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 DYNAMICS OF A

SOLAR PRESSURE STABILIZED SATELLITE

by
John R. Carroll

Robert C. Limburg

U=

It is the objective of this thesis to investigate the body
dynamics of a solar pressure stabilized satellite in a heliocentric
orbit of non-zero eccentricity. The equations of motion for an un-
symmetrical satellite are simplified by finding satellite equilibrium
position and making small angle assumptions about this position to
linearize the equations. The motions predicted by the simplified
model are compared with digital computer solutions of the general
equations of motion. Passive damping and injection of the satellite
into orbit are investigated briefly.

ABSTRACT

In its equilibrium position, the satellite has one principal axis
along the radial line. Of the two remaining principal axes, the one
with the greater moment of inertia is perpendicular to the orbital
plane. For the simplified model, motion about the three principal
axes can be uncoupled for small disturbances from equilibrium., Motion
"about the radial line is characterized by oscillations at approximately

orbital frequency rate. W

This report was submitted to the Department of Aeronautics and Astro-
nautics on May 21, 1965 in partial fulfillment of the requirements for
the degree of Master of Science.
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SYMBOLS

principal body axes

moment of inertia ratios
semi-major axis

damping-moment of inertia ratio
viscous damping coefficient
eccentric anomoly

energy dissipated

flexural rigidity

eccentricity

solar pressure force

true anomoly

earth gravity

moment of inertia about i-axis

solar pressure constant

distance between satellite center of mass and

center of pressure

tube distance from satellite center of mass

antenna length

mean anomoly

moment about i-axis
mass

number of collisions

orbital radius
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(rcm)i distance between center of mass of component i and
satellite center of mass

8 Laplace operator

t time

U potential energy

v satellite velocity

WB ball weight

X,Y,Z attitude reference axes

a structural damping factor

B general angular displacement

Y phase angle

A determinant

C damping ratio

0, 0,Y, Laplace transformed variables

] pitch angle

6(0),9(0),¥ (0) initial conditions

9> 90> wo equilibrium offset angles

U gravitational constant times the mass of the sun
P density

T time of perehelion passage

o roll angle

v yaw angle

w orbital angular velocity

0 orbital angular acceleration

angular velocity about axis i



CHAPTER 1

INTRODUCTION

A satellite in heliocentric orbit can be made sun-pointing through
the relatively simple and economical use of solar pressure stabilization.
Use of such a method, however, causes long period oscillations making
conventional damping schemes difficult. For a satellite of this type,
the orbit is usually of non-zero eccentricity, further complicating the
analysis. It will be the purpose of this thesis to investigate the
dynamic behavior of such a satellite in order to establish its physical
requirements.

In order to keep the problem as general as possible, it is assumed
that the satellite does not possess axial symmetry. The equations of
motion for such a case are quite complex due to nomnlinearities, ‘and sys-—
tem behavior is extremely difficult to predict. For this reason, a body
centered coordinate system, rotating at orbital angular velocity, will
be chosen as a reference frame, and the satellite equilibrium position
as a function of orbital parameters will be defined with respect to this
frame. Perturbation methods will then be utilized in order to linearize
the equations. The validity of these simplifications will be verified

using a digital computer.




This analysis is contingent on whether or not the satellite will
damp to its equilibrium position following injection into orbit. For
this purpose, the feasibility of using simple passive damping techniques
will be looked into, and the injection lock—-in process will be studied
using the computer.

For purposes of computation, the satellite will be placed in aun
orbit with the following characteristics!:

1. an eccentricity of 0.31

2. a sidereal period of eight months

3. an aphelion of one astronomical unit

To satisfy different communication requirements, two satellite
configurations will be considered, one with long antennas and the otiew

with short,.




CHAPTER 2

THE SIMPLIFIED MODEL

2.1 General Considerations

The motion of the satellite center of mass is described by the
orbital parameters, and is independent of motion about the center of
mass. The converse does not hold true, however, since the motion about
the center of mass is influenced by the direction of solar radiation
pressure which changes with the body's orbital position.

Choose an attitude reference frame, X, Y, Z, with origin at the
center of mass of the satellite. The Z-axis of the coordinate frame is
maintained along the radius vector from the body center of mass to the

sun., (See Figure la). The X - Z plane forms the plane of the orbit, an

the Y-axis is along the angular velocity vector, thus forming an orthogo-

nal triad. The 1, 2, 3 axis system is coincident with the principal body

axes and body motion relative to the reference frame is described by

Euler angles. In this case, the Euler angles are the roll angle, ¢,

pitch angle, 0, and yaw angle, ¥. Roll motion is about the X-axis. When

roll is zero, pitch is about thie Y-axis and describes motion in the oxr=
bital plane. If roll and pitch are both zero, then yaw is about the Z

axis or radial line. The order of rotation is defined as ¢, 6, V.




Euler's equations in principal body axes (see Figure 2) can be used

to describe the motion about the center of mass and can be written as,

Mp = I;dy + (I3 = I)wswy (2.1)
Mp = Io0p + (I3 = I3)wiwg (2.2)
M3 = I3bz + (I2 = Ip)wpuw (2.3)

where M is the applied moment due to solar pressure restoring torque and
viscous damping torque. For the chosen coordinate system and the given

satellite configuration,

M; = -FL(sin¢ cosy + cos¢ sinb siny)-djw; -
M, = -FL(cos¢ sin® cosy - sin¢ siny)-dow; (2.5}
M3 = -d3ws3 {2.8)

w] = ¢ cosB cosV + 6 sind + w cos¢ siny +
+w sin¢ sinb cosy (2.7

w2 = § cosy - $ cosf siny + w cos¢ cosy +

-w sind sinb siny ’ (2.8)
wg = @ + é sind = w sin¢ cos6 | (2.9
where
F = solar pressure force
L = Distance between satellite center of mass and center of pressure
and

d. = viscous damping coefficient about the i-axis
i

The complete equations of motion are derived in detail and presented

in Appendix A.



2.2 Equilibrium Position and Linearized Equations of Motion

To simplify the equations of moti§n, small angle assumptions will
be made on ¢ and 6. The assumptions would appear to be valid, since
these angles are constrained by the solar pressure torque. However,
since the body does not have axial symmetry thére Will be a preferred
orientation about the radial line. Substitute (wo + y) for the yaw angle,
where wo is the preferred angle and ¥ is a small angle perturbation about
wo' Using trigonometric identities and making small angle assumptions

on Y,

2

sin (wo + ) sin¢°~+ P coslb0 (2.10)

R

cos (wo + ) cosw0 -y 31nwo (2.11)
Further assume that time derivatives of these angles are also small, and
neglect the product of two small quantities., Using these assumptions,

the equations of motion become linear with time varying coefficients and

are given by,

. . . 2 .
(cos¢0)¢ + (D; cos¢0)¢ + ([FL - Cw ]coswo)¢ + (sinwo)e +

I
+ (D3 sin¢o)é + (EL.sinwo)e + ([C + 1]w coswo)i +
I; .
+ (@ cosy  + Diuw coswo)w = =@ sinwo -w D3 sin'Jlo (2.12)
where
I3-I2 4 D1




where

and

where

: - - 2
(-simpo)q, + (-Dzsinwo)(j, + ([Bw - F_I,_]sin¢°)¢ +
I

+ (cos¢o)6 + (D2C°S¢o)é + (FL coswo)e +
I
- ([1 + Blw sinq,o)q, + (=0 siny_ - wDpsiny )y =

-0 cosy_ = wDycosy

2 ‘ . . _
([Afcos®y, - sin”y } = 11w} + (=6 = Dywlg +
+ (2Ay simpo cosw6)é + @ + D3¢ +

+ (sz[coszwo - sinzwol)w = -sz sinwo coswo

a=T2_T1 40 D3 =93

3 I

(2.13)

(2.14)

If the oscillations of the satellite are damped, the yaw, pitch,

and roll angles will assume a steady-state value, which is defined as the

equilibrium position. Denote this position by 9° 0o and wo. To find

these angles, let 5, é, g, é, E, @, and the perturbation angle y go to

zero, thereby obtaining

2
[(FL - Cy )coswo]¢o + [FL simpo]eo =
I, I,

- 31nwo - le 31n¢°

(2.15)



2
[(Bw = FL) 31n¢0]¢0 + [FL coswo]eo =

. I Iz
~(& + Dyw) cosy (2.16)
2
(& + D3w) ¢0 = Aw sinwo cosy (2.27

Solutions to these equations are (see Appendix B),

v, =0
9o = 0
- 12 ((1) + U.)Dz)

6, = = (2.18)
or

v =90°

[o]

¢, =0

-1 (v + le)

90 = L (2.19)

Note that the equilibrium angle 60 is a function of position in the orbit
due to the non-zero eccentricity.
With the value of wo established, the equations can be f{urther

simplified. If wo = 0, the equations are,

- 2 .
&+ D1d+ (FL - Cw Yo + (C + Lwy + (Djw + &)Y = 0 {2.20)
i
6 + Db + FL 6 = -Dyw = & (2.22)
. o . 2
(A- 1w -~ Dgw + @)¢ +¥ + D3¥ + Aw ¥ =0 (2.22)




If Yo is chosen as 90° then

e . 2 . )
¢ + Dpp + (FL - Bw )¢ + (B + Dwyp + (Dyw + &)y = 0 (2.23)
I,
6 + D16 + FL 6 = =Dyu ~ & | (2.24)
I
. o . 2
(<A - wp - (Dgw + &) ¢ + ¢ + D3y = Aw y = 0 (2.25)

To investigate the stability of these equilibrium positions, choose
wo = 0 and solve (2.20), (2.21), and (2.22) for the characteristic

equation. With the assumptions

and

wy >>w

2
Lin's Method of Approximation can be employed to obtain the character-

istic equation. (See Appendix C.) For wo = (0, it is
2 2 2 2 2
(s2 + Dis + w1 )(s + Dps + wy )(s + D3zs + Aw ) =0 (2.25)
Looking at equations {2.20) through (2.25), it is obvious that the
analysis for\po= 90° can be carried out simply by interchanging sub~

-
scripts 1 and 2 in the wo = 0 equations. Since A is defined as Lo _ *1,

13
. . - 2 Il Iz — e
this operation causes the coefficient of w to become - = —A. This
I3
gives a characteristic equation for y_ = 90°,
2 2 2 2 2 2
(s +Dps +wy )(s +Dys +wy; )(s +D3zs = Aw ) =0 (2.27;




For the particular satellite in question, I, > I; and A is a
positive quantity (see Appendix E). Using Routh's criterion, wo = 0 is
stable and wo = 90° is unstable. This means that for the stable case,

the axis having the greater moment of inertia will be perpendicular to

the plane of the orbit.

2.3 System Response to Disturbances

In order to use Laplace transforms,.the angular variables must have
constant coefficients. Since, the coefficients in equations (2.20),
(2.21) and (2.22) change at orbital frequency, they can be assumed con-

stant over a small portiom of the orbit,

[y

Expressing system disturbances as non-zero initial conditions, the

transformed equations are written as

2 2

[(C + 1)ws + w + wDy s + Dys + FL - Cw 0 7]
) : I )
2
0 0 ' s + Dpys + FL||¢| =
I,
2 2 .
s + D3s + Aw (A- 1w - w = wD3 0 1]
(s + D3)¥(0) + (A - Duwp(o) + $(0) ]
M D2w 2
~w=_% + (s + Dy)6(o) + 6(0) (2.28)
S s
| (s + D1)¢(0) + (C + Lw (o) + $(0)

Since small angle assumptions have been made, let the initial

rotation rates be zero., Solving equation (2.28) gives
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¥Y(s) =%§gl {(S + D[ - Aw s + (:) +D3w]} +

. $(0) (A = Duw . y(o) (s + D3) N

s? + Dgs + Aw? 82 + D3s + Aw?

+-%591 {(C+ 1wl - Aws+ a+ Dyul} (2.29)

w = Dow

o(s) = %-[(1 -MNws+ o+ D3“]'[:‘_j;"‘

+ (s + D2)6(o)]~

. l -(:) - D2w )
‘[(C+ Dws +Dw+ w] + " + (s + Dy)8(0)
s2 + Dos + w22

(2.30)

. o(s) = %fgl {[s + D3]+ [(C + L)us + Dyw + w]} +

$(o) (s + D3)
+ Y(0)(C + Duw + 1

- 929) {[¢a - Dwll(Cc + Lus +
s + Dis + w12 s2 + D;s + w12 1

+ wD; + w]} (2.31)
where
A= (s2 + Dis + w;?)(s2 + Dys + wy?)(s2 + D3s + Aw?) (2.32)
A= (s? + Dys + w1?)(s? + D3s + Aw?) (2.33)
FL
w2 = o (2.34)
and
2 FL

w2t T T, (2.35)
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Inverse transforming3 and neglecting comparatively small terms

gives
~&gzwgt
P(t) = 1) e sinf[wyvl - Egz t + vyl +
vl - 532
+o@ -8 {e T inu /TS 612 €] +
+ e 8393 n 0/ T = 557 t]} : (2.56)
where
wz? = Aw? (2.362)
and
y; = tan ¥ Y1 T &3 (2.36b)
€3
6 (o) e_gzw2t ’
6(t) = ———— sinfwy,v/1 - &22 t+ vy] +
vl - 622 '
(:) + Dzw\ —Ezwzt
- { —— ————— sinfwyY1 = £,2 £ = v3] (2.37)
f T
where
vy = tan ~ /I - g)¢ (2.37a)
&2
and
ys = tan L T 57 E
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-giwit
¢(t) = $0) e sinfw1/1 = €12 ¢t + vyl +

1-£;
V) (C + Duw e_;’-lw1t : '
+ { }{ sinfwyv1l - £;°2 t]} (2.38)
w1 /E_?”EI?
where
vy = tan T /T = 6,2 ' (2.38a)

€1

For first order calculations, only one term need be computed in
each of the above equations, since the primary terms are several orders
of magnitude greater than the cross~coupling terms. However, when

primary terms are not present, cross—coupling terms should be considered.
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CHAPTER 3

USE OF THE DIGITAL COMPUTER

To check the vaiidity of the simplified equations of motion, the
IBM 7094 Digital Computer was used. Equations (A.13), (A.l4), and
(A.15) were solved iteratively and the angles ¢, y, and 8 were printed
as a function of time,

Orbital quantitiés had to be inserted as a function of time or

true anomoly. Thus, for a satellite in an elliptical orbit, the velocity

of the body is given by

2 o 2_1
ey [2-4]

_ K [1+ 2e cos f + e2]

(3.1)
a (1 - e?)

where f is the true anomoly.
The angular velocity is then

w = V/r

=,\/ u [1L + e(4 cos ) +
a3 (1 - e2)3

+ e2 (1 4+ 5 cos2f) + e3(2 cos £ + 2 cos3f) + e“(coszf)]l/2

(3.2)
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Differentiating (3.2) gives an angular acceleration of

. 1 U [we sin £] -
w=-3 ’\/
ad(l - e2)3

[4 + 10e cos f + 2e2 + 6e2cos?f]

. 1/2

[1 + e(4 cos £f) +e2(1 + 5 cos2f) + e3(2 cos £ + 2 cos3f)]

(3.3)
The solar pressure force acting on the satellite is given by
F = K/x2
. K [1+ Zé cos f + e2cos?f]
= (3.4)

[a(l - )12

where K = constant. At a distance of one astronomical unit, the solar

8

pressure"+ is 9.40 x 10 ° 1b./ft?. For the satellite considered, the

effective sail area is 1,11 ft2. Thus the constant in equation (3.4) is
K = 0.252 x 1017 1b, - ft2, (3.5)

In using the computer, it is easier to have time as the independent
variable. Consequently, it is necessary to solve Kepler's equation.
Rather than solve a transcendental equation for the true anomoly, f, a
series solution involving mean anomoly, M, and eccentric anomoly, E, was

computed. As given in Battin®,

M= A fE(E=D C(3.6)
al
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where 1 = time of perehelion passage

E=M+ [e (L-e>H+e* sinM +e2 (1L - e2) sin 2M +
8 194 2 3

3e3 (1 - 9e2) |
+-—§— —%E) sin 3M] | 3.7)
£ =2 cant /122 can (B . (3.8)

The library of the compucer contains a subprogram called INDV, DPNV

which enables the programmer to obtain the numerical solution of a system

th

of N order, non-linear, simultaneous ordinary differential equations.

The program requires that the equations be written with the second deriva-
tives as a function of first and zero order terms. (See Appendix D). This
requirement causes the equations to have an artificial singularity when
8 = 90°, For this reason, care was taken to limit & to values between
-~85° and +85°.

The iterative process is very sensitive to the size of the time
incremént used for integration. It was found that an increment of 0.00125

times the smallest period of oscillation worked very well.




4.1 General
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CHAPTER 4

PASSIVE DAMPING

The equations of motion derived in Chapter 2 included viscous

damping torques. For other forms of dambing, difficulty is encountered

expressing the friction torque in the equations of motion with the

proper direction over a complete cycle of oscillation. For this reason

an equivalent viscous damping coefficient will be used and will be de-

termined on the basis of equal energy dissipation.

Considering the oscillation to be nearly harmonic, the energy

dissipated per cycle by viscous damping can be written as®

AE = wdwB2

where

4.2 Ball-in-tubc Damper

(4.1)

If a smail metallic ball with low coefficient of restitution is

placed in a tube perpendicular to an axis of satellite rotation and a

istance L; from the center of mass, then the ball will make inelastic

collisions with the ends of the tube, thus dissipating energy. Since
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angular velocities are small, the friction force on the ball due to the
tube must be nearly zero, in order to provide any ball motion at all
(i.e., the ball must overcome stiction). TFor this reason, the coeffi-
cient of friction must be very small and the tube must have a radius of
curvature L) in order to minimize the force normal to the tube.

Assume that the tﬁbe is frictionless, and that the ball makes a
perfectly non-elastic collision with the end of the tube. Over one cycle
the ball will make two collisions and the energy dissipated by the balil

over this cycle is given by
-, (1 2]v
AE 2 (2 mBV

W
B . \
;lesz (4.2/

wiere B is the angular velocity of the satellite about the axis of rota-

cion and is given by

Jwt

5 = 4.3)

8 = B8 we (4.3)
coerefore

W L,28 22623t
pE = —2——O (4.4)
&
Zcuating this to equation (4.1) gives
V.o,
d =" (4.5)

<2 I is the moment of inertia about the axis of rotation, then the equiva-

~ent viscous damping coefficient is also given by

d = 2801 - : (4.6,




18

where & is the_damping ratio., Combining (4.5) and (4.6) gives a ball

weight of

(4-7)

To reduce the disturbance to 95% of its value within N periods,

T p e ’ (4.8)
£ = 23N : (4.10)
and
Wy = 95—25 (4.11)
N Ly

For the satellite in question, there are two configurations. With

long antennas, the principal moments of inertia are

I; = 0.294 slug-ft?

I, =6.30 slug-ft?

I = 6.55 slug~ft? (4.12)
The periods of oscillation at aphelion are then

Py = 2.44.hours

Py, = 11.42\h0urs

P; = 7.8 x 103 hours (4.13)
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To damp within five days from the initial disturbance

N, = 49

e

No

n

11 ' (4.14)

It is obvious that the third mode cannot be damped in this period. Using

a distance L; of 1.75 feet, the weights of the balls are

WBl = 0.190 pounds

W

B2 18.1 pougds (4.15)

Neither of these weights seem small enough to be useful.
For the configuration with short antennas,

I, = 0.054 slug-ft?

I, = 0.111 slug-ft?

I3 = 0.123 slug-ft2 (4.16)
Then

Py = 1.05 hours

P, = 1.49 hours

P3 = 5.56 x 103 hours (4.17)

Again using a five day damping time

Nl z 114

N, = 81 (4.18)
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and
WBl = 0,015 pounds
WB2 = 0,043 pounds (4.19)
Both of these balls appear to be feasible and their radii are
given by

3 BWB :
s = V Zmp (4.20)

where p is the ball density. For lead,

r 0.208 inches

Bl

il

X

B2 0.247 inches (4.21)

If the maximum displacement from equilibrium is defined as Bo and
the tube has an arc length of 2L;B;, centered at B = 0, then a collision
will occur provided B; < Bo. To determine the optimum tube length,

assume

il

B(t) B coswt (4.22)

then

8(t) -6 w sinwt ’ (4.23)

If the ball starts at one end of the tube, it must travel an angular
distance 28; before making a collision. When the collision is made, it

is desirable to have B at its maximum value in order to increase the

energy dissipated. Thus

g(t) =0 = —Bowzcosmt
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or

t =5 (4.24)

When the collision occurs,

B(t) =B, - 28, =0

or

B

= =2 )
By = > ‘ | (4.25)

Thus, to maximize the velocity at collision, B; should be approxi-
mately one half of BO. For the satellite in question, it is imperative
that the large angular displacements at injection be damped quickly. How-~
ever, the tube length must be such that it can fit within the sail, Thus,
81 is limited to twenty—six degrees, giving best damping for angular
displacements in the area of fifty degrees. Such a tube will provide
damping until the displacement from equilibrium becomes less than twenty-
five degrees. If a second tube with an arc length of six inches is
placed parallel to the first, then damping to small angles should be
assured.

4.3 Structural Damping in Antenna

The antennas can be considered as cantilever beams excited by the
satellite acceleration, and thus energy will be dissipated due to struc-
tural damping. The amplitude of vibratioh at any point along the iength
of the antenna can be approximated by the static deflection curve of a
weightless beam with a concentrated load at the end. The energy dissi-

pated by structural damping is given by7

AE = 2mal (4.26)
max -
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where a structural damping factor

L]

U

the maximum potential energy
max

For the assumed beam the maximum potential energy is given by®

P2L,3
U = 4, \
max 6EI i (4.27)
where P = force due to satellite acceleration

L, = length of antenna
and EI = flexural rigidity of antenna
If the satellite is assumed to have harmonic motion the force P,

due to angular acceleration, is

P = mL28.

- mLp2u?p_e¥* (4.28)

The energy dissipated by structural damping is then.

TramzLZSwi+

AE = —E Bozezjwt (4.29;

Equating (4.1) and (4.29) gives

@m2L25w3

d = T3Er {(4.30)

For the satellite with long antennas, the antennas are considered as
two twenty-one foot and two seven foot 0.25 in. 0.D. aluminum tubes. The
flexural rigidity is then approximately 100 1b. ft2. The weight of each

antenna is 0.69 1bs. and 0.24 lbs. respectively. The damping factor, «,

is assumed to be 0.01.
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The equivalent damping coefficients in the vicinity of aphelion are

then

) =14
1.07 x 10 ft 1b/rad/sec

dl =
~-13 k
dy = 3.76 x 10 ft lb/rad/sec
-23
d3 = 1.31 x 10 ft 1b/rad/sec (4.31)

For the short antenna configuration the values obtained are even
less. For comparison, it is noted that the values of damping coefficient

required for a § of 0.01 afe

-6
dy = 4.20 x 10 ft 1lb/rad/sec

dy = 1.93 x 10 £t lb/rad/sec : (4.23)

Thus, negligible damping is provided due to the very small magnitude of
the angular acceleration.

In general, structural damping in the antennas is not considered a
feasible means of damping satellite oscillations unless very large angular

accelerations are present.
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CHAPTER 5

DISCUSSION OF RESULTS

The ability of the simplified model to predict system response to
disturbances was tested using five combinations of angular initial com-
ditions. The system disturbances were approximated by small angular
displacements and zero angﬁlar rates. The general.equations of motion
(A.13), (A.14), and (A.15) for the long antenna configuration were solved
on a digital computer., These results, along with the corresponding
simplified equations (2.36), (2.37) and (2.38), were plotted in Figures
3 through 6.

. The five cases investigated were (all angles in radians):

1. () =0, 6(o) =0, v(0) = 0  (Figure 3a)
2, ¢(o) =0, 6(o) = 0.1, y(o) =0 (Figure 3b)
3. (o) = 0.1, 6(0) = 0.216 x 10 _, v(0) = 0 (Figure 4a)
4. ¢(0) =0, 6(0) = 0.216 x 10.'3, ¥(o) = 0.1 (Figure 5)
5. ¢(a) = 0.1, 6(0) = 0.1, v(0) = 0.1 (Figure 6)

In each of the cases, the satellite motion was investigated near aphelion,

and all modes used a predicted damping ratio of 0.1.
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Except for the discrepancies noted below, predicted values of
frequency, phase, and damping time were within five percent of the com-
puter results., This is considered to be within the accuracy of the
simplified model. |

The purpose of case 1 was to determine the validity of predicting
the equilibrium offset angle due to the forcing terms in the 6 equation.
The offset by computer solution was determined to be 0.216 milliradians,
while the simplified model predicted 0.308 milliradians. This is a
difference of about 50 percent in the amplitudes of the two curves (see
Figure 3a), using the computer solution as a reference. No reason could
be found to explain this difference. However, it should be remembered
that this equilibrium angle has a maximum of about 0.55 milliradians at
perihelion and can be neglécted entirely,'without gausing extensive errors.

For the ¢(o) input (case 3, Figure 4a), the simplified model does
not predict the transiént oscillation in the response., Since it is
rapidly'damped, however, it leaves a dominant mode of much lower frequency.
The slope of this slower mode is matched quite accurately by the pre~
dicted slope, but the two differ slightly in phase.

When a y(o) input is present, the 6 and ¢ oscillations will be
coupled by siny. The effect of this cross—coupling is not predicted by
the simplified model since products of small quantities were neglected.
This effect is evident, however, in Figures 5 and 6, and causes errors of
approximately ten percent for y(o) = 0.1 radiams. -

The stability of the equilibrium position defined by wo = 90° for
the satellite considered was not verified due to the excessive computer

time required.
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Several computer solutions of the equations of motion were obtained
for the injection of the satellite into orbit. A‘typical computer run is
plotted in Figure 7. For this example the long antenna configuration was
used, the damping ratio was 0.1 for all modes, and the initial conditions

-were ¢(o) = 0.1, 6(o) = 1.485, and y(o) = 0.785 radians. The ¢ and 6
responses damped out in a reasonable amount of time, but the Y motion was
characterized by a residual spin. When the satellite was torqued about
a principal axis (6(o) = 1.485; ¢(0) = 0, and Y(o) = 0 or 1.5708 radians),

however, the residual spin no longer appeared.
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CHAPTER 6

CONCLUSIONS AND RECOMMENDED FURTHER STUDY

6.1 Conclusions

The results of this investigation of a solar-pressure stabilized

satellite can be summarized as follows:

1. Motion about either principal axis perpendicular to the radial
line is characterized by a frequency which is directly pro-
portional to the square root of both the effective saii area
and the sail distance from the center of mass, and inversely
proportional to the square root of the respective moment of
inertia., Motion about the radial line, for small disturbances,
is an oscillation at orbital frequency times the sqﬁare root of
the moment of inertia ratio, A.

2. Solution of the equations of motion gives a stable equilibrium
position about the radial line when the principal axis having
the greater moment of inertia is perpendicular to the plane
of the orbit. An unstable equilibrium position was predicted
for the case when the axis with the smaller moment of inertia
is perpendicular to the plane of the orbit, but this position
was not verified on a computer. The steady state lag angle, 60,

is extremely small, thus the equilibrium'position can be re-
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garded as along the axes of the attitude reference frame.
(One body axis along the radial line, one along the orbital
angular velocity vector, and the third forming a right ﬁanded
orthogonal set.)

3. For small angular displacements from equilibrium, the motion
of the sateliite can be described by the simplified equations
for small portioﬁs of the orbit. Furthermore, these.equations
can be uncoupled completely since cross—coupling terms are
several orders of magnitude smaller than the uncoupled termé.

4, - It is virtually impossible to damp oscillations about the
radial line within a reasonable portion of the orbit unless an
active damping system is used.

5. For the short antenna configuration, ball-in-~tube damping about
principal axes perpendicular to the radial line is feasible,
provided two different size tubes are uséd per axis. Unless
sail area is increased considerably, this type of damping is
impractical for the long antenna modél. Structural damping for
both configurations is negligible, thus passive damping seems
impractical for the satellite with large antennas,

6. At injection, torquing the satellite into alignment with the
radial line about a non-principal axis causes a spin to develop
about the yaw axis- (i.e., causes @). The other two angles are
damped within a reasonable amount of time.

6.2 Further Study Areas

Two major areas stand out for further investigation; passive damping

and motion about the solar pointing axis of the satellite.
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For ball-in-tube type damping, the stiction problem should be
examined in detail, as should non-zero coefficients of restitution. Along
this same line, the effect on damping parameters due to an increase in
sail area should be loocked into. Tﬁe two methods of passive damping
covered in this report were very elementary types, and a more ingeneous
system might give better results;

Lack of ability to damp about the radial line, coupled with the
residual spin from injection, seems to indicate that an active damping
mechanism is needed to align a principal axis with the plane of the orbit.
The feasibility of using a gyroscope for an inerfial reference and
coupling it to the satellite with a viscous damper is one of many systems

that could be studied.
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APPENDIX A

DERIVATION OF THE EQUATIONS OF MOTION

The attitude reference frame and the body axes are inifially
aligned., Three rotations'are then made in the order ¢, 6, and V.
Referring to Figure 1, the angular velocity components are obtained as
follows:

Step 1. Rotate about the x-axis by ¢. Then,

w1¢=&>
wy, = (cosd)w
w3¢ = = w sin¢

Step 2. Rotate about the w2¢ axis by 6.

wig = w1¢cose - w3¢31n6

= é cosf + w sin¢ sinb
w26=w2¢+é

= @ cos¢ + 6

= i +
w3g w1¢31n6 w3¢cose

¢ sin® - w sin¢ cosb
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Step 3. Rotate about axis w3g by ¥ to get the final position.

wy = wlecosw + wzesinw
= é cosf cosy + w sin¢lsin6 cosy + w cos¢d siny + 6 siny
(A.1)
Wy = = wlesinw + mzecosw
= - 5 cos@ siny - w sing sind sinw +.m cos$ cosy + 8 cosy
(A.2)
w3 =w39+lL
= 6 sinb - w sin¢ cosb -+ ¢ (A.3)

The solar pressure is always directed along the negative Z axis of
the attitude reference coordinates. The solar pressure forcé, F, is
equal to the solar pressure times the projected sail area. Using the
same rotations given in steps 1, 2, and 3 above, the force can be re-

solved into body axes to give:

Step 1.
F1¢ =0
F2¢ = = F sin¢
Fz3 = - F cos¢
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Step 2.

Fig = = F3,sind

+ F cos¢ sinb

F2 =F2¢=—Fsin¢

*j
w
[}

F3¢cose

]

- F cos¢ cosh

Step 3.
F, = Flecosw + ersinw
= F cos¢$ sin® cosy - F sin¢ siny (A.4)
F, = - Flesinw + ercosw
= - F cos¢ sin® siny = F sin¢ cosy | (A.5)
F3 = F3e = - F cos¢ cosb (A.6)

The distance from the center of mass to the center of pressure is
the momenf arm for the solar pressure force, and is given by the constant
L about axes 1 and 2, and given by zero about axis 3. If a damping
moment proportional to the.angular velocit? in body axes is also included,

the total moment applied is given by,

Ml = FZL - dlwl (A.7)
Mo == FiL - dowy (A.8)
M3 = - d3w3 (A~9)

where d is a viscous damping coefficient.
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Euler's equations of motion in body axes are given by,

My = Ije; + (I3 ~ Ip)wsw, : (A.10)
Mz = Iz(:.\z + (Il - I3)w1w3 (A.ll)
M3 = '.[3(:)3 + (I = I wowy ‘ (A.12)

Differentiating wj;, wp, and w3z and substituting in equations
(A.10), (A.11) and (A.12) gives,
~ FL(sin¢ cosy + cos¢ sin® siny) = I;(¢ cosb cosy +

6 sinb cosy - $ & cosb siny + 6 siny + 8 @ cosy +

I
-

+ w sin¢g sind cosy + w é cos¢ sin6 cosy +

+ a8 sin¢g cosf cosy - w @ sin¢ sinb siny + o cos¢$ siny +
-w é sing siny + w @ cos¢ cosy) + (I3 - Iz)(@ + $ sin6 +
- w sing cos8) (8 cosyp - & cosO siny + w cos¢$ cosy +

- w sin¢ sin® siny) + dl(i cosb cosy + 6 siny +

+ w cos¢ siny + w sing sind cosy) (A.13)
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- FL(cos¢ sinb cosy - sing siny) = I,(6 cosy +

Y siny - ¢ cosb siny + é 8 sin6 siny - é Y cosf cosy +

I
De

cosd cosy = w é sin¢ cosy = w & cos¢ siny +

-+
E e

- sing sin6 siny - w ¢ cos¢ sind siny +
- w6 sin¢vc056 éinw - w @ sin¢ sinb6 cosy) + (I} = I3)-
. (é cosf cosy + 8 siny + w cos¢ siny +

+ w sing sind cosP) (Y + ¢ sind - w sin¢ cosB) + doe

. (é cosy = é cosf siny + w cos¢ cosY - w sing sind siny)

I3(y + ¢ sinb + é 8 cost - w sing cos® +

[e]
]

- w ¢ cos¢ cosd + w 6 sino sinB) + (1, - Il)(é cosy +
- @ cosd siny + w cosd cosP = w sing sinb siny)-
. ($ cosd cosy + 8 siny + w cos¢p siny +

+ w sing sind cosy) + d3(y + ¢ sind - w sing coso) (A.15)
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Assume ¢, é, ¢, 6, é, 8, ¥ and Y are small quantities and neglect
the products of two of these quantities., (Note: Angle ¢ is not small).
Also let

sinf z 6, cosb z 1, etc.
so that the equations of motion simplify to‘
I

= (¢ cosy + 8 siny) = 5 cosy + 5 siny + @ siny +

+ (C+ Duw @ cosy - C ¢ wlcosy + D1($ cosy + 8 siny + w siny)

(A.16)
where
I3 -1, d;
C= —Il— and D) = I—l (A.1l6a)
FL ’ . . .
e (¢ siny = 0 cosy) = 6 cosy - ¢ siny + w cosy +
2 .
-w @ siny - B w @ siny + B ¢ wzsinw + Dz(é cosy +
- & siny + @ cosy) ' (A.17)
where
I3 -1 dp
B = —12—— and Dy, = _I_; (A.173a)

; - ¢ - w é +2A 0 0 siny cosy + A w &(coszw +

- sin?y) + A w?siny cosy + D3(@ -w¢) =20 (A.18)




36

where
I, -1 ds
A= ——Eg——— and D3 =-f; (A.18a)

Let wo be the equilibrium offset angle at any point in the orbit,
and let the body oscillate about this point by a small angle, Y. Re-
placing ¢ by wo + § in the above equations now makes it possible to make

small angle assumptions on P. That is,

sin (y + wo) = sinw0 cosy + cosuzo siny
= éinwo + ¢ coswo
and
cos (P + wo) = cosw0 cosy - sinwo siny

I

cos - sin
v, = ¥ siny

Making these substitutions in equations (A.16), (A.17) and (A.18)
gives the linear equations of motion with time varying coefficients.
' (cosy )5 + (Djcosy )é + ([ELL_ sz] cosy ]¢ + (sinw )5 +
0 1=2%% I; o o
+ (Dlsinwo)é + (%%-Slnwo)e + ([C + 1l]w coswo)¢ +

+ (& cosq;o + Dlwcoswo)w = - g simbo - Dlsinwo (A.19)
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.. - . - 2 -

(- siny )¢ + (= Dpsiny )$ + [B‘*’ %] siny_| ¢ +
- . FL cosy

+ (coswo)e + (choswo)e + I, o] 8+

- ([1 + BJuw simpo)(p + (= siny_ = w Dpsiny )y =

- coswO - w choswo v (A.20)

and
( [A{coszw - sinZy } - 1} w)$ (-0 - b3w)¢ +
o) )
+ (2A mvsinwo cqswo)é + & + D3¢ +

+ (A wz[ COSZwO - sinztpo ]) V=-=A wzsin\po coszpo (A.21)
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APPENDIX B

SATELLITE EQCUILIBRIUM POSITION

Using equations (19), (20) and (21) of Appendix A, let ¢, é, G, é,
U, @ and Y go to zero. Substitute ¢ = ¢o’ and 8 = 60, and solve for ¢O,
60 and wo to define the equilibrium position as a function of w, w and 7.

The equations reduce to,

- 2 T ad
| {gh cow )cosw ] ¢ +-[%ﬁ'81nwo] 6 =
i1 o o i1 o
- N . | - . .
w siny w Dlslnwo (8.1)

B w? - <) siny | ¢ +[FZocosy 1o o
( 12) o o L o)

L2
- (& + tz)coswO (B.2)
: - Da = 252101 | (.3
(w uaw)¢o - A w<s ny, cosy_ {(B.3)

Solving equations (B.1) and (B.2) for 60 and equating gives,

Dolom? - 3 .
R v FL ) U - : . N ad
i -EI COSWOJ 0, (bW + w D1/31nwo
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- 2\ j -
[ L%% Buw Jsiny fo - (b + w Dj)cosy_
%ﬁ coswO
2 (B.4)
Solving (B.3) for ¢o and substituting gives,
: 2
cosxpO 31nwo (sz - FL) ) Aw
L I, T. cos wo — +
1 w + Diaw
2
. 2 . Aw
- I(w + uDy) + IZ(B“ %?i) sin?y  ——— +
. . 2 w + D3w
+ Iz((:) + Dlw) = { {B.5)

The solution of equation (B.5) is either Yo = 0°, v = 90°, or the

o

bracketed term is zero. Investigating the latter and substituting

in2 - 2
sin wo 1 cos wo
gives

AFLw? + I;(0 + w D1) (& + D3w)

I

2 +
0S <y
[ Y

w*(I1AC - I,AB)

IoABw" + I,(w + w D) (0 + Daw)

w*(I1AC = I,AB)
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The first term is much larger than any other term in the equation

and can be approximated by

Since coszxpo cannot be greater than one, there are no real roots

-

+u this expression. Therefore, the only real roots are wo = § aud

. o
wo 90°.
If sinwo = 0, then
by = 0
9, =0 7
- 12((:) + (A)Dz)
% = 59 (B.7)

If coswo = 0, then

p, = 90°

6 = — . {.8)

Stability ol these equilibrium positions is investigated in Chapter 2.




APPENDIX C

FACTORIZATION OF THE CHARACTERISTIC EQUATION
USING LIN'S METHOD OF APPROXIMATION

If simpo 4 0 and damping is included, then the Laplace transform

of the equations of motion can be given as,

(C+ Dus + o+ wDy 82 4+ Dys + FL - Cw? 0 1Ty
I8!
I

0 0 s2+Dys+FL i ¢ |=

- il i
i
.

|s2 + D3s + w?A (A-Duws-w- wD3 0 J[_O 3

(s + D3)Y(0) + (& = 1)w ¢(0)]

D2w
= + (s + D3)8 (o)

wls .

(s ¥ D;)¢(0) + (C + Lw y(o) (C.1)
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The 6 equation can be decoupled from the § and ¢ equations leaving

[(c+1)ws+&)+wn1 s2 + Dys + FL - Cuw?

I'q,‘]
I

| | . -
{sz + D3s + A w? (A-Duws-o- wD3 ] J

(s + D3)y(0) + (A - 1w ¢(0)

(s +D1)¢(o) + (C + 1w (o) {(C.2)

The determinant is then given by

- A=s%+ [D; +D3ls3 + [(1 - AC)w? + FL + D;D3]s? +

I
+ [Cuww + 2w + w2D3 - Aww + Djw2 + D3FL 1s +
I
+ [w?2 + wo(D3 + Dp) + w2D;D3 + AFL w? - ACw"] (C.3)

I

As a first step toward finding the characteristic frequencies, iect

Dy = Dy, = D3 = 0 which simplifies the equation to

- A =s%4 [(1-AC)w? + FL ]1s2 + [(C - A + 2)wals +
I

+ [w? +

=]

L Aw? - ACwY] {(C.4)
1

!

r4

Furthermore, assume that the coefficient of s is small and can be negiected.

. . . =\ /FL .
It is also known that the libration frequency, ET » 1s much greater
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than the orbital frequency and the orbital angular acceleration. The

determinant then reduces to

- A =s"+ ;25?2 + Ap?yw;? (Ca5)
where
» _ FL
wye = — . (C.6)
1 I;

Factoring gives,

- mlz _-i-_'\/wlq - 4Aw2w12

2 =

s = (.7
1’2 9
Using the binomial expansion,
1 - 2a2
Pl — W
- w12+ wlz {_._._
2 w12
s = (C.5)
1’2 2
512 = - sz
s92 = = w12 + Aw? (C.9)
Furthermore, w? << w12 and the determinant is approximated b
1 PP y
- A= (82 + Aw?)(s? + w1?) {C.15)

This simpliification shows that the two modes of the characteristic
equation are widely separated and that equation (C.3) can be factored

using Lin's approximationz.
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Given a fourth order differential equation composed of two widely

separated second order equations, Lin's method can be applied as follows:
A= s* 4+ Es® + Bs?2 + Fs + D

Take the terms (Bs? + Fs + D) and change to s2 + F s + D). Divide
- B B
this second order factor into the determinant. If the remainder is small,

then the divisor and the quotient are the factors; if not, then a more

complicated process must be used.

The factors are then

A=b2+§s+g}kk+@-§)s+3-g-(E-Eyﬂ
- B B- B B B!/ B
(C.11)
with a remainder of
Re=[F—’E-—_’§_)_D_—”B—_L;)E_+(E—EH_F_‘_)2}5+
\ B! B i B! B B B
+D-_1_)_(B-P_\+(E-_b_‘_)§_2 (C.12)
B B Bl g2
Assu F
ssume S wlz >> 2
i
ana w12>>(:)

Utilizing these two assumptions, equations (C.3) and (C.4) reduce to
- A =s"+ [D; + D3]ls3 + [w;? + D1D3ls? + [D3w;2ls +

+ wo[Dy + D3] + w?D;D3 + Aw?w;? (C.3a)

and
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- A= s+ w12 s2 + (C - A+ Z)m& s + szwlz (C.4a)

Looking at (C.%a), the simpler of the two equations,

B = m12

r

(C - A+ 2w
D= Aw12w2

Substituting into equation (C.1l) and neglecting small terms gives

s2 = (C-A+2) wos + w;

,sz + (C - A+ 2) wo s + sz)
2

- A =
\ wlz

w1

(C.13)

with a remainder which is small compared to the original equation.

When damping is included,

tx
|

= Dj + 23

B = wlz -+ D1D3

w
.

U
i

we{D; + D3) + w?DiD3 + Awluy?

and substitution yields,




r ( D3w12 \ MK:J(D1+D3)+(U2D1D3 + szwlz']
- A= LSZ + Is + .
\mlz + DiD3 w2 + DiDj3 -J

D32

{SZ + l + Dis + w12 + D1D3 +

w1? + D;D;3
| DiD3wy? | = Ds? \
| -1 .
w;? + DiD3/ i w;2 + DD
1 D3l b 1D3

The remainder, fortunately, is small again and can be neglected.
Since Dj and D3 are expected to be much less than w;, (C.14) can be
further simplified to

[s?2 + D3 s + Aw?] [s2 + D} s + w;?]

i
>
n

~~
)
.

ity

EITRY
sy
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APPENDIX D

COMPUTER PROGRAM

In order to solve the equations of motion on the digital computer,

it was necessary to solve for the second derivative in terms of first

order quantities. Thus,

My

11&1 + (I3 - Iz)w2w3 + dlwl

My (13 - 12) w3 _ diwy - TENT

I I I

From the derivation, w; is also given by

¢ cosB cosy + 6 siny + EN

wy =

where
EN = - o 6 sind cosy ~ ¢ ¥ cos6 siny + 8 b cosy +
+ sind sinb cosy + w é cos¢ sin® cosy +

+w b sing cosf cosy - w @ sind sind® siny +

+ cos¢ siny - w @ sing siny + w i cos¢ cosy
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Thus
; cosf cosy + 5 siny + EN = TENT
¢ cos cosy + 6 siny = TENT - EN = Q
Similarly
M, = 12&2 + (I - I3)wiwsg + dowsy

Mz _ (Il - I3) Wiz - dz

2= E;‘ "——f;_—‘- E; wo = ZETA

From the derivation

&2 = 0 cosy - ¢ cos@ siny + GAMMA

where
GAMMA = - § &-sinw + é 6 sind siny - & @ cosf cosy -+
+ & cos¢$ cosy = w $ sing cosy = w & cos¢ siny +
- sin¢ sinb siny + w é cos¢ sinb siny +
- w6 sin¢ cosf siny - w @ sin¢g sin® cosy
So that

cosy — ¢ cosB siny = ZETA - GAMMA = R

[«

The third equation of motion is given by
0= 13&3 + (IZ - Il)wzwl + djw;g

(I = I;) wpwy _ d3
—_— — “3=you

w3 = I3 I3

(D.1)

£~ n

\vedoly
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And

w3 = U + ¢ sind + TAVB
where

+ w6 sin¢g sin6
Thus,

Y + ¢ sin® = YOU — TAMB = §

(D.3)

Putting equations (D.1l), (D.2), and (D.3) in matrix form gives,

cosb cosy

- cos6 siny

sinb

siny

O
—d

(@]

cosy

The determinant is then given by

cos® cos?y + cosb sin?y

8 _ G cosy sind

A =
= coséb

T _ G cos R siny
9 = A

CCoU
§ = ] cosv + Q siay
* . R sind sin
'\i) = S -+ -

cos

A copy of the program is also contained in this appendix,

cos®

L v ]

(D.4)

(D.5)

(D.6)
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M4114-3627 ,FMS,DEBUG,1,1,500,0
XEQ

LIST

LABEL
SOLUTION OF THE GENERAL EQUATIONS OF MOTION

COMMON D1,D2,D3, DELTPR,TOT,DELT,T,TH,DTH,PH,

DPi,PS,DPS,TPRINT,A,B,C,AL,CON,ERT1,ERT2 ,ERT3
READS,D1,D2,D3
READS,TH,PH,PS
READS,DTH,DPH,DPS
READS,A,B,C
READS,ERT1,ERT2,ERT3
READS,TOT, T, TPRINT
READ9 ,AL, CON
READ9 ,DELT,DELTPR
FORMAT (3E20.5)

FORMAT(2E20.5)

FORMAT(8E15.6)

CONSTANTS
E=.31
UM=0.469E22
SMA=0.37E12
TAU=0.103244E8
SENSE LIGHT 1
ALGEBRAIC EQUATIONS (MEAN ANOMOLY= AM, MU= UM)

AM= ((UM/(SMA)*%3 )#%(,5))%(T~TAU)
EA=AMAE®(1.-(E#**2.) % (.125)+(E**4.)%*(.00515) ) *SINF(AM)
F(E**%2.)% (. 5)%(1.-(E**%2,)%(.333))*SINF(2.*%AM) + (.375)%

(E**3.)%(1.-(9./16.)*(E*x%2.))* SINF (3.%AM)

F=2.% ATANF ( (((1.4+E)/(1.-E))**(.5))* TANF (.5%EA))
RA={(SMA) *(1.-(E**2.)) /(1.4+E* COSF(F))
V=(U*((2./RA)-(1./SMA)) ) **(.5)

W=V/RA

FP={(CON) /( RA*%2.)

WW IS THE DERIVATIVE OF W, THE ANGULAR VEL.
WW=—((( UM/ (((SMA) *(1.-(E*%2.)))*%3,))*%(,5)) ¥WXE*
SINF(F)* (4. + 10.%E*COSF(F)+(.1922)+(.5766)*(COSF(F)*%2.))
J((L.+E%4 %COSTF(F)+(.0961)*(1.+5.%(COSF(F)*%2.))+(E**3, )%
(2.%COSF(F)+2.%(COSF(F)**3.)))**%(.5)))*(.5)
EQUATIONS OF MOTION
D2TH=R*COSF(PS)+Q*SINF(PS)

R=ZETA-GAMMA
ZETA=( (TWOMO) /ERT2) +B*W1*W3-D2*W2

W1=DPH*COSF(TH) *COSF(PS)+DTH*SINF(PS)+W*COSF (PH)
*SINT{(PS)+WXSINF(PH) *SINF(TH) *COST(PS)
W2=DTH*COSF(PS)-DPH*COSF(TH) *SINF(PS)+
W*COSF(PE) *COSF(PS) ~W*SINF(PH) *SINF(TH) *SINF (PS)
W3=DPS+DPH*SINF{TH) -W*SINF(PH) *COSF(TH)
GAMMA=-DTH*DPS*SINF(PS)+DPE*DTH*SINF (TH) *SINF(PS)
~DPH*DPS*COSF (TH) *COSF(PS) +WW*COSF(PH) *COSF(PS) -
WAD?H*SLNF(PH)%COSF(PS)-WKDDSKCOSF(PH)xSINF(PS)-

TWASINF (PH) *SINF(TH) *SINF(PS) -W*DPH*COSF(PH) *

SINF(TA *SINF(PS) -W*DTH*SINF (PH) *COSF(TH) *SINF(PS)

—~W*DPS*SINF(PH) *SINF (TH) *COSF(PS)

TWOMO=-FP*AL* (~SINF(PH) *SINF(PS)+COSF(PH) *SINF(TH) *
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COSF(PS))

Q=TENT-EN

TENT=(O\“MO)/(ERTl)—C*WZ*wB—Dl*Nl
ONEMO=-(FP*AL) * (SINF(PH) *COSF(PS)+COSF(PH) *
SINF(TH) #SINF(PS))
EN=~DPH*DTH*SINF(TH) *COSF(PS) ~DPH*DPS*COSF(TH)
*SINF(PS) +DTH#*DPS*COSF{PS)+WW*SINF (PH) *SINF(TH)
% COSF{PS)+W*DPH*COSF(PE)*SINF(TH) *COSF(PS)+W*DTH*
SINF{PH) *#COSF(TE) *COSF{(PS) -W*DPH*SINF(PH) *SINF(PS)
+W*DPS*COSF(PH) *COSF(PS) ~W*DPS*SINF (PH) *SINF (TH) *SINF (PS)
+WW#COSF (PH) *SINF(PS)
D2PH=(1./COSF(TH) ) *(Q*COSF(PS)-R*SINF(PS))
D2PS=S +({R*SINF(PS)*SINF(TH))*(1./
COSF(TH))-(Q*SINF(TH)*COSF(PS))*(1./COSF(TH))
S=YOU~-TAMB

YOU=~A®WI*W2-D3*W3
TAMB=DPH*DTH*COSF (TH) ~WW*SINF(PH) *COSF(TH)
~W#DPH*COSF (PH) *COSF (TH) +W*DTH*SINF (PH) *SINF(TH)
IF (T-TPRINT) 4,3,3
PRINT1,T,TH,PH,PS,DTH,DP4,DPS,F
TPRINT=TPRINT+DELTPR

IF(T-TOT) 5,6,6

T=INDVF(T, DELL)

T%=DDVVF(TH DTH)

PH=DPNVF({PH,DPH)

PS=DPNVF(PS,DPS)

DTH=DPNVF(DTH,D2TH)

DPH=DPNVF(DPH,D2FH)

DPS=DPNVF(DPS,D2PS)

GO TO 2

CALL EXIT M

END

DATA
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APPENDIX E

CALCULATION OF THE MOMENTS OF INERTIA

Two possible antenna arrangements were considered for this
satellite. Since the antenna size markedly effects the moments of
inertia and the frequencies of oscillation, calculations for both body

configurations are given below.

E.1l General Satellite Configuration

The satellite is composed of a six inch Qide hollow disk, of radius
ten inches, which houses electronic equipment and solar cells. Three
capacitors are placed in line and attached to the disk, as are four
antennas. The solar sail is circular with center of mass twenty inches
from the front of the disk, with a width of eight inches and a radidé of
ten inches. (See Figure 2)

Approximate:

(a.) the holliow disk, electronics, solar cells and assorted
equipment by a solid disk of weight 7.51 pounds, with
a thickness of three inches and a radius of nine inches.,
(ba) the three capacitors by a rectangular bar of weight 6.29

pounds, with dimensions 3 in. x 3 in. x 16 in.
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(c.) the sail by a circular cylindrical shell with a radius
of nine inches, negligible thickness, and a weight of
0.25 pounds.

E.2 Long Antenna Configuration

Approximate the two twenty foot antennas by a forty-two foot rod
weighing 1.37 pounds, and the two six foot antennas by a fourteen f~ot
rod weighing 0.462 pounds.

The moments of inertia are then given by (neglecting small

quantities),

I3 = I3 disk + I3 bar + 13 antenna

= 6.55 slug-ft2 - (E.1)

= 2 2
12 (Iz + mr cm)disk T 1z long anten. + (mr cm)sail +
2
+ (I, + mr Cm)bar
= 6.30 slug-ft? (E.2)
= Al"z 2
! (I +m cm)disk + 11 short ant. + (mrcm )sail +
- 2
+ (I + B em )bar

0.294 slug-ft?2 (E.3)
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Thus,
I, - I;
Aph——= 0.919
13
I3 -1
B é = 0.990
Iz ’
I3 -1
CA = (0.855
= I,

E.3 Short Antenna Configuration

Approximate the two 2.45 foot antennas by a rod of 6.55 feet and
Qeight of 0.217 pounds, and the two 0.82 foot antennas by‘a rod of 3.28
feet and 0.108 pounds.

Using equations (E.1, 2, and 3), the moments become
I3 = 0.123 slug-ft?
I, = 0.111 slug-ft?

I; = 0.054 slug-ft?

The parameters A, B and C then become

A = 0.460
B = 0.625
C = 0.232
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