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ABSTRACT

This thesis presents a new computational technique for constructing
Lyapunov functions for estimating the domain of asymptotic stability of
non-linear control systems. A machine program assigns figures of merit
(based on the size of the stability-boundary estimates) to the members
of a set of Lyapunov functions and then searches for the one which
maximizes this measure. The method is applicable to a wide variety of
non-linearities but it is principslly applled in this thesis to relay-
control systems, which are not tractable by other systematic techniques
such as the method of Zubov. The numerical results of a number of
second- and third-order examples are presented, including one example
with non-linear plant dynamics and one example with a saturation charac-

teristic in place of the relay.

The thesis is broadly divided into two parts. The first part
contains a discussion of the motions of relay-control systems and the
technique of investigating their stability domains with Lyapunov functions.
The second part contains a discussion of existing methods of generating
Lyapunov functions and a description of the new method, along with the

examples.

The method of constructing ILyapunov functions demonstrates marked
advantages in that it is not limlted to second-order systems, it is not
restricted to smooth or even continuous non-linearities, and it effec-

tively utilizes the resources of high-speed machine computation.
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I. INTRODUCTION

The direct method of Lyapunov is a technique for investigating the
stability of a system of non-linear, ordinary differential eguations. [1],
[2],[3]¥ TIn theory the method is quite simple and general; it consists
essentially of forming a sign — definite scalar function of the gystem's
state and examining for definiteness the sign of the time rate of change
of this function along the system's trajectories. Because of its elegance,
the direct method has been the subject of much research in recent years.

It was originally hoped that it would provide a powerful means of studying
the stability properties of non-linear control systems. Considerable ex-
perience, however, has shown that the application of the method is far

from simple and that success frequently depends on the skill and persistence

of the user.

An important practical application of the direct method which
currently suffers notably from these defects is the estimation of the domain
of asymptotic stability, the set of initial system states which with in-
creasing time return to a desired equilibrium state in a certain well-
behaved fashion. The particular problems that arise are twofold: First,
the numerical testing of a Lyapunov function to determine the boundary of
the estimate is involved and in general not feasible to perform by hand
in realistic exampies. Second, there is no general method for system-
atically constructing Lyapunov functions to improve stability domainp
estimates. A solution to the first problem was recently found by Rodden
[4] when he developed and used numerical techniques to determine stability
boundaries for a wide variety of non-linear control systems. Although
much effort has been expended on the second problem, no entirely satis-

factory solution has been found.

Of the techniques which have been developed for generating Lyapunov
functions, the only direct and truly systematic one is the method of
Zubov. [5] However, one of its chief defects is that it is not applicable
to discontinuous systems. The subject of this thesis is a new, systematic

technique for obtaining useful estimates of the domain of asymptotic

*.
Numbers in brackets refer to the bibliography at the end of the
report.
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stability for relay-control systems, an important class of systems whose
discontinuous nature excludes them from the treatment by Zubov's method.
This new technique utilizes as a basis the numerical procedure employed

in Reference [4] for determining the boundary of the estimate; an "optimum"
estimate of the stability boundary is computed numerically by systemat-
ically searching for the best Lyapunov function within a specified class,
the functions being ranked according to the size of their stability-

boundary estimates.

Although this technique was developed to overcome special problems
connected with discontinuous systems, it 1s applicable to systems with
continuous non-linearities as well. It is hoped that though this thesis
will be principally devoted to the study of relay-control systems, the
examples will also serve as a kind of case-study for the application of
the technique to other classes of non-linear control systems. Some
possible extensions of the method will be outlined and, in addition, the
extension of the method to systems with a saturation type non-linearity

will be discussed in detail.

This problem divides itself naturally into two basic parts. The
first part consists of the development of the technique of analyzing
Lyapunov functions for relay-control systems. 1In Chapter II the relay-
control system is defined and its special motions are qualitatively
described and classified. It 1s then shown in Chapter III how to apply
a special class of Lyapunov functions to these systems; the conditions
for the existence of these Lyapunov functions are also discussed. The
second and major part of the thesis concerns the construction of Lyapunov
functions for producing useful stability boundary estimates. In Chapter
IV existing methods are discussed and the new technique for improving
the estimate employing the class of functions introduced in Chapter III
is presented, along with a number of illustrative second- and third-order
examples. Extensions to systems with saturation and other non-linearities
are discussed in Chapter V. Finally, the results are summarized in

Chapter VI.



IT. CLASSIFICATION OF THE MOTIONS OF RELAY-CONTROL SYSTEMS

1. DEFINITIONS

The motions of relay-control systems were described at length by
Fllgge-Lotz [6] for linear switching and by Maltz [7] and Alimov [8],
among others, for wider classes of switching functions; we shall follow

Alimov's more mathematical treatment in most of our development.

The relay-control system is assumed to consist in general of a non-
linear time invariant plant (containing only continuous elements without
time delay) controlled through a single ideal relay, the system so con-
structed that the switching function is continuous in time. The input
is assumed to be zero. This system can be described by an autonomous

vector differential equation of the form
. *
% = F(x) + c(x)senlo(x)] (2-1)

where

X 1is an n-dimensional state vector.

F(x), c(x) are continuous non-linear vector-valued functions
of x with continuous partial derivates; E(g) = 0.

o(x) 1is a continuous scalar function of x , the switching
function, with o(x) = O defining the switching
surface.

sgn(o) is the signum function of o , to be precisely defined
below.

In the examples in this work the switching function will be linear

so that (2-1) becomes
° T
% = F(x) + c(x)sgnld x] (2-2)

where d is the normal to the switching hyperplane. Furthermore, in

most of the examples the plant will be linear and the control magnitude

*
Vector guantities are underlined and understood as column matrices
unless otherwise indicated. The transpose is denoted by a superscript T.
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a constant, c(x) =b .

% = Ax + Db sgn [a'x]

where A

constant vector of n dimensions.

is an n X n matrix of constant coefficients and E

The differential equation becomes

(2-3)

is a

In addition, the state vector will

be represented in phase coordinates (although this is not required), in

which x. = x,
i+1 i’

takes on the following special form

i = l,2,...,n - l .

’;'cl ] o 1 o . .

x2 0 0] 1 0 . .
X 1 0 .
—Xn | ——al —8.2 .

The differential equation then

-8

The system block diagram is shown in Figure 2-1.

+| . sgn[é?z]

0

-1
L

(2-4)

The block-disgram representation of the system of Equation (2-3)

consists of a transfer function with feedback around it through a relay;

this characterization may also be viewed as an alternative, basic

definition of the system.

A thorough discussion of the connection

between the black-box, transfer-function model and the differential

equation characterization may be found in Reference [17].

It can be

shown that the transfer function corresponding to (2-3) is given by

gT(sI -t b .

Equation (2-4) is Jjust one of a variety of possible forms this repre-

sentation can take; the switching function has been taken in this case

to be a linear combination of all of the state variables.

Another basic

form corresponds to identifying o with a single state variable (xl) ’

with

T



d+ds+. .+ d"s."'|

s"+a s+,

+d

Fig. 2-1 Block Diagram of the Relay-Control System with Linear Plant and SWitching.



0 0 0 . . 0 -al
1 0 0 . . 0 .
0 1 0 . .
A=]. 0 . . . . .
. . . . O -an_l
0 o} . 0 1 -8
-— n -l
a, | 0
d2 0
b=1. 3 and a =
. 0
4 -1
L n_| N

It is clear from the fact that the preceding formulas contain 2n

arbitrary constants (al seees 83 Ay s, dn) that the existence

l 2
of zeros in the transfer function between the relay and the system output

has no bearing on the characterizations discussed above.

The signum function is the mathematical representation of an ideal

relay, which we define as

+1 , >0
sgn(o) = P g=0 Slsgps1 (2~5)
-1, g <0

This definition is equivalent to that commonly employed in the represen-

tation of Coulomb friction (see, for example, Andronow and Chaikin [9]

-~ 5a -



p. 108). It can be viewed as the limiting set of points approached by

the set of points on the saturation function defined by
+1 , o> 1/k
sat(o) = <{ko, lofl= 1/k (2-6)
-1, o <-1/k
as ¥x-oo and thus is an intuitively proper choice. Most importantly,
this definition simplifies the description of the motions of (2-1) on
o = 0; a particular advantage is that it creates a well-defined equil-
ibrium at x =0 .
2. MOTIONS

Solutions of (2-1) will clearly be well defined everywhere except in
the neighborhood of o = O , where their behavior may be investigated
by deriving the equation of motion in terms of o . Form the total time

derivative of ¢ in terms of the switching surface gradient, a row vector

Yo < dg dg 90
_"gl’g}zga""axn >

to obtain
5 (9t = (V(x) +(To)e(x) sen (o) (2-7)

For values of x satisfying the inequality

| > kyok| (2-8)

o has the same sign on both sides of the switching surface so that a
trajectory intersecting the switching surface from o positive (negative)
may be continued into the region o negative (positive). In terms of
the signum characteristic, the "fan" of possible tangent vectors (2-5)

of the trajectory at the switching surface lies wholly on the new side

of the surface; thus any value of @ in Equation (2-5) at switching
carries the state point across the surface. (See Figure 2-2). 1In order

to insure the uniqueness for x for this motion, which we call regular

-6 -



Fig. 2-2 Trajectory Directions at o = 0 for Regular Switching.

o<0

Fig. 2-3 Trajectory Directions at o = 0 for Sliding.



switching, we arbitrarily define ¢ at o= 0 under (2-8) to be +1 .
(As a consequence of definition (2-5), the particular value assumed by
@ for regular switching on o = O 1is entirely arbitrary; we fix it at

+1 only to make the solution to (2-1) formally unique.)

For those values of x which satisfy the relations

ek | < fwo)c | (2-9)

or
T T ,

|c_1 A;_c_' <ld 1_)_, for the system described by (2-3) (2-9a)
and

(Yoe < 0 (2-10)
or

™ <0 for the system described by (2-3) (2-10a)

g, from (2-7), is opposite in sign to o and independent of its
magnitude; thus motions in the neighborhood of the switching surface are
driven to the surface and forced to remain there once the surface

is reached, for as long as (2-9) and (2-10) hold. The orientation of

the fan of tangent directions on the switching surface in Figure 2-3
shows that only one of these tangent directions 1s allowable, corresponding
to a unique value of ¢ . This constrained motion is known as chatter
in western literature. The name derives from the observed behavior of

a physical relay operating in this mode. Due to small time delays in
switching, the state point does not remain precisely on the switching
surface; rather it "chatters"” with a small amplitude at a high frequency
from side to side of the switching surface. On the average for small
time delays the state point for the physical relay proceeds on the
switching surface and approximates the mathematical idealization proposed
here. 1In Soviet literature this motion is referred to as sliding; this
terminology seems more in keeping with our i1dealization, since the
preceding results indeed imply that the state point "slides" on the
switching surface. The term "sliding" will therefore be used exclusively

here to clarify the distinction between ideal "sliding" and physical

-8 -



"chattering" with its high frequency components of motion. It should be
kept in mind, however, that the behavior of & sliding system closely

approximates a chattering one for sufficiently small relay imperfections.

The output of the relay, ¢ , for a sliding trajectory may be deter-
mined by setting sgn(o) =@ and & =0 in (2-7) and solving for o .

The result is

~(%oF
PR

(2-11)

The equation of motion for sliding may be expressed in first-order form by

substituting the expression for ¢ from (2-11) for sgn(o) in (2-1):°

x=F - dvoF/fVoe (2-12)
, dvd R \
x = [I '@E]E = F(x) (2-13)
o(x) = 0

For (2-3), the equation is a linear one

T

bd .
X = [I - —T—]Az = Ax (2-13a)

ad

on

dx -0

If phase coordinates (2-4) are used, sliding motions are described simply

by the (n-1)st-order differential equation in Xy

o(x)) = olxpskys -oes %, B 20 (2-14)

*0(5) =~ constant and QT§ = constant are solutions to (2-13) and
(2-13a), respectively, since these equations were derived from the con-
dition & = O [eg. (2-7)]; the auxiliary conditions o(x) = 0 and dTx-=
0 are thus necessary to properly constrain the solution to the switching
surface.

_9_



(The continuity condition on ¢ requires that it contains at most the

(n-1)st derivative of Xl')

Another characteristic of solutions on o = 0 will be mentioned

for completeness. If, in addition to (2-9) and in place of (2-10),
(Vgk >0 (2-15)

then trajectories intersecting the switching surface all leave the surface;
points on the switching surface where this condition holds have been named
"starting points" [6], since trajectories may originate at these points
but never arrive there. Conditions leading to the existence of starting
points are usually avoilded in the design of relay-control systems and thus
are normally of no practical interest; starting points will therefore be

ignored here.

If both (VoF and (Y@g are zero, then ¢ 1is also zero from (2-7)
and U must be examined in order to determine the motion in the neigh-
borhood of ¢ = 0. This case will also not be considered here; conditions

analogous to (2-9) and (2-10) for a sliding motion are given by Alimov [8].

In conclusion, the motions of (2-1) based on (2-5) may be summarized
as follows: Solutions exist everywhere, and if (Voge < O (no starting

points), trajectories proceed in a well-defined direction at each point

in the state space.

- 10 -



ITI. LYAPUNOV'S DIRECT METHOD

1l. THE MAIN THEOREM
The idea of the Direct Method is well known and discussed in detail

in a number of references [1], [2], [3], so that only the essential re-

sults will be presented here.

Consider an ordinary differential equation with a single equilibrium

at x =0 .

x=3F(x) , ¥(0) =0 (3-1)

Let & be sufficiently well behaved that solutions of (3-1) (given by
E(z?, t) with initial state 59 and initial time taken as zero) exist
everywhere.

The following theorem (see Hahn[1l] and LaSallel2]) gives sufficient

conditions for the determination of a subdomain of the domain of asymptotic

stability of (3-1), which we will call simply the estimate of the stability

domain¥:

Theorem 1 The equilibrium of (3-1), Xx = 0 , is asymptotically stable
(A. S.) in a domain R if there can be found a continuous scalar function
V (to be called a Lyapunov function) such that

(1) wv(x) is positive definite in R

(2) V(x) = constant is a closed surface bounding R

(3) V(x) is negative semi-definite in R .

(#) V¥(x) does not vanish identically on a trajectory of (3-1) in

R .

V(g) is the time rate of change of V evaluated on a trajectory of (3-1)

VIy(e,2)1 - v [y(&,0)]

% (3-2)

v(g) = 1im
L0

*
The equilibrium x = 0 1is said to be asymptotically stable in a domain
R if o
i.) Tor every € there exists a & such that if |x || <& then
”i(g?t)u <€ forall t >0 -
ii.) lim  y(xQt) = 0 for all x° in R .
t-»o00
- 11 -



The surface with the greatest value of V = constant = Cmax which
satisfies the conditions of Theorem 1 gives the boundary of the largest
stability-domain estimate. In Figure 3-1 this surface is the one Jjust
tangent to the surface V = 0 and thus has the largest value of V of
those surfaces lying wholly within the space V <0 . The determination
of this boundary in practice is a difficult matter in all but the very
simplest cases. The numerical techniques developed and used in Reference
[4] for determining stability boundaries for second- and third-order
systems have been used in this work in the testing of the V functions
described below to determine stability boundaries for relay-control

systems.

2. APPLICATION OF A SPECIAL LYAPUNOV FUNCTION TO RELAY-CONTROL SYSTEMS

Consider as a candidate for a Lyapunov function for (2-3) a function

of the Lur'e form (a symmetric quadratic form plus the integral of the

nonlinearity)
g
V = % ETHE + 5‘sgn(0)do
0
V = %ETHEE + gT5 sgn (ngg) (3-3)

(It will be shown that (3-3) is also a suitable function for (2-2).) The
time rate of change of V , V , on trajectories of (2-2) must be
evaluated differently depending on whether or not the trajectory is con-
strained to lie on the switching surface in a sliding motion. For

regular switching
sgn (o) = £ 1 (3-4)

vV is given simply by

V= (YW (3-5)
In accordance with the convention established in Chapter II, that
sgn(oc) = +1 in (2-2) on ¢ =0 for regular switching, we also define
sgn(o) in (3-3) to be positive for o = O. Thus (3-5) is unambiguous

and can readily be evaluated from (3-3) and (2-2) to be

- 12 -



Vs
constant

Fig. 3-1 Stability Boundary Determined from a Lyapunov Function
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V= %‘ [F(x)THx + _:gTHI*_“(g)] + [e(x)THx + a"F(x)]sgn(o) + d'e(x)  (3-6)

If F(x) and c¢(x) are expanded in Taylor series

2

F(x) = &x + 0(x7)* (3-7)

and
2

e(x) =p +Cx +0(x") (3-8)

The constant term of the expansion (3-7) has been set equal to zero
because there is an equilibrium of (2-2) at x=0. V can then be
written

V= :;L- xTqx + kK'x sgn o + &b + 0(x") + 0(x")sgn o + 0(x)  (3-9)
where

Q = A?H + HA
and

k=Hb +4Ad
For the linear plant and constant control magnitude case of (2-3) this
equation simplifies to

T=5xex+kxsgno+db (3-9a)

N

For sliding, since o = O , the Lyapunov function assumes the
simpler form

vV =

s ETHZE (3-10)

|~

(The subscript s denotes guantities evaluated on a sliding trajectory.)

*
Q(EF) denotes vector-valued functions of x whose components are

O(EP) , terms of at least n th order in the x, .

- 14 -



Using (3-10), the sliding mode velocity given by (2-13), and the series

expansion
~ N 2
F(x) = Ax + 0(x") (3-11)

the time rate of change of V 1in sliding is

¥ = % [F(x)THx + xHF(x)] (3-12)
or

v, =5 x0x + 0(x) (3-13)
where

~

Q= A"H + HA

For the system of (2-3), equation (3-13) simplifies to

. 1 ™
V. =3 xex (3-13a)

The application of these results will be illustrated with several

simple examples.

Example 3-1.

Consider the system represented by the block diagram of Figure 3-2

and the differential equation¥

0 1 X, 0
= + sgn(2xl + x2) (3-14)
1 0] X, -1
Take as a possible Lyapunov function
1 0 1 0
V==x x + (2x, + x.)sgn(2x, + x.) (3-15)
2 = o 11° 1 2 1 2

The uncontrolled system is unstable, with roots at +1 and -1 ,

- 15 -



Fig. 3-2 The System of Example 3-1.
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V may be evaluated for o # 0 according to (3-9) as

V = 2x.x, + (xl + x2)sgn(2xl +x,) -1 (3-16)

172 2)

Figure 3-1 shows the regions of positive and negative V in the plane

and a plot of the curve V =C .
max

From (2-9a) and (2-10a) sliding will occur on 2x +x, = 0 for

%, +2x,] <1 (3-17)

o
Thus sliding occurs for (2/3) > X, > -(2/3) . The sliding equation is,
from (2-13a),

. o 1 A
X = [é -:] X =K (3-18)

(A can also be easily obtained by noting that x remains equal to x

and that on the switching line x, = -2x; or k21= -2&1 = -2x, J) :
%s can be evaluated by differentiating (3-19) according to (3-18):
Vo= x.k +xk = xx. - 2x0 = - byt (3-20)
s 171 271 172 2 2
which is clearly negative definite on x, = -2x_. . The region in

1 2
Figure 3-1 bounded by V = Cmax is therefore an estimate of the stabi-

lity domain since we have demonstrated that V is negative definite on

all trajectories.*

Example 3-2.

Consider the same basic system with a different switching function:

dx=x, - x

5 1 (3-21)

Take for a Lyapunov function the same form

The true stability domain for this system is shown later in Figure L4-2.

- 17 -



i 2 1 2
V=5x, +5x, + (x2 - xl)sgn(x2 - xl) (3-22)
Then
V= 2xx, + (xl --2x2)sgn(x2 - xl) -1 (3-23)

for regular switching. Regions of positive and negative V are shown

in Figure 3-3 together with a plot of the curve V = Cmax . In this
example the boundary between regions of positive and negative V does not
everywhere consist of curves V = 0 since U changes sign discontinuocusly
across this boundary when it coincides with ¢ = O . Sliding still occurs
for this system (since again g?h < 0 ), the region being given by (2-9a)

as

-x, tx | <1 (3-24)

1 2l

the whole switching line. A may be computed as before.

. 0 1
A = (3-25)

0 1
Vs , evaluated by differentiating (3-19) according to (3-25), is

. . . 2 2
Vo= XX X%, = xx, tx, = 2%, (3-26)

which is positive definite along the entire line Xy = X5 - Thus
Theorem 1 is not satisfied for any value of V = constant and the

stability domain estimate i1s not -valid.

This example illustrates the necessity of including sliding effects
in a Lyapunov function analysis, since the partial analysis of this
example implied stability, while the equilibrium is clearly unstable

because sliding trajectories proceed away from the origin.

These examples also suggest the following assertion: The existence
of a stability domain is determined by the stability of the sliding
motion in the neighborhood of the equilibrium, when sliding is present.

This may be readily demonstrated as follows: If sliding exists, g?g
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Fig. 3-3 Stability Boundary for Example 3-2.



is a negative number and thus we can find a neighborhood of x = 0,

x|l <€ with e sufficiently small, in which V in (3-9) is everywhere
negative, for any H . Thus any positive definite V of the form (3-3)

will be a Lyapunov functlion for regular switching. Consider now i and

vV for sliding:
X = Ax + 0(x") (3-27)
V=5 x| (3-28)

Let R be an orthogonal transformation from x to y such that Y,

is normal to the switching plane.* Then

. ~ T 2
Js = RARy + 0(y") (5-29)
and
1 T T
V, =5y RERy (3-30)

where use is made of the fact that the inverse of an orthogonal matrix is
equal to its transpose. in = 0 1in sliding. Therefore the Yy coordi-

nate may be neglected and new n-l st.-order equations in

T .
z = [yl’y2"""yn-1] written:

iy = A'z + 0(z") (3-31)
and
V. =32z (3-32)

where A' = RART and H' = RHRT with the n th columns and rows
deleted. If sliding is stable the eigenvalues of A' must have negative
real parts, and thus by a well known result (1] it is always possible to

find a set of positive definite H' matrices that make

*
An example of such a transformation may be found in Appendix B,
where it is employed in a computation of the volume within V = constant

for a third-order V of the form (3-3).
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\}S = %E_T(A'TH’ + H'A')z + 0(3_3)
= % 20'z + 0(z°) (3-33)

negative definite and thus (3-32) a Lyapunov function for (3-31) in a
sufficiently small neighborhood of the origin. If sliding 1s unstable,
clearly no stability region exists since an unstable trajectory of (3-31)
leads away from the origin. This discussion not only shows that the
stability of sliding motions (when sliding exists) is a necessary and
sufficient condition for the stability of (2-2) but also that a set of
ILyapunov functions (3-3) always exists to estimate the stability domain
of (2-2) when a sliding mode is present. (Note that in the second-order
case it is actually not necessary to check VS since if sliding is

stable, VS < 0 for any positive definite V .)

Complete conditions for A.S. of the equilibrium of (2-3) in the
form (2-4) may be found in Anosov [10]. Interpreted in terms of the root
locus based on Figure 2-1 with a gain K in place of the relay, a single
necessary and sufficient condition is that the locus of all roots lie in

the left half plane in the limit as Ko = .
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IV. METHODS OF GENERATING LYAPUNOV FUNCTIONS

1. EXISTING METHODS

Since in general an infinite number of Lyapunov functions exist for
a particular system, the problem of finding some ILyapunov function is not
difficult. However, the problem of finding one which gives a useful
approximation to the stablility domain is a formidable one and a task to
which a number of workers have devoted their attentions, among them

Zubov[5], Ingwerson [11,12] , Schultz and Gibson[13], and Szegsll4],

The Zubov technique consists of finding approximate power series

solutions, V , to the partisl differential equation
V=0 vxB(x) = - 6(x)[1 - v(x)] (4-1)

where &F(x) (see equation (3-1)) has a power series expansion in x
about O and 6(x) is positive semi-definite. The requirements on
3(5) exclude discontinuous systems L further disadvantage of this
method is that the convergence of the series solution is not uniform
and may be quite slow and erratic [41. The speed of convergence is very

sensitive to the choice of 8 , which unfortunately must be based on

experience.

The most systematic method among the others is Ingwerson's in which
the Jacobian of § is used, in analogy with the linear case, to form a
matrix of second partial derivatives of a scalar function which may be
integrated twice to form V . Although the method is not guaranteed to
work, the results are quite often good. Like Zubov, however, a critical
decision is involved in choosing a form for v 3 in fact the quantity
chosen is the same in both cases: The quadratic or lowest -order terms
of V . Again, in Ingwerson’s method success is dependent on a good
choice of these terms, which depends, apparently, on a combination of

erseverance and again skill gained through experience.
P P

Unlike Zubov's method, Ingwerson's is applicable to discontinuous
systems. However, a restriction imposed by his special integrating

procedure prevents the non-linear terms of E(E) from appearing in the
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Lyapunov function with more than two different state variables as
arguments. In the relay-control case this means that the switching
surface cannot be made the locus of discontinuilities in ‘Y V for systems
of third order (containing all three state variables in the switching
function) or higher. Since in general the surfaces bounding true
stability domains have this locus of discontinuities in their gradients,

this restriction limits the scope of the method.

The techniques of Schultz and Gibson and Szeg8 are less systematic
than that of Ingwerson and amount to policies rather than algorithms;
these approaches gain in flexibility by requiring more choice, skill,
and industry of the user. 1In general, they suffer from a defect in
common with Ingwerson's; all attempt to incorporate the system's non-
linearities into a valid Lyapunov function in hope that the resulting
function will happen ta be a useful one. (In the case where a demon-
stration of global A.S. 1is desired, however, the search for a Lyapunov
function can be made more systematic[13].) Two problems are associated
with this approach: First, it is difficult to determine how good the
result is without knowledge of the exact solution. Second, there is no
systematic way to improve the results. In a sense, these methods are
indirect. Considerable effort and ingenuity are expended on producing
a Lyapunov function of more or less complex form; the goal of achieving
a useful form is attained (if it is attained at all) only as a rather
indirect result of the generating process. A more direct method, and
one more readily applicable to relay-control systems, is the subject of

the remainder of this work.

2. A METHOD BASED ON A STEEPEST-ASCENT TECHNIQUE

This method has two basic elements: (1) a class of Lyapunov
functions depending on a set of parameters and (2) a digital computer
to "rank" the functions and search for the "best" one in the class. In
a sense it replaces the complex functions of other methods with a multi-
plicity of simple functions and substitutes for the user's skill and

limited time the relatively unbounded industry of the digital computer.
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In the majority of applications the "best" or most useful

Lyapunov function is the one which produces the greatest estimate of

the stability domain. A suitable figure of merit for a Lyapunov function
V , then, is the hypervolume (called simply hereafter the volume and
denoted by I ) contained within the estimate of the stability boundary
given by V = Cmax . Intuitively one feels that from asmong a set of
Lyapunov functions of a fixed form, the function which is optimum in the
sense of having the greatest volume will also produce the best stability-

boundary approximation.

With a sufficiently well-defined performance measure depending on
a set of adjustable parameters it is possible to use one of the well-
established surface-~-searching techniques[15] to find the location of
the optimum in parameter space. Such a procedure is made possible in
this case by the use of a computer program for determining tangencies,

computing volumes, and performing a numerical search.

Consider (3-3) as the form to be optimized for the relay system
(2-2). The possible positive coefficient multiplying the term on the
right of (3-3) was arbitrarily taken as unity to fix the scale of V ;
the adjustable parameters are the independent elements of the symmetric
square matrix H , of which there are n(n+l)/2 . 1In general, the
conditions that these elements must satisfy are not very restrictive;
for example, for second-order A. S. systems with a sliding mode any

positive definite V of the form (3-3) is a Lyapunov function for (2-2).

The linear form of the switching function has been postulated to
facilitate the computation of the volume within V = Cmax s which may be
performed analytically in thils case; the computations for second- and
third-order systems are performed in Appendix A and B. For a general
non-linear switching function a numerical integration procedure would be
required. Such a procedure is practical for second-order systems but
becomes quite cumbersome and time consuming for third-order systems.
(Several alternatives for treating non-linear switching will be mentioned

later.)

From among many existing surface-searching techniques a steepest-
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ascent method was selected for its simplicity of mechanization. ILet

the adjustable parameters be p; s i=1L2,...m. V(E’E) is a Lyapunov
function for the system under consideration for values of p consistent
with certain constraints. (In optimization problems the optimum is

often located on a constraint surface; in this problem, however, it was
found that the functions on a constraint boundary ordinarily have a
measure I of zero and are automatically avoided by a systematic search
procedure.) At a starting point given by p(o) s the values of the
performance index I(O) and its gradient §'I(O) = [BI/Bpl .o SI/Bpm](O)

are computed and a step of some pre-determined magnitude dso is taken

in the direction of V I(O) in the p space. The location of the new

point 1s given by

0
E(l) = B( ) + dsOEFI(O) (4~2)
1
Irf I( )> I(O) the new point is accepted and the process is repeated
with p(l) now as the starting point. If I(l)< I(O) the step size

is halved to dsl = dso/2 and a new point

o) - 000 g F5(0)

is tested; this procedure is continued until either I(l)> I(o) (in
which case a new step is made at the current step size) or else the

step size reaches some pre-set lower limit and the search is terminated.

Although I is evaluated analytically, the computation is cumber-
some and the result is not obtained in a single, closed form. Therefore
the gradient of I 1s computed numerically by successively perturbing

the elements of b -

A simplified block diagram of the entire process is shown in
Figure 4-1. The block labeled "Find Tangency" contains the program
described in detail in Reference[l4] which performs the rather complex

computations of Cm Briefly, this program carries out the following

ax
operations, beginning with given V and & functions and a pre-determined

starting point in state space:
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Fig. 4-1
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Flow-Diagram for the Steepest-Ascent Method
(The program is started by assuming a vector E°)



A.) A point on a surface V = 0 is found by either spiralling
outwards from the origin if the starting point is in a region of
V<o or, if Vv is initially positive, marching in steps in the

direction of the negative gradient of V.

B.) A minimum of V is found on the V = O surface by a gradient

search process, and this value of V is accepted tentatively as Cmax .

C.) Optionally, the program traces out intersections of V = Cmax
with selected planes in order to test the validity of the tangency.

If an intersection curve passes into a region of positive v s the value
of Cmax is rejected and the search is begun again for the true, global

minimum of V on V =0 .,

Considerable time may be saved by deleting part C.) whenever
possible. Thus, the tangencies found on perturbations of p were not
verified by plotting, since they were nearly certain to be valid if the
nominal tangency was valid itself. Detailed verification of tangencies
may also be deferred to the final result with high confidence if the
possible multiple local tangencies may be classified and a directed
search performed for each type, with a consequent selection of the
lowest value of Cmax . This procedure was carried out in practice and
will be discussed with illustrative examples.

Computation time may also be saved on perturbations by modifying
the starting point to be very close to the nominal point of tangency
in a region V > 0 , thus effectively reducing the time required to

find the new, perturbed point cof tangency.

More of the details of this process will be discussed in the
examples which follow. The numerical calculations were performed on the
IBM 7090 computer for early examples and on the Burroughs B5000 computer

for later ones.

3. ILLUSTRATIVE EXAMPLES: SECOND-ORDER SYSTEMS

Second-order examples will be discussed at length first since they

offer the clearest demonstration of the method.
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Example L4-1

Consider the system of Example 3-1 pictured in Figure 3-2.

X1=X2

]
[

5 =% - sgn(2xl + x2) (4-3)

To start the process H was taken initially as the identity matrix.
Starting with a step size of 0.5 ;, after eight iteration steps the
computation terminated when the step size fell below the perturbation
size (.0l) , which was taken as a lower limit. The results are shown
in Figure 4-2 where the initial and final "optimum" stability domain
estimates are shown together with the true (open) boundary, which is
approximated quite well over a large region. The true boundary was

found by constructing and examining phase-plane trajectories. The

computed boundary was given by Cmax = 1.913 . The computed optimum
H was
- 0.0k 0.91
H =
0.91 1.89

which is clearly indefinite, demonstrating that a positive definite H
is not necessary to produce a V of the form (3-3) which is positive

definite in a finite region.

Example L4-2

Consider the system (also treated by Ingwerson[l12])%

(4-b)

Xp = - Xt X, - sgn(xl + x2)

represented in block-diagram form in Figure 4-3. Again H was taken

*
The uncontrolled system has a pair of complex roots

+1/2 % 363/2) .
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system: A= |0

=8

]
[ 1
N,

initial guess,

H= [to 0.0
0.0 10

Ifinal computed

stability boundary,

H = -0.04
0.91

0.91
.8

]

true stability boundary

T-3

Fig. 4-2 Stability Boundaries for Example 4-1.
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Fig. 4-3 The System of Example 4-2.
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initially as the identity matrix. Figure 4-4 gives the results of the
search process together with the true (closed) boundary, approximated
well by the computed boundary. The true boundary may be found by
changing the sign of time in the differential equations and integrating
them forward with a machine integration routine to obtain the stable
limit ecycle which the stability boundary becomes under the transférmation
of time; this limit cycle may also be determined analytically. The

computed optimum H was

2.89 - 1.05

=
il

- 1.05 1.68

with Cmax = 1.759.

In this problem a phenomenon appears which degrades the convergence
of the search process near the optimum. Two kinds of tangencies occur
in general for these systems: a normal or "smooth" tangency which
was illustrated in Figure 3-1 and a "corner" fangency, a contact between
V = const. and V = O surfaceson g =0 s illustrated in Figure 3-3.
(As mentioned in Chapter III, the V=0 surface 1is described more
accurately as the boundary between regions of V<0 and V >0,
since V changes sign discontinuously across this surface when it
coincides with o = O ). The smooth tangency is found by using the
tangency search with (3-3) and (3-9a) with o # O . The corner tangency
may be found similarly by replacing sgn(c) with tanh(a o) in (3-3)
and (3-9a) (@ is a large positive constant), thus approximating the
corner tangency by a smooth one. More accurately, a separate tangency
search may be performed on o = O ; this amounts to finding tangency

between

V= & xTHx (4-5)

Mo+

and

<3
1]
o=
1%
1
4
-
I
+
o
o
i)
(@]
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system: A= [0 ‘il, g=[|] T3 initial guess,
|

H=11.0 0.0
0.0 1.0

final computed
stability boundary,

—~——true stability boundary

H=[2.89 -.05
-1.05 1.68 1.3

Fig. 4-4 Stability Boundaries for Example 4-2.
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in the subspace
dx =0

where the % sign arises by examining V a small distance to either
side of the switching surface. This latter procedure was the one used
for these second-order examples, where it reduces simply to the solution
of a quadratic, and thus does not require use of the tangency-search

program.

A typical corner tangency for this example is illustrated in Figure
h-5. 1In Figure 4-6 the area I is plotted as a function of Hll for
the H and H22 of Figure 4-5. All those points to the left of

the peii correspond to corner tangencies; to the right of the peak the
tangencies are smooth. The result of the two types of tangencies is
thus a sharp ridge (shown only in one dimension in Figure 4-6) in the
performance measure I . The search procedure drives towards the ridge,
"chatters" slowly on it toward the optimum, and then terminates

prematurely.

Performance can be improved in several ways. First the alternative
use of tanh(a o) for sgn(c) has the effect of rounding the ridges
and speeding convergence. Second, the search technique could be made
sophisticated enough to follow sharp ridges. The procedure used in this
example in effect followed the second course: when a computation termi-
nated after chattering in small steps along a ridge, the direction of
the ridge was estimated from the average direction of the chattering
motion and a new computation begun after taking a large step along the
ridge. The path in the Hll P H22 plane for this example is shown in
Figure 4-7.

Fortunately these ridges are usually not reached until the stability
region is fairly well approximated. Ingwerson points out [12]that the
proximity between the curves V = Cmax and V=0 is a rough measure
of goodness of the approximation of the stability domain; a point on the
ridge corresponds to V = Cmax and V = O curves with four points of
contact, rather than the usual two, thus probably producing a good
estimate.
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Fig.

L-5 fTypical Corner Tangency for Example 4-2.
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Example L4-3

Consider the system

Xl=X2

, = - % - sgn(2x; + x) (4-6)

¥
I

By examining the terms of V and V in detail one finds rather easily

that the Lyapunov function

1 3.0 0
V=5x X + (2xl+x2)sgn(2xl+x2) (4-7)
0 3.0

demonstrates the system to be asymptotically stable in the large.

H was again taken initially as the identity matrix. The results

are shown in Figure 4-8; the final H was
1.57 - 0.24
- 0.24 1.53

with the boundary given by C__ = 20.44 . Although this computed H
was not close to the H of (4-7) (which is unique among functions of
the form (3-3) in proving global asymptotic stability) the estimate

obtained might be useful for some purposes. This estimate could also

probably be improved by further refinements in the computation process.

Example 4-k4

Let the system be given by*

17 %

i2 =X, - X, - sgn(xl) (4-8)

¥
The uncontrolled system is that of Example 4-1 with the addition
of some damping; the roots are - 1/2 t'Jé/E .
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system: A= [O I],

initial guess,
H=|L.O 00
0.0 LO

final computed
stability boundary,
H={157 -0.2
-024 53

Fig. 4-8 Stability Boundaries for Example L-3.
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No sliding motions exist since E?E = 0 . An analysis of v readily
shows that for (3-3) to be a ILyapunov function for (4-8) it is necessary
that

H22 =1 (u‘9)
and
1> H12 >0
H22 was therefore held fixed at unity and the search was begun at
1.0 0.5
H =
0.5 1.0

The search remained in the allowable region (4-9) without further

constraints with the resulting H ,

0.50 0.89
0.89 1.00
producing the boundary shown in Figure 4-9 with Cmax = 1.229 .
Example 4-5
Consider the plant of Example 4-1 with a new switching function
kl = X,

(4-10)

b’

5 = %X - sgn(xl +x

o)

An examination of phase-plane trajectories readily shows that this
system is A. S. in the infinite strip bounded by Xy + X, = 1.
With this result in mind it is easy to show (by a detailed study of

the terms of V and V ) that the Lyapunov function
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system: A= I:O I

initial guess,

H =[|.o c::g]

(final computed
stability boundary,

H=[050 089
089 0O

true stability boundary—

Fig. 4-9 Stability Boundaries for Example L4-k.
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(1+€) 1

<
i
N
1%

X + (xl + xe)sgn(xl + x2) (4-11)

provides an arbitrarily large estimate of the stability region for
sufficiently small positive € . 1In the limiting case of € =0,
V = Cmax and V =0 coineide but V Dbecomes semi-definite and thus

not a proper Lyapunov function.

The results of the search process, starting again with H =1 ,

are shown in Figure 4-10. The computed H was
0.70 0.73
0.73 0.82

with C = 1.234
max

Example 4-6

Consider now a system with a non-linear plant, shown in Figure 4-11,

. 3
X, = X - sgn(2xl + x2) (4-12)
The computed H was

0.88 0.11

T
I}

0.11 1.30

with the results shown in Figure 4-12. The boundary was given by

C ooy = 2-111 . The true boundary was found by integrating (4-12) back-
ward from final conditions determined from an examination of graphically
constructed trajectories. The quality of the estimate and the speed

of convergence of the search were not as good as for the related linear

plant of Example L4-1.
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final computed
stability boundary,

H= {070 073
073 082

JVinitial quess,
H={1.0 0.0
N\ 0.0 1.0
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T
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t } —
4

! 2 3

i
T

]
[¢]

true stability
T-6 boundary

—

Fig. 4-10 Stability Boundaries for Example 4-5.
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{}

Fig. 4-11 The System with Non-linear Plant of Example 4-6.
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initial estimate

final estimate

2 X

true boundary

Fig. 4-12 Stability Boundaries for Example 4-6.
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4. THIRD-ORDER EXAMPLES

Example 4-7

Consider the system

1 2
%, = Xg (4-13)
Xz = - .5xl - .5x2 + .5x3 - sgn(xl + 2x2 + XS)

shown in block-diagram form in Figure L-13. For third-order problems
the corner tangency was determined by finding a two-dimensional smooth
tangency for Equations (4-5) using the tangency-search program. Again
H was initially chosen as the identity matrix. The results for this
problem are illustrated in Figure U4-~14, with the initial estimate
pictured above the computed estimate. The regions are indicated by
plotting the intersection curve of the surface V = Cmax = 1.136 on

the switching plane; superimposed on this are curves of the intersection

of V = Cmax and planes x3 = constant. The xl and x2 axes are
oriented and scaled to give the X 5%, coordinates of points on the
curves Xx_, = constant. The x axis is scaled differently to give the

3 3
X coordinates of points on the switching plane. This view is not a

3
perspective one; it has been constructed to show the true area of the
cross-sections indicated. As a guide, the coordinates of a sample point
P on V=2¢C ax oTC shown in Figure L-14. The X1 5% coordinates are

obtained directly from the Xq 0%, projections, while the x coordinate

3
(which is the same for all the points P , Pl P PSl and PS2) is
obtained from the intersection of the X axis and the line connecting
the points Psl and P82 > those points on the closed curve which lie

on the switching plane.

The computed H was

0.78 0.73 -0.88
=) 0.73 1.0k4 -0.66
-0.88 -0.66 1.77
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Fig. 4-13 Third-Order System of Example 4-7.
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Fig. 4-1% Initial and Computed Stability Boundaries of Example 4-7.



The negative definiteness of VS was verified at the end of the
computation by evaluating the eigenvalues of Q' (see Equation (3-33)),
which were -.082 and -7.73 .

Example 4-8

Consider the system of the last example, but now with the damping
ratio of the plant (see Figure h-lS) decreased from -1/2 to =1

¥ 7%
X2 = X3 (ll-—l)hl-)
Xg = = '5Xl + l.5x5 - sgn(xl + 2x2 + x3)

The results of the search, starting again with H = I , are shown in

Figure 4-15. The boundary was given by Cmax = 0.232 with

0.79 0.66 -0.82
H = 0.66 0.9k -0.39
-0.82  -0.39 1.72

The eigenvalues of Q' were -0.775 and -3.225

Example 4-9

Consider the velocity-controlled, second-order plant of Example 4-1

shown in the block diagram of Figure 4-16. The differential equation is

¥ T %
X, = X, (4-15)
Xz = x2 - sgn(.33xl + 1.53x2 + XS)

The initial and final estimates are shown in Figures 4-17 and 4-18 with

final CmaX = 1.295 and
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Fig. 4-15 1Initial and Computed Stability Boundaries of Example L4-8.
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Fig. 4-16 Third-Order System of Example 4-9.
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Fig. 4-17 1Initial Boundary of Example 4-9.
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Fig. 4-18 Final Boundary of Example 4-9.
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0.62 -0.11 -0.06
H = -0.11 0.75 0.68

-0.06 0.68 0.93

The eigenvalues of the final Q' were -.25 and -2.41 .

Example 4-10

Consider again the plant of the last example, this time controlled

with the switching function

T
dx =x +2x, + x4 (k-16)

I

The initial and final estimates are shown in Figure 4-19. The boundary

was given by C = 1.023 with
max

1.16 0.29 -0.96 7
H = 0.29 0.80 0.35
-0.96 0.35 1.26

The eigenvalues of Q' were -0.026 and -L4.373 .

It should be pointed out that the best possible stability-domain
estimate is actually the union of all of the estimates obtained in the
course of a computation. Although this union was sometimes greater
than the final estimate by itself, it was not sufficiently different to

Justify its calculation.

5. NON-LINEAR SWITCHING

This method may be extended to systems with non-linear switching
functions in several ways. First it is possible in many cases to find
a non-linear transformation from x to u coordinates such that

o(x) = g?g and (2-1) becomes

i =F'(u) + c'(u)sen(dlu) (%-17)
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Fig. 4-19 1Initial and Final Boundaries of Example 4-10.
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so that the construction may proceed as in Example 4-6. Second, the V

function

vV = E?HE + 0 sgn o (4-18)

M=

could be used directly. As mentioned earlier, however, an exact inte-
gration for the volume within V = Cmax for (h-18) is in general
impossible and a close numerical approximation to the volume can be
obtained only at the expense of large smounts of computer time for
third- and higher-order systems. A more reasonable approach, and one
with wider application, is to replace the exact volume.with a simpler
figure of merit, a "quasi-volume." An example is the sum of the square
magnitudes of x on V = Cmax in selected directions in state space.
Such a measure would still be positive definite and give a rough measure
of the volume, without requiring extensive calculations. It would also
have the advantage of being readily implemented for high-order systems

where a computation of the exact volume, even for linear switching, is

not simple.
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V. EXTENSICNS OF THE STEEPEST-ASCENT METHOD

1. SYSTEMS WITH SATURATION

In general; physical controllers all possess the characteristic of
saturation: there is a maximum level of control effort which cannot be
exceeded. The relay controllers which have been discussed so far are
limiting cases of such controllers, where the non-saturating region of
operation vanishes. In many practical controllers, however, the device
operates over a significant range &t less than its maximum effort; the
most simple and frequently used idealization of such devices is the

saturation function of Equation (2-6) shown in Figure 5-1.

If we replace the signum function in the system of Equation (2-3)

with the saturation function the new system can be expressed as

kxS %l = g
X = Ax + (5-1)
b sgn d'x 2%l > £
or
Ax ; @l = ¢
X = (5-2)
Ax + b osgn d'x 2%l > ¢

where K = A + kde .

In analogy to our treatment of (2-3) we again consider the use of
the Lur'e form of V function for the new system (5-2). Keeping in
mind the definition of V as a quadratic plus the integral of the non-

linearity we can write

%—k02 ) lo| =

x T + (5-3)

<!
]
(VY
K
Wl

=l ol

k g sgn g ~ %E ) Icl >

where ¢ =

o}
i
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Fig. 5-1 The Saturation Function.
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Equation (5-3) may be rewritten as

o ol

ETﬁzC_ ’ |U| =

v - (5-4)

T 1
XHx + 0 sgn o - 35 s lo| >

o)

(o] T
L

where ¥ = H + kda'.

Using (5-2), V can be evaluated to be

1 T 1
§§_Q’3§_ ’ lU! S'E
V= (5-5)
o 1
V(3~9&) P |0, >l_{-
where Q = AN + TA anda V denotes V according to (3-9a).
(3-9a)

Note that in the saturation region the only change in V and V from

the relay-control analysis of Chapter III is a numerical decrease of

the value of V by an amount l/2k H vV is unchanged. Thus if we

begin with a Lyapunov function and stability boundary computed for the
relay-control system (2-3) we need only check the positive and negative
definiteness of the o and a matrices in order to obtain a stability
boundary for the corresponding control system with a saturation charac-
teristic now in place of the relay. The new boundary will match the

relay boundary in the saturation region but will be modified in the linear

region |o| < (l/k) with a rounding of the sharp corners.

Tt might at first be expected that if a function V (3-3) is a
Lyapunov function for & relay-control system (2-3) then the function
Vv (5-4) with the same H will also be a Lyaspunov function for the
saturation system (5-2) for sufficiently large k . It is easy to
verify, however, that this is not true; the explanation is that ﬁ
becomes dominated by the terms containing k as it becomes large and
thus V in the linear region comes to depend on the quadratic form
(l/2)§?kgg?§ , which is not necessarily a desirable choice. For
example, the computed H's of Examples 4-1 and %4-2 do not produce

Lyapunov functions of the form (5-4) for the corresponding systems with
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saturation for k's of 2 and 5, particular values which were tested.
However, the computed H of Example 4-4 does produce a Lyapunov function
for the corresponding system with a saturation characteristic of k = 2 .

For this case,

2.50 0.89
"=
0.89 1.00
and
-1.78  -0.61 |
5 =
-0.61 -0.22 |

which may readily be demonstrated to be positive and negative definite,
respectively. In order to compute the modified portion of the stability

boundary, note from the second line of (5-4) that the new value of

Cmax ? Cmax s 18
~ 1
Chax = Cmaxo T 2k (5-6)

where Cmax is the value for the relay-control system. For k = 2
and C = 1.23 , ¢ = .98 and the equation for the new portion of
maxo max

the boundary becomes

E?ﬁz = .98 , lxl, < .5

(V] o

The entire boundary is shown in Figure 5-2, together with the true one,
found by graphically constructing the trajectory constituting the
boundary. A comparison with Figure 4-9 shows that the small change in
the stability-domain estimate of this system produced by the addition
of the linear region in the controller characteristic reflects very

well the small change in the actual domain.

Although the approach illustrated in this example worked well in

this particular instance, as mentioned earlier it cannot be expected to
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boundary

Y

controller range true boundary
of linearity

Fig. 5-2 Stability Boundaries for Example 5-1.
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succeed in all cases. A better general policy is to optimize the volume
directly for the function (5-#), choosing the starting H to make "
and a both definite initially. The area and volume computations of
Appendix A and B can be easily modified to give the correct measurements

of the volume I for second- and third-order systems.

2. GENERAL NON-LINEARITIES

This method of finding a "best" stability-boundary estimate by
optimizing a fixed form of Lyapunov function may clearly be applied to
systems with more general non-linearities than those considered until
now. The only requirements are a Lyapunov function depending on a set
of parameters (the Lur'e form may be taken as a simple, readily con-
structed example) and a method of measuring the volume. As mentioned
in the last chapter, for complex non-linearities, a very coarse numerical
approximation to the volume might serve adequately. (This problem would
properly be the subject of further research.) It should be kept in mind,
however, that increasing the complexity of the non-linearities will
probably increase both the time spent in determining tangencies and in

computing even simplified volumes.

A potentially useful application for smooth non-linearities would
be the computation of the optimum simple quadratic boundary. (For non-
linearities which have a Taylor series expansion the quadratic Lyapunov
function holds a similar position as our function (3-3) does for the
discontinuous system, e.g. for A. S. systems, a set of quadratic
Lyapunov functions always exist to estimate the domain of asymptotic
stability. [l]) It would be of interest to compare these results with
ones obtained by Zubov's method for various numbers of iterations and
initial choices of 6(x) . Also, the optimum guadratic function found
from the sesrch process should be tried as the initial choice for the
Zubov iteration in order to improve the convergence, which is very

sensitive to this initial choice.
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VI. CONCLUSIONS

The. direct method of Lyapunov has been used in this thesis as a
basis for a new, systematic technique for computing good estimates of
the domain of asymptotic stability. This technique has been applied
successfully to relay-control systems, whose discontinuous nature has
excluded them in the past from analysis by the method of Zubov, the
only other entirely systematic technique for constructing Lyapunov
function estimates of the stability boundary. The principal advantages
of this new method, as demonstrated in the useful numerical solutions

found in numerous second- and third-order exasmples, are
1.) The method is ideally suited to high-speed machine computation.
2.) It is not restricted to low-order systems.

3.) The allowable form of non-linearities is quite general; they
may, for example, be discontinuous or piecewise continuous as long as
the resulting dynamical system is well-behaved. The only requirements
are a Lyapunov function V depending on a set of adjustable parameters
and a scheme for measuring the volume within V = constant . It is
usually very easy to find such a Lyapunov function, the Lur'e form

being a simple example.

4.) Because the performance index is improved by a steepest-
ascent procedure, convergence to the optimum estimate is monotonic.
This behavior compares favorably with the erratic convergence properties of
Zubov's method. (A comparison is not entirely fair, however, since the
method of Zubov does ultimately converge to the exact solution in

problems in which it is applicable.)

Areas in which further work would be of interest are applications
to fourth- and higher-order systems and a wider variety of non-
linearities, employing simplified volume measures, and extensions of
the method to vector-valued controls. This technique should also be con-
sidered as a possible adjunct to Zubov's method in determining an optimum

quadratic form 9(5) to initiate Zubov's iteration process.
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APPENDIX A. AREA CALCULATION

In order to compute the area within the curve V = constant for
a second-order Lyapunov function of the form (3-3) it is convenient to
transform the coordinates from the original x

3 X system to a new

. 1°72
Y1295 system shown in Figure A-~l. The transformation is performed by
a rotation that positions the new ¥y axls perpendicular to the

switching line.

The new coordinates may be expressed in terms of the angle of

rotation 6 as

¥y cos 6 sin @ Xy
= (A-1)
Y5 -sin 6 cos 6 Xy
The switching line is defined by the equation
djx; +dx, =0 (A-2)
so that the unit normal vector to the switching line is given by
. dl cos 6
- 2 2
\/dl + d2 d2 sin €
Define the matrix of the transformation as R
¥y = Rx (A-k)
From (A-1) and (A-3), R is given by
[ B _ %
2 2
a, + d2 dl + d2
R = (a-5)
-4y dy
2 2 2 2
dl + d2 dl + d2




.
Xy

switching line

Fig. A-1 Two-Dimensional Coordinate Transformation.

)

Fig. A-2 Definition of the Chord Length, S.

A3 s

P .

Fig. B~1 Three-Dimensional Coordinate Transformation.
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In the original x coordinates the Lyapunov function is

V(x) = 5 x'Hx + d'x

In the new y coordlnates this becomes

]

v(y) =5 yRRy + (Ra)y

or
1.7 T
V() =5yG+py
where
G = RHR®
and
5
a +a
2 =Rd =
0

The equation

V(y) = constant = CO

becomes then

1 o 1 2
5 Gpv *356G

ooV GV ¥y * Py = G

0

ory rearranging terms,
1 2 1 2
(E Gee) Vo * (Gl2yl) Vo * (’ € *P¥1 *3 Gllyl) =0

¥, may be solved for from (A-12) to give

2 1 2
Gp G0 2( = Co TPV f3 Gllyl)
Yo=-g_- V1 ? g . g
22 22 22
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Figure A-2 shows the curve V = constant plotted in y coordinates.
S 1is defined as the length of the chord joining two points on the curve
on a line parallel to the Yo axis. S 1is Jjust twice the radical on

the right of (A-13) or

2 1 2
G,y 2(-0 + Dy +—Gy>
S -2 ( éz J_> _ 0 Gl 1 2 "11V1 (A-14)
22 22
This can be rewritten as
2 2 2
= \/ (Gl2 - G11G22> Yy = 2Py Gppyy ¥ 200G (4-15)
Define
a = G2 - G..G (A-l6)
12 1122
e = 2COG22 (A-18)
so that (A-15) becomes
S <2 _ay2 + by, + c (A-19)
G22 1 1

Let U De the value of ¥ for which 8 =0 .

2
oo () (20

The area within the curve defined by V = CO is

U

A=2 r§ﬂ5dy1=-lé-— \/;c2+bx+c dx (A-21)
22
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Let

J = §U\[ax2 +bx +c dx (A-22)

Integration by parts gives

U
2ax + b ’ 2 Yae - Db dx
J = — I A8+ bx + ¢ ] + —g —_—
a 0] a »J-ax + bx + ¢
(A-23)

The integral in (A-23) may be evaluated from standard tables of

integrals:

U
(\/_L@n (2ax + b +2~/_a\/ax2+bx+c) | , a>0
a 0

L sin -2ax-b |, a<o

-a Jb -hac 0

Let J+ and J “be the values of J corresponding to positive and

dx .
S perenl T (g (at)

-

negative values of a , respectively.

5 8)
g, ==X Je 4 haccb tn (2ax + b + 2a \/ax2+bx+c) | (A~25)
+ La 8a v a 0

bAe . hac-‘b2

U
- sinéL( :§2£ﬂ1_> |
- ha 8a N -a Nb -hkac 0

(A-26)

(A-25) may be written out as

-bAe lLc—2 - 2-ch
-t +8:I:Hb+2&<§g+ /zgz_a__ﬂ-%(“g@:)}

(A-27)

which simplifies to
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J

_=b ‘\/—C + )-Lac-be on (\/be-ll-ac ) (A-28)

* 0l 8aa (b+2 N ac)

(A-26) may be written out as
5 _ b hac®f sin-l[ -2a (-_b . [Pbac >_ b
- “a 8a x/-_al N b -lac 28 hac A/ b -lac

- Sin-l<E_-2-—-b_h___—>} (A-29)

which simplifies to

2
e | lbacbc | . -1 1/ -
J = + sin "(+1) - sin —_— (A-30)
- ta 8a N -a \\lb IFY )}
Noting that
sinw = tan"t =X (A-31)
1l -w
(A-30) may be rewritten as
2 \
J = ‘bﬂ“[c 4 Hac-b [1.57079652 - tan_l( ul ] (A-32)
- a 8a~a \JLI-]a c
(A-28) and (A-32) finally become, after a little rewriting,
2
3, - b -hac M(b _+\/Ha|0>_bh~£c (A-33)
8|a| N al \/b -hac
2
J_ = _b"-hac 1.57079632 - tan-]'/ =b >:l- bl“[c (A-34)
8lal v a \\ﬁkla c 8
The total area is then given simply by
A=ty (A-35)

G22
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where

a>0

a<o0
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APPENDIX B. VOLUME CALCULATION

B-1. TRANSFORMATION OF COORDINATES

Consider a third-order Lyapunov function of the form (3-3) as a
function of orthogonal coordinates X s x2 9 x3 . It will be con-
venient to compute the volume contained within the surface V = constant
in a new orthogonal coordinate system, two of whose axes lie on the
switching plane. The area of the (elliptical) cross section parallel to
the switching surface can then easily be computed and integrated to

obtain the volume.

Let the coordinates of the new system be given by Y10 Yo 0 Yz -
Let L be a vector determined by the intersection of the switching

plane and the “Xg plane, and let N be a vector normal to the

X
2
switching plane. The sketech in Figure B-l illustrates the geometry.
The transformation from x to y coordinates is chosen to be, for

simplicity, first a rotation about the Xq axis by an angle @ +to

line up the x axis with L , and then finally a rotation about L

by an angle 92 to line the Xz axis up with N .
Let the vectors L and N be given by
dl
N=|d (B-1)
d3
and
'dg
L=kXN=| 4 (B-2)
0]
(where k 1is the unit vector on the Xz axis).
The first rotation produces a coordinate set xi s xé s xé 5

given by

-T2 -



rx]'_— [~ cos O sin @
xé = -sin @ cos @
1
_XS_ | 0] 0]

The second rotation produces the desired set

¥y [ cos @ 0
Yo = 0 1
_yS_J g sin 6 0]

077 [ x,7]

1 X

-sin 6 T

0

COSGJ

(B-3)

(B-)

The complete transformetion is then given by a successive application

of (B-3) and (B-4) as

_ylj [ cos 6 cos P
Yo = -sin @

| Yz | | cos @ sin O
¥y = Rx

cos 6 sin @

cos @

sin 6 sin @

-sin 6

0

cos 8

The application of a little geometry shows that

cos @ = dl/// di + dg
cos9=d3/\/d‘]2_+d2+d§
sincp=d2/ d]2_+d§

sin 6 = \/di + dg //i/di+ dg + dg
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Setting

and

2, 2 2 .

z) = \/dl +d, + dg | _ (B-8)
2, 2

z2 = dl + d2 (B‘9)

we can write R as

B-2.

dld3/22 d2d3/22 -2,
1
R = EI -dezl/zg dlzl/z2 0 (B-10)
! % %

TRANSFORMATION OF THE LYAPUNOV FUNCTION

The Lyapunov function in the old coordinates is given by

xHx + d'x = C, (B-11)

noj =

In the new coordinates, after the transformation ¥y = Rx , it becomes

where

and

B-3.

1.7 T
¥ G *2yY=2Cy (B-12)
T
G = RHR (B-13)
p=Rd (B-1k4)
COMPUTATION OF THE AREA OF A CROSS-SECTION OF (B-12)%

Rewrite (B-12) in terms of ¥y and Yo with Y considered as

*
Alternate expressions for the area may be derived using the in-

variants of a quadratic form; see, for example, Reference [16].
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T

N 11 G1o Y1 1
1 T
5 + K =c (B-;S)
Yo G1o Coo Yo Y2
where
Py * G1a¥3
k = (B-16)
Py * Gpg¥3
and
1 2
€1 = C = 5 G3z¥5 - Pz¥3 (B-17)
Define G to be the matrix of the quadratic form (B-15),
11 Gyp
G = (B-18)
G0 oo
The eigenvalues of G are
G +G ¢ .+ \ 2
11 22 11 22 2 :
A = —— + <--??—-> + G, = Gyp Gy (B-19)
G,, +G (a,.+6,,\ 2
)\-11_22_ 1 22 +G2 - C..G (B-20)
2 - 2 2 12 11722 '
The transformation matrix, M , which transforms G to the
diagonal form
by
1 0
M- GM = - (B-21)
0 kz



may be solved for as follows:

Iet M be the matrix whose columns are the normalized eigen-

A

vectors of G ,

1 2 .
M=|u, u (B-22)
Gu = ligl , i=1,2 (B-23)
i\2 i\2
(ui) + (U-:gL) =1, i=1,2 (B-2k)
From (B-23)
¢}

i 12 i
u, = U, (B_25)

1 X -G, @

G
12
% X To.o (B-26)
i 11
Q Q,
1+ Ql Jl + Qé
M = (B-27)
— —_—
/l + Q 1 +
N . Vi _
The transformed variables 2y 5 2, are given by
%1 Yy
T
= M (B-28)
2 Y2
so that (B-15) becomes
1 2 1 2 T
5 M2y P 5 A%y P EMZ =Gy (B-29)



Define

(B-29) can be rewritten, after completing squares, as

w 2 W 2 W2 W2
1 1 1 1 1 2
=1 7. 4+ —= + =) 72 o+ =) = 0. + o= + m—— (B-31)
2 1( 1 )‘1> 7 Mo < 2 x2> IO W W
or
w 2 w 2
2
<Zl -+ _}tl> <22 + —}‘.2
% = + 2 2 =1 (B-32)
i‘(clJrel +2i i <Cl+2>l\ +2§>
1 1 2 2 1 2

The area of an ellipse with minor and major semi-axes & and b

is
A = meb (B-33)

For the elliptical section described by (B-32) we have

w2 w2
2 1 2
= —_— —_— —_— B-
a = }‘1 (Cl+2)‘1+2)‘2> (B-34)
and
w2 w2
N 2 1 2 B
b = X <Cl fag ! 2x2> (B-35)
so that the area is
w2 w2
- <cl+2_§_+2%> (5-36)
Jkllg 1 2

From (B-27) and (B-30),

- 77 -



W) = —— (k

1+ Qi

—r (le2 + k2) | (B-38)
/l + QS

=
1]

Substituting (B-37) and (B-38) in (B~36) and using (B-16) to eliminate

kl and k2 we obtain

A= ——§f¥ (8,75 + 8,7, +5,) (B-39)
NGY
1%
where
2 2
s, = Q%15 * %) 2 G (B-b0)
17 N 5 Uzz
i=1 1
c (Q;p) + pp)(Q;C0 5 + Gpz)
5, =§Z = - ps (B-41)
i=1 2 (1 +Q))
2 >
(Qipl + D)
54 =§Z 5= + Cy (B-bk2)
i M0y

B-4. COMPUTATION OF THE VOLUME

One half of the volume contained in V = C, 1s obtained by

0
integrating (B-39) from Yz = 0 to the extremity of the bounding
surface. The upper limit, U , is obtained by setting A = O in (B-39)

and solving for y5 :

s 2s S

2

S S S

b .2, <_2_> 5 (5-i5)
I 1 1
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The total volume is then given by

2 ivAdyS (B-44)

or
s s
Volume = — il (-3-3 U 4 53 T SSU) (B-45)
VA,

NASA-Langley, 1965 CR-320



