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Introduction

The Annual Report submitted to JPL in January 1965 contained
results obtained during the first year of work on this contract. The
present report is concerned with extensions of some of the work reported
previously.

This report is in two distinct parts. The first is concerned with
a statistical approach to the problems of estimation and of combined
identification and control. The material presented in this section
represents a continuation and, to a certain extent, a summation of the
material in chapter 5 of the annual report.

The second section of this report deals with the problem of the
worst initial condition. For a particular specific optimal control
scheme, 1t is useful to know which initial condition on the state of the
system being controlled will cause the "worst” system behavior, where
"worst" implies that the performance index takes on its maximum value.
The initial condition within the range of interest which causes the
performance index to take on its maximum value is termed the "worst
initial condition."

Areas for future investigations are indicated in each section.
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SECTION I

A Statistical Formulation of the Estimation and
the Combined Identification and Ccntrol Problems.

Introduction

This section represents work which is related to that reported in
chapter 5 of the annual report. It is not intended that this section
be rcad completely separately from Chapter 5 as:

(1) Answers to several of the questions posed in that chapter

will be suggested in this section and

(2) The discussion here in a sense provided the motivation for

the work reported in chapter 5.

The purpose of this section is the following: (A) To survey the
literature and to outline the results available concerning estimation
problems‘involving/continuous nonlinear dynamical systems (B) To
survey the literature and to outline the results available concerning
combined identification and control problems involving continuous
dynamical systems with disturbances (C) To present a critical review
of items (A) and (B), and (D) To suggest an alternate approach to the

estimation problem and also to the combined identification and control

problen.

For the estimation problem of the type under consideration, there

LI

arc many secmingly related results reported in the literature. Essen-
tially, there are three different viewpoints being presented by the
various writers. The different viewpoints are those of the physicist,

the mathematician, and the engineer.
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The Brownian motion problem in physics has aspects which are similar
to the estimation problems under consideration. The papers by Chand-
rasekhar [2], Kac [8]), and Wang and Uhlenbeck [13] are among the classics
in this area. Brownian motion is the name given to the motion of a small
particle immersed in a fluid. In the past, the physicists have been
concerned with constructing models which describe the gross effects of
the motion of the immersed particle. One such model is an ordinary
differential equation with position as the dependent variable. In order
to account for the approximately 1021 collisions per second that the
particle undergoes, a rapidly fluctuating rforcing function is applied to
the differcntial equation. Occasionally, to simplify the analysis, the
forcing function is assumed to be gaussian white noise. The success in
predicting the gross effects has been the Jjustification of using this
nodel.

The mathematician on the other hand is concerned with the mathe-
matical meaning of the model. For example, sec Doob, reference [4].

The question is whether it is mathematically correct to treat a differ-

ential equation with a gaussian white noise input by the normal rules of

integration. I not, can a consistent set of axioms and rules be developed?

Such questions often lead the mathematician into developing an entirely
new area of pure mathematics. In this particular instance the new area

is that of stochastic or Ito equations, [3, 7]. There is no guarantee

that the new mathematics will help in the solution of the original problem

of direct physical Interest.
The engineer often begins with a specified physical system. In
many cases it is known {rom experience that the physical system may be

described, within observational errors, by an ordinary differential
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equation. It is also known that disturbances from various sources are
acting on the system. The object is to describe in a useful manner the
eftects of the disturbances on the system. It is not the intent here to
become involved with philosophical discussions concerning the nature of
the disturbances, i.e., whether the terms unknown or unknowable are more
abpropriate. Rather it will be conceded that a statistical approach to
the disturbances may be valid. Some writers, [9, 10, 15}, in order to
obtain models for the disturbances which are tracteble, appcal to the
purcly mathematical results in the areas of stochastic or Ito equations.
In doing this they end up with models for the system which are also
stochastic or Ito equations. While all the operations may be mathematically
correct, this nevertheless represents a dilcmma. Initially the system was
described adequately by an ordinary differential equation, which could be
simulated; the final resuit is s mathcematical representation of the system
in terms of stochastic of Ito cquations which cannot be simulated. It
would seem that too high a price is being paid for models of the distur-
bances which are mathematically tractable.

The remaining sections of the report will develop the various ideas
briefly mentioned above in more detail. For convenience the scalar case

will be considered.

1. Statistical Analysis of Dynamical Systems

Consider the following class of systems; let the equation of motion
be given by
¥ = glt, x) + x(t, x) u(t) (1-1)

and let the output observations be
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y(t) = h(t, x) + v(t) (
where u(t) and v(t) represent disturbances:

A fundamental problem in the statistical analysis of dynamical
systems is the following: Given a statistical description of the
disturbances u(t) and v(t), a statistical description of x(to), the
initial condition for equation (l—l), and a realization of the process
y, determine a statistical description of the process X.

In particular, for estimation purposes the statistical description
of the process x that would be the mosttdesirable would be the density
function of x conditioned on the realization of y, i.e., the function
P(a, t) where

P(a, t) da = Pr{a < x(t) <a + da|y(1), t, <1< t} (1-3)

The a-posteriori density function, P(a, t) of the state contains

all the statistical information concerning the value of x at time t.
If P(a, t) could be obtained, then in principle the problem of estimating
x(t) is solved,
For example let %(t) denote an estimate of x(t), and denote the
error in this estimate by e(t); thus
e(t) = x(t) - x(¢t) (1-4)

Suppose P{a, t) is known and is as indicated below.

4 Pla,t)

11
Y, Xy % a
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Then any criterion based upon the error may be minimized. TFor example,
for P(a, t) as shown, the estimate %X = X,, the maximum of P(a, t), or

the mode, would represent the most likely state. The estimate X = %55
the conditional mean, would represent the minimum variance estimate of

x, iL.e.,
- ~ 2
Min | (a - %)° P(a, t) da (1-5)
x

Finally the estimate % = XB’ the median, would represent the minimax
estimate of x, i.e., the valuc which minimizes | a - X5 | , the maximum
possible error.

With the knowledge of P(a, t), in addition to being able to deter-
nine the best estimate to any particular criterion, it is also possible
to determine thc spread about the particular estimate. Thus a quality
of the estimate or confidence level may also be determined.

In princinle, many different types of estimation problems may be
considered by the present format. In general, the density function of

x conditioned on the realization of y may be written as

P(a, L tg) da = Pr{a < x(tl) <a +da|y(1), t <1< tz} (1-6)
For tl > te the estimation problem becomes the so-called prediction
problem, for tl < t2 it becomes the sc-called smoothing problem, and
for tl = t2 it becomes the so-called filtering problem.

The estimation problem considered herein will be the filtering

problem, i.e., to estimate the valuec of the state x(t) based on y(t),

t <=

N

variable, the running time variable. The estimation of the current value

of the state x(t) based on y(1), t <1 <t, for all values of t is

defined as the scquential filtering problem.

t. For real time applications the variable t is the independent
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A complete solution of the sequential filtering problem could be

obtained, in principle, if the time evolution of the a-posteriori

density function of x(t) were known. Thus it is necessary to determine
how the function P(a, t) evolves in time.

At this point it is necessary to appeal to the existing literature
on the theory of stochastic processes. The area of stochastic process
theory which has received considerable attention as far as applications
to physical problems is concerned is the theory of Markov processes. In
some sense the great effort in the application of Markov process theory
to physical problems has in part been motivated by the desire to make
the stochastic problem somewhat analogous to the deterministic problem.
Bellman [1] seems to be one of the first writers to point out the
application of Markov processes to certain control and filtering problems.
A Markov process z of the type of interest here is defined by requiring

that

Pri{a < z(t + &) < a +da|z(1), t,ST< t}

z(t)} (1-7)

for all a, t, and A. In a sense then the future statistical behavior of

= Pria < 2(t + 4) <a + da

the Markov process z depends on the "initial condition" and not on how
the process arrived at this "initial condition". This is analogous to
certain deterministic processes.

Historically one of the first physicael problems to be treated using
the Markov process approach was that of Brownien Motion. Even though the
basic starting places for applying Markov process theory to Brownian
motion and to the filtering problem are considerably different it will

be instructive to consider Brownian motion.
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2., Brownian Motion

An eloguent discussion of the theory of Brownian Motion is contained
in the references [2, 8, 13]. It is the intention here to display the
pertinent facts as they relate to the estimation problem.

Let x denote the position of the particle end let P(a,t |y) denote
the transition probability

P(a, t|y) da = Pr{a < x(tl +t)<a+da x(tl) =y} (e-1)
The basic starting place for the study of Brownian motion [13] 1s to make
the assumptions (1) that x is a Markov process and (2) that only the
first and second order moments of the change, in time dt, of the coordinate

of the particle are proportional to &t, i.e., if

an(z, o5t ) =\/ﬁ(a - 2)" P(a,5t | z) da (2-2)

then as 8t » O only a, and a_. become proportional to &t. lLet

2

]

) 1
A(z) = lim T al(z, 5t)

o)
(2-3)

. 1
B(z) = lim 5t ag(z,St)

Under these assumptions it can be shown [13] that P satisfies the

Fokker-Planck equation
2
R LRI R FUORCRN Y

A somewhat different approach to the Brownian Motion problem is to
construct a model to describe the motion of the particle. This is
usually done by modeling the motion of the particle by Langevin's equation
X = - px o+ g(t) (2-5)
where :(t) represents a functlon which varies extremely rapidly compared
to the variation of x. In order to consider the slightly more general

case ac represented by eguaticns (2-3%) the generalized Langevin's equation
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becomec

% = A(x) + B(x) £(t) (2-6)
For x to be a Markov process with the transition probability obeying
the Fokker-Planck equation the mathematics reguires that £(t) be
gaussian white noise. (Assume for convenience that & has zero mean and
E[(az)°) =1+ at.)

It is at this point that the basic differences in the starting places
for the study of Brownian motion and the study of the estimation problems
considered beccme apparent. In the Brownian motion problem the basic
assumptions concern the statistical character of the motion. From these
statistical descriptions the Fokker-Planck equation describing the time
cvolution of the probability density function may be obtained. Knowing
the statistical character of the motion,a model in the form of a differ-
ential equaiion may alsc be determined, and results derived via this
mudel.  Thus the differential equation itself is not the basic starting
place. For the estimation problems under consideration,the differential
equation describing the motion of the system is specified. Thus one
starts with the differential equation. The stochastic nature of the
problem enters via random inputs to thc system, observational errors,
and unknown initial conditions.

Certain mﬁtbematical difficulties occur when the differential
equation is the starting place and one attempts to model the state
variables by a Markov process. For example, in equation (2—6), for x to
be a Merkov process £(t) must be gaussian white noise. The mathematical
difficulty is that with £(t) being gaussian white noise, equation (2-5)
cannot be interpreted as an ordinary differential cquation but should

be treated as a stochastic equation; see for examples references [3,4].
H s
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Stochastic equations cannot be treated as ordinary differential equations.
kxcept for this methematical difficulty, for estimation problems of
the class under consideration, starting with equation (2-6) is appealing.
In this cace the Fokker-Planck equation describes the time evolution of
the a-pricri (or open loop) probability density function of x. In order
to account for the observations, i.e., the rcalization of y, one would
like to generalize equation (2-4) so that the time evolution of the
conditional probability density function of x could be obtained. This

conditional probability density function would be the a-posteriori (or

closed loop) density function of x.

Since physical systems are never disturbed by infinite bandwidth
signals, or equivalently gaussian white noise, initially some approxi-
mations must be made. It would seem plausible that if the disturbances
acting on the system and the observational errors are white over the
¢ ffective bandwidth of the system, then these signals could be approximated
by infinite bandwidth signals and then the mathematical results from the
Theory of Markov Processes applied.

3. An Application of the Theory of Conditional Markov Processes to
Filtering Problems

Apparently the first systematic study of conditional Markov Processes

was made by Stratonovich [12]. Kushner [9, 10} considered several types

of conditional Markov Processes. The results given in this section are
L contained in reference [10].

The starting place for the study of the conditional Markov Process
of intercst is the equation

| ¥ = g(t, x) + u(t) (%-1)



- 11 -

the output observations are given by

y(t) = n(t, x) + v(t) (3-2)
where u(t) and v(t) are gaussian white noise. It must be emphasized
that there are mathematical difficulties involved in the interpretation
of (%-1). Also, regardless of the meaning of (3-1) it only approximates

in some menner the actual physical situation. In order to employ notation

cormonly used, (3-1) and (3-2) will be written as

dx = o(t, x) dt + d& (3-3)
dz = h(t, x) dt + at (3-4)
where it will be assumed that E(dt) = E(df) = 0 and E[(dg)e] = 022 dt and

E[(dg)gj = 012 dt. Notice that formally y = dz/dt.

Let Y(%t) represent all the observed information in the interval

- t, < T <t, i.e., the entire function z(1), t_ <71 <t or y(1), t, < TSt

The conditional density function of x at time t will be denocted by
P(a, t|¥(t)) or P(a, t) or P, It can be shown [10] that P(a, t) is a
Markov process, i.e.,

Prip <P(a, t +A) <p + dp | P(a, 1), to <1<t}

=Pr{p <P(a, t +8) <p + dp|P(a, t)} (3-5)

Using a method of analysis analogous to that used to derive the

Fokker-Planck cquation for Brownian Motion, it can be shown [10]) that

the time evolution of P(a, t) is described by

ar(a, t) = P(a, t + dt) - P(a, t)
= P(a, t) (dz - Eh dt) 10 (h - Eh)
O [
1
- (g P)_ at + % (022 P) . dt (3-6)

where (-)'1 denctes the partial derivative of the guantity (- ) with

respect to a, and Eh = E[h(t, a)]

=L/ﬁh(t, a) P(a, t) da
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There secms to be some confusion in the technical literature as to
whether eguation (3-6) represents a partial differential eguation after
formally dividing by dt, or whether (3-6) is a stochastic equation.
Notice that formally dividing through by dt yields a term %%. The
observation y = dz/dt has an additive gaussian white noise term; hence
to be consistent it would seem that (3-6) is a stochastic equation.

Since the starting place represented by equations (3-1) and (3-2)
only approximated the actual physical sistuation, it appears that
equation (7-6) still approximates in some manner the actual time
evolution of P(a, t).

Neglecting the possible stochastic aspects of equation (3-6), the
equation itself is not easily simulated, as it is a forced, partial,
differential, integral equation (the E operator implies integration
with respeet to P).

An alternate Markov Process representation, suggested in references
[9, 10J, is to consider the moments of P. Let m represent thc mean and

m‘j the Jth central moment of P, il.e.,

m(t) =\/qa P(a, t) da (3-7)

n (6) = [(a - w)? Ba, ©) o | (3-8)

The equations that the moments of P satisfy may be derived using the

same schcme used when deriving equation (%-6). In the derivation of
equation (3-6) it is shown [10} that for an arbitrary but triply

differentiable function £(a)
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fﬁ(a)[P(a, t +dt) - P(a, t)] da

N
=f£(a) dq da +j (za gdt + % 2o 022 dt) P(a, t) da (3-9)

where

dQ = P(a, t)(dz - Eh dt) —% (h - En) (3-10)

9

For cxample, (i) the equation that m(t) satisfies may be determined
as follows

dn(t) = m(t + dt) - m(t)

a
=L/ a P(a, t + dt) da —k/\a P(a, t) da

n

=J a dP da (3-11)
L henee letting £(a) = a in (3-9) and (3-10) yields
. am(t) = E g dt + -1—2 E[{h(a - m)) (dz - En dt) (3-12)
a
1

and (ii), the cquation that m_(t) satisfies may be determined as
(a8

1rollows
| dmz(t) = m2(t +dt) - me(‘u)
=f(a - m(t +dt))° P(a, t + dt) dt
- [(a - a(e))? Be, ©) as

LEA

carrying out this calecwlation yields

o}
dm, (t) = 2E[g(a -~ m)] dt + 02“ dt

1 1 2
; - == [E(h{a - n}))° at
ol‘
1 o)
M [Eah - EhEa® - 2re{Eh(a - m)}}){dz - Eh dt} z-13)
g

1
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In the same fashion equations for mj, LWIREE and so on may be
determined.

Notice that formally dividing (3-12) and (2-13) by dt yields a term
dz/dt in the right hand side. In the literature the answer to the
question concerning the stochastic nature of these equations analogous
to those concerning equation (3-6) is unclear. However, even if this
question is neglected, in general, equations (3-12) and (3-13) and so on
éo not represent ordinary differential equations since the expectation
operator is involved, TFor exanplc

Elg(t, a)a - m)1 = [oft, a) (a -'m) B(a, ) G2 (5-34)

Thus the cguations for the central moments of P alsc involve integra-
tions with respecct to P.
The present statistical formulation of the filtering problem leads

naturally to one version of the so-called stochastic optimal control problem.

i

4, Combined Identification and Control

The combined identification and control problem as considered in
this report consists in taking néisy observations on the output of the
svstem and, based upon the observations, synthesizing control signals
vhich will control the plant in some predetermined fashion. In general
the plant itself may not be caupletely known, i.e., there may be parameters
in the plant equation which are unknown.

Florentin in [5, 6]}, Kushner in [9, 10, 11}, and Wonham in [14]
consider some of the various aspects of this and related problems of
optimal contrcl in the presence of disturbances.

The statistical approach to this problem consists in using the
statistical description of the disturbances and observational errors to

determine the a-vposteriori statistical characteristics of the states.
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The problem then becomes one of determining these a-posteriori statistics

in a sequential manner and controlling these probabilistic measures in
some more desireable fashion.
The fcatures of the combined identification and control problem
are more apparent when it is coupared with the simpler deterministic
optimal control problem. A class of deterministic optimal control prob-
lems may be described as follows: The equation of motion of the plant is
X = glt, x, u) (4-1)

The problem is to select u(t) (or u(x)) so as to minimize

T
Jrk(r, X, u) dt (4=2)
t
o
where x(to) and x(T) must be on some appropriate initial and terminal
manifolds respectively.
- A natural stochastic analog of the above is as follows: The plant
is described by
X = glt, x, u) + &(x) (h-3)
and the observations arc
y(t) = n(t, x) + ¢(¢) (4-4)
where £(t) and §{(t) are geussian white noise. This assumption is,in

general, necessary in order %o obtain any results.

Based on ihe cbservations y, the problem is to synthesize u so as
to minimize some index of performance related to the expression (4-2).
Let P(a, t) be the a-posteriori density function of the state x at time t,

as described in section 2.  An appropriate gerneralization of expression

!
|
|
|
1

()4'2) is



T
r
B¥/N&/ k{t, a, u) P(a, 1) da dx (L-5)
L
o
The expression (4-5) requires some interprctation. Let P(a, to)
the a-priori density function of x be given. Suppose u(rt), t ST

is specified, then for cach realization y(1), to < 1 < T the expression

3

Ao
\/ \/ k(t, a, u) P(a, 1) da dz (4-6)
s
is a number, the cost of control for the particular u and y. With
P(a, to) given and u(t), t, < T < T specificd, expression (4k-6) is,in
general, a random variable.
Thus, for a given u(t), expression (L-5) represents the expected
cost of control. The stochastic control problem is to select u(r) as
an operetion on the past chservations so as to minimize the expected
cost of control.
With the gaussian white noise assumption on ¢ and §, P(a, t) is
itself a Markov Process. Hence the techniques of Dynamic Programming
[1]} are applicable. It will be convenient to use the conditional moments
of P as the sufficient statistics for the problem. Let m(t), me(t), ver,

mj(t), .+, represent the conditional moments (a-posteriori) of the

process. Define the value function 7

n
Vim(to), mz(to), cees t ] = Min E\/ L/‘k(r, a, u) P(a, 1) da dt (k-7)
3 3
t
o

Use of the principle of optimality yilelds
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t +A
0
V[m(to), mg(to), cee tO] = M;;ln E[[ fk('r,a,u) P(a,t) da dr
t 0] o)
o

+ v[m(tom), m (tom), cees t] (4-8)

2

Expanding V in a Taylor series and retaining all terms whose

expectation is of order 4 yields

V[m(to), mg(to), cees bl = Mm u J k(t,a,u) P(a,t) da dx

[t t ot
Vim(t ) (t ) -t]+av A+)y X {m,(t +a) - m,(t )}
VIS HoAb s e Yy §Et amitio i‘’o
o i o

2

ZZ &‘% {mi(to‘.ﬂ) - mi(to)}{mj(toﬁa) - mj(to)} + o(a) | (4-9)
1]

mlr—*

tO

Letting A - dt and cancelling out the common V term results in

oV
0 = Min B dtfn(t, a, u) P(a, t) da + < 4t +Z dm,
u(t) : 5— I Bt—ni *
%ZZ m an, dm, + o(dt) (4-10)
i

where %i(%t-)--'Oas dt - O

The expressions for the change in the central moments, i.e., the
dmj's appearing in equation (4-10), may be determined by the method
outlined in section 3.

Notice that the form of cquation (4-10) depends on P(a, t). Clearly
equation (4-1C) is considerably more complex than the Hamilton-Jacobi

cquation which arises in deterministic problems. The only case in which:
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a solution to (h—lO) seems to be possible is when the plant and observations
arc linear and the function k in the performance index is quadratic. 1In
this case only m(t) and mz(t) appear in the equation of dynamic program-

ming. This results in the well known separation of the control and

ﬂ estimation functions as discussed by many writers [5, 9, 14).

5. Criticue I - Stochastic Estimation

Since the Markov Process approach to Brownian Motion provides the
metivation to determine the effects of the cobservations on the density
function, it is interesting to see what type of comments the physicists
themselves make. S, Chandrasekhar in reference [2] page 21 (page 25 in
Wax ) carefully points out the drastic nature of the assumptions implicit

in writing cquation (2-5). He also states, "They (the assumptions) are

T T

made with the reliance on physical intuition and the a-posteriori

H

Justifieation by the success of the hypothesis.” M. Ksc in reference

[8] page 370 (page 29 in Wex) points out that theories for Brownian
Motion based on starting with the diffusion equation for the probability
density function are only approximate., He also states, "These limitations

of the theory were already recognized by Einstein and Smoluchowski but

are often disregarded by writers who stress that in Brownian Motion the

.I!l T

veloclty of the particle is infinite, This paradoxical conclusion is a

result of stretching the theory beyond the bounds of its epplicability."

With these comments in mind, for the problem of determining the

a-posteriori statistics, in which the observations are incorporated and in
view of (i) the possible stochastic aspects of the resulting equation,
and of (ii) the drastic assumptions required, it seems that the mathe-

matical rigor required to arrive at the results is seldam Justified in
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many physical problems. It i1s more plausible to start closer to the

actual physical problem, to make assumptions based upon physical

intuition, and to cxperimentally verify the results. This was the

motivation for formulating the sequential estimation problem in the

annual report where the disturbances and measurement errors were treated

as unknown signals and a least squares criterion was used for the estimates.
With this drastic difference in viewpoints in mind, it would still

be interesting to compare the results from the two approaches. For

simplicity consider the scalar case with linear observations. In this

case the equations for the conditional moments become

m,(t)

am = E[g(t, a)) dt + (dz - mdt)

9

dm, = 2E{g(t, a){a - m)] dat + dto,” - =5

(t)
+ Té—g—- (dz - mdt) (5-1)

%

The sequential estimator equations become

~

%% = g(t, x) + 2r(t) (y(t) - 2(¢))

%%»= 2gx(t, %) R(t) - 2R2(t) + 1 (5-2)

*
These equations were derived in the annual report.
Formally dividing equations (9=1) through by dt, recalling that

y = dz/dt, and neglecting mB(t), there secms to be a certain similarity

R{t) here corrcsponds Lo P(t) in eguation (5.71) of the annual

report with w(T, %) = % and h(T, %) = . R(t) is used to avoid

<

confusion with P(a, t).
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between the two results, Notice however, that the equations for the
conditional means would still uot be ordinary ditrferential equations

due to the expccied value operator.

©. An Intcrpretation of the Sequentiasl Estimator

Consider the term
E{g(t, a){a - m)) (6-1)
“rom the right-hand side of (5-1).
Elg(t, a)(a - m)) =\/ﬁg(t, a)(a - m) P(a, t) da (6=2)
Expanding g(t, a) in a Taylor series about the conditional mean mn,
vields

Slelt, a)a - m)y = [ Lot ) + 8B (¢, m)(a - )

+... ] (& -=m) P(a, t) da (6-3)
=b/‘g(t, n)(a - n) P(a, t) da

rn
+k/ %% t, m){a - m)2 P(a, t) da

= %gl (t, m) mg(t) + v (6-35

Thus approximating the terms in (5-1) containing an expected value
operator by the first non-zero term in its Taylor series, formally

dividing through by dt, and neglccting m5(t) yields

- m (t)
dm - o -
o = elt, m) + =— ((t) - n(t))
97
bz (v, @) 7. (1) +at o - == 7 °(x) (6-6)
it :QX\L, ¥ m2 t) + dt 02 - = m2 -0
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The bars in cquations (5-0) indicate that m and m. are only

2

approximations to m and m_. A comparison of equations (5-2) and (5-6)

[

suprests that il the disturbances and observaticnal errors are gaussian
wiiite noise, then the estimate %(t) is some approximation to the con-
diticnal mean m{t) and that R(t) is some approximation to the conditional
variance mg(t). This is suggestive of the interpretation which could

be given to R(t). However, it must be pointed out that the assumptions

nade and the apprcach taken with the sequential least squares estimator

are valid for a conciderably larger class of physical problems.

7. Critique II - Ltochastie Control

The statistical formulation of the combined identification and
control problem has two inherent difficulties. The first is that the
statisfical formulation of the estimation problem is a basic portion of
. the overall formulation. Thus, whatever objections are raised concerning

the statistical formulation of the filtering problem may also be raised
here.  The second is the complexity of the optimality equation itself.
Feedback solutions to the deterministic optimal control problem are
usually very difficult to obtain. Except in rare cases solutions to

equation (4-10) would be impossible to obtair.

Of course ther is always the additional practical objection, perhaps

the most valid of all, namely that many control problems are not suffic-
iently well formulated so as to justifly the rigor necessary in this
approach.

Intuitively it would seem that in some cases a somewhat simpler,
and of course mathematically sub-optimal, scheme would provide satisfactory
control of the plant. Hopefully the assumptions necessary to use some
sub-optimal scheme would be more in accordance with the actual physical

situation.



8. A Suboptimal Control Scheme

A suboptimal control scheme which is quite appealing 1s to use the
sequential state estimator to provide estimates of the current state,
and then to use the estimated state for control purposes. In particular,
if a suitable feedback control law is known for the deterministic prob-
lem then replacing the true state by the estimated state in the control
law would provide one useful scheme of controlling the plant based on
noisy measurements of its output. If there are unknown parameters in the
system which effect the control law, then the estimated values as produced
oy the state estimator could be used in place of the unknown parameters.

In addition to thec examples presented in the previous report a number
of additional experiments were performed in order to test further the
above control scheme. In all of these examples the controller and state
estimator were hoth turned on simultaneously. Linear plants were selected
for these additional studies as it was necessary to know the optimal
feedback control law (with respect to some performance index) in order
to implement the overall scheme.

Example 1.

The plant eguations

¥, = x
1 2

kg = u lul<1 (8-1)

*A
with output observations on Xy The control law used was u (xl, iz)
where tne performance index for the deterministic problem was minimum
tine.

Figure 1 displays the results for xl(O) = 1.0, x?(O) = 1.0,

il(C) = 0.C, i?(O) = 0.C. Figure 2 displays the results for xl(O) = 1.0,

-
o
—

0) = =0.5, >‘<1(c) = 0.0, %5(0) = C.C.



Examgle 2.

Plant equations

Xl = C.Exl + x2
By = -0.1x) +u (8-2)

with output observaticns on x The roots to the open loop character-

i

‘ .

| 1

i istic equations are kl = -0.1 and 12 = 0.2. The control law used was

f N ~

r u = ~l.4hx1- 2.1x,. Hence the performance index for the deterministic
—— o

|

~
problem would be quadratic in x plus cost of contrcl u”™ and infinite
tinme.
Figure % displays the results for xl(O) = 2.0, xg(o) = 2.0,
il(o) = 0.0, and ﬁg(o) = 0.0.

Lzample *

Plant equations

X, = %
pooe, T l 2
— R B - N 2
ky = =% 4 lul< (6-2)
[y . * ~ ~
with observations on x,. The control law used was u (xl, xe) where

the performance index for the deterministic problem was minimum time.
The switching boundaries in this case arc more complex than those of

-

exanple 1.

Figure L4 displays the results for xl(O) = 2.0, xg(O) = 1.0,

il(o) = 0.0, x.(C) = C.0. Figure 5 displays the results for xl(O) = 4,0,
xg(O) = -0.5, il(o) = 0.0, ie(o) = 0. 0.
Example 4.

Plant equations

X, = x
1 2

k, =K u ful< (8-4)

I




L
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with obcervations on Xy In this example the constant mament of inertia
K is unknown and hence nust be estimated. The control law used was
u*(il, ig, K) where the performance index for the deteministic problem
was minimum time. In this case the switching boundaries also depend on K.
Figure 6 displays the results for xl(O) = 2.0, x2(0) =1.0, X = 2.0,

£,(0) = 0.0, £,(0) = 0.0, K(0) = 1.c.

It is interesting to note that in all the examples considered the
rroposed control scheme does indeed control the plant.

While certainly no claim is made concerning the optimality of the
proposed scheme, i.e., the separation of estimation and control functions,
from the examples tested it does ceem to present a feasible scheme of

obtaining suboptimal controls.




T amILy

23S NI 3WIL

-

3NIVA QJ31VWILS3 ————
3NIVA 3NY¥1

m.o.n.-oo-rqdo.oqoo

SANTIVA (d3YNSVIWN 3FNOS e

S0O-

SO

o

SO

Sl

TOHLNOD
AVWNILHAO 3IWIL HOS &.w:..: = N
s [n] n= X

31v1lS A31VWILS3 ONISN TOHLINOD ° %,

L

RN \\‘::,: | Ii _EZ_”!FE_,Eﬁ




g oan3tTd

23S NI 3INWLL

ANTVA Q31VAWILIS3 ————
3NIVYA 3NYL

S

-

- 26 -

S3NTIVA Q3UNSY3IW JANOS o

G'O-

JOYANOD TVWILJO 3WLL HOd
&.wc..: =n *|3In] n= X

J1v1S Q3ILVWILSI ONISN T0H.LNOD

Yo N



¢ aandtyd

23S NI 3NWIL

INIWVA QILVWNILS3 ———— X
3NTVA 3Nyl

S3NTIVA
Q3¥NSY3IW 3NOS e

XI'Z-X ppl- ="
n=x200-X 10~ X
31VLIS Q3ILVWILS3 OSNISN TOYLNOD

-

o'l

o)

10¢




- 28 -

f 2and Ty

'03S NI 3WILL

3NTWA Q31VAILS3

INIVA 3Ndl

ol

S3NIVA Q3UNSVIN 3NOS o

JOYLNOD TVAWILJO 3WIL ¥O4
ﬂ«.«v::us._w_s_ nsX+X

31v1S Q3ILYWILSI ONISN TOHLINOD

T

\..0._




G aandtg

23S NI 3JNWIL {o2-

' INTIvA Q31VAWILSY ————

3ANTVA  3NYl
S3NIVA Q3UNSVIN 3NOS e

JOMLINOD WWILHJO 3WIL ¥HOJ
Cm.«va:u:._w_:_ n=X+X

Py C. N

[ ]
3IVIS Q3LVAILST ONISN TOYLNOD

N




!!T!'l;‘- TR I B2

3.0

20

o ® CONTROL USING ESTIMATED STATE
X = Ku Jul <1
\ uc W* (X,X,K) FOR TIME

4 'S\ OPTIMAL CONTROL
'/

[ ]
/
.1

| 2
e SOME MEASURED VALUES
r
TRUE VALUE
— ——— ESTIMATED VALUE

ry A A

2 3 a 5
TIME IN SEC.

Figure 6



- 31 -

Conclusions
Some general results Tor the estimation of conditional Markov
Processes have been reviewed., The drastic assumptions that this

approach requires partly provided the motivation for the more intuitive

approach based on a least squares criterion. The latter method with
experimental results was discussed in the annual report. The Markov
Process approach, hcwever, does provide a possible stochastic inter-
pretation of the sequential state estimator. In particular, it is con-
Jectured that the R(t) in the sequcntial scheme is some approximation

to the conditional error covariance matrix. In the experiments performed
the initial condition R(C) was always selected to be symmetric and

positive definite.

b

poscible formulation of the combined identification and control
rroblem was presented using the results from the estimation of conditional
Markov Processec. Motivated by the complexity of this approach, a sub-
optimal combined identification and control scheme was suggested. The
additional experimental results indicate that using the estimated state

as produced by the sequential state estimator for control purposes may

be a feasible method of controlling systems based on partial information.
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SECTION II

Worst Case Initial Condition

Introduction .

Once a feedback control system has been designed, either on paper
or in actual hardware, the design must be tested to determine whether
or not it meets the performance specifications. Often, it is of interest
tc find the maximum value of the specified value function or an index of
performance over the range of the initial conditions possible. The worst
case initial condition problem is considered for a class of dynamical
systems which may be described by a set of first-order differential

eguations.

1. Motivation
A typical optimal control problem is the following:
The plant is described by & set of n first order differential

equations

x(0) = ¢ (1-1)
where the initial condition C lies in a set 0 and u(t) is the scalar
control Tfunction.

The control problem is to find u(t) such that a given functional

of x(t) and u(t), called the index of performance, of the form
T
1, (w) =fg(t, x, u) dt (1-2)

o)
is minimized.

The fi’ i=1,2, ..., nare assumed to possess pilecewise continuous

second partial derivatives with respect to all their arguments. glt, X, u)
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is a scalar-valued function of its arguments, and g(t, x, u) > O for all
x and u in the domain of interest. The function g(t, x, u) is assumed
to possess piecewise continuocus sccond partial derivatives with respect

to all its arguments.

It has been pointed out [1] that even if an optimal control law,

i i.e., u*(t) = u{t, x) can be obtained, it will not be a satisfactory
1 practical solution in general because of the complexity of the dependence
of the optimal control law on the current state of the system and the
current time. Also it is necessary to have knowledge of all the state
variables at every instant of time. It is desirable to incorporate the
physical constraints dictated by the application while formulating the
optimal control problem. Incorporation of some of these factors in the
optimal control problem leads to the Specific Optimal Control problem
which will henceforth be referred to as the SOC problem.

The SOC problem is defined as follows:

Given a plant with dynamical equations of the form
%= £(t, x, u)
x(0) =Ceq

The specific control law is of the form

T

T

u = h(y, b) (1-3)

In equation {1-3) y is a p-dimensional vector (p < n) which is a known

(R 1A

function of the state x; h is a pre-specified function of its arguments.
The vector b is a g-dimensional constant vector of unknown parameters.
It is desired to determine the unknown parameters b such that an

index of performance of the form
T

I,(u) =f g(t, x, u) dt

O

is minimized.




/
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This problem can be approached by various methods [l1]. It is known
that the fcedback coefficients b depend in general on the initial condition
C and the duration of the process T. For satisfactory implementation of
the 50C, it is important that this dependence be the least possible.

The natural questigh one may ask is: Suppose b is given for
various C ¢ @, how should onc choose a particular set of feedback
coefficients b such that the controller will be satisfactory for all
initial conditions C € Q7 The problem as posed above is very imprecisely
defined. At present, no analytical techniques exist for solving this
problem. The practical limitations and the requircments of the system
should give enough insight to choosc a feedback coefficient vector b
for a given set of initiel conditions

Once the design of the controller has been accomplished, it is
important to know the meximum velue of the index of performance and the
initial condition fof which the maximum occurs in the set @ This initial

condition will be called the worst initial condition.

2. Problem Statement

For a given feedback coefficient vector b, equations (1-1) and (1-2)

become

X = F(t, x)

x(0) =Ceq (2-1)
and T

1 =fG(t, x) dt (2-2)

C
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where

F(t, x)

.i.:(t: X, u)

=
[t}

h(ll _b_)

6(t, x) = g(t, x, u)

u

1

H(y, b)

The problem then is to find the worst initial condition C ¢ Q
whigh corresponds to the largest value of the performance index.

The Fi’ i=1,2, ..., n are assumed to possess piecewise continuous
second partial derivatives with respect to all their arguments. G(t, 5)
is a scalar valued function of its arguments, and G(t, E) >0 for all
t and x in the domain of interest. It is assumed that G(t, x) possesses

piecewise continuous second partial derivatives with respect to all its

arguments.,

5. Necessary Conditions

The necessary conditions for this meximization problem are obtained
via the Calculus of Variations [1].
The Hamiltonian is defined as
H(t, x, A) = 6(t, x) + <\, F(t, x) > (3-1)
where N 1s an n-dimensional Lagrange multiplier vector and the symbol
< , » denotes the Euclidean inner product.
The Canonic equations satisfied along &n optimal arc are

x = F(t, x)

/

=G [ap] .

-\ = + = A (3-2)

ol 52 M

(3.0 - oG -
In equation (3-2) the prime denotes the transpose. = is an n-dminesional
_th 3G OF . .th

vector whose i term is Szi . Sg is an n x n matrix whose 1i~j term is
api

5x;
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The transversality condition at the initisl and terminal points

yields enough boundary conditions for the solution of the set of 2n-

differential equations (3-2). At the terminal time t = T, the trans-

versality condition is

H(t, x, A) dt - <A(T), a&x > =0 (3-3)
t=T

where dt and dx are the differentials on the terminal manifold.
Since the terminal time is fixed and the terminal state is free,
equation (3-3) requires that
MT) =0 (3-4)
At the initial timc t = O, the transversality condition is

H(t, x, M) at - <A(0), dx > =0 (3-5)
t=0

where dt and dx are the differentials on the initial manifold Q.
: Since the initial time is fixed, dt = O and equation (3-5) requires
that
<AM0), &x > =0 (3-6)

should hold on the initisl manifold.

Equations (3-4) and (%-6) will, in general, yield the 2n boundary
conditions needed for the solution of the set of differential equations
(3-2)., However, equation (3-6) usually leads to extremely complicated

boundary conditions. The solution of this two point boundary value

problen (TPBVP) is very difficult to obtain, even numerically.
To illustrate these points, several special cases are considered

below.
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4. General Sccond Order System

Plant:

X, fl(t, Xy x2) , xl(O) c

k, = £,(t, x;, x.), x,(0) = C, (4-1)
; Index of performance:
| T
| I =L/‘g(t, X1 x2) dt (4-2)
; O
Let the inltial manifold @ be
c.2+c<n (4-3)

Find C € Q such that I is maxinum.
The Hamiltonlan is

H(t, Xps X5 Mo N

2) = g(t, X1 xg) N fl(t, Xy, xg)

A fz(t, X, xe)

The canonic equations are:

hee
I

p = (8 % %))

e
!

= fz(t, X, x2)

M TSN TEE R (b-4)
i 1 1 1
= - df 31
TS tSEM TSR N
- 2 2 2
|
At the terminal time (from equation (3-4)),
xl(T) = xg(T) =0 (4-5)
On the initial manifold C;° + c,2 <1,
<x(0), &x > =0 (1-6)

N (0) acy + A (0) dc, = O (4=7)
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The initial manifold Q may be represented in parametric form as

follows:

Cl = tanh Py cOS 7,

= si T

C, = tanh p; sin p, (4-8)

Thus
2
3 = - i
aCl sech Py cos 92 dpl tanh pl sin p2 dp2

2 .
dC. = sech Py Bin o, dpl + tanh Py €O8 P, d92

Equation (L-7) bccomes
“p, (7, (0) ) si
sech”p, Kl(O cos p, + XE(O sin p,] dp,
+ tanh p, [- kl(O) sin o, + ka(o) cos p,) dp, = O (4-9)
Sinee 1 and p_, may take on any values, the differcntials dpl
and dp, are arbitrary and equation (4-9) requires

sech” pp (A (0) cos p, + AL(0) sin p,) = © (4-10)

P2
tanh  p, (- kl(O) sin p, + AQ(O) cos 92] =0 (4-11)
The various possible solutions of (4-10) and (4-11) are analyzed
next.
I. In (4-10), let sech® p, = O, thercfore, p, = + = and tanh p; =+ L.
Then equation (4-11) requires
-kl(O) sin o, + AE(O) cos p, = 0 (4=12) -
From (4-~12) and (4-8), the following relations at time t = O should hold
A, (0) c, = M(0) ¢ (4-13)
5

2 2
Cl + CQ =1

Equation (4-13) indicates that the extremal points will lie on the

boundary of the initiel condition manifold ¢,° + €% < 1. Also, it is

obvious that there is a possibility of many solutions for equation (4-13)

indicating several maximums and minimums of I.
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II. In (4-11), let tanh p, = O, therefore, p, = 0 and sech p, = 1.

Then equation (4-10) requires

xl(o) cos p, + xe(o) sin py = 0 (h~14)
From (4-8),

Cl =0

C. =0 (4-15)

2
This indicates that the origin is a possible extremal point. In this
case, the adjoint equations are not important and one may Jjust integrate
the plant equations (4-1) with the initial conditions (4-15).

If time does not appear explicitly in f., f, and g and if for x = O,

1’ 72
fl(O) = 0, fE(O) = 0 and g(0) = 0, then x(t) = O and the index of per-
formance I = 0. This will be the trivial solution and indicates the
minimum point.
Vi 2 .
IIT. If tanh p, # O and sech” p; ¢ O, then (4-10) and (4-11) require
S / 0] i =
Kl(O) co p2 + \Q(J) sin p2 0
- xl(o) sin p, + x2(o) cos p, = 0 (4-16)

From (4-16) the following relation is obvious
Mo(0) +2F(0) =0 (4-17)

Since xl(o) and XQ(O) arc real numbers, equation (4-17) requires

A (0) = xé(o) =0 (4-18)
For this case, the maximization problem reduces to the following
TPBVP:
X = 12(t, %) ,
-3 (%) A (4-19)

with boundary conditions
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AMO) =0 , A(T) =0 (4-20)
The boundary condition (4-20) implies that the state x is free

both at the initial and the terminal ends.
The TPBVP as posed by equations (%-19) and (4-20) contains no
information about the initial condition manifold @ In general, as

the Euclidean norm of the initial condition vector C, i.e., C 2y C 2

1 2’
approaches infinity, the index of performance will increase without
bounds. One can intuitively say that in finding the solution of (L-19)
and (4-20) by any itecrative technique [1], unless there is a local
maximum in 1 and the initial approximation is close to the local
naximun, the scheme will try to make some suitably defined norm of the
initial condition vector as large as possible. Thus, the numerical
solution of this TPBVP, except in some special cases, will be very
difficult..

To find the local meximum in &, one can resort to hill-climbing
techniques, like the gradient method [3, 4, 5]. It should be mentioned
that none of the available tcchniques are satisfactory in the multidimen-

sional case.

5. Lineayr Maximum Problem

Consider an autonomous lincar nth-order system with dynamical
equations
X=Ax ’ x(0) = ¢ (5-1)
where A is an n x n system matrix and the initial condition C lies in

the set (. Let the index of perlormance be

I =J (_)S' Q i) dt (5-2)



W m

mr

- L2 -

where Q is at least a positive semidefinite symmetric matrix.
The state transition matrix ¢(t) is the solution of

o= A
with initial condition

6(0) = I (Identity matrix)
The solution of (5-1) may be written in terms of the state transition
matrix ¢(t) as

x(t) = o(x) C (5-3)

Substituting (5-3) in (5-2)

rf‘
1= o’(t) Q o(t) at
| Je
Let o
R =f¢'(t) Q o(t) at

e}
The index of performance I, which is now a function of the initial
condition C, may be written as

1(c) =¢’' R C (5-4)
Since the integrand in the equation (5-2) is at least positive semi-
definite, the matrix R is clearly at least positive semidefinite.
Since Q is symmetric, R is also symmetric.

It ‘{s known that a quadratic form C’ R C is a convex function for
all ¢, if ¢' R C >0 for all ¢ C (that is, if the form is positive semi-
definite) [2].

Since I(C) is a convex function on the set C e 9, it is obvious
that the maximum of I(C) will be on the boundary of Q. Also, if the
set Q is unbounded, then the meximum of I(C) will, in general be

unbounded.
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6. Autonomous HNonlinear System

Consider the followlng problem.
System:
F=nlp) , x0)=4 (6-1)

Index of performance:

i T

, I, =fz(;£) dt (6-2)

e}

n

Assume:  h(0) =0

£(0)

]

0O and 2 (X) >0 (6-3)
At t = 0, y satisfies

P eys<1 (6-1)
whiere the matrix Q is symmetric and positive definite.

Since Q is symmetric and positive definite, it is easy to find a
nensingular transformation X = P y which will trensform this problem
to the following:

Systen:
x=1£(x) , x(0)=¢ (6-5)

Index of performance:

T
- 1 afg(_}_c_) dt (6-6)
s o
’ and ' £(0) =0
g(0) =0 and g(x) >0 (6-7)
At ¢t = 0, X satisfies
<x,x><1 (6-8)

The matrix P is the solution of

P’ QP =1 (6-9)
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Proceeding a&s in section (4),
’
3\
_. ::QB 9_.?_. ' -
2 %+<E)5 (6-10)

The boundary conditions on (6-5) and (6-10) are
(1) att =T, AT)=0 (6-11)

(i1) at t =0, <A0), ax > =0 (6-12)

The initial manifold may be written in parametric form as

follows:

X = canh»pl sin p2 sin p3 « « o + o « 8in pn

x2 = tanh Py cos 92 sin p3 . sin pn

x5 = tanh py cos p5 T sin p,

xu = tanh Py cos pu sin p5 + o s« + o« o« 8in pn

(6-13)

Xn-l = tanh pl co8 pn~l sin pn

X, = tanh Py cos o

-

BEquations (6-12) and (6-13) lecad to three possible cases.

+w, j,e., 8t t =0, <x, x>=01L

(1) o ==
This implies that the extremal point lies on the boundary of Q.
(i1) p, =0, ie., 8t t =0, x(0) = 0.

Oand I = 0. This will be

From (6-7), 1t is cvident that x(t)
the minimum point.
(i11) 1f pl #0 or +e , then
Ao) =0 (6-1k)
Equations (5-11) and (6-14) imply that x is frec both at the
initial and terminal ends. In the generesl case, there is the possibility

of a local maxinum in Q.



7. Example 1
Consider the system of equations which governs the rotational
motion of a rigid body such as a space vehicle about its center of

mass. The equations of motion are

I W o= (I2 - 15) Wy Wy by
I2 Zug = (13‘ - Il) g v F U, (7-1)
I u§ = (I, - 12) Wy Wy * Uy

where wi = angular velocity about the ith principal axis
Ii = the moment of inertia about the ith principal axis
u = control torgue on the ith principal axis.

In tems of the angular momenta
xi(t) = I, wi(t) ; 1=1,2,3

equation (7-1) becomes

&1 = Ay Xy Ky oy
ig = Ay Xz Xy F U, (7-2)
kB =85 %) X, + g
where B 1 i (l 1 | ) (l 1 )
8 7 A Eé) » % T T I, and a; = I, I,
The initisl condition on (7-2)»15
0)=c , 1=1,2,3
A suitablé performance index for the problem is
T
I = Min \/~(< X, x>+ <u, u>)dt (7-7)

U
- e}
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For this preoblem, the optimal control law can be obtained using
the Hamilton-Jacobi Equation [1].
The Hamiltenian is
H(x, u, M) = <x, x>+ <u, u>+ Kl(al X, X5 ¥ u )
+ xg(a2 Xy %) u2) + >\3(a5 X, X, + u3) (7-4)
The optimal control u(t) = gf(t) is obtained by minimizing H with
respect to u, i.e., by setting the partials of H with respect to ug

equal to zero.

OH .
Su =0 s i=1,2,53
1
This yields
* N .
ui = - 5_ ’ i= l: 2} 3 (7"5)

Define +thec minimum value of the Hamiltonian as

¥*
B (x, A) = Min H(x, A, u)
u

H(x, N, u)

1
E"-g_)l'.
Thus
¥*
H(x, A) =<x, x>+<u, u>+ 8y N X, Xy + 8, A Xy %)
1
*ag Ay Xy Xy - f <A A> (7-6)

Since the minimum value of the performance index depends on the initial

state C and the starting instant t, define the return function J(t, C) as

T

J(r, C) = Min M/‘(< X, x>+ <u, u>)dt (1-7)

u(t) g
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Then J(t, x) satisfies the following Hamilton-Jacobi partial

differential equation [1]:

i, a) = 0 (7-6)
where A %% (7-9)
i

The boundary condition on (7-8) is
J(T, x) =0
To solve (7-8), assume a solution of the form
J(t, x) = g(t) (<x, x>) (7-10)

Substituting (7-10) in (7-8) yields

b-g+1=0 , g(T) = 0 (7-11)

The solution of (7-11) is

g(t) = tann (T - t) | (7-12)
Frem {(7-10)
J(t, x) = tanh (T-t) (< x, x > (7-13)

From (7-7) and (7-13)

1(¢)

J(o, c)

1}

tanh (T) (< C, C>) (7-14)

Thus, the index of performance is equal to & constant (tanh T)

1 2

conditions (C € ) the maximum of I will obviously be on the boundary.

multiplied by the norm (C.> + C.° + 032). For any set of initial

Fram (7-5), (7-9) and (7-13),
*

u; = - tamh (T-t) x, o, 1=1,2,7 (7-15)
that is, the optimal control law ic a simple feedback solution where
the feedback coefficient b(t) = tanh (T-t) is time varying. At t = O,
b(0) = tanh (T) and at t = T, b(T) = 0; for all t, b(t) > 0. Since
the time varying gain is normelly difficult to implement, it may be

desirable to replacc b(t) by a constant gain b. Then, the control
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law is

u, =-bx. ,i=1,2,3 (7-16)
Using (7-2), (7-3) and (7-16), the index of performance for this
problem is obtained via the Hamilton-Jacobi partial differential

equation and is given by

1,(c) =22 (1) (< g, ¢ >) (7-17)

From (7-17) it is evident that for any set of initial conditions

(C ¢ Q) the maximum of I, will be on the boundary.

Example 2: A simple second order linear example is considered here to
indicate some of the possible difficulties in the numerical solution
of the worst case initial condition problen.

Let the system be described by the differential equations

=% » ox(0) =

ky = - 2x) = 3%, xg(O) C, (7-18)

Index of performance:

1
I =\/h (xl2 + X 2) dt (7-19)
2
o
Let the set of initisl conditions Q be
2 2
C,-+C <1 (7-20)

The Hamiltonian is,
_ .2 2 e o 7 -
H = S Nl(xg) + Kg( exy )Xe) (7-21)



T
T

xl 0 1 0 0 xl
%, 2 -3 0 0 %,
O - A (7-22)
1
A 0 -2 -1 3 A
2 2
21 L JL 2]

The transversality condition at the terminal time T = 1 yields

A (T) = (1) =0 (7-23)

From Scction (4), the extremum lies on the boundary, i.e., at the
initizl time.
<A0), &x > =0 (7-24)
2

2
C1 + 02 =1

For this problem, the analytical solution is possible and the index

of performance is given by

I = 0.887 le + 0.192 C22 +0.21h € C (7-25)
The extremal points of (7-25) subject to the condition 012 + 022 =1
are (i) Moximum: ¢, =0.91, C, = 0.417 ; € = -0.91, C, = -0.417;
I =0.849
(ii) Minimum: ¢ = -0.143, C, = 0.99; C = 0. 143, C, = -0.99;
I=0.177

The TPBVP given by equation (7-22) with boundary conditions (7-23)
and (7-24) will have four possible solutions out of which two will be
maxima and two minima. In the general case, 1t is difficult to obtain
a numerical solution of a TPBVP which has more than one solution by
iterative techniques. It seems that one may have to search for the
optimal points on the boundary using some hill-climbing or optimum

seeking techniques [3, L, 5), as was explained earlier.
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Conclusion

It is shown in sections 3, 4, and 5 that the worst case initial
condition problem in the set Q of the form g’ Q@ C <1 has three possible
solutions,

(i) € = 0, which normally will lead to the trivial solution,

(i1) ¢’ Q¢ =1, i.e., C lies on the boundary, and

(i1ii) C lies inside the set Q.
Since the direct numerical solution of case (iii), i.e., solution of
TPBVP will, in general, be formidable, it will be of interest to obtain
suitable conditions on the system equations and the index of performance
for which the worst case initial condition lies on the boundary.

It is shown that for linear systems with quadratic indices of
performance, the worst case initial condition always lies on the boundary.

In this discussion, only the hypersphere-type (C’ Q C < 1) initial
condition manifold Q is considered. It should be of interest to obtain

similar results for any closed type of initial manifold
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