GPO PRICE \$ \qquad
CFSTI PRICE(S) $\$$ \qquad

ff 653 July 65
SATELLITE MOTION FOR ALL INCLINATIONS around an oblate planet

AUGUST 1964
M. ECKSTEIN
aEsEARCH SDECIALISt douglasamcraft co., inc.
Y. SHI

RESEARCH SPECIALIST DOUGLAS AHRCRAFT CO., INC.
J. KEVORKIAN

CONSULTANT
DOUGLAS AIRCRAFT CO.. INC.

TO GE PRESENTED TO THE AAU SYMPOSIUM AT THESSALONIKI, GREECE. ON AUGUST 17-22. 1964

ertata fot inuuglas paper no. 307 é

SATELLITE MOTION FOR all inclinations around an oblate planet

Page
Equation

Should Read

$23(3.5 e) \quad p=r^{2} \sin ^{2} \theta \frac{d t}{d t}$

23
(3.58)
$\frac{d \phi}{d t}=\frac{p u^{2}}{\cos i}+\frac{\cos ^{3} i \cos \theta}{p \sin ^{2} i \sin \theta}\left[\frac{\partial U}{\partial \theta}+\tan i \frac{\cos \phi}{\sin \theta} \frac{\partial U}{\partial \phi}\right]$

26
$i\left(\phi_{i} E\right)=\sum_{n=0} i_{n / 2}(\phi, \dot{\phi} ; E) \cdot \varepsilon \varepsilon^{n / 2}$

26
$u(\phi ; \varepsilon)=\sum_{n=0} u_{n / 2}(\phi, \bar{\phi} ; \varepsilon) \cdot \varepsilon^{n / 2}$

27
$\frac{\partial i_{1}}{\partial \phi}=\frac{d i_{\infty}}{\partial \dot{\partial}}-\frac{1}{p^{4}} \cos ^{5} i_{\infty} \sin i_{\infty} \sin 2 \phi\left[1+e_{0} \cos (\phi-\omega)\right]$

29

> line above $(3.18 \mathrm{a})$

$$
i_{0}, \omega_{1}, \text { and } e_{1}:
$$

(The asterisk refers to the note on next page)

> line above $(3.20 a)$

$$
\text { at } t=1 \text { are }
$$

$30 \quad(3.20 b)$

$$
e_{1}=n_{1}+\frac{B_{2}}{2 S_{0}}(\cos 2 v-\cos 2 w)
$$

$$
(3.29 c)
$$

$$
\frac{d \omega_{1 / 2}}{d \bar{\phi}}=\frac{1}{2} S_{2}\left(i_{01 / 2}\right)^{2}+S_{1} i_{01}+A_{0}+A_{2} \cos 2 \omega
$$

$$
\begin{equation*}
34 \tag{3.33}
\end{equation*}
$$

$$
i_{01 / 2}=\frac{1}{s_{1}}\left[+\left(\bar{x}_{0}-x_{1} \cos 2 \omega^{\circ}\right)^{1 / 2}-s_{0}\right]
$$

should have a \pm on the right side next to the $=s i g n$

Page

34 (3.35)
(3.37)

34
(3.43)

36

37
line above (3.48a)
(3.49)

38

38

38

39
third line belou (3.55)
below (3.49)
(3.54a)
should have \pm on the right side next to the $=s i g n$
. . motion around $\pi / 2$ or $3 \pi / 2$ with a maximum amplitude $\omega_{\max }= \pm \cos ^{-1} \lambda$. ...
$\lambda=\sin ^{2} w^{*}-\left(S_{0}+S_{i} j_{i / 2}\right)^{2} / 2 x_{i}$

Page	Equstion	Should Read
40	(3.58)	$\overline{-}-\bar{o}_{0}= \pm \int \frac{d \omega}{\left(2 x_{1}\right)^{1 / 2} \sin \omega}= \pm \frac{1}{\left(2 x_{1}\right)^{1 / 2}} \log \left\|\tan \frac{\omega}{2}\right\|$
40	(3.59)	$\left\|\tan \frac{\omega}{2}\right\|=e^{ \pm\left(2 x_{1}\right)^{1 / 2}\left(\bar{\phi}-\bar{\phi}_{0}\right)}$
40	(3.60)	$\lambda=\sin ^{2} w-\left(\bar{S}_{0}+s_{1} j_{1 / 2}\right)^{2} / 2 x_{1}=0$
40	(3.61)	$\sin w^{*}= \pm\left(S_{0}-s_{1} J_{1 / 2}\right) /\left(2 x_{1}\right)^{1 / 2}$
40	(3.62)	$w^{*}= \pm \sin ^{-1}\left[\left(\bar{S}_{0}-S_{1} j_{1 / 2}\right) /\left(2 k_{1}\right)^{1 / 2}\right]$
40	lines below (3.62) down to the botton of the page	should be replaced by: - . are assumed. This means that Case II happens only if initially the apse and the inclination are chosen properly as to satisfy the condition (3.62).
41	(3.64b)	$k_{2}=\left[\frac{2 k_{1}}{x_{1}+\bar{x}_{0}}\right]^{1 / 2}$
41	(3.64c)	should have \pm on the right side next to the $=$ sign
44	second line of (3.77)	$\left.-\cos 2 \phi-\frac{e_{0}}{2} \cos \left(\phi+\omega_{c}\right)-\frac{e_{0}}{2} \cos \left(3 \phi-\omega_{c}\right)\right]$
46	(3.84)	$\Omega_{01}=D_{1} \omega_{0}+\int_{0}^{\omega_{c}} .$
53	(A.28)	$g_{1}=-\frac{s_{2}}{2 s_{1}^{2}} s_{0}+\frac{1}{x_{1}}\left[-c_{21} s_{0}+c_{22} S_{1} E_{1 / 2}\right]$

 Around ait oblate planet*

M. Eckstein ${ }^{\dagger}$, Y. Si ${ }^{+\dagger}$ and J. Kevorkian ${ }^{+\dagger+}$

Abstract

Retract $y \cot$ A uniformly valid solution for the motion of a satellite around an oblate planet is presented. The Two Variable Expansion Procedure as eariser developed at Caitech uss applied to obtain a solution valid for ali inclinations including the critical. This solution is correct to order e, where ϵ is a small parameter proportional to the oblateness parameter J_{2}. The reciprocal of the radius vector, eccentricity, perigee, inclination, and node of the satellite orbit are given as functions of the central angle between node and satellite. The results are based on a potential which inoludes the second and Fourth zonal harmonics. The solution for the case of critical inclination is first obtained separately and then matched with the solution of the noncritical case to establish a solution uniformly valid for ali inclinations.

* This work was jointly sponsored by the Rational Aeronautics and Space Administration under Contract No. $\mathrm{HASv}-901$ and the U. S. Air Force under Grant No. AF-AFOSR-62-256.
+ Research Specialist, Douglas Aircraft Co.. Inc., Santa Monica, California.
It Research Specialist, Douglas Aircraft Co., Inc., Santa Monica, California, Presently, Assistant Professor of Aeronautics, Carnegie Institute of Technoiog. Pittsburgh, Pennsylvania.
$t+t$ Consultant, Douglas Aircraft Co., Inc. Santa Monica, California nad Research fellow in Aeronautics, California Institute of Technology, Pasadena, Cali.

1. Introduction

The motion of a satellite around an oblate planet has received considerable attention in the literature after the advent of artificial satellites of the earth. The early theories, of which Brouver's (1959) is the most comprehensive, vere not valid for initial orbital inclinations close to the critical value $\cos ^{-1}(5)^{-1 / 2}=63.4^{\circ}$ from the equatorial plane of symmetry. The non-validity of the solution at this angle exhibited itsalf by the occurrence of a divisor which tended to zero st the critical inclination.

Later, Hori (1960) and others (cr. Garfinkel (1960), Mersman (1962), and Izsak (1963) uring diverse approaches, studied the behavior of the solution near the critical inclination. Though "a direct analytic comparison of the various treatmenta of the critical inclination problem is almost impossible because of the multiplicity of notations, approximations and starting points" (Mersman (1962): there is general agrement about the necessity of studying an expansion in powers of $J^{1 / 2}$ (where J is the gmall parameter measuring the oblateness perturbations). Furthermore, at least the qualitative behavior of the motion near the critical inclination, as first described by Hori, has been repeatedly substantiated. This statement by Mersman quite correctly reflects the inherent algebraic complexity of the main problem and the necessarily involved nature of its solution. However, the basic mathematical problem that gives rise to the singularity at the critical inclination is quite simple and was recognized by many authors. In particular, Struble (1961) has pointed out that for inclinations close to the critical the equations governing the slow variations of the apse and inclination angle are coupled by virtue of a regrouping of terms which otherwise have different orłars of magnitude.

This phenomenon can be cuplicated exactly in a particularly simple wodel equation corresponding to the forced oscillations of a system with an appropriate saall non-iinearity. The connection between non-linear oscillations and satellite motions with swall pertumbations is, of course, vell known since it was first proposed by Laplace in his study of the motion of the moon. Therefore, in order to fix ideas the proposed model equation is first studied in detail, and the techniques are then directly spplied to the main problea. The aim of the present peper is to develop the solution both near and away from the criticai inclination in asymptotic series vith respect to J. These series are uniformly valia for long times, but the primary gonl is the achievement of uniform validity for all inclination angles as vell.

The approach adopted here proceeds from the formulation proposed by Struble (1960) and (1961). It is first shown that two distinct asymptotic expansions (corresponding to two regimes of the initial inclination near and away from the critical) can be constructea ard renderea uniformiy valid for long titej by the two-variadie exacsion procedire of nevoríian (1962). It is then demonstrated that each of the above eeneraiized asymptotic expansions, depenain upon the initial inclination, indiviaually describe the motion for all times. In addition, the two expansions match in an overiap domain of the inclination parameter lyiag between the critical and non-critical regines. This matching is in the sense of the tineory of Kapiun and Lagerstrom (1957), hence the unifornly valid asymptotic representation of the motion follows easily.

Furthermore, the analytic dependence of the solution on $\mathrm{J}^{1 / 2}$, as first suzfisestea by Hori (1960), is justified by the techniques or singuiar perturbation theory and the matching process.

The present solution includes the second and fourth zonal harmonics of the earth's potential. Ali secular and long-period terms are included up to $O\left(J^{5 / 2}\right)$, while short-period terms are retained up to $O(J)$. The results are exhibited in the form of the reciprocal redius, eccentricity, perigee, inclination, and node as functions of the central angle between the ascending node and radius vector. The equation for the time is not given here but will be included in a future publication. A detailed comparison of the present. results with at least the work of Struble (1961) and (1962) will aiso be provided there.

2. Nodei Equation

2.1 Gencral Discussion

In order to demonstrate the escential mathematical features of the main proviem and the expansion procedures, the foilowing model equation is first swidied in detail

$$
\begin{equation*}
\frac{d^{2} y}{d t^{2}}+y+2 \varepsilon y\left[1-5 \cos ^{2}\left\{y^{2}+\left(\frac{a y}{d t}\right)^{2}\right)^{1 / 2} j=\tau^{2}\left\{y^{2}+\left(\frac{G y}{d t}\right)^{2}\right\}^{2 / 2} \cos t\right. \tag{2.1}
\end{equation*}
$$

where E << 1.

In the absence of the forcing function, this equation can be integrated exactly and exhibits the following behavior in the phase-piane of y and dy/dt. Whenever the radius $r=\left[y^{2}+\dot{y}^{2}\right]^{1 / 2}$ in the phase-plane takes on the critical values $r_{c}=\cos ^{-1}(5)^{-1 / 2}$, the motion reduces to simple harmonic osciliations With amplitude r and unit frequency. For eech annular region bounded by two consecutive values of r_{c}, the interral curves are ovais with their axes aibea alternately parailed either to y or to $d y / d t$. One would thus expect that the adaition of the forcing term with unit frequency will cause local resonance in neighborhoods of the critical amplitudes r_{c}. As will be shown later on in this section, this will indeed be the case and will give rise to the problem of the "critical amplituae".

Using the two-variable method discussed by Cole and Kevorikian (1962), (1963), the following form of the asymptotic expension is first assumed*

[^0]\[

$$
\begin{equation*}
y(t ; \varepsilon)=\sum_{i=0} y_{i}(t, \bar{t} ; \varepsilon) \varepsilon^{i} \tag{2.2}
\end{equation*}
$$

\]

where the slow variuble \bar{t} is defined by

$$
\begin{equation*}
\bar{t}=\varepsilon t \tag{2.3}
\end{equation*}
$$

as discussec by Kevorkian (1902). Then the governina equation for y_{0} is
(2.4) $\frac{\partial^{2} y_{0}}{\partial t^{2}}+y_{0}=0$
whose general solution is
(2.5) $\quad y_{0}(t, \bar{t} ; \varepsilon)=a(\bar{t} ; \varepsilon) \cos [\bar{t}-3(t ; \varepsilon)]$

The functions $a(\bar{t} ; \varepsilon)$ and $B(\bar{t} ; \varepsilon)$ in (2.5) which will be cailed "integration constents" will be determined by requiring y_{i} to be bounded. For the present case ve always have the simpe harmonic operator on the left-hand side of all higher order equations. For simplicity of calculations and for tne explicit representation of the motion of the phase angle, we will expand the "integration. constants" $\alpha(\bar{t} ; \varepsilon)$ and $B(\bar{t} ; \varepsilon)$ in the form:

$$
\begin{equation*}
a(\bar{t} ; \varepsilon)=\sum_{i=0} a_{i}(\bar{t}) \varepsilon^{i} \quad B(\bar{t} ; \varepsilon)=\sum_{i=0} \beta_{i}(\bar{t}) \varepsilon^{i} \tag{2.6}
\end{equation*}
$$

From (2.1) the following equation for y_{1} can be calculated:

$$
\begin{equation*}
\frac{\partial^{2} y_{1}}{\partial t^{2}}+y_{1}=2 \frac{d a_{0}}{d \bar{t}} \sin (t-B)-2 a_{0}\left[\frac{d \beta_{0}}{d \bar{t}}+\left(1-5 \cos ^{2} \alpha_{0}\right)\right] \cos (t-B) \tag{2.7}
\end{equation*}
$$

The boundedness of y_{1} requires

$$
\begin{equation*}
\frac{d a_{0}}{d \bar{t}}=0 \tag{2.8}
\end{equation*}
$$

$$
\frac{d B_{0}}{d \bar{t}}=-\left(1-5 \cos ^{2} a_{0}\right) \equiv s_{0}
$$

These equations sire
(2.9) $\quad y_{0}=$ const. $\quad s_{0}=s_{0} \bar{t}+b_{0}$
were b_{0} is constant iependiag on the initial condition. The solution for Y_{1} is then
(2.10)

$$
J_{i}\left(t, \sum ; \Sigma\right)=0
$$

with no loss if generaily because the homogeneous solution is already accountea for in tine expansion of and 3 in J_{0};

Bov tine equation of $d \varepsilon^{2}$ for y_{2} is
(2.11)

$$
\begin{aligned}
& \frac{a^{2} y_{2}}{3 t^{2}}+y_{2}=\left[2 \frac{d a_{1}}{d t}-a_{0} \sin B\right] \sin (t-B)+a_{0}\left[s_{0}^{2}-\frac{5}{2} a_{0} s_{0} \sin 2 \alpha_{0}\right. \\
& \left.+\cos B+2 s_{0} a_{1}-2 \frac{d B}{d t}\right] \cos (t-B)-\frac{5}{2} \alpha_{0}^{2} s_{0} \sin 2 \alpha_{0} \cos 3(t-B)
\end{aligned}
$$

Ebere
(2.12)

$$
s_{0}^{\prime}=\frac{\frac{d s_{0}}{d a}}{d a}=-5 \sin 2 a_{0}
$$

By the boondeciness requirement on y_{2} we must set
(2.13a)

$$
\frac{\bar{a} a_{1}}{d t}=\frac{0}{2} \sin B
$$

(2.130) $\frac{d a_{1}}{d \bar{t}}=\frac{s_{0}^{2}}{2}-\sum_{4}^{2} \alpha_{0} s_{0} \sin 2 \alpha_{0}+\frac{1}{2} \cos B+s_{0}^{\prime} \alpha_{1}$

Since for $s_{0} \rightarrow 0$ (i.e. $\left.a_{0}=\cos ^{-1}(5)^{-1 / 2}\right) B=b_{0}+O(\varepsilon)$, we see immediately fran (2.13a) that a_{2} becomes unbounded for large values of \bar{i}. Thus, the expansion proceaure assumed in (2.2) is not uniformly valid near the critical amplitudes.

In this simpie model the cause of the difficulty is casy to discern anu renesy. As was pointed out earlier. whenever $a=a_{c}=\cos ^{-1}(5)^{-1 / 2}$ the non-1inear system degenerates to simple harmonic motion with frequency equal to that of the forcing function. Therefore, in sone neighborhood of a_{c} the amplituane mast increase appreciably before the non-linear term comes into play and destroys the resonance of the forcing function. jue to this effect of iocal resonance the forcing function, whicn wouia otner*ise be of order ε^{2}, now takes on a more important role. This fact is exnioited mathematicaliy in equations (2.0). When s_{0} is smail one cannot neesect the minner order forcing function in solving for β_{0} and a_{c}, since in this case the rigit-hana sides of (2.8) are exclusively composed of smail terms. This fact wns first pointed out by Struble (1961) in connection with the main problem.

In vieu of this, we anticipate the importance of the forcing functicn and introduce it immediately ir, the equations of order c. This means equations (2.8) for a and B nou becione

$$
\begin{equation*}
\frac{d a}{d \dot{d}}=\frac{\varepsilon a}{2} \sin B \quad \frac{d B}{d \bar{t}}=-\left(1-5 \cos ^{2} a\right)+\frac{\varepsilon}{2} \cos B \tag{2.14}
\end{equation*}
$$

The terms of order E in (2.14), which are exclusively the contributions of the right-hand side of (2.1), will radically alter the behavior of and a near the critical amplitudes.

Equations (2.14) are Hamiltonian, hence along an integral curve

$$
\begin{equation*}
2 \mathrm{H}=3 a+\frac{5}{2} \sin 2 \alpha+\epsilon \alpha \cos \beta=\text { const } . \tag{2.15}
\end{equation*}
$$

With the aid of (2.15), the integral curves in the $a, 3$ plane can be easily
 and $\cos \alpha=\cos \alpha_{s} \equiv \pm(1 / 5 \mp \varepsilon / 10)^{1 / 2^{*}}$. These points form an alternating pattern of centers and sadde-points with solution curves as shown qualitatively in Figure 1.

We observe three possible types of motion if we consider the integrai curves in vertical strips with a width of order $\varepsilon^{1 / 2}$ centered about any of the critical amplitudes.

The integral curves which pass through two adjacent sadile-points for a given value of a form the boundaries of oval resions with a width also of $0\left(\varepsilon^{1 / 2}\right)$ inside which both a and B undergo bounded oscillations. For example the motion in the neighborhood of the point $B=0$ and $a=\alpha_{s}=\cos ^{-1}(1 / 5-\varepsilon / 10)^{1 / 2}$ has the form

$$
\begin{equation*}
a=a_{s}+c_{1} \varepsilon^{\dot{1} / 2} \cos \left[\left(2 \varepsilon \alpha_{s}\right)^{1 / 2} \bar{t}+c_{2}\right] \tag{2.16}
\end{equation*}
$$

(2.17) $=-4 c_{1}\left(2 \alpha_{5}\right)^{-1 / 2} \sin \left[\left(2 \varepsilon a_{5}\right)^{1 / 2} \tilde{t}+c_{2}\right]$
where C_{1} and C_{2} are small constants depending on initial conditions which allow us to linearize equations (2.14).

The separatrix forming the above boundary corresponds to motion where a and s approach the value at the sadde-point asymptotically as $\tilde{t} \rightarrow \boldsymbol{*}$. In fact, by use of (2.15) it is easy to show that the separatrix around the point $B=0$

[^1]and $a_{s}=\cos ^{-1}(1 / 5-\varepsilon / 10)^{1 / 2}$ for $0<a_{s}<\pi / 2$, intersects the a axis at a distance $(\varepsilon / 2)^{1 / 2} \cos ^{-1}(5)^{-1 / 2}+O(\varepsilon)$ from the singular point. Finally, the motion just outside the oscillatory regions is characterized by the fact that a undergoes bounded oscillations, while 8 has a secuiar motion superimposeá on its oscillations. In all three of the above motions the characteristic frequency is $0\left(e^{3 / 2}\right)$ in the natural time variable whereas the amplitudes of oscillation are $O\left(\varepsilon^{1 / 2}\right)$ (cf. equations (2.16) and (2.17)). This imnediately suggests that the slow time scale appropriate for motion near the critical anplitudes is $\bar{t}=\varepsilon^{3 / 2} t$, and that one must seek an expansion for y in powers of $\varepsilon^{1 / 2}$.

As for the motion away from the critical amplitudes, we note from (2.8) and (2.13) that a oscillates with amplitude and frequency of order ε, and that the oscillatory as well as secular components of B behave similariy.

The above intuitive construction will next be analyzed systematically by the use of two aifferent expansions and their roles established in terms of all possible initiad conditions.

2.2 Outer expansion

In order to account for the most general form of initial conditions, ve represent the motion away from the critical amplitude by an expansion in povers of $\varepsilon^{1 / 2}$, called the outer expansion:

$$
\begin{equation*}
y(t ; \varepsilon)=\sum_{i=0} y_{i / 2}(t, \bar{t} ; \varepsilon)^{i / 2} \tag{2.18}
\end{equation*}
$$

As before the leading term or (2.18) is

$$
\begin{equation*}
J_{0}(t, \bar{t} ; \varepsilon)=a(\bar{t} ; \varepsilon) \cos [t-B(\bar{t} ; \varepsilon)] \tag{2,19}
\end{equation*}
$$

where ve set
(2.20)

$$
\begin{equation*}
a(\bar{t} ; \varepsilon)=\sum_{i=0} a_{i / 2}(\bar{t}) \varepsilon^{i / 2} \tag{2.21}
\end{equation*}
$$

$$
B(\tilde{t} ; \varepsilon)=\sum_{i=0} B_{i / 2}(\bar{t}) \varepsilon^{i / 2}
$$

It is then easy to show that $y_{1 / 2}=y_{1}=y_{3 / 2}=0$ after having defined the $a_{i / 2}, B_{i / 2}$ by the following boundedness requirements:
(2.22)
$\frac{d a_{0}}{d \tilde{t}}=0$

$$
\begin{equation*}
\frac{a B_{0}}{d t}=-\left(1-5 \cos ^{2} \alpha_{0}\right) \equiv \varepsilon_{0} \tag{2.23}
\end{equation*}
$$

(2.24) $\quad \frac{d a}{d t}=0$
(2.25) $\frac{d \beta_{1 / 2}}{d \bar{t}}=s_{0}{ }^{\prime} a_{1 / 2}=-5\left(\sin 2 a_{0}\right) \alpha_{2 / 2}$
(2.26)

$$
\frac{d \alpha_{1}}{d t}=\frac{\alpha_{0}}{2} \sin B
$$

(2.27)

$$
\frac{d B_{1}}{d \tilde{t}}=\frac{1}{2} s_{0}^{2}-\frac{5}{4} a_{0} s_{0} \sin 2 \alpha_{0}+\frac{1}{2} \cos \beta+s_{0}^{\prime} a_{1}+\frac{s_{0}^{\prime \prime}}{2} a_{1 / 2}^{2}
$$

where

$$
s_{0}=\frac{d^{2} z_{0}}{d x_{0}^{2}}=-10 \cos 2 n_{0}
$$

Hote that trigonometric functions with B as argument are not expanded to avoid trivial non-uniformities as the expansion of β in (2.21) need not involve bounded functions. It is only the phase relocity $\mathrm{d} \beta / \mathrm{dt}$ that must be bounded.

The solutions of the above equations are:

$$
\begin{equation*}
a_{0}=\text { const. }=a_{0} \tag{2.28}
\end{equation*}
$$

$$
(2.29) \quad B_{0}=s_{0} \bar{i}+b_{0}
$$

and
12.30

$$
\begin{equation*}
a_{1 / 2}=\text { const. }=a_{1 / 2} \tag{2.31}
\end{equation*}
$$

$$
B_{1 / 2}=s_{0}^{\prime} a_{1 / 2} \bar{t}+b_{1 / 2}
$$

and

$$
\begin{equation*}
a_{1}=-\frac{c_{0}}{2 s_{0}}\left[i-\varepsilon^{1 / 2} \frac{s_{0}^{\prime} a_{i / 2}}{s_{0}}+\varepsilon\left(\frac{s_{0}^{\prime} a_{i / 2}}{s_{0}}\right)^{2}+\ldots j(\cos 3-\cos \dot{b})+a_{1}\right. \tag{2.32}
\end{equation*}
$$

and equation (2.27) reduces to
(2.33)

$$
\begin{aligned}
& \frac{a \beta_{1}}{d \tilde{t}}=\frac{1}{2} s_{0}^{2}-\frac{5}{4} \alpha_{0} s_{0} \sin 2 a_{0}+\frac{1}{2} \cos B-\frac{s_{0}^{\prime} \alpha_{0}}{2 s_{0}}\left[1-\varepsilon^{1 / 2} \frac{s_{0}^{\prime} s_{1 / 2}}{s_{0}}\right. \\
& \left.+\varepsilon\left(\frac{s_{0}^{\prime} a_{1 / 2}}{s_{0}}\right)+\ldots\right](\cos B-\cos b)+s_{0}^{\prime} a_{2}+\frac{s_{0}^{\prime \prime}}{2} a_{1 / 2}
\end{aligned}
$$

if the initial conditions are given as
(2.34)

$$
\begin{aligned}
& 3=b=b_{0}+\varepsilon^{1 / 2} b_{1 / 2}+\varepsilon b_{1}+\ldots \\
& a=a=a_{0}+\varepsilon^{1 / 2} a_{1 / 2}+\varepsilon a_{1}+\ldots
\end{aligned}
$$

et $t=0$.

Equation (2.32) for α_{1} exhibits the non-uniformity of the expansion near $s_{0}=0$.
Hote that $a_{2 / 2}$ would be identicaliy zero if the initial amplitude did not contain a term proportional to $\varepsilon^{1 / 2}$.

2.3 Inner expansion

As mentioned previously, the outer expansion fails to be valid as $s_{0} \rightarrow 0$. We now seek a solution which is valid and does not becone unbounded at the critical amplitudes. This expansion vill be called the "inner expansion". We let (cr. discussion after Fig. 1)
(2.35) $\quad s_{0}=\varepsilon^{1 / 2} \overline{5}_{0}$
and assume the folloving expansion for y

$$
\begin{equation*}
y(t ; \varepsilon)=\sum_{i=0} y_{i / 2}\left(t, \bar{t}_{i} \varepsilon\right)_{\varepsilon}^{i / 2} \tag{2.36}
\end{equation*}
$$

where a new slow variable

$$
\begin{equation*}
\bar{t}=\varepsilon^{3 / 2} t=\varepsilon^{1 / 2} \bar{t} \tag{2.37}
\end{equation*}
$$

has been chosen. The equation for $y_{0}^{\text {is again }}$

$$
\begin{equation*}
\frac{\partial^{2} y_{0}}{\partial t^{2}}+y_{0} \equiv 0 \tag{2.38}
\end{equation*}
$$

whose general solution can be written in the form:

$$
\begin{equation*}
y_{0}(t, \bar{t} ; \varepsilon)=\alpha(\bar{t} ; \varepsilon) \cos [t-\beta(\bar{t} ; \varepsilon)] \tag{2.39}
\end{equation*}
$$

We also expand the slowly varying functions $a(\bar{t} ; \varepsilon)$ and $B^{\prime \prime}(\bar{t} ; \varepsilon)$ in the following form in order to account for the homogeneous solutions of all higher orders.

$$
\begin{equation*}
a^{*}(\bar{t} ; \varepsilon)=\sum_{i=0} a_{i / 2}(\bar{t}) \varepsilon^{i / 2} \quad B^{*}(\bar{t} ; \varepsilon)=\sum_{i=0} B_{i / 2}(\bar{t}) \varepsilon^{i / 2} \tag{2.40}
\end{equation*}
$$

Substitution of the above expansions into (2.1) and the requirement that the $\mathbf{y}_{i / 2}$ be bounded gives the following ordinary differential equations for the $a_{i / 2}$ and $\theta_{i / 2}$:
(2.41)

$$
\frac{d a_{0}}{d \bar{t}}=0
$$

$$
\frac{d \beta_{0}}{d t}=\varepsilon_{0}^{\prime} \alpha_{1 / 2}
$$

(2.k2a) $\frac{d a_{1 / 2}}{d \bar{t}}=\frac{a_{0}^{\circ}}{2} \sin B^{\circ}$

$$
\begin{equation*}
\frac{d B_{1 / 2}}{d \bar{t}}=s_{0}^{\prime \prime} \alpha_{1}+\frac{s_{0}^{\prime \prime}}{2}\left(a_{1 / 2}\right)^{2}+\frac{1}{2} \cos B^{\prime \prime} \tag{2.42b}
\end{equation*}
$$

(2.43a) $\quad \frac{d \alpha_{1}^{*}}{d t}=\frac{\alpha_{1 / 2}}{2} \sin B^{*}$
(2.43b) $\frac{d B_{1}}{d \bar{t}} s_{0}^{\prime} \alpha_{3 / 2}+s_{0}{ }^{\prime \prime} \alpha_{1 / 2} \alpha_{1}+\frac{s_{0}^{n \prime \prime}}{6}\left(\alpha_{1 / 2}\right)^{3}-\frac{5}{2} \alpha_{0} \bar{s}_{0} \sin 2 \alpha_{0}$
with the additional results that

$$
\begin{equation*}
y_{1 / 2}=y_{1}=t_{3 / 2}=y_{2}=0 \tag{2.44}
\end{equation*}
$$

and that only in $y_{5 / 2}$ do we have higher harmonics in the fast variable.
We note that equations (2.42) are precisely the equations one would obtain in
the inner limit from (2.14). Equations .(2.41-2.43) can be solved successively for the $a_{i / 2}$ and the results are summarized below.
(2.45a) $\quad \alpha_{0}^{*}=$ const. $=a_{0}^{*}$
(2.45b) $\quad a_{1 / 2}=\bar{K}_{0}+\frac{1}{z_{0}}\left[\bar{K}_{1}^{2}+\bar{K}_{2}\left(\cos B^{*}-\cos b^{*}\right)\right]^{1 / 2}$
$(2.45 c) \quad a_{1}=-\frac{\bar{K}_{0}}{\bar{K}_{2}}\left[\bar{K}_{1}^{2}+\bar{K}_{2}\left(\cos B^{*}-\cos b^{*}\right)\right]^{1 / 2}-\left(\cos B^{*}-\cos b^{\prime \prime}\right) / 2 s_{0}^{\prime}+a_{1}^{\prime \prime}$
where
(2.46)

$$
\bar{S}_{0}=-\bar{s}_{0} / s_{0} \quad \quad \bar{E}_{1}^{2}=\left(\bar{s}_{0}^{2}+s_{0}^{i} z_{12}\right)^{2}
$$

$$
\bar{x}_{2}=-a_{0} \Xi_{0}
$$

and the initial conditions at $\overline{\mathrm{t}}=0$
(2.17) $\quad a_{i / 2}=a_{i / 2} \quad \theta^{*}$
have been imposed.
With the $\mathrm{a}_{\mathrm{i} / 2}$. so defined the maluticn for the $\mathrm{s}_{\mathrm{i} / 2}$ Feduces to quadratures. These detalls rill not be carried out bere as the qualitative behavior of both a and s have already been discmased.

2.4 Matching of solutions and composite expansion

In the standard singular perturbation problem in which two limit process expansions can be derived in their respective domains, either one or both of these expansions is defined incompletely prior to the matching (cr. Kaplun and Lagerstrom (1957)). For example, the initial conditions for the inner solution would depend upon the values taken on by the outer solution in the inner region if the motion spans both regimes (cf. Lagerstrom and Kevorician (1963)). In this case, the matching will define the motion in the inner region and the bebavior of the two limit-process expansions in their common overlap domain will provide the basis for deriving a composite expansion which is uniformly valid everywhere.

In the present example, as well as in the main problem, the motion depending upon the initial condition on a lies for all times in either the outer or inner regions. Furthermore, the parameter which establishes the appropriate expansion does not vary in order of magnitude with time. The purpose of matching is then two-fold. First, the direct matching of the two expansions vill prove the existence of a common overiap domain and rule out the possibility of an even third limit-process expansion for some value of u such that $s_{0}=O\left(\varepsilon^{\mu}\right), 1<\mu<1 / 2$. Secondly, the matching will provide the necessary information for obtaining a representation of the motion for all values of * In the above order interval once the behaviors at the end-points of this order interval have been calculated. General principles of matching are discussed by Kaplun and Lagerstrom (1957). For the present examples, as well as for the main problem, it is sufficient to show that the inner solution for large values of $\overline{\mathrm{s}}_{\mathrm{o}}$ agrees with the inner limit of the outer expansion. In
this event the derivation of a composite expansion which is unifornly vaid for all s_{0} in the order interval ord $\varepsilon^{1 / 2} \leq$ ord $s_{0} \leq$ ord 1 becomes particulariy Etraightrorvard.

The matching between a and a is very simple. If ve rewrite a in terms of outer variailes and expand for $\overline{\mathrm{s}}_{0}+\cdots$, ve obtain

$$
\begin{align*}
& \alpha=\alpha_{0}+\varepsilon^{1 / 2} \alpha_{1 / 2}+\alpha_{1}+0\left(\varepsilon^{3 / 2}\right)=a_{0}+\varepsilon^{1 / 2} a_{1 / 2}+\operatorname{ca}_{1} \tag{2.48}\\
& -\frac{c}{2} \frac{a_{0}}{s_{0}}\left(\cos b^{*}-\cos b^{6}\right)+\frac{1}{2} \varepsilon^{3 / 2}\left(\frac{\sigma_{0}}{s_{0}} a_{0}-1\right) a_{1 / 2}\left(\cos a^{\circ}-\cos b^{\circ}\right) \\
& -\frac{\varepsilon^{2}}{2}\left(\frac{s_{0}}{s_{0}} a_{0}-1\right)\left[\frac{s_{0}^{2}}{s_{0}^{2}} a_{1 / 2}\left(\cos \theta^{6}-\cos b^{\circ}\right)+\frac{1}{4} \frac{a^{2}}{s_{0}^{2}}\left(\cos ^{2}\right.\right. \\
& \left.-2 \cos 8^{\circ} \cos b^{6}+\frac{1}{2}+\frac{1}{2} \cos 2 B^{6}\right) 1+0\left(\varepsilon^{5 i 2}\right)
\end{align*}
$$

From the outer expansion we have

$$
\begin{align*}
& a=a_{0}+\varepsilon^{1 / 2} a_{1 / 2}+c a_{1}+0\left(\varepsilon^{3 / 2}\right)=a_{0}+\varepsilon^{1 / 2} a_{1 / 2}+c a_{1} \tag{2.49}\\
& -\frac{\varepsilon_{0}}{2 s_{0}}\left[1-\varepsilon^{1 / 2} \frac{s_{0} \varepsilon_{1 / 2}}{s_{0}}+\varepsilon \frac{s_{0}^{2} a_{1 / 2}^{2}}{s_{0}^{2}}+\ldots\right](\cos B-\cos b)+0\left(\varepsilon^{5 / 2}\right)
\end{align*}
$$

By comparing equations (2.48) and (2.49) we see that the inner expansion contains the outer expansion explicitly to order ε^{2}. Note that in the overlep dcrain ve have $a_{i / 2}=a_{i / 2}$. In fact, all terms in the outer expansion to order ε^{2} are contained in $\alpha_{0}^{\bullet}+\varepsilon^{1 / 2} a_{1 / 2}$. The outer expansion of $a_{1}{ }^{\circ}$ is entirely or higher order. Thus, the composite expansion which is uniformly valid to $O(\varepsilon)$ everywhere is:

$$
\begin{equation*}
a_{c}=a_{0}^{0}+\varepsilon^{1 / 2} a_{1 / 2}+\varepsilon a_{1}^{0} \tag{2.50}
\end{equation*}
$$

In this matching, we nave assumed that both B and \mathcal{B}^{*} are matchec. This will be shown in the subsequent discussion. For simplicity, we vill discuss the matching between $\mathrm{dB} / \mathrm{d} \overline{\mathrm{t}}$ and $\mathrm{d} B^{*} / \mathrm{dt}$ instead.

To sumarize, we have already obtained

$$
\begin{align*}
& \frac{d 3}{d t}=s_{0}+\varepsilon^{1 / 2} s_{0}^{1} a_{1 / 2}+\varepsilon\left(\frac{1}{2} s_{0}^{2}-\frac{5}{4} \alpha_{0}^{2} s_{0} \sin 2 \alpha_{0}\right. \tag{2.51}\\
& \left.+\frac{1}{2} \cos B+s_{0} a_{1}+\frac{s_{0}^{n}}{2} a_{1 / 2}^{2}\right)+O\left(\varepsilon^{3 / 2}\right)
\end{align*}
$$

and

$$
\begin{equation*}
\frac{d 3^{"}}{d \bar{t}}=\bar{s}_{0}+s_{0}{ }^{\prime} a_{1 / 2}+\varepsilon^{1 / 2}\left[s_{0}^{\prime} \alpha_{1}^{\prime \prime}+\frac{1}{2} \cos B^{\prime \prime}+\frac{s_{0}^{\prime \prime}}{2}\left(\alpha_{1 / 2}\right)^{2}\right]+o(\varepsilon) \tag{2.52}
\end{equation*}
$$

We note that the inner expansion of (2.52) for dB / dt contains all the terms that appear in the outer expansion (2.51) with the exception of the two terms $-\frac{5}{4} \varepsilon \alpha_{0}{ }^{2} s_{0} \sin 2 \alpha_{0}$ and $\frac{1}{2} E s_{0}^{2}$. This is consistent, because wher the above terms are expressed in terms of the inner parameter \bar{s}_{0}, they become of order $\varepsilon^{3 / 2}$ and ε^{2} respectively. Thus, they should appear in the expressions for $\mathrm{d} B_{1}$ "/dt and $\mathrm{d} B_{3 / 2} / \mathrm{dt}$ respectively. The first term does appear in the expression (2.43b) for $\mathrm{dB}_{1}{ }^{\bullet} / \mathrm{dt}$ and one would recover the second term if $\mathrm{dB}_{3 / 2} / \mathrm{dt}$ were evaluated. Conversely, many terms in the inner expansion: e.g. $s_{0}{ }^{\prime} a_{1}{ }^{\prime \prime}$ and $s_{0}^{\prime \prime}\left(\alpha_{1 / 2}^{*}\right)^{2} / 2$, are of orders higher than we considered in the outer expansion and will aprear in the corresponding higher order terms. Having carried out the calculations to the present order we can easily derive the following composite expansion for $d \beta_{c} / \overline{d t}$ which is uniformly valid to order ε^{2} for all s_{0}.

$$
\begin{align*}
& \frac{d \bar{s}_{c}}{d \bar{t}}=\bar{s}_{0}+s_{0}^{\prime} \alpha_{1 / 2}+\varepsilon^{1 / 2}\left[s_{0}^{\prime} \alpha_{1}+\frac{1}{2} \cos 8^{\prime \prime}+\frac{s_{0}}{2}\left(\alpha_{1 / 2}\right)^{2} ;\right. \tag{2.53}\\
& -\sum_{4} c\left(\alpha_{0}^{0}\right)^{2} \bar{s}_{0} \sin 2 \alpha_{0}+\frac{c^{2}}{2} \bar{s}_{0}^{2}
\end{align*}
$$

In deriving (2.53) we have used tine customary construction of anains the inser and outer representations for d / dt and subtracting those teras wicin are common to both expansions in the intermediate region. These terms are tie two higher order terms appearing at the end of (2.53). Thus, to order $c^{1 / 2}$ the inner expansion $d B^{* / d t}$ is itself uniformly valía for all s_{0}. It is only in deriving an expression valid to orders higher than $\varepsilon^{1 / 2}$ that one needs consideration of terms contributed by the outer expansion.

Finally, the solution of (2.1) for y which is uniformly valid to $O(\varepsilon)$ for $a 11 \mathrm{~s}_{\mathrm{o}}$ is

$$
\begin{equation*}
y(t, \varepsilon)=\left(a_{0}+\varepsilon^{1 / 2} a_{1 / 2}+\varepsilon a_{2}\right) \cos \left[t-s_{c}(t ; \varepsilon)\right]+O\left(\varepsilon^{3 / 2}\right) \tag{2.54}
\end{equation*}
$$ The behavior of the amplitude and phase to $0\left(\varepsilon^{1 / 2}\right)$ was discussed eariier in connection with (2.14). The higher order terms will not aiter the generai qualitative nature of the solution. The detailed and systenatic developant of the expansions for a and β was carried out here to serve as a guigeiine for the study of the main problem for which there is no a priori knowledse of tice particular higher order terms which cause local resonance. Hence cne mist rely on a more formal construction analagous to the process used in sections 2.2-2.4.

3. The ifain Probien

Once suitable choice of variables is made, the motion of a sateilite aroman an oblate pianct reduces in principle to the solution of a proilea in non-linear oscillations analogous to the model discussea in Section 2. or course, instead of the two siowly varying functions and B, ve now bave six sioviy varying oroitai elements. Hovever, it will be shown that the sain proide hinges on solving the coupled equations for the inclination and apse wieh will be the analogues of and B, and that the remainder of the elements vill then be given by quadratures.

3.1 Formulation of the problem, coordinate system

Consider an inertial frame with origin at the center of an oblate pianet having a radius R in the equatorial plane of symetry. Tie normalize iistances by the radius R and the time by $\left(R^{3} / G M\right)^{1 / 2}$, where G is the miversal gravitational constant and M is the mass of the planet. The dimensionless equation of motion for a satellite is then
(3.1) $\frac{d^{2+}}{d t^{2}}=\operatorname{grad} U$
where \vec{x} is the dimensionless distance vector from the origin and the potential U has the following form in spherical polar coordinates with respect to the polar axis of symetry:

$$
\begin{equation*}
u=\frac{1}{r}+\frac{\varepsilon}{3 r^{3}}\left(1-3 \cos ^{2} \theta\right)+\frac{c \varepsilon^{2}}{5 r^{5}}\left(35 \cos ^{4} \theta-30 \cos ^{2} \theta+3\right)+O\left(\varepsilon^{3}\right) \tag{3.2}
\end{equation*}
$$

where θ is the polar angle.

It has been assumed that the planet is an ellipsoid of revolution anc for the earth the constants ε and c are approximately (cr. Jeffries (1959) and Shi (1963))

$$
\varepsilon=J=1.623 \times 10^{-3} \quad c=4 / 7
$$

In the conventional spherical polar coordinates:
(3.3a) $\quad x=r \cos \psi \sin \theta$
(3.3b) $y=r \sin \phi \sin \theta$
(3.3c) $z=r \cos \theta$
where
(3.3d) $\quad \vec{x}=(x, y, z),|\vec{x}|=r$

Equation (3.1) for any potential U has the following component form:
(3.4a) $\frac{d}{d t}\left(r^{2} \sin ^{2} \theta \frac{d \phi}{d t}\right)=\frac{\partial U}{\partial \psi}$
(3.4b) $\frac{d}{d t}\left(r^{2} \frac{d \theta}{d t}\right)-r^{2} \sin \theta \cos \theta\left(\frac{d \theta}{d t}\right)^{2}=\frac{\partial U}{\partial \theta}$
(3.4c) $\frac{d^{2} r}{d t^{2}}-r\left(\frac{d \theta}{d t}\right)^{2}-r \sin ^{2} \theta\left(\frac{d \dot{\psi}}{d t}\right)^{2}=\frac{\partial U}{\partial r}$

Since the satellite can be considered to move in an instantaneous plane defined by the distance and velocity vectors, one may also define the motion by the falloving variables proposed by Struble (1960) and (1961) (cr. Fig. 2 for the geonetry).
$i=$ angle between instantaneous orbital and equatorial planes
$Q=$ angle in the equatorial plane between some fixed direction, say x pointing tovards the vernal equinox, and the ascendins node
$r=$ the radius

- = angle between the ascending node and the distance vector.

Struble (1960) has shown that equations (3.4) transform to the followins fifth-order system after elimination of the time.*

$$
\begin{align*}
& \frac{d \theta}{d \phi}=\frac{\frac{\partial U}{\partial i}}{\frac{\operatorname{mi}^{2}}{\cos i} \cdot \frac{\cos ^{3} i \cos \theta}{p \sin ^{2} i \sin 6}\left[\frac{\partial U}{\partial \theta}+\tan i \frac{\cos \theta}{\sin \theta} \frac{\partial U}{\partial \theta}\right]} \tag{3.58}\\
& \frac{d S}{d \theta}=\frac{-\cos ^{3} i \cos 6\left[\frac{\partial U}{\partial j}+\tan i \frac{\cos \theta}{\sin \theta} \frac{\partial U}{\partial \theta}\right]}{p^{2} u^{2} \sin ^{2} i \sin \theta+\cos ^{4} i \cos \theta\left[\frac{\partial j}{\partial \theta}+\tan i \frac{\cos \theta}{\sin \theta} \frac{\partial U}{\partial \psi}\right]} \tag{3.5b}
\end{align*}
$$

$$
\begin{equation*}
\frac{d i}{d \phi}=-\frac{\sin ^{2} i \cos ^{3} i \cos \theta\left[\frac{\partial U}{\partial \theta}+\tan i \frac{\cos \theta}{\sin \theta} \frac{\partial U}{\partial \psi}\right]}{p^{2} u^{2} \sin ^{2} i \sin \theta+\cos i \cos \theta\left[\frac{\partial U}{\partial \theta}+\tan i \frac{\cos \phi}{\sin \theta} \frac{\partial U}{\partial \phi}\right]} \tag{3.5c}
\end{equation*}
$$

$$
\begin{equation*}
u=\frac{1}{r} \tag{3.5f}
\end{equation*}
$$

In equation (3.5 d) $\frac{d \phi}{d t}$ and θ are derined by

$$
\text { (3.56) } \quad \frac{d \phi}{d t}=\frac{p u^{2}}{\cos i}+\frac{\cos ^{3} i \cos \theta}{p \sin ^{2} i \sin \theta}\left[\frac{\partial U}{\partial \theta}+\tan i \frac{\cos \phi}{\sin } \frac{\partial U}{\partial v}\right]
$$

- Note that Struble (1960) defines the node in the opposite sense.
(3.5h) $\quad \cos \theta=\sin i \sin$

If we now use (3.2) for U and retain teras up to $O\left(\varepsilon^{2}\right)$ only, (3.5) simplify to
(3.6a) $\frac{d p}{d t}=0$
(3.6b) $\quad \frac{d \Omega}{d \theta}=\frac{-2 r u \cos ^{3} i \cos ^{2} \theta\left(1-2 \operatorname{cen} 2\left(7 \cos ^{2} \theta-3\right)\right]}{p^{2} \sin ^{2} i+2 \varepsilon u \cos ^{4} i \cos ^{2} \theta\left[1-2 \operatorname{ceu}^{2}\left(7 \cos ^{2} \theta-3\right)\right]}$
(3.6c) $\quad \frac{d i}{d \phi}=\frac{-2 \varepsilon u \sin ^{2} i \cos ^{3} i \cos \theta \cos \theta\left[1-2 \operatorname{ceu}^{2}\left(7 \cos ^{2} \theta-3\right)\right]}{p^{2} \sin ^{2} i+2 \varepsilon u \cos ^{4} i \cos ^{2} \theta\left[1-2 \operatorname{cou}^{2}\left(7 \cos ^{2} \theta-3\right)\right]}$
(3.6d)

$$
\begin{aligned}
& \frac{d^{2} u}{d \phi^{2}}-\frac{2}{u}\left(\frac{d u}{d \phi}\right)^{2}+\frac{\frac{d u}{d \phi} \cdot \frac{d}{d \phi}\left(\frac{d \phi}{d t}\right)}{\frac{d \phi}{d t}}=-\frac{p^{2} u^{5}}{\left(\frac{d \phi}{d t}\right)^{2} \cos ^{2} i} \\
& +\frac{1+c^{2}\left(1-3 \cos ^{2} \theta\right)+c \varepsilon^{2} u^{4}\left(35 \cos ^{4} \theta-30 \cos ^{2} \theta+3\right)}{\left(\frac{d \phi}{d t}\right)^{2}}
\end{aligned}
$$

where $\frac{d \phi}{d t}$ is given by $(3.5 E)$ with $\frac{\partial U}{\partial \psi}=0$.

According to ($3.6 a$) p is a constant, a consequence of the independence of j on 中. Furthermore, equation (3.6b) for the node is uncoupled from (3.6c) and (3.6d) and can hence be soived independentiy once u and i have been determined.

Making use of the identities (3.5g) and (3.5h) and retaining teras up to $O\left(\varepsilon^{2}\right)$ in (3.6c) and (3.6d) yields:
(3.7a) $\quad \frac{d i}{d \phi}=-\frac{u}{p^{2}} \cos ^{3} i \sin i \sin 2 \phi+2 \varepsilon^{2} \frac{u^{2}}{p^{2}} \cos ^{3} i \sin i\left[\frac{1}{p^{2}} \cos ^{4} i \sin ^{2} \phi\right.$
$\left.-3 c u+7 c u \sin ^{2} i \sin ^{2} \phi\right] \sin 2 \phi+O\left(\varepsilon^{3}\right)$
(3.7b)

$$
\begin{aligned}
& \frac{d^{2} u}{d \phi^{2}}+n=\frac{\cos ^{2} i}{p^{2}}+c\left[\frac{4 u^{2}}{p^{2}} \cos ^{4} i \sin ^{2}+\frac{u}{p^{2}}\left(\frac{d u}{d \phi} \cos ^{2} i\left(1-3 \cos ^{2} i\right) \sin 2 \phi\right.\right. \\
& \left.-\frac{2}{p^{2}}\left(\frac{d n^{2}}{d \phi}\right)^{2} \cos ^{4} i \sin ^{2}+\frac{u^{2}}{p^{2}} \cos ^{2} i\left(1-3 \sin ^{2} i \sin ^{2} \phi\right)-4 \frac{u}{p} \cos ^{6} i \sin ^{2} \phi\right] \\
& \left.+e^{2} i-4 \frac{\cos ^{4} i}{p^{2}} u^{3} \sin ^{2} \phi i \frac{3 \cos ^{4} i}{p^{2}} \sin ^{2} \phi-2 \operatorname{co}\left(3-7 \sin ^{2} i \sin ^{2} \phi\right)\right\} \\
& -6 \frac{u^{2}}{p^{4}} \frac{d u}{d \phi} \sin ^{2} i \cos ^{6} i \sin ^{2} \ln 2 \theta-2 c \frac{u^{3}}{p^{2}} \frac{d u}{d 6} i-3 \sin ^{2} i \cos ^{2} i \\
& +7 \sin ^{4} i \cos ^{2} i \sin ^{2}+6 \cos ^{4} i-28 \cos ^{4} i \sin ^{2} i \sin ^{2} \phi \sin 2 \phi \\
& -12 c \frac{u^{2}}{p^{2}}\left(\frac{d u}{d \phi}\right)^{2} \cos ^{4} i \sin ^{2}\left(3-7 \sin ^{2} i \sin ^{2} \phi\right) \\
& +2 \frac{u^{2}}{p} \frac{d u}{d \varphi} \cos ^{6} i\left(3 \cos ^{2} i-1\right) \sin ^{2} \sin 2 \phi+4 \frac{u}{p}\left(\frac{d u}{d \phi}\right)^{2} \cos ^{8} i \sin ^{4} \\
& +c \frac{u^{4}}{p^{2}} \cos ^{2} i\left\{35 \sin i \sin 4-30 \sin ^{2} i \sin ^{2} \phi+3\right\} \\
& -4 \frac{u^{3}}{p} \cos ^{6} i \sin ^{2}\left(1-3 \sin ^{2} i \sin ^{2}\right)+4 \frac{u^{2}}{p^{4}} \cos ^{6} i \sin ^{2} \phi\left\{\frac{3}{p^{2}} \cos ^{4} i \sin ^{2} \phi\right. \\
& \left.-2 \operatorname{cu}\left(3-7 \sin ^{2} i \sin ^{2} \phi\right) 1\right]+O\left(\varepsilon^{3}\right)
\end{aligned}
$$

It is mentioned in passing that Struble (1961) chose a modified variable analogous to in order to eliminate certain non-uniformities in the solution. With the present approach this is unnecessary, since all the required scale changes are automatically accounted for by the two-variable procedure.

3.2 Outer exaension

The min problen to thich we bave previously referred is tine solution of equations (3.7a) and (3.ib). Since $\cos ^{2} i / p^{2}$ is constant to orier unity, we see from (3.7b) that this problem reduces to solving the motion of an oscillitor with amall non-linearities amd a meak coupling becamse i is constant to order unity. The sonemat ienjtig nature of the periurbaion terns in (3.To) aces not alter tiae fact inat sie systen in question is qualitativeiy analogous to the model equation sturied in Jection 2. He therefore proceed as in Section 2.2 by assumiag the following expansions for i and u :

(3.86)

$$
u(\phi ; \varepsilon)=\sum_{\varepsilon=0} n_{n}(\theta, \bar{\theta} ; \varepsilon)-\varepsilon \varepsilon^{n / 2}
$$

where : analogous to the siov tine variable, is defined by
(3.8c) $\bar{\sigma}=\varepsilon_{\phi}$

Substitution of (3.8) into (3.7) gives to order unity

$$
\begin{equation*}
\frac{\partial i_{0}}{\partial \phi}=0 \tag{3.9a}
\end{equation*}
$$

(3.90) $\quad \frac{2^{2} u_{0}}{24^{2}}+u_{0}=\frac{\cos ^{2} i_{0}}{-p^{2}}$
whose general solution is
(3.10a)

$$
\begin{aligned}
& i_{0}=i_{0}(\dot{\xi} ; \varepsilon) \\
& u_{0}=\frac{\cos ^{2} i_{0}}{p^{2}}\{i+e(\phi ; \varepsilon) \cos [\phi-\psi(\bar{\phi} ; \varepsilon)]\}
\end{aligned}
$$

In (3.10b) the two "constants of integration" have been expressed in terms of the conventional Keplerian elements.
$e=$ eccentricity
ω = apse angle measured in the counterclockwise sense from the ascending node to perigee in the instantaneous orbital plane.

As before ve assime i_{0}, e and whave the following expressions
(3.118) $\quad i_{0}(\bar{i} ; \varepsilon)=\sum_{n=0} i_{o n / 2}(\bar{\phi}) \varepsilon^{n / 2}$
(3.11b)

$$
e(\bar{\phi} ; \varepsilon)=\sum_{n=0} e_{n / 2}(\bar{\phi}) \varepsilon^{n / 2}
$$

(3.11c) $\quad \omega(\bar{\phi} ; \varepsilon)=\sum_{n=0}{ }_{n / 2}\left(\bar{\phi} \varepsilon^{n / 2}\right.$
in order to account for the homogeneous solutions of the higher order terms in i and u. It is easy to see that since terms of $O\left(\varepsilon^{1 / 2}\right.$) are absent in (3.7), $i_{1 / 2}=u_{1 / 2}=0$. The following equations for i_{1} and u_{1} can then be derived. (3.12a) $\quad \frac{\partial i_{1}}{\partial \phi}=\frac{d i}{\partial i}-\frac{1}{p^{4}} \cos ^{5} i_{\infty 0} \sin i_{\infty 0} \sin 2 \phi\left[1-e_{0} \cos (\phi-\omega)\right]$
(3.12b)

$$
\begin{aligned}
& \frac{z^{2} u_{1}}{2 \phi^{2}}+u_{1}=\left[-\frac{2 e_{0}}{p^{2}} \frac{d \omega}{d \dot{o}} \cos ^{2} i_{\infty 0}-\frac{e_{0}}{p^{6}} \cos ^{6} i_{\infty}\left(1-5 \cos ^{2} i_{\infty}\right)\right] \cos (\phi-\omega) \\
& +\frac{2}{p^{2}} \cos ^{2} i_{\infty 0} \frac{e_{0}}{d \phi} \sin (\phi-\omega)-\frac{1}{p^{6}} \cos ^{6} i_{\infty} \sin ^{2} i_{\infty}\left[\cos 2 \phi+\frac{e_{0}}{3} \cos (3 \phi-\omega)\right] \\
& +\frac{\cos ^{6} i_{\infty}}{p^{6}}\left(-\frac{1}{2}+\frac{7}{2} \cos ^{2} i_{\infty}\right)\left[1+\frac{e_{0}^{2}}{2}+\frac{e_{0}^{2}}{2} \cos 2(\phi-\omega)\right] \\
& +\frac{\cos ^{6} i_{\infty O}}{2^{6}}\left(3-7 \cos ^{2} i_{\infty}\right)\left[\left(1+\frac{e_{0}^{2}}{2}\right) \cos 2 \varphi+e_{0} \cos (3 \phi-\omega)\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.+\frac{e_{0}^{2}}{4} \cos (4 \phi-2 \omega)+\frac{e_{o}^{2}}{4} \cos 2 \omega\right]-\frac{2}{p^{6}} \cos ^{8} i_{\infty}\left[1-\cos 2 \phi-\frac{e_{0}}{2} \cos (3 \phi-\omega)\right] \\
& -\frac{e_{0}}{2} \frac{\cos ^{6} i_{\infty}}{p^{6}}\left(1-3 \cos ^{2} i_{\infty}\right)\left[-\cos (3 \phi-\omega)-\frac{e_{0}}{2} \cos (4 \phi-2 \omega)+\frac{e_{0}}{2} \cos 2 \omega\right] \\
& -\frac{e_{0}^{2}}{2} \frac{\cos ^{8} i_{\infty}}{p^{6}}\left[1-\cos 2(\phi-\omega)-\cos 2 \phi+\frac{1}{2} \cos (4 \phi-2 \omega)+\frac{1}{2} \cos 2 \omega\right]
\end{aligned}
$$

In order that i_{1} and u_{1} be bounded ve must set
(3.13a) $\frac{d i_{00}}{d i}=0$
(3.13b) $\quad \frac{d e_{o}}{d i}=0$
(3.13c) $\frac{d \omega_{0}}{d \bar{\phi}}=-\frac{\cos ^{4} i_{0 O}}{2 p^{4}}\left(1-5 \cos ^{2} i_{\infty}\right)=s_{0}$

Note the similarity of (3.13a) and (3.13c) to (2.22) and (2.23) establishing the analogy between α and B of the modei equation with i and ω respectively for the main problem

Thus, the elements to first order become
(3.14) $\quad e_{0}=$ const $. \quad i_{\infty}=j_{0}=$ const. $\quad \omega_{0}=s_{0} \tilde{\phi}+\omega_{\infty}$
where w_{00} is a constant depending upon the initial conditions.

Equations (3.12) can now be solved to give
(3.15a) $\quad i_{1}=\frac{1}{2 p^{4}} \cos ^{5} i_{00} \operatorname{sini}_{\infty}\left[\cos 2 \phi+e_{0} \cos (\phi+\omega)+\frac{e_{0}}{3} \cos (3 \phi-\omega)\right]$
(3.15b) $\quad u_{1}=\frac{\cos ^{6} i_{00}}{2 p^{6}}\left[-1+3 \cos ^{2} i_{\infty}-\frac{e_{0}^{2}}{2}\left(1-5 \cos ^{2} i_{\infty 0}\right)\right.$

$$
\begin{aligned}
& +\frac{e_{0}^{2}}{4}\left(1-3 \cos ^{2} i_{\infty}\right) \cos 2 \omega-\left(\frac{1}{3} \sin ^{2} i_{\infty}-\frac{e_{0}^{2}}{3}+\frac{5}{6} e_{0}^{2} \sin ^{2} i_{\infty}\right) \cos 2 \\
& +\frac{e_{0}^{2}}{6}\left(1-9 \cos ^{2} i_{\infty}\right) \cos 2(4-\omega)-\frac{e_{0}}{12}\left(5-11 \cos ^{2} i_{\infty}\right) \cos (34-\infty) \\
& \left.-\frac{e_{0}^{2}}{12}\left(1-3 \cos ^{2} i_{\infty}\right) \cos (44-2 \omega)\right]
\end{aligned}
$$

To $0\left(\varepsilon^{3 / 2}\right)$ all the forcing terms on the right-hand sides of the equations for $u_{3 / 2}$ must be removed for boundedness, giving

$$
\begin{align*}
& \frac{d i_{01 / 2}}{d \bar{\varphi}}=0 \quad \frac{d e_{1 / 2}}{d i}=0 \quad \frac{d e_{1 / 2}}{d \bar{\varphi}}=S_{1} i_{01 / 2} \tag{3.16}\\
& S_{n}=\frac{d^{n} S_{0}}{d i_{\infty}}, n=1,2, \ldots
\end{align*}
$$

which implies that
(3.17) $\quad i_{o l / 2}=J_{1 / 2}=$ constant $\quad e_{1 / 2}=$ constant $\quad \quad_{1 / 2}=s_{1} J_{1 / 2} \bar{*}+\omega_{1 / 2}$
where $v_{1 / 20}$ is a constant depending on the initial condition.
The requirement that i_{2} and u_{2} be bounded provides the folloving equations for $i_{01} 1_{1}$, and e_{1} :
(3.18s) $\frac{d j_{o l}}{d i}=c_{2} \sin 2 \omega$
(3.18b)
(3.18c)

$$
\begin{aligned}
& \frac{d \omega_{1}}{d i}=\frac{1}{2} S_{2}\left(i_{01 / 2}\right)^{2}+S_{1} i_{01}+A_{0}+A_{2} \cos 2 \omega \\
& \frac{d e_{1}}{d i}=B_{2} \sin 2 \omega
\end{aligned}
$$

The solutions of (3.18) subject to the instial conditions
(3.19)
$e_{n}=n_{n}$
$i_{0 n}=J_{n}$
at $t=$ are
(3.20a) $\quad i_{01}=J_{1}+\frac{C_{2}}{2 S_{0}}(\cos 2 w-\cos 2 w)$
(3.20b) $e_{1}=1+\frac{B_{2}}{2 S_{0}}(\cos 2 v-\cos 2 w)$
(3.20c) $\quad \frac{d \omega}{d \bar{\alpha}}=\frac{1}{2} s_{2} j_{i / 2}^{2}+S_{1}\left[j_{1}+\frac{C_{2}}{2 S_{0}}(\cos 2 v-\cos 2 \omega)\right]+A_{0}+A_{2} \cos 2 \omega$

The non-uniformities of the outer solution near $S_{0}=0$ are exhibited above and are a consequence of the non-validity of the expansions essumed in (3.8) near
the critical inclination.

3.3 Inner expansion

As show in Section 2, the expansion procedure for inclinations close to the critical value should be of the form

$$
\begin{equation*}
u(\phi ; \varepsilon)=\sum_{n=0} u_{n / 2}(\phi, \bar{\phi} ; \varepsilon) \varepsilon^{n / 2} \tag{3.21a}
\end{equation*}
$$

$$
\begin{equation*}
i(\phi ; \varepsilon)=\sum_{n=0} i_{n / 2}(\phi ; \phi ; \varepsilon) \varepsilon^{n / 2} \tag{3.21b}
\end{equation*}
$$

shere
(3.21c) $\quad \bar{\phi}=\varepsilon^{3 / 2} \phi=\varepsilon^{3 / 2}$

- Henceforth all constants not defined in the text vill be found in the Appendix with no additional reference.
and ve are interested in the case where
(3.21d) $\quad S_{0}=\varepsilon^{1 / 2} S_{0}$, with $\bar{S}_{0}=O(1)$

Upon substitution of (3.21) into (3.7) we obtain the following equations for the leading terms:
(3.22a) $\quad \frac{\partial^{2} u_{0}}{\partial \phi^{2}}+u_{0}=\frac{\cos ^{2} i_{0}}{p^{2}}$
(3.22b) $\frac{\partial i_{o}}{\partial \phi}=0$
whose general solution is of the form:
(3.23a) $\quad i_{0}^{*}=i_{0}^{*}(\overline{0} ; E)$
(3.23b) $\quad u_{0}^{*}=\frac{\cos ^{2} i_{o}}{p^{2}}\left\{1+e^{*}(\bar{\phi}, c) \cos \left[\phi-\omega^{*}(\bar{\phi} ; \varepsilon)\right]\right.$
we aiso expani the clements of the inner soiution in the form:
(3.24a) $\quad i_{0}(\bar{\phi} ; \varepsilon)=\sum_{n=0} i_{o n / 2}(\bar{\phi}) e^{n / 2}$

(3.24c) $\quad \omega(\bar{\phi} ; \varepsilon)=\sum_{n=0} \omega_{n / 2}(\bar{\phi}) \varepsilon^{n / 2}$

Since the homoseneous solution to $0\left(\varepsilon^{1 / 2}\right)$ is already accounted for by the expansion of the elements, we find $u_{1 / 2}{ }^{\bullet}=i_{1 / 2}{ }^{\circ}=0$ and can derive the following equations for the terms of $O(\varepsilon)$.
(3.258)

$$
(3.25 b)
$$

There are no terms proportional to sin or cos in (3.25a) and no terms which depend on in (3.25b), so (3.25) can be solved directly to yield
$(3.26 \pi) \quad i_{1}=\frac{1}{2 p^{4}} \cos ^{5} i_{00} \sin i_{00}\left[\cos 2 \phi+e_{0} \cos \left(\phi+\omega^{6}\right)+\frac{e_{0}}{3} \cos (3 \phi-\omega)\right]$
$(3.26 b) \quad n_{1}=\frac{\cos ^{6} i_{00}}{2 p^{6}}\left[-1+3 \cos ^{2} i_{00}-\frac{e_{0}^{2}}{2}\left(1-5 \cos ^{2} i_{00}\right)\right.$

$$
+\frac{e_{0}^{2}}{4}\left(1-3 \cos ^{2} i_{\infty}\right) \cos 2 \omega^{2}-\left(\frac{1}{3} \sin ^{2} i_{\infty}-\frac{e_{0}^{2}}{3}\right.
$$

$$
\begin{aligned}
& \frac{\partial^{2} u_{1}}{24^{2}}+u_{1}=-\frac{1}{p^{6}} \cos ^{6} i_{\infty} \sin ^{2} i_{\infty}\left[\cos 2 \phi+\frac{e_{0}}{3} \cos \left(3 \phi-\omega^{6}\right)\right] \\
& +\frac{\cos ^{6} i_{00}}{p^{6}}\left(-\frac{1}{2}+\frac{1}{2} \cos ^{2} i_{00}\right)\left[1+\frac{e_{0}^{2}}{2}+\frac{e_{0}^{2}}{2} \cos 2\left(1-w^{2}\right)\right] \\
& +\frac{\cos ^{6} i_{00}}{p^{6}}\left(3-7 \cos ^{2} i_{\infty}\right)\left[\left(1+\frac{e_{0}^{2}}{2}\right) \cos 2 \phi+e_{0} \cos (3 \phi-\omega)\right. \\
& \left.+\frac{e_{0}^{2}}{4} \cos (4 \phi-2 \pi)+\frac{e_{0}^{2}}{4} \cos 2 \pi\right]-\frac{2}{p^{2}} \cos ^{8} i_{\infty}[2-\cos 2 \phi \\
& -\frac{e_{0}}{2} \cos \left(34-\omega_{0} \cos ^{6} i_{00}\left(1-3 \cos ^{2} i_{0}\right)[-\cos (34-\omega)\right. \\
& \left.-\frac{e_{0}}{2} \cos \left(4 \phi-2 n^{n}\right)+\frac{e_{0}}{2} \cos 2 \omega^{n}\right]-\frac{e_{0}^{2}}{2 p^{6}} \cos ^{8} i_{00}\left[1-\cos 2\left(1-\omega^{n}\right)\right. \\
& \left.-\cos 2 t+\frac{1}{2} \cos (44-2 t)+\frac{1}{2} \cos 2 t\right] \\
& \frac{\partial i^{2}}{\partial \phi}=-\frac{1}{p^{4}} \cos ^{5} i_{\infty} \sin _{00} \sin 2 \phi\left[1+e_{0} \cos \left(\phi-\omega^{*}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left.+\frac{5}{6} e_{0}^{2} \sin ^{2} i_{\infty}\right) \cos 2 \phi+\frac{e_{0}^{2}}{6}\left(1-9 \cos ^{2} i_{\infty}\right) \cos 2(\phi-\infty) \\
& -\frac{e_{0}}{12}\left(5-11 \cos ^{2} i_{\infty}\right) \cos (34-\omega)-\frac{e_{0}^{2}}{12}\left(1-3 \cos ^{2} i_{\infty}\right) \cos \left(4 i-2 \omega^{2}\right)
\end{aligned}
$$

Since we are only interested in obtaining a solution correct to $O(\varepsilon)$, we
only give the boundedness conditions for the higher order terms.

Requiring $u / 3$ and $i^{*} 3 / 2$ to be bounded gives
(3.27a) $\quad \frac{d i_{00}}{d \bar{t}}=0 \quad$ (3.2Tb) $\quad \frac{d e_{0}}{d \bar{d}}=0 \quad(3.27 c) \quad \frac{d v_{0}}{d \bar{t}}=\bar{s}_{0}+s_{1}^{i} i_{01 / 2}$
and this implies
(3.28) $\quad i_{\infty}=$ constant $=i_{0} \quad e_{0}=$ constant $=n_{0}$

The boundedness of u_{2} and $i_{2}{ }^{\prime \prime}$ requires
(3.29a)

$$
\frac{d i_{01 / 2}}{d \varphi}=c_{2} \text { sin } 2 w
$$

$$
\begin{equation*}
\frac{d e_{1 / 2}}{d \bar{d}}=B_{2} \sin 2 \omega \tag{3.29b}
\end{equation*}
$$

(3.29c)

$$
\frac{d_{1 / 2}}{d \bar{d}}=\frac{1}{2} S_{2}\left(i_{01 / 2}\right)+S_{2} i_{01}+A_{0}+A_{2} \cos 2 \omega
$$

and finally in order to make $u_{5 / 2}$ and $i_{5 / 2}$ bounded we must set
(3.30a)

$$
\begin{aligned}
& \frac{d i_{01}}{\bar{d}_{\bar{\phi}}}=\left(c_{21}{ }^{*} i_{01 / 2}+c_{22}{ }^{e_{1 / 2}}\right) \sin 2 \omega \\
& \frac{d e_{1}}{\bar{d}}=\left[\bar{B}_{21}{ }^{*} i_{01 / 2}+B_{22}{ }^{e_{1 / 2}}-\frac{e_{0}}{4} \bar{s}_{0} \frac{\cos ^{4} i_{00}}{p^{4}}\left(1-3 \cos ^{2} i_{\infty}\right)\right] \sin 2 \omega^{*}
\end{aligned}
$$

3-t Sointioc of tine infer equations

Froe equations (3.27c and (3.29a) we obtain
(3.31) $\frac{\operatorname{din}_{01 / 2}}{\alpha_{0}{ }_{0}}=\frac{c_{2}^{*} \sin 2}{\bar{s}_{0}+s_{1} i_{01 / 2}}$

If the initial conditions are given as
(3.32) $\quad *=$

$$
i_{o n}=j_{n}
$$

$$
e_{n}^{\bullet}=\eta_{n}
$$

at $t=T$, equation (3.31) has the solution
(3.33) $i_{0 I / 2}=\frac{1}{S_{1}}\left[\left(\bar{x}_{0}-x_{1} \cos 2 \omega^{1 / 2}-\bar{s}_{0}\right]\right.$
which upon substitution into (3.27c) gives
(3.34) $\frac{\omega_{0}^{*}}{d \sigma^{*}}=\left(\bar{x}_{0}-\alpha_{1} \cos 2\right)^{1 / 2}$

By use of equation (3.34) and equation (3.29b) we now find
(3.35) $\quad c_{1 / 2}^{\bullet}=\frac{B_{2}{ }^{\circ}}{x_{1}}\left(\bar{x}_{0}-x_{1} \cos 2 \omega\right)^{\circ 1 / 2}+E_{1 / 2}$

Similarly, from equation (3.30a) we calculate
(3.36)

$$
\begin{aligned}
& i_{01}=\frac{1}{\alpha_{1}}\left[-c_{21} \frac{\bar{s}_{0}}{\bar{s}_{1}}+c_{22}{ }^{*} E_{1 / 2}\right]\left(\bar{\kappa}_{0}-\kappa_{1} \cos 2 \omega{ }^{*}\right)^{1 / 2}-\frac{1}{2 s_{1}}\left[c_{21}^{*}\right. \\
& +\frac{c_{22}}{c_{2}} B_{2} \cdot \cos 2 \omega+I_{2}
\end{aligned}
$$

Equation (3.300) can next be integrated to
(3.37)

$$
\begin{aligned}
& e_{i}^{*}=\left(\bar{x}_{0}-x_{1} \cos 2 \omega\right)^{1 / 2}\left[-\frac{\bar{S}_{0}}{S_{1}} B_{21}^{*}+E_{1 / 2}{ }_{22}^{*}-\frac{e_{0}^{*} \bar{S}_{0}}{\bar{p}_{4}}(1\right. \\
& \left.-3 \cos ^{2}{ }_{\infty}\right) \cos ^{4} i_{\infty}-\frac{1}{2}\left[\frac{B_{21}}{S_{1}}+\frac{B_{22}^{*} B_{2}^{*}}{k_{1}}\right] \cos 2 \omega^{*}+E_{1}
\end{aligned}
$$

The solution of the epsidal motion will be considered in Section 3.6 .

3.5 Matching and composite expansions

The problem of matching is essentialiy the same as the case discussed in Section 2 for the model equation. It must be remembered that in the overlap domain, the initial conditions are the same for both inner and outer expansions; thus

$$
\begin{equation*}
i_{\infty}=i_{\infty}=j_{\infty}=j_{0}, \quad j_{n}=j_{n}, \quad e_{0}=e_{0}, \quad n_{n}^{*}=n_{n}, \quad w=v \tag{3.38}
\end{equation*}
$$

One can then calculate the following relations betreen the constants appearing in the inner and outer expansions:
(3.39a) $\quad A_{0}=A_{0}-\frac{1}{2} s_{0}^{2}$
(3.39b) $\quad A_{2}=A_{2}-\frac{S_{0}}{4} \frac{\cos ^{4} i_{00}}{p^{4}}\left(1-3 \cos ^{2} i_{\infty 0}\right)$
(3.39c) $\quad B_{2}=B_{2}-\frac{S_{0}}{4} e_{0} \frac{\cos ^{4} i_{00}}{p^{4}}\left(2-3 \cos ^{2} i_{00}\right)$
(3.39d) $\quad c_{2}=c_{2}$

The matching between e and $e^{\text {" }}$ can easily be realized by finding the outer expansion of $e_{0}^{*}+\varepsilon^{1 / 2} e_{I / 2}^{*}+\varepsilon e_{1}^{*}$. Tnis is simply

$$
\begin{align*}
e_{0}^{*}+\varepsilon^{1 / 2} e_{1 / 2}+\varepsilon e_{i}^{*} & =\eta_{0}^{*}+\varepsilon^{1 / 2} \eta_{1 / 2}^{*}+\varepsilon n_{1}{ }^{*}-\varepsilon \frac{B_{2}^{*}}{2 S_{0}}(\cos 2 \omega \tag{3.40}\\
& \left.-\cos 2 w^{*}\right)-\varepsilon S_{0} \frac{\cos ^{4} i_{-00}}{4 p^{4}}\left(1-3 \cos ^{2} i_{o 0}\right)+0\left(\varepsilon^{3 / 2}\right)
\end{align*}
$$

The last term of $O(\varepsilon)$ in equation (3.40) arises from the outer expansion of ε_{1}. Thus, $e_{0}^{*}+c^{1 / 2} e_{1 / 2}$ almost contain every term in the outer expansion and the outer expansion of εe_{1} is mostly of higher order.

By coraparing equation (3.40) with the equation (3.206), we note that in adition to matching directily, the inner expansion contains the outer. It then follows that the composite expansion for e which is uniformly valid to $O(\varepsilon)$ for all i is

$$
\begin{equation*}
e_{c}=e_{0}+\varepsilon^{1 / 2} e_{1 / 2}+\varepsilon e_{1} \tag{3.41}
\end{equation*}
$$

The matching between i and i proceeds in a similar way. The outer expansion of $1_{00}+e^{1 / 2_{i}}{ }_{01 / 2}$ is

$$
\begin{equation*}
i_{\infty}+\varepsilon^{1 / 2} i_{o 1 / 2}=j_{0}+\varepsilon^{1 / 2} j_{1 / 2}+\varepsilon \frac{c_{2}}{2 S_{0}}\left(\cos 2 w^{*}-\cos 2 \omega\right)+0\left(\varepsilon^{3 / 2}\right) \tag{3.42}
\end{equation*}
$$

Comparison of equation (3.42) with equation (3.20a) shows that the inner expansion eqain contains the outer with the additional result that the outer expansion of $i_{o l}$ is $O\left(\varepsilon^{3 / 2}\right)$. Thus, the composite expansion for i_{o} is

$$
\begin{equation*}
i_{o c}=i_{\infty}+\varepsilon^{1 / 2_{i_{01 / 2}}}+\varepsilon i_{01} \tag{3.43}
\end{equation*}
$$

The above statements for and i hold provided that ω and ω are matched, this will be considered next.

From equations (3.13c), (3.16), and (3.18b), we have

$$
\begin{equation*}
\frac{d \omega}{d \dot{d}}=S_{0}+\varepsilon^{1 / 2} S_{1} j_{1 / 2}+\varepsilon\left[\frac{i}{2} S_{2} j_{1 / 2}{ }^{2}+S_{1} i_{01}+A_{0}+A_{2} \cos 2 \omega\right]+0\left(\varepsilon^{3 / 2}\right) \tag{3.44}
\end{equation*}
$$

$$
\left.\begin{array}{rl}
\frac{d \omega}{d \bar{\phi}} & =\bar{s}_{0}+S_{1}^{*} i_{01 / 2}+\varepsilon^{1 / 2}\left[\frac{1}{2} s_{2}\left(i_{o l / 2}\right)^{2}+S_{1} i_{01}+A_{0}\right. \tag{3.45}\\
& +A_{2} \cdot \cos 2
\end{array}\right]+O(E) .
$$

According to equation (3.42) the outer expansion of $i_{01 / 2}$ contains $i_{o 1}$. Use of this result leads to the following outer expansion for $\frac{d \omega}{d \bar{\phi}}$:

$$
\begin{align*}
\frac{d \omega}{d \varphi} & =S_{0}+\varepsilon^{1 / 2} S_{1} j_{1 / 2} e \varepsilon\left[\frac{1}{2} b_{2}\left(j_{1 / 2}\right)^{2}+S_{1} i_{01}+\Lambda_{0}^{\bullet}\right. \tag{3.46}\\
& \left.+A_{2}+\cos 2 \omega\right]+O\left(\varepsilon^{3 / 2}\right)
\end{align*}
$$

Comparing equations (3.46) with (3.44) we note that they are matched in any overlap domain $S_{0}=O\left(\varepsilon^{\mu}\right)$ with $0<\psi<\frac{1}{2}$ because those terms not contained in the outer expansion of $\mathrm{dw}{ }^{*} / \mathrm{d} \bar{\phi}$ have S_{0} as a factor (cf. Eq. 3.39) and are obviously small in the overlap domain. The composite expansion for the motion of the apse is therefore

$$
\begin{align*}
& \frac{d \omega_{c}}{d \bar{\phi}}=\bar{s}_{0}+S_{1} i_{01 / 2}+\varepsilon_{\varepsilon}^{1 / 2}\left[\frac{1}{2} s_{2}\left(i_{01 / 2}\right)+S_{1} i_{01}+A_{0}\right. \tag{3.47}\\
& \left.\quad+A_{2} \cos 2 \omega_{c}\right]+O(\varepsilon)
\end{align*}
$$

uniformly to order $\varepsilon^{1 / 2}$ for all inclinations.
From the assumed forms for u and i it is easily seen that the uniformity valid expansions to $O(\varepsilon)$ for all inclinations for these variables are

$$
\begin{equation*}
u_{c}=\frac{\cos ^{2} i_{o c}}{p^{2}}\left[1+e_{c} \cos \left(1-\omega_{c}\right)\right]+\varepsilon^{1 / 2} u_{1 / 2}+\varepsilon u_{1} \tag{3.48a}
\end{equation*}
$$

$$
\begin{equation*}
i_{c}=i_{o c}+e^{1 / 2} i_{1 / 2}+c i_{1} \tag{3.48b}
\end{equation*}
$$

wnere $i_{o c}, e_{c}$ and ω_{c} are used instead of i_{0}, e and ω in $u_{1 / 2}, u_{1}, i_{1 / 2}$ and i_{2} in equations (3.48a) and (3.480) and ω_{c} can be obtained by integrating equation (3.47).

3.6 Apsidal motion

The dominant behavior of the apsidal motion is described by the leading term. We have from (3.34)

$$
\begin{equation*}
\mathrm{d}_{\bar{\phi}}=\left(\bar{\kappa}_{0}-\kappa_{1}+2 \kappa_{1} \sin ^{2} \omega^{*}\right)^{-1 / 2} d \omega^{*}+0\left(\varepsilon^{1 / 2}\right) \tag{3.49}
\end{equation*}
$$

If we let

$$
\sin ^{2} \omega^{\omega}=v \quad 2 \sin \omega \cos \omega=\frac{d v}{d \omega}=2[v(1-v)]^{1 / 2}
$$

and consider only the leading term we obtain

$$
\begin{align*}
& \bar{\phi}-\bar{\phi}_{0}=\int_{0}^{\nu} \frac{d \xi}{\left[\left(-8 \kappa_{1}\right)(\xi-\lambda) \zeta(\xi-1)\right]^{i / 2}} \tag{3.50}\\
& \lambda=\left(\kappa_{1}-\bar{x}_{0}\right) / 2 x_{1} \tag{3.51}
\end{align*}
$$

For the earth's potential the quantity κ_{y} is positive near the critical inclination. Thus the square root appearing in the above expression is reai only if
(3.52) $v-\lambda>0, \quad \sin ^{2} \omega>\lambda$

[^2]How ve have to aistinguish the following three cases:

Case 1

(3.53) $-x_{1}<\bar{x}_{0}<x_{1}$ or $0<\lambda<i$

In this case (3.50) becones an eliptic integral of the first kina.
(3.54a) $\overline{0}-\bar{\theta}_{0}=\left(2 x_{1}\right)^{-1 / 2} \vec{r}\left(x_{1}, x_{1}\right)$
where the amplituae X_{1} is
(3.54b) $x_{1}= \pm \tan ^{-1}\left[\frac{x_{1}+\bar{x}_{0}}{x_{1}-\bar{x}_{0}} \tan ^{2} \omega^{*}-1 i^{i / 2}\right.$
and the modulus is
(3.54c) $k_{1}=\left[\left(\bar{x}_{0}+k_{1}\right) / 2 x_{1}\right]^{1 / 2}$

Using elliptic functions "we may express ω^{*} explicitly as

$$
\begin{equation*}
\omega= \pm \tan ^{-1}\left[\frac{\kappa_{1}-\bar{x}_{0}}{x_{1}+\bar{k}_{0}}\left\{1+\operatorname{tn}^{2}\left[\left(2 \kappa_{1}\right)^{1 / 2}\left(\bar{\phi}-\bar{\phi}_{0}\right)\right] j\right]^{j / 2}\right. \tag{3.55}
\end{equation*}
$$

where the modulus of $t n$ is k_{1}.

The interpretation of this resuit is that the perisee performs a penauid motion around $\pi / 2$ or $3 / 2 \pi$ with a maximum amplitude $\omega_{\max }= \pm \sin ^{-1} \lambda$. λ aeperis on the initial conditions because after substituting the expression (i.27) ior \bar{x}_{0} ve ootain
(3.56)

$$
\lambda=\sin ^{2} w+\left(\bar{S}_{0}+s_{1} j_{1 / 2}\right)^{2 / 2 x_{1}}
$$

Case 2
(3.57) $\bar{x}_{0}=x_{1}$ or $\lambda=0$

In this case we have
(3.58) $\overline{-} \overline{0}_{0}= \pm \int_{0}^{\omega *} \frac{d \xi}{\left(2 x_{1}\right)^{1 / 2} \cos \xi}=\frac{ \pm 1}{\left(8 x_{1}\right)^{1 / 2}} \log \frac{1+\sin \omega}{1-\sin \omega}$
or arter some manipulations

$$
\sin =-\frac{1-e^{ \pm\left(\delta \kappa_{1}\right)^{1 / 2}\left(\bar{\phi}-\bar{\phi}_{0}\right)}}{1+e^{ \pm\left(8 x_{1}\right)^{1 / 2}\left(\bar{t}-\bar{\phi}_{0}\right)}}
$$

This means that wopproaches or asymptotically as goes to infinity. This case represents the boundary between oscillatory and secular motion of the perigee. The boundary depends on the initial conditions. He have

$$
\begin{equation*}
\lambda=\sin ^{2} w+\left(\bar{S}_{0}+S_{2} j_{1 / 2}\right) / 2 k_{1}=0 \tag{3.60}
\end{equation*}
$$

which is possible only when the initial values

$$
\begin{equation*}
\mathbf{v}=0 \quad \text { or } \tag{3.61}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{s}_{0}+s_{1} j_{1 / 2}=0 \tag{3.62}
\end{equation*}
$$

are assumed. This means that initially the apse has to coincide with the line of the nodes, and the inclination is exactiy critical at least to the order kept in our calculations, because (3.62) is evidently the expansion of the initial value of the small divisor.

Case 3

(3.63) $\bar{x}_{0}>x_{1}$ or $\lambda<0$

In this case re obtain

(3.64a) $\overline{-}-\bar{\phi}_{0}=\left(\bar{x}_{0}+k_{1}\right)^{-1 / 2} F\left(x_{2} \cdot k_{2}\right)$
where the modulus is
(3.64b) $\quad k_{2}=\left[x_{1} / x_{0}+x_{1}\right]^{1 / 2}$
and the amplitude is
(3.64c)

$$
x_{2}=\tan ^{-1}\left\{\left[\left(\bar{x}_{0}+x_{1}\right) /\left(\bar{x}_{0}-x_{1}\right)\right]^{1 / 2} \tan \omega\right.
$$

The nee of elliptic functions gives

$$
\begin{equation*}
=\tan ^{-1}\left\{\left[\left(\bar{x}_{0}-x_{1}\right) /\left(\bar{x}_{0}+x_{1}\right)\right]^{1 / 2} \operatorname{tn}\left[\left(\bar{x}_{0}+x_{1}\right)^{1 / 2}\left(\bar{\phi}-\bar{\phi}_{0}\right)\right]\right\} \tag{3.65}
\end{equation*}
$$

where the modulus of tn is k_{2}.

The apse angle nay assume any value in this case and the motion of the perigee is secular. For large \bar{k}_{0}, k_{2}^{2} becomes mall and we may expand $F\left(x_{2}, k_{2}\right)$. This given

$$
\begin{align*}
\left(\bar{x}_{0}+k_{1}\right)^{1 / 2}\left(\overline{4}-\bar{\varphi}_{0}\right) & =\left(1+\frac{1^{2}}{2^{2}} k_{2}^{2}+\frac{1^{2} 3^{2}}{\left.2^{2} 4^{2} k_{2}^{4}+\ldots\right) x_{2}}\right. \tag{3.66}\\
& -\frac{1}{8} k_{2}^{2} \sin 2 x_{2}-o\left(k_{2}^{k}\right)
\end{align*}
$$

Since $x_{2} \rightarrow \omega^{\circ}$ for large \bar{x}_{0} (cf. (3.64c)) this shows that the motion of the perigee is secular with small additional oscillations. In the previous discussion of the behavior of the apsidal motion we have considered only the
solution of ω_{0}. A solution using all available information to $O\left(\varepsilon^{2}\right)$
must make use of the composite expansion as obtained in (3.47).

By substitution of $i_{0 i / 2}{ }^{\circ}$ and i_{01} in (3.47), we obtain the following result which is uniformily valia to $O\left(\varepsilon^{1 / 2}\right)$:
(3.67)

$$
\frac{d \omega_{c}}{\bar{d} \bar{\varphi}}=\left(1+\epsilon^{1 / 2} \bar{\sigma}_{1}\right)\left(\bar{x}_{0}-\kappa_{1} \cos 2 \omega_{c}\right)^{1 / 2}+\varepsilon^{1 / 2}\left[\varepsilon_{0}+g_{2} \cos 2 \omega_{c}\right]
$$

Arter integration ve have

$$
\begin{equation*}
\bar{\theta}-\bar{\phi}_{0}=\int_{0}^{\omega_{c}} \frac{d \xi}{\left(1+\varepsilon^{1 / 2} g_{1}\right)\left(\bar{x}_{0}-\kappa_{1} \cos 2 \xi\right)^{1 / 2}+\varepsilon^{2 / 2}\left[g_{0}+g_{2} \cos 2 \xi\right]} \tag{3.68}
\end{equation*}
$$

The evaluation of this integral leads to elliptic functions and a highiy transcendental relation between ω_{c} and $\bar{\phi}$.

3.7 Motion of the node

Equation (3.6b) for the node can be brought to the following form:

$$
\begin{align*}
\frac{d \Omega}{d \phi} & =-\left[\frac{2}{p} u \cos ^{3} i \sin ^{2} \phi\right]-\varepsilon^{2}\left[\frac { 4 } { p } u ^ { 2 } \left(3 c u-7 c u \sin ^{2} i \sin ^{2} \phi\right.\right. \tag{3.69}\\
& \left.\left.-\frac{1}{p^{2}} \cos ^{4} i \sin ^{2} \phi\right)\right] \cos ^{3} i \sin ^{2} \phi+0\left(\varepsilon^{3}\right)
\end{align*}
$$

Applying the coaposite expensions for and i and substituting the known results ve obtain

- Note that $u_{1 / 2}$ and $i_{2 / 2}$ are zero.

$$
\begin{align*}
\frac{\alpha}{\alpha_{\phi}}= & -\varepsilon\left[\frac{2}{p^{2}} u_{0} \cos ^{3} i_{o c} \sin ^{2} \phi\right]-\varepsilon^{2}\left(\frac{2}{2} u_{2} \cos ^{3} i_{o c} \sin ^{2} \phi\right. \tag{3.70}\\
& -\frac{6}{p^{2}} u_{o} i_{1} \cos ^{2} i_{o c} \sin i_{o c} \sin ^{2} \phi+\frac{4}{p^{2}} u_{o}^{2}\left[3 c u_{o}-7 c u_{o} \sin ^{2} i_{o c} \sin ^{2}\right. \\
& \left.\left.-\frac{1}{p^{2}} \cos ^{4} i_{o c} \sin ^{2} \phi\right] \cos ^{3} i_{o c} \sin ^{2} \phi\right\}+0\left(\varepsilon^{5 / 2}\right)
\end{align*}
$$

Since ail quantities on the righthand side of (3.70) are aready anom as functions of , the nocie coula be found by straifintforwara integration. However, for the sake of simplicity and a more systematic approach that avoics the shifting of orders of masnitude due to integration of long-period terms, ve will also solve (3.70) by the two-variable expansion procedure.

We use the siou variable $\bar{\phi}=\varepsilon^{3 / 2}$ and assume the following expansion for the noce:

$$
\begin{equation*}
\Omega=\frac{\lambda}{\varepsilon^{1 / 2}} \sum_{n=0} \Omega_{n / 2}(0, \bar{\phi} ; \varepsilon) \varepsilon^{n / 2} \tag{3.71}
\end{equation*}
$$

The factor $\epsilon^{-1 / 2}$ in front of the sumation in (3.7i) is sugecsted because the leading term of the nodai velocity is of oracr ε at all inclinations, which forces us to make the leadinf. term of the node itself of order $\varepsilon^{-1 / 2}$ to insure that the derivative with respect to $\bar{\phi}$ be of order unity.

Using the same procedure as for the other variables we obtain the following equations:

$$
(3.72 a) \quad \frac{\partial \Omega_{0}}{\partial \phi}=0
$$

wich implies tnat
(3.72b) $\quad \Omega_{0}=\Omega_{0}(\bar{\phi} ; \varepsilon)$.

Again, we expand n_{0} in the form:
(3.73)

$$
\Omega_{0}(\bar{\phi} ; \varepsilon)=\sum_{n=0} \Omega_{o n / 2}(\bar{\phi}) e^{n / 2}
$$

Since the right-hand side of equation (3.70) is ofe), we obtain

$$
\begin{equation*}
\frac{\partial \Omega_{1} / 2}{\partial \phi}=0 \quad \text { and }(3.75) \quad \frac{\partial \Omega_{1}}{\partial \phi}=0 \tag{3.74}
\end{equation*}
$$

implying that

$$
\begin{equation*}
a_{1 / 2}=a_{1}=0 \tag{3.76}
\end{equation*}
$$

because the integration constants are already included in the expansion (3.73).

Collecting the terms of order ε we obtain

$$
\begin{align*}
\frac{\partial \Omega_{3 / 2}}{\partial \phi} & =-\frac{\partial \Omega_{0}}{\partial \phi}-\frac{2}{2} u_{0} \cos ^{3} i_{00} \sin ^{2} \theta=-\frac{\partial \Omega_{0}}{\partial \bar{q}}-\frac{\cos ^{5} i_{00}}{p^{4}}\left[1+e_{0} \cos \left(\phi-\omega_{c}\right)\right. \tag{3.77}\\
& \left.-\cos 2 \phi-\frac{e_{0}}{2} \cos \left(\phi-\omega_{c}\right)-\frac{e_{0}}{2} \cos \left(3 \phi-\omega_{c}\right)\right]
\end{align*}
$$

The terms depending on $\bar{\sigma}$ in (3.77) are $3 \Omega_{0} / \partial \bar{\phi}+\cos ^{5} i_{00} / p^{4}$. After substituting the expansion for Ω_{0} (the expansion for $i_{o c}$ has already been substituted in (3.77)), we require for boundedness

$$
\begin{equation*}
\frac{\partial n_{00}}{\partial \bar{\phi}}=-\frac{\cos ^{5} i_{00}}{p^{4}} \tag{3.78}
\end{equation*}
$$

The higher order terms in the expansion of Ω_{0} and $i_{o c}$ are hence shifted to the next order. Integration of (3.78) gives
(3.79) $\quad Q_{\infty 0}=-\frac{\cos ^{5} i_{00}}{p^{4}}+i_{0}$
were L_{0} is a constant depending on the initial conditions. The solution for $9_{3 / 2}$ is
(3.80)

$$
\begin{aligned}
\mathrm{Q}_{3 / 2} & =-\frac{1}{p^{4}} \cos ^{5} i_{\infty}\left[-\frac{1}{2} \sin 2 \phi+e_{0} \sin \left(\phi-\omega_{c}\right)-\frac{e_{0}}{2} \sin \left(\phi+\omega_{c}\right)\right. \\
& \left.-\frac{e_{0}}{6} \sin \left(3 \phi-\omega_{c}\right)\right]
\end{aligned}
$$

In order to make Ω_{2} bounded, we must set
(3.81)

$$
\begin{aligned}
\frac{\partial \Omega_{01 / 2}}{\partial \bar{\phi}} & =5 \frac{i_{01 / 2}}{p} \cos ^{4} i_{\infty} \sin _{\infty} i_{\infty}=-\frac{5}{p^{4} s_{1}} \cos ^{4} i_{\infty} \sin i_{\infty}\left[\bar{s}_{0}\right. \\
& \left.-\left(\bar{x}_{0}-x_{1} \cos 2 \omega_{c}\right)^{1 / 2}\right]
\end{aligned}
$$

3.73).
$p s\left(0-\omega_{c}\right)$
outing
(3.02)

$$
Q_{0 i / 2}=-\frac{j}{p^{4} S_{i}} \cos ^{4} i_{\infty} \sin i_{\infty}[\bar{\phi}-\omega]+L_{1 / 2}
$$

Where $L_{1 / 2}$ is an inter ration constant and wis given by (3.55). (3.59) or (3.65) depending on the values of \bar{x}_{0} and x_{1}.

The terms or $0\left(\varepsilon^{2}\right)$ depending on $\bar{\rho}$ oniy are: $\quad \partial \Omega_{01} / \partial \bar{\varphi}+\alpha_{0}+d_{2} \cos 2 \omega_{c}$ $4\left(5 / 2 p^{4}\right) \cos ^{3} i_{00}\left(4-5 \cos ^{2} i_{\infty}\right)\left(i_{01 / 2}^{*}\right)^{2}-\left(5 / p^{i}\right) i_{01} \cos ^{4} i_{\infty} \sin i_{\infty 0}$

The boundedness requirement on $\Omega_{5 / 2}$ implies, after substituting for $i_{01 / 2}$ and $i_{o l}$ - that

$$
\begin{equation*}
\frac{\partial \varepsilon_{01}}{\partial \overline{0}}=D_{0}+D_{1}\left(\bar{x}_{0}-x_{1} \operatorname{sns} 2 \omega_{c}\right)^{1 / 2}+D_{2} \cos 2 \omega_{c} \tag{3.83}
\end{equation*}
$$

The integration of (3.83) yields (3.84) $\quad \lambda_{01}=D_{1} \bar{\phi}+\int_{0}^{\omega_{c}} \frac{D_{0}+D_{2} \cos 2 \xi}{\left(\bar{x}_{0}-k_{1} \cos 2 \xi\right)^{1 / 2}} d \xi+L_{2}$
where L_{1} is an integration constant and the integral depends on the values of \bar{x}_{0} and x_{1}. The evaluation of this integral leads to eiliptic functions of the first and second kind and will not be exhibited here.

References

. Brouwer, D. 1959, Astron. J. 64, 9, 378.
Cole, J. D., and Kevorkian, J. 1963, "Unifomly Valid Asymptotic Approcimations for Certain Nom-iinear Differential Equations," Proceedings a the Intemational Symposium on Noa-inear niechanica and Eon-linear Differential Equations, Aug. 1961, Ed. Dy J. P. IaSalle and S. Lefschetz, (Acaderaic Presa, ifew York), p. 113.

Carfinkel, B. 1960, Astron. J. 65, 10, 624.
Gröbner, W., and Hofreiter, i. 1949, "Integraltafel," V. 1 (SpringerVerlaz, Vienne and Innsoruck).

Izsak, I. G. 1963, "On the Critical Incliration in Satellite Theory," Proceedings of the First Intercational Sysposium on the Use of Artificial Sateliites Ior Geodesy, April 196́, Ed. by G. Veis, (Horth-noliand Pub. Co., Amsteriam); p. 17.

Fiori, G. 1960, Astron. J. 65, 5, 291.
Jeffries, H. 1959, "The Earth," 4th Ed. (Cambridge Univ. Press, Camioridge), 1959.

Kaplum, S., and Lagerstron, P. A. 1957, J. Math. \& Mech. 6, 5, 585.
Kevorisian, J. 1902, "The Two-Variable Expansion Procedure for the Approximate Solution of Certain Hon-linear Differential Equations," Lecture Jotes of the 1962 Sumer Institute in Dyramical Astroncmy (Yale University), 114 p .

Iagerstran, P. A., and Kevorikian, J. 1963, J. Mécanique 2, 2, 189.
Mersman, W. A. 1962, "The Critical Inclination Problem in Satellite Orbit Theory," NASA Technical Rep. R-148, 29 p.

Struble, R. A. 1960, J. Math. Anal. Appl., 1,3 \& 4, 300.
190́1, Arch. Rational Mech. Anal., 1, 2, 87. 1962, J. Kath. \& Mech., 10, 5, 691.

Sh1, Y. Y. 1963, "The Eartin Potential for Trajectory Calculations and Analytic Stuăies," Douglas Aircraft Co., Inc. Rep. SM-420020, 19 p.

Vint1, J. 1959, J. Res. Nat. Bur. Standards Sect. B, 63B, 2, 105.

Arrendix
(Definition or Constants)
(A.1)

$$
\begin{aligned}
A_{0}= & +\frac{\cos ^{8} i_{\infty}}{2 p^{8}}\left[-\frac{17}{24}+\frac{9}{2}=-\frac{25}{40} e_{0}^{2}+\frac{27}{8} e_{0}^{2} c\right. \\
& +\left(\frac{17}{4}-54 c+\frac{27}{6} e_{0}^{2}-\frac{259}{4} e_{0}^{2} c\right) \cos ^{2} i_{\infty} \\
& \left.+\left(-\frac{85}{24}+\frac{147}{2} c-\frac{15}{10} e_{0}^{2}+\frac{557}{8} e_{0}^{2} c\right) \cos ^{4} i_{\infty}\right]
\end{aligned}
$$

(A.2)

$$
\begin{aligned}
A_{2}= & +\frac{\cos ^{8} i_{00}}{2 p^{8}} i-\frac{1}{6}-\frac{3}{2} c+\frac{5}{24} e_{0}^{2}-\frac{15}{4} e_{0}^{2} c \\
& +\left(-\frac{1}{3}+12 c-\frac{14}{3} e_{0}^{2}+42 e_{0}^{2} c\right) \cos ^{2} i_{\infty} \\
& +\left(\frac{5}{2}-\frac{21}{2} c+\frac{45}{8} e_{0}^{2}-\frac{189}{4} e_{0}^{2} c\right) \cos ^{4} i_{\infty}
\end{aligned}
$$

$$
\text { (A.3) } \begin{aligned}
B_{2}= & +\frac{\cos ^{8} i_{\infty}}{2 p^{8}} e_{0}\left[-\frac{3}{2}-\frac{3}{2} c-\frac{2}{12} e_{0}^{2}+\frac{3}{2} e_{0}^{2}\right. \\
& +\left(-\frac{1}{3}+12 c+\frac{4}{3} e_{0}^{2}-12 e_{0}^{2} c\right) \cos ^{2} i_{\infty} \\
& \left.+\left(\frac{5}{2}-\frac{21}{2} c-\frac{5}{4} e_{0}^{2}+\frac{21}{2} e_{0}^{2}\right) \cos ^{4} i_{\infty}\right]
\end{aligned}
$$

$$
\text { (A.4) } \begin{aligned}
\bar{j}_{21}= & -\frac{e_{0}}{2 p^{8}} \cos ^{7} i_{\infty}{ }^{\sin i_{\infty}}\left[-\frac{4}{3}-12 c-\frac{2}{3} e_{0}^{2}+12 e_{0}^{2} c\right. \\
& +\left(-\frac{10}{3}+120 c \cdot \frac{40}{3} e_{0}^{2}-120 e_{0}^{2} c\right) \cos ^{2} i_{\infty} \\
& \left.+\left(30-126 c-15 e_{0}^{2}+126 e_{0}^{2} c\right) \cos ^{4} i_{\infty}\right]
\end{aligned}
$$

(A.5)

$$
\begin{aligned}
B_{22}= & \frac{\cos ^{8} i_{\infty \infty}}{2 p^{8}}\left[-\frac{1}{6}-\frac{3}{2} c-\frac{1}{4} e_{0}^{2}+\frac{9}{2} e_{0}^{2} c\right. \\
& +\left(-\frac{1}{3}+12 c+4 e_{0}^{2}-36 e_{0}^{2} c\right) \cos ^{2} i_{\infty} \\
& \left.+\left(\frac{5}{2}-\frac{21}{2} c-\frac{15}{4} e_{0}^{2}+\frac{63}{2} c e_{0}^{2}\right) \cos ^{4} i_{\infty}\right]
\end{aligned}
$$

(A.6) $\quad c_{2}=\frac{1}{4} \frac{e_{0}^{2}}{p^{8}} \cos ^{9} i_{\infty} \sin i_{\infty}\left[-\frac{1}{6}+3 c+\left(\frac{5}{2}-21 e\right) \cos ^{2} i_{\infty}\right]$
(A.7) $\quad c_{21}=\frac{1}{4} \frac{e_{0}^{2}}{p^{8}} \cos ^{8} 1_{\infty 0}\left[\frac{3}{2}-27 c-\left(\frac{175}{6}-261 \tilde{c}\right) \cos ^{2} i_{\infty}\right.$

$$
\left.+(30-252 c) \cos ^{4} i_{\infty}\right]
$$

(A.B) $\quad C_{22}=\frac{1}{2} \frac{e_{0}}{p^{8}} \cos ^{9} 1_{\infty} \sin i_{\infty}\left[-\frac{1}{6}+3 c+\left(\frac{5}{2}-21 c\right) \cos ^{2} i_{\infty}\right]$
(A.9)

$$
\begin{aligned}
A_{0}^{*}= & +\frac{\cos ^{8} i_{\infty}^{*}}{2 p^{8}}\left(-\frac{23}{24}+\frac{2}{2} c-\frac{25}{48} e_{0}^{*^{2}}+\frac{27}{8} e_{0}^{*^{2}} c\right. \\
& +\left(\frac{27}{4} \dot{-} 54 c+\frac{21}{8} e_{0}^{* 2}-\frac{189}{4} e_{0}^{* 2} c\right) \cos ^{2} i_{\infty}^{*} \\
& \left.+\left(-\frac{235}{24}+\frac{147}{2} c-\frac{15}{16} e_{0}^{* 2}+\frac{567}{8} e_{0}^{* 2} c\right) \cos ^{4} i_{\infty}^{*}\right]
\end{aligned}
$$

(4.20)

$$
\begin{aligned}
A_{2}^{*}= & +\frac{\cos ^{8} 1_{\infty}^{*}}{2 p^{8}}\left[+\frac{1}{12}-\frac{3}{2} c+\frac{5}{24} e_{0}^{*^{2}}-\frac{15}{4} e_{0}^{*^{2}} c\right. \\
& +\left(-\frac{7}{3}+12 c-\frac{14}{3} e_{0}^{*^{2}}+42 e_{0}^{* 2} c\right) \cos ^{2} i_{\infty}^{*} \\
& \left.+\left(\frac{25}{4}-\frac{21}{2} c+\frac{45}{8} e_{0}^{* 2}-\frac{189}{4} e_{0}^{* 2} c\right) \cos ^{4} i_{\infty}{ }_{0}^{*}\right]
\end{aligned}
$$

(A.21)

$$
\begin{aligned}
\mathrm{B}_{2}^{*}= & +\frac{\cos ^{\bar{s}} i_{\infty}^{*}}{2 p^{8}} e_{0}^{*} 1+\frac{1}{12}-\frac{3}{2} c-\frac{1}{12} e_{0}^{*^{2}}+\frac{3}{2} e_{0}^{*^{2}} c \\
& +\left(-\frac{1}{3}+22 c+\frac{4}{3} e_{0}^{*^{2}}-12 e_{0}^{*^{2}} c\right) \cos ^{2} i_{\infty}{ }^{*} \\
& +\left(\frac{25}{4}-\frac{21}{2} c-\frac{5}{4} e_{0}^{*^{2}}+\frac{21}{2} e_{0}^{*^{2}} c\right) \cos ^{4} i_{\infty}^{*}
\end{aligned}
$$

(A.32)

$$
\begin{aligned}
z_{21}^{*}= & -\frac{e_{0}^{*}}{2 p^{8}} \cos ^{7_{1}} \sin _{\infty} i_{\infty}^{*}+\frac{2}{3}-12 c-\frac{2}{3} e_{0}^{*^{2}}+12 e_{0}^{*^{2}} c \\
& +\left(-\frac{70}{3}+120 c+\frac{40}{3} e_{0}^{* 2}-120 e_{0}^{*^{2}} c\right) \cos ^{2} i_{\infty}^{*} \\
& \left.+\left(75-120 c-15 e_{0}^{*^{2}}+120 e_{0}^{*^{2}} c\right) \cos ^{4} i_{\infty}^{*}\right]
\end{aligned}
$$

(A.13)

$$
\begin{aligned}
\mathrm{B}_{22}^{*}= & +\frac{\cos ^{8} 1_{0}{ }^{*}}{2 p^{8}}\left[\frac{1}{12}-\frac{3}{2} c-\frac{1}{4} e_{0}^{*^{2}}+\frac{9}{2} e_{0}^{*^{2}} c\right. \\
& +\left(-\frac{7}{3}+22 c+4 e_{0}^{* 2}-36 e_{0}^{*^{2}} c\right) \cos ^{2} 1_{\infty} \\
& +\left(\frac{25}{4}-\frac{21}{2} c-\frac{15}{4} e_{0}^{*^{2}}+\frac{63}{2} e_{0}^{*^{2}} c\right) \cos ^{4} 1_{\infty}
\end{aligned}
$$

(A.14) $c_{2}^{*}=+\frac{1}{4} \frac{e_{0}^{* 2}}{p^{8}} \cos ^{9} 1_{\infty}^{*} \sin 1_{\infty}^{*}\left[-\frac{1}{6}+3 c+\left(\frac{5}{2}-21 c\right) \cos ^{2} i_{\infty}^{*}\right]$
(4.25)

$$
\begin{aligned}
c_{21}^{*}= & +\frac{1}{4} \frac{e_{0}^{* 2}}{p^{8}} \cos ^{8} i_{\infty}^{*}\left[\frac{3}{2}-27 c-\left(\frac{175}{6}-261 c\right) \cos ^{2} i_{\infty}^{*}\right. \\
& \left.+(30-252 c) \cos ^{4} i_{\infty}\right]
\end{aligned}
$$

(A.16) $\quad c_{22}^{*}=+\frac{1}{2} \frac{e_{0}^{*}}{p^{8}} \cos ^{9} i_{\infty}^{*} \sin 1_{\infty}^{*}\left[-\frac{1}{6}+3 c+\left(\frac{5}{2}-21 c\right) \cos ^{2} i_{\infty}{ }^{*}\right.$;
(i.17) $S_{0}=-\frac{\cos ^{4} i_{\infty}}{2 p^{4}}\left(1-5 \cos ^{2} i_{\infty}\right)$

$$
\begin{aligned}
& \text { (4.28) } S_{1}=+\frac{\cos ^{3} i_{\infty 0}}{2 p^{4}} \sin i_{\infty}\left(2-15 \cos ^{2} i_{\infty}\right) \\
& \text { (A.19) } s_{2}=-\frac{\cos ^{2} i_{00}}{p^{4}}\left(6-83 \cos ^{2} i_{\infty 0}+90 \cos ^{4} i_{\infty}\right) \\
& \text { (A.20) } \quad \bar{S}_{0}=\frac{1}{\varepsilon^{2 / 2}}\left(-\frac{\cos ^{4} i_{c c}^{*}}{2 p^{4}}\left(1-5 \cos ^{2} i_{\infty}^{*}\right)!\right. \\
& \text { (A.21) } \bar{x}_{0}=\left(\bar{S}_{0}+S_{1} j_{1 / 2}^{*}\right)^{2}+x_{1} \cos 2 w^{*} \\
& \text { (A.22) }{ }_{1}=S_{1} C_{2}^{*}=+\frac{1}{8} \frac{e_{0}^{*^{2}}}{p^{12}} \cos ^{12} i_{\infty}^{*} \sin ^{2} i_{\infty}^{*}\left(2-15 \cos ^{2} i_{\infty}{ }^{*}\right. \text {) } \\
& x\left[-\frac{1}{6}+3 c+\left(\frac{5}{2}-21 c\right) \cos ^{2} 1_{\infty}\right] \\
& \text { (A.23) } E_{1 / 2}=\eta_{1 / 2}^{*}-\frac{B_{2}^{*}}{k_{1}}\left(\bar{S}_{0}+S_{1} j_{1 / 2}^{*}\right) \\
& \text { (A.24) } \quad E_{1}=n_{1}^{*}-\frac{\bar{S}_{0}+J_{1 / 2}{ }^{*} S_{1}}{k_{1}}\left[-\frac{\bar{S}_{0}}{S_{2}} B_{21}^{*}+E_{1} / 2_{22}^{B_{2}}\right. \\
& \left.-\frac{e_{0}^{*}}{4} \frac{\bar{s}_{0}}{p^{4}}\left(1-3 \cos ^{2} i_{\infty}^{*}\right) \cos ^{4} i_{\infty}^{*}\right] \\
& +\frac{1}{2}\left[\frac{B_{21}{ }^{*}}{S_{2}}+\frac{B_{22}^{*}}{{ }_{2} 1} B_{2}^{*}\right] \cos 2 w^{*} \\
& \left(A_{2} 25\right) \quad I_{1}=J_{1}-\frac{1}{x_{1}}\left[-c_{21}{ }^{*} \frac{S_{0}}{S_{1}}+C_{22} E_{1 / 2}\right]\left(\bar{S}_{0}+j_{1 / 2} S_{1}\right) \\
& +\frac{1}{2 S_{1}}\left[\mathrm{C}_{21}^{*}+\frac{\mathrm{C}_{22}^{*}}{\mathrm{C}_{2}^{*}} \mathrm{~B}_{2}^{*}\right] \cos 2 v^{*} \\
& \text { (A.26) } \lambda=\sin ^{2} v^{*}+\frac{\left(\bar{S}_{0}+S_{1} j_{1 / 2}\right)^{2}}{2 x_{1}}
\end{aligned}
$$

$(i .27) \quad B_{0}=\frac{S_{2}}{2 S_{2}^{2}}\left(\bar{x}_{0}+\bar{S}_{0}^{2}\right)+S_{1} \bar{I}+A_{0}$
(A.28) $\quad g_{1}=-\frac{S_{2}}{S_{1}{ }^{2}} \bar{S}_{0}+\frac{i}{1}=-c_{21} \bar{S}_{0}+c_{22} S_{2} E_{1 / 2}$
(A.29) $E_{2}=A_{2}-\frac{1}{2} i \frac{S_{2}}{S_{1}^{2}} c_{1}+c_{21}+\frac{c_{22}}{C_{2}} \bar{j}_{2}$
(A.30) $\quad \dot{a}_{0}=\frac{\cos ^{5}+c}{p^{0}}: \frac{2}{3}-\frac{9}{2} c+\frac{3}{0} e_{0}^{2}-\frac{c_{i}}{2} e_{0}^{2} c$

$$
+\left(-\frac{j}{0}+\frac{21}{2} c-\frac{5}{24} e_{0}^{2}+\frac{5}{2} e_{0}^{2} c\right) \cos ^{2} i_{\infty 0}
$$

(A.31) $\quad d_{2}=\frac{\cos ^{9} 1_{\infty}}{p^{8}} e_{0}^{2} i-\frac{2}{3}+6 c+\left(\frac{5}{4}-\frac{21}{2} c\right) \cos ^{2} i_{\infty} j$
(A.32) $D_{0}=-d_{0}-\frac{5}{2} \frac{\cos ^{3} i_{00}}{s_{1}^{2} p^{4}}\left(4-5 \cos ^{2} i_{\infty}\right)\left(\bar{\alpha}_{0}+\bar{s}_{0}^{2}\right)$

$$
+5 \frac{I_{1}}{p^{4}} \cos ^{4} i_{\infty} \sin 1_{\infty}
$$

(A.33)

$$
\begin{aligned}
D_{1}= & +5 \frac{\cos ^{3} i_{\infty 0}}{p^{4} S_{1}}\left[\left(4-5 \cos ^{2} i_{\infty}\right) \frac{\bar{S}_{0}}{S_{1}}+\frac{\cos 1_{\infty} \sin i_{\infty 0}}{c_{2}}\left(-c_{21} \frac{\bar{S}_{0}}{S_{1}}\right.\right. \\
& \left.\left.+c_{22} E_{2 / 2}\right)\right]
\end{aligned}
$$

(A.34)

$$
\begin{aligned}
D_{2}= & -a_{2}-\frac{5}{2} \frac{\cos ^{3} i_{\infty}}{s_{1} P^{4}}\left[\cos i_{\infty} 8 \ln i_{\infty}\left(C_{21}+\frac{c_{22}}{C_{2}} D_{2}^{*}\right)\right. \\
& \left.-\left(4-5 \cos ^{2} i_{\infty}\right) C_{2}\right]
\end{aligned}
$$

figure 1

[^0]: - Tinroughout this paper the omission of the upper index on a summation symbol will indicate an asymptotic expansion.

[^1]: - The upper or lover signs in the radical are to be taken when B is an even or odd multiple of \quad respectively.

[^2]: - Because $c=4 / 7$ for the earth's potential. It is interesting to note that for Vinti's (1959) potential $c=5 / 18$ (cf. Shi (1963)) which impiing $\kappa_{1}=0$ for the motion at the critical inclination.

