

Nitiow

Benjamin 0. Lamge
AND
Robert G. Smith

The applcation of floouet theory to the COMPUTATION OF SMALL ORBITAL PERTURBATIONS OVER LONG TIME INTERVALS USING THE TSCHAUNER-HEMPEL ERUATIONS

by
Benjamin O. Lange and

Robert G. Smith

SUDAER No. 241
August 1965

This work was performed in association with research sponsored by the National Aeronautics and Space Administration under Research Grant NsG 582

TABLE OF CONTENTS

List of Figures iii
Introduction 1
The Tschauner and Hempel Equations 3
Solution of the Tschauner-Hempel Equations 6
Solution for Constant, Periodic, and Almost-Periodic 14
Perturbing Accelerations
Restriction of Initial True Anomaly to Zero 17
Sampled-Data Solution 21
Application to the Problem of Solar Radiation with Shadowing 35
Application to Inertial Guidance 41
Appendix A: Derivation of the Tschauner-Hempel Equations 45
Appendix B: Review of Floquet Theory 50
Appendix C: Derivation of a Special Form of the Solution to 56 Linear Equations with Periodic Coefficients
Appendix D: The I-Matrix 64
References 69

LIST OF FIGURES

1. Orbit Coordinate System (Rectanguiar Coordinate Interpretation)
2. Orbit Coordinate System (Cyindrical Coordinate Interpretation)
3. Acceleration Constant in Rotating Reference Frame

$$
a_{\xi} \neq 0 ; \quad a_{\eta}=0 ; \quad e=0.01
$$

4. Acceleration Constant in Rotating Reference Frame

$$
a_{\xi} \not \equiv 0 ; \quad a_{\eta}=0 ; \quad 2=0.1
$$

5. Acceleration Constant in Rotating Reference Frame

$$
a_{\xi}=0 ; \quad a_{\eta} \neq 0 ; \quad e=0.01
$$

6. Acceleration Constant in Rotating Reference Frame

$$
a_{\xi}=0 ; \quad a_{\eta} \neq ; \quad e=0.1
$$

7. Acceleration Constant in Inertial Space

$$
a_{\xi_{0}} \neq 0 ; \quad a_{\eta_{0}}=0 ; \quad e=0.01
$$

8. Acceleration Constant in Inertial Space

$$
a_{50} \neq 0: \quad a_{\eta 0}=0 ; \quad e=0.1
$$

9. Acceleration Constant in Inertial Space

$$
a_{\xi 0}=0 ; \quad a_{\eta_{0}} \neq 0 ; \quad e=0.01
$$

10. Acceleration Constant in Inertial Space

$$
a_{\xi 0}=0 ; \quad a_{\eta 0} \neq 0 ; \quad e=0.1
$$

11. Solar Radiation with Shadowing 36
12. Example of Solar Radiation Perturbation Effect 40
13. Coordinate System for Perturbation Equation

BLANK
 PAGE

Introduction

This paper deals with a method of calculating the deviation of the path of an orbiting body from a nominal or reference trajectory. The form in which the solution is cast was motivated by a particular perturbation problen. Stanford University is developing a "drag-free", or "drag-makeup", scientific satellite which is designed to follow a purely gravitational orbit. ${ }^{1}$ The satellite consists actually of two satellites: an inner sphere or proof mass, and an outer concentric shell. The relative position of the shell with respect to the inner sphere is sensed with a capacitive pickoff. The position signals command an active cranslation control system which fires jets mounted on the outer shell so that it chases the inner sphere without ever touching it. Thus the proof mass is shielded from gas drag and solar raaiation pressure and, except for very small disturbances caused by force interactions with the outer shell, it follows a purcly gravitational orbit.

The problem which motivated the present study was to determine the effect of these smali disturbances (about 10^{-10} to $10^{-9} g_{e}$) over time periods up to a year. Furthermore, the answer was desired directly in terms of the deviation of the satellite's path from the path which would be followed by an earth satellite acted upon by gravity only. Therefore, the technique of perturba:ion of the coordinates was selected as the basis of our approach.

The technique of coordinate perturbation, which began with the work of Encke ${ }^{2}$ and Hill ${ }^{3}$ in the last century, has found increasing use in modern times for orbital theory. The linearized perturbation
equations about a circular orbit (which are merely Hill's lunar equations ${ }^{3}$ without the mutual gravitational terms (ree equations (1), (2), (3) with $e=0$) have been applied in recent years by Wheelon, ${ }^{4}$ Geyling, ${ }^{5,6}$ and Clohessy and Wiltshire ${ }^{7}$ to a number of satellite perturbation problems. Battin ${ }^{8}$ and Danby $9,10,11$ give state transition matrices for general conic sections which also may be applied to satellite perturbation and guidance problems, and recently Tschauner and Hempel ${ }^{12}$ have applied the linearized Hill's lunar equations to the minimum fuel rendezvous problem.

In some types of orbital problems (as in the mentioned example of determining the effect of internal force errors on the orbit of a dragfree satellite), it is desirable to compute the perturbations of the coordinates when the satellite is subjected to very small disturbances for many thousands of revolutions. In this case, the linearized Hill's equations are useful only for very very small eccentricities; variation of parameter techniques do not yield an answer directly in the desired form (i.e., as deviations of the coordinates); and direct numerical integration proves both costly and inaccurate, when carried out over long time intervals. Hence a different approach is sought.

The Tschauner and Hempel Equations
Tschauner and Hempel ${ }^{13}$ have shown that if the normalized orbit equations of motinn are linearized about a nominal elliptical orbit in a rotating reference frame (see Appendix A), they assume the very siuple form:

$$
\begin{gather*}
\xi^{\prime \prime}-\frac{3}{1+e \cos \theta} \xi-2 \eta^{\prime}=\alpha \\
2 \xi^{\prime}+\eta^{\prime \prime}=\beta \tag{2}\\
\zeta^{\prime \prime}+\zeta=r \tag{3}
\end{gather*}
$$

where

$$
\begin{aligned}
& \xi=\frac{u_{1}}{R_{R}}, \quad \eta=\frac{u_{2}}{R}, \quad \underline{R}=\frac{u_{3}}{R}, \\
& \alpha=\frac{P_{1}}{\omega_{R}}, \quad \beta=\frac{P_{2}}{\omega_{R}}, \quad \gamma=\frac{P_{3}}{\omega_{R}}
\end{aligned}
$$

P_{1}, P_{2}, P_{3} are small perturbing accelerations along the u_{1}, u_{2}, u_{3} axes respectively,
R is the instantaneous radius of the nominal elliptical orbit,
θ is the true anomaly in the nominal orbit,
e is the eccentricity of the nominal orbit,
$\omega=\dot{\theta}$, the time rate of change of true anomaly,
u_{1}, u_{2}, u_{3} are relative coordiantes shown in Figure 1 , and the prime (') signifies $\frac{d}{d \theta}=\frac{1}{\omega} \frac{d}{d t}$.
In deriving these equations, terms of order $\xi^{2}, \eta^{2}, \zeta^{2}$ and higher are neglected. If the こquations $\cap f$ motion in cylirarical form are linearized as shown in Figure 2, with $s=\frac{r}{R}, \eta=\varphi$, and ζ as before, equations (1) through (3) are again obtained. Now, however, η may be arbitrarily
large while terms of order ξ^{2}, r^{2}, r^{2}, and higher are negiected.
Equation (3), of course, represents simple out-of-plane harmonic motion and needs no discussion.

FIG. 1. ORBIT COORDINATE SYSTEM (Rectangular Coordinate Interpretation).

FIG. 2. OREAT COORDINATE SYSTEM (Eylindricsl Coordinate Interpretation).

By introducing matrix notation and defining the system state matrix $x(\theta)$ to be

$$
x(\theta)=\left(\begin{array}{c}
\xi(\theta) \tag{4}\\
\xi^{\prime}(\theta) \\
T_{1}(\Theta) \\
\eta^{\prime}(\theta)
\end{array}\right)
$$

equations (1) and (2) may be combined and uritten

$$
\begin{equation*}
x^{\prime}(\theta)=\mathbf{F}(\theta) \mathbf{x}(\theta)+D(\theta) u(\theta) \tag{5}
\end{equation*}
$$

where

$$
F(\theta)=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \tag{6}\\
\frac{3}{1+e \cos \theta} & 0 & \cdots & 0 \\
2 \\
0 & 0 & 0 & 1 \\
-2 & 0 & 0
\end{array}\right)
$$

and

$$
\begin{equation*}
\mathbf{u}(\theta)=\binom{\mathrm{P}_{1}(\theta)}{\mathrm{P}_{2}(\theta)} \tag{8}
\end{equation*}
$$

It is well known from the theory of Floquet ${ }^{14}$ (see Appendix B) that a system governed by equation (5) where $F(\theta)=F(\theta+2 \pi)$, has a state transition matrix, $X\left(\theta, \theta_{0}\right),{ }^{*}$ which car be written as:

$$
\begin{equation*}
X\left(\theta, \theta_{0}\right)=\mathbf{R}\left(\Theta, \theta_{0}\right) \varepsilon^{B\left(\theta-\theta_{0}\right)} \tag{9}
\end{equation*}
$$

where

$$
R\left(\theta, \theta_{0}\right)=R\left(\theta+2 \pi, \theta_{0}\right) \text { is a periodic } 4 \times 4 \text { matrix, and }
$$

$$
B \triangleq \frac{1}{2 \pi} \ln X\left(\theta_{0}+2 \pi, \theta_{0}\right) \text { is a constarit } 4 \times 4 \text { matrix }
$$

whose eigenvalues determine the system stability.
The unforced part of equation (5) is said to be kinematically similar to the constant system

$$
\begin{equation*}
w^{\prime}=B w . \tag{10}
\end{equation*}
$$

$F(),. k\left(\because, \theta_{0}\right)$ and B are related by

$$
\begin{equation*}
\mathbf{B}=\mathbf{R}^{-1}\left(\theta, \theta_{0}\right) F(\theta) R\left(\theta, \theta_{0}\right)-R^{-1}\left(\theta, \theta_{0}\right) R^{\prime}\left(\theta, \theta_{0}\right) \tag{11}
\end{equation*}
$$

and equations (10) ana (11) are known as the Lyapunov reduction of
equation (5). By an appropriate linear constant transformation

$$
\begin{equation*}
z=Q w \tag{12}
\end{equation*}
$$

*Formally, the state transition matrix of an $n^{\text {th }}$-order linear system of differential equations in first-order matris form is an $n x n$ matrix whose columns are n linearly independent solutions of the free equation, such that $X^{\prime}\left(\rho, \theta_{0}\right)=F(\theta) X\left(\theta, \theta_{0}\right.$, and $X\left(\theta_{0}, \theta_{0}\right)=U$, the unit or identity matrix (see Appendix B).
(where Q is constant 4×1 matrix)
equation (10) may be transformed into its Jordan normal form:

$$
\begin{equation*}
z^{\prime}=i z \tag{13}
\end{equation*}
$$

where

$$
\begin{equation*}
\Lambda=\mathrm{QBQ}^{-1} \tag{14}
\end{equation*}
$$

The eigenvalues of Λ, together with the structure of the Jordar blocks determine the stability of the free solution $(u(\theta)=0)$ of equation (5), and it is possirle to give the state transition matrix, $\mathrm{X}\left(\theta, \theta_{0}\right)$, dixectly in terms of Λ :

$$
\begin{equation*}
\mathrm{X}\left(0, \theta_{0}\right)=\mathbf{P}(\theta) e^{\lambda\left(\theta-\theta_{0}\right) \mathrm{P}^{-1}\left(\theta_{0}\right)} \tag{15}
\end{equation*}
$$

where $x(\theta)=P(\theta) z(\theta)$. (See Appendix B).
The periodic part of the state transition matrix, $R\left(\theta, \theta_{0}\right)$ is given by

$$
\begin{equation*}
R\left(\theta, \theta_{0}\right)=P(s) P^{-1}\left(\theta_{0}\right) \tag{16}
\end{equation*}
$$

and furthermore

$$
\begin{equation*}
\mathrm{Q}=\mathrm{P}^{-1}\left(\theta_{0}\right) \tag{17}
\end{equation*}
$$

It has been shown by Tschauner and Lempel ${ }^{13}$ (who have obtained the matrix $\mathrm{p}^{-1}(\hat{)}$) in closed form), and also by the present authors, that equation (10) is kinematically similar to equations (1) and (2) with the Jordan canonical form of B given by

$$
\Lambda=-\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \tag{18}\\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & -1 & 0
\end{array}\right)^{*}
$$

It is rather interesting to ncte that A may be obtained by finding the Jordan canonical iorm of B_{o}, where B_{o} is the matrix $F(G)$ given by equation (6) with $e=0 .^{* *}$

$$
3_{0}=:\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \tag{19}\\
3 & 0 & 0 & 2 \\
0 & 0 & 0 & 1 \\
0 & -2 & 0 & 0
\end{array}\right)
$$

In fact, equation (5) may be factored into the form

$$
\begin{equation*}
x^{\prime}(\theta)=\left[B_{0}+e \mathrm{G}(\ni)\right] \mathrm{x}(\theta)+\mathrm{D}(\theta) \mathrm{u}(\theta) \tag{20}
\end{equation*}
$$

where $G(\theta)=G(\theta+2 \pi)$,

$$
G(\theta)=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \tag{21}\\
\frac{-3 \cos \theta}{1+e \cos \theta} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

[^0]The matrix $P^{-1}(\therefore)$ is given by Tschauner and Hempel:

(22)

Wh...:

$$
\begin{align*}
c_{1}= & \frac{1}{e}\left[1-\left(1+2 e^{2}\right) \sqrt{1-e^{2}}\right] \sin \theta-\left(2+3 e \cos \theta+e^{2}\right) \sin ^{-1} \lambda \tag{23}\\
p_{2}= & -\frac{1}{6}\left(1+3 \sqrt{1-e^{2}}\right)-\frac{1}{3 e}\left[1-\left(1-e^{2}\right)^{3 / 2}\right] \cos \theta \\
& +\frac{1}{6}\left[\left(1+2 e^{2}\right) \sqrt{1-e^{2}}-1\right] \cos 2 \theta-\Omega \mu \sin ^{-1} \wedge, \tag{24}\\
q_{2}= & \frac{1}{3 e}\left[\left(2+e^{2}\right) \sqrt{1-e^{2}}-2\right] \sin \theta+\frac{1}{6}\left[\left(1+2 e^{2}\right) \sqrt{1-e^{2}}-1\right] \sin \theta \theta \\
& +(1+e \cos \theta)^{2} \sin ^{-1} \lambda, \tag{25}\\
q_{1}= & (1+c \cos \theta)^{2}, \tag{26}\\
\mu= & \sin \theta(1+e \cos \theta) \tag{27}\\
\lambda= & \sin \theta\left[e+\left(1-\sqrt{\left.\left.1-e^{2}\right) \cos \theta\right]}\right.\right. \tag{28}
\end{align*}
$$

If θ is chosen to be zero, then

$$
p^{-1}(0)=\left(\begin{array}{cccc}
0 & \frac{(e+1)\left[-1+(1-e)^{2} \sqrt{1-e^{2}}\right]}{3 e} & \frac{1}{3} & 0 \\
-(1+e)(2+e) & 0 & -(1+e)^{2} \\
0 & -\frac{1}{2}(1+e) & \frac{1}{2} e & 0 \\
-\frac{1}{2}(3+e) & 0 & -\frac{1}{2}(2+e)
\end{array}\right)
$$

From equations (14) and (17)

$$
\begin{equation*}
B(e)=P(0) \wedge P^{-l}(0) \tag{31}
\end{equation*}
$$

so ihat

B(e) $=$

and also $B_{o}=B(0)$.
It may be seen by direct differentiation that the solution to equation (5) is

$$
\begin{equation*}
x(j)=x\left(\theta, \theta_{0}\right) x\left(\theta_{0}\right)+X\left(\theta, \theta_{0}\right) \int_{\theta_{0}}^{\theta} x^{-1}\left(\tau, \theta_{0}\right) D(\tau) u(\tau) d \tau \tag{33}
\end{equation*}
$$

where $\mathrm{x}\left(\theta_{0}\right)$ is the initial value of the system state matrix and

$$
\begin{equation*}
X\left(\theta, \theta_{0}\right)=R\left(\theta, \theta_{0}\right) \epsilon^{B\left(\theta-\theta_{0}\right)}=P(\theta) \epsilon^{\prime \cdot\left(\theta-\theta_{0}\right)} P^{-1}\left(\theta_{0}\right) . \tag{34}
\end{equation*}
$$

(This solution may also be obtained by variation of parameters, See Appendix B) If one attempts to use equation (33) directly to determine the effect of small perturbing accelerations over many revolutions, serious numerical difficulties are encountered winich result bcth in loss of accuracy and in excessive computation time.

Accelerations

As in the case of computing perturbations for a drag-free satellite, it of ten happens that perturbing accelerations are constant or periodic. It is then possible to compute their effect at any future time merely by computing their effect over one orbit revolution. If the disturbing acceleration has the form

$$
\begin{equation*}
u(\theta)=u(\theta+2 \pi) \tag{35}
\end{equation*}
$$

it can be shown (see Appendix C) that the solution to equation (5) [that is, equation (33)] can be written

$$
\begin{align*}
x(\theta)= & X\left(\theta-2 \pi N, \theta_{0}\right) C^{N} x\left(\theta_{0}\right)+X\left(\theta-2 \pi N, \theta_{0}\right)\left(\sum_{k=1}^{N} c^{k}\right) I_{1} \\
& +X\left(\theta-2 \pi N, \theta_{0}\right) \int_{\theta_{0}}^{\theta-2 \pi N} X^{-1}\left(\tau, \theta_{0}\right) D(\tau) u(\tau) d \tau \tag{36}
\end{align*}
$$

where N is the largest number of complete revolutions in $\left(\theta-\theta_{0}\right)$, $\mathrm{C} \triangleq \mathrm{X}\left(\theta_{\mathrm{o}}+2 \pi, \theta_{\mathrm{o}}\right)$, and

$$
\begin{equation*}
I_{1}=\int_{\theta_{0}}^{\theta_{0}^{+2 \pi}} x^{-1}\left(\tau, \theta_{0}\right) D(\tau) u(\tau) d \tau \tag{37}
\end{equation*}
$$

The solution as given by equations (36) and (37) requires integration over a maximum of one orbit revolution, regardless of the actual number of orbit revolutions contained in the range of interest $\left(\theta-\theta_{0}\right)$. Thus the difficulties mentioner in the application of the solution in the form given by equation (33) are overcome. The restriction of the disturbance
to constant or periodic in θ case can be relaxed somewhat. If

$$
\begin{equation*}
u(\theta)=u(\theta+2 \pi M) \tag{38}
\end{equation*}
$$

where M is an integer, it can be shown (see Appendix C) that the solution [equation (33)] can be written

$$
\begin{align*}
x(\theta)= & X\left(\theta-2 \pi N, \theta_{0}\right) C^{N} x\left(\theta_{0}\right)+X\left(\theta-2 \pi N, \theta_{0}\right)\left(\sum_{k=0}^{r-1} C^{N-k M}\right) I_{2} \\
& +X\left(\theta-2 \pi N, \theta_{o}\right) C^{N-r M} \int_{\theta_{0}}^{\theta-2 \pi r M} X^{-1}\left(\tau, \theta_{0}\right) D(\tau) u(\tau) d \tau \tag{39}
\end{align*}
$$

where N is the largest number of complete revolutions in $\left(\theta-\theta_{0}\right)$,
r is the iargest integer $\leq N / M$,
$C=X\left(\theta_{0}+2 \pi, \theta_{0}\right)$, and

$$
\begin{equation*}
I_{2}=\int_{\theta_{0}}^{\theta_{0}^{+2 \pi M}} \mathrm{X}^{-1}\left(\tau, \theta_{0}\right) D(\tau) \mathrm{u}(\tau) \mathrm{d} \tau \tag{40}
\end{equation*}
$$

In this case the solution over any interval $\left(\theta-\theta_{0}\right)$ requires integration over a maximum of M revolutions. Thus the constant r defined above is a figure-of-merit for the solution in this form. The larger r, the more relative value equation (39) has over equation (33).

One further generalization of the form of the perturbing acceleration can be made. If instead of equations (35) or (38) we have

$$
\begin{equation*}
u(\theta)=u(\theta+\Theta) \tag{41}
\end{equation*}
$$

where $\Theta \neq 2 \pi M$ for $M=0,1,2, \ldots$, the solution may be approximated (again see Appendix C) as closely as desired by selecting an integer K
such that

$$
\begin{equation*}
K ש \cong 2 \pi M \tag{42}
\end{equation*}
$$

for some inceger M. Then the solution to equation (5) is agair equation (39), with N, C, and I_{2} as defined, but with r an integer such that

$$
\begin{equation*}
r k \in \leq 2 \pi N<(r+1) K \in \tag{43}
\end{equation*}
$$

In this final case integration is required over a maximum of M revolutions. Of course, the larger the salected value of M, the greater the accuracy obtained in the approximation of equation (42). The usefulness of the solution, in this case, is dependent upon the nature of the actual problem.

If the initial value of the true anomaly is iaken to be zero $\left(\theta_{0}=0\right)$ no real restriction of the general problem is imposed. This is so because stipulation of $\theta_{0}=0$ simply requires a compensatory adjustment in the initial value of the system state matrix $x\left(\theta_{0}\right)$. Then the solution for perturbing accelerations of the form

$$
\begin{equation*}
u(\theta)=u(\theta+2 \pi) \tag{35}
\end{equation*}
$$

can be written in a manner especially adapted for rapid, accurate evaluation. If $\theta_{0}=0$ and $x\left(\theta_{0}\right) \triangleq X_{0}$, equations (36) and (37) become

$$
\begin{align*}
x(\theta)= & X(\sigma, 0) X^{N}(2 \pi, 0) x_{0}+X(\sigma, 0)\left(\sum_{k=1}^{N} X^{k}(2 \pi, 0)\right) \dot{I}^{\circ} \\
& +X(\sigma, 0) \int_{0}^{\sigma} X^{-1}(\tau, 0) D(\tau) u(\Delta) d! \tag{44}
\end{align*}
$$

where N is the largest number of complete revolutions in θ,

$$
\begin{align*}
& \sigma=\theta-2 \pi N, \tag{45}\\
& I=\int_{\nu}^{2 \pi} X^{-1}(\tau, 0) D(\tau) u(\tau) d \tau \tag{46}
\end{align*}
$$

$X(2 \pi, 0)=\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ \frac{-6 \pi e(2+e)}{(1-e)^{2} \sqrt{1-e^{2}}} & 1 & 0 & \frac{-6 \pi e(1+e)}{(1-e)^{2} \sqrt{1-e^{2}}} \\ \frac{-6 \pi(2+e)(1+e)}{(1-e)^{2} \sqrt{1-e^{2}}} & 0 & 1 & \frac{-6 \pi(1+e)^{2}}{(1-e)^{2} \sqrt{1-e^{2}}} \\ 0 & 0 & 0 & 1\end{array}\right)$
$X^{-1}(.0)=\left(\begin{array}{cccc}(1 \quad 1) & (1,2) & (1,3) & (1,4) \\ (2,1) & (2,2) & (2.3) & (2,4) \\ (3,1) & (3,2) & (3,3) & (3,4) \\ (4,1) & (4,2) & (4,3) & (4,4)\end{array}\right)$
(48)
where

$$
\begin{align*}
& (1,1)=\frac{4+e-3 \cos \sigma}{1+e} \\
& (1,2)=-\sin ; \frac{(1+e \cos \sigma)}{1+e} \\
& (1,3)=(2,3,=(4,3:=0 \quad, \\
& (1,4)=\frac{2+e-\cos \sigma(2+e \cos \sigma)}{1+e} \\
& (2,1)=\frac{3 e\left(2+3 e \cos 0+e^{2}\right)\left(\sigma^{-\sin -1}\right)-\left(3+6 e^{2}\right) \sqrt{1-e^{2}} \sin \sigma}{(1-e)\left(1-e^{2}\right)} 3 / 2, \\
& (2,2)=\frac{\left.3 e^{2} \sin (1+\epsilon \cos)\left(1-\sin ^{-1} \lambda\right)-\sqrt{1-e^{2}} \cdot 2 e+e^{3}-\left(1-e^{2}\right) \cos v-\left(e+2 e^{3}\right) \cos ^{2} \sigma\right]}{(1-e)\left(1-e^{2}\right)}, \\
& (2,4)=\frac{\left.3 e(1+e \cos j)^{2}\left(\sigma-\sin ^{-1} \lambda\right)-\sqrt{1-e^{2}}\left[\left(2+e^{2}\right) \sin \sigma+\left(e+2 e^{3}\right) \sin \right] \cos \sigma\right]}{(1-e)\left(1-e^{2}\right)^{3 / 2}} \quad \text { (55) } \\
& (3,1)=\frac{3\left(2+3 e \cos \sigma+e^{2}\right)\left(\sigma-\sin ^{-3} \lambda\right)-(6+3 e) \sqrt{1-e^{2}} \sin \sigma}{(1-e) \sqrt{1-e^{2}}}, \tag{56}\\
& (3,2)=\frac{3 e \sin (1+e \cos \jmath)\left(\jmath-\sin ^{-1} \lambda\right)-\sqrt{1-e^{2}}\left[2+e^{2}-(2-2 e) \cos \frac{\left.\sigma-\left(2 e+e^{2}\right) \cos ^{2} \sigma\right]}{(1-e)^{2} \sqrt{i-e^{2}}}\right.}{(57)} \\
& (3,3)=1 \quad \text {, } \tag{58}
\end{align*}
$$

$(3.4)=\frac{3(1+e \cos r)^{2}\left(-\sin ^{-2}\right)-\sqrt{1-e^{2}}(4-e) \sin +\left(2 e+e^{2}\right) \sin \text { in } \cos \text { i }}{(1-e)^{2} \sqrt{1-e^{2}}}$
$(4,1)=\frac{6(\cos :-1)}{1+e}$,
$(4,2)=\frac{2 \sin \operatorname{si}(1+e \cos i)}{1+e}$
$(4,4)=\frac{-(3+e)+2 \cos (2+e \cos \pi)}{1+e}$,
and

$$
\begin{equation*}
:=\frac{\sin }{-1\left[e+\left(1-\sqrt{1-}^{2}\right) \cos \theta\right]} \frac{1+e \cos }{\square} \tag{63}
\end{equation*}
$$

If J is the Jordan canonical form $f f \quad X(2 \pi, 0)$ (given by equation (47)), then J is given by

$$
J=\left\{\begin{array}{llll}
1 & 2 \pi & 0 & 0 \tag{64}\\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right\}
$$

and (see Appendix B)

$$
\begin{equation*}
X(2 \pi, 0)=P(0) \mathrm{JP}^{-1}(0) \tag{65}
\end{equation*}
$$

where $P(0)$ and $P^{-1}(0)$ are given by equations (29) and (30). Noting then that

$$
\begin{equation*}
X^{N}\left(2_{\pi}, 0\right)=P(0) J^{N} P^{-1}(0) \tag{66}
\end{equation*}
$$

and dreiningr

$$
4-\sum_{k-1}^{N} . j^{k}
$$

rquation (44) can be written in a for... which is convenient for calculating $\mathrm{x}(\mathrm{)}$ when x is largr:

$$
\begin{align*}
x(0)= & X(-, 0) P(0) J^{N} P^{-1}(0)+X(\pi, 0) P(0) S P^{-1}(0) I \\
& +X(-0) \int_{0}^{0} X^{-1}(\tau, 0) D() u(\pi) d: \tag{70}
\end{align*}
$$

where N is the largest number of c mplete revolutions in $?$ $\mathrm{X}^{-1}(\cdot, 0)$ is obtained from equations (48) through (63), D(τ) is qiven by equation (7),
$u(:)$ is given by equation (35),
$J^{N}=\left(\begin{array}{cccc}1 & 2 \cdots \mathrm{~N} & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$

If in the general solution (equation (70)) \approx is restricted to zero, an expression is obtained which represents sampled values of the perturbed motion taken at intervals of 2π :

$$
\begin{equation*}
x(2 \pi N)=P(0) J^{N} P^{-1}(0) x_{0}+P(0) S P^{-1}(0) I \tag{73}
\end{equation*}
$$

where, from equations (29); (30), (71) and (72) we obtain
$P(0) J^{N} P^{-1}(0)=\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ -\frac{6 e \pi(2+e) N}{(1-e)^{2} \sqrt{1-e^{2}}} & 1 & 0 & -\frac{6 e \pi(1+e) N}{(1-e)^{2} \sqrt{1-e^{2}}} \\ -\frac{6 \pi(1+e)(2+e) N}{(1-e)^{2} \sqrt{1-e^{2}}} & 0 & ; & -\frac{6 \pi(1+e)^{2} N}{(1-e)^{2} \sqrt{1-e^{2}}} \\ 0 & 0 & 0 & 1\end{array}\right)$
and

and where I is defined by equation (46),

$$
x_{0}=x(0) \text { the initial value of the system state matrix. }
$$

The I-matrix has been evalua ed (primarily by contour integration) for the case oi accelerations constant in the rotating reference frame; that is, for accelerations of the form

$$
u(\theta)=\left|\begin{array}{lll}
a_{\xi} \tag{75}\\
a_{\eta}
\end{array}\right| \quad \begin{array}{lll}
\left(a_{\xi},\right. & a_{\eta_{1}} & \text { constant })
\end{array}
$$

The result of this evaluation is contained in Appendix D. Using this result one obtains for accelerations described by equation (76):

$$
\frac{(4-\mathrm{e}) \pi \mathrm{N}}{(1-\mathrm{e})\left(1-\mathrm{e}^{2}\right)^{3 / 2}} a_{7}
$$

$$
-\frac{3 e\left(e^{2}+2 e+2\right) \pi N^{2}}{(1-e)\left(1-e^{2}\right)^{5 / 2}} a_{\xi} \quad-\frac{6 e \pi^{2} N^{2}}{(1 . e)\left(1-e^{2}\right)^{2}} a_{\eta}
$$

$$
\begin{equation*}
P(0) S P^{-1}(0) I=\frac{1}{k / p^{2}} \tag{77}
\end{equation*}
$$

$$
-\frac{\left(e^{2}+10 e+1\right) \pi N}{(1-e)^{2}\left(1-e^{2}\right)^{3 / 2}} a_{\xi}=-\frac{6 \pi^{2} N^{2}}{(1-e)^{2}\left(1-e^{2}\right)} a_{\eta}
$$

$$
\frac{3\left(e^{2}-2 e-2\right) \pi N}{\left(1-e^{2}\right)^{5 / 2}} a
$$

where k is the gravitational field constant
p is the semilatisrectum of the nominal ellipse

A closed-form of the I-matrix has also been obtained for
accelerations of the form

$$
u(\theta)=\left|\begin{array}{c}
c_{1} \epsilon^{j K_{1} \theta} \tag{78}\\
c_{2} \epsilon^{j K_{2} \theta}
\end{array}\right|
$$

where K_{1} and K_{2} are integers,
c_{1} and c_{2} are arbitrary complex constants.

This result is also presented in Appendix D. It is possible then, using the two forms of the I-matrix (for constant and for periodic accelerations), to derive an appropriate I-matrix for any disturbance which can be expanded in a Fourier series in true anomaly.

Application to the Drag-Free Satellite
As mentioned in the Int roduction, the proof-mass or inner sphere portion of the drag-free satellite follows a pure gravity orbit excep for very small perturbations caused by force interactions between the inner and outer satellites. The majority of these force interactions are essentially fixed within the satellite. When the satellite is maintained in a locally-level orientation these forces are then fixed in the rotating reference frame and can be described by equation (76), i.e.,

$$
\begin{equation*}
u(\theta)=\binom{a_{\xi}}{a_{r_{\eta}}} \quad\left(a_{\xi}, a_{\eta} \quad \text { constant }\right) \tag{76}
\end{equation*}
$$

Plots of typical perturbed motions, assuming zero initial conditions, re- $=$ sulting from accelerations of this type (for selected values of nominal orbit sccentricity) are presented in Figures (3) through (6). It is interesting to compare these plots with Figures (4-5) through (4-8) of Reference l5, which represent the solutions for zero eccentricity. As would be expected, the results for $e=. U l$ are almost identical to those for $e=0$, but do exhibit the trend or distortion shown amplified in the plots for e. $=$.l. The effect of the secular terms of the solution are most easily obtained through the sampled-data solution of equation (73). Again ignoring initial condition effects, and selecting for example $e=.01$, then, using equation (77), one has

$$
\begin{equation*}
\xi(2 \pi N) \stackrel{4 \pi N}{k / p^{2}} \eta \tag{79}
\end{equation*}
$$

$$
\begin{equation*}
\eta(2, N)=-\frac{4 \pi N}{k / p^{2} a_{\xi}}-\frac{6 v^{2}}{k / p^{2}} \tag{80}
\end{equation*}
$$

If $a_{\xi}=a_{\eta} \approx 10^{-10} \mathrm{~m} / \sec ^{2}, p \approx 100$ miles, pll.s the radius of the Earth, $\mathrm{N} \approx 6000 \mathrm{rev}(\approx 1$ year $)$, and using the basic relationships $x=\xi R, y \quad \eta R$, it is seen rhat

$$
\begin{align*}
& x(l \text { year }) \cong 6 \mathrm{~m} \cong 20 \text { feet } \tag{8i}\\
& y(1 \text { year }) \cong-10^{5} \mathrm{~m} \cong-60 \text { miles } \tag{82}
\end{align*}
$$

These results verify those of page (i26) of Reference 15.
The drag-free satellit may also be oriented so that it raintains its oricntation with respect to inertial space. Then the perturbing acceleratinn would be essentially fixed in inertial space. If it is resolved into a component ago lying along the line of apsides of the nominal orbit and positive outward (away from the focus), and a component a \quad o perpendicular to a_{ξ} in the plane of the nominal crbit, and pusitive in the direction of motion, ther the acceleration vector becomes.

$$
u(\theta)=\left[\begin{array}{cc}
a_{\xi 0} & \cos \theta+a_{\eta \circ} \tag{83}\\
\sin \theta \\
-a_{\xi 0} & \sin \theta+a_{\eta \circ} \cos \theta
\end{array}\right]
$$

where $a_{g o}$ and $a_{\text {ro }}$ are constant. Eximples of iypical motion are presented in Figures (7) through (10). Again it is interesting to compare these results with those for zero eccentricity contained in Reference 15

[^1]ass Figures (49) and (4-10).

Application to che Problem of Sular Kadiation With Shadowing

As an example of how periodic disturbances micht arise with an ordinary satellite, consider an approximate solution of the soiar radiation pressure problem where the sun is assumed to remain fixed with respect to the orbit plane. If this perturbation is desired over a relatively few orbit periods, then it is reasonable to regard the disturbing acceleration as essentially fixed in inertial space. The reference orbit woula, of course, be perturbed by the earta's oblateness, b'at over a tew orbit periods this will not result in very great relative motion of the sun.

I: $\quad \theta_{i}$ is the true anomaly when the satellite enters the shadow, and θ_{o} the corresponding exit value (see Figure (11)), then

$$
\begin{align*}
& u(\theta)=\left[\begin{array}{ll}
a_{\xi 0} & \cos \theta+a_{\eta 0} \sin \theta \\
-a_{\xi 0} \sin \theta+a_{\eta O} \cos \theta
\end{array}\right], \quad\left(0 \leq e<\theta_{i}\right) \tag{84}\\
& \left(\theta_{0}<\theta \leq 2 \pi\right) \tag{85}\\
& u(\theta)=0, \quad \theta_{i} \leq \theta \leq \theta_{o}
\end{align*}
$$

where the acceleration vector \vec{a} has been resolved as was done previously for accelerations fixed in inertial space.

FIG. il. SOLAR RADIATION WITH Shadowing.

To determine

$$
\begin{equation*}
\mathrm{u}(\theta)=\binom{\mathrm{P}_{1}(\theta)}{\mathrm{P}_{2}(\theta)}, \quad 0 \leq \theta \leq 2 \pi \tag{86}
\end{equation*}
$$

it is possible to expand $u(\theta)$ as a Fourier series. If this is done then

$$
\begin{aligned}
& P_{1}\left(\theta_{0}=\frac{1}{2 \pi}\left\{a_{\xi 0}\left(\sin \theta_{i}-\sin \theta_{0}\right)-a_{\eta o}\left(\cos \theta_{i}-\cos \theta_{0}\right)\right\}\right. \\
& +\frac{1}{2 \pi}\left\{a_{\xi 0}\left(2 \pi+\theta_{i}-\theta_{0}\right)+a_{\xi 0} \frac{\sin 2 \theta_{i}-\sin 2 \theta_{0}}{2}-a_{\eta 0} \frac{\cos 2 \theta_{i}-\cos 2 \theta_{0}}{2}\right\} \cos \theta \\
& \left.+\frac{1}{2} \pi a_{\eta o}\left(2 \pi+\theta_{i}-\theta_{0}\right)-a_{\eta_{0}} \frac{\sin 2 \theta_{i}-\sin 2 \theta_{0}}{2}-a_{\xi 0} \frac{\cos 2 \theta_{i}-\cos 2 \theta_{0}}{2}\right\} \sin \theta \\
& +\frac{1}{2 \pi} \sum_{n=2}^{\infty}\left\{a_{g o}\left(\frac{\sin (n+1) \theta_{i}-\sin (n+1) \theta_{0}}{(n+1)}+\frac{\sin (n-1) \theta_{i}-\sin (n-1) \theta_{0}}{(n-1)}\right)\right. \\
& \left.-a_{\eta O}\left(\frac{\cos (n+1) \theta_{i}-\cos (n+1) \theta_{0}}{(n+1)} \frac{\cos (n-1) \theta_{i}-\cos (n-1) \theta_{0}}{(n-1)}\right)\right\} \cos n \theta \\
& -\frac{1}{2 \pi} \sum_{n=2}^{\infty}\left\{a_{\xi 0}\left(\frac{\cos (n+1) \theta_{i}-\cos (n+1) \theta_{0}}{(n+1)}+\frac{\cos (n-1) \theta_{1}-\cos (n-1) \theta_{0}}{(n-1)}\right)\right. \\
& \left.+a_{\eta o}\left(\frac{\sin (n+1) \theta_{i}-\sin (n+1) \theta_{o}}{(n+1)}-\frac{\sin (n-1) \theta_{i}-\sin (n-1) \theta_{0}}{(n-1)}\right)\right\} \sin n \theta_{-}
\end{aligned}
$$

$$
\begin{align*}
& P_{2}(\theta)=\frac{1}{2 \pi}\left\{a_{\eta O}\left(\sin \theta_{i}-\sin \theta_{0}\right)+a_{\xi O}\left(\cos \theta_{i}-\cos \theta_{0}\right)\right\} \\
& \frac{1}{2 \pi}\left\{a_{70}\left(2 \pi+\theta_{i}-\theta_{0}\right)+a_{\gamma 0} \frac{\sin 2 \theta_{i}-\sin 2 \theta_{0}}{2}+a_{\xi 0} \frac{a_{i}-\cos 2 \theta_{0}}{2}\right\} \cos \theta \\
& +\frac{1}{2 \pi}\left\{-a_{\hat{5} 0}\left(2 \pi+\theta_{i}-\theta_{0}\right)+a_{\hat{\xi} 0} \frac{\sin 2 \theta_{i}-\sin 2 \theta_{0}}{2}-a_{\eta O} \frac{\cos 2 \theta_{i}-\cos 2 \theta_{0}}{2}\right\} \sin \theta \\
& +\frac{1}{2 \pi} \sum_{n=2}^{\infty}\left\{a_{\eta 0}\left(\frac{\sin (n+1) \theta_{i}-\sin (n+1) \theta_{0}}{(n+1)}+\frac{\sin (n-1) \theta_{i}-\sin (n-1) \theta_{0}}{(n-1)}\right)\right. \\
& \left.+a_{\xi 0}\left(\frac{\cos (n+1) \theta_{i}-\cos (n+1) \theta_{0}}{(n+1)}-\frac{\cos (n-1) \theta_{i}-\cos (n-1) \theta_{0}}{(n-1)}\right)\right\} \cos n \theta \\
& -\frac{1}{2 \pi} \sum_{n=2}^{\infty}\left\{a_{\eta 0}\left(\frac{\cos (n+1) \theta_{i}-\cos (n+1) \theta_{0}}{(n+1)}+\frac{\cos (n-1) \theta_{i}-\cos (n-1) \theta_{0}}{(n-1)}\right)\right. \\
& \left.-a_{\xi 0}\left(\frac{\sin (n+1) \partial_{i}-\sin (n+1) \theta_{0}}{(n+1)}-\frac{\sin (n-1) \theta_{i}-\sin (n-1) \theta_{0}}{(n-1)}\right)\right\} \sin n \theta \tag{88}
\end{align*}
$$

Figure (12) is a plot of perturbed motion over 4 orbit periods under the following conditions:

$$
\begin{aligned}
& \vec{a}=-\hat{a}_{\xi} \quad \text { (the sun lies along the line of apsides) } \\
& \mathbf{e}=0.01 \\
& \theta_{\mathbf{i}}=135^{\circ} \\
& \theta_{0}=225^{\circ}
\end{aligned}
$$

In the numeric integration the Fourier expansion was carried out to the 19th term $(n=19)$. It should be noted that the parameters selected
were chosen merely to provide an idea of the nature of the solution, rather than to describe some actual orbit condition. The problem of calculating actual shadow-entry and exit angles is discussed in the literature (cf. Reference 16) and is not within the scope of this paper.

FIG. 12. EXAMPLE of solar radiation peiturbation effect.

Application to Inertial Guidance
The basic relationship of inertial guidance is that geometric acceleration is equal to the ot tput from an ideal accelercmeter plus gravitational mass attraction. That is,

$$
\begin{equation*}
\stackrel{I I}{r}=\vec{f}+\vec{g} \tag{89}
\end{equation*}
$$

where $\overrightarrow{\mathbf{r}}$ is the position vector of the vehicle,
\vec{f} is the output of an ideal accelerometer on board the vehjcle,
\vec{g} is the gravitational mass attraction vector, and overscript (${ }^{5}$) signifies $d / d t$ in an inertial frame.

An inertial guidance system computer is mechanized such that it obtains the solution to equation (89) by solving the Ideal Mechanizaison Equations, (90) and (91).

$$
\begin{gather*}
\stackrel{\mathbf{c}}{\mathbf{v}}=\overrightarrow{\mathbf{f}}+\overrightarrow{\mathbf{g}}-\overrightarrow{\boldsymbol{\omega}} \times \overrightarrow{\mathbf{v}} \tag{90}\\
\stackrel{c}{\mathbf{r}}=\overrightarrow{\mathbf{v}}-\vec{\omega} \times \overrightarrow{\mathbf{r}} \tag{91}
\end{gather*}
$$

where $\overrightarrow{\mathbf{v}} \stackrel{\Delta}{=} \underset{\mathbf{r}}{ }$,
$\vec{\omega}$ is the angular velocity of the computer frame with respect to inertiai space, and
overscript (${ }^{c}$) signifies $d / d i t$ in the computer frame.
It has been shown elsewhere ${ }^{20}$ that fiom these three basic equatiras; by perturbation analysts, one obtains the Platiorm Misalignment Exar Equation (92) and the Posjtion and Velociiy Error Equation (93) for an Inestial Navigation Systeu i.. elliptical orb:t

$$
\begin{align*}
& \stackrel{I}{\square}=-\overrightarrow{\vec{W}}_{\mathrm{g}} \cdot \vec{\omega}-\vec{\square} \tag{92}
\end{align*}
$$

$$
\begin{align*}
& +\overrightarrow{\mathrm{K}} \mathrm{~V} \cdot \frac{\mathrm{c}}{\vec{v}}+\cdot \frac{1}{c}-(\overrightarrow{\mathrm{L}}(\overrightarrow{\mathrm{~K}}, \stackrel{c}{\vec{r}})-\delta \stackrel{I}{\vec{\omega}} \times \overrightarrow{\mathrm{r}} \tag{93}
\end{align*}
$$

where ψ is the vector approximating the small angle which rotates computer into platform axes,
 the intoresting fact that the homogeneous form of the Position ard Velocity Error Equation of an Inertial Navigation System in elliptical orbit is identical to the homogeneous form $u \hat{r}$ the Basic Perturbation Equition linearized about an elliptical orbit. It follows then that
efuation (93) can be transformed to the Tschauner-Hempel Equations. If

$$
\overrightarrow{\mathbf{r}} \hat{\Delta}=\left[\begin{array}{l}
\delta x \tag{9.!}\\
\delta y \\
\delta z
\end{array}\right]
$$

coordinatized in a locally-level reference frame, and

$$
\begin{equation*}
\delta \mathrm{x} \triangleq \mathrm{r} \delta \xi ; \quad \delta \mathrm{y} \hat{\leftrightharpoons} \mathrm{O} S \eta ; \quad \delta \mathrm{z} \triangleq \mathrm{r} \delta \zeta \tag{95}
\end{equation*}
$$

then equation (93) becomes equations (96) through (98):

$$
\begin{align*}
\delta \xi^{\prime \prime}-\frac{3}{1+e \cos \theta} \delta \xi-2 \delta \eta^{\prime} & =\alpha \tag{96}\\
2 \delta \xi^{\prime}+\delta \eta^{\prime \prime} & =\beta \tag{97}\\
\delta \xi^{\prime \prime}+\delta \zeta & =\gamma \tag{98}
\end{align*}
$$

where e is the eccentricity of the elliptical orbit in which the guidance system is operating,
θ is the true anomaly of the vehicle,
$\alpha=\frac{\mathrm{P}_{1}}{\omega^{2} r}, \beta=\frac{p_{2}}{\omega^{2} r}, \gamma=\frac{\mathrm{P}_{3}}{\omega^{2} r}$.
$P_{1} \quad P_{2}$, and P_{3} are the coordinates of the error sources,
$\omega=\dot{\theta}$, the time rate of change of true anumaly, and prime (') signifies $\frac{d}{d \theta}=\frac{1}{\omega} \frac{d}{d t}$.

If, for example, the accelerometers of the Inertial Navigation System are maintained in a local-level orientation, then accelerometer bias corresponds to constant input to the equations of motion.

Figures (3) through (6) then may be anterpreted as plots showing the propagation of systen errors in nondimensional altitude and cross-track duc to accelerometer bios, when

$$
\vec{b} \equiv\left[\begin{array}{l}
a_{n} \tag{99}\\
\vdots \\
a_{r}
\end{array}\right]
$$

The sampled-data solution discussed previously is of course valid too. Hence, if $a_{\xi} \approx 10^{-4} g_{\mathrm{e}}, a_{\eta} \approx 10^{-4} g_{\mathrm{e}}, \mathrm{r}=100$ miles plus Earth radius, $e=0.01$, using equations (79) and (80) one obtains for $N=1$ orbit,

$$
\begin{aligned}
& \delta x=r \delta \xi \approx 4 \text { miles } \\
& \delta y^{=}=r \delta \eta \approx-10 \text { miles }
\end{aligned}
$$

APPENDIX A. DERIVATION OF THF DCHAUNEK-HEAPEL EQUATIONS

In this appendix the standard derivation of elliptical relative motion is reviewed for completeness and to establash notation. A derivation of the Tschauner-Hempel equaiions is also gaven.

Consider the reiative motion between a reference onject in an elliptical orbit, described by position vector \vec{R}, and a neariy olject in a slightly different orbit, described by position vector $\overrightarrow{r_{0}}$ (See Figure 13). The relative position of the second object with respect to the first is designated by the vector $\vec{\rho}$ so that

$$
\begin{equation*}
\vec{R}+\vec{p}=\vec{r} \tag{AI}
\end{equation*}
$$

Figure 13. Coordinate System for Perturbation Equation

For simplicity assume both objects start together in space and time as shown. Considering that which makes the two orbits different to be a perturbing acceleration \vec{a}, the equations of motion can be writiten:

$$
\begin{equation*}
\frac{I I}{\vec{R}}=-\frac{k \vec{R}}{|\vec{R}|^{3}} \quad \because \text { (unperturbed body) } \tag{A2}
\end{equation*}
$$

$$
\begin{equation*}
\stackrel{\text { II }}{\vec{r}}=-\frac{\mathrm{kr}}{|\vec{r}|^{3}}+\vec{a} \text { (perturbed body) } \tag{A3}
\end{equation*}
$$

where k is the gravitational field constant, and superscript (${ }^{I}$) signifies differentiation with respect to time in an inertial frame. Equations (A1) and (A3) combine to form

$$
\begin{equation*}
\frac{I I}{\vec{R}}+\frac{I I}{\vec{\rho}}=\frac{-k(\vec{R}+\vec{\rho})}{|\vec{R}+\vec{\rho}|^{3}}+\vec{a} \tag{A4}
\end{equation*}
$$

By taking the souare root of the dot product of $(\vec{R}+\vec{\rho})$ with itself it is readily verified that

$$
\begin{equation*}
|\vec{R}+\vec{p}|^{-E}=\left[R^{2}\left(1+\frac{2 \vec{R} \cdot \overrightarrow{\mathrm{Q}}}{R^{2}}+\frac{\rho^{2}}{R^{2}}\right)\right]^{-3 / 2} \tag{A5}
\end{equation*}
$$

If terms of order $\left(\frac{Q}{\mathrm{R}}\right)^{2}$ are neglected as small compared with terms of order $\left(\frac{\rho}{R}\right)$,

$$
\begin{align*}
|\vec{R}+\vec{\rho}|^{-3} & \cong R^{-3}\left(1+\frac{2 \vec{R} \cdot \vec{p}}{R^{2}}\right)^{-3 / 2} \\
& \cong R^{-3}\left[1-\frac{3}{2}\left(\frac{2 \vec{R} \cdot \vec{\rho}}{R^{2}}\right)+\text { higher order terms }\right] \tag{A6}
\end{align*}
$$

$$
\begin{equation*}
\therefore|\vec{R}+\vec{\rho}|^{-3} \cong R^{-3}\left(1-\frac{3 \vec{R} \cdot \vec{\rho}}{R^{2}}\right) \tag{A7}
\end{equation*}
$$

With equation (A7), equation (A4) becomes

$$
\begin{equation*}
\underset{\vec{R}}{\text { II }} \cdot \underset{\vec{\rho}}{\stackrel{\text { II }}{\rightarrow}}=-k(\vec{R}+\vec{\rho}) R^{-3}\left(1-\frac{3 \vec{R} \cdot \vec{\rho}}{R^{2}}\right)+\vec{a} \tag{A8}
\end{equation*}
$$

subtract (A2) from (A8) to obtan

$$
\begin{equation*}
\vec{\rho}=\frac{3 k}{R^{3}} \frac{\vec{R}}{R^{2}} \cdot \vec{\rho} \vec{R}-\frac{k}{R^{3}} \vec{\rho}+\frac{3 k}{R^{3}} \frac{\vec{r}}{R^{2}} \vec{\omega}+\vec{a} \tag{A9}
\end{equation*}
$$

Neglect the third term on the right-hand side as small compared with the first (wo, and the basic perturbation equation results

$$
\begin{equation*}
\frac{\mathrm{II}}{\vec{\rho}}=-\frac{k}{R^{3}} \vec{\rho}+\frac{3 k}{R^{3}}(\vec{R} \cdot \vec{\rho}) \vec{R}+\vec{a} \tag{A10}
\end{equation*}
$$

If $\stackrel{L}{\rho}$ is the time derivative of $\vec{\rho}$ taken in the rotating reference irame and $\vec{\omega}_{L / \bar{I}}$ is the angular velocity vector of the rotating reference frame with respect to inertial space, then

$$
\begin{equation*}
\frac{I}{\rho}=\stackrel{L}{\rho}+\vec{\omega}_{L / I} \times \vec{\rho} \tag{Al1}
\end{equation*}
$$

and

$$
\begin{equation*}
\underset{\rho}{I I}=\stackrel{L L}{\rho}+\vec{\omega}_{L / I}^{L} \times \vec{\rho}+2 \vec{\omega}_{L / I} \times \vec{p}_{\rho}^{L}+\vec{\omega}_{L / J} \times\left(\vec{\omega}_{L / I} \times \vec{\rho}\right) \tag{A12}
\end{equation*}
$$

In the rotating reference frame, if we define

$$
\begin{align*}
& \xi=\frac{\Delta}{R} ; \quad \stackrel{\Delta}{=} \frac{y}{R} ; \quad \zeta \stackrel{\Delta}{=} \frac{z}{R} \\
& \vec{\rho}=\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=R\left(\begin{array}{l}
\xi \\
\eta \\
\zeta
\end{array}\right) \tag{Al4}
\end{align*}
$$

Also in the rotating frame we have

$$
\vec{R}=\left(\begin{array}{l}
R \\
0 \\
0
\end{array}\right) ; \quad \vec{a}=\left(\begin{array}{c}
P_{1} \\
P_{2} \\
P_{3}
\end{array}\right) ; \quad \vec{\omega}_{L / I}=\left(\begin{array}{l}
0 \\
0 \\
\omega
\end{array}\right)
$$

Combining equations (A9) and (Al2), resolved in the rotating frame, one obtains the scalar equations

$$
\begin{array}{r}
\ddot{x}-\left(\dot{0}^{2}+\frac{2 k}{R^{3}}\right) x-2 \dot{y}-i y=P_{1} \\
\check{y}-\left(0^{2}-\frac{k}{R^{3}}\right) y+2 \dot{x}+i x=P_{2} \\
\ddot{z}+\frac{k}{R^{3}} z=P_{3} \tag{A18}
\end{array}
$$

where (') signifies differentiation with respect to time.
The following identities can be obtained by differentiation:

$$
\begin{align*}
& \omega^{\prime}=\dot{x}-\frac{e \omega \sin \theta}{1+e \cos \theta} x \\
& \omega^{2}{ }^{2} R^{\prime \prime}=\ddot{x}+\left(\frac{k}{R^{3}-\omega^{2}}\right) x \tag{A20}
\end{align*}
$$

where (') signifies $\frac{d}{d \cdot}=\frac{1}{d} \frac{d}{d t}$.
Expressions identical in form hold for η and ζ. Combining these equations with equations (A16) through (A18), and noting that

$$
\begin{equation*}
i=\omega \omega^{\prime}=-\frac{2 \omega^{2} e \sin \theta}{1+e \cos t} \tag{A21}
\end{equation*}
$$

yields

$$
\begin{align*}
2)^{2} \xi^{\prime \prime}-\frac{3 k}{R^{2}} i-2 \omega \mathrm{R}^{\prime} & =\mathrm{P}_{1} \tag{A22}\\
\left.{ }^{2}\right)^{2} \mathrm{R}^{\prime \prime}+2 \omega^{2} \mathrm{R} \xi^{\prime} & =\mathrm{P}_{2} \tag{A23}\\
\omega^{2} \mathrm{R} \zeta^{\prime \prime}+w^{2} \mathrm{R} \zeta & =\mathrm{P}_{3} \tag{A24}
\end{align*}
$$

Noting that

$$
\begin{equation*}
\frac{\mathrm{k}}{\mathrm{R}^{2}}=\frac{2{ }^{2} \mathrm{R}}{1+\mathrm{e} \cos } \tag{A25}
\end{equation*}
$$

the Tschauner-Hempel equations are obtained:

$$
\begin{align*}
\xi^{\prime \prime}-\frac{3}{1+e \cos t^{\prime}}-2 \eta^{\prime} & =\frac{1}{\omega^{2} R} P_{1} \tag{A26}\\
i^{\prime \prime}+2 \xi^{\prime} & =\frac{1}{\omega^{2} R} P_{2} \tag{A27}\\
\zeta^{\prime \prime}+\zeta & =\frac{1}{\omega^{\prime} R} P_{3} \tag{A28}
\end{align*}
$$

APPENDIX B. REVIEW OF FLOQUET THEORY

In this appendix the standard results of the theory of linear differiadial equations $17,18,19$ are reviewed for completeness and to establish the notation.

Theorem: The $n^{\text {th }}$-order linear inhomogeneous system

$$
\begin{equation*}
x^{\prime}(\theta)=F(\theta) x(\theta)+D(\theta) u(\theta) ; \quad x\left(\theta_{0}\right)=x_{0} \tag{B1}
\end{equation*}
$$

has the general solution

$$
\begin{equation*}
x(\theta)=X\left(\theta, \theta_{0}\right) x_{0}+X\left(\theta, \theta_{0}\right) \int_{\theta_{0}}^{\theta} X^{-1}\left(\tau, \theta_{0}\right) D(\tau) u(\tau) d \tau \tag{B2}
\end{equation*}
$$

where $X\left(\theta, \theta_{0}\right)$, the $n x n$ state transition matrix, is the solution of

$$
X^{\prime}\left(\theta, \theta_{0}\right)=F(\theta) X\left(\theta, \theta_{0}\right) ; X\left(\theta_{0}, \theta_{0}\right)=u \quad \text { (the unit matrix) }
$$

Proof 1: Substitute B2 into B1.
Proof 2: Assume the solution $x(\theta)$ to be made up of the complementary solution $x_{c}(\theta)$ and a particular solution $x_{p}(\theta)$:

$$
\lambda(\theta)=x_{c}(\theta)+x_{p}(\theta)
$$

The $n^{\text {th }}$-ordered homogeneous form of equation ($B 1$) has n special linearly independent solutions which can be arranged as columns of an $n x n$ matrix $X\left(e, \theta_{0}\right)^{*}$ which satisfies equation (B3). $X\left(\theta_{0}, \theta_{0}\right)$ was chosen as the
*X($\left.\theta, \theta_{0}\right)$ is known as the matrizant, fundamental matrix, state transition matrix, or matrix of partials,
unit matrix so that an arbitrary complementary solution would be given by

$$
\begin{equation*}
x_{c}(0)=X\left(\theta, \theta_{0}\right) x_{0} \tag{B5}
\end{equation*}
$$

In order to obtain the particlar solution assume the constants, x_{o}, of the homogeneous solution are now functions of θ, and call these functions $c(\theta)$.

$$
\begin{equation*}
x_{p}(\theta)=X\left(\theta, \theta_{0}\right) c(\theta) \tag{B6}
\end{equation*}
$$

This apparently arbitrary assumption was first made by Lagrange and was motivated by a desire to represent the eftects of planetary perturbations in the solar system as variation of the orbit elements. This assumption, it turns out, gives the exact solution for the special case of linear equations. When (B6) is substituted into (B1) we obtain

$$
\begin{equation*}
\mathrm{X}^{\prime} \mathrm{c}+\mathrm{X} \mathrm{c}^{\prime}=\mathrm{FXc}+\mathrm{Du} \tag{B7}
\end{equation*}
$$

or

$$
\begin{equation*}
c^{\prime}=X^{-1} \mathrm{Du} \tag{B8}
\end{equation*}
$$

since $X^{-1}=F X$. Equation (B8) may be integrated immediately to obtain

$$
\begin{equation*}
c(\theta)=\int_{\theta}^{\theta} x^{-1}\left(\tau, \theta_{0}\right) D(\tau) u(\tau) d \tau \tag{B9}
\end{equation*}
$$

proving equation (B2).
If F in equation (BI) is a constart matrix then it can be seen that

$$
\begin{equation*}
X\left(\theta, \theta_{0}\right)=\epsilon^{F\left(\theta-\theta_{0}\right)} \tag{B10}
\end{equation*}
$$

where for an arbitrary $n x \quad n$ matrix A,

$$
A \stackrel{\sum_{R=0}^{\infty}}{\infty} \frac{1}{R!} A^{R}
$$

Lemma: If in the system (Bl), $F(\theta)=F(\theta+2 \pi)$, then for any integer R.

$$
\begin{equation*}
X\left(\theta+2 \pi R, \theta_{0}\right)=X\left(\theta_{0} \theta_{0}\right) X^{R}\left(\theta_{0}+2 \pi, \theta_{0}\right) \tag{Bl}
\end{equation*}
$$

Proof: $\quad X^{\prime}\left(\theta, \theta_{0}\right) \triangleq F(9) X\left(\theta, \theta_{0}\right) ; \quad X\left(\theta_{0}, \theta_{0}\right)=U \quad$ (the unit matrix)
(B3). Since this must hold for all θ,

$$
\begin{align*}
X^{\prime}\left(\theta+2 \pi, \theta_{0}\right) & =F(\theta+2 \pi) X\left(\theta+2 \pi, \theta_{0}\right) \\
& =F(\theta) X\left(\theta+2 \pi, \theta_{0}\right) \tag{B13}
\end{align*}
$$

since $\boldsymbol{F}(\theta)=\boldsymbol{F}(\theta+2 \pi)$. The columns of $X\left(\theta+2 \pi, \theta_{0}\right)$ are n linearly independent solutions of the homogeneous part of (B1), and therefore, each of these columns, $x_{R}(1 \leq R \leq n)$, is given by $x_{R}=X\left(\theta, \theta_{0}\right) c_{R}$ where for each R, \dot{c}_{R} is an $n \times 1$ column matri. of constants. Let C be an $n x \operatorname{matrix}$ whose columns are the c_{R}. Then

$$
\begin{equation*}
x\left(\theta+2 \pi, \theta_{0}\right)=x\left(\theta, \theta_{0}\right) C \tag{B14}
\end{equation*}
$$

Since the columns of $X\left(\theta+2 \pi, \theta_{0}\right)$ are independent, c^{-1} exists. Equation (B14) must hold for all θ. Specifically it must hold for $\theta=\theta_{0}:$

$$
\begin{equation*}
x\left(\theta_{0}+2 \pi, \theta_{0}\right)=x\left(\theta_{0}, \theta_{0}\right) c \tag{B15}
\end{equation*}
$$

Since $X\left(\theta_{0}, \theta_{0} \geqslant U, C\right.$ is known and

$$
\begin{equation*}
X\left(\theta+2 \pi, \theta_{n}\right)=X\left(\theta, \theta_{0}\right) X\left(\theta_{0}+2 \pi, \theta_{0}\right) \tag{215}
\end{equation*}
$$

Equation 'Bl6) must also hold for all θ. Specifically it must hold for $\theta=\theta+2 \pi:$

$$
\begin{align*}
x\left(\theta+4 \pi, \theta_{0} ;\right. & \left.=x\left(\theta+2 \pi, \theta_{0}\right) \times i \theta_{0}+2 \pi, \theta_{0}\right) \\
& =x\left(\theta_{0}, \theta_{0}\right) x^{2}\left(\theta_{0}+2 \pi, \theta_{0}\right) \tag{B17}
\end{align*}
$$

By induction.

$$
\begin{equation*}
\mathrm{X}\left(\theta+2 \pi R, \theta_{0}\right)=\mathrm{X}\left(\theta, \theta_{0}\right) \mathrm{X}^{R}\left(\theta_{0}+2 \pi, \theta_{0}\right) \tag{B12}
\end{equation*}
$$

For the balance of the discussion it will be assumed that $\mathbf{F}(\theta)=\mathbf{F}(\theta+2 \pi)$.

Define a matrix $R\left(\theta, \theta_{0}\right)$ by

$$
\begin{equation*}
R\left(\theta, \theta_{c}\right) \triangleq X\left(\theta, \ddots_{0}\right) \epsilon^{-B\left(\theta-\theta_{0}\right)} \tag{B18}
\end{equation*}
$$

where B is a constant $n \times n$ matrix not yet spacified. Then

$$
\begin{equation*}
X\left(\theta, \theta_{0}\right)=R\left(\theta, \theta_{\mathbf{c}}\right) \epsilon^{B\left(\theta-\theta_{0}\right)} \tag{B19}
\end{equation*}
$$

(note the similarity with equation (B10)), Then using (312):

$$
\begin{equation*}
R\left(\theta+2 \pi, \theta_{0}\right) \epsilon^{B\left(\theta+2 \pi-\xi_{0}\right)}=R\left(\theta, \theta_{0}\right) \epsilon^{B\left(\theta-\theta_{0}\right)} R\left(\theta_{0}+2 \pi, \theta_{0}\right) \epsilon^{B 2 \pi} \tag{B20}
\end{equation*}
$$

Now define B to re

$$
\begin{equation*}
\mathrm{I} \equiv \frac{1}{2 \pi} \ln X\left(\theta_{0}+2 \pi, \theta_{0}\right) \tag{b21}
\end{equation*}
$$

then from (B19) and (B21):

$$
\begin{align*}
& X\left(\theta_{0}+2 \pi, \theta_{0}\right)=\epsilon^{B 2 \pi}=R\left(\theta_{0}+2 \pi, \theta_{0}\right) \epsilon^{B 2 \pi} \tag{B22}\\
& \therefore R\left(\theta_{0}+2 \pi, \theta_{0}\right)=U \text { (the unit matrix) }
\end{align*}
$$

(B6)

When (B23) is subsoituted into (B20) we obtain $R\left(\theta+2 \pi, \theta_{0}\right)=R\left(\theta, \theta_{0} j\right.$, so that $R\left(\theta, \theta_{0}\right)$ is a periodic matrix. Jow let

$$
\begin{equation*}
W \triangleq \epsilon^{B\left(\theta-\theta_{0}\right)} \Rightarrow W^{2}=B W \tag{B24}
\end{equation*}
$$

Then $X^{\prime}=F X$ inplies

$$
\begin{array}{ll}
& R^{\prime} W+R W^{\prime}=F R W \\
& \\
& R^{\prime} W+R B W=F J W \\
& \\
\text { and } & \cdot R^{\prime}=F R-R B \tag{B28}\\
& \\
& B=R^{-1} F R-R^{-1} R^{\prime}
\end{array}
$$

(B25)
(B26)

This result, where F and R are periodic aid B is constant, is called the Lyapunov reduction of equation (BI).

Let Λ be the Jordan canonical form of B; i.e.

$$
\begin{equation*}
\Lambda=Q B Q^{-1} \tag{B29}
\end{equation*}
$$

then

$$
\begin{equation*}
W=\epsilon^{B\left(\theta-\theta_{0}\right)}=\epsilon^{R^{-1} \Lambda Q\left(\theta-\theta_{0}\right)}=Q^{-1} \epsilon^{\Lambda\left(\theta-\theta_{o}\right)}{ }_{Q} \tag{B30}
\end{equation*}
$$

and

$$
\begin{equation*}
X\left(\theta, \dot{\theta}_{0}\right)=R\left(\theta, \theta_{0}\right) Q^{-1} \epsilon^{\left(\theta-\dot{\theta}_{0}\right)} Q \tag{B31}
\end{equation*}
$$

If the transformation $P(\theta)$ is introduced so that

$$
\begin{equation*}
z(\theta)=\mathbf{P}^{-1}(\theta) x(\theta) \tag{B32}
\end{equation*}
$$

where

$$
\begin{equation*}
z^{\prime}(\theta)=\Lambda z(\theta) ; \quad z\left(\theta_{0}\right)=\mathrm{p}^{-1}\left(\theta_{0}\right) x_{0} \tag{B33}
\end{equation*}
$$

then

$$
\begin{equation*}
\left.z(\theta)=\epsilon^{\Lambda\left(\theta-\theta_{0}\right)} z\left(\theta_{0}\right)=\epsilon^{\Lambda\left(\theta-\theta_{0}\right)}{p^{-i}}^{-i} \theta_{o}\right) x_{0} \tag{B34}
\end{equation*}
$$

Combining (B32) and (B34):

$$
\begin{equation*}
x(\theta)=\Gamma(\theta) \epsilon^{\wedge\left(\theta-\theta_{0}\right)} p^{-1}\left(\theta_{0}\right) x_{0} \tag{B35}
\end{equation*}
$$

From (B35) it follows that

$$
\begin{equation*}
X\left(\theta, \theta_{0}\right)=P(\theta) \epsilon^{\wedge\left(\theta-\theta_{0}\right)} p^{-1}\left(\theta_{0}\right) \tag{B36}
\end{equation*}
$$

If we take

$$
\begin{equation*}
\mathrm{Q} \triangleq \mathrm{P}^{-\bar{\perp}}\left(\dot{\theta}_{0}\right) \tag{B37}
\end{equation*}
$$

then it follows from (B31) that

$$
\begin{align*}
R\left(\theta, \theta_{o}\right) & =P(\theta) Q \\
& =P(\theta) P^{-1}\left(\theta_{o}\right) \tag{B38}
\end{align*}
$$

Equation (B36) is the form of the state transition matrix used in the basic text.

APPENDIX C. DERIVATICN OF A SPECIAL FORM OF THE

SOLUTION TO LINEAR EQUATIONS WITH PERIODIC COEFFICIENTS

The solutinn to

$$
\begin{equation*}
x^{\prime}(\theta)=F(\theta) x(\theta)+D(\theta) u(\theta) ; \quad x\left(\theta_{o}\right)=x_{0} \tag{Cl}
\end{equation*}
$$

has been shown to be (see Appendix B)

$$
\begin{equation*}
x(\theta)=X\left(\theta, \theta_{0}\right) x_{0}+X\left(\theta, \theta_{0}\right) \int_{\theta_{0}}^{\theta} X^{-1}\left(\tau, \theta_{0}\right) D(\tau) u(\tau) d \tau \tag{C2}
\end{equation*}
$$

Define σ such that

$$
\begin{equation*}
\sigma \triangleq \theta-\mathrm{NT}-\theta_{0} \tag{C3}
\end{equation*}
$$

Lemma: If $\mathbf{F}(\theta)=\mathbf{F}(\theta+\mathrm{T})$ then

$$
\begin{equation*}
\mathrm{X}\left(\theta, \theta_{0}\right)=\mathrm{X}\left(\theta_{0}+\sigma, \theta_{0}\right) \mathrm{X}^{\mathrm{N}}\left(\theta_{0}+\mathrm{T}, \theta_{0}\right) \tag{C4}
\end{equation*}
$$

Proof: In Appendix B it was established (for $T=2 \pi$, no restriction) that

$$
\begin{equation*}
X\left(\theta+N T, \theta_{0}\right)=X\left(\theta, \theta_{,}\right) X^{N}\left(\theta_{0}+T, \theta_{0}\right) \tag{C5}
\end{equation*}
$$

Let

$$
\begin{equation*}
\theta=\theta+\mathrm{NT} \tag{C6}
\end{equation*}
$$

then

$$
\begin{equation*}
x\left(\theta, \theta_{0}\right)=X\left(\theta-N T, \theta_{0}\right) X^{N}\left(\theta_{0}+T, \theta_{0}\right) \tag{C7}
\end{equation*}
$$

From (C3)

$$
\begin{equation*}
x\left(\theta, \theta_{0}\right)=x\left(\theta_{0}+\sigma, \theta_{0}\right) x^{N}\left(\theta_{0}+T, \theta_{0}\right) \tag{C8}
\end{equation*}
$$

Substituting relation (C8; into equation (C2) yields:

$$
\begin{gather*}
x(\theta)=x\left(\theta_{0}+\sigma, \theta_{0}\right) x^{N}\left(\theta_{0}+T, \theta_{0}\right) x_{0} \\
+X\left(\theta_{0}+\sigma, \theta_{o}\right) X^{N}\left(\theta_{0}+T, \theta_{0}\right) \int_{\theta_{0}}^{\theta} X^{-1}\left(\tau, \theta_{o}\right) D(\cdot) u(\tau) d \tau \tag{C9}
\end{gather*}
$$

Lemma: If $\mathrm{D}(\theta)=\Gamma(\theta+T)$ and $u(\theta)=u(\theta+T)$ the solution (C9) can be written

$$
\begin{align*}
x(\theta) & =X\left(\theta_{0}+\sigma, \theta_{o}\right) C^{N} x_{o}+X\left(\theta_{0}+\sigma, \theta_{o}\right)\left(\sum_{k=1}^{N} c^{k}\right) I_{1} \\
& +X\left(\theta_{0}+\sigma, \theta_{0}\right) \int_{\theta_{0}}^{\theta_{0}+\sigma} X^{-1}\left(\tau, \theta_{0}\right) D(\tau) u(\tau) d \tau \tag{C10}
\end{align*}
$$

where

$$
\begin{gather*}
C=X\left(\theta_{0}+T, \theta_{0}\right) \tag{Cll}\\
I_{1}=\int_{\theta_{0}}^{\theta_{0}+T}{x^{-1}\left(\tau, \theta_{0}\right) D(\tau) u(\tau) d \tau}^{l} \tag{C12}
\end{gather*}
$$

Proof: $\quad \int_{\theta_{0}}^{\theta} X^{-1}\left(\tau, \theta_{0}\right) D(\tau) u(\tau) d \tau=\int_{\theta_{0}}^{\theta}+T$

$$
\int_{\theta_{0}+\mathrm{T}}^{\theta_{0}^{i+2 T}} \mathrm{X}^{-1}\left(1, j_{c} i\right)(i) u_{i}(i) \mathrm{i}_{1}+
$$

$$
+\ldots+\int_{\theta_{0}+(N-1) T}^{\theta_{0}^{+N T}} \mathrm{X}^{-1}\left(i, \theta_{0}\right) D(\tau) \mathfrak{u}(\tau) \mathrm{d} \tau
$$

$$
+\int_{\theta_{c}}^{\theta} X^{-1}\left(\tau T, \theta_{o}\right) D(\tau) u(\tau) d \tau
$$

By simple changes of variable in eact integral obtain

$$
\int_{\theta_{0}}^{\theta} X^{-1}\left(\tau, \theta_{0}\right) D(\tau) u(\tau) d \tau=\int_{\theta_{0}}^{\theta_{0}+T} X^{-1}\left(\tau, \theta_{0}\right) D(\tau) u(\tau) d \tau+
$$

$$
\begin{aligned}
& +\int_{\theta_{0}}^{\theta} \mathrm{X}^{-1}\left(\tau+\tau, \theta_{0}\right) \mathrm{D}(\tau) \mathrm{u}(\tau) \mathrm{d} \tau+ \\
& +\ldots+\int_{\theta_{0}}^{\theta_{0}^{+T}} \mathrm{X}^{-1}\left(\tau+(N-1) \mathrm{T}, \theta_{0}\right) \mathrm{D}(\tau) \mathrm{u}(\tau) \mathrm{d} \tau \\
& \\
& +\int_{\theta_{0}}^{\theta-N T} \mathrm{X}^{-1}\left(\tau+\mathrm{NT}, \theta_{0}\right) \mathrm{D}(\tau) \mathrm{u}(\tau) \mathrm{d} \tau
\end{aligned}
$$

Use $X\left(\tau+N T, \theta_{0}\right)=X\left(\theta, \theta_{0}\right) X^{N}\left(\theta_{0}+T, \theta_{0}\right)$ shown above t obtain

$$
\begin{aligned}
& X^{-1}\left(\tau+N T, \theta_{0}\right)=X^{-N}\left(\theta_{0}+T, \theta_{0}\right) X^{-1}\left(\tau, \theta_{0}\right) \\
& \int_{\theta_{0}}^{\theta} X^{-1}\left(\tau, \theta_{0}\right) D(\tau) u(\tau) d \tau=\int_{\theta_{0}}^{\theta_{0}+T} X^{-1}\left(\tau, \theta_{0}\right) D(\tau) u(\tau) d \tau \\
& \quad+X^{-1}\left(\theta_{0}+T, \theta_{0}\right) \int_{\theta_{0}}^{\theta_{0}+T} X^{-1}\left(\tau, \theta_{0}\right) D(\tau) u(\tau) d \tau+
\end{aligned}
$$

$$
+\ldots .+X^{-(N-1)}\left(\theta_{0}+T, \theta_{0}\right) \int_{\theta_{0}}^{\theta_{0}^{+T}} X^{-1}\left(\tau, \theta_{o}\right) D(\tau) u(\tau) d \tau
$$

$$
+X^{-N}\left(\theta_{0}+T, \theta_{0}\right) \int_{\theta_{0}}^{\theta_{0}^{+\sigma}} X^{-1}\left(\tau, \theta_{o}\right) D(\tau) u(\tau) d \tau
$$

Introducc this last relationshjp into equation (C9) and simplify to obtain expressions (Cl0) through (C12). Thus are proven expressions (36) and (37) of the basic tert,

Lemma: If $!(\theta)=D(\theta+\mathrm{I})$ and $u(\theta)=u(\theta+M T)$ where M is an integer the solution (equation (C9)) can be written

$$
\begin{align*}
x(\theta)= & X\left(\theta_{0}+\sigma, \theta_{o}\right) C^{N} x_{o}+x\left(\theta_{0}+\sigma, \theta_{o}\right)\left(\sum_{k=0}^{\mathrm{r}-1} C^{N-k M}\right) I_{2} \\
& +X\left(\theta_{0}+\sigma, \theta_{0}\right) C^{N-r M} \int_{\theta_{0}}^{\theta-\mathrm{rMT}} \mathrm{X}^{-1}\left(\tau, \theta_{o}\right) D(\tau) \mathrm{u}(\tau) \mathrm{d} \tau \tag{Cl.3}
\end{align*}
$$

where $\quad \mathrm{C}=\mathrm{X}\left(\theta_{0}+\mathrm{T}, \theta_{\mathrm{o}}\right)$

$$
\begin{equation*}
I_{2}=\int_{\theta_{0}}^{\theta_{0}^{+M T}}{x^{-1}}^{\left.+M, \theta_{o}\right) D(\tau) u(\tau) d \tau} \tag{C15}
\end{equation*}
$$

r is an integer such that $r M \leq N \leq(r+1) M$
$\operatorname{Proof}: \int_{\theta_{0}}^{\theta} X^{-1}\left(\tau, \theta_{o}\right) D(\tau) u(\tau) d \tau=\int_{\theta_{0}}^{\theta_{0}^{+M T}} X^{-1}\left(\tau, \theta_{o}\right) D(\tau) u(\tau) d \tau+\ldots \ldots$

$$
\ldots+\int_{\theta_{0}+(r-1) M T}^{\theta_{o}^{+r M T}} X^{-1}\left(\tau, \theta_{o}\right) D(\tau) u(\tau) d \tau+\int_{\theta_{0}+r M T}^{\theta} X^{-1}\left(\tau, \theta_{o}\right) D(\tau) u(\tau) d \tau
$$

where r is descrabed by equation $i=16$) and N is still the largest number of integer values of T in θ. Again use simple variable changes in the integrals to obtain

$$
\int_{\theta_{0}}^{\theta} \mathrm{X}^{-1}\left(\tau, \theta_{0}\right) \mathrm{D}(\tau) \mathrm{u}(\tau) \mathrm{d} \tau=\int_{\theta_{0}}^{\theta} \mathrm{X}^{-1}\left(\tau, \theta_{0}\right) \mathrm{D}(\tau) \mathrm{u}(\tau) \mathrm{d} \tau+\ldots \ldots
$$

$$
\ldots .+\int_{\theta_{0}}^{\theta} X^{-1}\left(\tau+(r \cdots 1) M T, \theta_{0}\right) D(\tau) u(\tau) d \tau+
$$

$$
+\int_{0}^{\theta-r M T} x^{-1}\left(\tau+r M T, \theta_{o}\right) D(\tau) u(:) d \tau
$$

Again $X^{-1}\left(\tau+N T, \theta_{0}\right)=X^{-N}\left(\theta_{0}+T, \theta_{0}\right) X^{-1}\left(\tau, \theta_{0}\right)$, so that

$$
\begin{aligned}
& \int_{\theta_{0}}^{\theta} X^{-1}\left(\tau, \theta_{0}\right) D(\tau) u(\tau) d \tau=\int_{\theta_{0}}^{\theta} X^{0} X^{-1}\left(\tau T, \theta_{0}\right) D(\tau) u(\tau) d \tau+ \\
& \quad+X^{-M}\left(\theta_{0}+T, \theta_{0}\right) \int_{\theta_{0}}^{\theta_{0}+M T} X^{-1}\left(\tau, \theta_{0}\right) D(\tau) u(\tau) d \tau+ \\
& \quad+\ldots X^{-(r-1) M}\left(\theta_{0}+T, \epsilon_{0}\right) \int_{\theta_{0}}^{\theta_{0}+M T} X^{-1}\left(\tau, \theta_{0}\right) D(\tau) u(\tau) d \tau+
\end{aligned}
$$

$$
+X^{-r M}\left(\theta_{0}+T, \theta_{0}\right) \int_{\theta_{0}}^{\theta-x T T} X^{-1}\left(\tau, \theta_{0}\right) D(:) u(\tau) d \tau
$$

substitution into equation (C9) and simplification ylelds relations (C13) through (Cl5). Thus equations (39) and (40) of the basic text are proven.

Jenna: If $D(\theta)=D(\theta+T)$ and $u(\theta)=u(\theta+P)$ where p Mf for $M=0,1,2, \ldots \ldots$, then define K such that $K P \cong M T$, where K and M are both intesers. Then $x(\theta)$ may be approximated by:

$$
x(\theta)=x\left(\theta_{0}+\sigma, \theta_{o}\right) c^{N} x_{o}+x\left(\theta_{o}+\sigma, \theta_{0}\right)\left(\sum_{k=0}^{r-1} c^{N-k M}\right) 1_{3}
$$

$$
\begin{equation*}
+X\left(\theta_{0}+\sigma, \theta_{0}\right) C^{N-r M} \int_{\theta_{0}}^{\theta-r K P} X^{-1}\left(\tau, \theta_{u}\right) D(\tau) u(\tau) d \tau \tag{Cl7}
\end{equation*}
$$

where

$$
\begin{align*}
& C=\mathrm{X}\left(\theta_{0}+\mathrm{T}, \theta_{\mathrm{o}}\right) \\
& K P \cong \mathrm{MT}, \quad \mathrm{rKP} \leq \mathrm{NT} \because(\mathrm{r}-1) \mathrm{KP} \tag{Cl}
\end{align*}
$$

$$
\begin{equation*}
\therefore_{3}: \int_{\dot{\theta}}^{0} \hat{o}_{0}^{1 \cdot k p} \lambda^{-1}\left(\tau, \theta_{0}\right) \nu(\tau) u(\tau) d \tau \tag{C20}
\end{equation*}
$$

Proof: The proof of relationships (C17) through (C20: lollows the proof for relationships (C13) through (Cl6) directly.

The sampled-data solution defined by equation (73), that is

$$
\begin{equation*}
x(2 \pi N)=P(0) J^{N} P^{-1}(0) x_{0}+P(0) S P^{-1}(0) I \tag{D1}
\end{equation*}
$$

is (except for the I-matrix) composed of matrices whose closed forms are given in 'he main body of the text. The I-matrix, representing tre integral (over 2π) of the disturbance, is in analytic form

$$
\begin{equation*}
I=\int_{0}^{2 \pi} X^{-1}(\tau, 0) D(\tau) u(\tau) d \tau . \tag{D2}
\end{equation*}
$$

For the case of disturbances constant in the rotating refererice frame, that is disturbances of the form

$$
\begin{equation*}
u(\theta)=\binom{a_{\xi}}{a_{\eta}} \tag{D3}
\end{equation*}
$$

the I-matrix has been computed in closed form. The technique employed: in this calculation was primarily one of contour integration. The result is:

$$
I=\frac{1}{k / p^{2}}\left\{\begin{array}{l}
\frac{\pi(4-e)}{(1-e)\left(1-e^{2}\right)^{3 / 2}} a_{\eta} \tag{D4}\\
-\frac{3 e \pi\left(e^{2}+2 e+2\right)}{(1-e)^{2}\left(1-e^{2}\right)^{5 / 2}} a_{k}+\frac{6 e \pi^{2}}{(1-e)\left(1-e^{2}\right)^{2}} a_{\eta} \\
-\frac{\pi\left(e^{2}+10 e+4\right)}{(1-e)^{2}\left(1-e^{2}\right)^{3 / 2}} a_{\xi}+\frac{6 \pi^{2}}{(1-e)^{2}\left(1-e^{2}\right)} a_{\eta} \\
\frac{3 \pi\left(e^{2}-2 e^{2}-2\right)}{\left(1-e^{2}\right)^{5 / 2}} a_{\eta} \\
\end{array}\right.
$$

where p is the semilatisrectum of the reference (nominal) ellipse,
k is the gravitational field constant, and
\in is the eccentricity of the reference ellipse.
For disturbances of the form

$$
u(\theta)=\left|\begin{array}{c}
c_{1} \epsilon^{j K_{1} \theta} \tag{D5}\\
c_{n} \epsilon_{2} K_{2} \theta
\end{array}\right|
$$

where K_{1} and K_{2} are integers,

$$
c_{1} \text { and } c_{-2} \text { are complex constants, }
$$

the I-matrix becomes

$$
\begin{align*}
& I=\frac{l}{k / p^{2}} \tag{D6}
\end{align*}
$$

where p, k, and e are as defined in the previous case, and

$$
\begin{align*}
f_{1}= & \frac{\pi}{16 e\left(1-e^{2}\right)^{5 / 2}}\left\{j 32 c_{1}\left(1-e^{2}\right)^{2} K_{1} Z_{1}^{K_{1}}-e^{3} c_{2} z_{1}^{K_{2}^{-4}}\left[e\left(K_{2}^{2}+K_{2}\right) z_{1}^{8}\right.\right. \\
& +4\left(K_{2}^{2}-K_{2}\right) z_{1}^{7}=2 e\left(7 K_{2}-2\right) z_{1}^{6}-4\left(K_{2}^{2}+9 K_{2}-12\right) z_{1}^{5}-2 e\left(K_{2}^{2}-20\right) Z_{1}^{4} \tag{D7}\\
& \left.\left.-4\left(K_{2}^{2}-9 K_{2}-12\right) Z_{1}^{3}+2 e\left(7 K_{2}+2\right) z_{1}^{2}+4\left(K_{2}^{2}+K_{2}\right) Z_{1}+e\left(K_{2}^{2}-K_{2}\right)\right]\right\}
\end{align*}
$$

$$
\begin{align*}
& f_{2}=\frac{2 \pi}{\sqrt{1-e^{2}}}\left\{j c_{1} K_{1} Z_{1}{ }^{K_{1}}-c_{2} Z_{1}{ }^{K_{2}}\right\} \tag{D8}\\
& f_{4}=-\frac{\pi}{4 e\left(1-e^{2}\right)^{3 / 2}}\left\{2 e^{2} c_{1} Z_{1}^{K_{1}-2}\left(K_{1} Z_{1}^{4}-4 Z_{1}^{2}-K_{1}\right)+j c_{2} K_{2} Z_{1}^{K_{2}-2}{ }_{L} e^{2} K_{2} Z_{1}^{4}\right. \\
& \left.\left.+4 e\left(K_{2}-1\right) z_{1}^{3}+4\left(\perp-2 e^{2}\right) z_{1}^{2}-4 e\left(K_{2}+1\right) z_{1}-e^{2} K_{2}\right]\right\} \tag{D9}\\
& f_{3}=-\frac{2 \pi}{\sqrt{1-e}}\left\{c_{1} Z_{1}{ }^{K_{1}}\left(1+K_{1} \ln \left|Z_{2}\right|+j K_{1} \pi\right)+c_{1} K_{1} S_{1}+c_{2} Z_{1}{ }^{K_{2}}\left(j \ln \left|Z_{1}\right|-\pi\right)\right. \\
& \left.+j c_{2} S_{2}\left(K_{2}\right)\right\}+\frac{2 \pi}{1+e}\left\{c_{1}+2(1+e)\left[j c_{1} K_{1} S_{2}\left(K_{1}\right)-c_{2} S_{2}\left(K_{2}\right)\right]\right\} \\
& -\frac{\pi}{48 e^{2}\left(1-e^{2}\right)^{5 / 2}}\left\{e ^ { 3 } c _ { 1 } Z _ { 1 } ^ { K _ { 1 } - 4 } \left([(8 e + 4 e ^ { 3 }) \sqrt { 1 - e ^ { 2 } }] \left[\left(K_{1}^{2}-3 K_{1}+2\right) Z_{1}^{6}\right.\right.\right. \\
& \left.-\left(2 K_{1}^{2}-8\right) z_{1}^{4}+\left(K_{1}^{2}+3 K_{1}+2\right) z_{1}^{2}\right]+\left[2-2\left(1-e^{2}\right)^{3 / 2}\right]\left[\left(K_{1}^{2}-K_{1}\right) Z_{1}^{7}\right. \\
& \left.-\left(K_{1}^{2}+9 K_{1}-12\right) Z_{1}^{5}-\left(K_{1}^{2}-9 K_{1}-12\right) z_{1}^{3}+\left(K_{1}^{2}+K_{1}\right) Z_{1}\right]+ \tag{D10}\\
& +\left[e-\left(e-2 e^{3}\right) \sqrt{1-e^{2}}\right]\left[\left(K_{1}^{2}+K_{1}\right) Z_{1}^{8}-\left(14 K_{1}-4\right) Z_{1}^{6}-\left(2 K_{1}^{2}-40\right) Z_{1}^{4}\right. \\
& \left.+\left(14 \mathrm{~K}_{1}+4\right) \mathrm{Z}_{1}^{2}+\left(\mathrm{K}_{1}^{2}-\mathrm{K}_{1}\right)\right]+\left[24 \mathrm{e}\left(1-\mathrm{e}^{2}\right)\right]\left[\left(\mathrm{K}_{1}-2\right) \mathrm{Z}_{1}^{6}\right. \\
& \left.\left.-\left(2 K_{1}-2\right) Z_{1}^{4}-K_{1} Z_{1}^{2}\right]\right)-j 4 c_{2}\left(1-e^{2}\right) K_{2} Z_{1}^{K_{2}}\left(\left[\left(4+2 e^{2}\right) \sqrt{1-e^{2}}\right.\right. \\
& -4]\left[e\left(K_{2}^{-1}\right) Z_{1}^{3}-e\left(K_{2}+1\right) Z_{1}\right]+\left[\left(1+2 e^{2}\right) \sqrt{1-e^{2}}-1\right]\left[e^{2} K_{2} Z_{1}^{4}\right. \\
& \left.\left.\left.+\left(4-8 e^{2}\right) z_{1}^{2}-e^{2} K_{2}\right]\right)\right\}
\end{align*}
$$

$$
\begin{aligned}
S_{1}= & \sum_{k=0}^{r-1} \frac{r!}{(r-k)!k!(r-k)}\left\{z_{1}^{k}\left(1-z_{1}\right)^{r-k}-z_{1}^{k}\left(-Z_{1}\right)^{r-k}-z_{2}^{k}\left(1-Z_{2}\right)^{r-k}\right. \\
& \left.+z_{2}^{k}\left(-Z_{2}\right)^{r-k}\right\}+z_{1}^{r} \ln \left(\frac{Z_{1}-1}{Z_{1}}\right)-z_{2}^{r}\left(\frac{Z_{2}^{-1}}{Z_{2}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& S_{2}\left(K_{1}\right)=\sum_{k=0}^{\infty} \frac{(2 k)!}{2^{2 k}(k!)^{2}(2 k+1)}\left(\frac{j e}{2}\right)^{2 k+1} x
\end{aligned}
$$

$$
\begin{align*}
& \left.+\left[\frac{1}{\left(2 k-K_{1}\right)!}-\frac{d^{2 k-K_{1}}}{2 Z^{2 k-K_{1}}}\left(\frac{\left(Z^{2}-1\right)^{2 k+1}\left(Z_{1} Z^{2}-2 Z_{1} Z_{1}\right)^{2 k+1}}{\left(e Z^{2}+2 \mathrm{Z}+e\right)^{2 k+2}}\right)\right]_{\mathrm{Z}=0}\right\}, \\
& Z_{1}=-\frac{1}{e}\left(1-\sqrt{1-e^{2}}\right) \quad, \tag{D13}\\
& Z_{2}=-\frac{1}{e}\left(1+\sqrt{1-e^{2}}\right) \quad . \tag{D14}
\end{align*}
$$

The infinite series S_{2} in the f_{3} term above arises in the evaluation of

$$
\begin{equation*}
S_{2}(K)=\frac{1}{4 \pi} \int_{0}^{2 \pi} \frac{\sin ^{-1} \lambda}{(1+e \cos \tau)} \epsilon^{j K \tau} d \tau \tag{D15}
\end{equation*}
$$

-

where $\lambda=\frac{e \sin \tau\left(1-Z_{1} \cos \tau\right)}{1+e \cos \tau}$.

An approximation to this integral can be made by observing that
$\lambda=e \sin \tau\left[1-\left(Z_{1}+e\right) \cos r+e\left(Z_{1}+e\right) \cos ^{2}-e^{2}\left(Z_{1}+e\right) \cos ^{3} t+\ldots\right]$ (D17)
and

$$
\sin ^{-1} \lambda=\lambda+\frac{1}{6} \lambda^{3}+\ldots+\frac{(2 k)!}{2^{2 k}(k!)^{2}(2 k+1)} \lambda^{2 k+1}+\ldots . \quad \text { (D18) }
$$

Since Z_{1} and e are of the same order of magnitude, λ may be approximated to whatever accuracy desired by cutting off the series and discarding similar powers of e in λ^{3}, λ^{5}, etc. Term by term integration can then be accomplished on the unit circle.

REFERENCES

1. Lange, B., "The Drag-Free Satellite," AIAA J., 2, 1964, pp. 1590-1606.
2. Danby, J. M. A., Fundamentals of Celestial Mechanics, Macmillan Co., 1962, pp. 235-237.
3. Smart, W. M., Celestial Mechanics, Longmans, 1953, p. 293.
4. Wheelon, A. D., "Midcourse and Terminal Guidance," Ch. 26 of Space Technology, ed. by H. S. Seifert, John Wiley and Sons, Inc., 1959.
5. Geyling, F. T., "Satellite Perturbations from Extraterrestial Gravitation and Radiation Pressore," J. Franklin Inst., 269, May 1960 , p. 375.
6. Geyling, F. T., "Drag Displacements and Lecay of Near-Circular Satellite Orbits," AIAA J., $\underline{2}$, 1964, pp. 1174-1178.
7. Clohessy, W. H. and R. S. Wiltshire, "Terminal Guidance System for Satellite Rendezvous," J. Aerospace Sci., 27, 1960, pp. 653-658.
8. Battin, R. H., Astronautical Guidance, McGraw-Hill Book Co., 1964 p. 304 f .
9. Danby, J. M. A., 'Integration of the Equations of Planetary Motion in Rectangular Coordinates," Astron. J., 67, 1962, pp. 287-299.
10. Danby, J. M. A., "Matrix Mathods in the Calculation and Analysis of Orbits," AIAA J., $\underline{2}, 1964$, pp. 13-16.
11. Danby, J. M. A., "The Matrizant of Keplerian Motio:t," AIAA J., $\underline{2}$, 1964, pF. 16-19
12. Tschauner, J. and P. Hempel, "On Minimum-Fuel Rendezvous Techniques," AIAA Paper No. 65-65.
13. Tschauner, J. and P Hempel, "Rendezvous zu einem in elliptischer Bahn umlaufenden Ziel," (paper to be published).
14. Coddington, E. A. and N. Levinson, Theory of Ordinary Differential Equatiuns, MeGraw-Hill Book Co., 1955, pp. 78-81.
15. Lange, B., "'". Control and Use of Drag-Free Satellites," Stanford University Technical Report, SUDAER No. 194, June 1964.
16. Escobal, P. R., Methods of Orbit Determination, John Wiley and Sons, Inc., 1965, pp. 155-162.
17. Coddington, E. A. and N. Levinson, op. cit., Ch. 3.
18. Gantmacher, F. R., The Theory of Matrices Vol. II, Chelsea, 1960, Ch. XIV.
19. Bellman, R., Stability Theory of Differential Equations, McGraw-Hill Book Co., 1953, Ch. 1.
20. Lange, B. and B W. Parkinson, "On the Error Equations of Inertial Navigation with Special Application to Orbital Determination and Guidance," presentcd at the AIAA/ION Astrodynamics Specialist

Conference at Monterey, California, Sept. 1965.

[^0]: *The normal form (equaticn (13) with Λ given by equation (18)) corresponds to two decoupled seconci-order systems: a pure inertia or $1 / \mathrm{s}^{2}$ plant and a harmonic oscillator with a natural period equal to the orbit period. The $1 / s^{2}$ plant may be interpreted physically as motion in a similar coplanar, coaxial ellipse with higher or lower total energy. The harmonic oscillator corresponds to motion in a coplanar ellipse with the same period, but with different eccentricity and/or orientation.
 **This remarkable property is not usually possessed by even the simplest of periodic systems. Compare, for example, Mathieu's Equation, $\ddot{\theta}+\omega_{0}^{2}(1-e \cos 2 \omega t) \theta=0$.

[^1]: *As was noted previously, out of plane motion is simple, decoupled, harmonic motion, requiring no ciscussion.

