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A uniformly vaelid solution fer the motion of a sateilite around an oblate

planet is presented. The Twe Variable Exparnsinn Procedure as eariier

developed at Caltech was applied to obtain a sciution valid for all

inclinations including the critical, This solution is correct to ordger ¢,

vhere ¢ is a small parameter proportional to the oblateness parameter J,.

The reciprocai of the radius vector, eccentricity, perigee, inclination,

and node of the satellite orbit are given as functions of the central angle

between node and satellite. The results are based on a potential which inaludes

the second and fourth zonal harmenics. The solution for the case of critical

inclinstion is first ohtained separately and then matched with the sclution

of the noncritical case to establish & soclution uniformly valid for sii

4 x%}/
. . Ry
inclinations. [
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l. Introduction

The motion of a satellite around an oblate planet has received considerabdle
attention in the literature after the advent of artificisl satellites of the
earth. The early theories, of which Brouwer's (1§59) is the most comprehensive,
vere not valid for imitiel orbital inclinations close to the critical value

cos .1(5)'1/2= 63.8° from the equatorial plane of symmetry. The non-validity

of the solution at this angle exhibited itself by the occurrence of a divisor

vhich tended t0 zero at the critical inclination.

Later, Hori (1960) and others (cf. Garfinkel (1960), Mersman (1962}, and Izsak
{1963) using diverse approaches, studied the behavior of the solution near the
critical inclination. Though “a direct analytic comparison of the various
treatments of the critical inclination problem is almost impossible because of
the multiplicity of notations, approximations and starting points" (Mersman
{1962}, there is general sgreement about the necessity of studying an expansion
in powers of Jl/Z (where J is the small parameter measuring the oblateness
perturbations), Furthermore, at least the gualitative behavior of the motion
near the critieal inclination, a8 first describded by Hori, has been repeatedly
substantiated. This statement by Mersman quite correctly reflects the inherent
algebraic complexity of the main problem and the necessarily involved nature

of its solution. However, the basic mathematical problem that gives rise to
the singularity at the critical inclination is quite simple and was recognized
by many authors., In particular, Struble {1961) has pointed out that for
inclinations close to the critical the equations governing the slov variations
of the apse and inclination angle are coupled by virtue of & regrouping of

terms wvhich otherwise have different oriers of magnitude.

e



This pbenomenon csn be duplicated exactly in a particularly simple mode}l
equation corresponding to the forced oscillations of a system with an appropriate
saall pon-iinearity. The connection between non-linear oscillations and satellite
motions with smell pertunbations is, of course, well known since it wvas first
proposed by Laplace in his study of the motion of the moon. Therefore, in

order to fix ideas the proposed model equation is first studied in detail, and
the technigues are then directly spplied to the main problem. The aim of the
present paper is to develop the sclution both near and away from the critical
inclination in asymptotic series with respect to J. These series are uniforaly
wvalid for long times, but the primary goal is the achievement of uniform

walidity for all inclination angles as well.

The approach adopted here proceeds from the formulation proposed by Struble
{1960) and (1961). It is first shown that two distinct asymptotic expansions
{corresponding to twvo regimes of the initial inclination near and awvay from

the critical) can be constructed ané renderea uniformiy valid for long tiwes

by the tvo-variavie ex.ansion procedurs of Kevorxian (1962). It is then
demonstrated that each of the above generaiized asymptotic expansions, depensing
upon the initial inclination, indiviaually describe the motion for all times.
In addition, the two expansions matca in an overiap domain of the inclination
parameter lying betveen the critical and non-critical regimes. This matching
is in the sense of the tneory of Kapiun and Lagerstrom (1957), hence the

uniformiy valid asymptotic representation of the motion follows easily.

Furthermore, the analytic dependence of the solution on J1/2, as first suggestes

]
by Hori (1960), is Justified by the techniques of singular perturbation thecry

and the matching process.
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Tne present solution includes the second and Icurth conmal harmonics of the
earth's potential. All secular and long-period terms are included up to

5/2), while short-period terms are retained up to O{(J}. The results are

o{J
exhibited in the form of the reciprocal redius, eccentricity, perigee,
inclination, and node as functions of the central angle between the ascending
node and radius vecter. The equation for the time is not given here but will
be included im a future publiication. A detasiled comparison of the present

results with at least the work of Struble (1961) and (19£2} will also be

provided there,
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2. _Model kguation

2.1 General Discussion

in order to demonstrate the essentisl mathematical features of the main probien

and tne expansion procedures, the following model equation is first studied in

detail
Qv 2.2 v.2.1/2 2 .2, évi2.1/2
{2.1) —= + y + 2ey{l - 5cos® {y© + {201 9) = o {y¢ + (&% %cos ¢
dt at at

vhere £ << 1,

In the sbsence of the forcing function, this equation can be integrated exactly

and exhibits the following behavior in the phase-plane of y and dy/dt.

. . 2 .2,1/2 . s . . s
Whenever the radius r = [y° + 7] / in the phase-plane takes on the critical
-1 -if2 . . . . o
values rc = cos {5) , the motion reduces to simple harmonic osciliations
s

with eamplitude r_and unit frequency. For eech annular region bounded by two

consecutive values of r_, the integral curves are ovais with their axes aiigned
c

alternately parailed either to y or to dy/dt. One would thus expect that the

addition of the forcing term vwith unit frequency wili cause local resonance in

neighborhoods of the critical smplitudes L As will be shown later on in this

section, this will indeed be the cese and will give rise to the problem of the

"eritical amplituce”.

Using the two-variable method discussed by Cole and Kevorkian (1962}, {1963},

the following form of the asymptotic expansion is first assumed®

® Throughout this paper the omissicn of the upper index on a summation symbol
will indicate an asymptotic expansion.
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{2.2) ylt;e) = i yi(t,i;c)sl
i=0

vhere the ‘slow varisble t is defined by

{(2.3) t = et

as discussea by Kevorkian (1902). Thcn the governing equation for y is
o

@
(2.4) = +y =0

vhose general solution is
{2.5) yo(t,i;c) = o{te)eos[t - 8(t;e)]
The functions a{t;e) and 8{t;e) in (2.5) which will be called "integration

constents™ will be determined by requiring y, to be bounded. For the present

case we alwvays have the simp’e harmonic operator on the left-hand side of all

higher order equations. For simplicity of calculations and for tne explicit

representation of the motion of the phase angle, we will expand the "integratiown
constants™ a{t;e) and 8(%;e) in the form:
(2.6)  a(Eze) = ] (D) 8(;e) = T 8.(E)e’
i=0 i=o0 *

From (2.1) the following equation for y, cen be calculated:

2

? ’1 duo dR 2
{2.7) —3 *y, =2-—sin (t-8) - 2a_[—2 « {1 - Scos“a_}] cos (t-3)

a at ° at °

The boundedness of ¥y reguires

doo dB
(2.8) —=0 —:g = {1 - Scoszu )
at at °

Hi
0n
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TLese egualions give
(2.9) a = comst. 8 =g t+b
-] (] o o
waere bo is » constant depending on the initial condition. The solution for
:vf1 is then
{2.10) :rl(z.i;z) =g
with no loss of genersiity because the homogeneous sclution is already accounted
for in the exyonsion of o and 2 in Ty
Bovw the egqustion of ¢{ :2) for 75 is
¥y day : 2
{2.11) —2 . ¥y, = i2 —= < a sinB} sin {t-8) + a_[s © - 245 sin 2a
S 2 ~ o [+] ] 2 oo o
3t dat
dsl 2
¢+ cos B+ 25 "a -2 —} cos (t-B) - 24 s sin 2a_ cos 3{t-8)
c 1 g 2 o o o
dqt
where
dso
' s = i
{2.12) s, i 5 sin 23
By the boundecness requirement on y2 we must set
‘hl 'o
(2.13s) ——=-—5sind
at
2
43 s
1 . _D l‘. + ’
{2.13b) ;-.—'— - - % s, sin 20 ¢ 5 cos 8 + 5 ‘o,
- <1,.y-1/2 - immediatel
Since for s ~ 0 (i.e. a = cos (5) )8—b°+0(e),weseemm ately
o o
from (2.13a) that o, becomes unbounded for large values of t. Thus, the
F
expension procedure assumed in {2.2) is not uniformly valid near the critical
snplitudes,
7
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In this simpie model the cause of the difficulty is easy to discern anu remegy,

-1/2 the non-linear

As vas pointed out earlier, whenever g =g = cos-l(s)
system degenerates to simple harmonic motion with a freguency equal to that
of the forcing function. Therefore, in some neighborhcod of a, the amplitude
must incresse appreciably pefore tne npon-linear term comes into play and
destroys the resonance of the forcing function. _ue to this effect of local
resonance the forcing [unclion, whicn wouia otnervise be of order 52, now
takes on a wore importan} role, This fact is exnioited mathematically in
equations {2.3). When S, is smalli one cannot negiect tne nigner order foreing
function in soiving for Bo and a, since in tnis case the right-hana sides of

(2.8) are exclusively composed of smail terms. This fact was first pointed

out by Struble {1961} in connection with tne main problem.

In view of this, we anticipate the inportance of tne forcing funciicn and
introduce it immediately in the equations of order ¢. This means ejuations

{2.8) for a and 8 nov become

d -
(2.1k) —? = 5% sin B a8 {1 =~ Sccsdu) + = cos 8
at it 2
at

The terms of order ¢ in (2.1k4), vhich are exclusively the contributions of the
‘right-hand side of (2,1), will radically alter the behavior of o and 3 near the

critical amplitudes.

Equations (2.1k4) are Hamiltonian, hence along an integral curve

{2.15) 2H = 3a + g— sin 2a + eocosB = const.

—
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4ith the aid of {2.15), the integral curves in the a, 3 plane can vbe easily
calculated. Thne singular points are located at § = B, =¥, n=0,%1, 22, ...
and cos a = cos o, = #{1/5 * cllo)uz'. These points form an alternating

pattern of centers and saddle-points with solution curves as shown qualitatively

in Figure 1.

We observe three possible types of motion if we consider the integral curves

in vertical strips with a width of order cllz centered about any of the critical

amplitudes,

The integral curves which pass through two adjacent saddle-points for a given

value of e form tae boundaries of oval regions with a width also of 0(51/2)

inside which both a and 8 undergo bounded oscillations. For example the
1/2

motion in the neighborhood of the point 8 = 0 and a = s = cos-1 {(1/5 - €/10)

has the form

1/2 -

{(2.16) e =a_+ Clsl/2 cos [(2cas) T+ 02]
(2.17) = -hc (20 )72 s [(200 )2 % 4 )

where Cl and C2 are small constants depending on initial conditions which

allov us to linearize equations (2.1h).

The separatrix forming the above boundary corresponds to motion where a and 8

approach the value at the saddle-point asymptotically as t += In fact, by

use of {(2.15) it is easy to show that the separatrix around the point 8 = O

® The upper or lover signs in the radical are to be taken vhen B is an even
or odd multiple of x respectively.

N
et

b

b i

A bl S L e e s

B pornion i 8 et e



ﬁ el

i/2 for 0 < a_ < /2, intersects the a axis at a

and o_ = cos-l(I/S - €/10)

distance (€/2)112 cc,s"l(s)"'l/2 + 0(e) from the singular point. Finally, the

motion just outside the oscillatory regions is characterized by the fact that
a undergoes bounaed oscillations, while 8 has a secular molion superimposed
on its oscillations. In 8ll three of the above moticns the characteristic
frequency is 0(:3/2) in the natural time variable whereas the amplitudes of
oscillstion are 0(:1/2) {ef. equations (2.16) and {2.17)). This immediately
suggests that the slov time scale appropriate for motion near the critical
amplitudes is t = eB/Zt, and that one must seek an expansicn for y in powers

of 51/2.

As for the motion away from the critical amplitudes, we-note from (2.8) and
{2.13) that o oscillates with amplitude and frequency of order e, and that the

oscillatory as well as secular components of 8 behave similarly,

The above intuitive construction will next be analyzed systematically by the
use of two different expansions and their roles established in terms of all

possible initisl conditions.

2.2 Outer expansion

In order to account for the most general form of initial conditions, ve

represent the motion avay from the critical amplitude by an expansion in povers

1/2
of € / s Called the outer expansion:

(2.18) vit;e) = Yy, (t,t;e) 172
, 120 if2

i

10

o gy
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As before the leading term of (2.18) is

{2.19) yo(t,;.;e) = a(;;c) cos [t - B(t;e)] g
&
:
vhere we set 3
(2.20) alfse) = {ci/.‘,(i)s‘/"' (2.21)  8lize) = J s./z(i)ei’z
i=0 i=o0
It is then easy to showv that Y300 =8 = Y3/2 = (0 after having defined the *
@ /00 By /2 by the following boundedness requirements:
(2.22) —2=0 (2.23) —2=-(1-5cos%a ) =8
dat at [+ [« :
da as 3
(2.2h) 2., (2.25) 12 . ‘s, /5 = =5(sin 20 )a,,
at ai o o'%1/2
dal L
{2.26} —_= 5 sin B
at
dasg 8
~t i 2 1 ' =2 2
{2.27) = =3s, E-uoso sin 20 + 5 cos B + 5 'a, + -3 % /0
vhere ;
|
dzso %
,o" = 5= ~10 cos 2u° ‘
do :

Note that trigonometric functions with 8 as argument are not expanded to avoid
trivial non-uniformities as the expansion of 8 in (2.21) need not involve

bounded functions. It is only the phase velocity dg/dt that must be bounded.

n
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The solutions of the above equations are:

{2.28) s = const. = & {2.29) 8, =8 t+ bQ
and
= 1 +
ang
o ' ’ 2
= _ .5 s _'a, s 'a, .
(2.32) %1 250 [1~ 51/2 s _if2 + gf 05 */2) + ...i{cos 3 - cos b) + a,
*o o
and equation {2.27) reduces to
s ‘a s 'a
(2.33) ——ul‘-'is2-S“osoSin2°o+%°°ss-—2;-g{l_cl/2%}-/_2_
° 4t 20 ¥ o o
2 -
s 'a s 2
c_1/2 _ . e
+ ef 5 ). + ...]{cos 8 = cos b} + 5,'8; Y58,

if the initial conditions are given as

e 1/
(2.3k) a=b=b +c 2b1/2*5b1+

a=8a= ao + 51/23112 + ‘nl * e

at t = 0,

Equation (2,32) for a exhibits the non-uniformity of the expansion near 5, ° 0.

Note that u1/2 would be identically zero if the initiml amplitude did not contain

& term proportional to 5112.
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2.3 Inner expansion

As mentioned previocusly, the outer expansion fails to be wvalid as so + 0.
We now seek a solution which is valid and does not become unbounded at the
critical emplitudes. This expansion vill be called the "inner expansion”.

We let {cf. discussion after Fig. 1)

{2.35) s, = 51/2 ;;

snd assume the folloving expansion for y

- - .
(2.36)  yltie) = §y, " (4,800t
i=0
where a newv slov variable
(2.37) T=e32 - 4/2;
*

has been chosen. The equation for Yo is again

2 *

3 yo .
{2.38) 5= *y, =0

3t

vhose general solution can be written in the form:

(2.39) 70'(t.;35) = a.(z}c) cos [t - 8‘(€}c)]

. - »
Ve also expand the slowly varying functions a (t;e) and 8 {t;c) in the following

form in order to mccount for the homogeneous solutions of all higher orders.

1/2 8 (Tie) = | Bi/;(?)ci”‘?

. - PR
2.ko se) = a, ;. (t)
( ) a (tie) 1§gu1/2 € i=0

R T TR
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Substitution of the above expansions into (2.1) and the requirement that the

’i,; e ded gives the following ordinary differential equations for the

. s
- a8 »
dno =0 L =xg g *
{2.51) i ot 172
dn ® .
(2.h2a) 12 .2 ging
dat
-
ag s " 2
1/2 - [ ] o L 1 [ ]
(2.*25) d{ =8 ‘ul 4'—5-{&1/2 ) + > cos §
da . .
a
(2.43s) L -2 ging®
at
L * . s« 8 %3 5 = *
n O 2 - .
{2.430) = ’o'°3/2 50,50 tgT (°1/2 ) - 2% 5, sin 2a

dt

with the additional results thst

(2.44) Yz T Tty T <0

and that only in ys /2 do we heve higher harmonics in the fast variable.
*

We note that equations (2.k2) are precisely the equations one would obtain in

the inpner limit from (2.1hk). Equations.(2.41-2.43) can be solved successively

»
for the °i /2 and the results are summarized below.
{2.452) o const, = a *

o °

1/2
. 1 - - s -
{2.450) @/ = K + :—: [lL'l2 + Ka(cos 8 -cosb }]
c

E .
{(2.k5¢) “1' = - _-_—° [Elz + Ez(cos 8" - cos b.)]
K

2

1/2

» P a
- {cos B - cos b )/250' +8

——
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where
- - -2 ~2 RN - __ 2%,
(2.06) ‘o = - 'o"a. ‘1 = (-o +s ‘1/2) ‘2 s s,
and the initial conditions st t = 0
» » L 3
(2.57) -ﬂ2-=ai,2 g =v

have been imposed.

2

* i i s to gquadratures.
Uiththeuilz sodgfxnadthe-ulntlmforthelilz reduce g
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2.4 Matching of solutions and composite expansion

In the standard singular perturbation problem in which two limit process

expansions can be derived in their respective domains, either one or both

R R i et

of these expansions is defined incompletely prior to the matching (cf. Kaplun
and Lagerstrom {(1957)). PFor example, the initial conditions for the inner
solution would depend upon thae values taken on by the outer solution in the
inner regiom if the motion spans both regimes {c¢f, Lagerstrom snd Kevorkian
(1963)}. 1In this case, the matching vill define the motion in the inner region
and the bebavior of the two limit-process expansions in their common overlap
domain will provide the basis for deriving a composite expansion vwhich is

uniformly valid everywhere.

" A R i R S

In the present example, as wvell as in the main problem, the motion depending
upon the initial condition on o lies for all times in either the outer or
inner regions. Furthermore, the parsneter which establishes the appropriate
expansion does not vary in order of magnitude with time., The purpose of
matching is then tvo-fold. Pirst, the direct matching of the two expansions
vill prove the existence of a common overlap domain and rule out the possibility
of an even third limit-process expansion for some vailue of u such that

5 = 0(:"). 1 <y < 1/2. Secondly, the matching will provide the necessary
information for obtaining a representation of the motion for all values of

L in the above order interval once the behaviors at the end-points of this
order interval have been calculated. General principles of matching are
discussed by Kaplun and Lagerstrom (1957). For the present examples, as well
as for the main problem, it is sufficient to show that the inner solution for

large values of -;o agrees with the inner limit of the outer expension. In
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this event the derivation of a composite expansion which is uniforaly walic
for all L in the order interval ord :1/2 £ ord s < ord 1 becames particulariy

straightforvaerd.

. -
The matching betveen a and a is very simple. If we revrite ¢ in terms of

outer variables and expand for ;0 -+ =  we obtain

. = 1/2 o . 3/2, . _*® 1/2 o
{2.k8) a =a +teTm,, +ea o+ o{e”' <) = a +e a,, e
»*
€ %o ( * - .) 1 3/2 sot - ) ] ( L] [
-Eso cos 8 -cos b +55 (;;—uo -1 8 /2 cos 3 -cosb )
=
€ so' b ’o' » » hd 1 ‘o Zb'
-—-2-(;-—-00 - 1) [-,-—*é-allz(coss "°°'b)’7::—2"(°°°
o o
- 2
- 2co8B8 cos b. + %— + %— cos 23.)] +* 0(:5’2)

From the outer expansion we have

- 1/2 3/2, _ 1/2
(2.k9) a=a +¢ Gy ot e+ o{e°) = B, + € ‘o, 4 ea;
2 2
€a s ' s '“a
-=2n cllZ : ‘]7/2 + e -2 21/2 + ...] {cos B - cos b) + 0(9:5,2)
° () s,

By comparing equations (2.48) and (2,49) we see that the inner expansion contains
the outer expansion explicitly to order 0:2. Note that in the overlsp domain
ve have 8/ = ai/;. In fact, all terms in the cuter expansion to order ez
are contained in uo. + 51,201/2.. The outer expansion of ul. is entirely of

higher order. Thus, the composite expansion vhich is uniformly valid to oe)

everyvhere is:

(2.50) a, = ao. + clizullz + :ul.
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In this matching, ve have assumed that both 8 and 3 are matched. This will
be shown in the subsequent discussion. For simplicity, we will discuss the

- .
matching between d3/dt and d8 /dt instead.

To summarize, we have already obtained

43 _ 1/2 1 2 5 2
(2, 1 — + ¥ = A 3
51} = s, ‘¢ S, 51/2 + c(2 5, i %5 5, Sip 230
1 so“ 2 3/2
+ - * —
5 cos B + fo a5, )} + o(e”'7)
and
‘1' - " 1/2 ' » 1 - 5"
a3 *.2
2. —— S -+ * ] — .—9—-
(2.52) = s 5, 01/0 * € [so @, +5cos 8 +— (“1/2 171 + ole)

e,
We note that the inner expansion of (2.52) for d3 /dt contains all the terms
that appear in the outer expansion (2.51) with the exception of the two terms
- %-:u 2s gin 2no end % esoz. This is consistent, because when tne above
terms are expressed in terms of the inner parameter g;, they become of order
3/2 2 . - - .
€ and €° respectively. Thus, they should appear in the expressions for
L e -
dBl /4t and dEBlaldt respectively. The first term does appear in the

o —
expression (2.43b) for dBl /dt and one would recover the second term if

[ .
d83/2 /dt were evaluated.

* 1'2
Conversely, many terms in the inner expansion, e.g. so'ul and sc"'(nl,,2 ¥°/2,

are of orders higher than we considered in the outer expansion and will aprzar

in the corresponding higher order terms. Having carried out the calculations

to the present order we can easily derive the following composite expansion

for dBc/dz which is uniformly valid to order ¢Z for all 5,
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L, A e ot B

as . T . s« S s 2
c_ - ' /2, 1 o -
{2.53) —d; 5o + 5, ul/? + g {sc 3 + > cos B -lr-—--2 “‘1,2 } 3
2 2
_2 8 = & =2
t z(no ) s, sin 20+ =5 s/

In deriving {2.53) we have used the customary construction of adains the Izner
and outer representations f{or da/dt and subtraecting those terms which are
common to both expansions in the intermediate region. These terms are iLe
two higher order terms appearing at the end of (2.53). Thus, to order

B e -
:1/2 the inner expansion d8 /dt is itself uniformly valid for all 5. It

is only in deriving an expression valid to orders higher than 51,2 that one

needs consideration of terms contributed by the outer expansion.

Finally, the solution of (2.1) for y which is uniformly valid to O(e) for

all s_is
o]

1/2 .

a 3/2}
1/2

{2.54) y(t,e) = (mo. + + 501') cos [t - 8c(t;s)] + O{e

The behavior of the amplitude and phase to 0(51/2) was discussed eariier inm
connection with {2.14). The higher order terms will not siter the generai
qualitative nature of the sclution. The detailed and systematic develo=ent
of the expansions for a and 8 was carried out here to serve as a guideiine ior
the study of the main problem for which there is no a priori knowledge of tze
particular higher order terms which cause local resonesnce. Hence cne mist
rely on a more formal construction analegous to the process used in sectioas

2-2-2.“-
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3. The Hain Problem

Once a suitable choice of variables is made, the motiom of s ssteilite sround

an oblate pianet recuces in principle i0 the solution of a problem in non-linear

osciilations analogous to the model discussed in Section 2. Of course, instead

of the two siowly varying functions o and b, we now have six sloviy varying

orbitei elements. However, it will be shown tnat the main probviea hinges on

solving the coupled equaiions for the inclination and apse which will be the

enalogues of a and 8, and that the remainder of the eiements will then be

given by quadratures.

3.1 Formulation of the problem, coordinate systeam

Consider an inertial frame with origin at the center of an oblate planet

having & radius R in the equatorial plane of symmetry.
1/2

by the radius R and the time by (RBIGH)

We normslize distances

« where G is the universal gravitational

constant and M is the mass of the planet, The dimensionless equation of motion

for a satellite is then

(3.1) =—>=grad U

vhere ; i{s the dimensionless distance vector from the origin and the potential

U has the folloving form in spherical polar coordinates with respect to the

polar axis of symmetry:

+ - (1-3 cos20) +
3r

" |

(3.2) U=

vhere 6 is the polar angle.

2 x >
E—c—(35c056-30cos6+3)+0(5

5r

5

3,

2

o i e SR
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It has been agsumed that the planet is an ellipsoid of revolution ana for
the earth the constants ¢ and ¢ are approximately {cf. Jeffries {1959) and

Shi {1963))
c=J=1.623x 1073 c = T

In the conventional spherical polar coordinsates:

(3.3a) x =r cos ¢ sin 6
{3.3b) ¥y =T sin ¢ sin ©
(3.3¢c) z =71 cos 6

vhere

{3.34) x = (x,y,2), i;l =r

Equation (3.1) for any potential U has the following component form:

L (2 gine 3¢y = U

(3.4a) at (7 10 50 =50
2

4 (248 2 . 4y, _ 3U
(3.kb) = (r ) - T sin 6 cose G =38

2 .2 .
(3.4¢c) -d—?:- -r (g—::') - r sin%® (‘:%) = ‘%%

dat

Since the satellite can be considered to move in an instantaneous plane defined
by the distance and velocity vectors, one may also define the motion by the
folloving variables proposed by Struble (1960} and (1961) (cf. Fig. 2 for the

geometry).
i = angle betveen instantaneous orbital and equatorial planes

2 = angle in the equatorial plane betveen some fixed direction,
say x pointing towards the vernal equinox, and the ascending
node

the radius

L}
L]

L
]

angle between the ascending node and the distance vector.
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Struble {1960} has shown that eguations {3.h) trascsform to the following

fifth-order system after elimination of the time.¥

au
dn I
{3.5a) 3~ 3 3 2
U cos”i cos 8 "3 . cos ¢ 3U
= ® =+ tem i ——1]
cos i . 2. . 1] sin 0 Jdy
P sin i sin 6
. - cos3i cosﬁ{ﬁf:* tanis-?i—?-g—u-}
(3.5b) £ - 52 9 39
* de¢ 22 2 -84 cos & auU
ru s*nlsme'&coszcosu;-_—!—tmx — —]
ad sin & dy¢
. sinzi cos3i cos ¢ (#o tanig.ls—i‘—‘tj-
(3 5c) gl_z - o8 sin § dvy
. ae Z 1?1 o OO | cos o 30,
pu 51n13m5+cu1c05b{36*tan1sinaa*,
25 °
2 5, Gu.d d, ui"“z‘:%
da 2 ,du dd da ét’ _ cos i
(3.5d) d—z-;(a—‘-) 7y = - 2
¢ dt (E%)

vhere p is the component of angular mosentum aiong the polar axis and is

defined by
d
(3.5e) p= 2 sin® ;1%
=1
(3-5f) w= T

In equation (3.5d) %% and 0 are defined by

2 3.
d¢ u cos”i cos 8 U ____9_
(3055) dt = p + . 2. . [36 ln ]
cos i p sin"i sin @

® Hote that Struble (1960) defines the node in the opposite sense.

e T
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{3.5h) cos 6 = sin i sin ¢

If we nov use (3.2) for U and retain terms up to 0(:2) only, (3.5) simplify to

(3.6a) =0
(3.60) aa - 2ru cosBi c0526 {1o2ccu2(7c0529 - 3)1
d¢ p2 sinzi + 2en cosui c0529 {1 - 2c:u2(7c0528 - 3)]
(3.6¢c) di _ __= 2eu sinzi cos3i cos ¢ cos 6 f1 - 2c:u2(7c0526 - 3)}]
¢ dé 2 . 2. k. 2 2 2 B
P sin"i + 2cu cos i cos“8 {1 - 2ceu”{Tcos"8 - 3}]
du.d de
(3.64) f‘_*.-?.(ﬁ‘.)z...i‘?_‘iL(_di)_:___lz_“s___
* d"2 u ‘de d¢ de.2 2
it (I%) cos i
e cuz(l - 3c0529) + cczuk(35cosh9 - 30::0526 + 3) ., uh
2
49
(dt)
dé . . . U
where d¢ is given b . th — = Q.
at -4 y (3.5g) vi 3

According to (3.6a) p is a constant, a consequence of the independence of U
on y. Furthermore, equation {3.6b) for the node is uncoupled from {3.6c) sand

(3.6d) and can hence be solved independentiy once u and i have been determined.

Making use of the identities (3.5g) and (3.5h) and retaining terms up to

0(c?) in (3.6c) and (3.64) yields:

i 2
(3.7a) % =- = cos3i sin 1 sin 2¢ + 2¢2 e cos3i sin i [35 cos*i sin%
p p P

- 3cu + Tcu sinzi sin2¢] sin 24 + 0(:3)

e s i i e e ‘mﬂ“
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ﬁiﬂeé

dzu coszi lmz b 2 u ,du 2 2
(3.70) —=+u= + e[—5—cos 1 sin“¢ + = (5=) cos"i(1l - 3cos"i)sin 2¢
2 2 2 2 ‘3¢
d¢ P ? P '
2 2
& k, .2
-2 2 cos i sin® + i coszi(l - 3$in2i sinzo) P cossi sin2¢}
2 "dé 2 1
P P P
2 coahi 3 2 3ccs}" 2 2 2
+ £ {-k—-"a—u sin¢{—?lsiné—Zuc(‘j,-'{sinisin:ﬂ)
P ‘ P
_guogw 20 0085 sine sinze - 2 ul du {~ 3sin%i cosi
Tp as n¢ s ¢-—cpzd¢-— in"ic

+ 7 sinhi coszi sin2¢ + 6coshi - 28coski sinzi sinzﬂ sin2¢

2
+ 2 9—;—% cossi (3coszi - 1) sin2¢ sin2¢ + 4 E-;‘— (%) cosgi sinhsg
P
uh 2 k k L 2. .2
+c < cos"i {35sin i sin ¢ - 30sin i sin ¢ + 3}
k P

k ‘—‘: ccssi sin2¢ {1
P

It is mentioned in passing that Struble (1961) chose a modified variable

snalogous to ¢ in order to eliminate certain non-uniformities in the solution.

With the present approach this is

changes are automatically sccounted for by the two-variable procegure.

2cu (3 - 7sin21 sin2¢))] + ole

2 2
12¢ 3-5 (ﬁl"-) coski sin2¢ (3 - 7sin21 sin2¢)

. k., .
- 3sinzi sineo) + h 2-5- cossi sin2¢ {}-5_- cos i sxa2¢

P

3

unnecessary, since all the required scale

P
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3.2 Outer expensionm

The main problem to vhich we bave previously referred is the sclution of
equations (3.7a) and {3.7b}. Since coszilpz is constant to order unity, we

see from (3.7b) thet this problem reduces to solving the motiom of an oscillator
with small nop-linearitiss and a weak coupling because i is constant to order
unity. The soaevhat iengtsy nature of the perturbationm terns in {3.7D) cces
not alter tane Tact tmat the system in question is gualitativeiy enalogous to
the model equaticn studieg ixn Jection 2. Wwe therefore proceed ss in Section 2.2

by assuming tne following expansions for i and u:

(3.80)  ilese) = ] i (e.dicic™?
=0

G.8)  ulese) = Ju fo,dic)-*/?
=0

vhere $, analogous to tbe slov time variable, is defined by
(3.8¢c) o =ce

Substitution of (3.8} imto (3.7} gives to order unity

~3i°
(3.9e) 30 - °

'3211 coszio
(3.90) —Ztu = 5

% -y
whose general solution is

(3.208) i =i (e:¢)

2.
cos i
(]

(3.10b) w1+ e(¢;c) cos[s - wl$;e)])

4

aiba, ;M&ﬁ-;mvﬁ;%

.
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In {3.10b) the two "constaats of integration™ have been expressed in terms of

the conventional Keplerian elements,

e = eccentricity
» = apse angle measured in the counterclockvise sense from the

ascending node to perigee in the instantaneous orbital plane.
4s belore wve assume ia’ e and w have the following expressions

: 7T, n/2
{3.11a} 10(015) ) i /2(¢)£

n=0

(3.11)  e(d3e) = J e, L1622
n=0

-y n/2
(3-nc) »(¢,£) - nzoﬂnla(;)c

in order to account for the homogeneous solutions of the higher order terms

in i and u. It is easy to see Lhat since terms of 0(51/2) are sbsent in (3.7},

11/2 U T 0. The following equations for il and u, can then be derived.

3'1 dioo 1 5 ( S
{3.12a) %% ——;—' - ;E- cos’i_ sini sin24{1 - e cos(¢ - w

i 2e° d”t:: 2 ®o 6 2. ) ( )
{3.12b) 3.2 tu = [--p—z-—-;:-cos ioo --gcos i {1 ~ Scos io ] cos{¢ ~ w

e e
+ -2—2; coszi —2 gin(¢ - w) ~ —3 cossxoo sin%i [cosZo + —3- cos(3¢ - w)l

P °° 43
2 2
cossi 1 e eo
—T— (--—+ c051 )[l+-2—+—2—-c052(¢-w)]
2
cos 1 e

{1+ ——-)cosZg + eocos(3o - w)

—-—6-——(3- Tecos i

i

SERE N




- |

i T o

2
2 e e

€ 8
+ —{—’- cos{k¢p - 2u) + —-E— cosZu] - iz cos ioo {1 - cos2s - 39- cos{3¢ = w}]

e cossioo 2 eo eo
-2 (1 - 3005 )}~ cos(3¢ - w) - 5— cos(lig - 2u) + == cos2,]
2 00 2 2
P
2 B
e~ cos i 1 1
-2 —— 22 [1 - co52(¢ - w} - cos2¢ + > cos{h¢ - 20) + 3 co52w]

2 6
P

In order that il and ul be bounded we nust set

di
00

{3.13a) =9

dé
(3.13b) -2 =

'S
dmo cos 100 P
{3.13¢c) —_— {1 ~ Scos ioo) =8
dé 2p

o

Note the similarity of (.3.13a) and (3.13¢) to (2.22) and (2.23) establishing
the analogy between o and 8 of the model equation with i and w respectively

for the main problem

Thus, the elements to first order become
- h = . i = = - = S *
(3.14) e, = const i, =J, = const w g o * Yoo

vhere voo is a constant depending upon the initial conditions.

Equations (3.12) can now be solved to give

e
(3.15a) il = -2—;7‘- c:c:ssioo sinioo [cos2é + eocos(¢ + w) + -—g cos(3¢ - w)]
6. 2
cos'i_ > e N
(3.15b) w, = [-1 + 3cos ig - -3-(1 - 5cos ioo)

f

1




(36 - u);

€os2y]

i i o R

Rt

2 2
e e .
o 2 1.2 o .5_2 .2 |
+ - - {= - — i :
3 {1 - 3cos i”) coslw (3 sin i 3 +ce, sin }cos2e
2 f

e e
+-2- 9cos21°°r cos2(4 - w) - 33 (5 - lleoszioo) con{3s — u)

2
e

- 3= (1 - 3cos”t_ ) con(bs - 2u)]

To 0(:31’ 2} all the forcing terms on the right-hand sides of the equations for

must be removed for boundedness, giving

U372
diize aey/2 _ derjo .
(3.16) —_—=0 ===0 ~===5i,/
de de dé
cl“s°
S = s B = 1y 25 aas
n n
ai_ .

vhich implies that

{3.17) iollz = 31/2 = constant e /2 = constant “ /o = SIJI.IZ. + ¥ /70

vhere vy /20 is a constant depending on the initiel condition.

The requirement that 12 and uz be bounded provides the folloving equations for

3

101. 1° and e:

ai
(3.182) ?1 = ¢, sin 2

de

[: ™)

2 -1g i 2 2w
(3.18vb) = =3 52(101/2) +5.1, A ¢ A, cos

del
{3.18¢) —== B, sin 2

d¢

oty oy e



The solutions of (3.18) subject to the iu:tial conditions
(3.19) “=w e =n S
at t = are

c

2
{3.20a) i, =3 45— {co52v - cos2u)
ol 1 2S°
5
{3.20pb) e, = , *3x {cos2v ~ coslw)
-
C
= 2 2
(3.20c) = =585y, +5,03 4 25, (cos2w - cos2s)] + A_ + A, cos2w

The non-uniformities of the cuter solution near So = 0 are exhibited ebove and
sre a consequence of the non-validity of the expansions sssumed in (3.8} near

the critical inclination.

3.3 Inner expansion

As shown in Section 2, the expansion procedure for inclinations close to the

critical value should be of the form

(3.21a) u(eze) = } un/;(e.;;c)e“!z

n=0
(3.218)  ilee) = J i, "(e.03e)e™2

. N n:olnlz $:9;:€)e
shere

{3.21c) = 9=

® Henceforth all constants not defined in the text will be found in the
Appendix with no additional reference,

[ —

rpmemirmm e A oo



bve and

near

> the

S

PEPEPREPSSORSRIES S .

and we are interested in the case where

(3.214) s = 51/ 2§o

o » Vith 5 = o(1)

Upon substitution of {3.21) into {3.7) we obtaia the following eguatioms for

the leading terms:

2 @ 2. *
] ug s Cosi
{3.22a) +u =
2
30 ] p2
.
aio
{3.22p) Yol 0

vhose general solution is of the form:

A : * , % l :
{3.23a; i =1 (e3¢} ;
2_ *
. COS i _ .
{3.23b) u, o= -——7?i1— {1+ e*(¢,:) cos{¢ - w (¢;e)]
P

we also expand the elements of the inner soiution in the form:

(3.24a) io'(I;c) = 1 ion/;(?)en/z

n=0

- T # — nf2
(3.2kp) e (¢;¢e) = n£0e°’2 (¢)e
- ® _ n/2
{3.2k4¢) w (e3e) = Z © /o (e
=0

Since the homogeneous solution to 0(51/2) is already accounted for by the

. - s ~
expansion of the elements, ve find v /o = il/2 = 0 and can derive the

following equations for the terms of O(e).

N
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2 = .
? e
(3.25e) n; + u; 5 - lz cossioo' sinziooicoszo + --;—- cos{3¢ - ...')]
% P
6. * ) 7
00 i .12 * %o o -
* € (-:5 +2cosioo){1+—-2——+ > cos2{$ - w )]
»
6, * br’]
co8 i e 'Y
¢ =3~ 1coszi°°')[(1 + ——)cos2e + e  cos(3¢ - w)
P
2 e -2
L ]
+ oh cos{k¢ ~ Zu') + —E——cosa:] - Z_g cosaioo [1 ~ cos2¢
P
L - 6. -
e e cos i
-—%-cosuo -u)] -2 3 90 (1 - 3cos’i l'){- cos(3¢ - )
oo
2p
[ ] E 3 '2
o 5 d ®o * ®s s, * »
-—z-cos( ¢ - 2u) 0-2-—-:0320 } ——;gcoa ioo [1 - cos2(¢ - w )
- cos2p + % cos(ky - 2u') * -;- couZm']
-
( i 11 5. . L . . .
3.25b) 30 - - w oS iy, sin i sin24[1 + e, cos{ep - w )}

P

There are no terms proportional to sin ¢ or cos ¢ in {3.25a) and no terms

which depend on ¢ in {3.25b),80 {3.25) can be solved directly to yield

L J
] e 1 S5 % o * . . :Q_ »
{3.264) i 1 Zpk cos’i  sin i [cos2¢ + e, cos(d + w ) + 3 cos(3¢ - w )]
cossi * 2

s 00 2, + % 2. *

{3.26b) u, = 2p6 [-1 + 3cos i =3 (1 - Seos™i__ )
L4 :
c 2, ® eo

*
+ —i’-— (1 - 3cos2i°° ) coszu. - (% sin ioo -3

o s




‘.’{"’ ' PR
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“ —
2 2 * e
] ‘4 % e, sin®i } cos2¢ + -%-— {1 - 9coszioo.) cos2(¢ - u.)
. .2
®o 2, * i % 2. * -
-—-1-5(5-11:08 ie ) cos(3¢ - w ) ——1—2—-(1-3cosi°°)cos(h0-au 3]

Since we are only interested in obteining a solution correct to 0(c), ve

only give the boundedness conditions for the higher order terms.

- [ 2
Requiring u 3/2 end i 3/2 to be bounded gives

» - L
di de . )
(za)  —2-=0  (3.27) S 29  (3.27¢) & =5 +5i
3t a [ 1701/2

and this jmplies
28 [ L J »
(3.28) 1o = constant = J e, = constant = a,

» ]
The boundedness of u, and 12 fequires

ai
(3.200) =232 - c; sin 20 .

a¢
del 2‘ -
(3.29b) —-L—_ =B_ sin 2w
de
dw ®
" {3.29¢) 1/2 =%s(i ')051 .+A.+A.c032u.

170} (] 2

- -
and i i ded ve must set
nally in order to make Ug /o and 15/2 boun

-

ai .

(3. ol = = » L o in %
302) 0 (Cpy dorsz * S22 aj2 ) &7
a * e * coshi *
e L ] L ]
1 L [ ] L 2 o - o0 - 2. .

(3.300) -—d—_‘_— = (B, €172 Bop €172 = 5, - 1 - 3cos’i }] sin 2w




3.8 Solutics of tre inner ecustions

From equations {(3.27c snd {3.29a) we obtain

. - c - . &'
al sin
(3.31) afz .2
o S0 * sllollz

If the initisl conditioms are given as

(3- ﬁ) U.

]
<
-

]

[ ™
(1]

L]

3

at t = 1, equation {3.31) has the solution

s 3 _ e 1/2 _
{(3.33) i/ = El [(to - «; cos 2w ) R SOJ
which upon substitution into (3.27¢) gives
" 1/2

(3.3%)

= (:o - cos2u')

By uwse of equation {3.3k) and equation (3.29b) we now find

. B, _ . 1/2
(3.35) w2 T (x, - x) cos2s ) +E

Similarly, from eguation (3.30a} we calculate

. = _1 5 . - #1/2 1
{3.36) iol = ;—; {- 021 3;- + C‘,)_,2 51/2] (<° - < coslw ) T= 251 [c
c ®
2 .. .
+ —c—-;Bz s coslm + Il
2
Equation (3.300) can pext be integrated to
- e
1/2 S e S
- -— - o * * [*} o
= - - — = - — —— {1
(3.30) & “leg-mpcos2) -5 8y *Eplp T Th o ¢
B ° 3 *B *
2 " s = 1 " 22 "2 .
- 3cos L3 Jcos io - —-—2-{ s * "2 Jecos2w + E,

*
21
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The solution of the apsidal motion will be considered in Section 3.6.
3.5 Matching and composite expansions
The problem of matching is essentially the same as the case discussed in
Section 2 for the model equation. It must be remembered that in the overiap
domain, the initial copditions ere the same for both inner and outer expansions;
thus
( ) . = 3 ® l L] % L]
= = = = = = =
3.38 100 100 JOO Jo . 31) Jn’ eO eO' ﬂn ﬂns v
One can then calculste the following relations between the constants appearing
in the inner and outer expansions:
LA 1.2
{3.39a) Ao = Ao -3 So
a So coshioo 2
{3.39D) A2 = Az -3 ——;‘——— {1 - 3cos loo)
( - So cos“ioo >
3. = - 1l - !
. 3.39¢) 82 BE T % ph {1 - 3cos 100)
21 { .
30 d =
39d) c, c,
The matching between e and e‘ can easily be realized by finding the outer
» » *
expansion of e + cllze_ + ce. . Tnis is simply
o i/2 1 «
. i/2 . . - 1/2 d * B2 { osZu'
(3.40) e, +¢ € /2 +ce, =n + e Ny +en, - € 250 c
. &
cos 1 5.
_ cosz‘r’) _ 550 :T_‘B.‘?—(l - 3cos 100) + 0(e
P

3/2)

B, AR



The lsst term of O{e} in equation {3.40) arises from the outer expansion of

L * *
Thus, e+ cllael /2 almost contain every term in the outer expansion

€e
o]

1 -
-
and the outer expansion of cey is mostly of higher order.

By comparing equation (3.40} with the eguation (3.20b), we note that in sddition
to matching directly, the inner expansion contains the outer. It then follows
that the composite expansion for e which is uniformly valid to 0{e} for all i

is
{3.k1) e e +¢ ‘e + €e

° .
The matching between i and i proceeds in s similar way. The outer expansion

* 1/2. =
of :lm +e7 0 is
=
c
* 1/2, > » 1/2 * 2 d 3/2,
{3.k2) | i, *¢ igpe = dg * € Ny tE 35, {cos2w - cos2w) + O{e”' )
Compsrison of eguation (3.2} with equetion {3.20a) shows that the inner
expansion agein contsins the outer with the additional result that the outer
.
. expansion of iol is 0(:3/2). Thus, the composite expansion for i is
(3.53) T AT i T
* oc 0o € ol/2 €lo1
y ]
The above statements for e and i hold provided that w and w sre matched,
this will be considered next.
From equations {3.13c), {3.16}, and (3.18b), we have
duw 1/2 i 2 3/2
Sk -—= + = 1
(3.44) ~ = S, v €Sy s el5 8,0, ,,7 ¢ 510, ¢ A+ A, cos2u] + Ole )

dé

b R oA o e




i
i
¢
t
“
dw =  1/2.1 .2 . »
f s W =y . .
" — =5 +5 + =
[ (3 5) d_._ o 1101/2 € {2 52(101/2 } + sliol + AO
ion
. '
* "2 .cos2u ] + 0(e)
e v e 4« [ ]
pdition According to equation (3.42) the outer expansion of i, /2 contains i . Use
o
fiovs of this result leads to the following outer expansion for 91”_:— :
4
g1 i ) / 2 ¢
dw 1/2 ° 1 . . .
(3.46) 5 So * € Sl vElBMA ) +8ig v Ay
»
+ A, cos2u] + o(e3/2)
Tibn Comparing equatioms (3.46) with (3.44) we note that they are matched in any
overlap domain So = 0(e¥) with 0 < 4 < -é];becauae those terms not contained
. -
3/2 in the outer expansion of du /d¢ have S, as a factor {ef. Eq. 3.39) and are
- O(e”" 7
obviously small in the overiap domain. The composite expansion for thne motion
of the apse is therefore
Ler dw - » /2 . 1 * .
— = 5 3 i i +
(3.k7) Iy =5, * 51101/2 v ( 2 S.‘2(101/2 )+ 51361 Ay
+A2cos2mc] + 0(¢)
. 1/2 . . |
uniformly to order € for all inclinstions. ‘
From the assumed forms for u and i it is easily seen that the uniformly valia
expansions to 0{¢) for all incalinations for these variables are
:oszioc 1/2
3/2 (3.48a) u, = > [1+ ecc08(0 - uc)] + € ul/2 + euy
O(E ) P
.. 1/2, .
(3.48b) i =i, + ¢ 11/2 + Cll
pasemmm————
k]




1 i e and w are used instead of i e and w in u u i and i,
unere 10‘:’ c d e e n a O' l,/2’ ll 112 1

in eguations (3.48a} ann‘(3.h8b) and w, can be obtained by integrating eguatiocn

(3.47).

The dominant behavior of the apsidal motion is described by the leading term.

We have from {3.34}

-1/2
-— — » *
(3.49) d¢ =(x_ - c_ + 2¢ sinau ) du + 0(:1/2)
[+ 1l 1
If we let
» - ®
since = v 2sinw cosw = e = 2{u(1 - v)]l/2
: dw

and consider only the leading term we obtain

v

(3.50) -3 = d4

I ..
° o [l Bele - Aele - 1P

(3.51) A= (e - ?o)/le

%
For the earth's potential the guantity < is positive near the critical

inclination. Thus the square root appearing in the above expression is resai

only if

#*
(3.52) v -2 >0, sin%w > A

® Because ¢ = /7 for the earth's potential. It is interesting to note that
for Vinti's {1959} potential ¢ = 5/18 {cf. Shi {1963}) which impiiers < = o
for the motion at the critical inclipation.
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now we have to distinguish the following three cases:

Case 1 ¥

{3.53) -x < x < or D<A <l

In this case (3.50) becomes an elliptic integral of the Tirst kind.

- = -1/2 .
(3.5ha} o= o, = (2¢) r(xl,xl}
where the amplitude Xy is
< +x /2
- *
(3-5}‘13} xl=itﬁnl{l — tan w =~ 1;
X, - «
1 .
and the modulus is
- 1/2
= {{
(3.54¢) k; [.xo + <l)/2:1]

«*
Using elliptic functions ‘we may express w explicitly as

K, - % - _ ‘1/2
(3.55) w =4 tant [2—211 + tne[(le)llz(é - )11

K, ¥+«

1 o

where the modulus of tn is kl.

The interpretation of this resuit is that the perigee performs a pencu.un

* =1 .
motion around ®/2 or 3/2x with a maximum amplitude w max = % sin "A. A cependas
on the initial conditions becsuse after substituting the expression (i.27) Tor

‘o ve obtain

- . 2
(3.56) A = sinZw + (5, + 5,3y, )/2¢;
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Case 2

{3.57) ¥k =« or L1 =0

In this case we have

w* + 1 . *

-_ - r ~ 1+
(3.58) $-9 =z s = ———75 log =3
o (2-:1) cos E (8-:1) 1 ~ pinw

or after some manipulations
/2= -

(e )T (e - 6 )

(3.59) L O S 2
- Silus E

1/2,—~ —

2(8c )" (¢ - ¢_)

1+e 1 o

[ J
This means that w sapproaches 0 or ¥ asymptotically as ¢ goes to infinity.
This csse represents the boundary between oscillatory and secular motion of

the perigee. The boundary depends on the initial conditions. We have
2 - . -
(3.60) A =s5in"w + (so + 5131/2 )/2:1 =0

which is possible only when the initial values

(3.61) v. =0 or =«
and

-~ ®
(3.62) S, +5J; /2 = 0

are assumed, This means that initially the apse has to coincide with the line
of the pnodes, and the inclination is exactly c¢ritical at least to the order
kept in our calculations, because (3.62) is evidently the expansion of the

initial value of the small divisor.
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Case 3
(3.63) :o > x or A <0

In this case we obtain

(3.60)  F-F = (5, ¢ o)V 2 k)

]
vhere the modulus is

. 1/2
(3.6k0) K, = 1:1/?0 &=

and the amplitude is

(30 QC) x2

= tan™ ([, + < )/(E, - ¢) 1 tana”)
The use of elliptic functions gives
(3.65) o = tan™ ({5, - <M=, + )1 2l(5, + «)M3F - T 1)

vhere the modulus of tn {s kz.

The apse angle may assume any value in this case and the motion of the perigee

is secular. For large :o' k2

gives

12213

- 1/2,—
(3.66) (:04-:) (9-¢)-(1+222 2kzk2 +...)x2

- %’ "22 sin2yx, - °“‘2h)

Since x, + - for large ?o {cf. {(3.64c)) this shows that the motion of the
perigee is secular with small esdditional oscillations. In the previous

discussion of the behavior of the apsidal motion we have considered only the

2 becomes small and ve may expand F(xz,kz). This

)
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°
solution of w, - A solution using all available information to 0(:2)

must make use of the composite expansion as obtained in {3.47}.

[ J [ ]
By substitution of i and i ia {3.47), ve obtain the following result
oi/2 ol ’
vhich is uwniformly valid to 0(:1/2):
Ga
c _ 112‘ - 1/2 1/2r
(3.67) ;Ef ={1 +¢ °1)(x° -« cosZuc) + e %lg, * 8, cosch}

After integration we have

w e R
c ag

(3-68) ;‘; =l —
© o 1+ 81/281)“° - coszg)llz + 51[2{50 + 8, cos2E ]

The evaluation of this integral leads to elliptic functions and a highly

transcendental relation between w and ;:.
c

3.7 Yotion of the node

Equetion (3.6b} for the node can be brought to the following form:

{3.69) %% = o [gs-u cosBi sin2¢] - 52[£§-u2(3cu - Teu sinzi sinzo
P P
- lE-coshi sinzo)] cos3i sinzo + 0(23)
P

Applying the composite expansions for u and i and substituting the knowm

results we obtain

% Note that u and i1/2 are zero.

1/2




Is2€ ]

2 . . 2
{3.70) —_—z . :{—E'uo cos31°csln ¢] - 52{;%~u1 cosaiocsinzo

6 2. e« . 2 L 2 .. 2 . 2
-3 noilcos 1,c8in i sin"¢ + ;E-no {3cuo = Teu sin"i_ sin"¢

- 3'---cos"i sinzo} o8
p2 oc ¢

3 (55/2)

iocsin2¢} +0

Since il quantities on the right-nanc side of {3.70) are aiready anown as
functions of ¢, the node could be founa by straigntforward integration.
llowever, for the sake of simplicity and & more systematic approach that
avoids the shifting of orders of magnitude due to integratiom of long-period

terms, we will also solve {3.70) by the tvo-variable expansion procedure,

We use the slow variable 3'= 53/2¢ and assume the following expansion {or the
node:
- ;. - - n/2
(3.71) Q=7 1 Qn/2(o.c,e):
€ n=J

1/2

The factor e in front of the summation in (3.71) is suggested because the

ieading term of the nodai veliocity is of oraer € at all inclimations, which
. L. -1/2
forces us to make the leading term of the node itself of order ¢ to

insure that the derivative witn respect to ;'be of order unity.

Using the same procedure as for the other variables we obtain the folloving

equations:
_aﬂo
(3.72a) Frel 0




wvnich implies tuat

(3.720) 8 = QO(O;E)-

Again, we expand no in the form:
ol - - nf2
(3-73) QO("E) = nzonon/e(‘)c

Since the right—hand side of equation {3.70) is 0{e), we obtain

30 aa
/2 _ 1 _
(3.74) S -© and (3.75) Frathils

implying that
(3.76) 2,9 =0
because the integration constants are already included in the expansion (3.73).

Collecting the terms of order ¢ we obtain

5.
1] N an cos”’1
1
(3.77) _3;12 == —g-uQCOSBi sin%s = -2 — 20 13 + e, cocle -
¢ EYS ° e P
o o
- cos2¢ - 5 cos(e - “'c) -3 cos{3¢ - wc)]

- - L . .
The terms depending on ¢ in {3.77) are 390/30 + cos5ioolp . After substituting
the expansion for QO {the expansion for ioc has already been substituted in

(3.77)), ve require for boundedness

aq cossi
00 00

(3-78) T - m

2% P

The higher order terms in the expansion of Qo and ioc are hence shifted to

the next order. Integration of {3.78) gives




B.73).

bo{é - uc)

buting

cossiw -
{3.719) 2 =- '—;r— ¢+ L ;

where Lo is a constant depending on the initial conditions. The solution for
L ]

93,2 is
e T
_ 15 ¢ 1. : o . |
{3.80) Ry = - ;; cos 100(- S sin2¢ + eosln(o - -c) -5 sin{¢ + wc)
- —¢ sin(3¢ - ueﬂ
In order to make .02 bounded, we must set
3(201/2 101/2' 5 5 h -
{(3.81) =53 cos i gimi = - —2—cos i sin i [S
— o0 o0 & 00 oo'"o
¥ P PS;
- (5, - <, cosan )M2)
or
{3.02) ) _ o b, L. - hd
Roif2 = - Tu_cos i sin “oo“ —wle L

D 5.
FS

*
vhere Ll/2 is un integration constant and w is given by (3.55), (3.59) or

{3.65) depending on the vaiues of :o and «,.
The terms of 0(:2) depending on ¢ onir are: ;n01/3° + do + dZCOSZUc

2 +* " L . * ,‘. . .
+ (5/2p%) ccsjioo(h - 5coszi°°)(iol/2 )2 - {5/p )101 cos i sin i_ .

»
7he boundeaness requirement on ns /2 implies, after substituting for ia/2

)
and 101 o that

1/2

ak
{3.63) _o_l = Do + 0 ((0 -5, cns:’uc) + 32 cos?uc

3¢




The integration of (3.83) yields
w_ D_+ D_cos2f
n c © 2
(3'8)‘) Qol = Dl’ + [ 1/2 df + Ll

o (:0 - xlcoszc)

wvhere Ll is an integratién constant and the integral depends on the values of

;; and « The evaluation of this integral leads to eiliptic functions of

1'
the first and second kind and will not be exhibited here.

|
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cos 10: 17

= + [-‘+29- e < + ch
2p8 257 2 Eo ° B To

- I
+ (.:%;I-skc+%ie2-}~zie°2c) cos2im

[+

85 . 1i7 s 2 3557 2
- i - ——— 3
+ ( A5 c-Ize, ¢t 5 €, ) cos ]

cos 1 -
o0 - -i-i 2_15 2
=*t—3 ! -7 2“*2;7;% L % ©
2p
1 i 2 2 2
+(—3+]2c--§—g°+h2eoc)cosioo

2 2 o
=+¢m8£°° [ . 3c.-1L .2.3,.2
2p8 € -2 "~ 2 2% 2 o
+(-%+12c+§e02-]2e°2c)c052100
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2 2
o »120e°c)cosi°0
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+(30-126¢ - 15 ec2 + 126 eo2c) cos i ]




(a.5)

{A.6)

(A.T)

(a-8)

(a.9)

(A.10)

8
cos i
00 1_3 1.2
B: =__?_-[ -E—E -Eeo*

+(--—+12c+16e

3

5 21 .15 24
+S-7°¢ %eo

P 3
L3

9.2
5¢¢

- 35 c, e) cos21

V' l 2- 2-
1001-5+3C+(2 2le) cos 1o

P
+ (30 - 252¢) cos 100 ]

- coeai
= 4 [
A o

+(-1+12c-¥‘-e°

3

+(-g-—-c+

3

§3c:e 2)
o

2

coshi ]
oo

- 27c - (%2 - 2618) cosaioo
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1

1 % _ 9 5 5 2
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B, #
cos 1 2 2
. 2 2
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ccséi *
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2 2P8 o 2 - ]230 +—e° c
2
+ (‘%"'12!: #_.eo* ‘122*26) cmaioo{-
2 *
| s @R 3ot oy )
e*
* .. % coelt "sing * 2 2 2 +2
(a.12) B, = 2P8cosioo sin i_ " | +§—12c--3-e° +2e ¢
*(-?*JZOC’%Q 0*2-“”0e*2c)-c082ioo
+(T5—126c'15e0* +126e c)cosi *]
,* cmsioo 1 3 1 2 9 %2
(4.33) BT =+ o8 L 272 k% "2% ¢
2
+(--§-+32c*he:z-‘36e°*c)cosaioo
2 & x2 *
BB B e,
2
(A.14) c* =+1 %o cos91 * gin 1 *{-1+3c+(2—21c) coei *}
2 N pB 00 00 [ 2 oo
-2
(a.15) x»_,1 % B, * 3 _orc . (A2 - 261c) cos’s
? czl'l'pscwoo{z Xy 0o
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+ (30 - 252¢) coe"ioo ]
+*
€ »
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(A1) 5 = - % (1.5 cos’t )
: o 2ph 00
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{1.18)
(a.19)
(a.20)

(A.21)

(A.22)

(a.23)

{A.24)

(a.25)

(a.26)
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cos3i°° 5
""'-2——17'-—- sin 1__ (2 - 15 cos 100)
P
2.
cos“i A
=--—-—1-‘-’-9(6 - 83 cosziooi-gocm i)
P
O 3
ccs
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g S \
th 2pL

2

- * *
= (5, * Sy )+« cos 2
22
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* .1 % 12, 2 %, 2
=50, =+g pl‘? cos 1 0 simi {2 ~ 15 cos 1o
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8
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