
t 

1 

I 

0 L '9 

L 3 0  (0 739a 

CTHRUJ B 5 -Y!?7RJ 046 4 

- (CODE) (PAGES) 

(CATEGORY) 

i 

(NASA CR O R  TUX OR AD N U M B E R )  

DOUGLAS PAPER NO, 3078 

I 

GPO PRICE s 
CFSTl PRICE(S) S 

Hard copy (HC) =?&' - 
Microfiche (MF) 423 

ff 653 July 65 

c-- 
i - SATELLITE MOTION FOR A L L  INCLlNATIONS- 

AROUND AN OBLATE PLANET 
I-cc 

AUGUST 1964 . -.. 

M. ECKSTEIN 
9 E S E A R C H  SPEC'AL 5-  

DOUGLAS AaPCRAFT CO.. N C .  

Y .  w1 
R E S E A R C H  S P E C I A L I S T  

DOUGLAS AIRCRAFT CO.. I N C .  

J. KEVORKIAN 
CONSULTANT 

DOUGLAS A I R C R A F T  CO..  I N C .  

T O  9 E  P R E S E N T E D  T O  THE I A U  S V U P 3 S l U M  

A T  T H E S S A L C N I K I .  G R E E C E .  ON A U G U S T  17 - 22. 1464 

https://ntrs.nasa.gov/search.jsp?R=19660000757 2020-03-16T22:02:26+00:00Z



fage 

23 

23 

26 

26 

29 

\ 30 

30 

Should R e a d  

3 
COS i cos 8 

p s i n  i s i n  8 
2 

i o n  Uln a d  el: 

(Ttrt asterisk refers t o  the note on next page) 

at t = f ere  

(COB - COO 

* 
+ A. + A2 cos 20 &1/2 1 - 1 - s  ( i  2 2 01/2 

ds  

1/2 
(.. 

[:(ao - cl cos 20 1 - So] 
+ 1  r -  

iol/2 s1 

should have a 2 on the right s i d e  next to the = sign 



Psge 

34 

34 

3b 

36 

31 

38 

38 

38 

39 

39 

39 

Should !?cad 

should have a 2 on the right side n u t  to the = sign 

should have 2 on the right s i d e  next t o  the  * sign 

* * *  

1/2 
i01/2 + %l i s ioo + E  oc 

. . expansions to ~ ( t )  for d l  inclinations . . . 

should have 2 on the r igh t  s i d e  next to t h e  = sign 

1 /2 :2[v( l  - V I 1  
* dv 

& 
2 s i n  QI cos w = - = 

should have 2 i n  front of the i n t e g r a l  

should haws + on t h e  r i g h t  s ide  next to the = sign - 
. . . motion uound n / 2  or 3=/2 v i t h  a mmcinum rmplitudc 



...- .. . . 
,. . 

pagt Equation 

40 (3.581 

40 (3.59) 

40 (3.60) 

Iro (3.61 1 

40 (3.62) 

bo lines below 
(3-62) down 
to the botton 
of the page 

41 

41 

bb 

46 

53 (A.28) 

Should Read 

& .r 

should be replaced by: . . are assumed. This = e m s  that  Case 11 happen 
only if i n i t i a l l y  the apse snd. the inc l inat ion  are 
chosen properly as to satisfy the condit ion (3.62). 

should have + on the r ight  side next t o  the  = sign 
0 

e e - cos 24  - -cos 0 (+  4 2 2 - - 0 cos (34 - well 
P) 

C 

* +  f 0 . .  Ool- Dl "0 

S- 



t , - -  

t ttt N. Eckstein , Y. S i d "  and J. Kevorkian 

hiGEi?ACT 
- 7.4 2 

i i  - 
i 

A urnifomiy v a i i d  s o i u t i c n  for t i l e  so t ion  of a s a t e l l i t e  sround an obia te  

planet is present,&. T h e  TVC Variable Expacsinn ?rcceiiure as esriier 

developed at Snitech vns applied t o  o b t a i n  a so ia t ion  valid for all 

inc l inn t ions  including t h e  c r i t i c a i .  This so ls t ion  is correct t o  o rae r  E, 

*ere E is a s m a l l  parameter proportional to t h e  oblateness  p a r m e t e r  3,. - 
The reciprocai of t h e  radius vector, eccent r ic i ty ,  per igee Lnclination, 

and node of the satel l i te  o r b i t  are given as functions of  tile c e n t r a l  angle $ 

betveen node and s a t e l l i t e .  

t h e  second and fourth zonal harmonics. Tne solut ion fnr t h e  case of c r i t i c a l  

The r e su l t s  are based on a potential which i n o h d e s  

inc l ina t ion  is first o b t a i n e d  sepzzately and  t h e n  w i t c h e d  v i t h  t h e  so;ution 

Of the noncr i t i ca l  case t o  estsbl i sh  a solut ion un i fomly  v a l i d  for a l l  

inc l ine t ions .  

* This work vas Jo in t ly  sponsored by t h e  Cat ional  Aeronautics and Space  
Adrninistrntion under Contract No. IASv-s)Oi and the  U. S. A i r  Force unaer 
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f Research S p e c i a l i s t ,  Douglas Aircraf t  C O . ,  Inc., Santa  Monica, California.  

tt Reseerch S p e c i a l i s t ,  Doaglas Aircraft Co., IRC.,  Smta Monica, Cal i fornia ,  
Present ly ,  Ass is tan t  Professor of Aeronautics, CarneGie I n s t i t u t e  of T e C h n o i O a ,  
Pi t tsburgh,  Pennsylvania. 
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TfLe &ion of a 8atellite around an oblate planet has received considerable 

rttcation i n  the literature after t h e  advent of ar t i f ic is l  s a t e l l i t e s  of' t h e  

ear#* The early theories ,  of vhlch Brourcr's (19%) is the  most comprehensive, 

were not r a l i d  for i n i t i a l  o r b i t a l  inclinations close t o  the  c r i t i c a l  value 

COS -1(5)-''2= 63.b0 f m  t he  equatorial  plane of symmetry. The non-validity 

of the solution a t  t h i s  angle exhibited i t e e l f  by the occurrence of a divisor  

vhicb tended t o  zero at t h e  c r i t i c a l  inclination. 

Later, Bori (1960) .ad others  (cf. Carfinkel (1960), Mer- (1962). and Izsak 

(1ss) using diverse  approacher, s t u d i e d  the  behavior of' t he  solut ion near t h e  

c r i t i d  inclination. Though "a direct aaalytic c a p r i b o n  of t h e  various 

trtatpcrrta of the c r i t i c a l  incl inat ion problem is afinost impossible because of 

the mul t ip l i c i ty  of notations,  approxfmatione and starting points" (Mersnran 

(le), there is general agreement about t h e  necessity of studying an expansion 

in powers of J1I2 (vhere J is t h e  m a l l  parenleter measuring the oblateness 

perturbations) 

near t h e  critical i nc l ina t ion ,  es f i r s t  described by Hori, has been repeatedly 

Substfmtiated, 

Furthermore, a t  l eae t  t h e  qua l i t a t ive  behavior of the motion 

This statement by Mersman qu i t e  co r rec t ly  r e f l e c t s  t h e  inherent 

- € ? M e  cmplex i ty  of t h e  main problero and thenecessa f i ly in ro lv td  nature 

Of its solution. Hwever, t h e  basic mathematical prablen t h a t  girts rise to 

the s ingu la r i ty  at  the  c r i t i c a l  incl inat ion is qu i t e  s h p l e  and vas recognized 

by a m y  authors. 

f n c l h a t i o n e  close t o  t h e  c r i t i c a l  the equations governing the  slow va r i a t ions  

Of t he  apse and i nc l ina t ion  angle are coupied bJ v i r t u e  of a regrouping O f  

ter?aa vhich otherwise have d i f f e ren t  or%=rs of magnitude. 

In par t i cu la r ,  Struble (1961) has pointed out t h a t  f o r  

t 



* 

ms F- cm k riuplicated uactl~ i n  a pfU%iculmfy simple model, 

cquat im ~ ~ ~ p a n d i q g  to tbe forced o s c i l l a t i o n s  of a system v i t h  an appropriate 

-~-&ty, Ttie caanection between --linear o s c i l l a t i o n s  and s a t e u k  

ro+iart pith s s l ~  pertlmbstirws is, o? coutse. w e l l  Lnrnsn since it vas f i r s t  

b;r b w e  in his stua  of tbe not ion  of t h e  100~. Therefore, i n  

k, fb ideas  t h e  proposed model equation i s  first s tudied  i n  de ta i l ,  and 

th?techzll *qws are then d.irectQ applied t o  rhe Pain  problem. The aim of the  

p s a t  pager is to develop tbe solution both near and avay f r m  the  c r i t i c &  

inclination in  -ptotic series vith respect to J. 

ml id  for long t i m e s ,  but the gar- g o d  is t h e  achievement of uniform 

vmlidi ty far all inclination angles l~dl vell. 

These series are uniformly 

2 . . .  



Tne present solutiori inc1;tdes the second ar~d fo i l r th  zonal h a m o n i e s  of the 

earth's potent ia l ,  Ali secular  and long-period terns are included up to 

0(J5'*1, while short-period terms are retsinea up to O(J). 

exhibited ir. the form of t h e  reciprocal  redius, eccent r ic i ty ,  ?erigee, 

inc i ina t ion ,  and node 3 5  fiincticns ~f t h e  c e n t r a l  &-@e bet.;een the a s c e n d i q  

Eode and rad ius  vector. Tie equation f o r  t h e  tiae is not given here but w i l l  

je included i n  a f;rture p b i i c a t i o n .  

results vith at least tbe work of Struble  (1961) and (1562> -dill %is0 be 

provided there. 

The reslllts are 

A de ta i l ed  rLT-,arison of t h e  present 

, 

3 



2. PLozei Equation 

2.1 Gcncrol 3iscussion 

Ln order  t o  dernonstrate t h e  e s sen t i e l  nathematical features of the main p r O O i e A  

ana t ne  expansion procedures, t h e  foilowing model equation is  first sti idiea i~ 

d e t a i l  

(2.1) 

uhere E. << 1. 

I n  the absence of t h e  forcing function, t h i s  equation can be in tegra ted  exact ly  

and exh ib i t s  t h e  following behavior in  t h e  phase-piane of j r  and dy/dt. 

yheaever t h e  rad ius  r = :y 

values r 

v i t h  m q l i t u d e  r-hnc! u n i t  frequenca. 

consecutive v a l u e s  of r,, t h e  in tegra l  curves are ovais vith t h e l r  axes a i i g e a  

a l t e rna te ly  paro i led  e i t h e r  t o  y o r  to dy/dt. 

sadi t ion  of t h e  forcing t e r n  v i t h  unit frequency w i l l  cau5e l o c d  resonance i n  

neii;hborhoods of t h e  c r i t i c a l  Bmplitudes rC. 

section, this will indeed be t h e  case and will give rise t o  t h e  problem of the 

" c r i t i c a l  amplituae". 

2 
+ $2]1'2 i n  t h e  pnase-plane takes orr t h e  c r i t i c a l  

= cos"( S)-l/*, the motion reduces to sizple hamonic  oac i i i o t ions  

For eech onnular resior Scunaed by tVQ 

C 

b 

L 

One r o u l d  thus  expect t h a t  t ne  

As w i l l  be shown later on i n  t h i s  

k i n g  t h e  two-veriable method discussed by Cole and KevorKian (1962). 11963). 

t h e  fol ioving form of t h e  asymptotic expmsion is  f irst  assmed* 

c 

T'nroughout t h i s  paper t h e  omission of the  upper index on a summation synbol 
will i nd ica t e  an asymptotic expansion. 

3 



i 
(2.2) y(t;t) = 1 Yi(t,;*;C)E 

i=;o 

. t e . d o v  vnriuble is definea by 
- 

(2.31 t = c t  

as discussea by Kevorkian (1962 j . Tntn the gjovernini; equation for y 0 is 

vtrose general solution i; 

(2.5) 

~ h c  functions a(C;E) and B ( ~ ; E )  in (2 .5j  which vi11 be called "integration 

cosLbt;ezltsw viU be determined by requiring y, to be bounded. ?or the present 

case we always trave the simp-e harmonic operator on the left-band side Of all 

bigher order equations. 

representation of the motion of the phase axle, ve w i l l  e q m d  the "integratior. 

constants" n ( t ; ~ f  and t3fz;~)  in the Tow: 

y 0 ( t * i ; E f  = a(t;c)cos[i - e(t;c)f 

A. 

For simplicity of calculations and for t n e  explicit 

6 

F ' r a  (2.1) the foUaving equation for p1 can be calculated: 

The boundedness of y1 requires 

dBO 2 
0 

- =  -(1 - 5cos ao) z s 
ii; 

. 



These eqnt%tions give 

2-91 II 0 =const, S o = s < + b o  0 

*ere bo is e toe- 

7 is tbcrn '1 

on tbe i n i t i a l  condition. The solution for 

- 
(2.10) qt&d = 0 

Vith iw) 135s rf ~;mrraZt;? 'mca-se the homogeneous solution is already accounted 

& l e  - = - sin B 1 0  
(2.13.) 

ai. 
2 

S 1 0 stn 2p0 * - 2 cos 8 + so'al (2.13) -=-- 2 E =*=o 
tic 

Since for so * o (2.e. u = COS -1(T)-1'2) 6 = b 0 + O ( E ) ,  we see inmediately 

fr- (2.13) that s: becanes unbounded for l tvge values of  2. n u s ,  the 

expaneion pmce6ure m-13 in (2.2) is not uniformly val id  near the critical 

0 

amplitudes. 

7 



In *is sia?le model the cause of t h e  d i f f i c u l t y  is easy to discern ufid rciwo;!. 

As va5 pointed out eatlier. whenever o = u 

-tern dqenerotes to simple hsrnronic motion w i t h  (L frequency equal to  t ia t  

of t h  Zomiry fmctinn. 

mast increase apprecinbl:r before the  non- l inea  term comes i n t o  play ma 

-1 
COS (!5)-'" t h e  non-linear 

C 

Therefore, in sme nei&borhccld of o tbe  aq?-it;iSe c 

drrstroys the resonance of tne forc i rg  function. 

ret-ce tlre forcia; :'unction, unicn L'ouIa otncr-.risc 'be of order E , nou 

t a k e s  on H Gore i m p r i a n :  role. Tiis i ac t  is t x n i o i t e a  -a tbena t ica l i j  i n  

equations (2.i). 

function iii salving for a 

(2.8) are e x d u s i r e l y  copposea of s m a i l  terms. 

A e  to t h i s  e f f e c t  0: :oca.i 

2 

L%en so is  m i  me cannot n e s l e t t  tne hi,;ner order forcing 

and n 
0 C' 

sincc in t n i s  case tne r ignt-ham sioes ctf 

This fact  uns first pointea 

by Struble (1*lf i n  connection v i t h  t n e  main probfean. 

In riff of t h i s ,  ve anticipate the  izqortance af t n e  forcir4 functicn ana 

introduce it immediately ir, the ep-uitions of oraer  E .  

(2.8) for a and B now becbne 

This means e?uations 

2 E 
2 

- =  dB -(1 - 5cos a )  + - COS 6 
a i  

The teras Of order f in  (2.14), vhich are exclusively t h e  contr ibut ions of 

right-hand side of (2.1). w i l l  radically alter the behavior of a nnd I3 nea r  

criticsf mplitudes, 

W t f O n S  (2.14) are Hamiltonian, hence along an i n t e g r a l  curve 

. 
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1 .  

i 

2 i t h  t h e  a id  of f2.15), t he  i n t e g a l  curve5 i n  t h e  a, 3 plane can be e a s i l y  

c a l c d n t t d .  

and cos a = cos a t z t(l/!i 

p a t t e r n  of centers  and. saddle-kpoints with so lu t ion  c - m e s  as sh,m q u d i t a t i v e l Y  

in 7igure 1. 

Tic singular points are  located at  6 = BS = n r ,  n = 0 ,  f 1, 2 2, . = *  

c/lCl)”p. These points  form an a l t e r n a t i n g  

U e  observe tiLree possible types of aotion if ue consider t h e  i n t e g r d  C-eS 

i n  v e r t i c d  strips v i t h  a vidth of order cl/* centered about my of t h e  c r i t i c a l  

amplitudes. 

The integral curves vhich pass throui;h tvo adjacent s a d d l e - p i n t s  f o r  a Given 

value of as form the  boundaries of o v a l  regions v i t h  a v id th  also of O(E 

inside whichboth  u and 8 undergo bounded osc i l l a t ions .  For example t h e  

motion i n  t h e  neighborhood of t h e  point 6 = 0 and a 

1/2)  

112 a s = c0s-l ( l / S  - c/lO) 

has t h e  form 

vhre  5 and C 2 are smal l  constants depending on i n i t i a l  conditions vhich 

allow us to l i n e a r i z e  equations (2.14). 

The separatrix fowing  t n e  above boundary corresponds t o  motion where a and B 

approach t h e  value at the saddle-point asymptotically as t -+ 0. I n  f a c t ,  by 

use of (2.15) it is easy t o  shoV t h a t  t h e  sepa ra t r ix  around the  p i n t  6 = 0 

- 

The upper o r  lover signs i n  t h e  r a d i c a l  are t o  be taken  vhen 6 is an even 
or odd mult iple  of x respectively. 
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on its osci l la t ions.  

frequency is o!t 3'23 i n  t h e  natura: time variable whereas t h e  amplitudes of 

osc i l l a t ion  are O(c"*) (cf. equations (2.16) and (2.17)). 

In all three of t h e  above I U G ~ ~ O R S  t h e  c h a r a c t e r i s t i c  

P'nis inmediately 

suggests that t h e  sfow t i n e  scale n?pro?riate f o r  motion near t h e  c r i t i c a l  

amplitudes is t = t3''ts and t h a t  one nust seek an expansion f o r  y in powers 

1/2 of c . 
A s  for the motion away from the c r i t i c a l  amplitudes, we-note from ( 2 . 8 )  and 

(2.13) that  u o s c i l l a t e s  with amplitude and frequency of order E, and that the 

oscillatory as vel1 as secular components of B behave s imi l a r ly .  

The above i n t u i t i v e  construction w i l l  next be analyzed s y s t e m a t i c d i y  by the  

use Of tw different  expansions and the i r  r o l e s  e s t ab l i shed  in t e r n s  of ali 

possible i n i t i a l  conditions. 

2.2 Outer expansion 

In order to account for the most general form of i n i t i a l  conditions,  w e  

represent the motion away from the c r i t i c a l  amplitude by an expansion i n  ?overs 

of cl'*, called the outer expansion: 

? 



Am before tbe leadine term of (2.16) is 

It is thex, carry to ohou that yl,* = yl = y3/2 0 after baving defined the 

BiI2 by the folloviry boundednese requirements: a1/2* 

&€? (2.221 -= 0 
d i  

do a. 

d% 
s in  6 1 - = -  (2.26) 2 

(2.25) - = s 'a = - 9 s i n  2a0)a112 d% 0 1/2 

Pate that t r i g o n a e t r i c  functions vfth 6 as arpent are not expanded to aroid 

trivial non-uniformities as the ucpaasion of 6 i n  (2.21) need not involve 

bounded functions. It is only the phase Velocity dB/d< that m u s t  be bounded. 

f 
11 
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solutions of the above equations are: 

- 
c (2.29) 8a = sot + b 

0 
= const, = iL (2.28) 0 0 

and 

"112 (2.31) 61/2 = s o ' q 2  + b m  f2.M = const. = 

nnd 

2 s 'a 6 'D 
c1 

(2.32) i 2s0 [ i  - t 112 c ;/2 * 0 ;/2] + ...; (cos 3 - co5 0 )  + a- 
- G  a - - -  

6 S 
0 0 

and equation i2.27) reauces to 

s 'n 
I1 - E 

1 0 0  + - cos 6 - - 1 
2 0  

2 - aosO sin 20 
2s0 

0 2  - = -  (2-33) 
az 

s u  
2 

0 + ...I (cos 13 - cos b) + s 'ti + - =0'"1/2] 
* E( 0 1 2 al/2 

0 -  - 
if the initial conditions gre given 83 

(2.34) 9 = b = bo + F ' / % ~ , ~  + cbl + ... 
u2 + sal + ... a = a = a  + E  ma 

0 

at t = 0, 

Equation (2.32) for a e-bits the non-uniformity of the expansion near so = 0. 
~ i 1 
I 

12 . 
I * 



2.3 Inner expansion 

A r  mentioned preriausly, the outer crpansion fails to be valid as so + 0. 

U e  nou seek a salutioli wh ich  is val id and does not becocae unMunded at the 

c r i t i c a l  amplitudes. "his expansion w i l l  be cal led the ninner expansion". 

We l e t  

(2.35) 

cf .  discussion after fig. 1) 

1f2 T; 
0 

s = E  
0 

and ass- the folloving expansion for y 

where a new slov variable 

z 
h ~ s  been chosen. The eqilation for y o is Gaia 

vhosc generel solution can be m i t t e n  i n  the form: 

* -  u -  
We also expand the slowly varying functions u ( t i ~ )  and 6 ( t ; c )  i n  the following 

lorn in order to account for the hmogeneous solutions of a l l  higher orders. 

13 

.-  
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. 9 

-*s 0 'a 1/2 
dT 

w e  
4 * .  * 3  5 9 -  

s s i n  2a0 
0 

s 'a (2.43b) - 9 dt - o 3/2 + '0"~1/2 O 1  + -"s (O1/2 - 
vith the edditional resul ts  tiat 

sad that only in y5/2 

ut note that equations (2.42) are precisely the equations one vodd obtain in 

do we have higher harntonics i n  the fast Variable. 

inner limit from (2.14). Equations. (2.41-2,&3) can be solved successively 
9 

tot the aii2 and the r c d t ~  are surnuvizcd bel-. 

. 
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2.b  Matching of solutions and CQZpOSite exmnsion 

In the standara singular perturbation problem in vfrich tuo lkit process 

crp.119ionr can be derived in their respective dollpains, eithet a ~ +  or b ~ t b  

Of t k a e  upanoions is defined incaapietdy pr ior  t o  #e matching (cf. b p h n  

and LagUatre=i (1957)). 

solution vould depend upon the values taken an by the  outer solution i n  the  

inner region if the  motion spans both regimes fcf. -Merstrom ma Kevorkian 

(19531). 

and tbe behavior of t h e  two limit-Focess expansions in  t h e i r  tcamon overlap 

dcQain vill provide the basis for deriving a composite expension which is 

For uemple, the initial conditions for the inner 

In this case, the IDatchiry v i l l  define the mofion i n  the inner region 

ral id e v e m e r e .  

the present exmaple, as w l l  ae in thc main problem, the  motion depending 

Upas t4e i n i t i a l  condition on a lies for all tintes i n  e i the r  the outer o r  

inXteP regions. 

expansion does not vary i n  order of mgnitude with tbe. 

matching i s  then tvo-fold. 

Vi= prove the  existence of a COQIP~P overlap domain and rule out the poss ib i l i t y  

of an ewen t u r d  limit-process expansion for some value of u such t h a t  

I) 

bfcmmation fot obtaining a representation of the motion f o r  all values of 

8 

order interval have been calculated. 

discused by Kap1u.n and Lagerst- (1957). For t he  present exmplea, 6s ve l1  

htrtherrnqre, t h e  parameter which establ ishes  the appropriate 

The purpose of 

F i r s t ,  the direct matching of the tvo expansions 

= O(cp), 1 < )I < 1/2. Secondly, the matching vill provide the  necessary 
0 

i n  the above order interval once the behaviors a t  the end-points of this 
0 

General principles of matching are 

for t&e -in problem, it is sufficient t o  show thst the inner solution €or 

large values of agrees d t h  the inner l i m i t  of t he  outer expansion. I n  
0 



L 
f this merit the derivation of a cainposite expansion vhich is w i f d y  m a  

for all s 0 in  the order interral ord c1I2 2 ord so 2 ard 1 bccolnte particnlu3;j f 
. 8 t m t f  O-&- 

* * 
lpht rptchizg between a end a 

arter rariables and expand for so * 0,  we obtain 

is very s i q l e .  If Ye w f k  a €n tcms; of - 
1/2 

-2 + "'I 
* * 1/20 + E a  + O(E3'2) = a + 

- COS b I + 5 

(2.48) 0 1/2 1. 0 0 = a  + E  

* f .  
1 ,312 '0' *' (em il - COS b 1 * - -- (COS 8 (8 a. - l )  a1/2 

E %  

0 

& 

18 

prola the outer expansion M have 

BY caqaring equations (2.48) sed (2.49) we see that t~ inner Cxpansia 

Ute O l r t o  expaasion explicit ly  to order E . 
ve have a 1/2 = ai12 * In fact, all teama i n  the outer expansioll to 0x33- E 

are contained i n  a. 

higher O r d e r .  Thus, the coaposite expansion vhich is unifonaly rdlid to O ( E )  

2 Rote that in the a r ~ l s p  d d B  
2 

1/2 . The outer expansion of a 1 is entirely of 1/2, + E 

everyvhere is: 

1/2a 
1/2 + '"1 a = a  + E  (2.50) c o  



i 

* I n  t h i s  a~%tChing, VP nave assumed that both 13 arid 3 a re  sr.atcriec. '3;s -*"* - A&A 
be s h o w  i n  t h e  subsequent discussion. 

matching betveen 

For simplicity,  we vi11 discuss tne 
f f -  

and ds f d t  instead. 

To summarize, we have already obtained 

0 
5 a 's s i n  2a - =  6 + E s0'aI/2 + E(- s - - d3 112 

2 0  b o o  
(2.511 

cit O 

and 

We note  t h s t  

tha t  appear 

f f -  
t h e  inner expansion of (2.52) f o r  d3 /dt contains all t h e  terms 

n tne outer  expansion (2.51) with the exception of the  tvo  term 

n 2a 
1 and - ES '. This is consis tent ,  because vber. the  above 
2 .  0 

terms are expressed i n  t e rns  of t h e  inner pa rme te r  s 0' tney become of oraer 

E3/2 and c2 respectivefy.  Thus, they should appear i n  the expressions for 
* -  

d0 /d t  and d03,,/dr respectively.  The first t e n  does appear i n  t h e  

expression (2.h3b) for dB1 /dT md one would recover t h e  second term i f  

d63/2 

Conversely, nrany terms i n  t h e  inner  expansion, e.3. s 0 1  'a 

are of orders  higher than we considered i n  the outer  expansion and v i 2  a?2,?ar 

i n  t h e  corresponding higher order t e r n .  

1 

i 
/dy w e r e  evaluated. 

ff 
and s0"(01~,ff12/2, 

Having carr ied out t he  calculat ions 

t o  the present order ve can e a s i l y  derive the foliouinG coxlposite expansion 

for dBc/dt which is uniformly v a l i d  t o  order c2 f o r  BU so. 

- 

i f 



- - -  1 _ I  

a 

(2.53) 

2- c 2 - 2  - f c(aO so sin 2a + - 
0 2 so 

i n  deriving (2.53) we nave use6 the c u s t o n a r j  ccnstnction of 

and outer representations for d 3 / d t  find SubtrECting those teras -i€h are 

ccmmon to botii expurisions in t h e  inters iedinte  region. Tnese terms are %Le 

t w  higher order terms appearing at the end of (2.53). 

fI2 the inner expansion da*/dy is itself unifordy vall'a for all so. It 

is only in deriving an expression valid to orders higher than c1I2 +bat one 

needs consideration of tenns contributed by the outer expansion. 

tzf k e r  

n u s ,  to order 

Final ly ,  the solution of (2.1) for y vnich is uniformly valid to O(E) for 

all so is 

1/2) The behavior Of the amplitude and phase to O(E 

connection vith (2 .14) .  

qualitative natWe of the solution. 

Of the €?XpansiOnS for a and B vas carried out here to  serve a5 a W i a e X E  

the Study Of the main problem for which there is no a priori knovled&t? Of ti=e 

particular higher order terms which cause local resonance, 

rely on a more formal construction analagous to the process used i n  sections 

vas discussed earlier in 

The higher order terms vi11 not alter the genera; 

The detailed ana systenatic developnt 

Hence cne ai ist  

2.2-2.4. 

10 . 
. 
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for 

.ne 

Once Q sui table  choice of variables is made, the atiaa of .i ~ t c I 3 . i -  u-tnmd 

an oblate planet reauccs in princigle *a the solution o l  n pro&- in rum-liaear 

osc iUat iaas  analo~ous t o  the nodel discrrsse in Sectiaa 2. 

of the t w o  siouly varyin;; functions o anri b, ve nuu ha7e six s h u a  v* 

orbitai elements. 

solvizq the coupled equations for the incl ination and apse vhieh 

tiwj,logues of a and 6, and that the remainder of the dements uill thcn be 

given by quadratures. 

O€ cmrse, ks%e-a& 

Hovever, It viil be shuun tnat the Min  p o i =  09 

be 

3.1 Formulation of the  problem, coordinate systea 

Consider en inertial frt3me v i t h  origin at the  center of au oblate p;sOet 

having a radius R in the equatorial plane of symmetry. 

by the  radius R and the time Dy (R /W)’’’, *ere G is the universal graribtiod 

conetent and M is the mass of the planet. 

for a satellite is then 

‘ie aorrnalize jistances 

3 

The dhensionless equation of mution 

+ 
where x ie the d i m e n s i d e s 8  distance vector from the origin and the patial 

u has the foUoving form in spherical pow coordinates with respect to the 

polar axis of m e t r y :  

vhert 8 is the polar angle= 

21 



It tias been assumed that the ?lanet i s  aa e l i ipeoid  Of revoht ion kia for 

the earth the constants E ana c are approximately Icf. Jeffr ies  (1959) m d  

Shi (1963)) 

In the conventional spherical polar coordinates: 

(3-34 

(3.3b) 

f3.3cf 

x = r cos g sin I3 

y = r s i n  #I sin 8 

z = r cos 8 

vhen 

+ 
(30x1 

Epuatioa (3.1) for any potential U has the follwing component fora: 

x = tx,y,z), ~tl = r 

Since the s a t e l l i t e  can be considered to move i n  an instantaneous plane defined 

b;r the distance and velocity vectors, me may also define the motion by the 

fdlloVing variables proposed by Struble (1960) and (1961) (cf. Fig. 2 for the 

@P--Y) 
i sngle between instaataaeoue orbital  and equatorid pbnes 

Q = angle i n  the equatorial plane betveen scme fixed direction, 

Say X pointing tavSrd8 the vernal equinox, and the ascendis  

node 

r = the  radius 

e = angle betvcen the ascending node and the distance vector. 



ined 

he 

s 

I- 

Struble (1960) has s h m  tnat equations (3.4) tr&rstarn to rhe follovir6 

fifth-order system after elimination of %lx time.* 
XI - - 

bn av * -t 

COS o av -1 [z + tam i - f3 .34  2 cos 3 i cos e a3  
p;1 2. sin 8 av 

p sin 1 sin 6 cos i 

Blott tbat Struble (1960) defines the node i n  the opposite sense. 

23 



vhere 2 is given by (3.5s) v i t h  - aG = 0. 
av 

According to (3.6a) p is D constant, a consequence of the independence of Y 

on +- 
(3.6’31 and C a n  hence be solved independentiy once u and i have been deternine& 

Wthermore, equation (3.6b) for the node is uncoupled fnrm (3.6~) and 

M D g  Of t k  identities (3.5g) and (3.91) end retaining t e rms  up to 

0(c2) in ( 3 . 6 ~ )  and ( 3 . h )  yields: 

d+ P 

- 3cu + 7cu s i n  2 i s i n  2 

d i  u 3  - = - c cos i sin i 
2 (3.76) 2 3  s 2  

cos i sin i 11 2 cos i s i n  0 s i n  24 + 2t2 
P 2 

P 

I 

i 

24 
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2 2 4. 4 
cos 1 3 2 3cos i 2 u sin 0 i- sin Q - a c ( 3  - 7 sin i sin 411 + E  f - 4 -  2 

2 
P P 

2 2 6 2 u3 I- 3sin i cos i 5-a 2 - s i n  i COB i sin 9 sin20 - 2c -- 
2 de 

2 .  

P - D%d* 
P 

4 2 2 L b 2 2 
+ 7 sin i cos i s i n  (O + 6cos i -  2 8 ~ 0 s  i sin i sin $1 sin20 

u2 du * t  2 2 2 
p2 at) - U c  - (-) cos i sin 9 ( 3  - ?sin i sin 0) 

2 2 u du 2 8  4 6 2 
+ 2 u g  cos i f3tos i - 1) sin cp sin24 * 4 7 Cos i sin 4 

P b a19 P 

u L 2  t 4 2 2 

3 6  2 

+ c -cos i 135sin i sin 6 - Wsin i s i n  cp + 3) 2 
P 

2 2 a2 6 .  2 b 2 - 4 % cos i s i n  4 (1 - jsin i sin 0 )  * 4 7; cos 1 sin 4 {% cos i sin 0 
P P P 

It is mentioned in passing that Struble (1961) chose a modified variable 

analogous t5 4 i n  order to eliminate certain non-unifonnities in t h e  SOlUtiop. 

gith the! present ELpprOEf2h thia is unneeessaryr since d l  tine requirea scale 

chsnges are autonmtically accounted for by the two-variable procedure. 



. 

- VhoK general solution i s  



we 

:illator 

rder 

.oes 

5 tO 

tion 2.2 

- 
- 

a (3.1Ob) the two "constants Of integra+,ion" have been expressed in terms of 

the cooventionel Keplerian elements. 

e = eccentrfcity 

c) = apse -le measured in tbe counterclocMse sense from the 

ascending node to perigee in the instantaneous orbital plane. 

As before ve u s - m e  i 0' e and w have the follovin& expressions 

i n  order to account for ;he homogeneous solutions of the higher order terms 

in i and u. It is easy to  see t h a t  since terns of O(E'/~) are absent i n  (3.71, 

= 0. The fol loving equations for il and u 1 can then be derived. 5 / 2  = u1/2 

5 0 0 1  
a i ,  di  - = - - 1; cos i- eini  00 sin24(1 - eo cos(4 - 011 
'4 a i  p 

(3.128) 
! 

V 
i 



" .  

8 
c2coki i  00 1 1 

11 - cOs2(0 - 8 ) )  - cos20 + 2 cosfbg - a) + cos2wj 0 
e- 

P6 

In order theit i and u be boundeci ve must set 1 1. 

(3.136) - = 0 
4 

Sote the similarity of {>.13a) and ( 3 . 1 3 ~ )  to (2.22) an12 (2.23) establishini: 

the analogy between a and 6 of the model. equation witn i and w respectively 

for the  lain problem 

Thua, the  e h e n t s  to first order become 

(3.14) 
- 

e = const. i -  oo - jo = const. w = so+ + voo 
0 0 

vhcn Y in a constant depending upon the initial conditions. 
00 

mUatiOns (3.12) can now be aolved to give 

2 
2. e 6 .  

2 cos 1 
00 1- 1 + 3cos i - 3 1  -  cos loo) 

00 
(3.15b) u = 

2P6 1 

28 



- 
33 - w ) ;  

COS&] 

I 

a 
t 

a[c3i2) Bu the forcing t e w s  on the rightbaad sicks of tbe zcar 

must be rmoved for boundednese, giving 
u3/2 

n 1. 2; ... 



Tkw solutions of (3.16) subject to the irutial  conditions 

* t t =  ere 

C- 

32 
1 1 2s* (3.m) e = + - ( c o s 2 V - e o ~ Z u )  

(cos- - cos&)] + A. + A2 cos& 

'pht xnm-unifonaities of the outer solution near So = 0 are exhibited above and 

are a consequence of the nort-validity of the expansions assumed in (3.0) near 

thc critical inclination. 

3.3 Inner expansion 

Ae ahovn in Section 2, the expmsion procedure for inclinations close t o  the 

critical d u e  should be of the form 

- 

Henceforth all constants not defined in the text vi11 be found in the 
Appendix vith no addi t iona l  reference. 

30 
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- 

.I L 

sad ~f are interested in the case vhere 

upon substitution of (3.21) into (3.7) we obtain the following equations for 

the leading terms: 
2 *  

2 

2 *  e cos i 
0 - a 

----+la - 
? 

4 
(3.22a) 

a 8 

whose gentral solution is  of the form: 

:e also expond tne cfenents of t h e  inner soiution i n  tne form: 

* -  - n/2 
(3.24~) w [+;E) = C u ~ / ~  ( + ) E  

Since the homogeneous solution to O(f ”*) is already accounted for by the 

n=O 

= 0 and can iierive tne - - 
Upansion of the elements, Ye find u l f 2  

fOlloving equations for the terns of o( c l -  

t 

, 

31 
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w e  ve we tmly interested in  obtain- a solutian correct to O ( E )  ve 

a give the bomdednesa conditions for the higher order terms. 

9 * 
Requiring u md f to  be b o d &  gives 9 

4 
312 t 

*o - -= so + s i deO (3.27b) -5 0 ( 3 . n c )  101 /2  
6 

t 
312 

%o 
6 (3.n8) - 0 - * 

33 
* .  



* *  
13.32) Y ' V  

a 

ioli = % A  

# 
e = r i l l  n 

of {3.3) and equation (3.29b) we now find 
* 

1/2 

1/2 
(zo - Kl C03& ) + E B2 (3.35) v2 = 

1 

I 

%?2 * 
+-a2 ;rOr2u+I1 

c2 

Eqprtiap (3.300) can next be integrated to 

* *  

34 



mlution of the Bppsidal mOt1On vifl  W considered i n  Section 3.6. 

3.5 Watching ana c m w s i t e  expansions 

problea of match* i s  essentially the same as the c s e  discussed in 

*tion 2 far the d e l  equation. It must be reinembere6 that i n  the overlap 

dcsain, the initial conditions are the same €or both imer end outer expansions 

One can then calculate the folfoving relations between tbe constsnts appearing 

in  the h e r  aad outer cxpansioas: 

4. 
COS A 2. 

4 00 (1 - 3COS 1 1 4 00 ( 3 . 3 9 ~ )  1 3 ~  = a2 - t eo 
P 

t 
(3.39d) C2 = C2 

* 
i 

+ Elll  4 1/2 * 
+ q1/2 

- ff 
+ ce,  - no * f/2, 

1/2 A 
e + E  
0 

(3.bO) 

t 

. 



c 

The h t  t e w  of Q ( E )  in eqrration (3.k~) arises fronr the; outer expansion of 

cer . ~ f p l s ,  eo * E 

and thtl wzer expansian of gel 

3y cumpariag equation (3.40) with the equation (3.20b), we note that in scidition 

* * * m s t  cuntain every term i n  the outer expansion 1/2 
Q 

is mstfy of kiefkor artier. 

t o  sx&cbing directly, t&q inner expansion contains the outer. 

%bat; the cmpesite expansion Tor e which is unifomly v d i d  to Ofcf for d i  i 

It then follovs 

is 

Tht matching between i and i proceeds in a similar way. The outer e x p s i o n  

Ccmpmison of equation (3.h2) w i t h  equation 13.20aj shows that the inner 

expansion w a i n  contains tke outer with the additional result that the outer 

iol is o(t3’*~. m, the ceraposite expansion for i i s  expaneian of 
4 

0 

4 
The above statements for e asrd 5 hold proviried that M and Y 

this vi11 be considered next. 

&re matched, 



* 
.cos* I + O(r )  

+ h2 

U s e  01 - According to equation (3.42) the outer expansion of i contains i 
o1/2 

dw 

de 
of this result leads t o  the folloving outer expansion for -=- : 

2 
+ I  + Siiof + no ow 

j 3 . W  - = s 0 + c1/2slJ,,2 + E+2(J1/2 

d i  

Coraparing equations (3.46) vith (3.44) ve note that they are matched in any 

overlap domain So f O(E’) with 0 

in the outer expansion of du I- have So as I factor (cf. Eq. 3.39) and are 

obriowly small  in the overlap domain. 

of the apse is therefore 

1 
2 

c < - because those terms not containea 
* -  

The composite expansion for tne motion 

uniformly to order for inclinations.  
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an& i, A vnere i OC' e e and w c are used instead of io' e and o i n  u rfz' ul@ 5 / 2  

in eGuations (3.k8a) ana- (3.4Sb) and wc can be obtained bj' i n t e g a t i q  equation 

Ttte dominast behavior of the apside- motion is de cribed by t h e  leading tern. 

If we l e t  
dv 

do 
sin2-* -2 v 2%iW c o w  = - = 2 [ v ( l  - v )1/2 

and consider only the leading tern we obtain 

(3.51) 

t 
For t h e  ear th ' s  s t e n t i e l  t h e  quantity c1 is F s i t i v e  

inc l ina t ion .  

near t h e  c r i t i c a i  

Thus the square root appearing i n  t h e  above expression is real 

only il 

Because c = 417 for t h e  earth's potent ia l .  
for Vinti's (i959) potent ia l  c = 5/10 (cf. Shi (1963)) which irnpii-3 
for t h e  motion a t  the  c r i t i c a l  inc l ina t ion .  

1% is  i n t e r e s t i n g  t o  note tnat 

1 = 0 

38 . 
t 



;im ue have to distinguish the  folloving three cases: 

In this case (3.50) becomes an e l i i p t i c  inregral of the first kind. 

c + r c  i/2 1 0 2' (3.5b) x1 = 2 tan-' - t a n u  -1; 

'1 - *o 

Bpd the modulus is 

* 
Using e l l i p t i c  functions've may express w explicitly as 

c + e  1 0  

1' 
vhere the modulus of tn is k 

me interpretation of this resuit is thnt  the perigee ?erroms a pe9aui.a 

motion around 1r/2 or 3/2x v i t h  a maximum amplitude o m a l t  = f sin 

0 x 1  the i n i t i a l  conditions because after aubs t i tu t iw  the ex2ressioo (;,.27) lor  

IC w ovtain 

(c -I A. A aepfius 

- 
0 

. i  

! 



e-% ” -_- 
e 

5 

l + e  

Thio means t h a t  ’u 

’Ilais cast represents  the krundary between osc i l l a to ry  and secular motion of 

apKOaches 0 or s a s y n p t o t i c u  as goes t o  in f in i ty .  

the perigee. The b ~ m b r y  depends on t he  i n i t i a l  conditions.  W e  hare 

2’ - (3.601 

which is possible  only when the  i n i t i a l  values 

A = s i n  v + (So + S1j,,2 )/al 0 

( 3 . a  Y = O  OT T 

d 

- 
P O  (3.62) + s131/2 

are sssued. This means t h a t  h i t i a l l y  the apse has t o  coincide vith t-e l i n  

of the nodes, and t h e  inc l ina t ion  is exact ly  c r i t i c a l  st least to the  order 

kept in  aur ca lcu la t ions ,  because (3.62) is evidently t h e  expansion of t he  

initial Tahe of t h e  &l divisor.  

. 



E 

l’ho 4 s e  angle q asmame sny value in this case and the  motion of the perigee 

is seculu. For large To. k22 Bcccller moall  and ve aay trpand P(x k 1. This 

&-a 

2’ 2 

Sinct x2 + m for large To (cf. ( 3 . h ) )  t h i s  shovs that the motion of the 

Perigee is eecaar  with s m a l l  oddition& oscillations, 

dhxmaion of the b&arior of the apsidal motion ye have considered only the 

In the previous 

41 
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2 solution of wo . A solution uairy all nvnilable infornation to O(E 

rust d e  use of the composite expansion as obtdined in (3.471- . 
and iol iil {3.&7], ve obtain the folloVing result By substitution of i 01/2 

which is unifordy v a l i d  to O(E q. . 

A f t e r  integration we have 

trrar;tendentd. relation betveen o C and e. 

3.7 Xotion of the node 

Equation (3.6b) for the node . can be brought to the followinF; form: 

4-i- the caapsite expansims for u and i and substituting the kaoM 

results ve obtain 

42 



(3.30) 2 3 2 3 2 * cos i sin - - ~ ( 2  u0 COS i sin 01 - E (2 u1 a 
a+ 
- -  

of2 oc P P 

e- ‘ o i cos 2 i sin i s i n  2 4 + - 4 2  uo j3cuo - 7cu sin 2 i sin 2 

- % cos 4 i sin 2 41 cos 3 i sin 2 $ 3  + o ( E ~ / ~ )  

p2 0 1 oc oc 0 oc P 

oc OC P 

Sitce ai- ;uantities on t h e  right-nmu siuc of ( 3 . 7 3 )  are n i re su j .  S ~ C Y ~ I  as 

functions of 0 ,  the ride coulo be founu by straightforward integration. 

Iiovever, for the sake of fiin?licitg ana a more systematic a??roach that 

avoias the shifting of oraers of Wnitude due to integration of long-period 

terne, we v i l l  also solve (3.70) by the two-variable expansion procedure. 

- 

- 3/Z0 Ut: use the siov variable 0 = E 

node : 

and assume t h e  foilowing expansion for the 

n/2 
E 

Tie factor E -1’2 i n  front of the zuzaation in (3 .71)  is suggested because the 

ieaciing term of the nooai velocity is of oroer E at ail inclinations, which 

forces us to W e  the leaainf,tem of tkie node itself of order E 

iQSUre that the derivative vith respct to 7 be of order_ unity. 

4 2  tc 

using the same procedure as for the other variables we obtain the folloving 

equations: 

43 
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vbich implies that 

Again, we upand zlo in the fom: 

Since the rii;ht-hand side of  equation (3.70)  i s  Oft), ve obtain 

*?lying that 

(3.76) Ql,* = n1 = 0 

because the integration constants are already included i n  the expansion (3.733- 

Collecting the terns of order E ve obtain 

1, 
Tbc terms depending cm 7 i n  (3.77) cue Xio/ao + c0s5io0/p . After substituting 
the expansion for R 0 (the expansion €or ioc fias already been substituted i n  

(3.77)). ve require for imundedness 

The higher order terms in the expansion of fl 0 and i os ere hence s-- 

the  next order. Integration of (3.18) gives 

fted t 

. 



5 cos i 

P 

0 0 -  
f3-39) noo 8 + + L o  

P* is 

= -  

I is a constant depending on the initial  conditions. The solution for  0 

c 
0 sin(@ + 

I 
13-80) 3/2 *4 -f- 2 sin20 + eosin(+ - Yc) - 2 1 5. Q = - - C O S Z  

i 

The boundeiness requiren_ent on n 5/2 im?lies, after s u b s t i t u t i q  for i 01/2 

and i that  01 

. 



I 

L 1 is an integratidn c o n s t a t  and the integral depends on the values of 
- 
L Q and K ~ .  The evduation of th is  integral leads to e i i i p t i c  functiaus of 

the first and second kind snd vi11 ncrt be exhibited here. 

. 
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