  determined from an  examination of g raph ica l ly  

c o n s t r u c t e d   t r a j e c t o r i e s .  The q u a l i t y  of t he   e s t ima te  and the  speed 

of  convergence  of  the  search  were  not  as good as f o r   t h e   r e l a t e d   l i n e a r  

plant   of  Example 4-1. 

max 
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/‘-; true boundary-” stability 

Fig.  4-10 Stability Boundaries f o r  Example 4-5. 
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Fig. 4-11 The System with Non-linear Plant  of  Example 4-6. 
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Fig. 4-12 S t a b i l i t y  Boundaries for Exanple 4-6. 
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4. THIRD-ORDER EXAMPLES 

Example 4-7 

Consider  the system 

kl = x2 

2 = x  2 3 (4-13) 

shown i n  block-diagram  form in   F igu re  4-13. For third-order  problems 

the  corner  tangency was determined by f ind ing  a two-dimensional  smooth 

tangency  for  Equations (4-5) using  the  tangency-search  program.  Again 

H was i n i t i a l l y  chosen a s   t h e   i d e n t i t y   m a t r i x .  The r e s u l t s   f o r   t h i s  

problem a r e   i l l u s t r a t e d   i n   F i g u r e  4-14, w i t h   t h e   i n i t i a l   e s t i m a t e  

p ic tured  above t h e  computed estimate. The r eg ions   a r e   i nd ica t ed  by 

p l o t t i n g  the in te rsec t ion   curve   o f   the   sur face  

the  switching  plane;  superimposed  on  this are curves of t h e   i n t e r s e c t i o n  
= ‘max = 1.136 on 

of v = c  and planes x = cons tan t .  The x and x axes   a re  max 3 1 2 
or i en ted  and  scaled t o  g ive   t he  x1,x2 coordinates   of   points   on  the 

curves x = cons tan t .  The x3 a x i s  i s  s c a l e d   d i f f e r e n t l y   t o   g i v e   t h e  

x coordinates   of   points   on  the  switching  plane.   This  view i s  not a 

perspective  one; it has  been  constructed  to  show t h e   t r u e  area of   the 

c ross -sec t ions   ind ica ted .  A s  a guide,   the   coordinates   of  a sample po in t  

P on V = C  max a r e  shown i n   F i g u r e  4-14. The x x coordinates  are 

o b t a i n e d   d i r e c t l y  from t h e  

(which i s  t h e  same f o r   a l l   t h e   p o i n t s  P , P1 , Psl and Ps2) i s  

obta ined   f rom  the   in te rsec t ion  of t h e  x a x i s  and the   l ine   connec t ing  

t h e   p o i n t s  Psl and P t h o s e   p o i n t s  on the  c losed  curve which l i e  

on the  switching  plane.  

3 

3 

1’ 2 
xl’ x2 projec t ions ,   whi le   the  x coordinate  3 

3 

s2 ’ 

The computed H was 

0.73 -0.88 

H = [ 0.73 0-78 1.04 -0.66 

-0.88  -0.66 1.77 1 
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Fig .) 4-13 Third-Order  System of Example 4 -7. 
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Fig.  4-14 Initial  and  Computed  Stability  Boundaries of Example 4-7. 



The nega t ive   de f in i t eness  of e was v e r i f i e d  a t  t h e  end  of the 

computation by eva lua t ing   the   e igenvalues  of Q’ (see Equation (3-33)) ,  

which  were -. 082 and -7.73 

S 

Examde 4 -8 

Consider  the  system of t h e  l as t  example, bu t  now wi th   the  damping 

r a t i o   o f   t h e  plant  ( see   F igure  4-13) decreased from -1/2 t o  -1 : 

G1 = x2 

x = x  2 3 

2 = - .5x, + 1 . 5 ~ ~  - sgn(xl + 2x2 + x3> 
3 

(4-14) 

The eigenvalues  of Q’  were -0.775 and  -3.225 . 

Examp l e  4 -9 

Consider  the  velocity-controlled,   second-order  plant  of Example 4-1  
shown in  the  block  diagram  of  Figure 4-16. The d i f f e r e n t i a l   e q u a t i o n  i s  

x = x  1 2  

G = x  2 3 (4-15 1 

“3 = x2 - sgn(  .33x + 1. 33x2 + x3) 1 

The i n i t i a l  and f i n a l   e s t i m a t e s   a r e  shown i n   F i g u r e s  4-17 and 4-18 with 

f i n a l  C = 1.295  and max 
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Fig. 4-15 I n i t i a l  and Computed S t a b i l i t y  Boundaries of Example 4-8. 
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Fig.  4-16 Thirdarder  System of Example 4-9. 



\ 

Fig. 4-17 Ini t ia l  Boundary of Example 4-9. 



Fig .  4-18 Final  Boundary of Example 4-9. 
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0.62 -0.11 -0.06 

H = [ -0.11 0.75 

-0.06 0.68 0.93 

The e igenvalues   o f   the   f ina l  Q' were -.25  and  -2.41 

Example 4 -10 

Consider   aga in   the   p lan t   o f   the  last  example, t h i s  time con t ro l l ed  

wi th   the   swi tch ing   func t ion  

rn 

d x = x  'I' + 2 x 2 + x  
" 1 3 (4-16) 

The i n i t i a l  and f i n a l   e s t i m a t e s  are shown in   F igu re  4-19. The boundary 

was given by = 1.023  with 'max 

1.16  0.29 

H = [ 0.29 0.80 

-0.96 0.35  1 .26 

The eigenvalues  of Q' were -0.026  and -4.373 . 
It should  be  pointed  out   that   the   best   possible   s tabi l i ty-domain 

es t imate  i s  actual ly   the  union  of  a l l  o f   t he   e s t ima tes   ob ta ined   i n   t he  

course  of a computation.  Although t h i s  union was sometimes g r e a t e r  

t h a n   t h e   f i n a l  estimate by i t s e l f ,  it was n o t   s u f f i c i e n t l y   d i f f e r e n t   t o  

j u s t i f y  i t s  c a l c u l a t i o n .  

5. NON-LINEAR SWITCHING 

This method may be extended t o  systems  with  non-linear  switching 

f u n c t i o n s   i n   s e v e r a l  ways. First it i s  poss ib l e  i n  many c a s e s   t o   f i n d  

a non- l inear   t ransformat ion  from x to u coord ina tes   such   tha t  

a(&) = d u and  (2-1) becomes 
- - 

T 
" 

fi = F ' ( u )  + c ' (u ) sgn(d  u)  T - "  (4-17) - -  " 
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Fig .  4-19 Initial and Final  Boundaries of Example 4-10. 
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so t h a t   t h e   c o n s t r u c t i o n  may proceed as i n  Example 4-6. Second, t h e  V 

func t ion  

v = -  x T m  + tT sgn u 
2 -  - (4-18) 

could  be  used  directly.  A s  mentioned earlier, however, an   exac t   in te -  

g r a t i o n   f o r   t h e  volume wi th in  V = C f o r  (4-18) is  i n   g e n e r a l  

impossible  and a close  numerical  approximation t o  the volume can  be 

obtained  only a t  the  expense of l a rge  amounts of computer time f o r  

t h i r d -  and higher-order  systems. A more reasonable  approach,  and  one 

with wider appl ica t ion ,  i s  t o   r e p l a c e   t h e   e x a c t  volume with a s impler  

f igure   o f  merit, a "quasi-volume .I' An example i s  t h e  sum of   the   square  

magnitudes  of x on V = C i n   s e l e c t e d   d i r e c t i o n s   i n  state space. 

Such a measure would still be p o s i t i v e   d e f i n i t e  and g ive  a rough  measure 

of   the  volume, wi thout   requi r ing   ex tens ive   ca lcu la t ions .  It would also 

have  the  advantage of be ing   r ead i ly  implemented f o r  high-order  systems 

where a computation of the   exac t  volume, even f o r  l inear   switching,  is  

not  simple. 

m a x  

- m a x  
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V. EXTENSIONS OF THE STEXPEST-ASCEIJT METHOD 

\ 

1. SYSTEMS WITH SATURATION 

I n   g e n e r a l ,   p h y s i c a l   c o n t r o l l e r s  a l l  p o s s e s s   t h e   c h a r a c t e r i s t i c  of 

s a t u r a t i o n :   t h e r e  i s  a maximum l e v e l  o f   c o n t r o l   e f f o r t  which  cannot  be 

exceeded. The r e l a y   c o n t r o l l e r s  which  have  been  discussed so f a r  a r e  

l imi t ing   ca ses  of such   cont ro l le rs ,  where the  non-saturat ing  regfon  of  

opera t ion   vanishes .   In  many p r a c t i c a l   c o n t r o l l e r s ,  however, t he   dev ice  

operates   over  a s i g n i f i c a n t  range a t  l e s s   t h a n  i t s  maximum e f f o r t ;   t h e  

most s imple  and  f requent ly   used  ideal izat ion  of   such  devices  i s  t h e  

saturat ion  funct ion  of   Equat ion  (2-6)  shown i n   F i g u r e  5-1. 

If w e  r ep lace   t he  signum funct ion   in   the   sys tem  of   Equat ion  (2-3) 

w i t h   t h e   s a t u r a t i o n   f u n c t i o n   t h e  new system  can be expressed as 
f 

or 

1 kbd x T 
” 

7 

(A5 f b  sgn ” d T x , 

where x = A + kbd . T - 
In   ana logy   to   our   t rea tment  of (2-3) we aga in   cons ider   the   use  of 

t h e  L u r ’ e  form  of V f u n c t i o n   f o r   t h e  new system,  (5-2).  Keeping i n  

mind t h e   d e f i n i t i o n   o f  V a s  a q u a d r a t i c   p l u s   t h e   i n t e g r a l  of t h e  non- 

l i n e a r i t y  we can  wri te  

1 1 I a s g n u - ”  I d  ’ L 2k ’ 
where u = d x . T - ,- 
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Fig. 5-1 The Saturation Function. 
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Equation (5-3) may be r e w r i t t e n  as 

1 T- - x H x  2 -  - 
v = (  

where H" = H + kdd . T - 
Using  (5-2),  can be e v a l u a t e d   t o   b e  

f 

where Q = A H + E and 

Note t h a t   i n   t h e   s a t u r a t i o n   r e g i o n   t h e   o n l y  change i n  V and $ from 

the   re lay-cont ro l   ana lys i s   o f   Chapter  I11 is  a numerical   decrease of 

the  value  of  V by  an amount 1/2k ; is  unchanged. Thus i f  we 

begin  with a Lyapunov func t ion   and   s tab i l i ty   boundary  computed f o r   t h e  

relay-control   system  (2-3)  w e  need  only  check the p o s i t i v e  and negat ive 

de f in i t eness   o f   t he  fi and   ma t r i ces   i n   o rde r   t o   ob ta in  a s t a b i l i t y  

boundary for   the  corresponding  control   system  with a sa tura t ion   charac-  

t e r i s t i c  now in   p l ace   o f   t he   r e l ay .  The new boundary w i l l  match t h e  

r e l a y   b o u n d a r y   i n   t h e   s a t w a t i o n   r e g i o n   b u t  w i l l  be modified i n   t h e   l i n e a r  

reg ion  I u I < ( l / k )  with a rounding  of  the  sharp  corners.  

N -Tm 

3-98 1 denotes   accord ing   to  (3-9a) 

It might a t  f i rs t  be expec ted   tha t  i f  a func t ion  V (3-3) is  a 

Lyapunov f u n c t i o n   f o r  a relay-control   system  (2-3)   then  the  funct ion 

V (5-4) with t h e  same H w i l l  a l s o  be a Lyapunov f u n c t i o n   f o r   t h e  

sa tu ra t ion   sys t em  (5 -2 )   fo r   su f f i c i en t ly  large k It is  e a s y   t o  

ve r i fy ,  however, t h a t   t h i s  i s  no t   t rue ;   t he   exp lana t ion  i s  t h a t  H" 
becomes dominated  by t h e  terms containing k a s  it becomes l a rge  and 

thus  V i n   t h e   l i n e a r   r e g i o n  comes t o  depend  on the  quadrat ic   form 

(1/2)xTkddTx , which i s  not   necessar i ly  a des i rab le   choice .  For 
example, t h e  computed H's of  Examples 4-1 and  4-2  do  not  produce 

Lyapunov func t ions  of the  form (5-4) for   the  corresponding  systems  with 

- " 
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sa tura t ion   for  k's of 2 and 5, particular  values which were tes ted.  

However, the computed H of Example 4-4 does  produce a Lyapunov function 

for  the  corresponding  system  with a sa tura t ion   charac te r i s t ic  of k = 2 . 
For this case, 

N 

0.89 

and 

-1.78 
Q =  
n A  

-0.61 
L 

which may readily 

0.891 1.00 

-0.611 

-0.22 1 
be demonstrated t o  be posi t ive and negative  definite,  

respectively.  In  order t o  compute the  modified  portion of t h e   s t a b i l i t y  

boundary, note  from  the second l i n e  of ( 5-4) t ha t   t he  new value of 

'max 9 'max ' 
N 

is 

N 1 
'max = c  " maxO  2k 

where C i s  the  value  for  the  relay-control system.  For k = 2 maxO 

and 

the  

The 

N 

'max = 1.23 , C = .98 and the  equation  for  the new portion of 
0 

max 

boundary becomes 

- X = =  .98 , 1 T -  
2 -  - lXll < - 5  

entire boundary is  shown in  Figure 5-2, together wi th  the   t rue  one, 
found by graphically  constructing  the  trajectory  consti tuting  the 

boundary. A comparison  with  Figure 4-9 shows that   the   small  change i n  

the  stabil i ty-domain  estimate of t h i s  system  produced by the addition 

of the   l inear   reg ion   in   the   cont ro l le r   charac te r i s t ic   re f lec ts   very  

well the  small change i n   t h e   a c t u a l  domain. 

Although the  approach i l l u s t r a t e d   i n   t h i s  example worked well i n  

this par t icular   instance,  as mentioned earlier it cannot be expected t o  
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Fig .  5-2 Stab i l i t y  Boundaries for Example 5-1. 
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succeed i n   a l l   c a s e s .  A be t t e r   gene ra l   po l i cy  i s  t o   o p t i m i z e   t h e  volume 

d i r e c t l y   f o r   t h e   f u n c t i o n  (5-4),  choosing  the starting H t o  make fi 
and Q b o t h   d e f i n i t e   i n i t i a l l y .  The a rea  and volume computations  of 

Appendix A and B can  be  easi ly   modif ied  to   give  the  correct   measurements  

of   the volume I fo r  second-  and  third-order systems. 

N 

2 .  GENERAL NON-LII"BITIES 

This method of   f inding a "best"   s tabi l i ty-boundary  es t imate   by 

optimizing a fixed  form  of Lyapunov func t ion  may c l e a r l y   b e   a p p l i e d   t o  

systems  with more gene ra l   non- l inea r i t i e s   t han   t hose   cons ide red   un t i l  

now.  The only  requirements are a Lyapunov function  depending on a set 

of parameters  ( the  Lur 'e  form may be  taken as a simple,   readily  con- 

structed  example)  and a method  of measuring  the volume. A s  mentioned 

i n  the las t  chap te r ,   f o r  complex non- l inea r i t i e s ,  a very  coarse  numerical 

approximation t o  the volume might  serve  adequately. (This problem would 

properly  be  the  subject   of   fur ther   research.)  It should  be  kept   in  mind, 

however, tha t   increas ing   the   complexi ty  of t h e   n o n - l i n e a r i t i e s  w i l l  

probably  increase  both  the time spent  in  determining  tangencies  and i n  

computing  even  simplified  volumes. 

A p o t e n t i a l l y   u s e f u l   a p p l i c a t i o n   f o r  smooth n o n - l i n e a r i t i e s  would 

be the  computation of t h e  optimum simple  quadratic  boundary. (For non- 

l i n e a r f t i e s  which  have a Taylor   ser ies   expansion  the  quadrat ic  Lyapunov 

funct ion  holds  a s i m i l a r   p o s i t i o n   a s  our func t ion  (3-3) does for the 

discont inuous  system,  e .g .   for  A .  S. systems, a s e t  of quadrat ic  

Lyapunov func t ions   a lways   ex is t   to   es t imate   the  domain of  asymptotic 

s t a b i l i t y .  [l]) It would  be of i n t e r e s t  t o  compare t h e s e   r e s u l t s   w i t h  

ones  obtained by  Zubov's  method f o r   v a r i o u s  numbers of i t e r a t i o n s  and 

i n i t i a l   c h o i c e s   o f  @(x) . Also,  the optimum quadrat ic   funct ion  found 

f rom  the   search   process   should   be   t r ied   as   the   in i t ia l   choice   for   the  

Zubov i t e r a t i o n   i n   o r d e r   t o  improve the  convergence, which i s  very 

s e n s i t i v e   t o   t h i s   i n i t i a l   c h o i c e .  
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VI. CONCLUSIONS 

The d i r e c t  method  of Lyapunov has been  used i n   t h i s   t h e s i s  as a 

basis f o r  a new, systematic  technique  for  computing good est imates   of  

the domain o f   a sympto t i c   s t ab i l i t y .  This technique  has   been  appl ied 

successfu l ly   to   re lay-cont ro l   sys tems,  whose discont inuous  nature  has 

excluded them i n   t h e   p a s t  from ana lys i s  by t h e  method  of Zubov, t h e  

on ly   o the r   en t i r e ly   sys t ema t i c   t echn ique   fo r   cons t ruc t ing  Lyapunov 

func t ion   es t imates   o f   the   s tab i l i ty   boundary .  The pr incipal   advantages 

of t h i s  new method, as   demonstrated  in   the  useful   numerical   solut ions 

found i n  numerous second-  and third-order   examples ,   are  

1.) The method is  i d e a l l y   s u i t e d   t o   h i g h - s p e e d  machine  computation. 

2. ) It i s  not   res t r ic ted   to   low-order   sys tems.  

3.) The al lowable  form  of   non-l inear i t ies  is qu i t e   gene ra l ;   t hey  

may, f o r  example,  be  discontinuous or piecewise  continuous as long as 

the  resul t ing  dynamical   system is  well-behaved. The only  requirements 

a r e  a Lyapunov func t ion  V depending on a set   of   adjustable   parameters  

and a scheme for  measuring the volume wi th in  V = cons tan t  . It is  

usua l ly   very   easy   to   f ind   such  a Lyapunov func t ion ,   t he  L u r ' e  form 

being a simple  example. 

4 . )  Because the  performance  index i s  improved  by a s t eepes t -  

ascent  procedure,  convergence t o   t h e  optimum estimate is  monotonic. 

This  behavior compares favorably   wi th   the   e r ra t ic   convergence   p roper t ies  of 

Zubov's  method. ( A  comparison i s  n o t   e n t i r e l y  fa i r ,  however, s i n c e   t h e  

method of Zubov does  ult imately  converge t o  t h e   e x a c t   s o l u t i o n   i n  

problems i n  which it is  appl icable .  ) 

Areas i n  which f u r t h e r  work would  be  of i n t e r e s t  are app l i ca t ions  

t o   f o u r t h -  and  higher-order  systems  and a wider v a r i e t y  of  non- 

l i n e a r i t i e s ,  employing s impl i f i ed  volume measures,  and  extensions  of 

t h e  method to   vector-valued  controls .   This   technique  should  a lso be  con- 

s idered  as a p o s s i b l e   a d j u n c t   t o  Zubov's  method i n  determining  an optimum 

quadratic  form @(x) - t o   i n i t i a t e  Zubov's i t e r a t i o n   p r o c e s s .  
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APPENDIX A. AREA CALCULATION 

I n   o r d e r   t o  compute the   a rea   wi th in   the   curve  V = constant f o r  

a second-order Lyapunov func t ion  of t h e  form (3-3) it is convenient t o  

t ransform  the   coord ina tes   f rom  the   o r ig ina l  x1,x2 system t o  a new 

y1,y2 system shown in   F igu re  A-1. The transformation is  performed  by 

a r o t a t i o n   t h a t   p o s i t i o n s   t h e  new y axis perpendicular   to   the  

switching  l ine.  
1 

The new coordinates may be  expressed i n  terms of the  angle  of 

r o t a t i o n  8 as 

COS e 

[ = [sin e cos e ]  [::I s i n  8 

The switching  l ine i s  defined by the   equat ion 

dlXl 2 2 + d x  = O  

so  t h a t   t h e   u n i t  normal vec to r   t o   t he   swi t ch ing   l i ne  i s  given by 

= [::: :I 
Define  the  matrix  of  the  transformation as R : 

From (A-1)  and (A -3 ) ,  R is  given by 

d2 1 
I I 

J" 

dl 

(A-3)  

(A -5 )  
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I \switching line 

’ I \  
Fig. A - 1  Two-Dimensional  Coordinate  Transformation. 

Fig. A-2 Definition of the Chord Length, s9 

switching 

Fig. B-1 Three-Dimensional  Coordinate  Transformation. 

- 66 - 



In   t he   o r ig ina l  x coordinates 

In  the new y coordinates this becomes 

the Lyapunov function is 

(A-6 1 

o r  

where 

G = R H R  T 

and 

L o  - 

The equation 

~ ( y )  = constant = C 0 

becomes then  

1 2 1  2 5 GllYl + G22Y2 + G12Y1Y2 + P I Y l  = co 

or,  rearranging  terms, 

(; G2J YE + (G12Y1) Y2 + (- co + Plyl + 1 .,,y:) = 0 

y2 may be  solved f o r  from ( A - 1 2 )  t o  g ive 

(A-8 )  

( 'A- 10 ) 

( A-11)  

( A-12 ) 

G 1 2  

G22 
Y2 - - --Y1 f ( A-13) 
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Figure A-2 shows the  curve V = cons tan t   p lo t ted   in  y coordinates. 

S i s  defined as the  length of t he  chord  joining two points  on  the  curve 

on a l i n e   p a r a l l e l   t o   t h e  y2 axis. S i s  jus t   twice   the   rad ica l  on 

the   r i gh t  of (A-13)  o r  

( - co + ply1 + A G  2 11 y 2 )  1 

G22 

This  can be rewr i t ten  as 

s = ,,/K2 - G11G22) Y1 - 2~ G Y + 2C0G22 1 22 1 
2 

G22 

Define 

2 
a = G  12 - G11G22 

b = - 2p1G22 

c = 2 C G  
0 22 

so t h a t  ( A - 1 5 )  becomes 

s = - 2 Jay: + byl + c 
G22 

Let U be 'the  value of y1 f o r  which. S = 0 . 

- -  
a 

The area  within  the 

n U 
4 A = 2 Sdyl = - 
G22 

curve  defined by V = C 0 i s  

(A-14 ) 

( A-16 ) 

(A-17  1 

( A-18) 

( A-20) 

(A -21) 



Let 

J = f,/r dx ( A-22 ) 

Integration by parts gives 

" 

( A - 2 3 )  

The in t eg ra l   i n  ( A - 2 3 )  may be evaluated  from  standard  tables of 

in tegra ls :  

0 

( A-24 ) 
U 

Let J+ and J 'be the  values of J corresponding to   pos i t i ve  and 

negative  values of a , respectively.  
- 

0 

-b & + hac-b 

sin-l ( -2ax-b ) 1' - 4a 
C z z O  

2 
J =  ( A-26 ) 

( A-25 ) may be writ ten  out  as 

J + = - 6 ; ; + - 2 (  -b d c  kac-b [ + 2a (z+,,/F)]-h(b+2&j) 

which s impl i f i e s   t o  



J =  -b J c  + 4ac-b2 (z ) + 4a 8a.J;; (b+2 &) 

(A-26) may be writ ten  out as 

J =  -b J c  + 4ac-b2{ -1[ -2a (2  + d G  ) b ] 
- 14a 8a .$-a 

s i n  J" - 4ac -G 

which s impl i f i e s   t o  

Noting t h a t  

-1 -1 w s i n  w = t an  
J Z 7  

(A-30) may  be rewr i t ten   as  

(A-28) and (A-32) f i n a l l y  become, a f t e r  a l i t t l e   r e w r i t i n g ,  

The to t a l   a r ea  i s  then  given  simply by 

b J c  
-4a 

(A -28 ) 

(A-30) 

( A - 3 1 )  

(A-32) 

( A - 3 3 )  

(A-34) 

A = -  4 J  
G22 
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APPENDIX B. VOLUME CALCULATION 

B -1. TRANSFORMATION OF COORDINATES 

Consider a third-order Lyapunov function of the  form (3-3) a s  a 
function of orthogonal  coordinates X I J  X 2 '  X 3 It w i l l  be  con- 

venient   to  compute the  volume contained  within  the  surface V = constant 

i n  a new orthogonal  coordinate system, two of whose axes l i e  on the  

switching  plane. The area of t he   ( e l l i p t i ca l )   c ros s   s ec t ion   pa ra l l e l   t o  

the  switching  surface  can  then  easily be computed and in tegra ted   to  

obtain  the volume. 

Let the  coordinates  of  the new system be given by y 1' Y 2 ,  Y3 - 
Let L be a vector  determined by the  intersect ion of the  switching 

plane and the  plane, and l e t  N be a vector normal t o   t h e  

switching  plane. The sketch i n  Figure 9-1 i l l u s t r a t e s   t h e  geometry. 

The transformation  from x t o  y coordinates i s  chosen t o  be, f o r  

simplicity,  first a rotation  about  the x ax is  by an  angle cp t o  

l i ne  up the x axis  with L , and then   f i na l ly  a rotation  about L 

by an angle 8 t o   l i n e   t h e  x3 ax i s  up with N . 
Let the  vectors L and N be given by 

- 
x2 -x3 - 

3 

2 - - 
- 

- - 
N = Id: dl 

- 
d 

3- 

and 

(where - k i s  the u n i t  vector on the  X ax i s ) .  3 

The first rotation  produces a coord ina te   se t   x i  , x; , x i  , 
given by 
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cos cp sin cp 

-sin cp cos cp 

0 0 

X 

"he  second  rotation  produces  the  desired  set 

COS e 0 -sin 8 

0 1 0 

sin 8 0 COS e [ -  
X' 1 

x; 

X' 
3. 

The  complete  transformation  is  then  given by a successive  application 

of (B-3)  and (B-4)  as 

ryll cos 8 cos cp cos 8 sin cp - s i n  8 1 
I y2 I = I -sin cp 

cos 8 cos cp cos 8 sin cp - s i n  8 

L cos cp sin e sin e sin cp cos O I  e 

cos 9, 

Ly3 J 

-sin cp cos 9, 

cos cp sin e sin e sin cp cos e J 

The application of a  little  geometry  shows  that 

cos cp = d 1 /dm 
cos 8 = d 3 / d m  
sin cp = d 2 /d-' 

:] 2 

X 3 
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S e t t i n g  

z = lid: + d2 2 2  + d3 1 

and 

z 2 = Jd: + d$ 

we can write R a s  

d2d3/z2 -z 2 

L dl d2 

0 

d3 

B-2. TRANSFORMATION OF THE LYAPUNOV FUNCTION 

The Lyapunov func t ion   i n   t he   o ld   coord ina te s  i s  given  by 

1 T  - x H x + ~ x = C  T 
2 -  - - -  0 

(B-10)  

(B-11)  

I n   t h e  new coord ina tes ,   a f te r   the   t ransformat ion  y = Rx , it becomes - - 

1 T  T 
- y G y + p y = C 0  2 -  

where 

G = F t H R  T 

and 

p = Rd - 

(B-12) 

(B-13)  

(B-14)  

B-3. COMPUTATION OF THE AFEA OF A CROSS-SECTION  OF (B-12)* 

Rewrite  (B-12) i n  terms of y and y with y considered as 1 2 3 

* 
Alterna te   express ions   for   the   a rea  may be  derived using t h e   i n -  

var ian ts   o f  a quadratic form; see, f o r  example,  Reference [16]. 
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a  parameter (y, is  the  coordinate  normal  to  the  switching  plane) : 

where 

- k =  

and 

C = C  -"G y 1 2 
1 0 2 33 3 - p3y3 

Define G to  be  the  matrix  of  the  quadratic  form (B-15), 
A 

G22 

The  eigenvalues  of G are 
A 

(B -16 ) 

(B -18) 

x =  G1l + G22 + J ( y 2 2 )  2 
1 2 + G 1 2  - G1l G22 

x =  G1l + G22 - J (G5G22) 2 
2 2 + G12 - G11G22 
The  transformation  matrix, M , which  transforms 

diagonal  form 

M? ĜM = 

-75 - 

(B -20 ) 

A 

G to  the 

(B -21) 



may be solved  for  as  follows: 

Let M be the  matrix whose columns are  the  normalized  eigen- 
n 

vectors  of G , 

L -I 
" i  i 
GU = l.u - 1- ' i = 1,2 

(B-22) 

(B-23) 

(u,) i 2  + ( u y  = 1 , i = 1,2  (B-24) 

From (B-23) 

i - G12 i 
u1 X1 - Gll 2 

- U 

U s i n g  (B-25),  (B-24)' and (B-22) we solve  for  M , af te r   def in ing  

The 

G12 Q. = 
1 1, - G,, 

M =  

transformed  variables z are  given by ' 2 [I:] = MT 

so tha t  (B-15) becomes 

- 1 2  + " A 2  
+ k M z = C 1  

1 2 1  2 T 
2 1 1  2 2 2  - - 

(B-26) 

(E-28) 
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Define 

w = M k  T - - 
(B-29)  can  be  rewritten,  after  completing  squares, as 

2 2 W W W * w  

l1 l2 

2 

1 2 1  x (.. + 2) +; x2 (z2 + 2) = c1 + p x 1 +  1 2x2 2 

(B-30) 

(B-31)  

or  

(B-32)  

The area of an   e l l ipse  w i t h  minor and major  semi-axes a and b 

is 

A = nab (B-33)  

For the   e l l ip t ica l   sec t ion   descr ibed  by (B-32)  we have 

(B-34)  

and 

so tha t   the   a rea  i s  

W 2 w  2 
1 2 277- A = -  

-2 ( C . + . . ; + q )  

(B-36)  

From (B-27)  and (B-30),  
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Subs t i t u t ing  (€337) and (B-38)  i n  (B-36) and  using (B-16) t o  eliminate 

kl and k2 we ob ta in  

where 

2 

s 1 =x 
i=l 

h 

I I 

2 33 l G  

2 

s 3 =I 
i=l 

2 
( Q p l  + P,) 

+ c  
0 

(B-40)  

(B-41)  

(B-42)  

B-4. C 0 " T A T I O N  OF THE VOLUME 

One half of the volume conta ined   in  V = C i s  obtained  by 0 
i n t eg ra t ing  (B-39) from y3 = 0 t o  the  ex t remi ty  of the bounding 

sur face .  The upper l i m i t ,  U , is  obtained by setting A = 0 i n  (B-39) 

and solving for y 3 .  

(B-43) 
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The total volume is then given by 
" 

or 
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