Final Report<br>Contract NAS 8-11143

ADVANCE RESEARCH ON CONTROL SYSTEMS FOR THE SATURN LAUNCH VEHICLE

Prepared for the
National Aeronautics and Space Administration Marshall Space Flight Center


CONTROL RESEARCH ASSOCIATES
4321 HARTWICK ROAD
COLLEGE PARK, MARYLAND

ADVANCED RESEARCH ON CONTROL SYSTEMS FOR THE SATURN LAUNCH VEHICLE

## by

D. C. Lewis
P. Mendelson

Final Report
January, 1964 - May, 1965

Prepared For:
George C. Marshall Space Flight Conter-
Huntsville, Alabama

Published:
May 31, 1965
by:
Control Research Associates
4321 Hartwick Road
College Park, Maryland

## ABSTRACT <br> Advance Research on Control Systems for the Saturn Launch Vehicles

Presented are the results of Contract NAS8-11143 on studies of a minimax problem in launch vehicle control. This is the general problem of finding a control which minimizes the maximum peak value of a selected index of performance over a class of admissible disturbances while satisfying a bounded state variable constraint. Under this contract, some rigorous mathematical foundations were established for the minimax problem. These include a precise formulation of the problem and existence theorems for solution of the problem. In connection with the bounded state variable problem, a new concept called the "core of the region of bounded state variables" is introduce. This is roughly defined as the largest set of initial conditions for which solution trajectories remain inside the bounded set of state variables under any admissible disturbance. Existence and uniqueness of the core of a region are discussed, and for some sample second and third order problems, the core is computed.


## PREFACE

During the period from March, 1963 through December, 1963 a program of research relating to the synthesis of optimal control techniques for the saturn launch vehicle was carried out. This work was done under Contract NAS 8-5002. The scope of this work comprised three specific areas of endeavor:
(a) time optimal control
(b) time optimal control with constraints
(c) certain minimax problems in control theory

All intended areas of Part (a) were covered. This included a search for the control law in closed form for the fourth order linear control system (single control element) having two zero eigenvalves and two real and equal but oppositely signed non-zero eigenvalves.

Substantial results relative to Part (b) were obtained. The outcome of this preliminary work indicated that useful results could probably be obtained through further research. The formulation of the minimax problem of Part (c) as well some preliminary qualitative results in that area were obtained.

The work of this contract (NAS 8-11143) is a direct follow-on to the work on Contract NAS 8-5002. The main emphasis herein is centered on the minimax problem.

At the outset of this project it was decided that rather than submit informal progress reports with a single detailed report at the end, CRA would prepare detailed progress reports each month with the intent that each of these reports would be used as a chapter in the final report. This approach to the documentation of our work has been followed. The main advantage of this method is that it provides NASA with monthly reports which explain exactly and in detail the nature and direction of our progress. Hence, the technical officer is better able to direct the efforts of the contractor towards the desired NASA goal and also NASA personnel are able to digest our results continuously rather than be burdened with the necessity of having to read one large weighty report after the contract is over to learn the results of our work. The main disadvantage to this approach is that some of the material in later chapters supercedes certain material in the early chapters. The reader is urged to refer to the Appendix of Notes and Errata in order to overcome this difficulty.

## Chapter 1

1. Introduction: Rough Statement of the Minimax Problem
in Control Theory
2. Non-Topological Aspects of Minimax Problems -----------------1-3
3. Sufficient Condition for the Existence of a Solution
of a Minimax Problem ----10
4. Some Remarks on Function Spaces ----------------------------18
5. Precise Formulation of a Minimax Problem in Control

6. Existence of Solutions to the Minimax Problem in Control

## Chapter 2

1. Alternative Formulations of the First Minimax Problem in Control Theory ---------------------------------------------1
2. Existence of Solutions to the First Minimax Problem in
Control Theory


## Chapter 4

1. Introduction and Formulation of the Existence Problem -----------------------------------------------------------1
2. On the Continuity of Solutions of Differential
Equations ..... 4-4
3. Existence of Solutions to a Minimax Problem in Control Theory ..... 4-10

## Chapter 5

1. Some Elementary Theorems Concerning T-Tame Sets -----------5-2
2. On the Interpretation of the Solution of the Minimax

3. First Computational Aspect of the Minimax Problem:

3.1 Preliminaries ---------------------------------------------13




## Chapter 6

1. An Abstract Theory of Mappings of Subsets into Subsets-----6-2
2. On the Existence of Upper Bounds Some Elementary Examples
(i) the system $\dot{x}=w+u---------------12$
(ii) the system $\dot{x}^{\cdot}=w+u------------------16$

## Chapter 7

1. The Comparability of the Solutions of Two Differential

2. Comparability of the Solutions of Two Systems of

3. On the Existence of Upper Bounds for the System $\ddot{x}=h(\dot{x}, x, t)+w+u-----12$

## Chapter 8

1. On Upper Bounds for Three Dimensional Systems--------8-1
2. Remarks on the Comparability of Solutions of


## Chapter 9

1. The Core of a Region Relative to a Subset Thereof-----9-1
2. A Generalization of the Minimax Problem--------------9--8

## Chapter 10

1. On the Existence of Upper Bounds: A Three Dimensional


## Chapter 11

1. The Core for the System $\ddot{x}=h(\dot{x}, x, t)+w+u-------11-1$
2. On the Existence of Upper Bounds for the System $S$ : $\ddot{x}=h(\ddot{x}, \dot{x})+w(t)+u(\ddot{x}, \dot{x}, \dot{x})-------11-6$
3. On the Existence of Upper Bounds: Modification of a Previous Example-----------------------------------112

## Chapter 12

1. Proof of the Existence of Upper Bounds for the



## Chapter 14


2. Recommendations for Future Research on the Minimax Problem14-1

Appendix: Notes and Errata

## Cross-Reference Table

Progress
Chapter
Chapter 1
Chapter 2

Chapter 3
Chapter 4
Chapter 5
Chapter 6
Chapter 7
Chapter 8

Chapter 9

Chapter 10

Chapter 11

Chapter 12

Chapter 13

Chapter 14

Appendix

12

## Report No.

2
3

4
5

6

7

8

9

10

13

14
15

Period Covered by Progress Report

February, 1964
March, 1964
April, 1964
May, 1964
June, 1964
July, 1964
August, 1964
September, 1964
October, 1964
November \& December, 1964
January, 1965
February, 1965
March, 1965

CHAPTER 1

1. Introduction: Rough Statement of the Minimax Problem In Control Theory

Consider the system

$$
\begin{equation*}
S: \dot{x}=f(x, w, u), \tag{1.1}
\end{equation*}
$$

where $x$ is an n-vector representing the system's state, $\dot{x}$ represents differentiation with respect to time $t, f$ is an $n$-vector function of ( $x, w, u$ ), while $w=w(t)$ and $u \equiv u(t)$ are $n$-vector functions to be more properly described below. The function $f$ is given. The vector $w=w(t)$ is restricted to a certain class $W$ of allowable "winds", while $u=u(t)$, the control vector, is restricted to a given class $U$ of admissible controls.

The system $S$ is viewed as being subject to various disturbances (winds) belonging to the given class $W$. It is controlled through the imposition of controls belonging to the given class $U$. It is assumed hereby that the classes $U$ and $W$ are such that it is always possible to control the system so that its deviation from the desired state is in any case bounded by preassigned bounds, say, through inequalities of the form

$$
\begin{equation*}
\left|x_{i}\right| \leq a_{i}, \quad i=1, \ldots, n \tag{1.2}
\end{equation*}
$$

where $a_{1}, \ldots, a_{n}$ are given positive constants. This assumption may be formulated more generally by the statement that a proper choice of control exists so that $x(t) \in R$ for all $t$ in some interval (say, $0 \leq t \leq T$ ), where $R$ is a preassigned set in the space of $x$.

During the course of its controlled motion the system may recede from its desired state, or some function $F\left(x_{1}, \ldots, x_{n}\right)$ may grow uncomfortably large. The minimax problem may be described briefly as the problem of identifying the control (or controls) such that the maximum deviation of the system (or of $F$ ), throughout its motion, from its desired state shall be a minimum, In the event that $|F|$ is our criterion, the constraints embodied in (1.2) must still be satisfied.

It must be apparent to the reader that the question posed above is hopelessly general and hopelessly vague. Our first task will be to attempt a precise formulation of a more tractable problem.

## 2. Non-Topological Aspects of Minimax Problems

We consider two spaces $X$ and $Y$ and a mapping of the cartesian product space $X X Y$ into a bounded set $S$ of the real numbers. Thus, with $x \in X$ and $y \in Y, F(x, y) \in S$. Since $S$ is bounded,

$$
\begin{equation*}
\operatorname{lu}_{\mathrm{x} \in \mathrm{X}}^{\text {usb. }} \quad F(\mathrm{x}, \mathrm{y})=\varphi(\mathrm{y}) \tag{2.1}
\end{equation*}
$$

exists for all $\mathrm{y} \in \mathrm{Y}$,
and

$$
\begin{equation*}
\underset{y \in Y}{\text { g. I. b. }} \quad F(x, y)=\psi(x) \tag{2.2}
\end{equation*}
$$

exists for all $x \in X$. Moreover $\varphi(y) \in \bar{S}$ for all $y \in Y$ and $\psi(x) \in \bar{S}$ for all $x \in X$, where $\bar{S}$, being the closure of a bounded set $S$ of real numbers, is itself bounded. Hence, there exist real numbers $A$ and $B \in \bar{S}$, such that

$$
\begin{equation*}
\underset{y \in Y}{\text { g. I. } b .} \varphi(y)=A \tag{2.3}
\end{equation*}
$$

and

Then without introducing any topology at all into the spaces $X$ and $Y$, we are able to prove the following theorem

Theorem 2.I $A \geqq B$, that is


Proof. Iet $\epsilon$ be any positive number. Then since $B-\epsilon$ is not an upper bound for $\psi(x)$ for all $x$ in $X$ even though $B$ is an upper bound (in accordance with (2.4)), there must exist $x_{0} \in X$ such that

$$
\begin{equation*}
B-\epsilon<\psi\left(x_{0}\right) \tag{2.5}
\end{equation*}
$$

By (2.2), for all $y \in Y$,

$$
\begin{equation*}
\psi\left(x_{0}\right) \leqq F\left(x_{0}, y\right) \tag{2.6}
\end{equation*}
$$

which by (2.1) does not exceed $\varphi(y)$. Hence, we see from (2.5) and (2.6) that

$$
\begin{equation*}
B-\epsilon \leqq \varphi(y) \tag{2.7}
\end{equation*}
$$

for all $\mathrm{y} \in \mathrm{Y}$.
Similarly from (2.3), we see that there exists $\overline{\mathrm{y}} \in \mathrm{Y} \quad \ni$

$$
\begin{equation*}
\varphi(\bar{y})<A+\epsilon \tag{2.8}
\end{equation*}
$$

Hence, from (2.7) and (2.8), on taking $y=\bar{y}$ in (2.7), we find that

$$
B-\epsilon<A+\epsilon
$$

Since this is true for every positive number $\epsilon$, we conclude, by allowing $\epsilon$ to approach 0 , that $B \leqq A$, as we wished to prove.

In the special case where the various functions mentioned above take on their greatest lower and their least upper bounds the sense of Theorem 2.1 is to the effect that

$$
\left.\begin{array}{rl}
\min  \tag{2.9}\\
y \in Y
\end{array} \sum_{x \in X}^{\max } F(x, y)\right] \underset{x \in X}{ } \quad \begin{aligned}
& \max \\
& y \in Y
\end{aligned} \quad\left[\begin{array}{ll}
\min & \\
&
\end{array}\right.
$$

It is not, in general, possible to prove that the sign $\geqq$ in Theorem 2.1 (or, even in the more special case (2.9)) can be replaced by the sign $=$. For example, suppose that $X$ and $Y$ contain only two elements 0 and 1 and let

$$
\begin{array}{ll}
F(0,1)=0, & F(1,1)=1 \\
F(0,0)=1, & F(1,0)=0
\end{array}
$$

then we see at once that $\varphi(0)=\varphi(I)=1$ while $\psi(0)=\psi(I)=0$. Hence $A=\min \varphi(y)=1$ and $B=\max \psi(x)=0$, so that we have here A $>$ B.

Nevertheless there exist familiar cases in which $A=B$. For instance, if $F(x, y)=y^{2}-x^{2}$ where $-1 \leqq x, y \leqq+1$. Here we have $\psi(x)=-x^{2}, \varphi(y)=y^{2}$, so that $A=B=0$. This might suggest to the beginner that when $F(x, y)$ is an analytic function of the two real variables $x$ and $y$ we might expect to have $A=B$. That even this need not be the case is easily shown by the following example:

$$
\begin{aligned}
& F(x, y)=1-(x-y)^{2} \quad 0 \leqq x, y \leqq 1 \\
& \min _{y} F(x, y)=\psi(x)= \begin{cases}2 x-x^{2} & \text { if } \quad 0 \leqq x \leqq 1 / 2 \\
1-x^{2} & \text { if } \quad 1 / 2 \leqq x \leqq 1\end{cases} \\
& \max _{x} F(x, y)=\varphi(y)=1 \\
& \min \varphi(y)=A=1, \quad \max \psi(x)=3 / 4=B \\
& \text { So that } A>B .
\end{aligned}
$$

A further investigation of the question of when $A=B$ leads to Theorems 2.2 and 2.3 , which are slight generalizations of corresponding theorems of Von Neumann. We first, however, introduce the following definition

DEFINITION: Let $\eta$ be any positive number. A point ( $x_{0}, y_{0}$ ) $\in X x Y$ is said to below to an $\eta$-saddle set $S_{\eta} \mathbb{E X X Y}$ if

$$
\begin{equation*}
\operatorname{lu}_{x \in X}^{\text {l.u.b. }} F\left(x, y_{0}\right) \leqq F\left(x_{0}, y_{0}\right)+\eta \tag{2.10}
\end{equation*}
$$

and

Theorem 2.2 If for every $\eta>0, S_{\eta}$ is not empty, then $A=B$. Moreover, for every $\eta>0$, and for every point $\left(x_{0}, y_{0}\right) \in S_{\eta}$,

$$
\left|A-F\left(x_{0}, y_{0}\right)\right|<\eta
$$

Proof Let $\left(x_{0}, y_{0}\right) \in S_{\eta}$ so that (2.10) and (2.11) are valid. From (2.1) (2.2), (2.3), and (2.4), we write the alternative definitions of $A$ and B

$$
\begin{array}{ll}
A=\begin{array}{ll}
\text { g. l.b. } \\
y \in Y
\end{array} & {\left[\begin{array}{ll}
\text { 1.u.b. } & F(x, y) \\
x \in X &
\end{array}\right]}  \tag{2.12}\\
B=\begin{array}{ll}
\text { l.u.b. } \\
x \in X
\end{array} & {\left[\begin{array}{ll}
\text { g. 1.b. } & \\
y \in Y & \\
y \in Y &
\end{array}\right]}
\end{array}
$$



$$
B \geqq F\left(x_{0}, y_{0}\right)-\eta
$$

-1-6-

From (2.12) $A \leqq \underset{x \in X}{\text { l.u.b. }} F\left(x, y_{o}\right)$. Hence, from (2.10), we have

$$
\begin{equation*}
A \leqq F\left(x_{0}, y_{0}\right)+\eta \tag{2.15}
\end{equation*}
$$

Hence, from (2.14) and (2.15) we see that $A \leqq B+2 \eta$. Since this is true for every positive number $\eta$, it follows that $A \leqq B$. But, by Theorem 2.1, it is already known that $A \geqq B$. Hence, $A=B$. Hence (2.14) can be rewritten

$$
\begin{equation*}
A \geqq F\left(x_{0}, y_{0}\right)-\eta \tag{2.16}
\end{equation*}
$$

The last assertion of the theorem then follows at once from (2.15) and (2.16).

Theorem 2.3 Conversely, let $A=B$ and let $\eta$ be any positive number; then the set $S_{\eta}$ is not empty.

Proof Let $\epsilon=(1 / 2) \eta$ Let $x_{0}$ be any point in $X$ such that

$$
\begin{equation*}
B-\epsilon<\psi\left(x_{0}\right) \leqq B \tag{2.17}
\end{equation*}
$$

and let $y_{0}$ be any point in $Y$ such that

$$
A \leqq \varphi\left(y_{0}\right)<A+\epsilon
$$

Since we are assuming that $A=B$, we can write this last formula as

$$
\begin{equation*}
B \leqq \varphi\left(y_{0}\right)<B+\epsilon \tag{2.18}
\end{equation*}
$$

Evidently then, from (2.18), $\underset{x \in X}{\text { l.u.b. }} F\left(x, y_{0}\right)=\varphi\left(y_{0}\right)<B+\varepsilon$, which from (2.17) is less than

$$
\psi\left(x_{0}\right)+2 \epsilon=\frac{g \cdot 1 . b}{y \in Y} \cdot F\left(x_{0}, y\right)+\eta
$$

so that

Hence, for every $\overline{\mathrm{x}} \in \mathrm{X}$,

$$
\begin{equation*}
F\left(\bar{x}, y_{0}\right) \leqq{\underset{x \in X}{ }}_{\text {l.u.b. }} F\left(x, y_{0}\right)<\underset{y \in Y}{\text { g.l.b. }} \cdot F\left(x_{0}, y\right)+\eta \leqq F\left(x_{0}, y_{0}\right)+\eta \tag{2.20}
\end{equation*}
$$

It follows that $\underset{x \in X}{\text { l.u.b. }} F\left(x, y_{0}\right) \leqq F\left(x_{0}, y_{0}\right)+\eta$
Going back to (2.19), we also see that, for every $\overline{\mathrm{y}} \in \mathrm{Y}$,

$$
\begin{equation*}
F\left(x_{0}, \bar{y}\right) \geqq \underset{y \in Y}{\text { g. ..b. }} F\left(x_{0}, y\right)>\underset{x \in X}{\text { l.u.b. }} F\left(x, y_{0}\right)-\eta \geqq F\left(x_{0}, y_{0}\right)-\eta \tag{2.21}
\end{equation*}
$$

It follows that $\underset{y \in Y}{\mathrm{~g} .1 \mathrm{~b}} \mathrm{~F}\left(\mathrm{x}_{0}, \mathrm{y}\right) \geqq F\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)-\eta$
From (2.10), (2.11), (2.20), and (2.21), it is now seen that ( $x_{0}, y_{0}$ )
$\in S_{\eta}$, which establishes the theorem.
Our next result is somewhat more transparent.
Theorem 2.4 $\begin{aligned} & \text { 1.u.b. } \\ & y \in Y\end{aligned}\left[\begin{array}{l}\text { 1.u.b. } \\ x \in X\end{array} \quad F(x, y)\right]=\underset{x \in X}{\text { l.u.b. }}\left[\begin{array}{l}\text { 1.u.b. } \\ y \in Y(x, y)\end{array}\right]$

$$
=\stackrel{\text { l.u.b. }}{(x, y) \in X x Y} \underset{F(x, y)}{ }
$$

with a similar result on replacing l.u.b. by g.l.b.
Proof Let $\underset{y \in Y}{\text { l.u.b. }} F(x, y)=\lambda(x)$

$$
\begin{align*}
& \underset{x \in X}{\text { l.u.b. }^{n}} \lambda(x)=M  \tag{2.23}\\
& \text { l.u.b. }_{x \in X} F(x, y)=\varphi(y) \tag{2.24}
\end{align*}
$$

$$
\begin{align*}
& \underset{y \in Y}{\text { 1. u.b. }} \varphi(y)=\mathbb{N}  \tag{2.25}\\
& \begin{array}{l}
\text { I. u. b. } \\
(x, y) \in X x Y
\end{array} \quad F(x, y)=P \tag{2.26}
\end{align*}
$$

From the boundedness of the set $S$ into which $F$ maps $X x Y$, it is obvious, as above, that all these least upper bounds exist. We wish to prove that $M=N=P$. From (2.23), we have $\lambda(x) \leqq M$ for all $x \in X$ and from (2.22) we have $F(x, y) \leqq \lambda(x)$ for $a l l ~ x \in X$ and all $y \in Y$. Hence $F(x, y) \leqq M$ for all $(x, y) \in X x Y$. Hence $P \leqq M$.

On the other hand, if $\epsilon$ is any positive number, we see from (2.23) that there exists a point $x_{0} \in X$ such that $M-\epsilon \leqq \lambda\left(x_{0}\right)$. Keeping fixed this point $x_{0}$, we see from (2.22) that there exists a point $y_{0} \in Y$ such that $\lambda\left(x_{0}\right)-\epsilon \leqq F\left(x_{0}, y_{0}\right)$. Hence we find that $M-2 \epsilon \leqq \lambda\left(x_{0}\right)-\epsilon \leqq F\left(x_{0}, y_{0}\right) \leqq P$. Thus $M-2 \epsilon \leqq P$ for every positive number $\epsilon$. Hence $M \leqq P$, which, combined with the result $P \geqq M$ obtained above, shows that $M=P$.

Using (2.24) and (2.25) as we used (2.22) and (2.23), it is also easy to prove that $N=P$. Hence $M=\mathbb{N}=P$ as we wished to prove. The minimax problem is said to have a solution if there exists points $x_{0} \in X$, and $y_{0} \in Y$, such that

$$
F\left(x_{0}, y_{0}\right)=\min _{y \in Y}\left[\max _{x \in X} F(x, y)\right]
$$

It will be proved later that the minimax problem always has a solution if $X$ and $Y$ are sequentially compact spaces, if $F(x, y)$ is upper semicontinuous in its dependence on $x$, and if $\varphi(y)$ is lower semicontinuous in $y$. It will also appear that both these conditions involving semi-continuity are automatically satisfied if $F(x, y)$ is continuous in XxY.
-1-9-

From a practical standpoint, however, one might well question the usefulness of this result. For even without assuming any topological properties of $X$ and $Y$, the following theorem makes it obvious that there always exist approximate solutions in a quite satisfactory sense.

Theorem 2.5 Let $\begin{aligned} & \mathrm{g} .1 . \mathrm{b} . \\ & \mathrm{y} \in \mathrm{Y}\end{aligned} \quad \begin{aligned} & \text { l.u.b. } \\ & \mathrm{x} \in \mathrm{X}\end{aligned} \mathrm{F}(\mathrm{x}, \mathrm{y})=\mathrm{A}$ in accordance with the notation used in Theorem 2.1 Let $\epsilon$ be an arbitrary positive number. Then there exist points $x_{0} \in X$ and $y_{0} \in Y$ such that

$$
F\left(x_{0}, y_{0}\right)-A \quad<\epsilon
$$

Proof: As previously, we let $\varphi(y)={\underset{x \in X}{ }}_{\text {l. } u . b .} F(x, y)$ so that (2.3) holds. Since $A$ is thus a lower bound for $\varphi$ but $A+\epsilon$, is not, we see that there exist $y_{0} \in Y$ such that $A \leqq \varphi\left(y_{0}\right)<A+\epsilon$.

With this $y_{0}$ fixed, there exists $x_{0}$ such that $\varphi\left(y_{0}\right)-\epsilon<$ $F\left(x_{0}, y_{0}\right) \leqq \varphi\left(y_{0}\right)$. Hence $A-\epsilon \leqq \varphi\left(y_{0}\right)-\epsilon<F\left(x_{0}, y_{0}\right) \leqq \varphi\left(y_{0}\right)<A+\epsilon$. Hence we have $A-\epsilon<F\left(x_{0}, y_{0}\right) \leqq A+\epsilon$ for the $x_{0}$ and $y_{0}$ chosen in the way indicated.
3. Sufficient Condition for the Existence of a Solution of a Minimax Problem.

In the previous section we promised to prove a theorem on the existence of a solution to the minimax problem

$$
\min _{y \in Y}\left[\max _{x \in X} F(x, y)\right]
$$

That is, we wish to prove the existence of a point $x_{0} \in X$ and a. point $y_{0} \in Y$, such that

$$
F\left(x_{0}, y_{0}\right)=\min _{y \in Y}\left[\max _{x \in X} F(x, y)\right]
$$

The hypotheses on which our proof is based are as follows:
$H_{1}: \quad F$ is bounded on the product space $X X Y$
$H_{2}: \quad$ Both $X$ and $Y$ are not only topological spaces, but are also sequentially compact.
$H_{3}: \quad F(x, y)$ is upper semi-continuous in its dependence on $x$. This means that $\lim _{x \rightarrow \bar{x}} \sup F(x, y) \leqq F(\bar{x}, y)$ for every $\overline{\mathrm{x}} \in \mathrm{X}$.
$\mathrm{H}_{4}$ :
$\varphi(y)=\max _{x \in X} F(x, y)$, the existence of which is insured by $H_{3}$, is lower semi-continuous. This means that
$\lim _{y \rightarrow \overline{\mathrm{y}}}^{\inf } \varphi(\mathrm{y}) \geqq \varphi(\overline{\mathrm{y}})$ for every $\overline{\mathrm{y}} \in \mathrm{Y}$.
Notice that the hypothesis $H_{4}$ refers to a function $\varphi(y)$ whose existence must first be established from the other hypotheses. This is done es follows:

We must prove that $F(x, y)$ for each fixed $y$ must take on a maximum value. Since $F(x, y)$ is bounded and since every bounded set of real numbers has a least upper bound, it makes sense to let

$$
\varphi(\mathrm{y})=\underset{\mathrm{x} \in \mathrm{X}}{\text { l.u.b. }} F(\mathrm{x}, \mathrm{y}),
$$

and we now have only to prove that there exists a point $x^{*}=x^{*}(y) \in X$ such that

$$
\varphi(y)=F\left(x^{*}, y\right)
$$

Since $\varphi(y)-\frac{1}{n}$ is not an upper bound there will exist at least
one point $x_{n} \in X$ such that

$$
\begin{equation*}
F\left(x_{n}, y\right)>\varphi(y)-\frac{1}{n} \tag{3.1}
\end{equation*}
$$

We may also restrict attention to the case where $F\left(x_{n}, y\right) \neq \varphi(y)$, for each $n$; for otherwise we could take $x^{*}$ to be equal to an $x_{n}$ for which this condition is not fulfilled. Since $X$ is sequentially compact the sequence $x_{1}, x_{2}, x_{3}, \ldots$, has at least one convergent subsequence, say, $x_{n_{1}}, x_{n_{2}}, x_{n_{3}}, \ldots$ This means that there exists $x^{*} \in X$ such that

$$
\lim _{k \rightarrow \infty} x_{n_{k}}=x^{*}
$$

From (3.1) we also have $F\left(x_{n_{k}}, y\right)>\varphi(y)-I / \eta_{k}$. This shows that $\lim _{k \rightarrow \infty} \inf F\left(x_{n_{k}}, y\right) \geqq \varphi(y)$. On the other hand from Hypothesis $H_{3}$, we have $\lim _{k \rightarrow \infty} \sup _{k}\left(x_{n_{k}}, y\right) \leqq F(x *, y)$. Hence $\varphi(y) \leqq \lim _{k \rightarrow \infty} \inf F\left(x_{n_{k}} ; y\right) \leqq$ $\lim _{k \rightarrow \infty} \sup \left(x_{n_{k}}, y\right) \leqq F\left(x^{*}, y\right)$, so that $\varphi(y) \leqq F\left(x^{*}, y\right)$. But we also $k \rightarrow \infty$
know that $\varphi(y) \geqq F\left(x^{*}, y\right)$ since $\varphi(y)$ is an upper bound for $F(x, y)$. $. ~ . ~ . ~$ Hence it is clear that $\varphi(y)=F\left(x^{*}, y\right)$, as we wished to prove. We next need to prove that there exists a point $y_{0} \in Y$ where $\varphi(y)$ takes on a minimum. Let $A=\frac{\mathrm{g} \cdot \mathrm{l} . \mathrm{b} .}{\mathrm{y} \in \mathrm{Y}} \quad \varphi(\mathrm{y})$. We can then find a sequence of points in $Y$, say $y_{1}, y_{2}, y_{3}, \ldots$ such that

$$
\begin{equation*}
\varphi\left(y_{n}\right)<K+\frac{1}{n} \tag{3.2}
\end{equation*}
$$

and we can limit ourselves to the non-trivial case where
$\varphi\left(y_{n}\right) \neq A$ for say $n$. Otherwise we could take $y_{o}$ equal to a $y_{n}$ for which this condition is not fulfilled. Since $Y$ is sequentially compact, the sequence $y_{1}, y_{2}, y_{3}, \ldots$ has at least one convergent subsequence, say, $\mathrm{y}_{\mathrm{n}_{i}}, \mathrm{y}_{\mathrm{n}_{2}}, \mathrm{y}_{\mathrm{n}_{3}}, \ldots$ This means that there exists a point $y_{0}$ in $Y$ such that

$$
\lim _{k \rightarrow \infty} y_{n_{k}}=y_{0}
$$

From (3.2) we also have $\varphi\left(y_{n_{k}}\right)<A+1 / n_{k}$. This shows that $\lim _{k \rightarrow \infty} \sup \varphi\left(y_{n_{k}}\right) \leqq A$ On the other hand from Hypothesis $H_{4}$, we have $\liminf _{k \rightarrow \infty} \varphi\left(y_{n_{k}}\right) \geqq \varphi\left(y_{0}\right)$. Hence $\varphi\left(y_{0}\right) \leqq \lim _{k \rightarrow \infty} \varphi\left(y_{n_{k}}\right) \leqq A$, so that $\varphi\left(y_{0}\right) \leqq A$. But we also know that $\varphi\left(y_{0}\right) \geqq A$, since $A$ is a lower bound for $\varphi(y)$, Hence $\varphi\left(y_{0}\right)=A=\begin{aligned} & \text { g.l.b. } \\ & y \in Y\end{aligned} \varphi(y)$.

Thus we are justified in writing for the $y_{0}$ thus found

$$
\varphi\left(y_{0}\right)=\min _{y \in Y} \varphi(y)=\min _{y \in Y}\left[\begin{array}{ll}
\max & F(x, y) \tag{3.3}
\end{array}\right]
$$

But we have already proved above that there exists $x_{0}=x^{*}\left(y_{0}\right)$ such that

$$
\begin{equation*}
F\left(x_{0}, y_{0}\right)=\varphi\left(y_{0}\right) \tag{3.4}
\end{equation*}
$$

Thus, from (3.3) and (3.4), we see that there exists $x_{0} \in X$ and $y_{0} \in Y$ such that

$$
F\left(x_{0}, y_{0}\right)=\frac{\min }{y \in Y}\left[\begin{array}{ll}
\max \\
x \in X & F(x, y)]
\end{array}\right.
$$

thus completing the proof of the theorem.

We summarize the existence theorem just proved as follows: Theorem 3.1 If $F(x, y)$ satisfies hypotheses $H_{1}, H_{2}, H_{3}$, and $H_{4}$ given above, there exists a point $\left(\mathrm{x}_{0}, \mathrm{y}_{\hat{0}}\right) \in \mathrm{XxY}$, such that

$$
F\left(x_{0}, y_{0}\right)=\min _{y \in Y}\left[\begin{array}{ll}
\max & F(x, y) \tag{3.5}
\end{array}\right]
$$

We next want to show that hypotheses $H_{3}$ and $H_{4}$ can be replaced by the single hypothesis to the effect that $F(x, y)$ is merely continuous on $X x Y$, at least provided that $X$ and $Y$ are metric spaces as well as being sequentially compact. Thus the semicontinuity requirements of $H_{3}$ and $H_{4}$ are conceived of as being perhaps unnecessarily general. The main facts are more exactly formulated below in Theorem 3.2. Before proceeding to this theorem, we cite the following lemma:

LEMMA. Let $G$ be a continuous mapping of a metric sequentially compact space $\equiv$ onto a metric space $\Omega$. The distance between two points $\xi$ and $\xi^{\prime} \in$ $\epsilon \equiv$ is denoted by $\left|\xi, \xi^{\prime}\right|$ and the distance between two points $\omega, \omega^{\prime} \in \Omega$ is denoted by $\|\omega, \omega \cdot\|$. Then, corresponding to every positive number $\epsilon$, there can be found a positive number $\delta=\delta_{\epsilon}$, such that

$$
\left\|G(\xi), G\left(\xi^{\prime}\right)\right\|<\epsilon \text { as long as } \xi \in \equiv, \xi^{\prime} \in \equiv \text { and }\left|\xi, \xi^{\prime}\right|<\delta .
$$

Although this lemma is probably well known, we submit the following proof. For the reader may not be acquainted with the theory of uniform continuity in the generality here formulated.

If the lemma were false there would be some positive number $\epsilon$ such that no matter how small $\delta$ is taken, say $\delta=1 / n$, it would be possible to find two points, say $\xi_{n}$ and $\xi^{\prime}{ }_{n}$ such that

$$
\begin{equation*}
\left|\xi_{n}, \xi_{n}^{\prime}\right|<1 / n \tag{3.6}
\end{equation*}
$$

while at the same time

$$
\begin{equation*}
\left|G\left(\xi_{n}\right), G\left(\xi_{n}^{\prime}\right)\right| \geqq \geqq \epsilon \tag{3.7}
\end{equation*}
$$

Since $\equiv$ is sequentially compact, the sequence $\xi_{1}, \xi_{2}, \xi_{3}, \ldots$ has at least one convergent subsequence $\xi_{n_{1}}, \xi_{n_{2}}, \xi_{n_{3}}, \ldots$ We therefore write

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \xi_{n_{k}}=\xi^{*} \tag{3.8}
\end{equation*}
$$

From (3.6) we thus have $\left|\xi_{n_{k}}, \xi^{\prime} n_{k}\right|<1 / n_{k}$, so that we also have

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \xi_{n_{k}}=\xi^{*} \tag{3.9}
\end{equation*}
$$

From (3.7) we have $\left\|G\left(\xi_{n_{k}}\right), G\left(\xi^{\prime} n_{k}\right)\right\| \geq \epsilon$. Hence, on letting $k \rightarrow \infty$, we find on using the assumed continuity of $G$ that $\left\|G\left(\xi^{*}\right), G\left(\xi^{*}\right)\right\| \geqq \in$. But this is absurd since the distance of any point from itself is always zero. Thus the assumption that the lemma is false leads to a contradiction. The lemma has therefore been proved.

Theorem 3.2 Let $F(x, y)$ be continuous in the produce space $X x Y$, where $X$ and $Y$ are sequentially compact metric spaces. Let $\varphi(y)=\max _{x \in X} F(x, y)$. Then $\varphi$ is a continuous function of $y \in Y$.

Proof. Of course the existence of $\max _{x \in X} F(x, y)$ is an obvious consequence of the continuity of $F(x, y)$ in $x$ (with $y$ fixed), since $X$ is sequentially compact.

Since both $X$ and $Y$ are sequentially compact, the same is true of the product space. Hence we may use our lemma with $\equiv=X x Y, G(\xi)=F(x, y)$. This means that if $\epsilon>0$ is preassigned we may choose $\delta$ in such a manner that

$$
\left|F(x, y)-F\left(\mathrm{x}^{\prime}, \mathrm{y}^{\mathrm{y}}\right)\right|<\epsilon \text { as long as } \mathrm{x}, \mathrm{x}^{\mathrm{y}}, \in \mathrm{X}, \mathrm{y}, \mathrm{y}^{\mathrm{y}} \in \mathrm{Y}
$$

$\left|x, x^{\prime}\right|<\delta$ and $\left|y, y^{\prime}\right|<\delta$.
Here, of course, we use $\left|x, x^{\prime}\right|$ to represent the distance between $x$ and $x^{\prime}$, $\left|y, y^{\prime}\right|$ the distance between $y$ and $y^{\prime}$, while $\left|\xi, \xi^{\prime}\right|=\max \left(\left|x, x^{\prime}\right|,|y, y|\right)$ is the distance between points $(x, y)=\xi$ and $\left(x^{\prime}, y^{\prime}\right)=\xi^{\prime}$ in the product space.

Now let $y^{\prime}$ be arbitrary and choose $x^{\prime}$ so that $\varphi\left(y^{p}\right)=F\left(x^{\prime}, y^{p}\right)$. This is possible, since $F\left(x, y^{\prime}\right)$ for fixed $y^{\dagger}$ assumes its maximum for some value $x$ ' of $x$. Then

$$
F\left(x^{\prime}, y^{\prime}\right)-\epsilon<F(x, y) \text { if }\left|x, x^{\prime}\right| \text { and }\left|y, y^{\prime}\right| \text { are both less than } \delta .
$$

Since $F(x, y) \leqq \varphi(y)$ by definition of $\varphi(y)$ and since $F\left(x^{\prime}, y^{i}\right)=\varphi\left(y^{\prime}\right)$ we have

$$
\varphi\left(y^{t}\right)-\epsilon \leqq \varphi(y)
$$

for every pair ( $y, y^{\prime}$ ) such that $\left|y, y^{\prime}\right|<\delta$ and $y, y^{\prime} \in Y$. Reversing the roles of $y$ and $y^{\prime}$ we also have

$$
\varphi(\mathrm{y})-\epsilon \leqq \varphi\left(\mathrm{y}^{\mathrm{s}}\right)
$$

under the same conditions. Hence

$$
\left|\varphi(y)-\varphi\left(y^{\mathrm{t}}\right)\right|<\epsilon
$$

as long as $\left|y^{\prime}\right|<\delta$. This completes the proof of the theorem. It is worth noting that while $\max _{\mathrm{x} \in \mathrm{X}} \mathrm{F}(\mathrm{x}, \mathrm{y})$ is thus a continuous function of $y$, the point $x=x(y)$ where $F(x, y)$ assumes its maximum may be a quite discontinuous function of $y$. Thus if $F(x, y)=x y$ where $X$ and $Y$ are the closed intervals $[-1,+1]$, we have $\varphi(y)=|y|$ which is continuous, but $x(y)=+1$ for $y>0, x(y)=-1$ for $y<0$, and $x(0)$ is multiple valued.
$W$ close this section by replacing the hypotheses $H_{1}, \mathrm{H}_{2}, \mathrm{H}_{3}, \mathrm{H}_{4}$ in Theorem 3.1 by hypotheses to the effect that $F$ is merely continuous and that $X$ and $Y$ are sequentially compact metric spaces. This is justified by Theorem 3.2. However, in order to have a formulation involving a max-min rather than a min-max, we shall replace $F$ by $-G$, The final theorem then reads as follows:

Theorem 3.3 If $G(x, y)$ is a real valued function defined for $x \in X$, $y \in Y$; if $X$ and $Y$ are sequentially compact metric spaces, and if $G$ is continuous at every point of the product space XxY , then there exists a point $\left(x_{0}, y_{0}\right) \in X x Y$ such that $F\left(x_{0}, y_{0}\right)=\begin{aligned} & \max \\ & y \in Y\end{aligned} \min _{x \in X} G(x, y)$

## 1. Some Remarks on Function Spaces

The present section enumerates various definitions and results used in the sequel. No attempt is made to state the most general definitions or the most general results. For further detail the reader is referred to the literature (e.g. Kelley, General Topology).

Let $R$ designate the field of real numbers and let $X$ be a vector space over $R$. We say that $X$ is normed if there exists a real valued function $\|x\|$ on $X$ having the following properties:
(i) $\quad\|x\| \geq 0 ; \quad\|x\|=0$ if and only if $x=0$
(ii) $\left\|\alpha x_{\|}\right\|=|\alpha|\|x\|$ for all $\alpha \in R$ and all $x \in X$
(iii) $\|x+y\| \leq\|x\|+\|y\|$ for a.ll $x, y \in X$

Every normed space is a metric space. In fact, if $x$ and $y$ are any two points in $X$, we define the distance from $x$ to $y$, written $d(x, y)$, to be the non-negative real number $\|x-y\|$. It is well known that $d(x, y)$ satisfies all the requisite axioms of a metric. The topology of $X$ may now be defined in terms of $d(x, y)$. Specifically, a spherical neighborhood of a point $x \in X$ is the set of all points $y \in X$ such that $d(x, y)<r, r>0 ;$ a sequence $\left\{x_{n}\right\}$ in $X$ is said to converge to a point $x \in X$ if $d\left(x_{n}, x\right) \rightarrow 0$ as $n \rightarrow+\infty$.

A topological space $X$ is said to be sequentially compsct if every sequence in $X$ has a convergent subsequence. The cartesian product of a finite collection of sequentially compact spaces is sequentially compact.

Let $Y$ be a real normed vector space and let $X$ be sequentially compact. Let $f: x \rightarrow Y$ be continuous. Then it is well known that $\|f(x)\|$ attains both its maximum and minimum values in $X$.

Let $C(X, Y)$ denote the family of all continuous functions $f: X \rightarrow Y$. $C(X, Y)$ is a real vector space. Moreover, the function \| \|: $C(X, Y) \rightarrow R$ defined by

$$
\begin{equation*}
\|f\|=\max _{x \in X}\|f(x)\| \tag{4.2}
\end{equation*}
$$

is well-defined and furnishes a norm in $C(X, Y)$. The topology induced on $C(X, Y)$ be this norm is called the uniform topology. If $f_{n} \rightarrow f$ in the uniform topology, we say that $f_{n}$ converges uniformly to $f$.

In the special case when $Y=R$, one has

$$
\|f\|=\max _{x \in X}\left|f^{\prime}(x)\right|,
$$

where $|\quad|$ denotes the familiar "absolute value", Still assuming $Y=R$, we have: $f_{n} \rightarrow f$ if and only if $\left\|f_{n}-f\right\| \rightarrow 0$ or, equivalently, if and only if

$$
\max _{x \in X}\left|f_{n}(x)-f(x)\right| \rightarrow 0 \text { as } n \rightarrow+\infty .
$$

Let $a$ and $b$ be real numbers, with $a<b$. Let $E^{m}$ denote the $m$ - dimensional Euclidean space. $E^{m}$ is a normed real vector space. Hence, in accordance with the preceding paragraph, $C\left([a, b], E^{m}\right)$ is also a real normed vector space. In order to simplify our notation we shall write ${ }^{\text {. }}$ $C(a, b ; m)$ for $C\left([a, b], E^{m}\right)$.

Let $K$ be a subset of $C(a, b ; m)$. Then $K$ is said to be uniformly bounded if there exists a number $M>0$ such that $\|f\| \leqq M$ for all $f \in K$.
$K$ is said to be uniformly continuous if given any $\epsilon>0$ there exists a $\delta=\delta(\epsilon)$ such that $|x-y|<\delta$ implies $\|f(x)-f(y)\|<\epsilon$ for all $x, y \in[a, b]$ and all $f \in K$.

In the sequel we shall make use of the following famous theorem.

Theorem (ASCOLI) Iet $K$ be a uniformly bounded and uniformly continuous subset of $C(a, b ; m)$. Then $K$ is sequentially compact (in the uniform topology).

Otherwise stated, the theorem says that a family $K$ of functions $f:[a, b] \rightarrow E^{m}$, which is (1) uniformly bounded, and (2) uniformly continuous, has the property that any sequence in it contains a (uniformly) convergent subsequence.

## 5. Precise Formulation of A Minimax Problem In Control Theory

Let $X$ be the space of $X$ and let $R$ be a closed bounded region in $X$ which contains the origin. For the sake of definiteness the reader may take $R$ to be the set

$$
\begin{equation*}
R=\left\{x|\quad| x_{i} \mid \leqq a_{i}, i=1, \ldots, n\right\} \tag{5.2}
\end{equation*}
$$

where $a_{i}$ are preassigned bounds (cf. § 1 ). However, other sets $R$ may be of interest in the future.

We shall say that the system $S$ is $T$-tame with respect to $R$ if given the positive number $T$ there exists a subregion $R_{T} \subset R$ such that for any $x_{0} \in R_{T}$ and any $\omega \in W$ there exists a control $u \in U$ such that $x\left(t, x_{0}, \omega, u\right) \in R$ for all $0 \leqq t \leqq T$. We assume hereby that $x\left(0, x_{0}, w, u\right)=x_{0}$.

Let $R$ and $T$ be fixed (given) and assume that $S$ is $T$-tame with respect to $R$.

Let $x_{0} \in R_{\mathbb{T}^{*}} \quad$ Let

$$
\begin{align*}
& g\left(x_{0}, \omega, u\right)=\max _{0 \leqq t \leqq T}\left\|x\left(t, x_{0}, \omega, u\right)\right\|  \tag{5.3}\\
& h\left(x_{0}, \omega\right)={\underset{u \in U}{g \cdot \text { I. }} \cdot}^{\text {b. }}\left(x_{0}, \omega, u\right)  \tag{5.4}\\
& m\left(x_{0}\right)={\underset{\omega}{\omega \in W}}_{u_{0} b_{\cdot}} h\left(x_{0}, \omega\right) \tag{5.5}
\end{align*}
$$

We shall show that the functions $g$, $h$ and $m$ are well-defined.
(1) $g$ is well defined. This is so because $x\left(t, x_{0} \omega, u\right)$ is continuous in $t$, whence $\|x(t)\|$ attains its maximum over the interval $[0, t]$.
(2) $h$ is well defined. $S$ is $T$-tame, hence given $x_{0} \in R_{T}$ and $\omega \in W$ there exists at least one $u \in U$ such that $x\left(t, x_{o}, \omega, u *\right) \in R$ for all $t \in[0, T] . R$ is bounded, hence there exists an $r>0$ such that $R$ is contained in a sphere of radius $r$ with center at the origin. Hence $g\left(x_{0}, \omega, u^{*}\right) \leqq r$.

Hence, $h\left(x_{0}, \omega\right) \leqq r$.
(3) $m$ is well defined. We have $h\left(x_{0}, \omega\right) \leqq r$ for all $\omega \in W$, hence $\underset{\omega \in W}{\text { 1. u. b. }} h\left(x_{0}, \omega\right) \leqq r$, hence $m\left(x_{0}\right)$ is well defined.

We are now in a position to give the first precise formulation of a minimax problem:
(1) For a given $x_{0} \in R_{T}$, find $m\left(x_{0}\right)$.
(2) Determine whether there exists a $u^{*}$ in $U$ such that

$$
m\left(x_{0}\right)=\lim _{\omega \in W}^{\text {l. b. }} \quad \max _{0 \leq t \leq T}\left\|x\left(t, x_{0}, \omega, u *\right)\right\|
$$

(3) Determine whether $u^{*}$ is unique.
(4) Determine whether there exists a $\omega$ * in $W$ such that

$$
m\left(x_{0}\right)=\max _{0 \leqq t \leqq T}\left\|x\left(t, x_{0}, \omega * u^{*}\right)\right\|
$$

Item (4) is of lesser importance than items (1) - (3).
6. Existence of Solutions To The Minimax Problem In Control Theory

Consider the system

$$
\begin{equation*}
S: \quad \dot{x}=f(x, \omega, u) \tag{6.1}
\end{equation*}
$$

where $x, f, \omega$ and $u$ are as described in $§ 1$. We assume that $f$ satisfies a Lipschitz condition in $\omega$, $u$, namely that

$$
\begin{equation*}
\left\|f(x, \omega, u)-f\left(x, \omega_{1}, u_{1}\right)\right\| \leqq c_{1}\left\|\omega-\omega_{1}\right\|+c_{2}\left\|u-u_{1}\right\| \cdot \tag{6.2}
\end{equation*}
$$

It is well known that these assumptions are sufficient to assure the existence and uniqueness of solutions for $S$.

Theorem 6.1 If $U$ and $W$ are sequentially compact and $S$ is $T$-tame then there exists a solution for the minimax problem for $S$. In other words, given $x_{0} \in R_{T}$ there exist $u^{*} \in U$ and $d^{*} \in W$ such that

$$
m\left(x_{0}\right)=\max _{0 \leqq t \leqq T}\left\|x\left(t, x_{0}, \omega^{*}, u^{*}\right)\right\| .
$$

Proof. The solution to system (6.1) is given by

$$
\begin{equation*}
x\left(t, x_{0}, \omega, u\right)=x_{0}+\int_{0}^{t} f(x(\tau), \omega(\tau), u(\tau)) d \tau \tag{6.3}
\end{equation*}
$$

Let $x_{0}$ be fixed. We shall show that the mapping

$$
\begin{equation*}
\mu: \quad \operatorname{WxU} \rightarrow[0,+\infty) \tag{6.4}
\end{equation*}
$$

defined by

$$
\begin{equation*}
\mu(\omega, u)=g\left(x_{0}, \omega, u\right) \tag{6.5}
\end{equation*}
$$

is continuous.

One has

$$
\begin{aligned}
& x\left(t, x_{0}, \omega, u\right)=x_{0}+\int_{0}^{t} f(x(\tau), \omega(\tau), u(\tau)) d \tau \\
& x\left(t, x_{0}, \omega_{2}^{\prime} u^{\prime}\right)=x_{0}+\int_{0}^{t} f\left(x(\tau), \omega^{\prime}(\tau), u^{\prime}(\tau)\right) d \tau
\end{aligned}
$$

whence

$$
x\left(t, x_{0}, \omega, u\right)=x\left(t, x_{0}, \omega^{s}, u^{i}\right)=\int_{0}^{t}\left[f(x, \omega, u)-f\left(x, \omega^{s}, u^{\prime}\right)\right] d \tau
$$

so

$$
\begin{aligned}
& \left\|x\left(t, x_{0}, \omega, u\right)-x\left(t, x_{0}, \omega^{y}, u^{r}\right)\right\| \leqq \\
\leqq & \int_{0}^{t}\left\|f(x, \omega, u)-f\left(x, \omega^{y}, u^{\prime}\right)\right\| d \tau \\
\leqq & \int_{0}^{T} \quad\left\{c_{I}\left\|\omega-\omega^{\prime}\right\|+c_{2}\left\|u-u^{\prime}\right\|\right\} d \tau \\
\leqq & M\left(\left\|\omega-\omega^{\prime}\right\|+\left\|u-u^{\prime}\right\|\right),
\end{aligned}
$$

where $M=\max \left(c_{1} T, c_{2} T\right)$, and $t$ is any number in the interval $[0, T]$.

It follows that

$$
\left|g\left(x_{0}, \omega, u\right)-g\left(x_{0}, \omega^{p}, u^{p}\right)\right| \leqq M\left(\left\|\omega-\omega^{v}\right\|+\left\|u-u^{p}\right\|\right)
$$

whence $\mu$ is continuous.
Theorem 6.1 now follows as an irmediate consequence of Theorem 3.3. The proof is complete.

Corollary 1. In the case of a linear system

$$
S: \dot{x}=A x+B u+\omega,
$$

where $A$ and $B$ are nxn constant matrics and $C$ is a constant n-vector, the Lipschitz condition (6.2) is satisfied and hence Theorem 6.1 applies.

Corollary 2. Let $S$ be as in Theorem 6.1. Let $U$ and $V$ be uniformly bounded and uniformly continuous subsets of $C(0, T ; n)$ and $C(0, T ; 1)$, respectively. Then the conclusion of Theorem 6.1 holds. Proof. Theorem 6.1 together with Ascoli's theorem.

## I. Alternative Formulations of The First Minimax Problem In Control Theory

In §5 5 f our Second Progress Report we formulated our first minimax problem in control theory. This formulation involved a set $R$ defined by inequalities of the form $\left|x_{i}\right| \leqq a_{i}, i=1, \ldots, n$, where the $a_{i}$ 's were given real constants. We repeat this formulation here except that the set $R$ of our Second Progress Report is here replaced by a sphere $R$ of given radius $r$ with center at the origin. The reason for this change is that the parallelopiped set $R$ : of our Second Progress Report entails certain non-trivial difficulties which are avoided in the event that $R$ is a sphere. The nature of these difficulties will be brought out in our next progress report. Suffice it to say that the following discussion is strictly limited to the case when $R$ is a sphere and that changing $R$ into a parallelopiped (or some other bounded set) would require non-trivial modifications.

Consider then the system

$$
\begin{equation*}
s: \quad \dot{x}=f(x, w, u) \tag{1.1}
\end{equation*}
$$

and the (given) set

$$
\begin{equation*}
R=\{x \mid \quad\|x\| \leqq r\} \tag{1.2}
\end{equation*}
$$

Assume that $S$ is $T$-tame with respect to $R$ (cf. Second Progress Report, p. 2l). Let $x_{0} \in R_{T}$ (loc. cit.). Define

$$
\begin{align*}
& g\left(x_{0}, w, u\right)=\max _{0 \leqq t \leqq T}\left\|x\left(t, x_{0}, w, u\right)\right\|  \tag{1.3}\\
& h\left(x_{0}, w\right)=g_{u \cdot I \cdot b}^{u \cdot \in} g\left(x_{0}, w, u\right)  \tag{1.4}\\
& m\left(x_{0}\right)=\begin{array}{l}
\text { l.u.b. } \\
W \in W
\end{array} h\left(x_{0}, w\right) \tag{1.5}
\end{align*}
$$

We have shown (loc. cit., pp. 21-22) that $g$, $h$ and $m$ are well-defined. Our first minimax problem consists of the following questions;
(1) For a given $x_{0} \in R_{T}$, find $m\left(x_{0}\right)$.
(2) Determine whether there exists a $u^{*} \in U$ such that

$$
m\left(x_{0}\right)=\operatorname{lin}_{\mathrm{W} \in \mathbb{W}}^{\text {u.b. }} \max _{0 \leq t \leq T}\left\|x\left(t, x_{0}, w, u^{*}\right)\right\| .
$$

(3) Determine whether $u^{*}$ is unique.
(4) Determine whether there exists a $t w * \in W$ such that

$$
m\left(x_{0}\right)=\max _{0 \leqq t \leqq T}\left\|x\left(t, x_{0}, w^{*}, u^{*}\right)\right\|
$$

For the sake of intuititee clarity, we now allow ourselves a certain looseness of speech and replace g.I.b. and l.u.b. by min and max, respectively. The problem of determining $m\left(x_{0}\right)$ is then the problem of finding

$$
\begin{equation*}
\max _{w \in W} \min _{u \in U} g\left(x_{0}, w, u\right), \tag{1.6}
\end{equation*}
$$

where $g\left(x_{0}, w, u\right)$ is as defined in (1.3). Therefore, strictly speaking, our first minimax problem was not really a min-max problem butia max-min problem. This reversal of the order of $\min$ and $\max$ is forced in the sense that a simple minded attempt to interchange the $\min$ and $\max$ in (1.6) must of necessity lead to a meaningless problem.

In fact, let $g\left(x_{0}, w, u\right)$ be as defined in (1.3) and let

$$
\begin{align*}
& k\left(x_{0}, u\right)=\underset{w \in \in W}{\text { l.u.b. }} g\left(x_{0}, w, u\right)  \tag{1.7}\\
& \bar{m}\left(x_{0}\right)=\underset{u \in U}{\text { g.l.b. }} k\left(x_{0}, u\right) . \tag{1.8}
\end{align*}
$$

Speaking loosely again,

$$
\begin{equation*}
\bar{m}\left(x_{0}\right)=\min _{u \in U} \quad \max \quad g\left(x_{0}, w, u\right) \tag{1.9}
\end{equation*}
$$

so that $\bar{m}\left(x_{0}\right)$ corresponds to the interchange of the order of min and max in (1.6).

Let $x_{o} \in R_{T}$ be fixed. A choice of $W \in W$ and $u \in U$ gives rise to a unique trajectory $x\left(t, x_{0}, w, u\right)$ passing through $x_{0}$ at time $t=0$. The function $g\left(x_{0}, w, u\right)$ gives the maximum value attained by $\left\|x\left(t, x_{0}, w, u\right)\right\|$ along the arc of this trajectory corresponding to the time interval $0 \leqq t \leq T$. Now, it has been assumed that $S$ is $T$-tame. Hence given any $W \in W$ there exists a $u^{\prime}=u(W) \in U$ such that $x\left(t, x_{o}, w, u^{\prime}\right) \in R$ for all $0 \leqq t \leqq T$. This, however, does not preclude the possibility that given a $u \in U$ there exists a $w:^{t} \in W$ such that $x\left(t, x_{0}, w^{\prime}, u\right)$ strays out of $R$ during the time interval $0 \leqq t \leq T$. As a matter of fact, it appears necessary to assume this very possibility, namely that for any initial point. $x_{0} \in R_{T}$ and any fixed control $u \in U$ there must always exist a "bad enough" wind $w \in W$ which drives the system out of the set $R$ during the time interval $0 \leq t \leq T$. Otherwise, there would exist at least one initial point $x_{0}$ and one control function $\bar{u}=\bar{u}\left(x_{0}\right) \in U$ such that $x\left(t, x_{0}, w, \bar{u}\right) \in R$ for all $0 \leqq t \leqq T$ and all $w \in W$. Since $\bar{u}$ is completely independent of $w$, the existence of such a control would be nothing short of a panacea. It would be a control which is fixed throughout the motion, unresponsive to any winds encountered in flight (being, as it is, solely dependent on the initial point $x_{0}$ and nothing elsel) and yet sufficient to assure the samety of the system (by keeping it neatly tucked within the set $R$ ) against all winds! If we assume that the class $W$ is neither empty nor otherwise trivial (for example, it is natural to require that if $w \in W$ then $\lambda w \in W$ for all real $\lambda$ satisfying $-1 \leq \lambda \leq l$ ) then the existence of $\bar{u}$, perhaps even for one particular point $x_{o}$, would

$$
-2-3-
$$

rule out most systems $S$ of practical significance. The only type of system $S$ which is likely to remain would be so inherently stable relative to the whole class $W$, or the constant $T$ so small or $R$ so large that the safety of $S$ was never jeopardized in the first place.

At any rate, it is not truly necessary at this point to decide whether the existence of $\bar{u}\left(x_{0}\right)$ must be ruled out at every single point of $R_{T}$. Suffice it to say that it. must be ruled out in a substantial part of $R_{T}$. We assume hereby that the initial point $x_{o}$ under consideration is one for which no $\bar{u}\left(x_{0}\right)$ exists within the class $U$. This, in turn, means that given any $u \in U$ there exists a $w \in W$ such that $x\left(t^{t}, x_{0}, w, u\right) \notin R$ for some $t^{\prime} \in[0, T]$.

It follows that

$$
k\left(x_{0}, u\right)>r \text { for all } u \in U
$$

whence

$$
\begin{equation*}
\bar{m}\left(x_{0}\right) \geqslant r \tag{1.10}
\end{equation*}
$$

The number $\bar{m}\left(x_{0}\right)$ does not measure what we set out to obtain, namely the "least possible deviation attainable (starting at $x_{0}$ ) under the most adverse circumstances". This is so due to the unfortunate definition (1.7)-(1.8) in which the natural order of things is reversed. Thus (1.4) measures the best possible defense against a given wind (control follows perturbation), whereupon (1.5) determines the least success of this procedure. On the other hand, (1.7) measures the worst possible performance (i.e. failure!) of a given control (control precedes wind), whereupon (1.8) measures the least.possible such failure. Equation (1.10) simply states that the least of all failures is itself a failure.

$$
-2-4-
$$

Nevertheless, there is a way to formulate our first problem as a true min-max problem except that this formulation requires a more subtle approach than that embodied in (1.7) - (1.8). We proceed in two steps: First we show that the max-min $m\left(x_{0}\right)$ defined by (1.4) - (1.5) in $W \times i$ may be replaced by an equivalent max-min $m^{t}\left(x_{0}\right)$ defined by (1.12) in a new cross product set $W \times H$ (Theorem 1.1). Next we show that $m^{\prime}\left(x_{0}\right)$ equals the min-max $v\left(x_{0}\right)$ (cf. (1.13))which is also defined in W $\mathrm{W} H$ (Theorem 1.2). This establishes what we set out to accomplish.

Let $H=H(W, U)$ be the set of all functions $h$ which map the set of winds $W$ into the set of controls $U$. In symbols

$$
\begin{equation*}
H(W, U)=\{h \mid h: W \rightarrow U\} \tag{1.11}
\end{equation*}
$$

Let

$$
\begin{equation*}
m^{\prime}\left(x_{0}\right)=\underset{w \in W}{\text { l.u.b. }} \underset{h \in H}{\text { g.l.b. }} \quad g\left(x_{0}, w, h(w)\right) \tag{1.12}
\end{equation*}
$$

where $g$ is as defined in (1.3).

$$
\text { Theorem 1.1 } \quad m^{\prime}\left(x_{0}\right)=m\left(x_{0}\right)
$$

Proof. For every $u \in U$ let $h_{u} \in H$ be that element of $H$ whose range is $\{u\}$; thus

$$
h_{u}(w)=u \text { for all } w \in W \text {. }
$$

Let $W^{\prime} \in W$ be fixed. Then

$$
\left\{h\left(w^{\prime}\right) \mid h \in H\right\} \supset\left\{h_{u}\left(w^{1}\right) \mid u \in U\right\}=U
$$

On the other hand, one has trivially

$$
\left\{\mathrm{h}\left(\mathrm{w}^{\mathrm{t}}\right) \mid \mathrm{h} \in \mathrm{H}\right\} \subset \mathrm{U},
$$

whence

$$
\left.\operatorname{Ih}\left(w^{\mathrm{t}}\right) \mid \mathrm{h} \in \mathrm{H}\right\}=\mathrm{U} .
$$

Since $W^{\prime}$ is arbitrary it follows that

$$
\{h(w) \mid h \in H, w \text { fixed }\}=U \text { for every } w \in W \text {. }
$$

Therefore

$$
\underset{h \in H}{\text { g.l.b. }} g\left(x_{0}, w, h(w)\right)=\underset{u \in U}{\text { g.l. }} \cdot \underline{U}\left(x_{0}, w, u\right),
$$

whence

$$
m^{1}\left(x_{0}\right)=m\left(x_{0}\right),
$$

and the proof is complete.
Let

$$
\begin{equation*}
v\left(x_{0}\right)={\underset{h}{ }, \text { g.b. }}_{h \in H} \quad \underset{W \in W}{ } \quad \text { u.b. } g\left(x_{0}, w, h(w)\right) \tag{1.13}
\end{equation*}
$$

Theorem 1.2. $v\left(x_{0}\right)=m^{9}\left(x_{0}\right)$.

Proof. We note first (cf. Second Progress Report, p. 3, Theorem 2.1) that
$\underset{h}{\text { g.l.b. }} \underset{\mathrm{w}}{\text { l.u.b. }} \mathrm{g}\left(\mathrm{x}_{\mathrm{o}}, \mathrm{w}, \mathrm{h}(\mathrm{w})\right) \geqslant \underset{\mathrm{w}}{\text { l.u.b. }} \underset{\mathrm{h}}{\text { g.l.b. }} g\left(\mathrm{x}_{\mathrm{o}}, \mathrm{w}, \mathrm{h}(\mathrm{w})\right)$,
whence

$$
\begin{equation*}
v\left(x_{0}\right) \geqslant m^{\prime}\left(x_{0}\right) \tag{1.14}
\end{equation*}
$$

We shall now show that $v\left(x_{0}\right) \leqslant m^{2}\left(x_{0}\right)$.
Let $\epsilon>0$ be fixed. For every w, choose a $u_{\epsilon}(w)$ such that

$$
\begin{equation*}
g\left(x_{0}, w, u_{\epsilon}(w)\right)<\underset{u}{\text { g.l.b. }} g\left(x_{0}, w, u\right)+\epsilon \tag{1.15}
\end{equation*}
$$

Let $h_{\epsilon} ; W \rightarrow U$ be the element of $H$ defined by

$$
\begin{equation*}
h_{\epsilon}(w)=u_{\epsilon}(w) \text { for every } w \in W \text {. } \tag{1.16}
\end{equation*}
$$

Then, by (1.15) and (1.16), we get

$$
\begin{equation*}
\underset{w}{\text { l.u.b. }} g\left(x_{0}, w, h_{\epsilon}(w)\right) \leqslant \underset{w}{\text { l.u.b. }} \underset{u}{\text { g.l.b. }} g\left(x_{0}, w, u\right)+\epsilon \tag{1.17}
\end{equation*}
$$

so

$$
\begin{equation*}
\underset{w}{\text { 1. u.b. }} g\left(x_{0}, w, h_{\epsilon}(w)\right) \leqslant m\left(x_{0}\right)+\epsilon \tag{1.18}
\end{equation*}
$$

On the other hand, it is easy to see that

$$
\begin{equation*}
\underset{h}{\text { g. ..b. }} \underset{w}{\text { l.u.b. }} g\left(x_{o}, w, h(w) \leqslant \underset{w}{\text { l.u.b. }} g\left(x_{0}, w, h_{\epsilon}(w)\right)\right. \text {. } \tag{1.19}
\end{equation*}
$$

Hence, by (1.13), (1.18) and (1.19), we get

$$
v\left(x_{0}\right) \leqslant m\left(x_{0}\right)+\epsilon
$$

But $\epsilon$ is arbitrary, so

$$
\begin{equation*}
v\left(x_{0}\right) \leqslant m\left(x_{0}\right)=m^{\prime}\left(x_{0}\right) \tag{1.20}
\end{equation*}
$$

Hence $\quad v\left(x_{0}\right)=m^{\prime}\left(x_{0}\right)$.
Corollary 1. 1 Let $g$ and $H$ be as defined in (1.3) and (1.11), respectively.

Then $m\left(x_{0}\right)=m^{\prime}\left(x_{0}\right)=v\left(x_{0}\right)$.

## 2. Existence of Solutions to the first Minimax Problem in Control Theory

In this section we give a corrected proof of Theorem 6.1 of the previous progress report. The proof depends upon an essentially well known lemma on the continuity of solutions of differential equations with respect to small variations in the equations themselves. This lemma is formulated below as Theorem 2.1 in the form convenient for our purposes; and since the theorem in exactly this form may be hard to find in the literature, we give its complete proof using familiar techniques. The main theorem is, however, Theorem 2.2 which is essentially a repetition of Theorem 6.1 of the previous progress report; but it also contains a statement tending to give meaning to the quantity $m\left(x_{0}\right)$ in the case where $R$ is a sphere. In this connection the reader is referred to the first paragraph of Section 1.

In what follows leading up to Theorem 2.1 we have replaced the pair (w, u), i.e. ("wind","control"), by a single vector $\varphi$. The purpose of this modification is solely to abbreviate the statement and proof of Theorem 2.1. Once this theorem is proved, we revert to the previous terminology.

We consider a differential system of the form

$$
\begin{equation*}
\dot{x}=f(x, \varphi(t)) \tag{2.1}
\end{equation*}
$$

where x is an n -vector, the dot denotes differentiation with respect to the independent variable $t$ (referred to as the time), $f$ is an $n$-vector function, and $\varphi$ is a $k$-vector. We suppose $f(x, \varphi)$ to be defined for all $x$ in n-dimensional vector space or some open subset $X$ thereof and for all $\varphi$ in a bounded portion $V$ of $k$-dimensional vector space.

The known functions $\varphi(t)$ inserted in the right hand number of (2.1) are assumed to belong to a space $\Phi$ of functions whose domain is the time interval $0 \leq t \leq T^{*}$ and whose range is inv. We introduce into the space $\Phi$ a metric, denoted by $|\varphi-\bar{\varphi}|$ and defined by

We assume that $f(x, \varphi)$ is continuous in $X x V$ and, denoting by $K$ any bounded subset of $X$, we assume that there exists a constant $I_{K}$ such that the following Lipschitz condition

$$
\begin{equation*}
\|f(\bar{x}, \varphi)-f(x, \varphi)\| \leqq L_{K}\|\bar{x}-x\| \tag{2.2}
\end{equation*}
$$

is valid whenever $\bar{x}$ and $x$ both lie in $K$ and $\varphi \in V$. Finally we assume that $f[x(t), \varphi(t)]$ is Lebesgue measurable whenever $\varphi \in \Phi$ and whenever $x$ is a continuous function of $t$ with values in $X$. These conditions are sufficient to insure the existence and uniqueness of the solution $x\left(t, x_{0}, \varphi\right)$ of (2.1), corresponding to any $\varphi \in \Phi$, such that $x\left(0, x_{0}, \varphi\right)=x_{0}$. It is assumed that this solution exists over a time interval $[0, T] \in\left[0, T^{*}\right]$, regarded as fixed at least for fixed $x_{0}$, for any $\varphi \in \Phi$. That is $T$ may depend on $x_{0}$ but not on $\varphi$.

Theorem 2.1. If $V$ is sequentially compact, then $x\left(t, x_{0}, \varphi\right)$ is continuous in $t$ and $\varphi$ for $t \in[0, T]$ and $\varphi \in \Phi$.
Proof. Let $\bar{t} c^{\Gamma} \prod^{-T}$ and $\bar{\varphi} \epsilon \Phi$, and let $\epsilon$ be a preassigned positive
number. Now $x\left(t, x_{0}, \varphi\right)$ and $x\left(t, x_{0}, \bar{\varphi}\right)$ both exist for $0 \leqq t \leq T$ if $\varphi$ as well as $\bar{\varphi}$ belong to $\Phi$. It is required to show how to construct a number 8 such that

$$
\begin{equation*}
\left\|x\left(t, x_{0}, \varphi\right)-x\left(\bar{t}, x_{0}, \bar{\varphi}\right)\right\|<\epsilon \tag{2.3}
\end{equation*}
$$

as long as $|t-\bar{t}|$ and $|\varphi-\bar{\varphi}|$ both do not exceed $\delta$.
For this purpose choose a positive number $\alpha<2^{-1} \in$ and let the set $K$ be defined as follows:

$$
x \in K \text { if and only if }\left\|x-x\left(t, x_{0}, \ddot{\varphi}\right)\right\| \leqq \alpha \text { for some } t \text { on }[0, T] \text {. }
$$

Since $X$ is open and the set of points $x$ on the trajectory $x=x\left(t, x_{0}, \ddot{\varphi}\right)$ for $0 \leq t \leq T$ is compact, $K$ will be a subset of $X$ if $\alpha$ is sufficiently small. We assume that $\alpha$ has been so chosen. It is also obvious that $K$ is bounded and closed.

Since $K x V$ is sequentially compact and $f(x, \varphi)$ is continuous, it must also be bounded in KxV. Let us therefore write

$$
\begin{equation*}
\|f(x, \varphi)\|<B \text { for all } x \in K \text { and } \varphi \in V \tag{2.4}
\end{equation*}
$$

Moreover the Lipschitz condition (2.2) is available.
Let $\eta=\alpha L\left(e^{L T}-1\right)^{-1}$, where $L=I_{K}$, is the Lipschitz constant appearing in (2.2). Choose $\sigma$ so that

$$
\begin{equation*}
\|f(x, \ddot{\varphi})-f(x, \varphi)\|<\eta \text { for }\|\bar{\varphi}-\varphi\|<\sigma \tag{2.5}
\end{equation*}
$$

provided also, of course, that $\varphi$, as well as $\bar{\varphi}$, is in $V$. This is possible since we have uniform continutiy in $K x V$. Notice that, if $\varphi \in \Phi$ and $|\bar{\varphi}-\varphi|<\sigma$, we also have a fortiomi (from the definition of $|\bar{\varphi}-\varphi|$ ) that $\|\bar{\varphi}(t)-\varphi(t)\|<\sigma$, so that $\|f(x, \bar{\varphi}(t))-f(x, \varphi(t))\|<\eta$ for any $t$ on $\left[0, T^{*}\right]$ and $x \in K$.

Corresponding to any $\varphi \in \Phi$ such that $\bar{\varphi}-\varphi<\sigma$, we consider the sequence

$$
\begin{align*}
& x^{0}(t)=x\left(t, x_{0}, \bar{\phi}\right) \\
& x^{m}(t)=x_{0}+\int_{0}^{t} f\left[x^{m-1}(i), \varphi(\pi)\right] d \tau, \quad m=1,2,3, \ldots \tag{2.6}
\end{align*}
$$

We first prove by induction that the members of this sequence exist and that for $m=0,1,2, \cdots$

$$
\begin{equation*}
\| x^{m}(t)-x\left(t, x_{0}, \bar{\varphi}(t) \| \leqq \sum_{s=1}^{m} \frac{L^{s-1} t^{s}}{s!}\right. \tag{2.7}
\end{equation*}
$$

which, for $0 \leq t \leq T$ does not exceed $\eta L^{-1}\left(e^{L T}-1\right)=\alpha$ so that our inductive proof also establishes the fact that $x^{m}(t) \in K$ for $m=0,1,2, \ldots$ and for $t \in[0, T]$.

The statement is obviously true for $m=0$. Make the inductive hypothesis that (2.7) holds when $m$ is replaced by $m-1$ and that consequently $x^{m-1}(t) \in K$. Using the abbreviation $\bar{x}(t)=x\left(t, x_{0}, \ddot{\varphi}\right)$ we evidently have

$$
\begin{equation*}
\bar{x}(t)=x_{0}+\int_{0}^{t} f[\bar{x}(\tau), \bar{\varphi}(\tau)] \tag{2.8}
\end{equation*}
$$

This is true, since (2.8) is merely the integrated form of (2.1) with $\varphi=\bar{\varphi}$ and $\mathrm{x}=\overline{\mathrm{x}}$. Using this same abgreviation our inductive hypothesis appears in the form,

$$
\begin{equation*}
\left\|x^{m-1}(\tau)-\bar{x}(\tau)\right\| \leqq \eta \sum_{s=1}^{m-1} \frac{L^{s-1} \tau^{s}}{s!} \tag{2.9}
\end{equation*}
$$

for $0 \leq \tau \leq T$. Subtacting (2.8) from (2.6) and performing some obvious estimates, we find that

$$
\begin{aligned}
& \left\|x^{m}(t)-\bar{x}(t)\right\| \leqq \int_{0}^{t}\left\|f\left[x^{m-1}(\tau), \varphi(\tau)\right] \cdots f[\bar{x}(\tau), \bar{\varphi}(\tau)]\right\| d \pi \\
& \leqq \int_{0}^{t}\left\|f\left[x^{m-1}(\tau), \varphi(\tau)\right]-f^{m}\left[x^{m-1}(\tau), \bar{\varphi}(\tau)\right]\right\| d \tau+\int_{0}^{t} \| f\left[x^{m-1}(\tau), \bar{\varphi}(\tau)\right] \\
& -f[\bar{x}(\tau), \bar{\varphi}(\tau)] \| d \tau
\end{aligned}
$$

Since $x^{m-1}(\tau) \in K, \bar{x}(\tau) \in K, \varphi \in \Phi$ and $|\bar{\varphi}-\varphi|<\sigma$, we may use both (2.5) (with $x$ replaced by $x^{m-1}$ ) and the Lipschitz condition. We accoräingly find that

$$
\left\|x^{m}(t)-\bar{x}(t)\right\| \leqq \int_{0}^{t} \eta d \tau+L \int_{0}^{t}\left\|x^{m-1}(\tau)-\bar{x}(\tau)\right\| d \tau
$$

Hence, from our inductive hypothesis (2.9) we deduce that

$$
\left\|x^{m}(t)-\bar{x}(t)\right\| \leqq \eta t+\eta \sum_{s=1}^{m-1} \frac{I_{1}^{s} t^{s+1}}{(s+1)!}=\eta \sum_{s=1}^{m} \frac{L^{s-1} t^{*}}{s!}
$$

This completes the induction.
Now that $x^{m}(t)$ is known to lie in $K$, where the uniform Lipschitz condition is valid, it is easy to see that the well known technique due to Picard and Lindelöf is available to prove that as $m \rightarrow \infty$, the $x^{m}(t)$ tend uniformly to the solution of (2.1), which takes on the initial value $x_{0}$. Since this solution is unique, we thus are enabled to write

$$
-2-12-
$$

$$
\lim _{m \rightarrow \infty} x^{m}(t)=x\left(t, x_{0}, \varphi\right) \text { uniformly on }[0, T]
$$

Hence, from (2.7), we find that

$$
\begin{equation*}
\left\|x\left(t, x_{0}, \varphi\right)-x\left(t, x_{0}, \bar{\varphi}\right)\right\| \leqq n \Psi^{-1}\left(e^{[I T}-1\right)=\alpha<(1 / 2 ; \epsilon \tag{2.10}
\end{equation*}
$$

as long as $|\bar{\varphi}-\varphi|<\sigma$. Moreover, from (2.1) and (2.4), it is also clear that

$$
\begin{equation*}
\left\|x\left(t, x_{0}, \bar{\varphi}\right)-x\left(\bar{t}, x_{0}, \bar{\varphi}\right)\right\| \leqq B|t-\bar{t}|<(1 / 2) \epsilon \tag{2.11}
\end{equation*}
$$

if $|t-\bar{t}|<(2 B)^{-1} \epsilon$. From (2.10), (2.11), and the triangle inequality, we thus find that

$$
\left\|x\left(t, x_{0}, \varphi\right)-x\left(\bar{t}, x_{0}, \bar{\varphi}\right)\right\|<(1 / 2) \leqslant+(1 / 2) \epsilon
$$

provided that $|\bar{t}-t|$ and $\| \bar{\varphi}-\varphi \mid$ are both less than $\delta=\min \left[\sigma,(2 B)^{-1} \in\right]$. This complets the proof of Theorem 2.1.

We now revert to the system

$$
\begin{equation*}
s ; \quad \dot{x}=f(x, w, u) \tag{2.12}
\end{equation*}
$$

where $x \in X, f, w$ and $u$ are as described in $\S 1$ of the Second Progress Report. We assume that $f$ is continuous in $x, w$, and $u$, and moreover satisfies a Lipschitz condition in $x$,

$$
\left\|f\left(x^{t}, w, u\right)-f(x, w, u)\right\| \leqq I_{K}\left\|x^{t}-x\right\|
$$

when $x$ and $x^{\prime}$ belong to any fixed bounded region $K \subset X$ and $w$ and $u$ take on any values in the ranges of functions in the sets. $W$ and $U$ respectively. It is well known that these assumptions are sufficient to insure the existence and uniqueness of solutions for $s$, at least if $f[x(t), w(t), u(t)]$ is measur= able when $x(t)$ is continuous, and $w \in W$ and $u \in U$.

Theorem 2.2 If $U$ and $W$ are sequentially compact and $S$ is T-tame, then there exists a solution for the first minimax problem for $S$. In other words, given $x_{0} \in R_{T}$, there exist $u^{*} \in U$ and $W^{*} \in W$ such that

$$
m\left(x_{0}\right)=\max _{0 \leqq t \leqq T}\left\|x\left(t, x_{0}, w^{*}, u^{*}\right)\right\|
$$

where $x\left(t, x_{0}, w, u\right)$ is the solution of $S$ reducing to $x_{0}$ when $t=0$. Moreover, the trajectory $x\left(t, x_{0}, w^{*}, u^{*}\right)$ does not leave the sphere $R$ for $0 \leqq t \leqq T$ and therefore the number $m\left(x_{0}\right)$ is of significance in the sense that it measures the worst possible result which might be obtained when the best. control is used to counteract any wind.

Proof. We invoke Theorem 2.1 to insure us that $x\left(t, x_{0}, w, u\right)$ is continuous in $t$, $w$ and $u$. In doing this, of course, we interpret the $\varphi$ of Theorem 2.1 to stand for the pair ( $w, u$ ) and the space $\Phi$ then consists of all pairs of functions ( $w, u$ ) in which $w \in W$ and $u \in U$. It is seen that the hypotheses, both those stated explicitly in Theorem 2.1 and those contained in the preamble, are satisfied.

Since $x\left(t, x_{0}, w, u\right)$ is continuous, as stated, the same is true of $\left\|x\left(t, x_{o}, w, u\right)\right\|$.

From Theorem 3.2, of the Second Progress Report, it now follows that

$$
g\left(x_{o}, w, u\right)=\max _{0 \leqq t \leqq T}\left\|x\left(t, x_{0}, w, u\right)\right\| \text { is a continuous function of } w \text { and } u .
$$

From Theorem 3.3, of the Second Progress Report, we now conclude that there exist $W^{*} \in W$ and $u^{*} \in U$ such that

$$
g\left(x_{0}, w^{*}, u^{*}\right)=\max _{w \in W}\left[\begin{array}{l}
\min  \tag{2.13}\\
u \in U
\end{array} g\left(x_{0}, w, u\right)\right]
$$

Using equations (1.5), (1.4), (2.13) and (1.3) in this sequence we thus obtain

$$
\begin{aligned}
m\left(x_{0}\right) & =\max _{w \in W} h\left(x_{0}, w\right)=\max _{w \in W}\left[\min _{u \in U} g\left(x_{0}, w, u\right)\right]=g\left(x_{0}, w^{*}, u^{*}\right) \\
& =\max _{0 \leqq t \leqq T}\left\|x\left(t, x_{0}, w^{*}, u^{*}\right)\right\|,
\end{aligned}
$$

thus completing the proof of Theorem 2.2

In previous progress reports we dealt with a certain minimax problem which appeared to be of limited significance in regard to control systems for launch vehicles. We now propose another problem, which at first sight might seem only trivially different from the previously considered problem. Yet, the difference is just enough so that we are led to a significant minimax problem, whereas previously we had decided that the only immediately significant problem was a maximin problem, even though at the end of $\S l$ of the Third Progress Report, we managed, by fairly sophisticated ideas, to rephrase it as an equivalent minimax problem.

We now consider the system

$$
S: \quad \dot{x}=f(x, w, u)
$$

where $x$ is an $n$-vector representing the system's state, the dot represents differentiation with respect to time $t, w$ and $u$ are vectors (of any dimensionality, not necessarily $n$ ), and where $f$ is an n-vector function of $x, w, u$, defined, say, for $x \in X, w^{*} \in W^{*}$, and $u \in U^{*}$.

We consider a class $W$ of functions $w$ (referred to as "winds") which map the time interval $[0, T]$ into the set $W^{*}$ and a class $U$ of functions u (referred to as controls) which map $X$ into $U^{*}$.

Under suitable conditions on $f$ and the class $W$ and $U$, the system s, which is now thought of as taking the form,

$$
\dot{\mathrm{x}}=\mathrm{f}(\mathrm{x}, \mathrm{w}(\mathrm{t}), \mathrm{u}(\mathrm{x})),
$$

admits through each initial point $x_{0}$, a unique solution

$$
x=x\left(t, x_{0}, w, u\right), \text { with } x\left(0, x_{0}, w, u\right)=x_{0} .
$$

Moreover, the system is supposed to disintegrate whenever the solution emerges from some given region $R \subset X$. We find it therefore useful to say that the system $S$ is uniformly $T$-tame with respect to $R$, if there exists a subregion $R_{T}(\mathbb{C})$ and a non-vacuous sub-class $V(\subset U)$ of controls, such that $x\left(t, x_{0}, w, u\right) \in R$ as long as $x_{0} \in R_{T}, 0 \leqq t \leq T$, $w \in W$, and $u \in V$. We henceforth assume that $S$ is uniformly $r$-tame in the sense of this definition.

Suppose next that it is desirable that a given function $F(x)$ be kept as small as possible during the motion. More precisely, we are interested in minimizing by proper choice of the control $u$ the maximum value of $F\left[x\left(t, x_{0}, w, u\right)\right]$ for $x_{0} \in R_{T}, 0 \leqq t \leqq T$, and for $w \in W$. Thus, letting

$$
g(w, u)=\max _{x_{0}} R_{T}\left\{0 \leq t \leq T F\left[x\left(t, x_{0}, w, u\right)\right]\right\}
$$

we pose the question as to the existence of a "bad" wind $w^{*} \in W$ and a "good" control $u^{*} \in V$, such that

$$
\begin{aligned}
& g .1 . b .
\end{aligned}\left[\begin{array}{l}
\text { 1.u.b. } \\
w \in W(w, u)
\end{array}\right]=g\left(w^{*}, u^{*}\right) .
$$

If we prefer not to make our results independent of $x_{0}$, we could let

$$
g\left(x_{0}, w, u\right)=\max _{0 \leqq t \leqq T} F\left[x\left(t, x_{0}, w, u\right)\right]
$$

and pose the question as to the existence of a "bad." wind $w^{*} \in W$ (relative to this particular initial point) and a "good" control $u * \in V$ (also relative to this particular initial point), such that

$$
\underset{u \in V}{g \cdot 1 \cdot b}\left[\begin{array}{l}
\text { l.u.b. } \\
w \in W
\end{array} \quad g\left(x_{0}, w, u\right)\right]=g\left(w^{*}, u^{*}\right) .
$$

The material given in sections 2 and 3 of the Second Progress Report is probably sufficiently general to apply to such questions of existence in the present problem. However, it is clear that considerable care must be exercised in specifying the class $U$. If this class is not Lipschitzian, for instance, we could be faced with the loss of the uniqueness of solutions of $S$.

In comparing the present problem with the one formulated previously in $\S 5$ of the Second Progress Report and treated more fully in the Third Progress Report, it is seen that in the previous work the class $U$ was a class of functions $u(t)$ defined on the interval $0 \leqq t \leq T$, whereas now the class $U$ is a class of functions $u(x)$ defined for $x \in X$. Of course, since $x$ is eventually thought of as a function of $t$, it appeared at first sight that this difference was only superficial, $u(t)=u(x(t))$. But this appearance, itself, is superficial. Our previous fundamental difficulty was connected with the fact that it did not seem sensible to select a good control $u(t)$ independently of the wind $w$; whereas, now, even though $u(x)$ may be selected independently of the wind, we are led inevitably to a $u(t)=u[x(t)]$, which is indeed not independent of the wind $w$, since the $x(t)$ written above is just an abbreviation for $x\left(t, x_{o}, w, u\right)$, which, of course, depends explicitly on both the wind and the control.

It may have been noticed by the reader that in the above formulation we have used and defined the expression "uniformly $T$-tamel". Evidently, it is up to us to explain the significance of this term and its relationship to the (non-uniform) "I-tameness" first introduced in the Second Progress Report, p. 21. For this purpose consider again the system

$$
\begin{equation*}
S: \quad \dot{x}=f(x, w, u) \tag{1}
\end{equation*}
$$

We say that a set $A(\subset R)$ is $T$-tame with respect to $R$ if for any $x_{0} \in A$ and any $w \in W$ there exists a control $u(x)=u\left(x, x_{0}, w\right)$ in $U$ such that

$$
\begin{equation*}
x\left(t, x_{0}, w, u\right) \in R \tag{2}
\end{equation*}
$$

for all $0 \leqq t \leq T$. Thus, for any $x_{0} \in A$ the set

$$
\begin{equation*}
U\left(x_{o}, w\right)=\{u \in U \mid \text { condition (2) is satisfied }\} \tag{3}
\end{equation*}
$$

is not empty.
We say that the system $S$ is $T$-tame with respect to $R$ if there exists a non-empty subset $R_{T}$ of $R$ which is $T$-tame with respect to $R$.

Let $A$ be $T$-tame with respect to $R$. If $x_{0} \in A$ we know that $U\left(x_{o}, w\right) \neq \varnothing$ for every $w \in W$. However, the set

$$
\begin{equation*}
v\left(x_{0}\right)=\bigcap_{W \in W} U\left(x_{0}, w\right) \tag{4}
\end{equation*}
$$

may be empty.
Now let $A$ be $T$-tame with respect to $R$. We shall say that a point $\mathrm{x}_{0} \in \mathrm{R}_{\mathrm{T}}$ is uniformly T-tame with respect to R if $\mathrm{V}\left(\mathrm{x}_{0}\right) \neq \varnothing$. This is equivalent to the requirement that there exists at least one $V^{*}(x) \in U$ such that

$$
\begin{equation*}
x\left(t, x_{0}, w, w^{*}\right) \in R \text { for all } 0 \leqq t \leqq T \text { and all } w \in W \tag{5}
\end{equation*}
$$

Here $v^{*}$ is, of course, independent of $w$.
A set A is uniformly T -tame with respect to $R$ if every point in $A$ is uniformly $T$-tame with respect to $R$ and, in addition, the set

$$
\begin{equation*}
\bigcap_{x_{0} \in A} v\left(x_{0}\right) \tag{6}
\end{equation*}
$$

is not empty. Thus, a set $A \subset R$ is uniformly T-tame with respect to $R$ iff there exists at least one (fixed) $V^{*} \in U$ such that

$$
\begin{equation*}
x\left(t, x_{0}, w(t), v^{*}(x)\right) \in R \text { for } 0 \leqq t \leqq T \text {, all w } w \text { Wand als } x_{0} \in A \text {. } \tag{7}
\end{equation*}
$$

Here $v^{*}$ is independent both of $w$ and $x_{0}$.
If $A$ is uniformly $T$-tame with respect to $R$ we denote the (non empty) set (6) by $V(A)$.

We say that the system $S$ is uniformly $T$-tame with respect to $R$ if there exists a non-empty subset $R_{1} \subset R$ such that $V\left(R_{1}\right) \neq \phi$.

Let $A(\subset R)$ be uniformly $T$-tame with respect to $R$. If $V_{1}$ is any non-empty subset of $V(A)$ then clearly

$$
\begin{equation*}
x\left(t, x_{0}, w, u\right) \in R \text { for all } 0 \leq t \leq T \text {, all } x_{0} \in A \text {, all } w \in W \text { and all } v \in V_{1} \tag{8}
\end{equation*}
$$

The converse also holds: If $V_{1}$ satisfies (8) then $V_{1} \subset V(A)$.
Given a non-empty subset $V$ in $U$, the set

$$
\begin{equation*}
\left\{x_{0} \in R \mid x\left(t, x_{0}, w, u\right) \in R \text { for all } 0 \leq t \leqq \mathbb{T} \text {, all } w \in W \text {, all } v \in V\right\} \tag{9}
\end{equation*}
$$

will be denoted by $R(V)$.

The following relations clearly hold:
(1) $A \subset B(\mathbb{C R}) \rightarrow V(B) \subset V(A)$
(2) $\left.V_{1} \subset V_{2} U\right) \rightarrow R\left(V_{2}\right) \subset R\left(V_{1}\right)$.
(3) $R(V(A)) \supset A$
(4) $V\left(R\left(V_{0}\right)\right) P V_{0}$.

CHAPTER 4

## 1. INTRODUCTION AND FORMULATION OF THE EXISTEFVCE PROBLEM

In the fourth progress report, we indicated a desirable modification of the minimax problem as previously understood. While this modification permits the application of certain general results contained in the second progress report, it was found necessary to generalize Theorem 2.1 of the third progress report in order to obtain a suitable tool for establishing the desired existence theorem. The generalized Theorem 2.1 is likewise denoted as Theorem 2.1 and appears in the next section of the present report with complete proof. The method of proceeding to the proof of the existence theorem is given in Section 3. The problem itself has already been formulated in the fourth progress report. For the sake of completeness, we reproduce the formulation here.

We consider the system
$S: \quad \dot{x}=f(x, w, u)$
where $x$ is an $n$-vector representing the system's state, the dot represents differentiation with respect to time $t, ~ w$ and $u$ are vectors (of any dimensionality, not necessarily $n$ ), and where $f$ is an n-vector function of $x, w, u$, defined, say, for $x \in X, w \in W^{*}$, and $u \in U^{*}$.

We consider a class :W of functions w(referred to as "winds") which map the time interval $[0, T]$ into the set $W^{*}$ and a class $U$ of functions u(referredito as "controls") which map $X$ into U*.

Under suitable conditions on $f$ and the class $W$ and $U$, the system S, which is now thought of as taking the form

$$
\dot{x}=f(x, w(t), u(x))
$$

admits through each initial point $x_{0}$, a unique solution $x=x\left(t, x_{0}, w, u\right)$
such that $x\left(0, x_{0}, w, u\right)=x_{0}$.
Moreover, the system is supposed to disintegrate whenever the solution emerges from some given region $R \subset X$. We find it therefore useful to say that the system $S$ is uniformly $T$-tame with respect to $R$, if there exists a subregion $R_{T}(\subset R)$ and a non-vacuous sub-class $V(C U)$ of controls, such that $x\left(t, x_{0}, w, u\right) \in R$ as long as $x_{0} \in R_{T}, \quad 0 \leqq t \leqq T$, w $\quad 0$ and $u \in V$. We henceforth assume that $S$ is uniformly $T$-tame in the sense of this definition.

Suppose next that it is desirable that a given continuous function $F(x)$ be kept as small as possible during the motion. More precisely, we are interested in minimizing by proper choice of the control $u$ the maximum value of $F\left[x\left(t, x_{0}, w, u\right)\right]$ for $x_{0} \in R_{T}, 0 \leqq t \leqq T$, and for $w \in W$. Thus, letting

$$
\left.g(w, u)=\max _{x_{0} \in R_{T}}\left\{\begin{array}{r}
\max \\
0 \leqq t \leqq T
\end{array} \operatorname{Fr}\left(t, x_{0}, w, u\right)\right]\right\}
$$

we pose the question as to the existence of a "bad" wind $w^{* \in W}$ and a "good" control $u^{*} \in V$, such that

$$
\begin{aligned}
& \text { g.l.b. } \\
& u \in V
\end{aligned}\left[\begin{array}{l}
\text { l.u.b. } \\
w \in W^{( } g(w, u)
\end{array}\right]=g\left(w^{*}, u^{*}\right) .
$$

In section 3 we answer the question in the affirmative, at least if $f[x, w(t), u(x)]$ satisfies a certain reasonable Lipschitz condition and if $R_{T}, W$, and $V$ are compact.

There remains a lot to do in examining the usefullness and significance of this result. For instance, both the Lipschitz condition on $f[x, w(t), u(x)]$ and the hypothesis on the compactness of $W$ preclude the possibility of using
discontinuous controls. Also the limitation of $u$ to the set $V$ is awkward. One might expect a better result if we were to contemplate

but this leads to technical difficulties, since $g(w, u)$ may fail to be defined throughout the product space $W \times \mathrm{U}$. Other unanswered questions concern the properties of the maximal controllable region $R_{T}$. Is it connected? Does it contain the origin?

We hope to answer questions of this type in the next progress report.

## 2. ON THE CONTINUITY OF SOLUTIONS OF DIFFERENTIAL SYSTEMS.

We consider a differential system of the form

$$
\begin{equation*}
\dot{x}=f[x, \varphi(x, t)] \tag{2.1}
\end{equation*}
$$

where x is an n -vector, the dot denotes differentiation with respect to the independent variable $t$ (referred to as the time), $f$ is an $n$-vector function, and $\varphi$ is a $k$-vector. We suppose $f(x, \varphi)$ to be defined for all $x$ in n-dimensional vector space or some open subset $X$ thereof and for all $\varphi$ in a bounded portion $V$. of k-dimensional vector space.

The functions $\varphi(x, t)$ inserted in the right hand member of (2.1) are assumed to belong to a space $\Phi$ of functions whose domain is the Cartesian product space of a fixed open time interval $I$ and the set $X$; and the range of the functions $\varphi$ in $\Phi$ is assumed to lie in $V$. We make $\Phi$ a normed metric space by defining the norm of $\varphi$ as follows:

$$
\|\varphi\|=\underset{t \in I, x \in X}{\stackrel{i}{l} \cdot \mathrm{~b} .}\|\varphi(x, t)\| .
$$

Contrariwise $\|\varphi\|$ refers to a norm for the $k$-dimensional vector space of which $V$ is a subset. Likewise $\|x\|$ refers to a norm for $n$-dimensional vector space. There is never any possiblity of confusion regarding the use of $\|\ldots\|$ to denote a norm in $k$ - or n-dimensional space.
$f(x, \varphi)$ is assumed to be continuous in $X \times V$.
Denoting by $K$ a bounded subset of $X$, we assume that there is a
"Lipschitz" constant $I_{K}$ such that

$$
\begin{equation*}
\|f[\bar{x}, \varphi(\bar{x}, t)]-f[x, \varphi(x, t)]\| \leqq I_{K}\|\bar{x}-x\| \tag{2.2}
\end{equation*}
$$

whenever $\bar{x}$ and $x$ both lie in $K$ and $\varphi \in \Phi$.

We also assume that $f[x(t), \varphi(x(t), t)]$ is Lebesque measurable whenever $\varphi \in \Phi$ and $x$ is a continuous function of $t$ with values in $X$. Let $x\left(t, x_{0}, \varphi\right)$ denote the solution of (2.1) which reduces to $x_{0}$ when $t=0 \in I$. Here $\varphi$ is a fixed element in $\Phi$. The classical existence theorems for systems of differential equations assure us that such a solution exists and is unique for $0 \leqq t \leqq T$ for some sufficiently small T. Given $x_{0} \in K^{*} \subset X$, we further assume that $x\left(t, x_{0}, \varphi\right)$ exists over the time interval $[0, T] \subset I$, where $T$ is independent of $x_{0}$, and $\varphi$, as long as $x_{0} \in K^{*}$ and $\varphi \in \Phi$.
Theorem 2.1 If $V$ is sequentially compact, then $x\left(t, x_{0}, \varphi\right)$ is continuous simultaneously in $t, x_{0}$, and $\varphi$, for $t \in[0, T], x_{0} \in K^{*}$, and $\varphi \in \Phi$.
Proof Let $\bar{t} \in[O, T], \bar{\varphi} \in \Phi, \bar{x}_{0} \in K^{*}$, and let $\epsilon$ be a preassigned positive number. Now $x\left(t, \bar{x}_{0}, \bar{\varphi}\right)$ and $x\left(t, x_{0}, \varphi\right)$ both exist for $0 \leqq t \leqq T$, if $x_{0}$ and $\varphi$ (as well as $\bar{x}_{0}$ and $\bar{\varphi}$ ) belong to $K^{*}$ and $\Phi$ respectively. It is required to show how to construct a number $\delta$ such that

$$
\begin{equation*}
\left\|x\left(t, x_{0}, \varphi\right)-x\left(\bar{t}_{t} \bar{x}_{0}, \bar{\varphi}\right)\right\|<\epsilon \tag{2.3}
\end{equation*}
$$

as long as $|t-\bar{t}|,\left\|x_{0}-\bar{x}_{0}\right\|$ and $|\varphi-\bar{\varphi}| \leqq \delta$.
For this purpose chooose a positive number $\alpha<2^{-1} \epsilon$ and let the set $K$ be defined as follows:
$x \in K$ if and only if $\|x-x(t, \bar{x} ; \bar{\varphi})\| \leqq \alpha$ for some $t$ on $[0, T]$.
Since $X$ is ppen and the set of points $x$ on the trajectory $x=x\left(t, \bar{x}_{0}, \bar{\varphi}\right)$ for $0 \leqq t \leqq T$ is compact, $K$ will be a subset of $X$ if $\alpha$ is sufficiently small. We assume that $\alpha$ has been so chosen. It is also obvious that $K$ is bounded and closed.

Since $K x V$ is sequentially compact and $f(x, \varphi)$ is continuous, it
must also be bounded in KxV . Let us therefore write

$$
\begin{equation*}
\|f(x, \varphi)\|<B \text { for all } x \in K \text { and } \varphi \in V \tag{2.4}
\end{equation*}
$$

Moreover, the Lipschitz condition (2.2) is available. Let $\eta=\alpha L\left(2 e^{L T}-1\right)^{-1}$, where $L=L_{K}$ is the Lipschitz constant appearing in (2.2). Choose $\sigma$ so that

$$
\begin{equation*}
\|f(x, \bar{\varphi})-f(x, \varphi)\|<\eta \quad \text { for }\|\bar{\varphi}-\varphi\|<\sigma \tag{2.5}
\end{equation*}
$$

provided also, of course, that $\varphi$, as well as $\bar{\varphi}$, is in $V$. This is possible since we have uniform continuity in $K x V$. Notice also that, if $\varphi \in \Phi$ and $|\bar{\varphi}-\varphi|<\sigma$, we also have a fortiori (from the definition of $|\bar{\varphi}-\varphi|$ ) that $\|\bar{\varphi}(t)-\varphi(t)\|<\sigma$, so that
$\|f(x, \bar{\varphi}(t))-f(x, \varphi(t))\|<\eta \quad$ for any $\quad t \in I \quad$ and $x \in K$. Corresponding to any $\varphi \in \Phi$ such that $|\bar{\varphi}-\varphi|<\sigma$, we consider the sequence,

$$
x^{o}(t)=x\left(t, \bar{x}_{0}, \bar{\varphi}\right)
$$

$$
\begin{equation*}
x^{m}(t)=x_{0}+\int_{0}^{t} f\left[x^{m-1}(\tau), \varphi\left(x^{m-1}(\tau), \tau\right)\right] d \tau, \quad m=1,2,3, \ldots \tag{2.6}
\end{equation*}
$$

We first prove by induction that, if $\left\|x_{0}-\vec{x}_{o}\right\|<\beta=\eta L^{-1}$, the members of this sequence exist and that for $m=0,1,2, \ldots$

$$
\begin{align*}
\left\|x^{m}(t)-x\left(t, \bar{x}_{0}, \bar{\varphi}(t)\right)\right\| & \leqq \sum_{k=0}^{m-1} \beta \frac{L^{k} t^{k}}{k!}+\sum_{k=0}^{m-1} \eta \frac{L^{k} t^{k+1}}{(k+1) E}  \tag{2.7}\\
& \leqq \beta e^{L T}+\eta L^{-1}\left(I^{I T}-1\right)=\alpha<2^{-1} \epsilon
\end{align*}
$$

.... inductive proof thus also establishes the fact that $x^{m}(t) \in K$ for $m=0,1,2, \ldots$

The statement is obviously true for $m=0$. Make the inductive hypothesis that (2.7) holds when $m$ is replaced by $m-1$ and that consequently $x^{m-1}(t) \in K$. Using the abbreviation $\bar{x}(t)=x\left(t, \bar{x}_{0}, \bar{\varphi}\right)$, we evidently have

$$
\begin{equation*}
\bar{x}(t)=\bar{x}_{0}+\int_{0}^{t} f[\bar{x}(\tau), \bar{\varphi}(\bar{x}(\tau), \tau)] d \tau \tag{2.8}
\end{equation*}
$$

This is true, since (2.8) is merely the integrated form of (2.1) with $\varphi=\bar{\varphi}$ and $x=\bar{x}$. Using this same abbreviation our inductive hypothesis appears in the form,

$$
\begin{equation*}
\left\|x^{m-1}(\tau)-\bar{x}(\tau)\right\| \leqq \sum_{k=0}^{m-2} \beta \frac{L^{k} \tau^{k}}{k!}+\sum_{k=0}^{m-2} \eta \frac{L^{k} \tau^{k+1}}{(k+1)!} \tag{2.9}
\end{equation*}
$$

for $0 \leqq T \leqq T$. Subtracting (2.8) from (2.6), we find that

$$
\begin{aligned}
x_{i}^{m}(t)-\bar{x}(t)= & x_{0}-\bar{x}_{0}+\int_{0}^{t}\left\{f\left[x^{m-1}(\tau), \varphi\left(x^{m-1}(\tau), t\right)\right]-f[\bar{x}(\tau), \bar{\varphi}(\bar{x}(\tau), \tau)]\right\} \\
:= & x_{0}-\bar{x}_{0}+\int_{0}^{t}\left\{f\left[x^{m-1}(\tau), \varphi\left(x^{m-1}(\tau), \tau\right)\right]-f\left[x^{m-1}(\tau), \bar{\varphi}\left(x^{m-1}(\tau), \tau\right)\right]\right\} d \bar{\tau} \\
& +\int_{0}^{t}\left\{f\left[x^{m-1}(\tau), \bar{\varphi}\left(x^{m-1}(\tau), \tau\right)\right]-f[\bar{x}(\tau), \bar{\varphi}(\bar{x}(\tau), \tau)]\right\} d \tau
\end{aligned}
$$

Hence

$$
\begin{aligned}
\left\|x^{m}(t)-x(t)\right\| \leqq & \left\|x_{0}-\bar{x}_{0}\right\|+\int_{0}^{t}\left\|f\left[x^{m-1}(\tau), \varphi\left(x^{m-1}(\tau), \bar{\psi}\right)\right]-f\left[x^{m-1}(\tau), \bar{\varphi}\left(x^{m-1}(\tau) \tau\right)\right]\right\| d \tau \\
& +\int_{0}^{t}\left\|f\left[x^{m-1}(\tau), \bar{\varphi}\left(x^{m-1}(\tau), \tau\right)\right]-f[\bar{x}(\tau), \bar{\varphi}(\bar{x}(\tau), \tau)]\right\| d \tau
\end{aligned}
$$

We next use the fact that $\left\|x_{0}-\bar{x}_{0}\right\|<\beta$, as well as (2.5) and (2.2). We thus find that

$$
\left\|x^{m}(t)-\bar{x}(t)\right\|<\beta+\int_{0}^{t} \eta d \tau+L \int_{0}^{t}\left\|x^{m-1}(\tau)-\bar{x}(\tau)\right\| d \tau
$$

Hence, from our inductive hypothesis (2.9) we deduce that

$$
\begin{aligned}
\left\|x^{m}(t)-\bar{x}(t)\right\| & <\beta+\eta t+\sum_{k=0}^{m-2} \beta \frac{L^{k+1} t^{k+1}}{(k+1)!}+\sum_{k=0}^{m-2} \eta \frac{L^{k+1} t^{k+2}}{(k+2)!} \\
& =\sum_{\ell=0}^{m-1} \beta \frac{L^{\ell} t^{\ell}}{\ell!}+\sum_{\ell=0}^{m-1} \eta \frac{L^{\ell} t^{\ell+1}}{(\ell+1)!}
\end{aligned}
$$

This completes the induction.
Now that $x^{m}(t)$ is known to lie in $K$, where the uniform Lipschitz condition is valid, it is easy to see that the well known technique due to Picard and Lindelof f is available to prove that as $m \rightarrow \infty$, the $x^{m}(t)$ tend uniformly to the solution of (2.1), which takes on the initial value $x_{0}$, Since this solution is unique, we thus are enabled to write
$\lim$
$\lim _{m \rightarrow \infty} x^{m}(t)=x\left(t, x_{0}, \varphi\right)$ uniformly on $[0, T]$.
Hence, from (2.7), we find that

$$
\begin{equation*}
\left\|x\left(t, x_{0}, \varphi\right)-x\left(t, \bar{x}_{0}, \bar{\varphi}(t)\right)\right\|<2^{-1} \epsilon \tag{2.10}
\end{equation*}
$$

as long as $\boldsymbol{\varphi}-\varphi \|<\sigma$ and $\left\|\bar{x}_{o}-x_{0}\right\|<\beta$. Moreover, from (2.1) and (2.4), it is also clear that

$$
\begin{equation*}
\left\|x\left(t, \bar{x}_{0}, \bar{\varphi}\right),-x\left(\bar{t}, \bar{x}_{0}, \bar{\varphi}\right)\right\| \leqq B|t-\bar{t}|<2^{-1} \epsilon \tag{2.11}
\end{equation*}
$$

if $|t-E|<(2 B)^{-1} \in$. From (2.10), (2.11), and the triangle inequality, we thus find that

$$
\left\|x\left(t, x_{0}, \varphi\right)-x\left(\bar{t}, \bar{x}_{0}, \bar{\varphi}\right)\right\|<(1 / 2) \epsilon+(1 / 2) \epsilon=\epsilon
$$

provided that $|\bar{t}-t|, \mid \varphi-Q$ and $\left\|\bar{x}_{0}-x_{0}\right\|$ are all less than $\delta=\min \left[\sigma,(2 B)^{-1} \epsilon, \beta\right]$. This completes the proof of the Theorem.

## 3. EXISTENCE OF SOLUTIONS TO A MINIMAX PROBLEM IN CONTROL THEORY.

We recall the problem intpoduced on p .2 of the Fourth Progress Report, where we set

$$
g(w, u)=\max _{x_{0} \in R_{T}}^{\max }\left\{\max _{0 \leqq t \leqq T} \quad F\left[x\left(t, x_{0}, w, u\right)\right]\right\}
$$

$F$ being a continuous real valued function of the vector $x$. We posed the question as to the existence of a "bad" wind $w^{*} \in W$ and a "good" control $u^{*} \in V$, such that

$$
\underset{u \in v}{g \cdot 1 . b}\left\{\begin{array}{l}
\text { l. u. b. } \\
w \in W
\end{array} \quad g\left(w_{1}, u\right)\right\}=g\left(w^{*}, u^{*}\right)
$$

The answer to this question is affirmative if $W$ and $V$ are sequentially compact and if $R_{T}$ is closed as well as bounded. We support this statement with the following proof:

According to Theorem 2.1, $x\left(t, x_{0}, w, u\right)$ is continuous in $t, x_{0}$,w, and $u$. In reaching this conclusion. we, of course, interpret the $\varphi(x, t)$ of Theorem 2.1, to stand for the pair. $(w(t), \dot{H}(x))$ and the space $\Phi$ then consists of all pairs of functions ( $w, u$ ) in which $w \in W$ and $u \in V$. It is seen that the hypotheses, both those stated explicitly in Theorem 2.1 and those contained in the preamble, are satisfied.

Hence $F\left(x\left(t, x_{0}, w, u\right)\right)$ is continuous in $t, x_{0}, w$, and $u$. According to Theorem 3.2, p. 15 of the second progress report, it then follows from the compactness of $R_{T}$ and the interval $0 \leqq t \leq T$ as well as of $W$ and $V$, that $g(w, u)$ is continuous in w and u. Finally, according to Theorem 3.3, p. 17 of the second progress report, there exists $W^{*} \in W$ and $u^{*} \in V$ such that

$$
\begin{aligned}
g\left(w^{*}, u^{*}\right) & =\min _{u \in V}\left[\begin{array}{ll}
\max & g(w, u) \\
w \in W
\end{array}\right] \\
& =\begin{array}{l}
\text { g.1.b. } \\
\\
u \in V
\end{array}\left\{\begin{array}{ll}
\text { I.u.b. } \\
w \in W & g(w, u)
\end{array}\right\},
\end{aligned}
$$

as we wished to prove.

## 1. SOME ELEMENTARY THEOREMS CONCERNING UNIFORMELY T-TAME SETS

As in the previous progress report, we consider the system

$$
s: \quad \dot{x}=f(x, w, u),
$$

where $x$ is an $n$-vector, the dot represels differentiation with respect to time $t$, $w$ and $u$ are vectors (of any dimensionality, not necessarily $n$ ), and where $f$ is an $n$-vector function of $x, w, u$, defined, say, for $x \in X, W^{\prime} \in W^{*}, u \in U^{*}$.

We consider a class $W$ of functions $w$ which map the time interval
$[0, T]$ into the set $W^{*}$ and a class $U$ of functions $u$, which map $X$ into $U^{*}$.
Under suitable conditions on $P$ and the classes $W$ and $V$, the system $S_{1}$ which is now thought of as taking the form

$$
\dot{x}=f(x, w(t), u(x))
$$

admits through each initial point, a unique solution $x=x\left(t, x_{0}, w, u\right)$, such that $x\left(0, x_{0}, w, u\right)=x_{0}$.

According to Theorem 2.1 of the previous report $x\left(t, x_{0}, w, u\right)$ is continuous in all its arguments if $W$ and $V$ are sequentially compact metric spaces. This continuity is used in some parts of the present section and in Section 2. It is not used in Section 3. Naturally, wherever the continuity of $x\left(t, x_{0}, w, u\right)$ is not assumed, we are concerned with results which hold even when $W$ and $V$ are not sequentially compact.

For convenience we begin with a reformulation of some definitions already introduced (cf. fourth progress report p. 5) and add thereto a few simple theorems.
Definition 1.1 A non-empty set $A \subset R$ is said to be uniformly T-tame with respect to $R$ under the (non-empty) set $V(G U)$ of controls if

$$
x\left(t, x_{o}, w, u\right) \in R
$$

for all $x_{0} \in A, \quad t \in[0, T], u \in V$, and $w \in W$.
Definition 1.2 Let $A$ be an arbitrary (non-empty) subset of $R$. Then let
$V(A)$ be the largest subset of $V$ under which $A$ is uniformly $T$-tame with respect to $R$. That is, $V(A)$ consists of all $u \in \mathcal{U}$ such that $x\left(t, x_{0}, w, u\right) \in R$ for all $x_{0} \in A, t \in[0, T]$ and $w \in W$.

Of course, if $V(A)$ is vacuous, $A$ is not uniformly T-tame under any subset of

Theorem 1.1 Let $A$ and $B$ be subsets of $R$. Then

$$
\begin{align*}
& \mathrm{V}\left(\mathrm{~A} \cup_{\mathrm{B}}\right)=\mathrm{V}(\mathrm{~A}) \cap \quad \mathrm{V}(\mathrm{~B})  \tag{1.1}\\
& \mathrm{V}(\mathrm{~A} \boldsymbol{\|}) \Longrightarrow \mathrm{V}(\mathrm{~A}) \boldsymbol{U} \quad \mathrm{V}(\mathrm{~B}) . \tag{1.2}
\end{align*}
$$

Proof of (1.1) Let $u \in V(A \cup B)$. Then by Definitions 1 and $2, u \in V(A)$ and $u \in V(B)$. Hence

$$
\begin{equation*}
v(A \boldsymbol{\|} B) \subset v(A) \cap v(B) \tag{1.3}
\end{equation*}
$$

On the other hand, if $u \in V(A) \cap V(B)$, then $u \in V(A)$ and $u \in V(B)$, so that $x\left(t, x_{0}, w, u\right) \in R$ as long as $0 \leqq t \leq T$ and $x_{0}$ is in $A$ or $B$. In other words, as long as $x_{0} \in A \cup$. This means that $u \in V(A \cup B)$. Hence we conclude that

$$
\begin{equation*}
V(A \cup B) \leadsto V(A) \cap v(B) \tag{1.4}
\end{equation*}
$$

and then (1.1) follows immediately from (1.3) and (1.4).
Proof of (1.2). Let $u \in V(A) \cup V(B)$. Then $x\left(t, x_{0}, w, u\right) \in R$ for $0 \leqq t \leq T$ and for all $x_{0} \in A \cap B$, so that $u \in V(A \cap B)$. Hence (1.2) is seen to be valid.

Incidentally we notice from Theorem 2.1 that the union of two sets $A$ and $B$, each of which is uniformly $T$-tame under non-vacuous subsets of need not be T-tame under any subset of $\mathbb{V}$. For $V(A)$ and $V(B)$ may have no common element.

We also notice the following obvious
Corollary 2.1 If $A \subset C \subset U$, then $V(C) \subset V(A)$. (cf. Fourth Progress Report p. 6(2)).
Proof Let $B=C-A$; so that $C=A V B$. Then from Theorem 2.1, 'we find that $V(C)=V(A \cup B)=V(A) \cap V(B j \subset V(A)$.
Definition 1.3 If $V$ is any non-empty subset of $U$, we denote, by, $Q(V)$, the set of points $x_{0} \in R$, such that $x\left(t, x_{0}, w, u\right) \in R$ for all $t \in[0, T], a l l w \in W$ and
all ueV. In other words, $Q(V)$ is the largest subset of $R$ that is uniformly T-tame with respect to $R$ under $V$. We shall refer to it briefly as a maximal uniformly $T$-tame set (under $V$ with respect to $R$ ).

Notice that $Q(V)$ was called $R(V)$ in the Fourth Progress Report, pp. 5-6. Since the letter $R$ is used also for another purpose, it seems wise to change the

Theorem 1.? Iet $V_{1}$ and $V_{2}$ be subsets of $U$. Then

$$
\begin{equation*}
Q\left(V_{1} \cup V_{2}\right)=Q\left(V_{1}\right) \cap Q\left(V_{2}\right) \tag{1.5}
\end{equation*}
$$

Proof of (1.5). Let $x_{0} \in Q\left(V_{1} \cup V_{2}\right)$. Then $x\left(t, x_{o}, w, u\right) \in R$ for all $t \in[0, T]$, all $W \in W$ and for $u \in V_{i}(i=1$ or 2$)$. Hence $x_{0} \in Q\left(V_{i}\right)$ both for $i=1$ and $i=2$. In other words $x_{0} \in Q\left(V_{1}\right) \cap Q\left(V_{2}\right)$, which establishes (1.5) within the sign $=$ replaced by -

Next let $x_{0} \in Q\left(V_{1}\right) \cap Q\left(V_{2}\right)$, This means that $x_{0} \in Q\left(V_{i}\right)$ for $i=$ both 1 and 2. By definition 1.3 we now have $x\left(t, x_{0}, w, u\right) \in R$ for all $t \in[0, T]$, all $w \in W$, and all $u \in V_{i}\left(i=1\right.$ or 2); that is, as long as $u \in V_{1}$ or $u \in V_{2}$; that is, as long as $u \in V_{1} U V_{2}$. Dut by Definition 2.3, this means that $x_{0} \in Q\left(V_{1} U V_{2}\right)$, which establishes (1.5) with the sign $=$ replaced by $\geqslant$.

This result combined with the previous result proves (1.5) completely. Corollary 1.2 If $V_{2} \subset V_{3} \subset U$, then $Q\left(V_{3}\right) \in Q\left(V_{1}\right)$. Proof Let $V_{2}=V_{3}-V_{1}$, so that $V_{3}=V_{1} U V_{2}$. Then from Theorem E. 2we find that

$$
Q\left(V_{3}\right)=Q\left(V_{1} U V_{2}\right)=Q\left(V_{1}\right) \cap Q\left(V_{2}\right) \subset Q\left(V_{1}\right)
$$

Theorem 1.3 Let $R$ be closed and let $A$ be a subset of $R$. If $U$ is sequentially compact, then so is $V(A)$.
Proof Let $u_{1}, u_{2}, u_{3}, \ldots$ be an arbitrary sequence of controls in $V(A)$. Then, since $U$ is sequentially compact, there exists a convergent subsequence $u_{1} *, u_{2}^{*}, u_{3}{ }^{*}, \ldots$,

$$
-5-4-
$$

whose limit $\quad u^{*}=\lim _{n \rightarrow \infty}$ is an element of $U$. It suffices to show that $u^{*} \in V(A)$. Since $u_{n}^{*} \in V(A)$, we have $x\left(t, x_{0}, t, w, u_{n}^{*}\right) \in R$ for all $x_{0} \in A$, $t \in[0, T]$, $w \in W$. Since $x$ is continuous, we have

$$
\lim _{n \rightarrow \infty} x\left(t, x_{0}, w, u_{n}^{*}\right)=x\left(t, x_{0}, w, u^{*}\right) .
$$

Since $R$ is closed $x\left(t, x_{0}, w, u^{*}\right) \in R$ for all $x_{0} \in A, t \in[0, T]$ and $w \in W$. Since $V(A)$ consists of all $u$ for which $x\left(t, x_{0}, w, u\right) \in R$ for all $x_{0} \in A, t \in[0, T]$ and $w \in W$, it follows that $u^{*} \in V(A)$, as we desired to prove.

Let $L$ be a class of controls contained in $U$ under which it is known that some set $\subset R$ is uniformiy T-tame (with respect to $R$ ). The largest such set, we call $R_{T}$. According to Definition 1.3, $R_{T}=Q(L)$. Now let

$$
\begin{equation*}
\mathrm{V}=\mathrm{V}\left(\mathrm{R}_{\mathrm{T}}\right) \tag{1.6}
\end{equation*}
$$

this being the largest class of controls contained in $U$, under which $R_{T}$ is uniformly $T$-tame with respect to $R$.

Theorem 1.4. $R_{T}=Q(V)$.
Proof Let $R^{*}=(V)$
Since LCVCU, we have by Coroilary 2 (of Theorem 2)

$$
Q(V) \subset Q(L)
$$

In other words,

$$
\begin{equation*}
R^{*} \subset R_{T} \tag{1.8}
\end{equation*}
$$

By (1.6) $R_{T}$ is uniformiy $T$-tame under $V$. But by (1.7), $R^{*}$ is the largest uniformly $T$-tame set under $V$. Hence $R^{*} \supset R_{T}$. Combining this result with (1.8), we have $R^{*}=R_{T}$, as we wished to prove.

## 2. ON THE INTERPRETATION OF THE SOLUTION OF THE MINIMAX PROBIEM

In what follows the $V$ and the $R_{T}$ may have been introduced in the manner indicated at the end of Section 1. However all results hold as long as $R_{T}=Q(V)$, that is, as long as $R_{T}$ is the largest subset of $R$, which is Trtame under $V$ (with respect to $R$ ).

Let $F(x)$ be continuous in $R$, and let

$$
g(w, u)=\underset{x_{0} \in R_{T},}{\text { l. ust }} \text { u. b. } \quad F\left[x\left(t, x_{0}, w, u\right)\right]
$$

Then, as proved in the last progress report, if $V$ and $W$ are sequentially compact, there exists $u^{*} \in V$ and $w^{*} \in W$, such that

$$
g\left(w^{*}, u^{*}\right)=\min _{u \in V}\left[\max _{w \in W} g(w, u)\right] .
$$

If, however, $V$ or $W$ are not sequentially compact but are merely such that $g(w, u)$ exists, we still have theoretically a result almost as good. In fact, from Theorem 2.5 of the Second Progress Report, we can say that, corresponding to any positive number $\epsilon$, there exists $u^{*} \in V$ and $w^{*} \in W$, such that

$$
\left.\mid g\left(w^{*}, u^{*}\right)-\underset{u \in V}{ } \quad \underset{w \in W}{ } \quad \underline{w}(w, u)\right] \mid<\epsilon
$$

We wish to examine the significance of the number $g\left(w^{*}, u^{*}\right)$ in case $R$ is represented by a formula of the type $H(x) \leqq k$, where $H$ is a continuous real valued function of $x$ and where $k$ is a constant. $R$ is thus a closed set. Among other things we wish to examine the connection between $g\left(w^{*}, u^{*}\right)$ and $k$ in the special case where $F \equiv H$. It will appear that $g\left(w^{*}, u^{*}\right) \leqq k$. Whence, if $g\left(w^{*}, u^{*}\right)$ is actually less than $k$, the advantage of using the control $u^{*}$ instead of any $u \in V$, is that the system may be controlled in a smaller region than $R$, namely $H(x) \leqq g\left(w^{*}, u^{*}\right)$. This leads to an increased factor of safety but gives less indication of how a larger region than $R_{T}$ might be controlled within the original. $R$ (that is, with an unchanged factor of safety).

Theorem 2.1 $\quad R_{T}$ is closed.
Proof Let $x_{0} \in R-R_{T}$. Since $R_{T}$ is the maximal uniformily $T$-tame set in $R$, the point $x\left(t, x_{0}, w, u\right)$ will leave the region $R$ for some $t$ on the interval $[0, T]$, at least, for a suitably chosen $w \in W$ and $u \in V$. That is, for this $w, u$, and $t$, we shall have

$$
H\left[x\left(t, x_{o}, w, u\right)\right]>k
$$

From the continuity of $x\left(t, \bar{x}_{0}, w, u\right)$, considered as a function of its second argument, we see that we must also have (for the same $t, w$, and $u$ ) $H\left[x\left(t, \vec{x}_{0}, w, u\right)\right]>k$ for all $\bar{x}_{0}$ in $R$ sufficiently close to $x_{0}$. Hence, by defintion of $R_{T}$ and $R$ we conclude that $\bar{x}_{o} \in R-R_{T}$. In other words $R-R_{T}$ is open in $R$. Hence $R_{T}$ is closed.

In the seque $\perp$ we suppose that $H$ is of class $C^{\prime}$ and that $\partial H / \partial x \neq 0$ at any point where $H=k$. This insures that such points are true boundary points of $R$.
Theorem 2.2 If $x_{0} \in R_{T}-\partial \mathcal{K}_{T}$, then $I\left[x\left(t, x_{o}, w, u\right)\right]<k$ for all $t \in[0, T]$, $w \in W$, and $u \in V$. That is $x\left(t, x_{0}, w, u\right)$ is an interior point of $R$. Proof By definition of $R_{T}$, we already know that

$$
\begin{equation*}
H\left[x\left(t, x_{0}, w, u\right)\right] \leqq k \tag{2.1}
\end{equation*}
$$

Suppose, now it were possible to find $t^{*} \in[O, T]$, $w^{*} \in W$, and $u^{*} \in V$, such that

$$
\begin{equation*}
H\left[x\left(t^{*}, x_{o}, w^{*}, u^{*}\right)\right]=k \tag{2.2}
\end{equation*}
$$

Then, since we assume that $\partial H / \partial x \neq 0$, there are points in every neighborhood of
$x\left(t^{*}, x_{0}, w^{*}, u^{*}\right)$ for which $H>0$, that is, points outside of R. Now the homeomorphism $\overline{\overline{\mathrm{x}}}=\mathrm{x}\left(\mathrm{t}^{*}, \overline{\mathrm{x}}, \mathrm{w}^{*}, \mathrm{u}^{*}\right)$ between $\overline{\mathrm{x}}$ and $\overline{\overline{\mathrm{x}}}$ maps every neighborhood $\overline{\mathbb{N}}$ of $x_{0}$ onto a neighborhood $\overline{\bar{N}}$ of $x\left(t^{*}, x_{0}, w^{*}, u^{*}\right)$. since $x_{0}$ is interior to $R_{T}$, $\overline{\mathbb{N}}$ may be chosen so small that $\overline{\mathrm{N}}<R_{T}$. But then $\overline{\overline{\mathrm{N}}}$ still contains points outside of $R$. Thus there are points $\bar{x}$ in $\overrightarrow{\mathbb{N}} \cdot: R_{T}$ which are taken by the transformation $\overline{\bar{x}}=x\left(t^{*}, \bar{x}, w^{*}, u^{*}\right)$ into points outside of $R$. Hence $R_{T}$ is not uniformly $T$-tame, contrary to assumption. Thus, since (2.2) leads to a contradiction, we see that the equality sign must be excluded in (2.1), and this establishes the theorem.

Assuming that $H$ is continuous over all $x$-space and that for every $x_{0}$ in this space $H\left[x\left(t, x_{0}, w, u\right)\right]$ is bounded for $t \in[0, T]$, $w \in W$, $u \in V$, we let

$$
\left.m\left(x_{0}\right)={\underset{t, w, u}{l . u . b .}}_{t, x} \quad H\left[x, x_{0}, w, u\right)\right]
$$

By definition of least upper bound, we know that, corresponding to any positive number $\epsilon$, we can find $t^{*} \in[0, T]$, $W^{*} \in W, u^{*} \in V$, in such wise that

$$
\begin{equation*}
\left.m\left(x_{0}\right)-\epsilon\langle H] x\left(t^{*}, x_{0}, w^{*}, u^{*}\right)\right\} \leqq m\left(x_{0}\right) . \tag{2.3}
\end{equation*}
$$

If, in addition, $W$ and $V$ are sequentially compact the $t^{*}$, $W^{*}, u^{*}$ can always be found in such wise that

$$
\begin{equation*}
H\left[x\left(t^{*}, x_{0}, w^{*}, u^{*}\right)\right]=m\left(x_{0}\right)=\underset{t, w, u}{m a x} \quad H\left[x\left(t, x_{0}, w, u\right)\right] . \tag{2.4}
\end{equation*}
$$

Moreover, by Theorem 3.2 of the second progress report, we also know that $m\left(x_{0}\right)$ is continuous in $x_{0}$ in the case of sequential compactness. In general we can prove much more in the case of sequential compactness than in the more general case where compactness is not present. In Theorems 2.3 and 2.4 we summarize some further facts about $m\left(x_{0}\right)$. In Theorem 2.3 we do not hypothesize compactness, while in Theorem 2.4, we do.

Theorem 2.3 I If $x_{0} \in R_{T}-\partial R_{T}, \quad m\left(x_{0}\right) \leqq k$

II If $x_{0} \in R-R_{T}, \quad m\left(x_{0}\right)>k$
Proof of $I$ By Theorem 2.2, if $x_{0} \in R_{T P}-\partial R_{T}$, then $H\left[x\left(t, x_{0}, w, u\right)\right]<k$ for all $t \in[0, T]$, $w \in W$, and $u \in V$. Hence $k$ is an upper bound. Hence the least upper bound $m\left(x_{0}\right)$ can not exceed $k$ as stated.
Proor of II Since $R_{T}$ is maximally uniformly $T$-tame under $V$, we can say that, when $x_{0} \in R-R_{T}$, there exists some $t \in[0, T]$, some $w \in W$, and some $u \in V$, such that
$H\left[x\left(t, x_{0}, w, u\right)\right]>k$. Hence, any upper bound, including in particular the least upper bound $m\left(x_{0}\right)$, must exceed $k$. Thus we have $m\left(x_{0}\right)>k$ as stated. Theorem 2.4 If $W$ and $V$ are sequentially compact, then
$I \quad$ If $\quad x_{0} \in R_{T}-\partial R_{T}, \quad m\left(x_{0}\right)<k$
II If $x_{0} \in \partial R_{T}, \quad m\left(x_{0}\right)=k$

Proof of $I$ By (2.4), we have, since $W$ and $V$ are sequentially compact,

$$
\begin{equation*}
m\left(x_{0}\right)=H\left[X\left(t^{*}, x_{0}, w^{*}, u^{*}\right)\right] \tag{2.5}
\end{equation*}
$$

for a suitably chosen $t^{*}, W^{*}$, and $u^{*}$. But, since $x_{0} \in R_{T}-\partial R_{T}$, we know from Theorem 2.2, that the right member of (2.5) is less than $k$. Hence the left member is also less than $k$.

Proof of II If $x_{0} \in \partial R$, every neighborhood of $x_{0}$ has points in $R-R_{T}$. Let $x_{1}, x_{2}, x_{3}, \ldots$ be a sequence of points in $R-R_{T}$ such that

$$
\lim _{n \rightarrow \infty} \quad x_{n}=x
$$

Since $x_{n}$ is not in the maximally uniformly $T$-tame set $R_{T}$, there exist $t_{n} \in[O, T], w_{n} \in W$, and $u_{n} \in V$, such that

$$
\begin{equation*}
H\left[x\left(t_{n}, x_{n}, w_{n}, u_{n}\right)\right]>k \tag{2.6}
\end{equation*}
$$

Since $[0, T], W$, and $V$ are all sequentially compact, we may (by extracting a suitable subsequence) assume that

$$
\lim _{n \rightarrow t_{n}}=t^{*} \in[0, T], \lim _{n \rightarrow \infty} W_{n}=W^{*} \in W, \lim _{n \rightarrow \infty} u_{n}=u^{*} \in V
$$

Hence, passing to the limit in (2.6), we see from the continuity of $H$ and $x\left(t, x_{0}, w, u\right)$ that

$$
H\left[x\left(t^{*}, x_{0}, w^{*}, u^{*}\right)\right] \geqq k
$$

On the other hand, since $x_{0} \in \partial R_{T}=R_{T}$, we know that

$$
H\left[x\left(t, x_{0} w, u\right)\right] \leqq k
$$

for all $t \in[0, T]$, $w \in W$, and $u \in V$. Hence, we find that

$$
H\left[x\left(t^{*}, x_{0}, w^{*}, u^{*}\right)\right]=k
$$

which, of course, is the maximum possible value for $H\left[x\left(t, x_{o}, w, u\right)\right]$ for $t \in[0, T], x_{0} \in R_{P}, w \in W$, and $u \in W$, and $u \in V$. Hence, for such $x_{0}$, we must have $m\left(x_{0}\right)=k$, as we wished to prove.

In the special case where $F=H$, we have

$$
g(w, u)=\max _{x_{0} \in R_{T}, 0 \leqq t \leqq T}^{\max } \quad H\left(t, x_{0}, r r, j\right]
$$

at least, if we restrict attention to the case where we have sequential compactness, so that we can write "max" instead of "1.u.b.". Evidently from Theorems 2.3 and 2.4

$$
\max _{x_{0} \in R_{T}} m\left(x_{0}\right)=\max _{x_{0} \in \partial R_{I^{\prime}}} m\left(x_{0}\right)=k
$$



$$
=\begin{aligned}
& m a x \\
& u \in V
\end{aligned}\left\{\begin{array}{l}
m a x \\
w \in W
\end{array}\left\{\begin{array}{c}
m a x \\
x_{0} \in R_{T}, 0 \leq t \leqq T
\end{array} \quad H\left[x\left(t, x_{0}, w, u\right)\right]\right\}\right\}
$$

according to Theorem 2.4 of the second progress report. Hence, we find that

On the other hand, if we let

$$
\ell=\min _{u \in V}\left\{\begin{array}{l}
\max \\
w \in W
\end{array} \quad g(w, u)\right\}
$$

we have $\ell \leqq k$ and $\ell$ is equal to $k$ if and only if $\underset{w \in W}{m} \in(w, u)$
is the same for every $u \in V$. This would mean that the class $V$ contains only the set $V^{*}$ of controls for which the minimax is attained. Otherwise $V^{*}$ is a proper subset of $V$ and $l<k$. And letting

1. u. b.

$$
m^{*}\left(x_{0}\right)=\underset{W \in W, u E V^{*}}{t \in[0, T]} \quad H\left[x\left(t, x_{0}, w, u\right)\right]
$$

we find that $m *\left(x_{0}\right)=\ell$ for $x_{0} \in \partial R_{T}$ and that this

$$
\ell=\max _{u \in V^{*}}\left\{\max _{w \in W} g(w, u)\right\}=\min _{u \in V^{*}}\left\{\max _{w \in W} g(w, u)\right\} .
$$

The region with respect to which we have uniform T-tameness under $V^{*}$ is the region $R^{*}$ represented by $H(x) \leqq \ell$ instead of the region $R$ represented by $H(x) \leqq k$. Since $\ell<k$, it is clear that $R^{*} \subset R$.

Thus our analysis shows how, by limiting attention to the class $\mathrm{V}^{*}$ of controls which solve the minimax problem, we reduce the size of the region $R$ with respect to which we can control $R_{T}$. This is what we referred to previously as an increased factor of safety.

If we wish to retain the original $R$, we could replace $R_{T}=Q(V)$ by $R_{T}^{*}=Q\left(V^{*}\right)$, which by Corollaryl.2:is a larger set than the original $R_{T}$. If V* were to contain more than a single element, we could then repeat the entire process, using $R_{T}^{*}, V^{*}$, and $R$, instead of $R_{T}, V$, and $R$ respectively.

## 3. FIRST COMPUTATIONAL ASPECT OF THE MIVIMAX PROBIEM: THE CORE OF R.

### 3.1 Preliminaries

In previous sections of the present and past Progress Reports we discussed in great length the question of the existence of an optimum minimax control. It was shown that such a control (or controls) does indeed exist under the assumption that the function spaces $U$ and $W$ of admissible controls and admissible winds are sequentially compact. This assumption is rather severe. It excludes, among others, the rather important case of piecewise continuous controls. However, it was remarked above, and is reiterated here, that in the case of non-compact sets $U$ and $W$ one may interchange min and max by g.l.b. and l.u.b., respectively, without affecting the results significantly. Instead of arriving at a distinct element $u^{*} \in U$ which attains the minimax, we would obtain elements in $U$ which come arbitrarily close to the g.l.b. of the 2.u.b.. In order to hue closely to the line of greatest practical interest, we hereby adopt the second point of view. Thus, when we speak of an "optimum minimax control" we no longer imply the existence of a distinct element in $U$ which attains the minimax. Instead we refer to an element which may or may not attain the minimax, but at any rate, comes comfortably close to it.

It is felt that a meaningful class $U$ must contain at least the class of all piecewise constant and all piecewise linear controls. However, for the time being we shall adopt an even larger class. Specifically, we shall assume that the class $U$ is the ciass of all uniformly bounded, piecewise continuous controllers. The ciass $W$ will be introduced in the examples.

The proofs contained in our previous work concerning the existence of optimal minimax controls were not constructive in nature. They contain no hint as to the
nature of these controls, nor do they yield an algorithm for computing them. The results are admittedly of some theoretical significance, yet they leave the practical problem unresolved.

It is the object of the present section to initiate the search for the actual computation of optimal minimax controls. The reader will recall that the words "optimal minimax controls" are now being used in the sense of our remarks in the first paragraph above.

The main results are contained in the following subsection (3.2). Section 3.3 illustrates these ideas by means of two elementary examples.

### 3.2 THE CORE OFR.

Consider the system

$$
\begin{equation*}
\dot{x}=f(x, w, u), \tag{3.1}
\end{equation*}
$$

where $x$ is a real $n$-vector, $f$ is a real $n$-vector function of ( $x, w, u$ ); $w=w(t)$ and $u=u(x)$ are elements of the (given) function spaces $W$ and $U$, respectively, and the whole system is well-behaved in the sense that it satisfies sufficient conditions for the existence and uniqueness of solutions.

In the space $X$ or the vector $x$ we are given a closed bounded set $R$ (the set of constraints). We are also given a positive constant $T$ and a function $F(x)$.

Let now $V$ be a subset of $U$. We recall the following definition: $A$ nonempty set $A$ is uniformly T-tame with respect to $R$ under the (non-empty) set of controls $V$ if for every $x_{0} \in A$ and every $w \in W$, the are

$$
\left\{x\left(t, x_{0}, w, u\right) \mid 0 \leq t \leq T\right\}
$$

is contained in $R$ for every element $u \in V$. Whenever there is no ambiguity concerning the defirition of the set $R$ we shall simply say that $A$ is uniformly $T$-tame under $V$.

If $V_{I}$ is any subset of $U$, and $A$ is any subset of $R$, then the sets $Q\left(V_{1}\right), V(A)$ are well-defined. The reader is referred to section 1 of the present Progress Report for the precise definitions.

A first attempt at a formulation of the "practical" (i.e. computational) aspect of the minimax control problem must proceed essentially as follows:

Let a non-empty set $V \subset U$ be given. Suppose that $Q(V)$ is not empty and let $V^{\prime}=V(Q(V))$. Find a control $u^{*} \in V^{\prime}$ which minimizes (over $V^{\prime}$ ) the quancity

$$
\begin{array}{llll}
\max & \max & \max & F(x) . \\
w \in W & x_{0} \in Q(V) & 0 \leqq t \leqq T &
\end{array}
$$

The reader is again reminded of the convention established in the first paragraph of the Preliminaries to this section.

A major question arises: Which class $V$ (in $U$ ) should we start with? Our first impulse may be to take $V=U$. However, on second thought this impulse appears to be misguided. The class $U$ is rather large; it is the class of all uniformly bounded (with bound 1) piecewise continuous control functions. It has already been shown that if $V_{1} \supset V_{2}$ then $Q\left(V_{1}\right) \subset Q\left(V_{2}\right)$. Since $U$ is the largest subset of itself, $Q(U)$ is the smallest uniformly $T$-tame set available in R. In fact, $Q(U)$ may well be empty. For if $x_{0} \in Q(U)$ then every (: piecewise continuous controller constricts the trajectory through $x_{o}$, against any wind, for all $0 \leqq t \leqq T$, within the set $R$. The system may not even have such points. But be that as it may, the fact remains that choosing our initial $V$ to be the whole set $U$ would result in a uniformly T-tame set $Q(U)$ which is the very smallest possible (This is our "controllable" set:). If we were to proceed from here and actually obtain an optimal minimax control for this choice of $V$, we would have found the "best" control for the smallest possible "controllable" set: But surely one of our main concerns is to make the "controllable" set as large as possible, for this is the set of initial values in $R$ for which an eventual optimal minimax control will at least insure the safety of the system. We may summarize our dilemma as follows: If we maximize the initial set $V$, we minimize the "controllable": Q(V) corresponding to it. How then is one to proceed in order to arrive at the best (i.e maximal) uniformly $\mathbb{I}$-tame set within $R$ ? In fact, is there such a maximal uniformly T-tame set? And if the answer to the last question is in the afirmative, what is the set $V$ of controls under which it is uniformly T-tame?

The remainder of this section will provide the answer to the last three questions.

Let $\{u\}$ be the set whose sole element is $u$. Denote $Q(\{u\})$ by $Q(u)$. We shall make use of the following definition. Definition 3.1 Let $u_{1}, u_{2}$ be elements of $U$. We say that $u_{2}$ contains $u_{1}$, written $u_{2} \supset u_{1}$ (or equivalentiy $u_{1} \& u_{2}$ ) ifit the following condition holds: Whenever an arc

$$
\left\{x\left(t, x_{0}, w, u_{1}\right) \mid 0 \leq t \leq T, x_{0} \text { and } w \text { fixed, } x_{0} \in Q\left(u_{1}\right)\right\}
$$

is contained in $R$, then elso the am:

$$
\left\{x\left(t, x_{0}, w, u_{2}\right) \mid 0 \leq t \leq \Gamma\right\}
$$

is contained in $R$.

The reader will note that if $u$ is a member of $U$ such that $Q(u)$ is empty, then $u$ is (vacuously) contained in any other member of $U$.

Prooosition 3.1 $u_{1} \in u_{2}$ iff $Q\left(u_{1}\right) \in Q\left(u_{2}\right)$.
The proof is trivial. This Proposition furnishes un alternative definition of $\subset$

Prooosition 3.2 If $u_{1} \in u_{2}$ and $u_{2} \approx u_{1}$ then $Q\left(u_{1}\right)=Q\left(u_{2}\right)$.
Proof Proposition 3.1.
Proposition 3.3 The relation $C$ is transitive.
Proof Let $u_{1} \subset u_{2}$ and let $u_{2} \subset u_{3}$. We must show that $u_{1} \subset u_{3}$. This follows directly Irom Proposition 3.1, for one has

$$
Q\left(u_{1}\right) \infty Q\left(u_{2}\right) \in Q\left(u_{3}\right),
$$

whence

$$
u_{1} \leftrightarrows u_{3}
$$

Defintion 3.2 An admissible control $\bar{u} \in U$ is said to be an upper bound in $U$ iff $u \in \bar{u}$ for every $u \in U$.

It should be noted that it is possible that $u_{1} e u_{2}$ and $u_{2} \subset u_{1}$ and yet $u_{1} \neq u_{2}$. Therefore an luper bouria in $U$ is not necessarily unique.

Definition 3.3 A set $B C R$ is said to be a core of $R$ iff
(1) B is uniformily w-tame
(2) If $A$ is any uniformly T-tame subset of $R$, then

## $A \subset B$.

The set $R$ may or may not have a core. However, if it dces, then the core is clearly unique. In fact, if $B_{1}$ ard $B_{2}$ are cores of $R$ then $B_{1} \subset B_{2}$ and on the other hand $B_{2} \in B_{1}$. Herce $B_{1}=B_{2}$. We may thus speak of the core of $R$. If $R$ has a core we designete it by $R_{T T^{\prime}}$. It is the largest uniformly $T$-tane set in $R$.

We are naturally ied to the following major decision: If $R$ exists, we Shall require that an optimal mirimax control must be effective throughout the full core of $R$.

Proposition $3_{0} 4$ If $\bar{u}_{1}$ and $\bar{u}_{2}$ are upper bounds in $U$, then $Q\left(\bar{u}_{1}\right)=$ $Q\left(\bar{u}_{2}\right)$.

The proof follows triviaily from Proposition 3.2.
The reader will recall that if $Q(u)$ is empty for every $u \in U$, then the optimal minimax problem is vacuous (no controls are available to choose from). Therefore we must assume that there esists at least one control $u$ such that $Q(u) \neq 0$.

We are now in a position to state the main result of this section.
Theorem 3.1 The core of $R$ exists iff $U$ has an upper bound. If $\bar{u}$ is an upper bound in $U$ then $R_{T}=Q(\bar{u})$. If $R_{T}$ exists then $V\left(R_{T}\right)$ is the set of all upper bounds in $U$.

Proof İEt $\bar{u}$ be an upper bound ir. $U$. Then, by definition, $Q(\bar{u})$ is uniformly T-tame. Let $A$ De an arbitrary wiformy T-tame subset of $R$. Suppose $A$ is uniformy I-tame under $V$. Since VeU and $\bar{u}$ is an uppe- bouna, we have

$$
v \in \ddot{u} \text { for } a n l \quad v \in V
$$

Hence

$$
Q(v) \subset Q(\bar{u}) \text { for } a l l v \in V_{0}
$$

Thus

$$
A \subset Q(V)=\int_{\operatorname{VeV}} Q(v) \subset Q(\bar{u})_{0}
$$

It follows that $Q(\bar{u})$ is a core, hence the core, of $R$.
Conversely, let $R_{T}$ be the core of $R$ and let $V=V\left(R_{T}\right)$. Let $\bar{u} \in V$. Then $Q(\bar{u}) \supset R_{T}$. Since $R_{T}$ is the core of $R, \quad Q(\bar{u})=R_{T}$. Let now $u$ be an arbitrary element of $U$. The set $Q(u)$ is uniformly $T$-tame and hence $Q(u)=R_{T}$. It follows:" by Proposition 3.1 that $u \in \bar{u}$. Hence $\bar{u}$ is an upper bound in $U$. This complete the proof.

Theorem 3.1 provides us with a key to the first computational aspect of the "practical" optimum minimax problem. It may be summarized as follows:
(1) The most desirable set to control is the full core of $R$ (if it exists).
(2) The core of $R$ exists iff $U$ has an upper bound.
(3) The core of $R$ is uniformiy T-tame under the set of all upper bounds in U.
(4) The core of $R$ may be obtained by finding an upper bound $\bar{u}$ in $U$, then computing $Q(\bar{u})$.

### 3.3 TWO ELEMTMARY EXAMPLES

(i) The System $\dot{x}=w+u$

- Let x be a real varisble and consider the system

$$
\begin{equation*}
\dot{x}=w(t)+u(x) \tag{3.2}
\end{equation*}
$$

Here $w=w(t)$ is restricted to a certain class $W$ of admissible winds while $u=u(x)$ is restricted to the class $U$ of admissible controls. The class $U$ is the class of ail real piecewise continuous functions of the real variable $x$ which map some given interval $R$ containing the origin (the constraint set) into the interval $[-1,1]$. The class $W$ is a given collection of admissible winds whose domain is $[0, T]$ and whose range is $[-\alpha, \alpha]$. It is assumed that $W$ contains all piecewise constant winds (whose domain and range are restricted as above) and that it is, moreover, ressonable enough to insure that system (3.2) satisfies sufficient conditions for the existence and uniqueness of solutions.

Let $R$ be the interval $-A \leq x \leq A$. We shall show that the core of $R$ exists. This will be done by showing that $U$ has an upper bound. The core of R will also be computed.

Let

$$
\ddot{u}(x)= \begin{cases}-1 & \text { for all } 0<x \leq 1 \\ 0 & \text { for } x=0 \\ +1 & \text { for all } \\ -1 \leq x<0\end{cases}
$$

We shall show that $\bar{u}$ is an upper bound in $U$.
Suppose first that $\alpha \leq 1$. Consider the system $\dot{x}=w(t)+\bar{u}(x)$. Let $x_{0}>0, \quad x_{0} \in R_{0}$ Then $w(t)+\bar{u}\left(x\left(t, x_{0}, w, \bar{u}\right)\right) \leq 0$ for any $w \in W$ so lons as
$x\left(t, x_{0}, w, \ddot{u}\right)>C$ ．Moreover，the trajectory $x\left(t, x_{0}, w, \tilde{u}\right)$ cannot oross over into the negative $r:=1 \mathrm{f}$ of R ，since if it were to do so the direction of the vector field woulà be reversed．Hence

$$
-0 \leq x(t) \leq x_{0} \text { for all } 0 \leq t \leq T \text { and every } w \in W
$$

Therefore，$(0, A] \in Q(\ddot{u})$ ．Similarly $[a, 0) \in Q(\ddot{u})$ ．We aiso have $x(t, 0, w, \bar{u})=0$ for all $0 \leq t \leq I$ and ali $w \in W$ ．Hence， $\mathcal{U G Q}(\bar{u})$ 。 Thus $R \in Q(\bar{u})$ whence $R=Q(\bar{u})$ 。 It follows that $Q(i, i)$ oritains every uniformiy I－tame subset of $R$ and therefore $\ddot{u}$ is an upper bown，ard $R$ is the core of $R$ ．-

The case when $\alpha>1$ also $j$, is the fact that $\bar{u}$ is an upper bown in U．The details of the proof are acmewhet more complicated and are left out ior lack of time．They will be suppiied in the next Progress Report．The core of $R$ turns out to $b=$ the set $\left[-A+\frac{\alpha-1}{T}\right.$ ，$\left.A-\frac{\alpha-1}{T}\right]$ ．

## （ii）The System $\ddot{x}=w+u$

Let $x_{1}, x_{2}$ be two real variables and let the vector $\left(x_{1}, x_{2}\right)$ be denoted by x 。

Consider the system

$$
\begin{align*}
& \dot{x}_{1}=w(t)+u(x)  \tag{3.3}\\
& \dot{x}_{2}=x_{1}
\end{align*}
$$

Here $W=W(i)$ is restricted to a certain ciass $W$ oi admissibie winds，while $u=u(x)$ is restricted to the class $U$ of admissible controls．The classes $W$ and $U$ are both uniformiy bounded in the sense that

$$
\begin{align*}
& |w(t)| \leq \alpha \text { for all } w \in W \\
& |u(x)| \leq I \text { for } 211 \quad u \in U_{;} \tag{3.4}
\end{align*}
$$

these inequalities holding true for all $t$ and $x$ for which $w(t)$ and $u(x)$ are defineã.

The class $U$ is the ciass of ail real piecewise continuous functions of the real variable $x$ defired in some region $R$ (the constraint set) containing the origin and satisiying (3.4). We are not as specific about the class $W$ except to require that it be reasonabie enough to insure that system (3.3) satisfies sufficient conditions for the existence and uniqueness of solutions. We do, however, specifically assume thot the aiass $W$ contains the class of all piecewise constant winds whose range lies in the interval $[-\alpha, \alpha]$. The domain of ali winas is $0 \leq t \leq T$, where $T$ is some preassigned positive constant.

It will be shown in the next Progress Report that the function

$$
\bar{u}(x)=\left\{\begin{array}{rr}
-1 & \text { for all } x \text { such that } x_{1}>0 \\
0 & \text { for all } x \text { such that } x_{1}=0 \\
+1 & \text { for all } x \text { such that } x_{1}<0
\end{array}\right.
$$

turns out to be an upper bound in $U$. The computation of $R_{T}$ is also left for the next Report.

## 4. APFENDIX TO SECTION 1

The striking similarity of the formalas in Theorems 1.1 and 1.2 suggests that these theorems are but spenal cases of general theorems in set theory. We shall show that this is the case.

Iet $\Phi$ and $\underset{\sim}{w}$ be arbitrary sets and let $A$ be a fixed set of certain pairs $(f, g)$ where $f \in \Phi$ and $g \in$ ir $_{0} \quad(/ /$ dces not, bowever, ordinarily contain all such pairs).

A mapping $F$ of the subsets $\psi$ of $\vec{W}$ into the subsets $\varphi$ of $\Phi$ is defined as follows: To say that $\varphi=F(\psi)$ means that $\varphi$ is the largest subset of $\Phi$ with the property that $\varphi \times \psi \in \mathcal{A}$. This means two things:
(I) II $f \in F(\psi)$ and $g \in \psi, \quad$ ther $(f, g) \in f$.
(2) If $(f, g) \in /$ for all $g \in \psi$, then $f \in F(\psi)$.

Theorem Let $\left\{\psi_{\alpha}\right\}$ denote any family or subsets of 速 . Here a reprosents an index which ranges over the index set $A$, which need not be finite or even countable.

Ther
$F\left[U_{\alpha \in A} \psi_{\alpha}\right]=\int_{\alpha \in A} F\left(\psi_{\alpha}\right)$
Froof Let $f \in F\left[U_{\alpha} \psi_{\alpha}\right]$. By (1), if $g$ i.s an element of any of the $\psi_{\alpha}$, we have $(f, g) \in A$. Thus, we have $(f, g) \in A$ for all $g \in \psi_{\alpha}$, so that by (2) we have $f \in F\left(\dot{\psi}_{\alpha}\right)$ for all $\alpha \in A$. Hence $f \in \int_{\alpha} F\left(\psi_{\alpha}\right)$. This establishes the formula of the Theorem wher the sign $=$ is replaced by the sign $\in$.

Next, let $f \in \int \mathcal{F}^{\prime}\left(\psi_{\alpha}\right)$. Therefore $f \in F\left(\psi_{\alpha}\right)$ for all $\alpha \in A$. If $g \in \psi_{\alpha}$, we have $(f, g) \in f$ by (I). That is, $(f, g) \in /$ for all $g \in \psi_{\alpha}$. In particular $(f, g) \in$ for all $s \in \alpha^{\psi} \alpha^{*}$ Then, by (2), $f \in F\left[\int_{\alpha}^{\psi} \alpha^{\prime}\right.$. This establishes
the formula of the Theorem when the sign $=$ is replaced by the sign $\Rightarrow$.
From these two results: the proof of the Theorem is complete.
In the applications to Section 1 , the set $\Phi$ (or ${ }^{W}$ ) is the set $F$ of ants and the set $\mathbb{W}$ (or $\Phi$ ) is the set $U$ of controis. The set $A$ consists of the pairs ( $x_{0}, u$ ), where $x_{0} \in R$ and $u \in U$, which have the property that $x\left(t, x_{0}, W, u\right) \in R$ for all $t \in[0, T]$ and all $W \in W$. In Section $I$, we considered only the case when the index set $A$ contained two elements. A special case in which the index set contains infinitely many elements occurs, however, in the proof of Theorem 3.1.

It is also interesting to observe that the formula of Demorgan to the effect that

$$
\mathrm{c}_{\mathrm{L}} \alpha_{\alpha}=\mathrm{M}_{\alpha} \mathrm{C}\left(\psi_{\alpha}\right),
$$

where $C[\psi]$ denotes the complement or $\psi$ in $\mathbb{U}$ is also a speciel case of our theorem. In this case $\Phi$ and $\mathbb{H}$ are identical and $\Lambda$ consists of all pairs $(f, g)$ in which $f \in \psi, g \in \psi$, and $f \neq g$.

We procesa heve to develoo aw ajstrast tineory of certain macpings from tine
 These mapuixas are all defthed in tems of a subset $\Omega$ of the product space o $\lambda$, In the arpilcation to cowrol Theory, one can take $\Phi$ to be the region $R$ of watro $x_{0}$ in the melevant fant of phase space, while $\Psi$ is the set of allowable comuran $u$, and $\left(x_{0}, \ddot{u}\right) \in \Omega$ iz awd only if (in the notation of previous progreas zeanus $\because$ $x\left(t, x_{o}, w, u\right) \in R$ for all $t \in[c, \bar{I}]$ and all $w \in W_{0}$
 The Conollary to Feonem lgis essentially an anstract gereralization of Propcsiveo 3.1 in the previoss progress report, while Therrem 1.11 is an ajotract versson of Therem 3.1 of the previous progress report. Other relationships between the nesulus of this section ana those of previous progress reports will be obvious to the dioserax reader,

The neppicge $Z$ and $G$ can be interpneted as the mappings $T$ and $Q$ of an Control Theory as previously developed. But the mappings $H$ and $J$, evea $2 \%$ co.unevir Iorm, have asrez previcusly been considered, Whether in and will give wirs o useful cosceris in octrol Theory is doubtul. They couid indeed be used, bü o. acoount of the formias ( 1.5 ) and ( 1.6 ) they will probabiy merely leak jy another road to results already obtained by way of $F$ ard $\hat{c}$. Perhaps by uelua anotrer $\Omega$ they may help o obtain aew results. In acy event, it seens wise oc ion velop such ar absmat theory as completely as possible.


 as follows: To say that $\varphi=F(\psi)$ mears unat $\varphi$ is the larestu subset at $Q$ ara the proper $\because$ that $\psi x$ y $\Omega$

This means two things:
(I) If $f \in F(\psi)$ and $g \in \psi$, then $(f, g) \in \Omega$.
(II) If $(f, g) \in \Omega$ for all $g \in \psi$, then $f \in F(\psi)$.

Theorem $I_{0}$ Let $\left\{\psi_{\alpha}\right\}$ denote any family of subsets of $\mathcal{\Psi}$. Here $\alpha$ represents an index which ranges over an index set $A$, which need not be finite or even countable. Then

$$
F\left[\begin{array}{ll}
U_{\alpha} & \psi_{\alpha}
\end{array}\right]=\bigcap_{\alpha \in A} F\left(\psi_{\alpha}\right)
$$

Proof. Let $f \in F\left[\bigcup \psi_{\alpha}\right]$. By (I), if $g$ is an element of any of the $\psi_{\alpha}$, we Lave ( $f, g$ ) $\in \Omega$. Thus, we have $(f, g) \in \Omega$ for all $g \in \psi \alpha$, so that by (II), we have $f \in F\left(\psi_{\alpha}\right)$ for all $\alpha \in A$. Hence $f \in \cap F\left(\psi_{\alpha}\right)$. This establishes (1.1) when the sign $=$ is replaced by the sign $\subset$.

Next, let $f \in \bigcap_{F}\left(\psi_{\alpha}\right)$. Therefore $f \in F\left(\psi_{\alpha}\right)$ for all $\alpha \in A$. If $g \in \psi_{\alpha}$, we have $(f, g) \in \Omega$ by $(I)$. That is, $(f, g) \in \Omega$ for all $g \in \psi$ and for all a $A$, therefore for all $\varepsilon \in \bigcup_{\alpha} ; \therefore$ Then, by (II), $f \in F\left[U \Psi_{\alpha}\right]$. This establishes (1.I) when the sign $=$ is repiaced by the sign $\longrightarrow$.

From these two results, the proof of Theorem 1.1 is complete.
Notice that $F(0)=\Phi$, where 0 is used here to denote the null set. This is true because $\Phi \times 0$ is void. Therefore $\Phi \times 0 \subset \Omega$.

We next introduce a mapping $G$ or the subsets $\varphi$ of $\Phi$ into the subsets $\psi$ of $\Psi$ defined as follows: To say that $\psi=G(\varphi)$ means that $\psi$ is the largest subset of $\vec{y}$ with the property that $\varphi \times \psi \subset \Omega$. This means two things:
(III) If $g \in G(\varphi)$ and $f \in \varphi$, then $(f, g) \in \Omega$.
(IV) If $(f, g) \in \Omega$ for $a \geq i \quad f \in \varphi$, then $g \in G(\varphi)$

Evidently $G$ is a mapping very similar to $F$, the only difference is that it meps subsets of $\Phi$ into subsets of $\boldsymbol{4}$ instead of the other way around. Thus Therem 1.1 can also be stated for the mapping $G$ and we thus have for any family $\left\{\psi_{\alpha}\right\}$
of subsets of $\Phi$ ，the foilowing formula：
$\left.G_{[ } \|_{A} \varphi_{\alpha}\right]=\int_{\alpha \in A} G\left(\varphi_{\alpha}\right)$
Weoxemlez Let $\varphi=F(\psi)$ and $\psi^{*}=G(\varphi)$ ，Then $\psi^{*} \unlhd \psi$ 。 In other woxd $G[E(\psi)] \supset \psi$ ，or，reversing the roies of $F$ and $G, F[G(\phi) j \square$ fon any $\varphi \in$ 五。

Proof．Iet $\varepsilon \in \psi$ ard let $f \in \varphi=P(\psi)$ ．Then（f，g）$\in \Omega$ by（Ij．Sinc this is true for $\mathrm{aIII}_{\mathrm{I}} \mathrm{f}$ in $\varphi$ ，we have $g \in C(\varphi)=\psi^{*}$ by（IV\％Tnus，every element of $\psi$ is also an elerneri of $\psi^{*}$ ．

Theorem I． 3 if $\psi_{1}<\psi_{2}$ ，then $F\left(\psi_{1}\right) \circlearrowright F\left(\psi_{2}\right)$

$$
\text { If } \varphi_{1} \in \varphi_{2} \text {, then } G\left(\varphi_{1}\right) \rightharpoonup G\left(\varphi_{2}\right)
$$

Eroof：Let $\psi_{3}=\psi_{2}-\psi_{1}$ ，so that $\psi_{2}=\psi_{1} U \psi_{3}$
By Theorem 1．1，$E\left(\psi_{1} U \psi_{3}\right)=F\left(\psi_{1}\right)$ AF $\left(\psi_{3}\right)$
Fence，$F\left(\psi_{2}\right)=F\left(\psi_{1}\right) F\left(\psi_{3}\right) \subset F\left(\psi_{1}\right)$ ．This establishes the first part ci we Theorer．The second part is obtained by using $G$ instead of $F$ and $\varphi$ inst－àa of ＊。

Theorem 1．4 Fi $\left.\bigcap_{\alpha \in A} \psi_{\alpha}\right] \supset \bigcup_{\bigotimes \in A} F\left(\psi_{\alpha}\right)$

$$
\begin{equation*}
d\left[\prod_{\alpha A} \varphi_{\alpha}\right] \Rightarrow \bigcup_{\alpha \in A} c\left(\psi_{\alpha}\right) \tag{1.3}
\end{equation*}
$$

We consider only the first of these two formulas，in as much as the second follows from the first merely through a change of notation．

First proofo Ist $\{\psi\}$（indexed by $\alpha \in A$ ）be arbitrary．Then derice
$\varphi_{a}=E\left(\psi_{\alpha}{ }^{j}\right.$ By（1．2）$G\left[U \varphi_{\alpha}\right]=\cap G\left(\varphi_{\alpha}\right)=\cap G\left[F\left(\psi_{\alpha}\right)\right]$
Fence，by treorem $1.2, G\left[U_{Q}\right] D \prod_{W_{\alpha}}$
Hence，by Theorems 1.3 and $1.2, F\left[\cap \psi_{\alpha}\right] \Rightarrow F\left\{G\left[U \varphi_{\alpha}\right\}\right\} D U \varphi_{\alpha}=U F\left(\psi_{\alpha}\right)$
Second Proof．Let $f \in U F\left(\psi_{\alpha}\right)$ ．Hence there exists $\alpha \in A$ ，such that $f \in \mathbb{F}\left(\psi_{\alpha}\right)$ ．Hence，if $g \in \psi_{\alpha},(f, \varepsilon) \in \Omega$ by（I），This is true ir partiouian，if $g \in \|_{\psi} \alpha^{\circ}$ In other words $(f, 8) \in \Omega$ for all $g \in \prod_{\|} \alpha^{\circ}$ Fence，by（II）we have
$f \in F\left[\right.$ fit $\left.\alpha^{\prime}\right]$, as we wanted to prove.
The second proof is more fundamental than the first proof. Eut the first proce also brings out the fact that the sign $\operatorname{In}$ ine formulas of Theorem 1.4 may be replaced by the sign $=$, whenever the same is true in Theorem 1.2. This is the case in the De Morgan formulas of Boolean algebra. In general, however, this an at be done. As a counter-example consider the following:

Let $\mathbb{y}$ denote the set of the four letters $a, b, c, d$ let $\Phi$ denote the set of the four letters $\alpha, \beta, \gamma, \delta ;$ and let $\Omega$ consist of the eight pairs $\mathrm{ca}, \beta b, \gamma c, \delta d, c \beta b, \beta c, r a, \delta a$. Let $\psi_{1}=\{c\}, \psi_{2}=\{d\}$. Then $\psi_{1} \cap \psi_{2}$ is the nuli set 0 , Hence $F\left[\psi_{1} n \psi_{2}\right]=F[0]=\phi$ according to a previous remark. On the other hand $F\left(\psi_{1}\right)=F(\{c\})=\{\beta, r\}$ and $F\left(\psi_{2}\right)=F(\{d\})=\{\gamma, \delta\}$.

Hence $F\left(\psi_{1}^{\prime}\right) \cup F\left(\psi_{2}\right)=\{\beta, \gamma, \delta\}^{\%}$ which is a proper subset of $\Phi$ $=\{\alpha, \beta, \gamma, \delta\}$, so that $F\left(\psi_{1}\right) U F\left(\psi_{2}\right)$ is a proper subset of $F\left[\psi_{1} \cap \psi_{2}\right]$.

Thus we lost the elegant duality of the De Morgan formulas which remain valia when the signs $U$ and $\cap$ are interchanged. In order to restore this duality, we may introduce two other mappings $H$, taking subsets of into subsets $\Phi$, and $J$, taking subsets of $\Phi$ into subsets of $\begin{gathered}\text { \% } \text {. The duality } \text { is restored in the sense }\end{gathered}$ that the formulas remain valid when simultaneously with the interchange of $U$ and if we interchange $F$ with $H$, $G$ with $J$, and $\Theta$ with $S$.

The needed new definitions are as follows: $\varphi=H(\psi)$ is the smallest subset of $\bar{\sigma}$ such that $(O \psi) \times(C O) \subset \Omega$. Here $C \psi$ means the complement of $\psi$ in and $C \varphi$ means the complement of $\varphi$ in $\dot{W}$. According to the definition of $F$ this is equivalent to saying that $C \varphi=F(C \psi)$. In other words

$$
\begin{equation*}
H(\psi)=G F(C \psi) \tag{1.5}
\end{equation*}
$$

It also gives rise to the following characteristic properties
(V) If $f \in \operatorname{CH}(\psi)$ and $\tilde{\delta} \in \mathbb{C} \psi$, then $(f, g) \in \Omega$
(VI) If $(f, g) \in \Omega$ for all $g \in C \psi$, then $f \in C H(\psi)$.

Bimilarly $\psi=J(\varphi)$ is the smallest $\psi \in \frac{\psi}{\psi}$ such that $(C \psi) x(C \varphi) \in \Omega$ 。 Equivalently
$J(\varphi)=C G(C O)$
and we have the characteristic properties
(VII) If $g \in C J(\varphi)$ and $f \in C \varphi$, then $(f, g)$ i $\Omega$
(VIII) If $(f ; \varepsilon) \in \Omega$ for all $f \in C \cup$, then $g \in \mathbb{G}(0)$.

Mreorem 1.5 H( $\left.A_{\alpha} \psi_{\alpha}\right)=\operatorname{LEA}\left(\psi_{\alpha}\right)$

$$
\begin{equation*}
J\left(\prod_{A} \psi_{\alpha}\right)=\bigcup_{\alpha \in A} J\left(\varphi_{\alpha}\right) \tag{1.7}
\end{equation*}
$$

It will obviously be sufficient to consider (1.7), for which we give two procis, one based on formula (1.5) and Theorem l. I, while the other is based on the characteristic properties (V) and (VI).

First proof: Let $\bar{\psi}_{\alpha}=C \psi_{\alpha}$, so that $\psi_{\alpha}=C \bar{\psi}_{\alpha}$ Then by (1.5)
$H\left(D \psi_{\alpha}\right)=C F\left[C\left(\cap \psi_{\alpha}\right)\right]=C F\left[U\left(C \psi_{\alpha}\right)\right]=C F\left[U \psi_{\alpha}\right]$.
But this last set, by Theorem $\mathrm{I}_{\mathrm{o}} \mathrm{I}_{2}$ is the same as
$C\left[\int F\left(\bar{\psi}_{\alpha}\right)\right]=\bigcup \subset F\left(\vec{\Psi}_{\alpha}\right)=\int C F\left(C \psi_{\alpha}\right)=\bigcup H\left(\psi_{\alpha}\right)$,
Where, of course, the last step is taken in accordance with (1.5).
Second proofi。 Let $f \in C H\left(\cap \psi_{\alpha}\right)$. Then by $(V)$, if $g \in C\left[\cap \psi_{\alpha}\right]$, we must have $(f, g) \in \Omega_{0}$ That is, $(f, g) \in \Omega$ for all $g \in C\left[\cap \psi_{\alpha}\right]=U\left[C \psi_{\alpha}\right]$. In particular $(I, g) \in \Omega$ for all $g \in C \quad \psi \bar{\alpha}$ for each $\bar{\alpha} \in A$. That is, by (VI), f $\in C H(\psi)$, for Each $\vec{\alpha} \in A$. Hence, $f \in \cap C H\left(\psi_{\alpha}\right)=C\left[U H\left(\psi_{\alpha}\right)\right]$. Hence we have proved that
$C H\left(\bigcap \psi_{\alpha}\right) \in C\left[\forall H\left(\dot{w}_{\alpha}\right)\right]$

Next let $f \in C\left[U H\left(\psi_{\alpha}\right)\right]=\Pi\left[C H\left(\psi_{\alpha}\right)\right]$. Hence $f \in C H\left(\psi_{\alpha}\right)$ for each $\alpha \in A$. By (V), if $g \in C \psi_{\alpha}$, then $(f, g) \in \Omega$. That is, $(f, g) \in \Omega$ for all $g \in C \psi_{\alpha}$ Hence $(f, g) \in \Omega$ for all $g \in \bigcup C \psi_{\alpha}=C\left[\cap \psi_{\alpha}\right]$. Hence, by (VI) $f \in C H\left[\cap \psi_{\alpha}\right]$. Hence $\mathrm{C}\left[\bigcup \mathrm{H}\left(\psi_{\alpha}\right)\right] \subset \mathrm{CH}\left[\cap \psi_{\alpha}\right]$. Combining this result with (1.9), we have $\mathrm{CH}\left(\cap \psi_{\alpha}\right)=\mathrm{C}\left[\mathbf{U H}\left(\psi_{\alpha}\right)\right]$
which is equivalent to (1.7)
Theorem 1.6

$$
\begin{align*}
& J[H(\psi)] \subset \psi  \tag{1.10}\\
& H[J(\varphi)] \subset \varphi \tag{1.11}
\end{align*}
$$

Proor of (1,10) Let $\varphi=H(\psi)$ and $\psi^{*}=J(\varphi)$. We need to prove that $\psi^{*} \in \psi$. From (1.5) we have $C \varphi=F(C \psi)$ and from (1.6) we have $C \psi^{*}=G[C \varphi]=$ $G\{F(C \psi)\}$. Hence, from Theorem 1.2, we find that $C \psi^{*} \supset C \psi$. Hence $\psi^{*} \subset \psi$ as desired.

The proof of (1.21) is similar.
Theorem 1.I If $\psi_{1}$, then $H\left(\psi_{1}\right) D H\left(\psi_{2}\right)$
If $\varphi_{1} \subset \varphi_{2}$, then $J\left(\varphi_{1}\right) S J\left(\varphi_{2}\right)$.
Proof. Since $\psi_{1} \subset \psi_{2}$, we have $\psi_{1} \cap \psi_{2}=\psi_{1}$. Hence, using Theorem 1.5 we have $H\left(\psi_{1}\right)=H\left(\psi_{1} \eta \psi_{2}\right)=H\left(\psi_{1}\right) \cup H\left(\psi_{2}\right) D\left(\psi_{2}\right)$. This establishes the first part of Theorem 2.7, and the second part may obviously be proved in the same maner.

Theorem 1, 8

$$
\begin{align*}
& H\left[\varphi_{\alpha} \psi_{\alpha}\right] \in \bigcap_{\alpha} H\left(\psi_{\alpha}\right)  \tag{1,12}\\
& \left.J[ \}_{\alpha}{ }_{\alpha}\right] \in \bigcap_{\alpha} J\left(\varphi_{\alpha}\right) \tag{1.13}
\end{align*}
$$

Proof of (1.12) By Theorem 1.4,

$$
F[\cap \subset \psi \alpha] \Rightarrow U_{F}\left(\mathrm{C} \psi_{\alpha}\right)
$$

Therefore, by making Iree use of (1.5), we find that

$$
\begin{aligned}
& C H\left(U \psi_{\alpha}\right)=F\left[C\left(U \psi_{\alpha}\right)\right]=F\left[\cap C \psi_{\alpha}\right] \supset U F\left(C \psi_{\alpha}\right)=U C H\left(\psi_{\alpha}\right) \\
& =C\left[\cap H\left(\psi_{\alpha}\right)\right]
\end{aligned}
$$

Thus $C H\left(U \psi_{\alpha}\right) \supset C\left[\cap H\left(\psi_{\alpha}\right)\right]$, which is equivalent to (1.12).
The proof of (1.3) is entirely similar.
Any one of these functions can be used to introduce a partial ordering among the subsets of or $\Phi$ which, in general, is quite distinct from the natural one afforded directly by the relationship of set fnclusion. For instance, we introduce the relationship $\underset{K}{<}$ or $\vec{K}$ by means of the following

Definitions 1. I. Two subsets $\psi_{1}$ and $\psi_{2}$ of satisfy the relationship $\psi_{1} \stackrel{<}{K} \psi_{2}$ or $\psi_{2} \underset{K}{\rangle} \psi_{1}$ if and only ir $K\left(\psi_{I}\right) \subset K\left(\psi_{2}\right)$, where $K$ may stand for either $F$ or H .

Similarly we may also contemplate
Definition 1.2. Two subsets $\varphi_{1}$ and $\varphi_{2}$ of $\Phi$ satisfy the relationship $\varphi_{1} \stackrel{>}{K} \varphi_{2}$ or $\varphi_{2} \underset{K}{>} \varphi_{2}$ if and only if $K\left(\varphi_{1}\right) \subset K\left(\varphi_{2}\right)$, where $K$ may stand for either $G$ or $J$.

It follows from Theorems 1.3 and 1.7 that these relations are transitive and reflexive. These definitions also afford a partial ordering of the individual elements of $\bar{\Psi}$ or $\Phi$, because an element of $\dot{\bar{y}}$ or $\Phi$ may always be viewed as a suibset of $\psi_{\text {学 }}$ or containing but a single element. Of course, it is possible in particular instances that the set of order relations between indieidual elements may turn out to be void.

Theorem 1.9 Let $\psi_{1}$ and $\psi_{2}$ be subsets of $\psi$. Then

$$
\begin{equation*}
\left[(f, g) \in \Omega \text { for all } g \in \psi_{1}\right] \Rightarrow\left[(f, g) \in \Omega \text { for all } g \in \psi_{2}\right] \tag{1.13}
\end{equation*}
$$

in and only if $\psi_{1} \underset{F}{\stackrel{ }{*} \psi_{2}}$
Proof Suppose $\psi_{1} \underset{F}{\lessgtr} \psi_{2}$. Then, by definition, $F\left(\psi_{1}\right) \subset F\left(\psi_{2}\right)$. If now $(f, g)$ $\in \Omega$ for all $g \in \psi_{I}$, we know from (II) that $f \in F\left(\psi_{1}\right) \subset F\left(\psi_{2}\right)$. But from (I) and the fact that $f \in F\left(\psi_{2}\right)$, we conciude that $(\vec{I}, g) \in \Omega$ as long as $g \in \psi_{2}$. In other
words the assumption $\psi_{I}<V_{2}$ leads to the implication (1.13)
Next, let us start from (1.13) as our assumption. Let $f$ be an arbitrary element of $F\left(\psi_{1}\right)$. Then, by (I), $(f, g) \in \Omega$ for all $g \in \psi_{1}$. Then, by our assumption, $(f, g) \in \Omega$ for all $g \in \psi_{2}$. But, by (II), this means that $f \in F\left(\psi_{2}\right)$. Hence, we have $F\left(\psi_{1}\right) \subset F\left(\psi_{2}\right)$, which duly interpreted, means that $\psi_{1} \underset{F}{\psi_{2}}{ }^{\circ}$ Corollary. Let $g_{f}$ and $g_{2}$ be elements of $\mathbb{Z}$. Then $\left[\left(f, g_{1}\right) \in \Omega\right] \Rightarrow$
$\left[\left(f, g_{2}\right) \in \Omega\right]$ if and only if $g_{1} \underset{F}{ } g_{2}$.
This follows imediately from Theorem 1.9 by taking $\psi_{i}=\left\{g_{i}\right\}$, the subset of $\bar{\Psi}$ consisting of the single element. $g_{i}$ ( $i=1$ onánd 2). We use $g_{1} \underset{F}{<} g_{2}$, of course, as $\operatorname{cn}$ abbreviation for $\left\{g_{1}\right\} \underset{F}{<}\left\{g_{2}\right\}$,

Definition 1.3 An element $\bar{g} \in \underset{\Psi}{\mathbb{W}}$ is said to be an upper bound in $\psi$ (with respect to $F$ ) if and only if $g \underset{F}{<} \bar{g}$ for every $g \in \psi$.

Definition 1.4 A set $\varphi^{*} \in \Phi$ is said to be a $G$ - core of $\Phi$ iff
(i) $G\left(\varphi^{*}\right)$ is not vacuous
(ii) If $\varphi$ is any subset of $\Phi$ such that $G(\varphi)$ is not vacuous, then $\varphi<\varphi^{*}$.

The set $\Phi$ may not have a G-core. However, if it does, then the core is clearly unique. In fact, if $\varphi^{*}$ and $\varphi^{* *}$ are cores of $\Phi$, we see from (ii) that $\varphi^{*} \subset \varphi^{* *}$ and $\ddot{\varphi}^{* *} \subset \varphi^{*}$, so that $\varphi^{*}=\varphi^{* *}$.

Theorem1. 10 If $\bar{g}_{1}$ and $\bar{g}_{2}$ are upper bounds in $\mathbb{I}$, then $F\left(\bar{g}_{1}\right)=F\left(\bar{g}_{2}\right)$.
Proof. Since $\bar{g}_{1}<\bar{g}_{2}$, we have, by Definition 1.1, $F\left(\bar{g}_{1}\right) \subset F\left(\bar{g}_{2}\right)$ and since $\overrightarrow{\mathrm{g}}_{2} \underset{F}{ } \vec{g}_{1}$ we also have $F\left(\overline{\tilde{g}}_{1}\right)=F\left(\bar{g}_{2}\right)$. Hence the theorem.

Theorem 1.11. The G-core of $\Phi$ exists if and only if $\psi$ has an upper bound with respect to $F$. If $\bar{g}$ is an upper bound in $\bar{W}$, then $F(\bar{G})$ is the $G$-core of $\Phi$. If the $G$-core of $\Phi$, denoted by $\varphi^{*}$, exists, then $G\left(\varphi^{*}\right)$ is the set of all upper bounds with respect to $F$ in $\bar{W}$.

Proof，Let $\ddot{g}$ be an upper bound in $\dot{\underline{y}}$ ．Then $F(\overrightarrow{8})$ is a set $\varphi^{*}$ such that $G\left(Q^{*}\right)$ is not vacuous．For $G\left(\varphi^{*}\right)=G[F(\bar{Z})]$ ，in accordance with Theorem 1,2 ， contains the non－roia set $\{\vec{\sigma}\}$ ．Let $\varphi$ be an arbitrary subset of $\Phi$ such that $G(\varphi)=\psi$ is not vacuous．Since $\psi \in I$ and $\bar{g}$ was assumed to be an upper Dound，we have $g \underset{F}{F} \bar{g}$ for all $g \in \psi$ ．Hence $F(g) \in F(\bar{g})$ for all $g \in \psi$ ．Thus， by Theorem 1．2，$\varphi \in \mathrm{F}[G(\varphi)]=F(\psi)$
By Theorem l．l，$\left.F(\psi)=F\left[\bigcup_{g \in \psi}\right\}\{g\}\right]=\bigcap_{g \in \psi} F(\{g\})=\bigcap_{g \in \psi} F(\tilde{\delta})$ ，whicin，since $F(g)$ has already been proved to be containea in $F(\bar{g})$ for all $g \in \psi$ ，leads to the result that $P(\psi) \in P(\vec{g})$ ．Hence from（1．14），we have $\varphi \in F(\vec{g})=\varphi^{*}$ ，Hence $\psi^{*}$ is the G－core of $\Phi$ 。

Conversely，let $\varphi^{*}$ be assumed to be the $G-\operatorname{core}$ of $\Phi$ and let $\psi^{*}=G\left(\psi^{*}\right)$ 。 Let $\bar{g} \in \psi^{*}$ 。Ther，$z=$ Theorems 1.3 and 1.2 ，we have $F(\{\bar{g}\}) \supseteq F\left(\psi^{*}\right)=$ $F\left[G\left(\varphi^{*}\right)\right]=\varphi^{*}$ ．Also，since $\varphi^{*}$ is the $G$－core of $\Phi$ and since $G[F(\{\stackrel{\rightharpoonup}{g}\})\}\{\ddot{g}\}$ is not vecuous，we see from（ii）that $F(\{\overline{\mathrm{~g}}\}) \in \varphi^{*}$ ．Hence $F(\{\overline{\mathrm{~g}}\})=\varphi^{*}$ ， If $g$ is an arbitrary element of $\psi$ ，the set $\varphi F F(\{g\}$ is such that $G[\varphi]=$ $G P(\{G\})] \Rightarrow\{g\}$ is not empty．Hence，by（ii），$\varphi \in \varphi^{*}$ ．Thus $F(\{g\}) \in \mathbb{G}(\{\bar{S}\})$ ， Fence，by the definition of $\underset{F}{\sim}$ ，we must have $g \underset{F}{<} \vec{g}$ ．Since $g$ was arbitrary， this means that $\vec{g}$ is an upper bound as we desired to prove．
 $\left[(f, g) \in \Omega\right.$ for all $\left.g \in C \psi_{l}\right] \Rightarrow\left[(f, g) \in \Omega\right.$ for all $\left.g \in C \psi_{2}\right]$

Proos：Suppose $\psi_{1} \vec{H} \psi_{2}$ ．Then，by definition $H\left(\psi_{1}\right) D H\left(\psi_{2}\right)$ ．Hence，taking complements $C H\left(\psi_{1}\right) \in C H\left(\psi_{2}\right)$ ．If now $(f, g) \in \Omega$ for all $g \in C \psi_{1}$ ，we know irom （VI）that $f \in \operatorname{Cr}\left(\psi_{1}\right) \subset C H\left(\psi_{2}\right)$ ，But from $(V)$ we conclude from the fact that $\left.f \in C H\left(\psi_{2}\right)\right)$ that $(f, g) \in \Omega$ as long as $g \in C \psi_{2}$ ．In other words the assumption $\psi_{1}>\psi_{2}$ leads to the implication（1．15）．

Wext let us start from (1.15) as our assumption. Let $f$ be an arbitrary elenent of $\mathrm{CH}\left(\psi_{1}\right)$. Then, by $(V),(f, g) \in \Omega$ for all $g \in C \psi_{I^{\prime}}$ Then, by assumption, we have $(f, g) \in \Omega$ for all $g \in C \Psi_{2}$. But, by (VI), this means that $f \in C H\left(\psi_{2}\right)$. Hence, we have $C H\left(\psi_{1}\right) \subset C H\left(\psi_{2}\right)$. Therefore $H\left(\psi_{1}\right) \leadsto H\left(\psi_{2}\right)$, which duly interpreted means that $\psi_{1}>\mathrm{H} \cdot \psi_{2}$.

## 

## (i) The Sysem $\dot{x}=\boldsymbol{x}+u_{0}$

Let $x$ be a real variable and consider the system

$$
\begin{equation*}
\dot{x}=w(t)+u(x) \tag{2.1}
\end{equation*}
$$

Here $w=W(t)$ is reatricted to a certain class $W$ of admissible winds while $u=u(x)$ is restricted to the class $U$ of admissible controls. The class $U$ is the class of all real piecewise continuous functions of the real variable $x$ Which map some given interval $R$ containing the oxigin (the constraint set) into the Interval [-l, I]. The class $W$ is a given collection of adricsibia wions whose domain is $[0, T]$ and whose range is $[-\alpha, \alpha]$. It is assumed that $W$ contains all piecerise constant winds (whose domain and range are restricted as above) and that it is, noreover, reasonable enough to insure that system (2.1) satisfies surfcient conditions for the existence and uniqueness of solutions.

Iet $R$ be the interval $-A \leq x \leq A$. We shall show that the core of $R$ Exists. This will be done by showing that $U$ has an upper bound. The core of $R$ Will also be comprited.

Iet

$$
\bar{u}(x)=\left\{\begin{array}{rll}
-1 & \text { for all } & 0<x \leq 1 \\
0 & \text { for all } & x=0 \\
+1 & \text { for all } & -1 \leq x<0 .
\end{array}\right.
$$

We shall show that $\bar{u}$ is an voper bound in $U$.
Suppose first that $\alpha \leq 1$ 。Consider the system $\dot{x}=w(t)+\bar{u}(x)$ 。 Let $x_{0}>0, x_{0} \in R_{0}$ Then $w(t)+\bar{u}\left(x\left(t, x_{0}, w, \bar{u}\right)\right) \leq 0$ for any $w \in W$ so long as
$x\left(t, x_{0}, w, \vec{u}\right)>0$. Moreover, the trajectory $x\left(t, x_{0}, w, \bar{u}\right)$ cannot cross over into tine negative half of $R$, since if it were to do so the direction of the vector field would be reversed. Hence

$$
0 \leq x(t) \leq x_{0} \text { for all } 0 \leq t \leq T \text { and every weW. }
$$

Therefore, $\left(O_{3} A\right] \subset Q(\bar{u})$. Similarly $[-A, 0) \subset Q(\bar{u})$. We also have $x(t, 0, w, \tilde{u})=0$ for all $0 \leq t \leq T$ and all $w \in W$. Hence, $O \in Q(\bar{u})$. Thus $R \in Q(\bar{u})$ whence $R=Q(\bar{u})$. It follows that $Q(\bar{u})$ contains every uniformly $T$-tame subset of $R$ and therefore $\vec{u}$ is an upper bound, and $R$ is the core of $R$.

Consider rext the case when $\alpha>1$. There are two possibilities:
either $(\alpha-1)$ r $>A$ or $(\alpha-1) T \leq A$. If the first inequality holds it is not hard to show that $Q(u)=\varnothing$ for every $u$ in $U$. In fact, let $x_{0} \geq 0$ and let $u$ be arbitrary. Consider the system

$$
\begin{equation*}
\dot{x}=w_{1}(t)+u(x) \quad, \quad x(0)=x_{0} \tag{2.2}
\end{equation*}
$$

where $w_{1}(t)=\alpha$. We have

$$
\dot{x}=\alpha+u \geq \alpha-1
$$

whence

$$
x(T)-x(0)=x(T)-x_{0} \geq(\alpha-1) T
$$

and therefore

$$
x(\mathbb{T}) \geq x_{0}+(\alpha-1) T>(\alpha-1) T>A .
$$

It fallows that $x_{0} \not \approx Q(u)$. We have thus shown that $[0, A] \cap Q(u)=\phi$ for every $u \in U$, Now taking $x_{0} \leq 0$ and $w_{2}(t) \equiv-\alpha$ we obtain, in a completely analogus fashion, that $[-A, 0]$ Q $Q(u)=\varnothing$ for every $u \in U$. Combining these two facts we get that $R \cap Q(u)=\varnothing$ for every $u \in U$. In other words, the given system admits no uniformiy m -tame set. Such a system plays no role within the context of the minimax problem.

We may therefore assume, without loss of generality, that
$\left(\alpha_{-1}\right) I \leq a_{0}$
Pronosition 2.I Let $I$ be tie interval $[-A+(\alpha-1)$ I, $A-(\alpha-1)$ I]. Then
$Q(u)<I$ for every $u \in U$
Proof. The argunent of the preceding paragraph shows that $(R-I) \cap Q(u)=\varnothing$ for every $u \in U$. The result follows.

Proposition 2. $2 \quad I=Q(\bar{u})$.
Proof. Let $x_{0} \in I$, let $W$ be an arbitrary member of $W$ and let $x\left(t, x_{0}\right.$, w, $\left.\ddot{u}\right)$ be denoted by $x(t)$. Let

$$
\begin{aligned}
& T^{+}=\left\{\begin{array}{l|l}
t \in[0, T] \mid x(t)>0
\end{array}\right\} \\
& T^{-}=\left\{\begin{array}{ll}
t \in[0, T] & \mid x(t)<0
\end{array}\right\}
\end{aligned}
$$

Then for all $t \in T^{+}$one has

$$
w(t)+\bar{u}(x(t))=w(t)-1 \leq \alpha-1,
$$

whereas for all $t \in T^{-}$one has

$$
w(t)+\bar{u}(x(t))=w(t)+1 \geq-\alpha+1 .
$$

Leを

Then for every $t \in T^{\dagger}$ one has

$$
\begin{aligned}
0<x(t) & =x\left(t^{+}\right)+\int_{T^{+} \int}[0, t] \\
& \left.\leq x\left(t^{+}\right)+\int_{T^{+}}(\tau)+\bar{u}(x(\tau))\right] d \tau \\
& \leq x\left(t^{+}\right)+(\alpha-1) T \leq A .
\end{aligned}
$$

Similarly, for every $t \in \mathbb{T}^{-}$one has

$$
\begin{aligned}
& 0> x(t)=x\left(t^{-}\right)+T^{-}[0, t][w(\tau)+\bar{u}(x(\tau))] d \tau \\
& \geq x\left(t^{-}\right)+\int^{-}(-\alpha+1) d \tau \\
& \geq x\left(t^{-}\right)+(-\alpha+1) T \geq-A .
\end{aligned}
$$

Hence $x_{0} \in Q(\bar{u})$. This completes the proof.

Proposition 2. $I$ Ie t $\alpha>$ I。 Then $\bar{U}$ is an upper bound in $U$ and $I$ is the core of $R$ 。

Proof Propositions 2.1 and 2.2.

## (ii) The Syotem $\mathrm{X}^{\cdot}=w+v$

Let $x_{1}, x_{2}$ be two real variables and let the vector $\left(x_{1}, x_{2}\right)$ be cencted by $x$.

Consiàer the system

$$
\begin{align*}
& \dot{x}_{I}=w(t)+u(x)  \tag{2.3}\\
& \dot{x}_{2}=x_{1}
\end{align*}
$$

Here $w=w(t)$ is restricted to a certain class $W$ of admissible winds, while $u=u(x)$ is restricted to the class $U$ of aumissible controls. The classes $W$ and it awe both uniorny bounded in the aense that

$$
\begin{aligned}
& |w(t)| \leq \alpha \text { for all } w \in W, \\
& |u(x)| \leq 1 \text { for all } u \in U,
\end{aligned}
$$

these inequalities holding true for all $t$ and $x$ for which $w(t)$ and $u(x)$ are defined.

The class $U$ is the class of all real piecwise continuous functions of real variable $x$ defined in some given rectangular region $R$ (the constraint set) contianing the origin and satisfying (2.4). We are not as specific about the class $W$ except to require that it be reasonable enough to insure that system $(2,3)$ satisfies sufficient conditions for the existence and uniqueness of solutions. We do, however, specificaliy assume that the class $W$ contains the class of ail piecewise constant winds whose range lies in the interval $[-\alpha, \alpha]$. The domain of all winās is $0 \leq t \leq T$, where $T$ is some preassigned positive constant. The region $R$ is derined by means of inequalities such as $\left|x_{1}\right| \leq A,\left|x_{2}\right| \leq B$, where $A$ and $B$ are given constants.

For the time being we shail restrict our attention to the case when $\alpha<1$. Let

$$
\bar{u}(x)=\left\{\begin{array}{rlll}
-1 & \text { for all } & x & \text { such that } \\
x_{1}>0 \\
0 & \text { for all } & x & \text { such that } \\
x_{1}=0 \\
+1 & \text { for all } & x & \text { such that } \\
x_{1}<0
\end{array}\right.
$$

We shall show that $\bar{u}(x)$ is an upper bound in $U$.
Let $W$ be an arbitrary (but fixed) wind in $W$ and consider the system

$$
\begin{align*}
& \dot{x}_{1}=w(t)+\bar{u}(x)  \tag{2.5}\\
& \dot{x}_{2}=x_{1}
\end{align*}
$$

Let $-B \leq x_{2}^{0} \leq B$. Let $J$ be the interval

$$
J=\left\{\left(0, x_{2}\right) \mid-B \leq x_{2} \leq B\right\} .
$$

The vector field defined by system (2.5) is discontinuous at every point of J. In fact,

$$
\begin{array}{ll}
\lim _{x_{1} \rightarrow 0+} \quad \dot{x}_{1}<0 & \quad, \quad \lim \quad \dot{x}_{1}>0 . \\
x_{2} \rightarrow x_{2}^{0} & \\
x_{1} \rightarrow 0- \\
& x_{2} \rightarrow x_{2}^{0}
\end{array}
$$

In other words, the vector field of (2.5) reverses its direction across $J$. Hence a trajectory of (2.5) which passes through $\left(0, x_{2}^{0}\right)$ at time ${ }^{t}{ }_{J}$ will be "stopped" there for all subsequent time. This fact will be employed in the sequel.

Let $u \in U$ and let $(\xi, \eta) \in Q(u)$. Suppose first that $\xi>0$. Let $w_{o}(t) \in W$ and $l e t$

$$
\begin{array}{ll}
x_{1}(t)=x_{1}\left(t, \xi, \eta, w_{0}, u\right) & \bar{x}_{1}(t)=x_{1}\left(t, \xi, \eta, w_{0}, \bar{u}\right) \\
x_{2}(t)=x_{2}\left(t, \xi, \eta, w_{0}, u\right) & \bar{x}_{2}(t)=x_{2}\left(t, \xi, \eta, w_{0}, \bar{u}\right) .
\end{array}
$$

As long as both $x_{1}(t)$ and $\bar{x}_{1}(t)$ are positive, we have

$$
d x_{1}(t) / \alpha t=w(t)+u(x) \geq w(t)-1=d \bar{x}_{1}(t) / d t .
$$

Let $\left[0, t_{1}\right)$ be the largest subinterval in $[0, T]$ throughout which $x_{1}(t)>0$; let $\left[0, t_{2}\right.$ ) be the largest subinterval in $[0, T]$ throughout which $\bar{x}_{1}(t)>0$; let $t_{3}=\min \left(t_{1}, t_{2}\right)$. Then, for every $t \in\left[0, t_{3}\right]$ we have

$$
\begin{aligned}
0 \leq \bar{x}_{1}(t) & =\xi+\int_{0}^{t}[w(\tau)-1] d \tau \\
& \leq \xi+\int_{0}^{t}[w(\tau)+u(x(\tau))] d \tau=x_{1}(t) \leq A .
\end{aligned}
$$

It follows, in particular, that $t_{3}=t_{2}$. Hence

$$
\begin{equation*}
0 \leq \bar{x}_{1}(t) \leq x_{1}(t) \leq A \text { for all } t \in\left[0, t_{2}\right] \tag{2.6}
\end{equation*}
$$

and therefore, for all $t \in\left[0, t_{2}\right]$,

$$
\bar{x}_{2}(t)=\eta+\int_{0}^{t} \bar{x}_{1}(\tau) \mathrm{d} \tau \leq \eta+\int_{0}^{t} \mathrm{x}_{1}(\tau) \mathrm{d} \tau=\mathrm{x}_{2}(t) \leq \mathrm{B}_{0}
$$

Woreover, $\alpha \bar{x}_{2}(t) / \alpha t>0$ throughout $\left[0, t_{2}\right)$, and since $\eta \geq-B$ we conclude that $\bar{x}_{2}(t)>-B$ for all $t \in\left[0, t_{2}\right)$. Therefore

$$
\begin{equation*}
-B \leq \bar{x}_{2}(t) \leq B \text { for all } t \in\left[0, t_{2}\right] \text {. } \tag{2.7}
\end{equation*}
$$

If $t_{2}=T$, one now has

$$
\begin{equation*}
\left(\bar{x}_{1}(t), \bar{x}_{2}(t)\right) \in R \text { for all } t \in[0, T] \tag{2.8}
\end{equation*}
$$

If $t_{2}<T$ then $\bar{x}_{1}(t)=0$ and $\bar{x}_{2}(t)=\bar{x}_{2}\left(t_{2}\right)$ for all $t \geq t_{2}$. This together with (2.6) and (2.7), implies that (2.8) still holds. Since these considerations apply to any wind $w_{0} \in W$ it follows that $(\xi, \eta) \in Q(\bar{u})$.

Propositios 2. $4 \quad Q(u) \subset Q(\bar{u})$ for every $u \in U$.
Froof. It has been shown that if $(\xi, \eta) \in Q(u)$ and $\xi>0$ then $(\xi, \eta) \in Q(\bar{u})$.

The case wher $\xi<0$ is analogous. Moreover, $J \in Q(\bar{u})$. This completes the proof,
Corollary 2. $\bar{u}$ is an upper bound in $J$.
Proposition 2.5 Let $w^{*}(t) \equiv \alpha$; let $\xi>0$; Let $x_{i}^{*}(t)=x_{i}\left(t, \xi, \eta, w^{*}, \bar{u}\right), \quad \dot{i}=1,2$ 。
If $\left(x_{1}^{*}(t), x_{2}^{*}(t)\right) \in R$ for all $t \in[0, T]$ then $(\xi, \eta) \in Q(\bar{u})$.
Proof. Let $w \in W$; let $x_{i}(t)=x_{i}(t, \xi, \eta, w, \bar{u}), i=1,2$.
If $\left(x_{1}(t), x_{2}(t)\right)$ intersects $J$ at some time $t_{J}$ it remains "stopped" there
for all subsequent times. We therefore need concern ourselves only with the interval $\left[0, t_{J}\right)$. For all $t$ in this interval one has

$$
d x_{1}(t) / d t=w(t)-1 \leq \alpha-1=d x_{1}^{*}(t) / d t
$$

Fence, for all $t \in\left[0, t_{J}\right)$,

$$
0<x_{1}(t) \leq x_{1}^{*}(t) \leq A
$$

whence

$$
x_{2}(t) \leq x_{2}^{*}(t) \leq B .
$$

Morever,

$$
-B \leq \eta \leq x_{2}(t),
$$

whence finally

$$
(\xi, \eta) \in Q(\bar{u}) .
$$

This completes the proof.

Proposition 2.6 Let $W_{*}(t) \equiv-\alpha$; let $\xi<0 ; \operatorname{let} x_{i}^{\prime}(t)=x_{i}\left(t, \xi, \eta, W_{*}, \bar{j}\right)$, $i=1$, 2. If $\left(x_{I}^{\prime}(t), x_{2}^{\prime}(t)\right) \in R$ for all $t \in[0, T]$ then $(\xi, \eta) \in Q(\bar{u})$.

Froof. The proof is analogous to the proor of Proposition 2. 5.
Let $R^{+}$be the set $\left\{\left(x_{1}, x_{2}\right) \mid 0<x_{1} \leq A,-B \leq x_{2} \leq B\right\}$ We shall use Proposition 2.5 to determine $Q(\bar{u}) \cap R^{+}$.

Consider the system

$$
\begin{align*}
& \dot{x}_{1}=\alpha-1 \\
& \dot{x}_{2}=x_{1} . \tag{2.9}
\end{align*}
$$

Clearly $\dot{x}_{1}<0$ and $\dot{x}_{2}>0$ throughout $R^{+}$. If $(\xi, \eta) \in R^{+}$then the solution $\left(x_{1}(t, \xi, \eta), x_{2}(t, \xi, \eta)\right)$ of (2.9), when continued in the direction of increasing $t$, can only reach the boundary of $R^{+}$on the set $J$ or on the set

One has

$$
K=\left\{\left(x_{1}, B\right) \mid 0<x_{1} \leq A\right\}
$$

$$
\begin{aligned}
& x_{1}(t, \xi, \eta)=\xi+(\alpha-1) t \\
& x_{2}(t, \xi, \eta)=\eta+\xi t+(1 / 2)(\alpha-1) t^{2}
\end{aligned}
$$

The solution of (2.9) passing through the point $(O, B)$ lies on the parabola

$$
x_{2}=B+\frac{x_{1}^{2}}{2(\alpha-1)}
$$

Therefore, if $\eta \leq B+\xi^{2} / 2(\alpha-1)$ then $\left(x_{1}(t, \xi, \eta), x_{2}(t, \xi, \eta)\right)$, when continued in the direction of increasing $t$, will reach the set $J$. All such points are clearly in $Q(\bar{u})$, To get the remainder of $Q(\bar{u}) \cap R^{+}$, continue the solutions of (2.9), starting on $K$, for a time interval of length $T$, in the direction of decreasing time. One has

$$
\begin{align*}
& x_{1}(-T, \xi, B)=\xi-(\alpha-1) T \\
& x_{2}(-T, \xi, B)=B-\xi T+(1 / 2)(\alpha-1) T^{2} \tag{2.11}
\end{align*}
$$

Elimination of $\xi$ yields

$$
x_{2}(-T, \xi, B)=\left[B \div(I / 2)(1-\alpha) T^{2}\right]-T x_{I}(-T, \xi, B) .
$$

Let $B+(1 / 2)(1-\alpha) T^{2}=\beta$. Let $L$ be the line $x_{2}=-T x_{1}+\beta$. On $K$ we have $\alpha<x_{1} \leq A$. Hence in (2.11), $0<\xi \leq A$, and (1- $\alpha$ ) $T<x_{1}(-T, \xi, B)$ $\leq A+(1-\alpha) T$. However, since we are restricted to $R$, we must limit our attention to those points of $I$ which satisfy

$$
(1-\alpha) T<x_{1} \leq A_{0}
$$

The point $P$ on $I$ whose abscissa is (1- $\alpha$ )T has ordinate $B+(1 / 2)(\alpha-1) T^{2}$. This point also lies on the parabola (2.10); in fact, this is the point obtainea by solving (2.9) starting at ( $O, B$ ), in the direction of decreasing time to the point where $t=-T$. If $P \notin R^{+}$then

$$
S^{+}=Q(\bar{u}) \cap R^{+}=\left\{(\xi, \eta) \in R^{+} \mid \eta \leq B+\xi^{2} / 2(\alpha-1)\right\}
$$

If $P \in R^{+}$, let $Q$ be the point at which the line $L$ intersects the set
 this case $S^{+}$is the set obtained by deleting $J$ from the closed set bounded by the curve BOA QPB (Figure 1). Let $S^{-}$be the set obtained by reflecting $S^{+}$ through the origin. Let $S=S^{-}$UJUS ${ }^{+}$.

Proposition 2.7 $S$ is the core of $R$.
Proof: Ey definition, $S^{+}=Q(\vec{Z}) \cap R^{+}$. The fact that $S^{-}=Q(\vec{u}) \cap R^{-}$follows In completelanalogy from proposition 2.6. This completes the proof.


The shaded region is the core of $R$

Figure 1
-6-22-

## 1. COMPARABILTTY OF THE SOLUTIONS OF TWO DIFFERENTTAI EQUATIONS

We have previously indicated a method of partially ordering the controls $u \in \mathbb{U}$ and we have shown that an important part of our problem is solved if we can identify the upper bounds of these controls. To implement this procedure, we need to compare the trajectories of the system under different controls. This amounts to comparing the solutions of pairs of systems of differential equations with respect to various criteria. In this and the next section we present several theorems which we hope will be useful in this connection.

In this section the system is represented by means of a single differential equation of possibly high order. It is always possible, at least in the linear case according to a known theorem, to reduce the system to this form, if there is but a single actuator and if the system is controllable at all. Theorem 1.1 Suppose $x(t)$ and $\xi(t)$ are both of class $c^{n+1}$ on $[0, T]$ and satisfy the initial conditions,

$$
\begin{equation*}
\xi^{(k)}(0) \geqq x^{(k)}(0), k=0,1, \cdots, n \tag{1.1}
\end{equation*}
$$

and the differential equations,

$$
\begin{gather*}
x^{(n+1)}(t)=f\left[x^{(n)}(t), \cdots \cdot, x^{(h)}(t), \cdots, t\right], h=0, \cdots, n-1  \tag{1.2}\\
\xi^{(n+1)}(t)=\varphi\left[\xi^{(n)}(t), \cdots \cdots \xi^{(h)}(t), \cdots \cdots t\right] \tag{1.3}
\end{gather*}
$$

Suppose, furthermore, that

$$
\left.\varphi\left[x^{(n)}, \cdots, \xi^{(h)}, \cdots, t\right]>x^{(n)}, \cdots x^{(h)} \cdot \cdots\right](1.4)
$$

as long as

$$
\begin{equation*}
\xi^{(h)} \geqq x^{(h)}, \text { for } h=0, \cdots, n-1 \tag{1.5}
\end{equation*}
$$

Then

$$
\xi^{(k)}(t)>x^{(k)}(t) \text { for } 0<t \leq T \text { and } k=0,1, \cdots, n .
$$

Proof. By Taylor's theorem with the remainder
$\xi^{(k)}(t)-x^{(k)}(t)=\sum_{l=0}^{n-k}\left\{\frac{\xi^{(k+l)}(0)-x^{(k+l)}(0)}{\ell!}\right\} t^{\ell}+\left\{\xi^{(n+1)}\left(t^{*}\right)-x^{(n+1)}\left(t^{*}\right)\right\} n_{t}-k+1$
where $t^{*}$ is a suitably chosen positive number not greater than $t$. According to (1.1), the first $(n-k+1)$ terms in the above sum are non-negative. If they are actually positive, then the whole sum must be positive for sufficiently small $t>0$, since the last term is an infinitesimal of higher order than any of the other non-vanishing terms. If, however, the first ( $n-k+1$ ) terms of the above sum happen to vanish, we have

$$
\xi^{(k+l)}(0)=x^{(k+l)}(0), \ell=0,1, \ldots, n-k
$$

and in particular (by taking $\ell=n-k$ ),

$$
\begin{equation*}
\xi^{(n)}(0)=x^{(n)}(0) \tag{1.6}
\end{equation*}
$$

We also observe that the last term in the above sum differs from

$$
\left\{\frac{\left\{(n+1)(0)-x^{(n+1)}(0)\right.}{(n-k+1)!}\right\} t^{n-k+1}
$$

by an infinitesimal of order higher than $t^{n-k+1}$. This is because of the fact that $g(t)$ and $x(t)$ are of class $c^{n+l}$. Hence, if $t$ is sufficiently small, $\xi^{(k)}(t)-x^{(k)}(t)$ must have the same sign as
$\left.\xi^{(n+1)}(0)-x^{(n+1)}(0)=\varphi\left[\xi^{(n)}(0), \cdots, \xi^{(h)}(0), \cdots, 0\right]-f^{\left[x^{(n)}\right.}(0), \cdots, x^{(h)}(0), 0,00\right]$,
which, by (1.6), is the same as
$\varphi\left[x^{(n)}(0), \cdots, \xi\right.$
$\left.\xi^{(h)}(0), \cdots, 0\right]$
$-f\left[x^{(n)}(0), \cdots, x^{(h)}(0), \cdots, 0\right]$

But the sign of this latter quantity is positive because of (1.1), (1.4) and (1.5). Hence, we have proved that in all cases there exists a positive number $\delta$ such that

$$
\begin{equation*}
\xi^{(k)}(t)>x^{(k)}(t) \text { for } 0<t \leqq \delta \tag{1.7}
\end{equation*}
$$

and $k=0,1,2, \cdots \cdots, n$.
If $\delta \geqq T$, there would be nothing more to be proved. We therefore assume in the sequel that $\delta<\mathbb{T}$. For the sake of brevity we let $z(t)=\xi(t)-x(t)$. Then (1.7) means that $z(t)$ and its first $n$ derivatives are positive for $0<t \leqq \delta$. We wish to prove that they are also positive for $\delta<t \leqq T$. If this were not true, one at least of the functions $z^{(k)}(t)$ would have to vanish on the interval $(\delta, T]$ at some point $t_{k}(k=0,1, \cdots, n)$. But, if $k<n$, we can then say that $z^{(k+1)}(t)$ woula have to vanish on the interval $(\delta, T]$ at some point $t_{k+1}<t_{k}$. For $z^{(k)}(\delta)$ and $z^{(k+1)}(\delta)$ are both known to be positive while $z^{(k)}\left(t_{k}\right)=0$. Hence $z^{(k)}(t) \quad$ would have to have a maximum at some point $t_{k+1}$ interior to the interval $\left(\delta, t_{k}\right)$. At such a maximum, we, of course have

$$
z^{(k+1)}\left(t_{k+1}\right)=0
$$

It follows that, if the theorem were false, there would exist a point $t_{n}$ on $(\delta, T]$ such that

$$
\begin{align*}
& z^{(n)}\left(t_{n}\right)=0  \tag{1.8}\\
& z^{(n)}(t)>0 \text { for } \delta \leqq t<t_{n}  \tag{1.9}\\
& z^{(h)}\left(t_{n}\right)=\xi^{(h)}\left(t_{n}\right)-x^{(h)}\left(t_{n}\right)>0  \tag{1.10}\\
& h=0,1,2, \cdots, n-1
\end{align*}
$$

From (1.8) and (1.9) we have $z^{(n+1)}\left(t_{n}\right) \leqq 0$. Hence from (1.1) ana (1.2) we have

$$
\begin{gathered}
z^{(n+1)}\left(t_{n}\right)=\xi^{(n+1)}\left(t_{n}\right)-x^{(n+1)}\left(t_{n}\right) \\
=\varphi\left[\xi^{(n)}\left(t_{n}\right), \cdots, \xi^{(h)}\left(t_{n}\right), \cdots, t_{n}\right]-f\left[x^{(n)}\left(t_{n}\right), \cdots, x^{(h)}\left(t_{n}\right), \cdots, t_{n}\right] \leqslant 0 .
\end{gathered}
$$

From (1.8), we have $\xi^{(n)}\left(t_{r}\right)=x^{(n)}\left(t_{n}\right)$. Hence, we have shown that

$$
\varphi\left[x^{\cdots}\left(t_{n}\right), \cdots, \xi^{(n)}\left(t_{n}\right), \cdots, t_{n}\right] \leqq \pm\left[x^{(n)}\left(t_{n}\right), \cdots, x^{(n)}\left(t_{n}\right), \cdots, t_{n}\right]
$$

But, in virtue of (1.10), this is a contradiction of (1.4) and (1.5). The theorem follows at once from this contradiction.

The hypothesis, that the inequality (1.4) should hold as long as the inequalities (1.5) hold, cannot be replaced by the less restrictive hypothesis that merely

$$
\begin{equation*}
\varphi\left[x^{(n)}, \cdots, x^{(n)}, \cdots, t\right]>f\left[x^{(n)}, \cdots \cdot x^{(n)}, \cdots, t\right] \tag{1.1I}
\end{equation*}
$$

To show this we consider an elementary example in which $n=1$. (The case $n=0$ is aiso covered by Theorem 1.1, but in this case the set of the variables $x^{(h)}$ for $h=0, \cdots, n-1$ becomes vacuous, so that the weaker hypothesis (1.11) coincides. with the hypothesis of the theorem embodied by (1.4) and (1.5)). our exampie with $n=1$ is as follows:

Let $\varphi(\hat{\xi}, \xi, t)=-(\alpha+\beta) \dot{\xi}-\alpha \beta \xi+\epsilon$
and $f(\dot{x}, x, t)=-(\alpha+\beta) \dot{x}-\alpha \beta x$,
where $\alpha, \beta$, and $\epsilon$ are all real non-zero constants and $\epsilon$ is positive. We are thus concermed with the equations $\stackrel{\infty}{\xi}+(\alpha+\beta) \dot{\xi}+\alpha \beta \xi=\epsilon$ and

$$
\ddot{x}+(\alpha+\beta) \dot{x}+\alpha \beta x=0 .
$$

It is seen that the hypothesis (1.4) - (1.5) is fulfilled if and only if $\alpha$ and $\beta$ have opposite signs, whereas the weaker hypothesis (1.11) is fulfilled in any case. We consider initial conditions $\dot{x}(0)=\dot{\xi}(0)$ and $x(0)<\xi(0)$. For brevity, we let $Z(t)=\xi(t)-x(t)$. Then $Z(t)$ satisfies the differential equation $\ddot{z}+(\alpha+\beta) \dot{z}+\alpha \beta Z=\epsilon$ and the initial conditions $Z(0)>0, \dot{Z}(0)=0$. Evidentiy $\stackrel{\circ}{Z}(0)=-\alpha \beta Z(0)+\epsilon$. Hence $\because(0)<0$ if $\alpha$ and $\beta$ have the same sign and $Z(0)>\epsilon /(\alpha \beta)$. Hence, ini such a case $\dot{Z}(t)=\dot{\xi}(t)-\dot{x}(t)$ is negative for all sufficiently small positive values of $t$. Since $\dot{Z}(0)=0$, the same is true for $\dot{z}(t)=\dot{\xi}(t)-\dot{x}(t)$, contrary to the conclusion of the theorem. On the other hand, if $\alpha$ and $\beta$ have opposite sign, it is obvious that both $\dot{\xi}(t)-\dot{x}(t)=\dot{Z}(t)$ and $\xi(t)-x(t)=Z(t)$ are positive for sufficiently small positive $t$ in accordance with the theorem. The theorem also asserts (in case $\alpha \beta<0$ ) that these differences are positive for all $t>0$; but this fact is not quite so obvious if $\alpha+\beta>0$, even though the equations are, of course, easily integrated.
Theorem 1.a Same hypotheses as in Theorem 1.l, except that (1.4) is modified to read

$$
\varphi\left[x^{(n)}, \cdots, \xi^{(h)}, \cdots \cdot, t\right] \geqq f\left[x^{(n)}, \cdots \cdot, x^{(h)}, \cdots, t\right]
$$

as long as (1.5) holds.
Then $\xi^{(k)}(t) \geqq x^{(k)}(t)$ for $0<t \leqq r$ and $k=0, I, \cdots$, $n_{0}$
Proof. Let $\eta(t, \epsilon)$ satisiy the differential equation $\eta^{(n+1)}(t, \epsilon)=\varphi\left[\eta^{(n)}(t, \epsilon), \cdots, \eta^{(h)}(t, \epsilon), \cdots, t\right]+\epsilon$ and the initial conditions $\eta^{(k)}(0, \epsilon)=\xi^{(k)}(0) \geqq x^{(k)}(0)$ for $k=0,1, \cdots, n$. Then, by Theorem l.l, $\eta^{(k)}(t, \epsilon)>x^{(k)}(t)$, for $k=0,1,0$ 。, n, and for $t \in[0, \mathbb{T}]$, if $\epsilon>0$. It is also known from theorems on the solutions of differential equations containing parameters that
$\operatorname{Im}$
$\epsilon \rightarrow 0$
(k) (k)
$\lambda(t, \epsilon)=s-(t)$

Hence, passing to the limit in the above inequality, we get $\xi^{(k)}(t) \geqq x^{(k)}(t)$, as desired.

## 2. COMPARABILITY OF THE SOLUTIONS OF TWO SYSTEMS OF DIFFERENTIAL EQUATIONS

In this section we prove some theorems similar to those of the preceding section. But they apply directly to a pair of systems of differential equations rather than to a pair of single differential equations. We write the systems in the form

$$
\begin{equation*}
\dot{\xi}=\varphi(t, \xi) \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\dot{x}=f(t, x) \tag{2.2}
\end{equation*}
$$

where $\xi, x, \varphi$, and $f$ are $n$-vectors, while $\varphi$ and $f$ are continuous and Lipschitzian with respect to $\xi$ and $x$ respectively. We consider in connection with these systems a scalar function $H(x)$ of class $C^{I}$ in the components of $x$. Starting with solutions of (2.1) and (2.2) satisfying the same initial conditions,

$$
\begin{equation*}
x(0)=\xi(0)=x_{0} \tag{2.3}
\end{equation*}
$$

we wish to compare $H[\xi(t)]$ and $H[x(t)]$ for $t>0$. If we let $Q_{\varphi}(x, t)=H_{x}(x) \varphi(t, x)$ and $Q_{f}(x, t)=H_{x}(x) f(t, x)$, it is clear that $Q_{\varphi}[\xi(t), t]$ is the rate of increase of $H[\xi(t)]$, while $Q_{f}[x(t)$, $t]$ is the rate of increase of $H[x(t)]$. Hence it might be conjectured that $H[x(t)] \leqq H[g(t)]$, if, for all $x$ and $t$, we had

$$
\begin{equation*}
Q_{\varphi}(x, t)>Q_{P}(x, t) \tag{2.4}
\end{equation*}
$$

or, in other words, if $Q_{\varphi}(x, t)-Q_{f}(x, t)$ were positive definite.
This turns out not always to be true (as we will show immediately below by means of a counter-example.). This is because the two trajectories $\xi(t)$ and $x(t)$ may be quite distinct. Hence we will need to replace the hypothesis (2.4) by a more stringent one. Before stating and proving the main theorem, we first present our counter-example in order to establish the necessity for such a more stringent hypothesis.

Let us consider the two systems

$$
\begin{equation*}
\dot{\xi}=\alpha \xi, \quad \dot{\eta}=\beta \xi+\gamma \eta \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\dot{x}=a x+b y, \dot{y}=c y \tag{f.6}
\end{equation*}
$$

together with the initial conditions

$$
\begin{equation*}
\xi(0)=x(0)=x_{0}, \eta(0)=y(0)=y_{0} \tag{2.7}
\end{equation*}
$$

We are here temporarily using $(\xi, \eta)$ and ( $x, y$ ) to represent the vectors previously denoted by $\xi$ and $x$ respectively, $n$ being equal to 2 . If we now take $H(x, y)=(1 / 2)\left(x^{2}+y^{2}\right)$, we have $Q_{\tilde{\varphi}}(\xi, \eta)=\alpha \xi^{2}+\beta \xi \eta+\gamma \eta^{2}$; and $Q_{f}(x, y)=a x^{2}+b x y+c y^{2}$. Then $Q_{\varphi}(x, y)-Q_{f}(x, y)=(\alpha-a) x^{2}+(\beta-b) x y+(\gamma-c) y^{2}$
is certainly positive definite if $\alpha>a, \gamma>c$ and $|\beta-b|$ is sufficiently small. These conditions are fulfilled if we assume that

$$
\begin{equation*}
r>c>\alpha>a, \quad \beta=b \neq 0 \tag{2.8}
\end{equation*}
$$

Both systems are easily integrated. The solution of (2.5) is

$$
\begin{equation*}
\xi=x_{0} e^{\alpha t}, \quad \eta=\left[y_{0}-\frac{\beta x_{0}}{\alpha-\gamma}\right] e^{\gamma t}+\frac{\beta x_{0}}{\alpha-\gamma} e^{\alpha t} \tag{2.9}
\end{equation*}
$$

while the solution of $(2.6)$ is

$$
\begin{equation*}
x=\left[x_{0}-\frac{b y_{0}}{c-a}\right] e^{a t}+\frac{b y_{o}}{c-a} e^{c t}, \quad y=y_{0} e^{c t} \tag{2.10}
\end{equation*}
$$

From these explicit solutions and from (2.8) we see that
$H[\xi(t), \eta(t)]=O\left(e^{2 \gamma t}\right)$, except when $y_{0}-\frac{\beta x_{0}}{\alpha-\gamma}=0$. But
$H[\xi(t), \eta(t)]=O\left(e^{2 \alpha t}\right)$, if $y_{0}-\frac{\beta x_{0}}{\alpha-\gamma}=0$ and $x_{0} \neq 0$.
(Here we use $f(t)=O(g(t)$ ) to mean that $f(t)$ and $g(t)$ are defined for $t$ sufficiently large, that $g(t) \neq 0$, and that $\lim _{t \rightarrow \infty} f(t) / g(t)$ exists and is not zero. This convention is more strict than the one sometimes used, which is merely to the effect that $f(t) / g(t)$ is bounded). In the case cited above, where $y_{0}-\frac{\beta x_{0}}{\alpha-\gamma}=0$ and $x_{0} \neq 0$, we also have $y_{0} \neq 0$, since $\beta \neq 0$. Hence, we see from (2.10) that $H[x(t), y(t)]=O\left(e^{2 c t}\right)$. Since $c>\alpha$, it is evident that for solutions starting at any point of the straight line $(\alpha-\gamma) y-\beta x=0$, except the origin, we must eventually have $H[x(t), y(t)]>H[\xi(t), \eta(t)]$. This is contrary to the conjectured theorem.

Theorem 2.1. Suppose that

$$
\begin{equation*}
Q_{\varphi}(\xi, t)>Q_{f}(x, t) \tag{2.11}
\end{equation*}
$$

whenever

$$
\begin{equation*}
H(\xi) \geqq H(x) \tag{2.12}
\end{equation*}
$$

Then the vector functions $\xi(t)$ and $x(t)$, satisfying (2.1), (2.2), and (2.3) for $0 \leqq t \leqq T$, have the property that

$$
\begin{equation*}
H[\xi(t)]>\cdots H[x(t)] \tag{2.13}
\end{equation*}
$$

for all $t \in(0, T]$

Proof. Let $w(t)=H[\xi(t)]-H] x(t)]$. Then according to (2.11) and (2.12), $\dot{\mathrm{w}}(0)=Q_{\varphi}\left(\mathrm{x}_{\mathrm{o}}, 0\right)-Q_{\mathrm{f}}\left(\mathrm{x}_{\mathrm{o}}, 0\right)>0$. Therefore, since $\mathrm{w}(0)=0$, there exists a positive number $\delta$ such that $w(t)>0$ for $\alpha<t \leqq \delta$. If $\delta \geqq T$, there is nothing further to be proved. We therefore assume from now on that $0<\delta<T$; and, of course, $w(\delta)>0$.

If the theorem were false, there would exist a number $t^{*} \epsilon(\delta, T]$ such that $w\left(t^{*}\right)=0$ and such that

$$
\begin{equation*}
w(t)>0 \text { for } t \in\left(\delta, t^{*}\right) \tag{2.14}
\end{equation*}
$$

Since $w(\delta)>0$, there would have to exist numbers $\bar{z}$ between $\delta$ and $t^{*}$ where $w(t)$ is not increasing; for otherwise $w\left(t^{*}\right)>w(\delta)>0$ contrary to the definition of $t^{*}$. For such a $\bar{t}$ we would therefore have simultaneously $\dot{W}^{\prime}(\bar{t})=Q_{\varphi}[\xi(\bar{t}), \bar{t}]-Q_{f}[x(\bar{t}), \bar{t}]: \leq 0$ and $\bar{w}(\bar{t})=H[\xi(\bar{t})]-H[x(\bar{t})]>0$, the latter following from (2.14). We thus have a contradiction of the hypothesis expressed by (2.11) and (2.12). From this contradiction, the theorem is established.

Theorem 2.2. Suppose that

$$
\begin{equation*}
Q_{\varphi}(\xi, t) \geqq Q_{f}(x, t) \tag{2.15}
\end{equation*}
$$

whenever

$$
\begin{equation*}
H(\xi) \geqq H(x) . \tag{2.16}
\end{equation*}
$$

Suppose also that the two vector functions $\xi(t)$ and $x(t)$ satisfying (2.1), (2.2), and (2.3) for $0 \leqq t \leqq T$ have the property of not simultaneousiy passing through a point where the vector $H_{X}(x)$ vanishes. Then

$$
\begin{equation*}
H[\xi(t)] \geqq H[x(t)] \tag{2.17}
\end{equation*}
$$

for all $t \in[0, T]$.
Proof. Let $\epsilon$ be a positive parameter and consider the two systems

$$
\begin{equation*}
\dot{\xi}=\varphi_{\epsilon}(t, \xi)=\varphi(t, \xi)+\epsilon H_{x}(\xi) \tag{2.18}
\end{equation*}
$$

and

$$
\begin{equation*}
x=f_{\epsilon}(t, x)=f(t, x)-\epsilon H_{x}(x) \tag{2.19}
\end{equation*}
$$

and the vectors $\xi(t, \epsilon)$ and $x(t, \epsilon)$ satisfying (2.18) and (2.19) respectively and the initial conditions,

$$
\begin{equation*}
\xi(0, \epsilon)=x(0, \epsilon)=x_{0} \tag{2.20}
\end{equation*}
$$

If $\sigma$ is a preassigned positive number, one knows that these vectors will be defined for $0 \leqq t \leqq T-\sigma$ (at least, if $\epsilon$ is sufficiently small) and that

$$
\begin{equation*}
\operatorname{Lim}_{\epsilon \rightarrow 0} \xi(t, \epsilon)=\xi(t), \quad \lim _{\epsilon \rightarrow 0} x(t, \epsilon)=x(t) \tag{2.21}
\end{equation*}
$$

uniformly for $0 \leqq t \leqq T-\sigma$. By hypothesis the two vectors $H_{X}[\xi(t)]$ and $H_{x}[x(t)]$ never vanish simultaneously (i.e. for the same value of $t$ ). Hence, if $\epsilon$ is sufficiently small $H_{x}[\xi(t, \epsilon)]$ and $H_{x}[x(t, \epsilon)]$ can never vanish simultaneously for $0 \leqq t \leqq T-\sigma$. To substantiate this last statement, we observe that otherwise there would exist sequences, $\epsilon_{1}, \epsilon_{2}, \cdot \cdots$ and $t_{1}, t_{2}$. . such that $\epsilon_{n} \rightarrow 0,0 \leqq t_{n} \leqq T-\sigma$ and such that

$$
\begin{equation*}
H_{x}\left[\xi\left(t_{n}, \epsilon_{n}\right)\right]=H_{x}\left[x\left(t_{n}, \epsilon_{n}\right)\right]=0 . \tag{2.22}
\end{equation*}
$$

From the compactness of the interval $[0, T-\sigma]$ we may also assume, by confining attention to suitable subsequences if necessary, that $t_{n} \rightarrow t^{*}$, where $0 \leqq t^{*} \leqq T-\sigma$. We now omit numerous details regarding the passage to the limit in (2.22). Suffice it to say that the uniformity in (2.21) and the uniform continuity of $H_{x}$ in a suitably chosen region lead to the result that

$$
H_{x}\left[\xi\left(t^{*}\right)\right]=H_{x}\left[x\left(t^{*}\right)\right]=0
$$

which contradicts the hypothesis. Hence, $H_{x}[\xi(t, \epsilon)]$ and $H_{x}[x(t, \epsilon)]$ can
never vanish simultaneously, as already stated, at least if $\epsilon$ is sufficiently small.

It follows that $\left\{H_{x}[\xi(t, \epsilon)] \cdot H_{x}[\xi(t, \epsilon)]\right\}$ and $\left\{H_{x}[x(t, \epsilon)] \quad H_{x}[x(t, \epsilon)]\right\}$ can never both fail simultaneously to be positive. We also have

$$
Q_{\varphi \epsilon}[\xi(t, \epsilon), t]=Q_{\varphi}[\xi(t, \epsilon), t]+\epsilon\left\{H_{x}[\xi(t, \epsilon)] \cdot H_{x}[\xi(t, \epsilon)]\right\}
$$

and

$$
Q_{f \in}[x(t, \epsilon), t]=Q_{f}[x(t, \epsilon), t]-\epsilon\left\{H_{x}[x(t, \epsilon)] \cdot H_{x}[x(t, \epsilon)]\right\}
$$

We thus see from (2.15) and (2.16) that we can confine attention to a region in which

$$
Q_{\varphi \epsilon}[\xi, t]>Q_{f \in}[x, t]
$$

as long as $H[\xi] \geq H[x]$. Hence applying Theorem 2.1, we have

$$
H[\xi(t, \epsilon)]>H[x(t, \epsilon)] \text { for } \quad 0<t \leqq T-\quad \sigma \text {. }
$$

Passing to the limit as $\epsilon \rightarrow 0$, we thus find that

$$
H[\xi(t)] \cong H[x(t)] \text { for } 0<t \leqq T-\sigma
$$

Since equality holds for $t=0$ because of (2.3) and since $\sigma$ is an arbitrary positive number, we have

$$
H[\xi(t)] \geqq H[x(t)] \text { for } 0 \leqq t<T \text {. }
$$

Finally, by continuity at $t=T$, we see that the theorem is true as stated.

## 3. OI THE EXISTENCE OF UPPER BOUNDS FOR THE SYSTEM

$$
\ddot{x}=h(\dot{x}, x, t)+w+u .
$$

In this section we wish to indicate the manner in which Theorem 1.2 may be used to generalize the work of the previous frogress Report on the system $\underset{x}{ }=u+w$. We hereby consider a system of the form

$$
\begin{equation*}
\underset{x}{\infty}=h(x, x, t)+u+w \tag{3.1}
\end{equation*}
$$

in which $h(\dot{x}, x, t)$ is monotone non-decreasing in $x$ for each fixed $\dot{x}$ and $t$. The system can also be written in the form

$$
\begin{aligned}
& \dot{x}_{1}=h\left(x_{1}, x_{2}, t\right)+u+w \\
& \dot{x}_{2}=x_{1},
\end{aligned}
$$

If we set $x_{2}=x$ and $x_{1}=\dot{x}$. In the sequel we use $\left(x_{1}, x_{2}\right)$ and ( $\left.\hat{x}, x\right)$ mferchangeaty without further coment according to convenience.

We wish the motion to be confined in the rectaugle $R:\left|X_{1}\right| \leqq 4$ anc $\left|x_{2}\right| \leqq B$ ror $t \in[0, T]$. The "control" $u=u\left(x_{1}, x_{2}\right) \in U$ is subsect to various restrictions which may be used in the definition of $U$. The only ones of these conditions essential for the moment is the condition $|u| \equiv 1$. Simiamly the "wind " $w=w(t) \in W$ is assumed to aatisfy the condition $|\overline{\mathrm{w}}| \leqq \alpha$, where $\alpha<1$.

We sumpose we have a non-negative function $\lambda\left(x_{2}\right)$ derineả for $\left|x_{2}\right| \leqq B$ and such that when the point $\left(x_{1}, x_{2}\right)$ is initially within the st IJ arened by $\left|x_{1}\right| \leqq \lambda\left(x_{2}\right)$ it remains trapped within this set for all time durng the motion defined by (3.2) with $u\left(x_{1}, x_{2}\right)$ replaced by $T_{1}\left(x_{1}, x_{2}\right)$ where $\vec{u}\left(x_{1}, x_{2}\right)=-\operatorname{sgn} x_{1}$ for $\left(x_{1}, x_{2}\right)$ outside the set $J$. This mposition is supposed to hold for any $W \in W$ and no matter how in
defined inside the set $J$, so long as it is such that $\bar{u} \in U$.
In the special case $h\left(x_{1}, x_{2}\right) \equiv 0$ treated in the previous Progress Report the set $J$ could be the interior and boundary of the ellipse

$$
\frac{x_{2}^{2}}{B^{2}}+\frac{x_{1}^{2}}{C^{2}}=1
$$

where $C$ is sufficiently small. We omit the proof of this fact. In the previous Progress Report only the limiting case $C \rightarrow 0$ was considered, so that the set $J$ was the line segment $x_{1}=0,\left|x_{2}\right| \leqq B$. This necessitate $\bar{u}$ the assumption that the class $U$ contained discontinuous functions. But for $C>0$, we can consider the class $U$ as containing only functions that are continuous in the interior of $R$ and $\bar{u}$ might be defined throughout the interior of $R$ as follows:

$$
\begin{aligned}
& \bar{u}=-\operatorname{sgn} x_{1} \quad \text { if } \quad \lambda\left(x_{2}\right)<\left|x_{1}\right| \leq A \\
& \bar{u}=-x_{1} / \lambda\left(x_{2}\right) \text { if }\left|x_{1}\right| \leqq \lambda\left(x_{2}\right)
\end{aligned}
$$

In the special case where $J$ is the interior and boundary of the ellipse mentioned above $\lambda=\frac{C}{B} \sqrt{B^{2}-x_{2}^{2}}$. The above definition then makes $\bar{u}$ continuous on the boundary of $R$ as well as in the interior except at the points $(0, \pm B)$, where it is left undefined.

Let $u$ be an arbitrary control $\in U$. By $Q(u)$ we mean (as in previous Progress Reports) the maximal subset of $R$ that is controllable by $u$. We shall now prove that $Q(u) Q(\bar{u})$, or, in other words, $u \zeta_{Q} \bar{u}$. Let $\left(\dot{x}_{0}, x_{0}\right)$ be an arbitrary point of $Q(u)$. We then consider the solution $x=\xi(t)$ of the system

$$
\xi=\varphi(\xi, \xi, t)=h(\xi, \xi, t)+u(\xi, \xi)+w(t)
$$

such that $\xi(0)=x_{0}$ and $\dot{\xi}(0)=\dot{x}_{0}$. Since the initial point is in the
controllable region, we have for all $t \in[0, T]$ and all $w \in W$

$$
\begin{equation*}
|\xi(t)| \leqq B, \quad|\xi(t)| \leqq A \tag{3.3}
\end{equation*}
$$

We also consider the solution $x=x(t)$ of the system

$$
\begin{equation*}
\ddot{x}=f(\dot{x}, x, t)=h(\dot{x}, x, t)+\bar{u}(\dot{x}, x)+w(t) \tag{3.4}
\end{equation*}
$$

such that $x(0)=x_{0}$ and $\dot{x}(0)=\dot{x}_{0}$. If the initial point $\left(\dot{x}_{0}, x_{0}\right)$ is in $J$, the complete motion is trapped in $J$ under the control $\bar{u}$ by definition of $J$. Hence $\left(\dot{x}_{0}, x_{0}\right) \in Q(\bar{u})$ and there is nothing further to be proved in this case.

Suppose therefore that the initial point is not in J. Then $\left|x_{1}\right|=|\dot{x}|>\lambda\left(x_{2}\right)$ and initially $\bar{u}(\dot{x}, x)=-\operatorname{sgn} x_{1}$. We consider the case $x_{1}>0$ so that $\bar{u}=-1$. If the solution $[\dot{x}(t), x(t)]$ ever enters $J$ for any $t<T$, it will be trapped there, nor can $x_{1}$ ever become negative without the solution first passing into $J$. Hence, it is only necessary to consider the system (3.4) with $\bar{u}=-1$. Since $|u(\dot{x}, x)| \leqq 1$, we see at once that $\varphi(\dot{x}, x, t)=h(\dot{x}, x, t)+u(\dot{x}, x)+w(t) \geqq h(\dot{x}, x, t)-1+w(t)=f(\dot{x}, x, t)$ and moreover $f(\dot{x}, x, t)$ is monotone non-decreasing in $x$. Hence, the hypotheses of Theorem 1.2 are fulfilled and we find from this theorem and (3.3) that $x(t) \leqq \xi(t) \leqq B$ and $\dot{x}(t) \leqq \dot{\xi}(t) \leqq A$ for $0 \leqq t \leqq T$. We have already noted that in the case now under consideration $\dot{x}(t)>0>-A$, and, since $\dot{x}(t)>0$, we have also $x(t) \geqq x(0)=x_{0} \geqq-B$.

Hence $[\dot{x}(t), x(t)] \in R$ for $0 \leqq t \leqq T$. The case in which $x_{1}$ is initially negative can be similarly treated. Hence, in all cases in which $\left(\dot{x}_{0}, x_{0}\right) \in Q(u)$ we have also $\left(\dot{x}_{0}, x_{0}\right) \in Q(\bar{u})$. Hence $Q(u) \propto Q(\bar{u})$, as stated. $\overline{\mathrm{u}}$ is an upper bound.

Note: Strictly speaking we have not used Theorem 1.2 in exactly the form there stated. For the hypothesis there used was to the effect that $\varphi(\dot{x}, \xi, t) \geqq t(\dot{x}, x, t)$ whenever $\xi \geqq x$. However, it is obvious that this hypothesis holds if $\varphi(\dot{x}, x, t) \geqq f(\dot{x}, x, t)$ for all $\dot{x}, x$, and $t$ and if, in addition, either $\varphi$ or $f$ is monotonic non-decreasing in its second argument. Observe that it is not necessary that both $\varphi$ and $f$ should have this property of monotonicity.

The theorems of Section 1 also enable us to prove that, if $\left(\dot{x}_{0}, x_{0}\right) \in R$ and $\dot{x}_{0}>\lambda\left(x_{0}\right)$ and if the solution $\xi(t)$ of the system,

$$
\begin{equation*}
\ddot{\xi}=\mathrm{h}(\dot{\xi}, \xi, t)-1+\alpha=\varphi(\dot{\xi}, \xi, t) \tag{3.5}
\end{equation*}
$$

with initial conditions $\xi(0)=x_{0}, \dot{\xi}(0)=\dot{x}_{0}$, remains within $R$ for $t \in[0, T]$, then $\left(\dot{x}_{0}, x_{0}\right) \in Q(\bar{u})$. In other words $\left(\dot{x}_{0}, x_{0}\right)$ is in the core of $R$.

To prove this we consider the solution of the system

$$
\begin{equation*}
\ddot{x}=h(\dot{x}, x, t)+\bar{u}+w \tag{3,6}
\end{equation*}
$$

such that $x(0)=x_{0}, \dot{x}(0)=\dot{x}_{0}$. Here $w$ is an arbitrary element of $W$, and and $\bar{u}=\bar{u}(\dot{x}, x)=-1$ when $\dot{x}>\lambda(x)$. Thus $\bar{u}$ is initially -1 . If the solution were to enter $J$, it would be trapped there and there would be nothing more to prove. Hence in the only case of interest $\dot{x}>0$ and $\bar{u}=-1$ as long as the solution stays in $R$. Thus we are led to compare the system

$$
\begin{equation*}
\dot{X}=\tilde{I}(\dot{x}, x, t)=h(\dot{x}, x, t)-1+w \tag{3.7}
\end{equation*}
$$

with the system (3.5). Since $w \leqq \alpha$, we see that $\varphi(\dot{x}, x, t) \geqq f(\dot{x}, x, t)$, and the monotonicity requirement is also satisfied. Since, by hypothesis,
$|\dot{\xi}(t)| \leqq A$ and $|\xi(t)| \leqq B$ for $0 \leqq t \leqq T$, we therefore have by Theorem 1.2, $\dot{x}(t) \leqq \dot{\xi}(t) \leqq A$ and $x(t) \leqq \xi(t) \leqq B$ for $0 \leqq t \leqq T$. Moreover, since in the only case of interest $\dot{x}(t)>0$, we have both $x(t) \geqq x(0) \geqq-B$ and $\dot{x}(t)>-A$. Hence the solution of (3.6) under the given initial conditions remains within $R$ for the given time interval and this completes the proof.

A similar result holds if $\dot{x}_{0}<-\lambda\left(x_{0}\right)$. Thus the way remains wide open for describing the complete core of $R$ as in Section 2 (ii), of the previous ProgresscReport, although the description will necessarily not be quite so explicit because of the greater generality of the system here considered.

A further generalization which will probably work is not bo define $J$ as a set in which the motion would be permanently trapped but merely as a suitably chosen set from which the motion(no matter what the wind $W \in W$ ) could not reach the boundary of $R$ within the time $T$. This would free us from supposing necessarily that $\alpha<1$.

1. ON UPPER BOUNDS FOR THREE DIMENSIONAL SYSTEMS.

We have indicated in our previous Progress Reports how to partially order the admissible controls and we have shown that an important part of the minimax problem is solved if we can identify the upper bounds of these controls. These ideas were extensively illustrated by means of two dimensional examples. However, the usefulness of the notion of upper bounds as well as the corollary notion of a core would be rather limited if it were not possible to identify upper bounds for systems whose dimension is higher than 2.

We have therefore expended considerable effort in the analysis of various three dimensional systems, notably the familiar one with three zero eigenvalues. Most of our attempts led to a dead end. In fact, not only were we unsuccessful in finding an upper bound, but we even came to consider the very existence of such an upper bound as questionable.

Yet during the past week we conceived of a control function which appears to have the properties we were searching for. A quick preliminary study encourages us to believe that we have indeed come upon an upper bound for the controllable system of dimension 3 with 3 zero eigenvalues. However, the proof is still heuristic in nature and we prefer to postpone the presentation of this "result" until an exact proof is available. At the present time we would like to restrict ourselves to the remark that our conjecture involves the definition of an upper bound for the 3 (i.e. n) dimensional system by means of the time-optimal solution of an appropriate

2 (i.e. $n-1$ ) dimensional system. If our conjecture turns out to be correct, it will be discussed in detail in our next Progress Report.

## 2. REMARKS ON THE COMPARABILITY OF SOLUTIONS OF DIFFERENTTAL EQUATIONS.

In Section 1. of the eighth Progress Report were proved some theorems on camparing the solutions of two differential equations of order, say $n+1$. The equations were written in the form

$$
\begin{equation*}
x^{(n+1)}(t)=f\left[x^{(n)}(t), \ldots, x^{(h)}(t), \ldots ., t\right] \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\xi^{(n+1)}(t)=\varphi\left[\xi^{(n)}(t), \ldots, \xi^{(h)}(t), \ldots, t\right] \tag{2}
\end{equation*}
$$

where $h=0,1, \cdots$, n-1. Both $f$ and $\varphi$ are supposed to satisfy hypotheses sufficient to insure existence and uniqueness of solutions in appropriate regions starting with given initial conditions. In Theorem 1.2 the fundamental additional hypothesis was made that

$$
\left.\varphi\left[x^{(n)}, \ldots \cdot \xi^{(h)}, \ldots \cdot, t\right] \geqq f^{\left(n x^{(n)}\right.}, \cdots ; x^{(h)}, \cdots, t\right]
$$

as long as $\xi^{(h)} \geqq x^{(h)}$, for $h=0,1, \cdots, n-1$. We shall refer to this as hypothesis $H_{1}$. It is clear that this hypothesis will be automatically satisfied if

$$
\begin{equation*}
\varphi\left[x^{(n)}, \ldots . ., x^{(h)}, \ldots, t\right] \geq f\left[x^{(n)}, \ldots . x^{(h)}, \ldots . ., t\right] \tag{3}
\end{equation*}
$$

and if either $\varphi$ or $f$ (But not necessarily both) is monotonic nondecreasing in $x^{(0)}, x^{(1)}, \ldots, x^{(n-1)}$ for each fixed $x^{(n)}$ and $t$. We shall refer to this latter hypothesis, formulated in terms of monotonicity,
as hypothesis $\mathrm{H}_{2}$. It was found in Section 3 of the previous Progress Report that hypothesis $H_{2}$ was more convenient to use than hypothesis $H_{1}$.

Unfortunately hypothesis $H_{2}$ is not likely to be satisfied in problens of significance. For example, a problem in the control of a Saturn Launch vehicle leads to a differential equation such as

$$
\begin{equation*}
\dddot{\varphi}=-.022 \phi+.200 \dot{\phi}-.006 \varphi+\psi \tag{4}
\end{equation*}
$$

where $\psi=\psi(\varphi, \dot{\varphi}, \ddot{\varphi}, t)$ will depend on the control law adopted as well as the wind. This equation was obtained by eliminating all dependent variables except $\varphi$ from the third order system of equations obtained from the Marshall Space Flight Center at Huntsville and using the numerical values for certain constants obtained from the same source. One might then wish to compare the solutions of (4) with the solutions of some such equation as the following:

$$
\begin{equation*}
\dddot{y}=-.002 \ddot{y}+.200 \dot{y}-.006 y+\alpha(t) \tag{5}
\end{equation*}
$$

where $\alpha(t)$ is a bound for $\psi$; say, a lower bound, so that

$$
\begin{equation*}
\psi(\varphi, \varphi, \phi, t) \geqq \alpha(t) \tag{6}
\end{equation*}
$$

Then assuming $y(0)=\varphi(0), \dot{y}(0)=\dot{\varphi}(0), y(0)=\psi(0)$, one might wish to conclude that $\varphi(t) \geqq y(t), \phi(t) \geqq y(t), \phi(t) \geqq \ddot{y}(t)$ for $t>0$. This conclusion would, however, be unjustified on the basis of Theorem 1.2; for although the condition (3) is satisfied the right hand member of (5) is not monotonic non-decreasing in both $\dot{y}$ and $y$ (but only in $\dot{y}$ ), while
nothing at all is known about the monotonicity of the right member of (4) in $\phi$ and $\varphi$ (without further knowledge of $\psi$ ). Thus hypothesis $H_{2}$ is not satisfied. It is found, however, that a suitably chosen transformation on the dependent variables reduces the equations to a form in which Theorem 1.2 may be used to obtain a modified result. Thus, if we set

$$
\begin{equation*}
\xi=e^{-(1 / 5) t} \varphi \text { and } x=e^{-(1 / 5) t} y \tag{7}
\end{equation*}
$$

we find that equation (4) appears in the form

$$
\begin{equation*}
\ddot{\xi}=-.622 \xi+.0712 \xi+.02512 \xi+e^{-(1 / 5) t} \psi \tag{8}
\end{equation*}
$$

and that equation (5) appears in the form

$$
\begin{equation*}
\ddot{x}=-.622 \ddot{x}+.0712 \dot{x}+.02512 x+e^{-(1 / 5) t} \alpha(t) \tag{9}
\end{equation*}
$$

Since $\alpha(t) \leqq \psi\left[e^{(1 / 5) t} \xi, e^{(1 / 5) t}(\xi+(1 / 5) \xi), e^{(1 / 5) t}(\xi+(2 / 5 \xi+(1 / 25) \xi), t]\right.$
we also have

$$
e^{-(1 / 5)} \alpha(t) \leq e^{-(1 / 5) t} \psi\left[e^{(1 / 5) t} \xi, e^{(1 / 5) t}(\xi+(1 / 5) \xi), e^{(1 / 5) t}(\xi+(1 / \text { 隹 }-(1 / 25) \xi), t] .\right.
$$

Morever, the right hand member of (9) is monotonic increasing in both $\dot{x}$ and x. In other words the hypothesis $H_{2}$ (and hence $H_{1}$ ) is fulfilled. Hence Theorem 1.2 is immediately applicable to equations (8) and (9). We conclude that, if $\xi(0)=x(0), \xi(0)=\dot{x}(0)$, and $\ddot{\xi}(0)=\ddot{x}(0)$, then $x(t) \leqq \xi(t), \dot{x}(t) \leqq$ $\xi(t), \ddot{x}(t) \leq \ddot{\xi}(t)$ for $t>0$. Interpreting these results in terms of (4) and (5) with the help of (7) the following may be stated:

$$
\text { If } y(0)=\varphi(0), \dot{y}(0)=\phi(0), \ddot{y}(0)=\ddot{\varphi}(0) \text {, then, for } t>0 \text {, we must have }
$$

$y(t) \leqq \varphi(t)$
$\dot{y}(t)-(1 / 5) y(t) \leqq \varphi(t)-(1 / 5) \varphi(t)$
$\ddot{y}(t)-(2 / 5) \dot{y}(t)+(1 / 25) y(t) \leqq \ddot{\phi}(t)-(2 / 5) \phi(t)+(1 / 25) \varphi(t)$.

It is not clear what application can be made of these results.

## 1. THE CORE OF A REGION RETATIVE TO A SUBSET THEREOF.

The program outlined in the Sixth Progress Report (for initiating an approach to the minimax problem by searching for the upper bounds in a certain partial ordering of the control functions) has run into difficulties whenever we have attempted to apply the idea to systems of order greater than two. This has certainly been the case for systems with only one actuator and with a finite allowable region $R$. It just so happens that in such cases there is no reason to suppose that an upper bound need exist. We now wish to discuss and illustrate a simple modification which will permit the ideas of the Sixth Progress Report to be retained for some systems of higher order. $\therefore$ :

The modification consists, roughly speaking, in the preliminary abandonment of any hope of controlling all points initially in $R$. More precisely we make a preliminary specification of a suitably chosen region $R^{*}=R$ and define, for each $V \in U$, the set $Q(V)$ to be the largest set of points in $R^{*}$ (rather than in $R$, as previously) which are uniformly $T$-tame with respect to $R$ under $V$. With this modification, we define $Q(u)=Q(\{u\})$ and say that $u_{1}<u_{2}$ if and only if $Q\left(u_{1}\right) \subset Q\left(u_{2}\right)$, just as we did previously. Again, if $\bar{u}$ is an upper bound under the order relation $\underset{Q}{<}$, we can prove, as previously, that $Q(\bar{u})$ is independent of the particular upper bound $\bar{u}$ considered; and we may thus call $Q(\vec{u})$ the core of $R\left(r e l a t i v e ~ t o ~ R^{*}\right)$. Evidently the core is now always a subset of $R^{*}$.

We wish to illustrate the foregoing by considering a system of the form

$$
\begin{equation*}
\ddot{x}=h(\bar{x}, \dot{x}, x, t)+u+w \tag{1.1}
\end{equation*}
$$

in which $h(\ddot{x}, \dot{x}, x, t)$ is monotone non-decreasing in $x$ and $\dot{x}$. The system can also be written in the form

$$
\begin{align*}
& \dot{x}_{1}=h\left(x_{1}, x_{2}, x_{3}, t\right)+u+w \\
& \dot{x}_{2}=x_{1}  \tag{1.2}\\
& \dot{x}_{3}=x_{2}
\end{align*}
$$

if we set $x_{3}=x, x_{2}=\dot{x}$, and $x_{1}=\ddot{x}$. In the sequel we use $\left(x_{1}, x_{2}, x_{3}\right)$ and ( $\ddot{x}, \dot{x}, x)$ interchangeably without further comment according to convenience. We wish the motion to be confined in the rectangular parallelepiped $R:\left|x_{1}\right| \leqq A,\left|x_{2}\right| \leqq B,\left|x_{3}\right| \leqq C+B T$ for $t \in[0, T]$. The region $R^{*} \sim R$ of initial states is to be the rectangular parallelepiped, $\left|x_{1}\right| \leqq A,\left|x_{2}\right| \leqq B,\left|x_{3}\right| \leqq C$. The "control" $u=u\left(x_{1}, x_{2}, x_{3}, t\right) \in U$ is subject to various restrictions which may be used in the definition of $U$. The only one of these conditions essential for the moment is the condition $\left|u\left(x_{1}, x_{2}, x_{3}, t\right)\right| \leqslant \beta(t)$, where $\beta(t)$ is a given positive function defined for $0 \leqq t \leqq T$. Similarly the "wind" $w=w(t) \in W$ is assumed to satisfy the condition $|w| \leqq \alpha(t)<\beta(t)$.

Parenthetically we note that our conception of the classes $U$ and $W$ is somewhat more general than that displayed in previous progress reports. We introduce this generalization in order to take care of certain transformed equations such as equations (8) or (9) of the Ninth Progress Report. For a
bi-product of the transformation there discussed is a modification of the classes $U$ and $W$.

We suppose we have a non-negative function $\lambda\left(x_{2}, x_{3}\right)<A$ defined for $\left|x_{2}\right| \leqq B$ and $\left|x_{3}\right| \leqq C+B T$ and such that when the point $\left(x_{1}, x_{2}, x_{3}\right)$ is in the set $J$ defined by $\left|x_{1}\right| \leqq \lambda\left(x_{2}, x_{3}\right)$ at time $t_{0}$, (assuming that it started at time 0 from a point of $R^{*}$ ) it remains trapped within this set for $t_{0} \leqq t \leqq T$ during the motion defined by (1.2) with $u\left(x_{1}, x_{2}, x_{3}, t\right)$ replaced by $\bar{u}\left(x_{1}, x_{2}, x_{3}, t\right)$, where $\bar{u}\left(x_{1}, x_{2}, x_{3}, t\right)=-\beta(t) \operatorname{sgn} x_{1}$ for $\left(x_{1}, x_{2}, x_{3}\right)$ outside the set $J$ (but within $R$ ). This supposition is supposed to hold for any $w \in W$ and no matter how $\bar{u}$ is defined inside the set $J$, so long as it is such that $\vec{u} \in U$.

Let $u$ be an arbitrary element of $U$. By $Q(u)$ we mean the maximal subset of $R^{*}$ that is controllable by $u$. We shall now prove that $Q(u) \subset Q(\bar{u})$, or, in other words, $u<\bar{u}$.

Let $\left(\ddot{x}_{0}, \dot{x}_{0}, x_{0}\right)$ be an arbitrary point of $Q(u)$. We then consider the solution $x=\xi(t)$ of the equation,

$$
\ddot{\xi}=\varphi(\ddot{\xi}, \dot{\xi}, \xi, t)=h(\ddot{\xi}, \dot{\xi}, \xi, t)+u(\ddot{\xi}, \dot{\xi}, \xi, t)+w(t),
$$

such that $\dot{\xi}(0)=\ddot{x}_{0}, \xi(0)=\dot{x}_{0}, \xi(0)=x_{0}$. Since the initial point is in the controllable region, we have for all $t \in[0, T]$ and all $w \in W$

$$
\begin{equation*}
|\xi(t)| \leqq A,|\dot{\xi}(t)| \leqq B,|\xi(t)| \leqq C+B T \tag{1.3}
\end{equation*}
$$

We also consider the solution $x=x(t)$ of the equation

$$
\begin{equation*}
\ddot{x}=f(\dot{x}, \dot{x}, x, t)=h(\dot{x}, \dot{x}, x, t)+\bar{u}(\tilde{x}, \dot{x}, x, t)+w(t) \tag{1:4}
\end{equation*}
$$

such that $\ddot{x}(0)=\ddot{x}_{0}, \dot{x}(0)=\dot{x}_{0}, x(0)=x_{0}$. If the initial point ( $\ddot{x}_{0}, \dot{x}_{0}, x_{0}$ ) is in $J$, the complete motion is trapped in $J$ under the control $\bar{u}$ by definition of $J$. Hence $\left(\bar{x}_{0}, \dot{x}_{0}, x_{0}\right) \in Q(\bar{u})$ and there is nothing further to be proved in this case.

Suppose therefore that the initial point is not in J. Then $\left|x_{1}\right|=|\ddot{x}|>\lambda\left(x_{2}, x_{3}\right)$ and initially $\bar{u}(x, x, x, t)=-\beta(t) \operatorname{sgn} x_{1}$. We first consider the case $x_{1}>0$, so that $\bar{u}=-\beta(t)$. If the solution $[\ddot{x}(t), \dot{x}(t), x(t)]$ ever enters $J$ for any $t<T$, it will be trapped there, nor can $x_{1}$ ever become negative without the solution first passing into $J$. Hence, in the case now under consideration, it is only necessary to consider the equation (1.4) with $\bar{u}=-\beta(t)$. Since $|u(\ddot{x}, \dot{x}, x, t)| \leqq \beta(t)$, we see at once that $\varphi(\ddot{x}, \dot{x}, x, t)=h(\ddot{x}, \dot{x}, x, t)+u(\ddot{x}, \dot{x}, x, t)+w(t) \geqq h(\ddot{x}, \dot{x}, x, t)-\beta(t)+w(t)=$ $f(\ddot{x}, \dot{x}, x, t)$, and moreover $f(\ddot{x}, \dot{x}, x, t)$ is monotone non-decreasing in $\dot{x}$ and $x$. Hence, the hypotheses of Theorem 1.2 of the Eighth Progress Report are fulfilled and we find from this Theorem and (1.3) that, for $t \in[0, T]$,

$$
\begin{aligned}
& \ddot{x}(t) \leqq \xi(t) \leqq A \\
& \dot{x}(t) \leqq \xi(t) \leqq B \\
& x(t) \leqq \xi(t) \leqq C+B T
\end{aligned}
$$

Moreover $\mathrm{x}_{2}(\mathrm{t})=\ddot{\mathrm{x}}(\mathrm{t})>0>-\mathrm{A}$ in the case under present consideration so that $|\ddot{x}| \leqq A$. And, since $\ddot{x}>0, \dot{x} \geqq \dot{x}(0) \geqq-B$, so that $|\dot{x}| \leqq B$. Finally, since $\dot{x} \geqq-B, x \geqq x_{0}-B T \geqq-C-B T$, so that $|x| \leqq C+B T$. Hence, in this case, in which $x_{1}$ is initially positive, $[\ddot{x}(t), \dot{x}(t), x(t)] \in R$ for $0 \leqq t \leqq T$ and so $\left[\ddot{x}_{0}, \dot{x}_{0}, x\right] \in Q(\bar{u})$.

The case in which $x_{1}$ is initially negative is treated as follows: Here, we have initially $\bar{u}=+\beta(t)$. If the solution $[\ddot{x}(t), \dot{x}(t), x(t)]$ ever enters $J$ for any $t<\mathbb{T}$, it will be trapped there, nor can $x_{1}$ ever become positive without the solution first passing into $J$. Hence, in the case now under consideration, it is only necessary to consider the equation (1.4) with $\bar{u}=+\beta(t)$. Since $|u(\ddot{x}, \dot{x}, x, t)| \leqq \beta(t)$, we see at once that

$$
\begin{aligned}
\varphi(\ddot{x}, \dot{x}, x, t) & =h(\ddot{x}, \dot{x}, x, t)+u(\ddot{x}, \dot{x}, x, t)+w(t) \\
& \leqq h(\ddot{x}, \dot{x}, x, t)+\beta(t)+w(t)=f(\ddot{x}, \dot{x}, x, t),
\end{aligned}
$$

and moreover $f(\ddot{x}, \cdots \dot{x}, x, t)$ is monotone non-decreasing in $\dot{x}$ and $x$. Hence, Theorem 1.2 of the Eighth Progress Report, together with (1.3), shows that, for $t \in[0, T]$,

$$
\begin{aligned}
& \ddot{x}(t) \geqq \xi(t) \geqq-A \\
& \dot{x}(t) \geqq \xi(t) \geqq-B \\
& x(t) \geqq \xi(t) \geqq-C-B T
\end{aligned}
$$

Moreover : $x_{1}(t)=\ddot{x}(t)<0<+A$ in the case now being considered, so that $|\ddot{x}| \leqq A$. And, since $\ddot{x}<0$, $\dot{x}<\dot{x}_{0}<+B$, so that $|\dot{x}| \leqq$. Finally, since $\dot{x} \leqq B, x \leqq x_{0}+B T \leqq C+B T$, so that $|x| \leqq C+B T$. Hence, in this case also, in which $x_{1}$ is initially negative $[\ddot{x}(t), \dot{x}(t), x(t)] \in R$ for $0 \leqq t \leqq T$ and so $\left[\ddot{x}_{O}, \dot{x}_{O}, x\right] \in Q(\bar{u})$.

We have thus proved completely that $Q(u) \subset Q(\bar{u})$, as we desired to do. $\bar{u}$ is an upper bound. $Q(\bar{u})$ is the core of $R$ relative to $R^{*}$.

We now pass to a more explicit representation of the core of $R$ relative to $R^{*}$. Namely it is possible to show that this core is the union of three sets, say $S_{1}, S_{2}$, and $S_{3}$ defined as follows!

$$
S_{1}=J \cap R^{*}
$$

$S_{2}$ is the set of all points $\left(\ddot{x}, \dot{x}_{0}, x_{0}\right)$ in $R^{i x}$ with $\ddot{x}>\lambda\left(\dot{x}_{0}, x_{\theta}\right)$ such that the solution $\xi(t)$ of the equation

$$
\begin{equation*}
\because \xi=h(\xi, \xi, \xi, t)-\beta(t)+\alpha(t)=\varphi(\xi, \xi, \xi, t) \tag{1.5}
\end{equation*}
$$

with initial conditions $\xi(0)=\ddot{x}_{0}, \xi(0)=\dot{x}_{0}, \xi(0)=x_{0}$, does not leave $R$ for $0 \leqq t \leqq T$, unless it previously enters $J$.
$S_{3}$ is the set of all points ( $\ddot{x}_{0}, \dot{x}_{0}, x_{0}$ ) in $R^{*}$ with $\ddot{x}_{0}<-\lambda\left(\dot{x}_{0}, x_{0}\right)$ such that the solution $\xi(t)$ of the equation $\xi=h(\xi, \xi, \xi, t)+\beta(t)-\alpha(t)=$

$$
\varphi(\xi, \xi, \xi, t)
$$

with the initial conditions $\xi(0)=\ddot{x}_{0}, \xi(0)=\dot{x}_{0}, \xi(0)=x_{0}$, does not leave $R$ for $0 \leqq t \leqq T$, unless it previously enters $J$.

By definition of $J$, it is obvious that $S_{1}$ is part of the core.
We next prove that $S_{2}$ is part of the core, namely that $S_{2} \subset Q(\bar{u})$. To prove this we consider the equation

$$
\begin{equation*}
\dddot{x}=h(\ddot{x}, \dot{x}, x, t)+\bar{u}+w \tag{1.6}
\end{equation*}
$$

and its solution such that $\ddot{x}(0)=\ddot{x}_{0}, \dot{x}(0)=\dot{x}_{0}, x(0)=x_{0}$. Here $w$ is an arbitrary element of $W$, and $\vec{u}(\ddot{x}, \dot{x}, x, t)=\dot{\beta}(t)$ when $\ddot{x}>\lambda(\dot{x}, x)$. Thus $\bar{u}$ is initially $-\beta(t)$. If the solution were to enter $J$, it would be trapped there, and there would be nothing more to prove. Hence, in the only case of interest $\ddot{x}>0$ and $\bar{u}=-\beta(t)$ as long as the solution stays in R. Thus we are led to compare the system

$$
\begin{equation*}
\dddot{x}=f(\ddot{x}, \dot{x}, x, t)=h(\ddot{x}, \dot{x}, x, t)-\beta(t)+w \tag{1.7}
\end{equation*}
$$

with the system (1.5). Since $w \leqq \alpha$, we see that $\varphi(\ddot{x}, \dot{x}, x, t) \geqq f(\tilde{x}, \dot{x}, x, t)$, and the monotonicity requirement is satisffed. Since, by hypothesis, $|\xi(t)| \leqq A, \quad|\xi(t)| \leqq B$, and $|\xi(t)| \leqq C+B T$ for $0 \leqq t \leqq T$ (at least as long as $J$ is not entered), we therefore have by Theorem l.ß of the Eighth Progress Report

$$
\begin{aligned}
& \ddot{x}(t) \leqq \xi(t) \leqq A \\
& \dot{x}(t) \leqq \xi(t) \leqq B \\
& x(t) \leqq \xi(t) \leqq C+B T
\end{aligned}
$$

for $0 \leqq t \leqq \mathbb{T}$. Moreover. since $\ddot{x}(t)>0$, we have $\dot{x}(t) \geqq 0 \geqq-B$ and $\ddot{x}(t)>-A$. Hence $|\ddot{x}(t)| \leqq A$ and $|\dot{x}(t)| \leqq B$. Finally, from the fact that $\dot{x}(t) \geqq-B$, we find that $x(t) \geqq x_{0}-B T \geqq-C-B T$, so that $|x(t)| \leqq C+B T$. Hence, the solution of (1.6) under the given initial conditions remains in $R$ for the given time interval. This completes the proof that $S_{2} \subset Q(\bar{u})$.

The fact that those points of $Q(\bar{u})$ for 1 which $x_{1}>\lambda\left(x_{2}, x_{3}\right)$ must belong to $S_{2}$ is obvious from the fact that such points are controlled by $\bar{u}$ no matter what the wind is and hence, in particular, if $w=\alpha(t)$, while $\bar{u}=-\beta(t)$ until $J$ is entered, if it ever is entered.

Similar statements can be made about $S_{3}$ and so it is easy to see that the core of $R_{I}$ relative to $R^{*}$, is

$$
Q(\bar{u})=S_{1} U S_{2} U S_{3}
$$

## 2. A GENERALIZATION OF THE MINIMAX PROBLEM.

Our concept of the minimax problem has undergone a number of changes in the course of this study. The latest formulation occurred in the Fifth Progress Report. Although this formulation seems to meet the main requirements, there are two respects in which it now seems wise to introduce a slight generalization. In the first place, in Section 1 , we have already indicated a reason for allowing the control function to depend explicitly upon $t$ as well as implicitly through the mediation of $x$. In the second place, the quantity $F$ to be minimaxed, should be allowed to depend not only on, the state variables $x$ but also upon both the control function $u$, and the wind w. For instance, from the physical point of view, $F$ might represent the bending moment of a launch vehicle, a quantity which could depend very much on both the wind and the control function as well as on the state variables. Hence we would wish to replace the continuous function $F(x)$ of Section 1 of the Fifth Progress Report by a continuous function $F\left(x, w^{*}, u^{*}\right)$, where $w^{*}$ is an element in the union of the ranges of all the functions $w \in W$ and where $u^{*}$ is an element in the union of the ranges of all the functions $u \in U$, and $x$ has the same meaning as before. For the sake of clarity we give the complete present formulation as follows

We consider the system
S: $\dot{x}=f(x, w, u)$
where x is an n -vector representing the system's state, the dot represents differentiation with respect to time $t, W$ and $u$ are vectors (of any dimensionality, not necessarily $n$ ), and where $f$ is an $n$-vector function of $x, w, u$, defined, say, for $x \in X, w^{*} W^{*}$, and $u \in U^{*}$.

We consider a class $W$ of functions $w$ (referred to as "winds")
which map the time interval $[0, T]$ into the set $W^{*}$ and a class $U$ of functions $u$ (referred to as "controls") which map the cartesian product of $X$ by $[0, T]$ into $U^{*}$.

Under suitable conditions on $f$ and the class $W$ and $U$, the system S, which is now thought of as taking the form

$$
\dot{x}=f[x, w(t), u(x, t)],
$$

adinits, through each initial point $x_{0}$, a unique solution, $x=x\left(t, x_{0}, w, u\right)$ such that $x\left(0, x_{0}, w, u\right)=x_{0}$.

Moreover, the system is supposed to disintegrate whenever the solution emerges from some given region RCX. We find it therefore useful to say that the system $S$ is uniformly $T$-tame with respect to $R$, if there exists a subregion $R_{T}(\subset R)$ and a non-vacuous sub-class $V(\subset U)$ of controls, such that $x\left(t, x_{0}, w, u\right) \in R$ as long as, $x_{0} \in R_{T}, t \in[0, T], w \in W$ and $u \in V$. We henceforth assume that $S$ is uniformly $T$-tame in the sense of this definition.

Suppose next that it is desirable that a given continuous function $F(x, w, u)$ defined for $x \in R, w \in W^{*}$, and $u \in U^{*}$ be kept as small as possible during the motion. More precisely, we are interested in minimizing by proper choice of the control $u$ the maximum value of

$$
F\left[x\left(t, x_{o}, w, u\right), w(t), u\left(x\left(t, x_{o}, w, u\right), t\right)\right]
$$

for $x_{0} \in R_{T}$, $t \in[O, T]$ and for $W \in W$. This is a peculiar expression because of the way the three u's enter between the square brackets. The first and third $u$ represent an element of $U$, which is, of course, a function, whereas the second $u$ represents the value of this function at a certain point and is thus an element of $U^{*}$. Nevertheless it is intuitively evident that this $F$ depends continusouly on $x_{0}, t, w$, and $u$; and in the sequel we give a formal proof of this fact under suitable hypothesis regarding $U$ and $W$. Thus, letting

$$
g(w, u)=\max _{x_{0} \in R_{T}}\left\{\max _{0 \leqq t \leqq T} F\left[x\left(t, x_{0}, w, u\right), w(t), u\left(x\left(t, x_{0}, w, u\right), t\right)\right]\right\}
$$

we pose the question as to the existence of a "bad" wind $\bar{w} \in W$ and a "good" control $\bar{u} \in V$ such that
$\underset{u \in V}{\text { g.l.b. }}\left[\begin{array}{l}\text { l.u.b. } \\ w \in W\end{array} \quad g(w, u)\right]=g(\bar{w}, \bar{u})$.
The answer to this question is in the affirmative, at least if $f[x, w(t), u(x, t)]$ satisfies the Lipschitz condition demanded in formula (2.2) of the Fifth Progress Report, with $\varphi=\{w, u\}$, and if $R_{T}$, $W$, and $V$ are compact. The proof of this existence theorem is the same as that previously given for the problem formulated in the Fifth Progress Report, the proof being given in Section 3 thereof.

The only thing which needs to be added is a formal proof of the continuity of the $F$ introduced above, considered as a function of $t, x_{0}, w$, and $u$. We turn our attention immediately to this proof after first making the explanation that the symbol $\|.\|^{\|} \|$is used to denote the norm of a finite dimensional vector, while 1... is used to denote norm of a vector functiong wthiafinite number of scalar functions as components. Specifically, if $h$ is:a vector function with components $h_{1}, \cdots$, $\dot{h}_{k}^{\prime}$ with domán ' $Y$; we take $|h|=\underset{y \in Y}{\text { l. } u . b . ~}\|h(y)\|$.

We seek to prove continuity of $F$ at an arbitrary fixed point $\bar{t}, \bar{x}_{o}, \bar{w}, \bar{u}$, where $\bar{t} \in[0, T], \bar{x}_{0} \in R_{T}, \bar{w} \in W, \bar{u} \in V$.

In our proof we have the following four facts to work with

I $\quad F\left(x, w^{*}, u^{*}\right)$ is continuous in $x, w^{*}, u^{*}$, by hypothesis.
II $x\left(t, x_{0}, w, u\right)$ is continuous in $t, x_{0}, w, u$, as proved in the Fifth Progress Report.

III If $u \in U, \dot{u}(x, t)$ is continuous in $x$ and $t$, by hypothesis.
IV If $w \in W, w(t)$ is continuous in $t$, by hypothesis.
We let $\bar{w}^{*}=\bar{w}(\bar{t}), \bar{u}^{*}=\bar{u}\left(x\left(\bar{t}, \bar{x}_{o}, \bar{w}, \bar{u}\right), \bar{t}\right)$
and $\bar{x}=x\left(\bar{t}, \bar{x}_{0}, \bar{w}, \bar{u}\right)$. If $\epsilon>0$ is preassigned we choose $\delta_{1}$, in accordance with I, so that

$$
\begin{equation*}
\left|F\left(x, w^{*}, u^{*}\right) .-F\left(\bar{x}, \bar{w}^{*}, \bar{u}^{*}\right)\right|<\epsilon \tag{2.1}
\end{equation*}
$$

as long as $\|x-\bar{x}\|,\left\|w^{*}-\bar{w} *\right\|,\left\|u-\bar{u}^{*}\right\|<\delta_{I}$
By definition of $\|u\|$ as $\begin{array}{cc}\max & \max \end{array}\|u(x, t)\|$, it is evident that $\|u(x, t)-\bar{u}(x, t)\|<(1 / 2) \delta_{1}$ if $\|u-\bar{u}\|<(1 / 2) \delta_{1}$. Using III choose $\delta_{2}<\left(1 / 2 \delta_{1}<\delta_{1}\right.$ so that $\|\bar{u}(x, t)-\bar{u}(\bar{x}, \bar{t})\|<\left(1 / 2 \delta_{1}\right.$ as long as $\|x-\bar{x}\|,|t-\bar{t}|<\delta_{2}$. Hence by the triangle inequality we see that $\|u(x, t)-\bar{u}(\bar{x}, \bar{t})\|<\delta_{1}$
as long as $\|x-\bar{x}\|,|t-\bar{t}|,\|u-\bar{u}\|_{1}<\delta_{2}$.

By definition of $\| w$ as $\begin{gathered}\max \end{gathered}\|w(t)\|$, it is clear that $\|w(t)-\bar{W}(t)\|<(1 / 2) \delta_{1}$ if $w-\bar{W} \|<(1 / 2) \delta_{1}$. Using IV choose $\delta_{3}<\delta_{2}<\left(1 / 2 \delta_{1}<\delta_{1}\right.$ so that $\|\bar{w}(t)-\bar{w}(\bar{t})\|<\left(1 / 2 \delta_{1}\right.$ as long as $|t-\bar{t}|<\delta_{3}$.

Hence by the triangle inequality we see that

$$
\begin{equation*}
\|w(t)-\bar{w}(\bar{t})\|<\delta_{1} \tag{2.3}
\end{equation*}
$$

as long as $|t-\bar{t}|,|w-\bar{w}|<\delta_{3}$.
Using III choose $\delta_{4}<\delta_{3}<\delta_{2}<\left(1 / \delta \delta_{1}<\delta_{1}\right.$ so that

$$
\begin{equation*}
\left\|x\left(t, x_{0}, w, u\right)-x\left(\bar{t}, \bar{x}_{0}, \bar{w}, \bar{u}\right)\right\|<\delta_{2}<\delta_{1} \tag{2.4}
\end{equation*}
$$

às Iong as $|t-\bar{t}|,\left\|x_{0}-\bar{x}_{0}\right\|,\|w-\bar{w}\|^{\prime}\|-\bar{u}\|<\delta_{4}$.
From (2.4) and (2.2), it is seen that

$$
\begin{equation*}
\left\|u^{*}-\bar{u}^{*}\right\|<\delta_{1} \tag{2.5}
\end{equation*}
$$

as long as $|t-\bar{t}|,\left\|x_{0}-\bar{x}_{0}\right\|,|w-\bar{w}|,|u-\bar{u}|<\delta_{4}$, where, of course, we have set $u^{*}=u\left(x\left(t, x_{o}, w, u\right)\right.$, $\left.t\right)$. From (2.3) we also have

$$
\begin{equation*}
\left\|w^{*}-\bar{w}^{*}\right\|<\delta_{1} \tag{2.6}
\end{equation*}
$$

as. long as $|t-\bar{t}|,|w-\bar{w}|<\delta_{4}<\delta_{3}$, where, of course, we have set $w^{*}=w(t)$. Finally, from (2.4) we have

$$
\begin{equation*}
\|x-\bar{x}\|<\delta_{1} \tag{2.7}
\end{equation*}
$$

as long as $|t-\bar{t}|,\left\|x_{0}-\bar{x}_{0}\right\|, \| w-\bar{w}\left|,|u-\bar{u}|<\delta_{4}\right.$, where, of course, we have written $x$ as an abbreviation for $x\left(t, x_{0}, w, u\right)$. Hence from (2.1), (2.5), (2.6) and (2.7), we find that
$\left|F\left[x\left(t, x_{0}, w, u\right), w(t), u\left(x\left(t, x_{0}, w, u\right), t\right)\right]-F\left[x\left(\bar{t}_{,}, \bar{x}_{0}, \bar{w}, \bar{u}\right), \bar{w}(t), \bar{u}\left(x\left(\bar{t}, \overline{x_{0}}, \bar{w}, \bar{u}\right), \bar{t}\right)\right]\right|<\epsilon$ as long as $|t-\bar{t}|,\left\|x_{0}-\bar{x}_{0}\right\|,|w-\bar{w}|,|u-\bar{u}|<\delta_{4}$, which completes the proof of the desired result.

## ON THE EXISTENCE OF UPPER BOUADS: A THREE DIMENSSIONAL EXAMPLE.

## (i) Introduction

Consider the third order linear controllable system with three zero eigenvalues, namely

$$
\begin{aligned}
\dot{x}_{1} & =w(t)+u\left(x_{1}, x_{2}, x_{3}\right) \\
s_{3}: \quad \dot{x}_{2} & =x_{1} \\
\dot{x}_{3} & =x_{2}
\end{aligned}
$$

We are interested in solutions to this system subject to the constraints

$$
\begin{aligned}
& C_{1}: \quad\left|x_{i}(t)\right| \leq A_{i}, i=1,2,3, \text { for all } t \geq 0 . \\
& \left.C_{2}: \quad|w(t)| \leq \alpha<1 \text { for al }\right\} \geq 0 . \\
& C_{3}: \quad\left|u\left(x_{1}, x_{2}, x_{3}\right)\right| \leq 1 .
\end{aligned}
$$

It is assumed that $u$ and $w$ belong, respectively, to classes of functions $U$ and $W$ which assure the existence and uniqueness of solutions for the system $S_{3}$. We shall show that if $A_{1}, A_{2}$ and $A_{3}$ satisfy certain inequalities, the given system admits an upper bound within the parallelopiped $R_{3}$ defined by $C_{1}$.
(ii) The System $\mathrm{S}_{2}$

It will prove useful to refer to the system

$$
\begin{array}{ll}
S_{2}: \quad \dot{x}_{1}=w(t)+u\left(x_{1}, x_{2}\right) \\
& \dot{x}_{2}=x_{1}
\end{array}
$$

together with the constraints

$$
\begin{aligned}
& C_{1}^{\prime}: \\
& C_{2}^{\prime}: \\
& C_{3}^{\prime}:
\end{aligned} \quad\left\{\begin{array}{l}
\left|x_{i}(t)\right| \leq A_{i}, i=1,2, \text { for all } t \geq 0 \\
|w(t)| \leq \alpha<1 \text { for all } t \geq 0 \\
\left|u\left(x_{1}, x_{2}\right)\right| \leq 1 .
\end{array}\right.
$$

We recall that the system $S_{2}$ was shown in our previous progress reports to admit an upper bound within the rectangle $R_{2}$ defined by $C_{1}^{\prime}$. Indeed, it was shown that the function

$$
\bar{u}\left(x_{1}, x_{2}\right)=\left\{\begin{aligned}
&-1 \text { whenever } \\
& x_{1}>0 \\
& 0 \text { whenever } \\
& x_{1}=0 \\
&+1 \text { whenever } \\
& x_{1}<0
\end{aligned}\right.
$$

was such an upper bound. The core $K_{2}$ of $S_{2}$ consists of that region of $R_{2}$ which lies between the two parabolic arcs

$$
\begin{equation*}
\pi_{1}: x_{2}=A_{2}+x_{1}^{2} / 2(\alpha-1), x_{1} \geq 0 \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\pi_{2}: x_{2}=-A_{2}+x_{1}^{2} / 2(1-\alpha), x_{1} \leq 0, \tag{2}
\end{equation*}
$$

(Figure 1). However, upper bounds in $S_{2}$ are not unique. In fact, any member $u^{\prime}\left(x_{1}, x_{2}\right)$ of $U$ satisfying

$$
u^{\prime}\left(x_{1}, x_{2}\right)= \begin{cases}-1 & \text { on the line } x_{1}=A_{1} \\ -1 & \text { in the region } x_{1}>0, x_{2} \geq A_{2}+x_{1}^{2} / 2(\alpha-1), \\ +1 & \text { on the line } x_{1}=-A_{1}, \\ +1 & \text { in the region } x_{1}<0, x_{2} \leq-A_{2}+x_{1}^{2} / 2(1-\alpha),\end{cases}
$$

is an upper bound. The reader should have no difficulty in establishing this fact by showing that $Q\left(u^{r}\right)=K_{2}$. For the sake of clarity we note that the difference between the core $K_{2}$ of the present example and the core established for $S_{2}$ in our previous work results from the fact that here we take $T$ to be $+\infty$. The case of a finite $T$ also yields an upper bound; however, we prefer to deal first with the case $T=+\infty$ in order to simplify our proofs.

Case I




Case II
Figure 1

Let

$$
\begin{aligned}
& G_{1}=\left\{\left(x_{1}, x_{2}\right) \mid \alpha<x_{1} \leq A_{1}, A_{2}+x_{1}^{2} / 2(\alpha-1)<x_{2} \leq A_{2}\right\} \\
& G_{2}=\left\{\left(x_{1}, x_{2}\right) \mid-A_{1} \leq x_{1}<0,-A_{2} \leq x_{2}<-A_{2}+x_{1}^{2} / 2(1-\alpha)\right\} .
\end{aligned}
$$

Proposition 1. Let $u$ be an upper bound for the system $S_{2}$ with respect to the rectangle $R_{2}$, the class $W$ and the time $T=+\infty$. Then $u$ controls the core $K_{2}$ within itself with respect to any wind $w \in W$. Proof. Let $p \in K_{2}$ and let $\Gamma(t, p, u, w$ ) be the (unique) trajectory with wind $w$ and control $u$ such that $\Gamma(o, p, u, w)=p$. Suppose $q=\Gamma\left(t_{1}, p, u, w_{1}\right) \notin K_{2}$ for some $t_{1}>0$ and some $w_{1} \in W$. Then $q \in G_{1}$ or $q \in G_{2}$. Suppose $q \in G_{1}$. Let

$$
w_{2}=\left\{\begin{array}{l}
w_{1} \text { for all } 0 \leq t \leq t_{1} \\
\alpha \text { for all } t_{1}<t .
\end{array}\right.
$$

(It is hereby assumed that $W$ is large enough so that $W_{2} \in W$ ). The trajectory $\Gamma\left(t, p, u, w_{2}\right)$, when continued beyond $q$ in the positive direction, must leave the rectangle $R_{2}$. But then $p \notin Q(u)=K_{2}$, contrary to assumption. If $q \in G_{2}$, modify the definition of $w_{2}$, replacing $\alpha$ by $-\alpha$. This completes the proof.
(iii) The Function $u^{*}\left(x_{1}, x_{2}, x_{3}\right)$.

Let

$$
\begin{aligned}
& R_{2}=\left\{\left(x_{1}, x_{2}, x_{3}\right)| | x_{i} \mid \leq A_{i}, i=1,2 ; x_{3}=0\right\}, \\
& x_{3}^{+}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \mid 0<x_{3} \leq A_{3}\right\}, \\
& x_{3}^{-}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \mid 0>x_{3} \geq-A_{3}\right\}, \quad P_{2}=\left\{x \mid x_{1}=-A_{1}\right\} \cap_{3} \\
& P_{1}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \mid x_{1}=A_{1}\right\} \cap R_{3}, \\
& H_{i}=\left(\bar{G}_{i} \cap R_{2}\right) \cup P_{i}, i=1,2 . \\
& L_{i}=R_{2}-H_{i}, i=1,2 .
\end{aligned}
$$

For any set $A \subset R_{2}$ we now define

$$
A^{+}=A \times X_{3}^{+} \quad, \quad A^{-}=A \times X_{3}^{-}
$$

Let

$$
u^{*}\left(x_{1}, x_{2}, x_{3}\right)=\left\{\begin{array}{l}
-1 \text { in } L_{2}^{+} \cup H_{1}^{-} \\
+1 \text { in } L_{1}^{-} U H_{2}^{+} \\
\bar{u}\left(x_{1}, x_{2}\right) \text { in } R_{2_{2}}
\end{array}\right.
$$

(Figure 2). We shall show that if $A_{3}$ is large enough;, the: function $u^{*}$ is an upper bound in $R_{3}$.

Remark: Throughout the remainder of this proof we shall refer only to Case II (Figure 1). Cases I and Ia require slight modifications of little significance. The inclusion of these cases does not change the nature of the results; it only produces a slight refinement of the inequality constraint affecting $A_{3}$.


Figure 2
(iv) Some Properties Of $u^{*}\left(x_{1}, x_{2}, x_{3}\right)$.

Forieach fixedix, ${ }_{3} u^{*}$ satisfies (3) and therefore, if $P$ is any point in the set $K_{2}^{+} \cup K_{2} \cup K_{2}^{-}$and if $\Gamma\left(t, p, w, u^{*}\right)$ is the trajectory through $p$ with wind $w$ and control $u^{*}$ satisfying $\Gamma\left(0, p, w, u^{*}\right)=p$, then $\Gamma\left(t, p, w, u^{*}\right)$ cannot leave $R_{3}$ through any of the four walls $x_{1}= \pm A_{1}, 1=1$, 2. It follows that $\Gamma\left(t, p, w, u^{*}\right)$ can leave $R_{3}$ only through the wall $x_{3}=A_{3}$ or the wall $x_{3}=-A_{3}$.

We shall denote the winds $w(t) \equiv \alpha$ and $w(t) \equiv-\alpha$ by $\alpha$ and $-\alpha$, respectively.
Lemma 1. Let $A_{3} \geq \frac{4}{3} \sqrt{2} A_{2}^{3 / 2}(1-\alpha)^{-1 / 2}$. Let $p \in K_{2}^{+} \cup K_{2} \cup K_{2}^{-}$ If $\Gamma\left(t, p, \alpha, u^{*}\right)$ does not leave $R_{3}$ through the wall $x_{3}=A_{3}$, then $\Gamma\left(t, p, w, u^{*}\right)$ does not leave $R_{3}$ through $x_{3}=A_{3}$ for any $w \in W$. Proof. Let $p=\left(x_{1}^{0}, x_{2}^{0}, x_{3}^{0}\right)$. Suppose $x_{3}^{0}<0$. Let $\Gamma(t)=\Gamma\left(t, p, w, u^{*}\right)$. In order for $\Gamma(t)$ to reach the plane $x_{3}=A_{3}$ it must first cross the plane $x_{3}=0$ and we may as well choose this pointas our point of departure. We may thus assume, without loss of generality, that $x_{3}^{0} \times 0$.

Suppose next that $x_{2}^{0}<0$. Then at time $t=0$ the derivative $\dot{x}_{3}$ along $\Gamma(t)$ is negative and the trajectory $\Gamma(t)$ begins its motion by descending below plane $x_{3}=x_{3}^{0}$. In order for $\Gamma(t)$ to leave $R_{3}$ through the wall $x_{3}=A_{3}$ it would have to return to this plane and cross it: We may therefore assume, without loss of generality that $x_{2}^{0} \geq 0$. (This last assumption is particularly desirable when $x_{3}^{0}=0$ ).

Denote the plane $x_{3}=0$ by $\pi$. Let $x_{i}(t), x_{i}^{1}(t), i=1,2,3$, denote the $x_{i}$ cordinates along $\Gamma\left(t, p, \alpha, u^{*}\right)$ and $\Gamma\left(t, p, w, u^{*}\right)$, respectively. We note first that along $\pi_{2}$ the vector field of the system $S_{2}$ is discontinuous. Therefore any trajectory whose projection on $\pi$ reaches $\pi_{2}$ will proceed in such a manner that its projection remain on $\pi_{2}$ until it (the projection) reaches $z_{2}$. Moreover, except for the point $Z_{2}$ itself, throughout the duration of this part of the motion we have

$$
\dot{x}_{2}=\sqrt{2(1-\alpha)\left(A_{2}+x_{2}\right)} \text { along } \pi_{2}
$$

independently of the wind.
If $p \in \pi_{2}$ then $x_{2}(t)=x_{2}^{1}(t)$ until the respective projections reach the point $Z_{2}$ (simultaneously) at time $t^{*}$.

For $t \geqslant t^{*}$ we have $x_{1}(t)=x_{1}^{1}(t)=0 ; x_{2}(t)=x_{2}^{1}(t)=-A_{2}$ (and therefore $x_{3}^{1}(t)=x_{3}(t)<A_{3}$ ) as long as $x_{3}>0$. Hence if $p \in \pi_{2}$ the proof of the Lemma is complete.

In the set $K_{2}-\pi_{2}$ we have

$$
w+u^{*}=w(t)-1 \leq \alpha-1<0
$$

Therefore, if $p \in K_{2}-\pi_{2}$, we get

$$
x_{1}^{\prime}(t) \leq x_{1}(t)
$$

so long as $\left(x_{1}(t), x_{2}(t)\right)$ and $\left(x_{1}^{1}(t), x_{2}^{1}(t)\right)$ remain in $K_{2}-\pi_{2}$ Throughout this part of the motion we therefore have

$$
\begin{aligned}
& x_{2}^{I}(t) \leq x_{2}(t) \\
& x_{3}^{I}(t) \leq x_{3}(t) \leq A_{3}
\end{aligned}
$$

The slope of $\pi_{2}$ is negative throughout. Hence $\left(x_{1}^{1}(t), x_{2}^{1}(t)\right)$ reaches $\pi_{2}$ before $\left(x_{1}(t), x_{2}(t)\right)$ does.
(Figure 3 ).


Figure 3

Let the time of impact be $t_{0}$. Then $x_{1}^{\prime}\left(t_{0}\right) \leq x_{1}\left(t_{0}\right)$. So long as $x_{1}^{\prime}(t) \leq x_{1}(t), t \geq t_{0}$, we still have $x_{2}^{\prime}(t) \leq x_{2}(t)$. Let $t_{1}>t_{0}$ be the first (if there are any) time such that $x_{1}^{\prime}\left(t_{1}\right)=x_{1}\left(t_{1}\right)$. Then clearly $x_{2}^{\prime}\left(t_{1}\right) \leq x_{2}\left(t_{1}\right)$, whence $\left(x_{1}\left(t_{1}\right), x_{2}\left(t_{1}\right)\right.$ ) lies either on $\pi_{2}$ or above it. . In the first case we have $\left(x_{1}\left(t_{1}\right), x_{2}\left(t_{1}\right)\right)=\left(x_{1}^{\prime}\left(t_{1}\right), x_{2}^{\prime}\left(t_{1}\right)\right)$, whence $\left(x_{1}\left(t_{1}\right), x_{2}\left(t_{1}\right)\right)=\left(x_{1}^{\prime}\left(t_{1}\right), x_{2}^{\prime}\left(t_{1}\right)\right)$ for all $t \geq t_{1}$ for which both trajectories are still in the half space $x_{3}>0$. In the latter case we note that $\dot{x}_{1}\left(t_{1}\right)=\alpha-1<0$ and therefore the projection $\left(x_{1}(t), x_{2}(t)\right)$ moves to the left of the line $x_{1}=x_{1}^{\prime}\left(t_{1}\right)$. At the same time ( $\left.x_{1}^{\prime}(t), x_{2}^{\prime}(t)\right)$ moves to the right of this line. Hence $\left(x_{1}(t), x_{2}(t)\right)$ will intersect $\pi_{2}$ (if at all) at some time $t_{2}>t_{1}$ at a point "above " $\left(x_{1}^{\prime}\left(t_{2}\right), x_{2}^{\prime}\left(t_{2}\right)\right)$. therefore, again, so long as both trajectories are still in the half space $x_{3}>0$, we have

$$
x_{2}^{\prime}(t) \leq x_{2}(t) .
$$

Hence, so long as $x_{3}(t)>0$ and $x_{3}^{\prime}(t)>0$ we have

$$
\begin{equation*}
x_{3}^{\prime}(t) \leq x_{3}(t) \leq A_{3} . \tag{4}
\end{equation*}
$$

As long as $x_{3}^{\prime}(t)>0$, the projection ( $x_{1}^{\prime}, x_{2}^{\prime}$ ) proceeds in $K_{2}$ towards $\pi_{2} \quad$ and then along $\pi_{2}$ towards $Z_{2}$. If the plane $\pi$ has not yet been reached, the projection is "stopped "at $Z_{2}$ and $x_{3}^{\prime}(t)$ decreases monotonically at a fixed rate $\dot{x}_{3}^{\prime}=-A_{3}$ towards 0 . Eventually, $\Gamma\left(t, p, w, u^{*}\right)$ descends into the lower half space $x_{3}<0$. From that point on the inequalities (4) can no longer be applieã for all subsequent time. Surely, however, there is no risk of $\Gamma\left(t, p, w, u^{*}\right)$ emerging from $R_{3}$ through the wall $x_{3}=A_{3}$ so long as $x_{3}^{\prime}(t)<0$. Suppose then that $\Gamma\left(t, p, w, u^{*}\right)$ returns to $\pi$ at some subsequent point $P_{1}$. The proof of Lemma 1 would be complete if we knew
that $\Gamma\left(t, p_{1}, \alpha, u^{*}\right)$ does not leave $R_{3}$ through the wall $x_{3}=A_{3}$ for any point $p_{1} \in K_{2}$; for then we could simply apply the results obtained above to the point $p_{1}$. The fact that $\Gamma\left(t, p_{1}, \alpha, u^{*}\right)$ does not leave $R_{3}$ through the wall $x_{3}=A_{3}$ will be proved in the following Lemma. Lemma 2. Let $A_{3} \geq \frac{4}{3} \sqrt{2} A^{3 / 2}(1-\alpha)^{-1 / 2}$ and let $p \in K_{2}$. Then $\Gamma\left(t, p, \alpha, u^{*}\right)$ does not leave $R_{3}$ through the wall $x_{3}=A_{3}$.
Proof. Let $p=\left(x_{1}^{0}, x_{2}^{0}, 0\right)$. As in the proof of Lemma 1 we may assume, without loss of generality, that $x_{2}^{0} \geq 0$.

Suppose first that $p=M_{1}=\left(\sqrt{2(1-\alpha) A_{2}}, 0,0\right)$.


Figure 4

The solution $\Gamma\left(t, M_{1}, \alpha, u^{*}\right)$ is given by

$$
\begin{aligned}
& x_{1}(t)=\sqrt{2(1-\alpha) A_{2}}+(\alpha-1) t \\
& x_{2}(t)=\left(\sqrt{2(1-\alpha) A_{2}}\right) t+\frac{(\alpha-1) t^{2}}{2} \\
& x_{3}(t)=\left(\sqrt{2(1-\alpha) A_{2}}\right) \frac{t^{2}}{2}+\frac{(\alpha-1)}{6} t^{3}
\end{aligned}
$$

Starting at $M_{1}$ at time $t=0$, the projection of this trajectory reaches $M_{2}$ at time $t_{1}=2 \sqrt{\frac{2 A_{2}}{1-\alpha}}$. The value of $x_{3}$ at that time is found to be

$$
x_{3}\left(t_{1}\right)=\frac{4}{3} \sqrt{2} A_{2}^{3 / 2}(1-\alpha)^{-1 / 2}=\beta
$$

Since $A_{3} \geq \beta$, and since $x_{3}(t)$ is monotonically increasing for all $0 \leq t \leq t_{1}$, we conclude that for all $t$ in this interval $x_{3}(t) \leq A_{3}$ After the projection of $\Gamma\left(t, M_{1}, \alpha, u^{*}\right)$ reaches $M_{2}$ it proceeds along $\pi_{2}$ towards $Z_{2}$ and continues to do so as long as $x_{3}(t)>0$. If it reaches $Z_{2}$ it is " stopped " there until $\mathrm{x}_{3}(\mathrm{t})=0$, that is, until $\Gamma\left(t, M_{1}, \alpha, u^{*}\right)$ returns to the plane $\pi$ at time, say $t_{2}$. At that point $x_{2}\left(t_{2}\right)<0$ and $\Gamma\left(t, M_{1}, w, u^{*}\right)$ descends into the half space $x_{3}<0$. It reemerges on the plane $\pi$ at some later time and some other point $q=\left(x_{1}^{\prime}, x_{2}^{\prime}, 0\right)$, with $x_{2}^{\prime} \geq 0$

This phenomenon is general: starting with any point $q=\left(x_{1}^{\prime}, x_{2}^{\prime}, 0\right) \in K_{2}$, with $x_{2}^{\prime} \geq 0$, the trajectory $\Gamma\left(t, g, \alpha, u^{*}\right)$ rises monotonically into the half space $x_{3}>0$ and continues to do so as long as $x_{2}\left(t, g, \alpha, u^{*}\right)>0$. Eventually $x_{2}\left(t, g, \alpha, u^{*}\right)$ becomes $<0$, the trajectory descends to $\pi$, enters the lower half space whence it returns to $\pi$, enters the lower half space whence it returns to $\pi$ at a later time and at another point.

Clearly then, $\Gamma\left(t, M, \alpha, u^{*}\right)$ or for that matter any $\Gamma\left(t, p, \alpha, u^{*}\right)$, can cross the plane $x_{3}=A_{3}$ only during one of these intervals of monot onic increase in $x_{3}$. We shall show that the maximum rise in the value of $x_{3}$ attainable during one of these intervals, starting from any point in the upper half of $K_{2}$, is $\beta$. Once this is shown the proof of Lemma 2 would be complete.

Suppose first that $p$ lies in the region $Z_{1} M_{2} M_{5} M_{3} Z_{1}$ (Figure 4). The projection of the trajectory through $p$ would proceed along a parabolic arc until it reaches $\pi_{2}$, then descend to $M_{2}$. This is the interval of rise in the value of $x_{3}(t)$. It is clear that if a given point $p$ is replaced by the point on (the line segment) $M_{3} Z_{1}$ which precedes it on the trajectory through $p$, the rise in $x_{3}$ would be increased (See $M_{4}$, Figure 4). Moreover, $\dot{x}_{2}$, viewed as a function of $x_{1}$ is a monotonically increasing function. It is therefore easy to see that

$$
\int_{M_{3}}^{M_{2}} x_{2}(t) d t \leq \int_{M_{4}}^{M_{5}} x_{2}(t) d t+\int_{M_{5}}^{M_{2}} x_{2}(t) d t \leq \int_{Z_{1}}^{M_{2}} x_{2}(t) d t
$$

But

$$
\int_{Z_{1}}^{M_{2}} x_{2}(t) d t<\int_{M_{1}}^{Z_{1}} x_{2}(t) d t+\int_{Z_{1}}^{M_{2}} x_{2}(t) d t=\beta
$$

Hence our assertion is proved when $p \in Z_{1} M_{2} M_{5} M_{3} Z_{1}$.

If $p \in M_{1} Z_{1} M_{2} O M_{1}$, one has
$\int_{P}^{M_{8}} x_{2}(t) d t+\int_{M_{8}}^{M_{7}} x_{2}(t) d t \leq \int_{M_{6}}^{M_{8}} x_{2}(t) d t+\int_{M_{8}}^{M_{7}} x_{2}(t) d t=2 \int_{M_{6}}^{M_{8}} x_{2}(t) d t$.

Let $M_{6}=(a, 0,0)$. The trajectory through. $M_{6}$ (whose projection on $\pi$ is given by $M_{6} M_{8} \quad M_{7}$ ) is given by

$$
\begin{aligned}
& x_{1}(t)=a+(\alpha-1) t \\
& x_{2}(t)=a t+(\alpha-1) \frac{t^{2}}{2} \\
& x_{3}(t)=\frac{a t^{2}}{2}+(\alpha-1) \frac{t^{3}}{6} .
\end{aligned}
$$

The value of $x_{3}(t)$ is a monotonically increasing functions of a. Hence

$$
2 \int_{M_{6}}^{M_{8}} x_{2}(t) d t \leq 2 \int_{M_{1}}^{Z} x_{2}(t) d t=\beta
$$

It follows that the maximum rise attainable (in the direction of $x_{3}$ ) by originating any trajectory $y_{A}$ in $K_{2}$ is $\beta$. This completes the proof of Lemma 2. Lemma 3. Let $A_{3} \geq$. Let $u \in U, p \in R_{3}$. If $p \in Q(u)$ then $\Gamma\left(t, p, \alpha, u^{*}\right)$ cannot leave $R_{3}$ through the wall $x_{3}=A_{3}$. Proof. Let $p=\left(x_{1}^{0}, x_{2}^{0}, x_{3}^{0}\right)$. Since $p \in Q(u)$ it follows that $\left(x_{1}^{0}, x_{2}^{0}\right) \in K_{2}$. Hence $\left(x,\left(t, p, \alpha, u^{*}\right), x_{2}\left(t, p, \alpha, u^{*}\right)\right) \in K_{2}$ for all $\geq 0$. Hence if । $\Gamma\left(t, p, \alpha, u^{*}\right)$ ever reaches the plane $\pi$, it could not (by Lemma 2) subsequently cross the plane $x_{3}=A_{3}$. Thus if $x_{3}^{0} \leq 0$ the proof is complete. We therefore restrict our attention to the case when $x_{3}^{3} 0$.

Denote $x_{i}\left(t, p, \alpha, u^{*}\right)$ and $x_{i}(t, p, \alpha, u), i=1,2,3$, by $x_{i}(t)$ and $y_{i}(t)$, respectively.

Suppose first that $\left(x_{1}^{0}, x_{2}^{0}\right) \in K_{n}-\pi_{2}$. Then as long as both $\left(x,(t), x_{2}(t)\right)$ and $\left(y_{1},(t), y_{2}(t)\right)$ belong to $K_{2}-\pi_{2}$ and both $x_{3}(t)$ and
$y_{3}(t)$ are positive, we have

$$
\alpha+u>\alpha+u^{*}=\alpha-1
$$

whence

$$
\begin{equation*}
x_{1}(t) \leq y_{1}(t), x_{2}(t) \leq y_{2}(t), x_{3}(t) \leq y_{3}(t) \leq A_{3} \tag{5}
\end{equation*}
$$

If $x_{3}(t)$ vanishes at time $t^{*}$ before $\left(x_{2}(t), x_{2}(t)\right)$ reaches $\pi_{2}$, the proof is complete on account of the fact that $\Gamma\left(t, p, \alpha, u^{*}\right)$ reached $\pi$. Otherwise $\left(x_{1}(t), x_{2}(t)\right)$ reaches $\pi_{2}$ at some time $t_{0}$, at which time $x_{3}\left(t_{0}\right)$ is still $>0$.

The situation is now somewhat analogous to that which obtained in the proof of Lemma 1. We first note that due to the negative slope of $\pi_{2}$ and the inequalities (5) it is necessary that $\left(x_{1}(t), x_{2}(t)\right)$ reach $\pi_{2}$ before $\left(y_{i}(t), y_{2}(t)\right)$ does. Moreover

$$
x_{1}\left(t_{0}\right) \leq y_{1}\left(t_{0}\right) \quad, \quad x_{2}\left(t_{0}\right) \leq y_{2}\left(t_{0}\right)
$$

So long as $x_{1}(t) \leq y_{1}(t)$, $t \geq t_{0}$, we still have $x_{2}(t) \leq y_{2}(t)$. In order for $y_{2}(t)$ to "catch up" and become $\leq x_{2}(t)$ the projection ( $\dot{y}_{1}(t), y_{2}(t)$ ) must proceed to left of the (moving) line $x_{1}=x_{1}(t)$. However, since $p \in Q$ (u) this projection must remain to the right of $\pi_{2}$. This "catching up" process can therefore proceed only through the wedge indicated by diagonal shading in Figure 5. But $\left(x_{1}(t), x_{2}(t)\right)$ has the least possible value throughout this wedge. Hence

$$
x_{2}(t) \leq y_{2}(t)
$$

as long as $x_{3}(t)>0$. Hence

$$
x_{3}(t) \leq y_{3}(t) \leq A_{3}
$$

as long as $x_{3}(t)>0$. This completes the proof in the case when $x_{3}^{0}>0$ and $\left(x_{1}^{0}, x_{2}^{0}\right) \in K_{2}-\pi_{2}$.

There remains the case when $x_{3}^{0}>0$ and $\left(x_{1}^{0}, x_{2}^{0}\right) \in \pi_{2}$. This case is disposed of by using the "wedge argument" given above: In order to surpass $\left(x_{1}(t), x_{2}(t)\right)$ the point $\left(y_{1}(t), y_{2}(t)\right)$ must proceed through the wedge. If at any time $t^{\prime}$ the latter point coincides with the former it can either continue to move on $\pi_{2}$ (in which case it would coincide with ( $x_{1}(t), x_{2}(t)$ ) since the vertical component $\dot{x}_{2}$ of the vector field is forced on $\pi_{2}$ ) or move to the right of $\pi_{2}$. In neither case can $y_{2}(t)$ become $\leq x_{2}(t)$. This completes the proof of Lemma 3 .

The following Lemmas are proved inc:complete analogy with Lemmas 1,2 and 3.

Lemma 4. Let $A_{3} \geq$ e. Let $p \in K_{2}^{+} \cup K_{2} \cup K_{2}^{-}$. If $\Gamma\left(t, p,-\alpha, u^{*}\right)$ does not leave $R_{3}$ through the wall $x_{3}=-A_{3}$, then $\Gamma\left(t, p, w, u^{*}\right)$ does not leave $R_{3}$ through $x_{3}=-A_{3}$ for any $w \in W$.
Lemma 5: Let $A_{3} \geq \beta$ and let $p \in K_{2}$. Then $\Gamma\left(t, p,=\alpha, u^{*}\right)$ does not leave $R_{3}$ through the wall $x_{3}=-A_{3}$.
Lemma 6. Let $A_{3} \geq \beta$. Let $u \in U, p \in R_{3}$. If $p \in Q(u)$ then $\Gamma\left(t, p,-\alpha, u^{*}\right)$ cannot leave $R_{3}$ through the wall $x_{3}=-A_{3}$.

We are now in a position to state our main result.
Theorem. Let $\beta=\frac{4}{3} \sqrt{2} A_{2}^{3 / 2}(1-\alpha)^{-1 / 2}$. If $A_{3} \geq \beta$ then $u^{*}\left(x_{1}, x_{2}, x_{3}\right)$ is an upper bound for $S_{3}$ in $R_{3}$. Moreover, $K_{2} \subset Q\left(u^{*}\right)$.
Proof. Let $u \in U$ and let $p \in Q(u)$. If $p=\left(x_{1}^{0}, x_{2}^{0}, x_{3}^{0}\right)$ then $\left(x_{1}^{0}, x_{2}^{0}\right) \in K_{2}$. It now follows from Lemmas $3,1,6$ and 4 that $p \in Q\left(u^{*}\right)$. Hence $Q(u) \subset Q\left(u^{*}\right)$ for all $u \in U$.

The fact that $K_{2} \subset Q\left(u^{*}\right)$ follows from Lemmas $2,1,5$ and 4. This completes the proof.


Figure 5

1. THE CORE FOR THE SYSTEM $\ddot{x}=h(\dot{x}, x, t)+w+u$.

Eventually we shall restrict $h$ to be independent of $t$, but We can begin without making this restriction.

We refer to Section 3 of the Eighth Progress Report, in which the system

$$
\begin{equation*}
\ddot{x}=h(\dot{x}, x, t)+w+u \tag{1.1}
\end{equation*}
$$

was considered subject to certain constraints. We suppose $h(\dot{x}, x, t)$ to be monotone non-decreasing in $x$ for each fixed $\dot{x}$ and $t$. The system can also be written in the form

$$
\begin{align*}
& \dot{x}_{1}=h\left(x_{1}, x_{2}, t\right)+u\left(x_{1}, x_{2}\right)+w(t)  \tag{1.2}\\
& \dot{x}_{2}=\dot{x}_{1}
\end{align*}
$$

The constraints to be considered are

$$
\begin{align*}
& C_{1}^{\prime}:\left|x_{i}(t)\right| \leqq A_{i}, i=1,2, \text { for al } t \in[0, T)  \tag{1.3}\\
& C_{2}^{\prime}:|w(t)| \leqq \alpha<1, w \in W \\
& C_{3}^{\prime}:\left|u\left(x_{1}, x_{2}\right)\right| \leqq 1, \quad u \in U .
\end{align*}
$$

We hereby use $A_{1}$ instead of $A$ and $A_{2}$ instead of $B$ as in the Eighth Progress Report.

We suppose we have a non-negative continuous function $\lambda\left(x_{2}\right)$ defined for $\left|x_{2}\right| \leqq A_{2}$ and such that when the point $\left(x_{1}, x_{2}\right)$ is initially within the set $J$ defined by $\left|x_{1}\right| \leqq \lambda\left(x_{2}\right)$ it remains trapped within
this set for all time during the motion defined by (1.2) with $u\left(x_{1}, x_{2}\right)$ replaced by $\bar{u}\left(x_{1}, x_{2}\right)$, where $\bar{u}\left(x_{1}, x_{2}\right)=-\operatorname{sgn} x_{1}$ for $\left(x_{1}, x_{2}\right)$ outside the set $J$. This supposition is supposed to hold for any $W \in W$ and no matter how $\overline{\mathrm{u}}$ is defined inside the set $J$, so long as it is such that $\bar{u} \in U$.

The first main result of Section 3 of the Eighth Progress Report was to the effect that such a function $\bar{u} \in U$ was an upper bound for the rectangle $R_{2}$ defined by $C_{1}^{\prime}$ and for any time interval $[0, T]$.

The second main result of this section of the Eighth Progress Report was concerned with the systems

$$
\begin{aligned}
: & \dot{x}_{1}=h\left(x_{1}, x_{2}, t\right)-1+\alpha \\
\sum_{1}: & \dot{x}_{2}=x_{1}
\end{aligned}
$$

(cf.. equation (3.5) of the Eighth Progress Report where the system was written as a single equation of the second order $\ddot{\xi}=h(\dot{\xi}, \xi, t)-1+\alpha)$ and

$$
\sum_{2}: \quad \begin{aligned}
& \dot{x}_{1}=h\left(x_{1}, x_{2}, t\right)+1-\alpha \\
& \dot{x}_{2}=x_{1}
\end{aligned}
$$

The following result was implicitly developed although it was not explicitly stated in the Eighth Progress Report:

Theorem 1.1 The core of the system (1.2), that is $Q(\ddot{u})$, is $\pi U_{1} U_{2}$, where $L_{i}$ consists of those points ( $\dot{x}_{0}, \dot{x}_{0}$ ) with

$$
\lambda\left(x_{0}\right)<(-1)^{i-1} \dot{x}_{0} \leqq A_{1} \text { and }\left|x_{0}\right| \leqq A_{2}
$$

such that the trajectory of $\sum_{-11}$, with initial point $\left(\dot{x}_{0}, x_{0}\right)$, either
enters the set $J$ (where it would, of course, be trapped) at some time $t \leqq T$ without previously having left the rectangle $R_{2}$, or else it leaves the rectangle $R_{2}$ only at some time $t \geqq T$.

If $T=\infty$, the second alternative in the definition of $I_{i}$ may be omitted, and the picture becomes correspondingly simpler. As in the Twelfth Progress Report, we restrict attention to this case.

A further simplifying assumption will also be made to the effect that throughout $R_{2}, h\left(x_{1}, x_{2}, t\right)-1+\alpha$ is negative while $h\left(x_{1}, x_{2}, t\right)$ $+1-\alpha$ is positive. This is, of course, true in the particular case $h\left(x_{1}, x_{2}, t\right) \equiv 0$ studied in the Twelfth Progress Report and is true also in the slightly more general case in which $h$ (being continuous) is independent of $t$ and vanishes at $x_{1}=x_{2}=0$, and in which $A_{1}$ and $A_{2}$ are sufficiently small. Physically it means that a sufficiently powerful control is always available to prevail against the combined effects of the wind and the natural characteristics of the system embodied in the function $h$.

As a result of these assumptions, it is seen that the trajectories of $\sum_{1}$ have positive slopes when $x_{1}<0$ and negative slopes when $x_{1}>0$. The opposite is true of the trajectories of $\sum_{2}$. The trajectories of both $\sum_{1}$ and $\sum_{2}$ cut the $x_{2}$ - axis at right angles. symmetric in the $x_{2}$ - axis, which played such an important role in the Twelfth Progress Report. We therefore call these curves pseudo-parabolas and ares of these curves are called pseudo-parabolic arcs. Although these pseudo-parabolas have " pseudo-vertices" on the $x_{2}$-axis, where they intersect this axis at right angles, they are not necessarily symmetric in this axis, unless $h\left(-x_{1}, x_{2},-t\right) \equiv h\left(x_{1}, x_{2}, t\right)$, an identity
-11-3-
which we do not assume.
If $T=\infty$ and if $h$ does not depend explicitly on $t$, as we henceforth assume, it is easily seen from Theorem 1.1 that the core $K_{2}$, illustrated in Figure 1, of the system (1.2) is bounded by the following:

A pseudo-parabolic arc $\pi_{1}$, associated with the system $\sum_{1}$, reaching from the point $z_{1}=\left(0, A_{2}\right)$ to a point $N_{1}$ on the boundary of $R_{2}$ with pasitive abscissa $x_{1} \cdot\left(N_{1}\right.$ may be on $x_{1}=A_{1}$ or on $\left.x_{2}=-A_{2}\right)$.

The part of the right-hand boundary of $R_{2}$ extending from the last mentioned point $N_{1}$ to the point $Z_{2}=\left(0,-A_{2}\right)$.

A pseudo-parabolic arc $\pi_{2}$, associated with the system $\sum_{2}$, reaching from the point $Z_{2}=\left(0,-A_{2}\right)$ to a point $N_{2}$ on the boundary of $R_{2}$ with negative abscissa $x_{1}$. $\quad\left(N_{2}\right.$ may be on $x_{1}=-A_{1}$ or on $x_{2}=+A_{2}-$.

The part of the left - hand boundary of $R_{2}$ extending from the last mentioned point $N_{2}$ to the point $Z_{1}=\left(0, A_{2}\right)$.


Figure 1

In following $\pi_{1}$ from the point $N_{1}$ we first reach the boundary of the set $J$ either at the point $z_{1}$, or at an earlier point $P$. But since $\pi_{1}$ is part of the boundary of $K_{2}$, it is easily seen that it can not enter into the interior of $J$. And from the characteristic property that $J$ has of trapping within its interior, when $u=\vec{u}$, anything that ever gets there including some of the points near $P$, it is not hard to prove that $\pi_{1}$ must coincide with the boundary of $J$ from $P$ until it reaches its terminal at $z_{1}$.

We have already restricted ourselves to taking $T=\infty$. The class $W$ of functions defined on $[0, \infty$ ) is, as previously, assumed to be bounded in absolute value by the positive number $\alpha<1$. We now suppose furthermore that $W$ is wide enough so that, for any $t_{1} \in[0, \infty)$, whenever $w_{1} \in W$, and $W_{2} \in W$, the function $W^{*}$ and $w$, defined as follows also belong to $W$. ;

$$
\begin{align*}
& w^{*}(t)=w_{1}\left(t_{1}+t\right) \text { for } t \geqq 0 \\
& w(t)=w_{1}(t) \text { for } 0 \leqq t<t_{1}  \tag{1.4.}\\
& w(t)=w_{2}(t) \text { for } t \geqq t_{1}
\end{align*}
$$

The following theorem which generalizes Proposition 1 of the Twelfth Progress Report gives a further indication of the advantage of taking $\mathbb{T}=\infty$. Theorem 1.2 Let $u$ be an upper bound for the system (1.2), assuming that $h\left(x_{1}, x_{2}, t\right)=h\left(x_{1}, x_{2}\right)$ is independent of $t$. The upper bound $u$ is assumed
with respect to the rectangle $R_{2}$ and the class $W$ with the properties specified above. Then $u$ controls the core $K_{2}$ within itself with respect to any wind $w \in W$.

Proof. If $p \in R_{2}$, let $\Gamma(t, p, u, w)$ be the unique trajectory with the wind $w$ and control $u$ such that $\Gamma(0, p, u, w)=p$. Suppose now that $p \in K_{2}$ but that $q=\Gamma\left(t_{1}, p, u, w_{1}\right) \notin K_{2}$ for some $t_{1}>0$ and :some $W_{1} \in W$. Then $q$ is still in $R_{2}$, since $p \in Q(u)=K_{2}$. But since $q \notin K_{2}$, there will exist a $W_{2} \in W$, such that the trajectory $\Gamma\left(t, q, u, w_{2}\right)$ will leave the rectangle. We now define $w(t)$ in terms of $w_{1}(t)$ and $w_{2}(t)$ in accordance with (1.4). Then the trajectory $\Gamma(t, p, u, w)$ follows the same path as $\Gamma\left(t, q, u, w_{2}\right)$ for $t>t_{1}$ and will hence leave the rectangle $R_{2}$. But this is absurd since $W \in W$ and $u$ controls the system within $R_{2}$ relative to the whole class $W$. Hence there can exist no point $q=\Gamma(t, p, u, w,) \notin K_{2}$ (if $p \in K_{2}$ ), as we desired to prove.
2. ON THE EXISTHENCE OF UPPER BOUNDS FOR THE SYSTEM

$$
\ddot{\mathrm{x}}=h(\ddot{x}, \dot{\mathrm{x}})+w(t)+u(\dot{x}, \dot{x}, \dot{x})
$$

By setting $\ddot{x}=x_{1}, \dot{x}=x_{2}, x=x_{3}$ we write the system in the form

$$
\begin{align*}
& \dot{x}_{1}=h\left(x_{1}, x_{2}\right)+u\left(x_{1}, x_{2}, x_{3}\right)+w(t) \\
& \dot{x}_{2}=x_{1}  \tag{2.1}\\
& \dot{x}_{3}=x_{2}
\end{align*}
$$

Our immediate purpose is to define a function $u^{*}\left(x_{1}, x_{2}, x_{3}\right)$ which will later be proved to be an upper bound. The definition is analogous to the one that should have been given on p. 6 of the Twelfth Progress Report. It will be observed, however, that this definition (though its intention is fairly clear) contains a couple of errors. The definition
is also slightly changed in some other unessential respects. Thus the following is a modification, generalization, and correction of the one which appeared in the Twelfth Progress Report.

Let

$$
\begin{aligned}
& R_{3}=\left\{\left(x_{1}, x_{2}, x_{3}\right)| | x_{i} \mid \leqq A_{i}, i=1,2,3\right\} \\
& R_{2}=\left\{\left(x_{1}, x_{2}, 0\right)| | x_{1} \mid \leqq A_{1}, 1=1,2\right\} \\
& \dot{x}_{3}^{+}=\left\{\left(0,0, x_{3}\right) \quad \mid 0<x_{3} \leqq A_{3}\right\} \\
& x_{3}^{-}=\left\{\left(0,0, x_{3}\right) \quad \mid 0>x_{3} \geqslant-A_{3}\right\} \\
& P_{i}=\left\{\left(-(-1)^{i} A_{1}, x_{2}, 0\right)\right\} \cap R_{3}, i=1,2 \\
& G_{i}=\left\{\left(x_{1}, x_{2}, 0\right) \mid-(-1)^{i} g_{i}\left(x_{2}\right)<-(-1)^{i} x_{1}\right\} \cap R_{2}
\end{aligned}
$$

where $x_{1}=g_{i}\left(x_{2}\right)$ is an equation for the half of the pseudo-parabola belonging to $\sum_{i}$ and passing through the point $z_{i}$ for which $-(-1)^{i} x_{1}>0$. See the previous section for the meaning of $\sum_{i}$ and $z_{i}$. Let

$$
\begin{array}{ll}
H_{i}=\bar{G}_{i} \bigcup P_{i}, & i=1,2 . \\
L_{i}=R_{2}-H_{i}, & i=1,2 .
\end{array}
$$

For any set $A \subset R_{2}$ we now define

$$
A^{+}=A \times X_{3}^{+}, \quad A^{-}=A \times X_{3}^{-}
$$

Let

$$
u^{*}\left(x_{1}, x_{2}, x_{3}\right)=\left\{\begin{array}{l}
-1 \text { in } L_{2}^{+} \bigcup H_{1}^{-} \\
+1 \\
\text { in } L_{2}^{-} \bigcup H_{2}^{+} \\
-1 \\
\text { in } R_{2} \text { if } x_{1}>0 \\
+1
\end{array} \text { in } R_{2} \text { if } x_{1}<0\right.
$$

See Figure 2 of the Twelfth Progress Report. We shall show that, if $A_{3}$ is large enough, the function $u^{*}$ is an upper bound in $R_{3}$.

For each fixed $x_{3}, u^{*}\left(x_{1}, x_{2}, x_{3}\right)$ is seen to be an upper bound for the system

$$
\begin{align*}
& \dot{x}_{1}=h\left(x_{1}, x_{2}\right)+u+w  \tag{2.2}\\
& \dot{x}_{2}=x_{1} .
\end{align*}
$$

Therefore, if $p$ is any point in the set $K_{2}^{+} \cup K_{2} \cup K_{2}^{-}$and if $\Gamma\left(t, p, w, u^{*}\right)$ is the trajectory through $p$ with wind $w$ and control $U^{*}$ satisfying $\Gamma\left(0, p, w, u^{*}\right)=p$, then $\Gamma\left(t, p, w, u^{*}\right)$ cannot leave $R_{3}$ through any of the four walls $x_{i}= \pm A_{i}, i=2$. This is a consequence of Theorem 1.2.

It follows that $\Gamma\left(t, p, w, u^{*}\right)$ can leave $R_{3}$ only through the wall $x_{3}=A_{3}$ or the wall $x_{3}=-A_{3}$.

We shall denote the winds $w(t) \equiv \alpha$ and $w(t) \equiv-\alpha$ by $\alpha$ and $-\alpha$, respectively.

Let $x_{k}^{(i)}(t)$ be the solution of the system $\quad \sum_{i}(i=1,2 ; k=1,2)$ satisfying the initisl conditions $x_{k}^{(i)}(0)=\delta_{2} k(-1)^{i+1} \quad A_{2}$ and let it
intersect the $x_{1}-\operatorname{axis}$ at $t=\tau_{1}^{(i)}<0$ and at $t=\tau_{2}^{(i)}>0$.
Then we set $\beta=\max _{i}\left(\mid \int_{\tau}^{(i)} \tau_{2}^{(i)} x_{2}^{(i)}(t) d t\right)$
In the special case considered in the Twelfth Progress Report, the solutions $x_{k}^{(1)}(t)$ and $x_{k}^{(2)}(t)$ of systems $\sum_{1}$ and $\sum_{q}$ respectively intersect each other at two points $M_{1}$ and $M_{2}$ on the $x_{1}$ axis. See Figure 4 of that report. This need not be the case for the present more general system. If, however, $A_{1}$ is large enough relative to a fixed $A_{2}$, it is geometrically obvious that these two pseudo-parabolas intersect each other at two points within $R_{2}$, one on each side of the $x_{2}-$ axis. We restrict ourselves to this case. The other cases are not conceptually more difficult but they do present more annoying details. Let the point of intersection on the right side of the $x_{2}-$ axis have the ordinate $x_{2}=a_{1}$ and the one on the left side have the ordinate $x_{2}=a_{2}$. These points lie on the pseudo-parabolic arcs $\pi_{1}$ and $\pi_{2}$ respectively. We again refer to $\therefore$ the equation for the pseudo-parabolic arc $\pi_{1}$, given in the form $x_{1}=g_{i}\left(x_{2}\right)$ for $\left|x_{2}\right| \leqq A_{2}$.

If $(-1)^{1} a_{i} \leqq 0$, define $r_{i}=0$. If, however, $(-1)^{i} a_{i}>0_{1}$, we let

$$
r_{i}=\int_{a_{i}}^{0} \frac{d x}{g_{i}(x)}
$$

In this latter case, the significance of $\gamma_{i}$ is that itgives the time it takes for a point $\left(x_{1}, x_{2}\right)$ to pass from the intersection point $\left(g_{i}\left(a_{1}\right)\right.$, $\left.a_{i}\right)$ on
$i_{1}$ to the $x_{1}$-axis whenever the control is such that it compels the point to move along the arc $\pi_{i}$. The result is, of course, obtained by integrating $\dot{x}_{2}=x_{1}=g_{i}\left(x_{2}\right)$.

Moreover, if we let $x_{2}(t)$ be the solution of the differential equation $\dot{x}_{2}=g_{i}\left(x_{2}\right)$ and the initial condition $x_{2}(0)=a_{i}$, then

$$
\lambda_{i}=\int_{0}^{r}\left|x_{2}(t)\right| d t
$$

is the increase in $(-1)^{i} x_{3}$ (under the assumption $\ddot{x}_{3}=x_{2}$ ) as the projection of the point $\left(x_{1}, x_{2}, x_{3}\right)$ on the plane $x_{3}=0$ moves along $\pi_{i}$ from $\left(g_{i},\left(a_{i}\right), a_{i}\right)$ to the $x_{2}$ - axis as previously described, in the case that $(-1)^{i} a_{i}>0$. Otherwise, of course, $\lambda_{i}=0$.

We now take $\lambda=\max \left(\lambda_{1}, \lambda_{2}\right)$ and state our main result to the effect that $u^{*}$ is an upper bound for the system (2.1) with respect to $R_{3}$ provided that $A_{3} \geqq \beta+\lambda$.

We have not had time to write up the complete details of the proof of this result. We will do this for the next Progress Report. Actually the proof for the special case treated in the Twelfth Progress Report needs only to be modified so as to avoid the explicit integration of the systems $\sum_{1}$ and $\sum_{2}$. It turns out that this can be done by appealing to Theorem 1.2 of the Eighth Progress Report and the following simple corollary thereof: Lemma 2.1 Let $f\left(x_{1}, x_{2}\right)$ be a monotonic non-decreasing function of $x_{2}$ for each fixed $x_{1}$. Let $f\left(x_{1}, x_{2}\right) \leqq-\mu$, where $\mu$ is positive. Let $x_{1}(t, a), x_{2}(t, a), x_{3}(t, a)$ satisfy the system of differential equations $\dot{x}_{1}=f\left(x_{1}, x_{2}\right), \dot{x}_{2}=x_{1}, \dot{x}_{3}=x_{2}$ and the initial conditions, $x_{1}(0, a)=a$, $x_{2}(0, a)=x_{3}(0, a)=0, a>0$. Then there exists a positive number $T=T(a)$
such that $x_{2}(t, a)>0$ for $0<t<T$ and such that $x_{2}(T)=0$. Moreover $T(a)$ and $x_{3}(T(a), a)$ are both monotonic increasing functions of a. Proof Since $x_{2}(0)=0$, and $\dot{x}_{2}(0)=x_{1}(0)=a>0, x_{2}(t)>0$ for sufficiently small positive values of $t$. Now evidently $x_{1}(t) \leqq a-\mu t$. Hence $x_{2}(t) \leqq$ at $-\frac{1}{2} \mu t^{2}$, which is negative for sufficiently large values of $t$. Hence we let $T$ be the (first) point where $x_{2}(t)$ ceases to be positive. This proves the first statement of the Lemma.

Let $a<a^{1}, \quad x_{i}(t)=x_{i}(t, a)$ and $x_{i}^{l}(t)=x_{i}\left(t, a^{1}\right), i=1,2,3$. Then $\ddot{x}_{2}=f\left[\dot{x}_{2}(t), x_{2}(t)\right]$ and $\dot{x}_{2}^{1}=f\left[\dot{x}_{2}^{1}(t), x_{2}^{1}(t)\right]$ and we also have the initial condidtions, $x_{2}(0)=x_{2}^{1}(0)=0$.

$$
\dot{x}_{2}(0)=x_{2}(0)=a<a^{1}=x_{1}^{1}=\dot{x}_{2}^{1}(0)
$$

It follows from Theorem 1.2 of the Eighth Progress Report that

$$
x_{2}(t) \leqq x_{2}^{1}(t) \text { and that } x_{1}(t)=\dot{x}_{2}(t) \leqq \dot{x}_{2}^{1}(t)=x_{-}^{1}(t)
$$

for $t>0$. Since $x_{2}(t)>0$ on the interval ( $0, T(a)$ ), it follows that $x_{2}^{l}(t)$ is also positive on this interval. Hence $T(a) \leqq T\left(a^{l}\right)$. Finally $x_{3}[T(a)]=\int_{0}^{T(a)} x_{2}(t) d t \leq \int_{0}^{T(a)} x_{2}^{1}(t) d t \leqq \int_{0}^{T\left(a^{1}\right)} x_{2}^{1}(t) d t=x_{3}^{1}\left[T\left(a^{1}\right)\right]$.

This proves the last statement of the Lemma.
3. ON THE EXISTENCE OF UPPER BOUNDS: MODIFICATION OF A PREVIOUS EXAMPLE.
(i) Introduction.

As in our Twelfth Progress Report (T PR) we consider the third order linear controllable system with three zero eigenvalues, namely

$$
s_{3}:\left\{\begin{array}{l}
\dot{x}_{1}=w(t)+u\left(x_{1}, x_{2}, x_{3}\right) \\
\dot{x}_{2}=x_{1} \\
\dot{x}_{3}=x_{2}
\end{array}\right.
$$

We are interested in solutions to this system subject to the constraints $C_{1}, C_{2}, C_{3}$ of TPR. It is assumed that $u$ and $w$ belong, respectively, to classes of function $U$ and $W$ which assure the existence and uniqueness of solutions for the system $S_{3}$. In $T P R$ we showed that $S_{3}$ admits an upper bound $u^{*}$ within the parallelopiped $R_{3}$ defined by $C_{1}$. In the present section we shall exhibit the existence of still another, more sophisticated, upper bound $v^{*}$ which, apart from being an upper bound in $R_{3}$, has certain additional desirable properties within the core of $R_{3}$.

Throughout this section we shall refer freely to the Figures, definitions and notations of $T P R$.
(ii) The Function $v^{*}\left(x_{1}, x_{2}, x_{3}\right)$

Let $R_{2}, X_{3}^{+}, X_{3}^{-}, P_{1}, P_{2}$ be as in Section 2 of the present report. Let $\pi_{3}, \pi_{4}$ be the two parabolic arcs

$$
\begin{aligned}
& \pi_{3}: x_{2}=x_{1}^{2} / 2(\alpha-1), x_{1} \geq 0 \\
& \pi_{4}: x_{2}=x_{1}^{2} / 2(1-\alpha), x_{1} \leq 0
\end{aligned}
$$

(Figure 2). Let $M_{1}$ and $M_{2}$ be the regions shaded, respectively, in Figure 2 by horizontal and vertical lines. Let $G_{1}, G_{2}$


Figure 2
be as in T PR. (These are NOT the same as the sets $G_{i}$ of Section? of the present report). Let

$$
\begin{aligned}
& J_{i}=\left(\bar{G}_{i} \cap R_{2}\right) \cup P_{i} \cup \bar{M}_{i}, \quad i=1,2 \\
& L_{i}=R_{2}-J_{i}, i=1,2
\end{aligned}
$$

For any set $A \subset R_{2}$ we now define

$$
A^{+}=A X X_{3}^{+}, A^{-}=A X X_{3}^{-}
$$

Let

$$
v^{*}\left(x_{1}, x_{2}, x_{3}\right)=\left\{\begin{array}{l}
-1 \text { in } L_{2}^{+} \cup J_{1}^{-} \\
+1 \text { in } L_{1}^{-} \cup J_{2}^{+} \\
u^{*}\left(x_{1}, x_{2}, x_{3}\right) \text { in } R_{2},
\end{array}\right.
$$

where $u^{*}$ is as defined in $T P R$ (Figure 3).




Figure 3

Theorem 3.1. Let $\beta=\frac{4}{3} \sqrt{2} A_{2}^{3 / 2}(1-\alpha)^{-1 / 2}$. If $A_{3} \geq \beta$ then $v^{*}\left(x_{1}, x_{2}, x_{3}\right)$ is an upper bound for $S_{3}$ in $R_{3}$. Moreover, $K_{2} \subset Q\left(v^{*}\right)$, where $K_{2}$ is as in TPR.

The proof proceeds along lines which are fairly analogous to the proof in TPR. The reader may therefore wish to review the latter proof before proceeding with the present one.
(iii) Proof of Theorem 3.1

Lerma 3.1 Let $A_{3} \geq \beta$ and let $p \in K_{2}$. Then $\Gamma\left(t, p, \alpha, v^{*}\right)$ does not leave $R_{3}$ through the wall $x_{3}=A_{3}$.

Proof. Let $p=\left(x_{1}^{0}, x_{2}^{\circ}, 0\right)$. As in the proof of Lemma 2, TPR, we may assume, without loss of generality, that $x_{2}^{0} \geq 0$. Starting with any point $p=\left(x_{1}^{0}, x_{2}^{0}, 0\right) \in K_{2}$, with $x_{2}^{0} \geq 0$, the trajectory $\Gamma\left(t, p, \alpha, v^{*}\right)$ rises monotonically into the half space $x_{3}>0$ and continues to do so as long as $x_{2}\left(t, p, \alpha, v^{*}\right)>0$. Eventually, $x_{2}\left(t, p, \alpha, v^{*}\right)$ becomes $<0$, at which time $x_{3}\left(t, p, \alpha, v^{*}\right)$ begins to decrease monotonically. Moreover, once $x_{2}\left(t, p, \alpha, v^{*}\right)$ becomes $<0$ it remains $\leq 0$ as long as $x_{3}\left(t, p, \alpha, v^{*}\right)$ is still $\geq 0$. Thus, once $x_{2}\left(t, p, \alpha, v^{*}\right)$ becomes $<0$, the trajectory $\Gamma\left(t, p, \alpha, v^{*}\right)$ begins a monotonic descent and it cannot start a new ascent before first returning to the plane $\pi$ (see TPR). Finally, if a subsequent ascent of $\Gamma\left(t, p, \alpha, v^{*}\right)$ towards the wall $x_{3}=A_{3}$ does take place, then it can only caome after $\Gamma\left(t, p, \alpha, v^{*}\right)$ first passed through some point $q=\left(x_{1}^{I}, x_{2}^{I}, 0\right)$ with $x_{2}^{I} \geq 0$. It is then sufficient to study $\Gamma\left(t, q, \alpha, v^{*}\right), t \geq 0$, directly, without reference to its "past" history. In other words, for the purpose of this Lemma, it is sufficient to
take $p=\left(x_{1}^{0}, x_{2}^{0}, 0\right) \in K_{2}$ with $x_{2}^{0} \geq 0$ and consider the arc of $\Gamma\left(t, p, \dot{\alpha}, v^{*}\right)$ corresponding to the first maximal interval, say
$0 \leq t \leq t_{1}$, during which $\Gamma\left(t, p, \alpha, v^{*}\right)$ is ascending. However, for all $0 \leq t \leq t_{1}$ we have $x_{i}\left(t, p, \alpha, v^{*}\right) \geq 0, i=2,3$, and therefore $\mathrm{v}^{*}\left(\mathrm{x}_{1}\left(\mathrm{t}, \mathrm{p}, \alpha, \mathrm{v}^{*}\right), \ldots ., \mathrm{x}_{3}\left(\mathrm{t}, \mathrm{p}, \alpha, \mathrm{v}^{*}\right)\right)=\mathrm{u}^{*}\left(\mathrm{x}_{1},\left(\mathrm{t}, \mathrm{p}, \alpha, \mathrm{u}^{*}\right), \ldots\right.$, $\left.x_{3}\left(t, p, \alpha, u^{*}\right)\right)$
whence

$$
\Gamma\left(t, p, \alpha, v^{*}\right)=\Gamma\left(t, p, \alpha, u^{*}\right)
$$

for all $0 \leq t \leq t_{1}$. This, together with Lemma 2 of $T P R$, completes the proof of Lemma 3.1.

Lemma 3.2 Let $A_{3} \geq \beta$. Let $p \in K_{2}^{+} \cup K_{2} U K_{2}^{-}$. If $\Gamma\left(t, p, \alpha, v^{*}\right)$ does not leave $R_{3}$ through the wall $x_{3}=A_{3}$, then $\Gamma\left(t, p, w, v^{*}\right)$ does not leave $R_{3}$ through $x_{3}=A_{3}$ for any $w \in W$.
Proof. Let $p=\left(x_{1}^{0}, x_{2}^{0}, x_{3}^{0}\right)$. As in Lemma 1 of T PR we may assume, without loss of generality, that $x_{3}^{0} \geq 0, x_{2}^{0} \geq 0$ Let $x_{i}(t), x_{i}^{1}(t), i=1,2,3$, denote, respectively, the $x_{i}$ coordinates of $\Gamma\left(t, p, \alpha, v^{*}\right)$ and $\Gamma\left(t, p, w, v^{*}\right)$. Let $\left[0, t_{1}\right]$ be the maximal interval throughout which both $x_{2}(t) \geq 0$ and $x_{2}^{1}(t) \geq 0$. Then for all $t \in\left[0, t_{1}\right]$ we have $x_{i}(t) \geq 0$ and $x_{i}^{1}(t) \geq 0, \quad i=2,3$,
whence

$$
\begin{aligned}
& \Gamma\left(t, p, \alpha, v^{*}\right)=\Gamma\left(t, p, \alpha, u^{*}\right) \\
& \Gamma\left(t, p, w, v^{*}\right)=\Gamma\left(t, p, w, u^{*}\right)
\end{aligned}
$$

where $u^{*}$ is as in TPR. Hence it follows from the proof of Lemma 1 in TPR that

$$
x_{3}^{1}(t) \leq x_{3}(t) \leq A_{3}
$$

for all $0 \leq t \leq t_{1}$. Thus $\Gamma\left(t, p, w, v^{*}\right)$ cannot reach the wall $x_{3}=A_{3}$ during the interval $\left[0, t_{1}\right]$. A subsequent ascent towards this wall would have to start from some point $q=\left(x_{1}^{1}, x_{2}^{1}, 0\right) \in K_{2}$ with $x_{2}^{1} \geq 0$. But then we may choose $q$ as our starting point and argue as above.

This completes the proof.
Lemma 3.3. Let $A_{3} \geq \beta$. Let $u \in U, p \in R_{3}$. If $p \in Q(u)$ then $\Gamma\left(t, p, \alpha, v^{*}\right)$ cannot leave $R_{3}$ through the wall $x_{3}=A_{3}$. Proof. Let $p=\left(x_{1}^{0}, x_{2}^{0}, x_{3}^{0}\right)$. Since $p \in Q(u)$ it follows that $\left(x_{1}^{0}, x_{2}^{0}\right) \in K_{2}$. Hence $\left(x_{1}\left(t, p, \alpha, v^{*}\right), x_{2}\left(t, p, \alpha, v^{*}\right)\right) \in K_{2}$ for all $t \geq 0$. Hence if $\Gamma\left(t, p, \alpha, v^{*}\right)$ ever reaches the plane $\pi$, it could not (by Lerma 3.1) subsequently cross the plane $x_{3}=A_{3}$. Thus if $x_{3}^{0} \leq 0$ the proof is complete. We therefore restrict our attention to the case when $x_{3}^{0}>0$.

Denote $x_{i}\left(t, p, \alpha, v^{*}\right)$ and $x_{i}(t, p, \alpha, u), i=1,2,3$ by $x_{i}(t)$ and $y_{i}(t)$, respectively.

If $\left(x_{1}^{0}, x_{2}^{0}\right) \in \bar{M}_{2}$ then $x_{2}\left(t, p, \alpha, v^{*}\right)$ remains $\leq 0$ as long as $x_{3}(t) \geq 0$. Hence $\Gamma\left(t, p, \alpha, v^{*}\right)$ cannot start an ascent towards the plane $x_{3}=A_{3}$ until and unless it first reaches the plane $\ddot{\pi}$. This completes the proof in the case when $\left(x_{1}^{0}, x_{2}^{0}\right) \in \bar{M}_{2}$. We may therefore assume that $x_{3}^{0} \geq 0$ and $\left(x_{1}^{0}, x_{2}^{0}\right) \in K_{2}-\bar{M}_{2}$. However, in $K_{2}-\bar{M}_{2}$ the function $v^{*}$ is identical with the function $u^{*}$ of $T P R$ and the proof of Lenma 3 in TPRapplies. Therefore, as long as ( $x_{1}(t), x_{2}(t)$ )
and $\left(y_{1},(t), y_{2}(t)\right)$ are both in $K_{2}-\bar{M}_{2}$ we have

$$
x_{2}(t) \leq y_{2}(t)
$$

and

$$
x_{3}(t) \leq y_{3}(t) \leq A_{3}
$$

It follows that $\left(x_{1}(t), x_{2}(t)\right)$ reaches the set $\bar{M}_{2}$ before $y_{2}(t)$ becomes negative. But once $\left(x_{1}(t), x_{2}(t)\right)$ reaches the set $\bar{M}_{2}$ it cannot leave it until and unless $\Gamma\left(t, p, \alpha, v^{*}\right)$ reaches the plane $\pi$. This completes the proof of Lemma 3.3.

The following Lemmas are proved in complete analogy with Lemmas 3.1, 3.2 and 3.3.

Lemma 3.4 Let $A_{3} \geq \beta$ and let $p \in K_{2}$. Then $\Gamma\left(t, p,-\alpha, v^{*}\right)$ does not leave $R_{3}$ through the wall $x_{3}=-A_{3}$.

Lemma 3.5. Let $A_{3} \geq$ B. Let $p \in K_{2}^{+}$U $K_{2} \cup K_{2}^{-}$. If $\Gamma\left(t, p,-\alpha, v^{*}\right)$. does not leave $K_{3}$ through the wall $x_{j}=-A_{3}$, then $\Gamma\left(t, p, w, v^{*}\right)$ does not leave $R_{3}$. through $x_{3}=-A_{3}$ for any $w \in W$.
Lemma 3.6. Let $A_{3} \geq, \beta$. Let $u \in U, p \in R_{3}$. If $p \in Q(u)$ then $\Gamma\left(t, p,-\alpha, v^{*}\right)$ cannot leave $R_{3}$ through the wall $x_{3}=-A_{3}$.

The reader will easily convince himself that the proof of Theorem 3.1 is contained in Lemmas 3.1 - 3.6.

The function $v^{*}$ is clearly superior to the function $u^{*}$ of $T P R$ inasmuch as it eliminates the worst oscillatory features of a trajectory moving under the influence of $u^{*}$. A more detailed discussion of the exact nature of $v^{*}$ does not seem warranted at this time.

1. FROOF CF THE EXISTHNCE OF UPPER BOUNDS FOR THE SYSTHM.
$\ddot{x}=h(\dot{x}, \dot{x})+w(t)+u(\dot{x}, \dot{x}, x)$

The conditions under which the system referred to in the section title has an upper bound were stated in Section 2 of the Thirteenth Progress Report. In the present section we present the details of the proof that an upper bound actually exists under the stated conditions. The proof depends upon six lemmas, which are discussed in the following pages, after which the main theorem becomes almost self evident.

The notation of the section is intended to be the same as the notation of Sections 1 and 2 of the Thirteenth Progress Report. It may be noted, however, that the $\lambda$ of this section is the same as the $\lambda$ of Section 2 of the Thirteenth Progress Report, but has nothing to do with $\lambda$ of Section 1 of the Thirteenth Progress Report. Lemma 1. Let $A_{3} \geq \hat{\beta}+\lambda$ and let $p \in K_{\hat{c}}$. Then $\Gamma\left(t, p, \alpha, u^{*}\right)$ does not leave $R_{3}$ through the wall $x_{3}=A_{3}$. Proof. Let $p=\left(x_{1}^{0}, x_{2}^{0}, 0\right)$. If $x_{2}^{0}<0$, we see, from the fact that $\dot{x}_{3}=x_{2}$, that the system begins its motion by descending below the plane $x_{3}=0$. It can never reach the plane $x_{3}=+A_{3}$ until it first returns to the plane $x_{3}=0$, and this must happen (if, i.t happens at all) at a point where $x_{2} \geq 0$. Hence, without loss of generality we may assume in the first place that $x_{2}^{0} \geq 0$.

Suppose first that $p=M_{1}$, the point where the pseudo-parabolic arc $\pi_{1}$ intersects the $x_{1}$-axis.



Figure la

The solution $\Gamma\left(t, M_{1}, \alpha, u^{*}\right)$ in terms of the $x_{k}^{(1)}(t)$ introduced in the Thirteenth Progress Report, bottom of p. 8, may be written as follows

$$
\begin{aligned}
& x_{1}(t)=x_{1}^{(1)}\left(t+\tau_{1}^{(1)}\right) \\
& x_{c}(t)=x_{2}^{(1)}\left(t+\tau_{1}^{(1)}\right) \\
& x_{3}(t)=\int_{0}^{t} x_{2}(s) d s=\int_{0}^{t} x_{2}^{(1)}\left(s+\tau_{1}^{(1)}\right) \mathrm{d} s=\int_{\tau_{1}^{\prime}}^{x_{1}^{(1)}} x_{2}^{(1)}(\sigma) d \sigma .
\end{aligned}
$$

Starting at $M_{1}$ the projection of this trajectory reaches $Z_{1}$ at time $-\tau_{1}^{(1)}$, by definition of $\tau_{1}^{(1)}$. The projection of the trajectory may then return to the $x_{1}$ - axis at a point $M_{2}$ before it meets the pseudo-parabolic arc $\pi_{2}$ at $M_{2}^{1}$ as shown in Figure la or it may meet the arc $\pi_{2}$ at $M_{2}^{l}$ and then follow along $\pi_{2}$ until it reaches the $x_{1}$-axis at, the point $M_{2}$ where $\pi_{2}$ crosses the $x_{1}$-axis, as shown in Figure lb.

In the case illustrated by Figure la, the projection of the trajectory $\frac{1}{4}$ proceeds irom $Z_{1}$ to $M_{2}$ after the lapse of a time $\tau_{2}^{(1)}$. Hence it passes from $M_{1}$ to $M_{2}$ after a total time $t_{1}=\tau_{2}^{(1)} \tau_{1}$ (1). The value of $x_{3}$ at that time is found to be

$$
x_{3}\left(t_{1}\right)=\int_{\tau_{1}(1)}^{\tau_{1}^{(1)}+t_{1}} x_{2}^{(1)}(s) d s=\int_{\tau_{1}^{(1)}}^{\tau_{2}^{(1)}} x_{2}^{(1)}(s) d s \leqq \beta \leqq \beta+\lambda
$$

Since $A_{3} \geqq \beta+\lambda$, and since $x_{3}(t)$ is monotonically increasing for all $t \in\left(0, t_{1}\right)$, we conclude that for all $t$ in this interval $x_{3}(t) \leqq A_{3}$. After the projection of $\Gamma\left(t, M_{1}, \alpha, u^{*}\right)$ reaches $M_{2}, x_{3}(t)$ starts to decrease while the projection goes toward $M_{2}^{2}$ and, if it actually reaches $M_{2}^{7}$, it then continues along $\pi_{2}$ toward $Z_{2}$ as long as $x_{3}(t)$ is still positive. When once $x_{3}(t)$ becomes $\leqq 0$, there is no possibility for the trajectory to pass through the wall $x_{3}=+A_{3}$ until it emerges again at some point $\left(x_{1}, x_{2}, 0\right) \in K_{2}$ for which $x_{2} \geqq 0$. Also, if the projection reaches $z_{2}$ before $x_{3}(t) \leqq 0$, the projection will be stopped at $z_{2}$ until $x_{3}(t) \leqq 0$, and the previous sentence is again applicable.

In the case illustrated by Figure lb , the projection of the trajectory proceeds from $Z_{1}$ to $M_{2}^{1}$ after the lapse of a time $\tau^{*}<\tau_{2}^{(1)}$. Hence it
passes from $M_{1}$ to $M_{2}^{1}$ after a total time $t_{1}^{*}=\tau^{*}-\tau_{1}^{(1)}$. The value of $x_{3}$ at that time is found to be

$$
x_{3}\left(t_{1}^{*}\right)=\int_{\tau_{1}^{(1)}}^{\tau_{1}^{(1)}+t_{1}^{*}} x_{2}^{(1)}(s) \mathrm{ds} \leqq \int_{\tau_{1}^{(1)}}^{\tau_{2}^{(1)}} x_{2}^{(1)}(s) \mathrm{d} s \leqq \beta
$$

After reaching $M_{2}^{I}$ the projection proceeds along $\pi_{2}$ until $M_{2}$ is reached at time $t_{1}$. In terms of previous notation, Thirteenth Progress: Report pp. 9 and 10,

$$
x_{3}\left(t_{1}\right)-x_{3}\left(t_{1}^{*}\right)=\int_{0}^{r_{2}} x_{2}(s) d s=\lambda_{2} \leqq \lambda
$$

Hence, again, we find that $x_{3}\left(t_{1}\right) \leqq \beta+\lambda \leqq A_{3}$, and thus, as before, we see that, for all $t \in\left(0, t_{1}\right), x_{3}(t) \leqq A_{3}$.


Figure Ra


Figure 2 b

Suppose first that $p$ lies in the region bounded by $Z_{1} M_{2}^{2} M_{3} Z_{1}$ in the case of Figure $2 b$. The projection of the trajectory through $p$ would proceed along a pseudo-parabolic arc until it reaches $\pi_{2}$ and descend to $M_{2}^{I}$ and on to $M_{2}$. We already know that the amount that $x_{3}$ increases during the passage from $M_{2}^{1}$ to $M_{2}$ is $\leqq r$. Hence we examine the amount that $x_{3}$ increases during the passage from $p$ to $M_{2}^{1}$. It is clear that, if a given point $p$ is replaced by the point $M_{4}$ on the line segment $M_{3} Z_{1}$ which precedes it on the projection of the trajectory through $p$, the increase in $x_{3}$. would be made greater. Even this greater increase in $x_{3}$ will be shown to be $<\beta$.

Let $\left[x_{1}(t), x_{2}(t)\right]$ denote the motion of the projection along the path $M_{4} M_{5} M_{2}^{1}$ starting at $M_{4}$ when $t=0$ and ending at $M_{2}^{1}$ when $t=T_{x}$, say. Let $\left[\xi_{1}(t), \xi_{2}(t)\right]$ denote a corresponding motion along $Z_{1} M_{2}^{I_{2}}$ starting at $Z_{1}$ when $t=0$ and ending at $M_{2}^{1}$ when $t=T_{\xi}$. Since $x_{1}(0)<\xi_{1}(0), x_{2}(0)=\xi_{2}(0), \dot{x}_{2}(t)=x_{1}(t)$, and $\xi_{2}(t)=\xi_{1}(t)$, it is ciear that $x_{2}(t)<\xi_{2}(t)$ for positive $t$ at. least as long as $x_{1}(t) \leq \xi_{1}(t)$. But, if the point $\left(x_{1}, x_{2}\right)$ is below $\left(\xi_{1}, \xi_{2}\right)$, it is clear from Figure 2b, that it is impossible for it to be to the right of $\left(\xi_{1}, \xi_{2}\right)$. This is because the slope of the pseudo-parabolic arc $M_{2}^{I} Z_{1}$ is everywhere positive and the point $\left(x_{1}, x_{2}\right)$ is at all times in the ciosure of the region bounded by $Z_{1} M_{2}^{I} M_{3} Z_{1}$. Thus it is impossible for $x_{1}(t)$ ever to exceed $\xi_{1}(t)$ during the motion toward $M_{2}^{1}$. It is therefore clear that $x_{2}(t)$ remains $<\xi_{2}(t)$ during this motion. Hence the point $M_{2}^{1}$ is reached more quickly along $M_{4} M_{5} M_{2}^{I}$ than along $Z_{1} M_{2}^{I}$.

In other words $T_{x}<T_{\xi}$. Hence

$$
\begin{equation*}
\int_{0}^{T_{x}} x_{2}(t) d t<\int_{0}^{T_{x}} \xi_{2}(t) d t<\int_{0}^{T_{\xi}} \xi_{2}(t) d t \tag{1.1}
\end{equation*}
$$

Since $\dot{x}_{3}=x_{2}$, it is therefore seen that the rise in $x_{3}$ during the passage from $M_{4}$ to $M_{2}^{1}$ is less than the rise in $x_{3}$ during the passage from $Z_{1}$ to $M_{2}^{l}$. But this latter is less than the rise in $x_{3}$ during the passage from $M_{1}$ to $M_{2}^{l}$ which is already krown to be $<\beta$. We have therefore disposed with the case illustrated in Figure 2b.

Suppose next that $p$ lies in the region bounded by $Z_{2} M_{2} M_{2}^{\prime \prime} M_{3} Z_{1}$ in the case of Figure 2 a. The projection of the trajectory through $p$ would proceed along a pseudo-parabolic arc until it reaches $\pi_{2}$ or the line segment $M_{2}^{\prime \prime} M_{2}$. In the former case it proceeds along $\pi_{2}$ until it reaches $M_{2}^{\prime \prime}$ on the $x_{1}$-axis. As in the case of Figure $2 b$ we can, without loss of generality, take $p$ at $M_{4}$. Again we consider the motion of the point [ $\left.x_{1}(t), x_{2}(t)\right]$ beginning at $M_{4}$ when $t=0$ and ending on the $x_{1}$ - axis when $t=T_{x}$ with $\dot{x}_{2}(t)=x_{1}(t)$. We also consider the motion of $\left[\xi_{1}(t), \xi_{2}(t)\right]$ along $Z_{1} M_{2}$ beginning at $Z_{1}$ when $t=0$ and ending at $M_{2}$ when $t=T_{\xi}$. Exactly as in the case of Figure $2 b$, we prove that $T_{x}<T_{\xi}$ and that $x_{2}(t)<\xi(t)$ for $0<t \leqq T_{x}$. Hence the formula (1.1) is again valid. This disposes of the case illustrated in Figure 2 a.

The only remaining cases to be considered occur when the initial point is in the shaded area illustrated in either Figure 2 a or Figure 2 b. Without loss of generality we may clearly suppose that the initial point is at $M_{6}$ on the positive $x_{1}$ - axis. In tine case of Figure $2 a$, it then follows at once from Iema 2.1 of the Thirteenth Progress Report that the
increase of $x_{3}$ during the passage from $M_{6}$ to $M_{7}$, along the indicated pseudo-parabola is less than the rise of $x_{3}$ during the passage along $M_{1} Z_{1} M_{2}$, which is known to be $\leqq \beta$. The case of Figure 2 b is slightly more difficult but the details may still be left to the reader. Before applying the Lemma one should extend the pseudo-parabolic arc $Z_{1} M_{2}^{1}$ until it intersects the negative $x_{1}$-axis. The point $M_{7}$ may be on the arc $\pi_{2}$ instead of on the negative $x_{1}$-axis as shown in Figure 2 a. If this is the case one should also extend the arc $M_{6} M_{7}$ until it crosses the negative $x_{1}$-axis. One thus finds that the rise in $x_{3}$ during the passage from $M_{6}$ to $M_{7}$ is $<\beta$. If $M_{7}$ is on $\pi_{2}$, there is a further rise in $x_{3}$. which, however, is obviously less than $\lambda$.
Lemma 2。 Let $A_{3} \geqq \beta+\lambda$ Let $p \in K_{2}^{+} \cup K_{2} \cup K_{2}^{-}$
If $\Gamma\left(t, p, \alpha, u^{*}\right)$ does not leave $R_{3}$ through the wall $x_{3}=A_{3}$, then $\Gamma\left(t, p, w, u^{*}\right)$ does not leave $R_{3}$ through the wall $x_{3}=A_{3}$ for any $\mathrm{w} \in \mathrm{W}$.
Proof. Let $p=\left(x_{1}^{0}, x_{2}^{0}, x_{3}^{0}\right)$. Suppose $x_{3}^{0}<0$. Let $\Gamma(t)=\Gamma\left(t, p, w, u^{*}\right)$. In order for $\Gamma(t)$ to reach the plane $x_{3}=A_{3}$ it must first cross the plare $x_{3}=0$. and we may as well choose this point as our point of departure. We may thus assume, without loss of generality, that $x_{3}^{0} \geq 0$. Suppose next that $x_{2}^{0}<0$. Then at time $t=0$ the derivative $\dot{x}_{3}$ along $\Gamma(t)$ is negative and the trajectory $\Gamma(t)$ begins its motion by descending below the plane $x_{3}=x_{3}^{0}$. In order for $\Gamma(t)$ to leave $R_{3}$ through the wall $x_{3}=A_{3}$ it would have to return to this plane and cross it. We may therefore assume, without loss of generality, that $x_{2}^{0} \geq 0$.

Let $x_{i}(t), \bar{x}_{i}(t), i=1,2,3$, denote the $x_{i}$ coordinate along $\Gamma\left(t, p, \alpha, u^{*}\right)$ and $P\left(t, p, w, u^{*}\right)$, respectively. our $\because$ hypothesis is to the erfect that $x_{3}(t) \leq A_{3}$ for all $t \geq 0$. We wish to prove that $\bar{x}_{3}(t) \leqq A_{3}$.

We note first that along $\pi_{2}$ the vector fields of the systems governing the motions of the projections (on the plane $x_{3}=0$ ) of both $\Gamma\left(t, p, \alpha, u^{*}\right.$ ) and $\Gamma\left(t, p, w, u^{*}\right)$ are discontinuous as long as $x_{3}$ (or $\bar{x}_{3}$ ) $>0$. Morever, any trajectory whose projection on the plane $x_{3}=0$ reaches $\pi_{2}$ will proceed in such a manner that its projection remains on $\pi_{2}$ until the projection reaches $Z_{2}$ or until the trajectory has an $x_{3}$-coordinate which is no longer positive. Except for the point $z_{2}$ itself, throughout this part of the motion we have

$$
\dot{x}_{2}=g_{2}\left(x_{2}\right)
$$

where $x_{1}=g_{2}\left(x_{2}\right)$ is the equation of $\pi_{2}$. This is true independently of the wind. If the projection of $p \in \pi_{2}$, then $x_{2}(t)=\bar{x}_{2}(t)$ and $x_{1}(t)=\bar{x}_{1}(t)$ unicil the respective projections reach the point $Z_{2}$ simultaneously or until the trajectories simulteneously meet the plane $x_{3}=0$. In the former case, after $Z_{2}$ is reached, we have $x_{1}(t)=\bar{x}_{1}(t)=0, x_{2}(t)=$ $\bar{x}_{2}(t)=-A_{2}$. Hence, in either case, $x_{1}(t)=\bar{x}_{1}(t)$ and $x_{2}(t)=\bar{x}_{2}(t)$ as long as $\bar{x}_{3}(t)=x_{3}(t)>0$. Since $x_{3}(t) \leq A_{3}$ by hypothesis, we have $\bar{x}_{3}(t) \leq A_{3}$ on the time interval during which $x_{3}$ is initially positive. We next wish to obtain a similar result when the projection of $p \in K_{2}-\pi_{2}$.

In the set $K_{2}-\pi_{2}$, we have
$h\left(x_{1}, x_{2}\right)+w+u^{*}=h\left(x_{1}, x_{2}\right)+w(t)-1 \leqq h\left(x_{1}, x_{2}\right)+\alpha-1<0$, where,
by hypothesis, $h\left(x_{1}, x_{2}\right)$ is monotonic non decreasing in $x_{2}$. By Theorem 1.2 of the Eighth Progress Report, we therefore have

$$
\bar{x}_{1}(t) \leqq x_{1}(t), \bar{x}_{2}(t) \leqq x_{2}(t) \text { and } \bar{x}_{3}(t) \leqq x_{3}(t)
$$

so long as $\left(x_{1}(t), x_{2}(t)\right)$ and $\left(\bar{x}_{1}(t), \bar{x}_{2}(t)\right)$ remain in $K_{2}-\pi_{2}$ and as long as $\bar{x}_{3}(t)>0$.

Throughout this part of the motion we therefore have $\bar{x}_{3}(t) \leqq A_{3}$ since, by hypothesis $x_{3}(t) \leqq A_{3}$.

The slope of $\pi_{2}$ is negative. Hence $\left(\bar{x}_{1}(t), \bar{x}_{2}(t)\right)$ reaches $\pi_{2}$ before $\left(x_{1}(t), x_{2}(t)\right)$ does. Let the time of impact be $t_{0}$. Then $\bar{x}_{1}\left(t_{0}\right) \leqq x_{1}\left(t_{0}\right)$. So long as $\bar{x}_{1}(t) \leq x_{1}(t)$, we still have $\bar{x}_{2}(t) \leqq x_{2}(t)$. Let $t_{1}>t_{0}$ be the first (if there is any) time such that $\bar{x}_{1}\left(t_{1}\right)=x_{1}\left(t_{1}\right)$. Then clearly $\bar{x}_{2}\left(t_{1}\right) \leqq x_{2}\left(t_{1}\right)$, whence $\left(x_{1}\left(t_{1}\right), x_{2}\left(t_{1}\right)\right)$ lies either on $\pi_{2}$ or above it. In the first case we have $\left(x_{1}\left(t_{1}\right), x_{2}\left(t_{1}\right)\right)=\left(\bar{x}_{1}\left(t_{1}\right) ; \bar{x}_{2}\left(t_{1}\right)\right)$. whence $\left(x_{1}(t), x_{2}(t)\right)=\left(\bar{x}_{1}(t), \bar{x}_{2}(t)\right)$ for all $t \geq t_{1}$ for which both trajectories are still in the half space $x_{3}>0$. In the latter case we note that $\dot{x}_{1}\left(t_{1}\right)=h\left(x_{1}(t), x_{2}(t)\right)+\alpha-1<0$ and therefore the projection ( $\left.x_{1}(t), x_{2}(t)\right)$ moves to the left of the line $x_{1}=\bar{x}_{1}\left(t_{1}\right)$. At the same time $\left(\bar{x}_{1}(t), \bar{x}_{2}(t)\right)$ moves to the right of this line. Hence $\left(x_{1}(t), x_{2}(t)\right)$ will intersect $\pi_{2}$ (if at all) at some time $t_{2}>t_{1}$ at a point above $\left(\bar{x}_{1}\left(t_{2}\right), \bar{x}_{2}\left(t_{2}\right)\right)$. Therefore, again, so long as both trajectories are still in the half space $x_{3}>0$, we have $\bar{x}_{2}(t) \leqq x_{2}(t)$. Hence so long as $x_{3}(t)>0$ and $\bar{x}_{3}(t)>0 \ldots, \quad, \quad, \quad$ we have $\bar{x}_{3}(t) \leq x_{3}(t) \leqq A_{3}$

As long as $\bar{x}_{3}(t)>0$, the projection $\left(\bar{x}_{1}, \bar{x}_{2}\right)$ proceeds in $K_{2}$ toward $\pi_{2}$ and then along $\pi_{2}$ toward $Z_{2}$. If the plane $x_{3}=0$ has not yet been reached, the projection is "stopped" at $Z_{2}$ and $\bar{x}_{3}(t)$ decreases monotonically at a fixed rate $\dot{\bar{x}}_{3}=-A_{3}$ toward 0. Eventually,
$\Gamma\left(t, p, w, u^{*}\right)$ descends into the lower half space $x_{3}<0$. From that point on the inequality $\bar{x}_{3}(t) \leqq x_{3}(t)$ can no longer be applied for all suosequent time. But surely $\Gamma\left(t, p, w, u^{*}\right)$ can not escape from $R_{3}$ through tine wall $x_{3}=A_{3}$ as long as $\bar{x}_{3}(t)<0$. Suppose then that $\Gamma(t, p, w, u *)$ returns to the plane $x_{3}=0$ at some subsequent point $p_{1}$. This can only happen if $p_{1} \in K_{2}$. But it is already known from Ierma 1 , that $\Gamma\left(t, p_{1}, \alpha, u *\right)$ does not leave $R_{3}$ through the wall $x_{3}=A_{3}$. (The $p$ of that Lemma is the present $p_{1}$ ). Hence we can apply the resulis obtained above for the point $p$ to the point $p_{1}$ to show that $\Gamma\left(t, p_{1}, w, u^{*}\right)$ can not leave $R_{3}$ through the wall $x_{3}=A_{3}$ unless it first descends below the plane $x_{3}=0$ and then emerges there again at a point $p_{2} \in K_{2}$ and so forth. The complete proof of Lemma 2 by induction is thus clearly indicated.

Lemma 3. Let $A_{3} \geqq \beta+\lambda_{0}$ Let $u \in U, p \in R_{3}$. If $p \in Q(u)$, then $\Gamma(t, p, a, u *)$ cannot leave $R_{3}$ through the wall $x_{3}=A_{3}$. Proof. Let $p=\left(x_{1}^{0}, x_{2}^{0}, x_{x}^{0}\right)$. Since $p \in Q(u)$ it follows that $\left(x_{1}^{0}, x_{2}^{0}\right) \in K_{2}$. Hence $\left(x_{1}\left(t, p, \alpha, u^{*}\right), x_{2}\left(t, p, \alpha, u^{*}\right)\right) \in K_{2}$ for all $t \geq 0$. Hence if $\Gamma(t, p, \alpha, u *)$ ever reaches the plane $x_{3}=0$, it could not (by Lemma 1) subsequently cross the plane $x_{3}=A_{3}$. Thus, if $x_{3}^{0} \leqq 0$ the proof is complete. We therefore restrict attention to the case when $x_{3}^{0}>0$. Denote $x_{i}\left(t, p, \alpha, u^{*}\right)$ and $x_{i}(t, p, \alpha, u), i=1,2,3$, by $x_{i}(t)$ and $y_{i}(t)$, respectively.

Suppose first that $\left(x_{1}^{0}, x_{2}^{0}\right) \in K_{2}-\pi_{2}$. Then as long as both $\left(x_{1}(t), x_{2}(t)\right)$ and $\left(y_{1}(t), y_{2}(t)\right)$ below to $K_{2}-\pi_{2}$ and both $x_{3}(t)$ and $y_{3}(t)$ are positive, we have

$$
h\left(x_{1}, x_{2}\right)+\alpha+u \geqq h\left(x_{1}, x_{2}\right)+a+u^{*}=h\left(x_{1}, x_{2}\right)+\alpha-1
$$

Since $h$ is monotonic non-decreasing in $x_{2}$, we have from Theorem 1.2 of the Eighth Progress Report
$x_{1}(t) \leq y_{1}(t), \quad x_{2}(t) \leq y_{2}(t), \quad x_{3}(t) \leq y_{3}(t) \leq A_{3}$
If $x_{3}(t)$ vanishes at time $t{ }^{*}$ before $\left(x_{1}(t), x_{2}(t)\right)$ reaches $\pi_{2}$, the proof is complete on account of the fact that $\Gamma\left(t, p, \alpha, u^{*}\right)$ reached the plane $x_{3}=0$ so that Lemma 1 can be invoked. Otherwise $\left(x_{1}(t), x_{c}(t)\right)$ reaches $\pi_{2}$ at some time $t_{0}$, at which time, $x_{3}\left(t_{0}\right)$ is still $>0$.

Since $\pi_{2}$ has a negative slope, we see from (1.2) that
$\left(x_{1}(t), x_{2}(t)\right)$ reaches $\pi_{2}$ before $\left(y_{1}(t), y_{2}(t)\right)$ does. Moreover

$$
x_{1}\left(t_{0}\right) \leq y_{1}\left(t_{0}\right), \quad x_{2}\left(t_{0}\right) \leq y_{2}\left(t_{0}\right) .
$$

As long as $x_{1}(t) \leq y_{1}(t), t \geq t_{0}$, we still have $x_{2}(t) \leq y_{2}(t)$. In order for $y_{2}(t)$ to "catch up" and become $\leq x_{2}(t)$ the projection ( $\left.y_{1}(t), y_{2}(t)\right)$ must proceed to the left of the moving line $x_{1}=x_{1}(t)$. However, since $p \in Q(u)$, this projection must remain to the right of $\pi_{2}$. This " catching up" process can therefore proceed only through the "wedge" indicated by shading in Figure 3. But for points $\left(y_{1}, y_{2}\right)$ in this


Figure 3
wedge it is geometrically obvious that $y_{2} \geqq x_{2}(t)$. Hence

$$
x_{2}(t) \leq y_{2}(t)
$$

as long as $x_{3}(t)>0$. Hence $x_{3}(t) \leq y_{3}(t) \leq A_{3}$ as long as $x_{3}(t)>0$. This completes the proof in the case when $x_{3}^{0}>0$ and $\left(x_{1}^{0}, x_{2}^{0}\right) \in K_{2}-\pi_{2}$.

There remains the case $x_{3}^{0}>0$ and $\left(x_{1}^{0}, x_{2}^{0}\right) \in \pi_{2}$. Initially the two points $\left(x_{1}(t), x_{2}(t)\right)$ and $\left(y_{1}(t), y_{2}(t)\right)$ coincide. The former point must, of course, move along $\pi_{2}$; and, if the latter point also moves along $\pi_{2}$ it must coincide with the former point, since motion along $\pi_{2}$ is always governed by $\dot{x}_{2}=g_{2}\left(x_{2}\right)$. If at any time $t^{l}$ the point ( $\left.y_{1}(t), y_{2}(t)\right)$ leaves $\pi_{2}$ it can only do so by moving to the right of $\pi_{2}$, since $\left(x_{1}^{0}, x_{2}^{0}, x_{3}^{0}\right) \in Q(u)$.

Since the point ( $x_{1}, x_{2}$ ) and ( $y_{1}, y_{2}$ ) part company at time $t=t^{1}$, we see that the non-negative function

$$
p(t)=\left[y_{1}(t)-x_{1}(t)\right]^{2}+\left[y_{2}(t)-x_{2}(t)\right]^{2}
$$

is not identically zero on any interval $t^{1}<t<t^{1}+\delta$ no matter how small the positive number $\delta$ is. It might, however, vanish infinitely often on such an interval. Let $t "$ be any point on the interval $\left(t^{1}, t^{1}+\delta\right)$ such that $p\left(t^{\prime \prime}\right)>0$. Since $p(t)$ is continuous, there is an open interval $(\alpha, \beta)$ containing $t^{\prime \prime}$ such that $p(\alpha)=0$ and such that $p(t)>0$ for $t \in(\alpha, \beta) C\left(t^{1}, t^{1}+\delta\right)$. We wish to show that it is not possible to have $x_{2}\left(t_{1}\right)>y_{2}\left(t_{1}\right)$ a.t any point $t_{1} \in(\alpha, \beta)$. Choose $\alpha^{*} \geqq \alpha$ so that $x_{2}\left(\alpha^{*}\right)-y_{2}\left(\alpha^{*}\right)=0$ and so that $x_{2}(t)-y_{2}(t)>0$ for $t \in\left(\alpha^{*}, t_{1}\right)$. Then we can find $t^{*} \in\left(\alpha^{*}, t_{1}\right)$ such that $\dot{x}_{2}\left(t^{*}\right)-\dot{y}_{2}\left(t^{*}\right)>0$. But, since $\dot{x}_{2}=x_{1}$ and $\dot{y}_{2}=y_{1}$, this would mean that $x_{1}\left(t^{*}\right)>y_{1}\left(t^{*}\right)$, while simultaneously (since $t^{*} \in\left(\alpha^{*}, t_{1}\right)$ ) we also have $x_{2}\left(t^{*}\right)>_{2}\left(t^{*}\right)$.

Hence the point $\left(y_{1}\left(t^{*}\right), y_{2}\left(t^{*}\right)\right)$ would lie to the left of $\pi_{2}$, which is impossible. Hence we must have $x_{2}\left(t_{1}\right) \leqq y_{2}\left(t_{1}\right)$ for any $t_{1} \in(\alpha, \beta)$. Hence, in particular, $x_{2}\left(t^{\prime \prime}\right) \leqq y_{2}\left(t^{\prime \prime}\right)$.

Since $t^{\prime \prime}$ was any point on ( $t^{1}, t^{1}+\delta$ ) for which $p\left(t^{\prime \prime}\right)>0$, we see that $x_{2}(t) \leqq y_{2}(t)$ on any sufficiently small interval ( $t_{1}^{1} t^{1}+\delta$ ). Moreover $x_{2}(t)$ is not identically $y_{2}(t)$ on any such interval, because then we would have $x_{1}(t) \equiv \dot{x}_{2}(t) \equiv \dot{y}_{2}(t) \equiv y_{1}(t)$, which contradicts the assumption that $\left(x_{1}, x_{2}\right)$ and ( $y_{1}, y_{2}$ ) actually parted company at $t^{1}$.

When once we know that $x_{2}(t)<y_{2}(t)$ for some $t>t^{l}$ (as we know now), we may apply the argument about the wedge which was previously discussed, at least if $x_{1}(t)<y_{1}(t)$. If, however, $x_{1}(t) \geqq y_{1}(t)$, the point ( $y_{1}, y_{2}$ ) is already in the wedge. In either case the argument shows that $y_{2}(t)$ can never become $<x_{2}(t)$. This completes the proof of Lemma 3.

The following Lemmas are proved in complete analogy with Lemmas 1, 2, 3. Lemma 4. Let $A_{3} \geqq \beta+\lambda$ and let $p \in K_{2}$. Then $\Gamma$ ( $t, p,-\alpha, u$. *) does not leave $R_{3}$ through the wall $x_{3}=-A_{3}$.
Lemma 5. Let, $A_{3} \geqq \beta+\lambda$. Let $p \in K_{2}^{+}$t $k_{2}\left(k_{2}^{-}\right.$. If $\Gamma$ ( $t, p, \alpha, u^{*}$ ) does not leave $R_{3}$ through the wall $x_{3}=-A_{3}$, then $\Gamma(t, p, w, u *)$ does not leave $R_{3}$ through the wall $x_{3}=-A_{3}$.
Lemma 6. Let $A_{3} \geqq \beta+\lambda_{\text {. Let }} u \in U, p \in R_{3}$. If $p \in Q(u)$, then $\Gamma$ ( $\left.t, p,-\alpha, u *\right)$ cannot leave $R_{3}$ through the wall $x_{3}=A_{3}$.

Our main result is an almost obvious consequence of these six lemmas. It may be stated as follows:

Theorem Let $\beta$ be defined as at the top of p. 9 of the Thirteenth Progress Report and let $\lambda$ be defined as on $p$. 10 of the same report. If $A_{3} \geqq \beta+\lambda$, then $u^{*}\left(x_{1}, x_{2}, x_{3}\right)$ is an upper bound for the system

$$
\begin{aligned}
& \dot{x}_{1}=h\left(x_{1}, x_{2}\right)+u\left(x_{1}, x_{2}, x_{3}\right)+w(t) \\
& \dot{x}_{2}=x_{1} \\
& \dot{x}_{3}=x_{2}
\end{aligned}
$$

in $R_{3}$. Moreover $K_{2} \subset Q\left(u^{*}\right)$.
Proof. Let $u \in U$ and let $p \in Q(u)$. Then the projection of $p$ on the plane $x_{3}=0$ lies in $K_{2}$. It now follows from Lemmas 3, 2, 6, 5 that $p \in Q\left(u^{*}\right)$. Hence $Q(u) \subset Q\left(u^{*}\right)$ for all $u \in U$. In other words $u^{*}$ is an upper bound. The fact that $K_{2} \subset Q(u *)$ follows from Lemmas. 1, 2, 4, and 5.

During the month of March 1965 attempts were made to describe the cores of the third order systems considered in the Thirteenth and Fourteenth Progress Report. Since it was proved in these reports that these systems admitted upper bounds, it is known that the cores exist, but we have not yet succeeded in describing them in a simple explicit manner. On the contrary, the present status of this work is both tentative and complicated, and we can not report in detail upon it here.

We have also attempted to generalize the results of the last two progress reports by omitting the requirement on $h\left(x_{1}, x_{2}\right)$ that it should be monotonic increasing in $x_{2}$ for each fixed $x_{1}$, or at least by replacing this requirement by a weaker one. In particular it was thought for a while that the Lemma 2.1* of the Thirteenth Progress Report could be proved without the monotonicity requirement, since it is not hard to see that it does indeed hold in many special cases when the monotonicity requirement is violated. Although we have failed to find a satisfactory substitute for this Lemma 2.1, the following considerations, besides indicating the nature of part of last month's work, many yield some insight into this problem.

Theorem 1. In the half-plane $x_{2} \geq 0$, suppose $f\left(x_{1}, x_{2}\right) \leq-\mu$ where $\mu$ is positive. Suppose also that $f \in C^{\prime}$. Let $x_{1}(t, a), x_{2}(t, a)$ satisfy the system of differential equations

$$
\begin{align*}
& \dot{x}_{1}=f\left(x_{1}, x_{2}\right)  \tag{1}\\
& \dot{x}_{2}=x_{1} \tag{2}
\end{align*}
$$

and the initial conditions

$$
\begin{align*}
& x_{1}(0, a)=a>0  \tag{3}\\
& x_{2}(0, a)=0 \tag{4}
\end{align*}
$$

*There were some errors in the typing of the proof of this Lemma 2.1. Line 11 on p. 11 should read " $x_{2}(0)=x_{1}(0)=a<a^{l}=x_{1}^{2}(0)=\dot{x}_{2}^{1}(0)$ " and line 13 of the same page should read $" x_{2}(t) \leqq \dot{x}_{2}^{1}(t)$ and that $x_{1}^{1}(t)=\dot{x}_{2}(t) \leqq \dot{x}_{2}^{1}(t)=x_{1}^{1}(t)$."

Then there exists a positive number $T=T(a)$ such that $x_{2}(t, a)>0$ for $0<t<T$ and such that $x_{2}(T, a)=0$. Moreover, $T$, considered as a function of a has a derivative, $T^{\prime}(a)$, given by the formula

$$
\left\{\left.\frac{\partial x_{2}(t, a)}{\partial t}\right|_{t=T(a)}\right\} T^{\prime}(a)+\left\{\left.\frac{\partial x_{2}(t, a)}{\partial a}\right|_{t=T(a)}\right\}=0
$$

where

$$
\begin{equation*}
\left.\frac{\partial x_{2}(t, a)}{\partial t}\right|_{t=T(a)}<0 . \tag{5}
\end{equation*}
$$

Proof. Since $x_{2}(0, a)=0$ and $\dot{x}_{2}(0, a)=x_{1}(0, a)=a>0, x_{2}(t, a)$ must be positive for sufficiently small positive values of $t$. Since $\dot{x}_{1}=f\left(x_{1}, x_{2}\right) \leqq-\mu$, we evidently have $x_{1}(t, a) \leqq a-\mu t$, at least as long as $\left[x_{1}(t, a), x_{2}(t, a)\right]$ stays in the half-plane $x_{2} \geqq 0$. Hence, from (2), we find that $x_{2}(t, a) \leqq$ at $-(1 / 2) \mu t^{2}$ which is negative for sufficientiy large values of $t$. We let $T$ be the first point where $x_{2}(t, a)$ ceases to be positive. This proves the first statement of the theorem.

As noted above, $x_{2}(t, a)>0$ for sufficiently small positive values of $t$. Because of (2), $x_{2}(t, a)$ continues to increase as long as $x_{1}(t, a)>0$. Hence $x_{2}(t, a)>0$ as long as $0 \leqq x_{1}(t, a)<a$. In this connection it should be remembered that $x_{1}(t, a)$ is monotonic decreasing, according to (l) and the fact that $f \leqq-\mu$, at least as long as $\left[x_{1}, x_{2}\right]$ stays in the half plane $x_{2} \geq 0$. But $x_{2}(T, a)=0$ by definition of $T$. Hence $x_{1}(T, a)$ can not lie on the interval $[0, a)$. Since $T>0$ and $x_{1}(t, a)$ is monotonic decreasing in $t$, we also know from (3) that $x_{1}(T, a)$ can not be greater than or even equal to $a$. The only alternative is that $x_{1}(T, a)<0$. From (2), we now see that (5) must hold.

Now $T(a)$, of course, satisfies the equation

$$
\begin{equation*}
x_{2}[T(a), a]=0 \tag{6}
\end{equation*}
$$

Since (5) has been shown to hold, the equation (6) suffices for a local unique determination of $T(a)$ in accordance with the implicit function theorem. The implicit function theorem yields the further information that $T^{\prime}(a)$ exists and satisfies the equation written above in the statement of Theorem 1. This completes the proof of Theorem 1.

It is clear from Theorem 1 that the sign of $T^{\prime}(a)$ is the same as the sign of

$$
\left.\frac{\partial x_{2}(t, a)}{\partial a}\right|_{t=T(a)}
$$

and the sign of this latter may be referred to the variational equations of the system (1), (2). But no useful criterion has been discovered in this way.

Another way of proceeding is first to eliminate $t$ from the autonomous system (1), (2), thus obtaining

$$
\begin{equation*}
\frac{d x_{2}}{d x_{1}}=\frac{x_{1}}{f\left(x_{1}, x_{2}\right)} \tag{7}
\end{equation*}
$$

where the denominator on the right is not zero, for $x_{2} \geqq 0$, since

$$
\begin{equation*}
f\left(x_{1}, x_{2}\right) \leq-\mu<0 \tag{8}
\end{equation*}
$$

Equation (7) is used to define a solution $x_{2}=y\left(x_{1}, a\right)$, such that
$y(a, a)=0$. This solution is defined for

$$
\begin{equation*}
-b \leq x_{1} \leq a \tag{9}
\end{equation*}
$$

where $b=b(a)=-x_{1}[T(a), a]>0$ in accordance with Theorem 1 , and we know also that $y[-b, a]=0$. From (1) we obviously get an explicit formula for $T(a)$ in terms of $y(x, a)$, namely

$$
\begin{equation*}
T(a)=-\int_{-b(a)}^{a} \frac{d x}{f[x, y(x, a)]} \tag{10}
\end{equation*}
$$

The graphs of the two functions $y(x, a)$ and $y\left(x, a^{i}\right)$ can not intersect if $a \neq a ' ;$ for, if they did, the uniqueness theorem for the solutions of (7) would be violated. It follows then that

$$
\begin{equation*}
b^{\prime}(a) \geqq 0, \quad \frac{\partial y(x, a)}{\partial a} \geqq 0 \tag{11}
\end{equation*}
$$

Differentiating the integral in (10) we obtain

$$
\begin{align*}
T^{\prime}(a)= & -\frac{1}{f(a, 0)}+\frac{-b(a)}{f(-b(a), 0)} \\
& +\int_{-b(a)}^{a} \frac{f_{y}[x, y(x, a)]}{f[x, y(x, a)]^{2}} \cdot \frac{\partial y(x, a)}{\partial a} d x \tag{12}
\end{align*}
$$

Because of (ll), the last written integral is $\leq 0$ if $f\left[x_{1}, x_{2}\right]$ is monotonic increasing in $x_{2}$ for each fixed $x_{1}$, while the other two terms on the right hand side of (12) are $\geq 0$ in any case because of (8) and (11). We may state this result in the form of a theorem.

Theorem 2. $T(a)$ is a monotonic increasing function of a if the right hand side of (12) is always non-negative. This will automatically be the case if $f\left(x_{1}, x_{2}\right)$ is monotonic increasing in $x_{2}$ for each fixed $x_{1}$.

## 1. Some Final Remarks.

During the last part of the present contract a substantial amount of work was invested in the following two directions:
(a) A complete analysis of the cores of the third order systems considered in the thirteenth and fourteenth Progress Reports was completed. The geometrical configuration of these cores was carefully analyzed in detail in order to determine whether any pathological behavior of the systems had been overlooked. This analysis was both tedious and complicated and led to the conclusion that no pathological behavior occurs. Apart from this fact, which does have some significance, the exact geometrical configurations obtained by us are not of sufficient importance to warrant the additional investment of time and effort which would be required in order to present them here in detail. They are therefore omitted.
(b) Investigations designed to explore various approaches to the solution of the minimax problem within the core were initiated. The two main approaches attempted fell in the categories of functional analysis and differential games, respectively. The first of these led to negative results. The second was terminated at an early and inconclusive stage.

During the same period the preparation and editing of the final report was undertaken and completed.

## 2. Recommendations for Future Research on the Minimax Problem

I. It appears to us at the present time that further research on the minimax problem should proceed mainly along lines suggested by differential games.
II. Further research along lines suggested by our own approach during the past year should also yield additional results of interest. The following objectives of such research can be specifically formulated:

## A. Research Relating to Upper Bounds

1. On the existence and nature of upper bounds for linear systems.
2. On the existence and nature of upper bounds with respect to a subset of $R$.
3. (i) Relation between the existence of upper bounds and the set $R$.
(ii) Relation between the existence of upper bounds and the given system.
4. (i) The existence and nature of upper bounds for the controllable linear system with three zero roots and suitable R .
(ii) The existence and nature of upper bounds for the controllable linear system with four zero roots and suitable $R$.
(iii) The existence and nature of upper bounds for the linear system with roots $0, \lambda,-\lambda$ and suitable R.
5. The existence and nature of upper bounds for other (particular systems) of interest.
B. The Minimax Problem Inside the Core of R.
6. Re-examination of the minimax problem inside the core of $R$.
7. Possible new criteria for choice of control inside the core.
8. On the qualitative nature of solutions to the general minimax problem inside the core.
9. On the quantitative nature of solutions to the general minimax problem.
10. Qualitative and quantitative investigation of the minimax problem (inside the core) for the particular systems listed in Part $A$.

Methods suggested by the theory of differential games should prove useful in pursuing items 3, 4, 5 above.
III. It appears to us at the present time that additional research on the minimax problem would yield various results of a mathematical nature which would provide deeper insight into the problem. Such insight may have useful engineering and/or computational implications. However, the probability of obtaining closed form solutions to the minimax problem for systems which are of practical relevance to the Saturn Launch Vehicle is at best difficult to evaluate at the present time and at worst somewhat pessimistic.

APPENDIX

## APPENDIX

NOTES AND ERRATA

Chapter 1, Section 1:
The statement of the problem given here, in spite of its vagueness, is sufficiently precise to have started the investigation on a somewhat wrong track. Namely the class $U$ was supposed to have been a class of functions of $t$ rather than functions of $x$, or at least rather than functions of $x$ as well as of $t$. It was not until the Fourth Progress Report (i.e. Chapter 3) that this point of view was abandoned. The following sections were written under this assumption (that the class $U$ was composed of functions of $t$ alone): Sections 5 and 6 of Chapter 1, pp. 1-21 to l-25. Sections 1 and 2 of Chapter 2, pp. 2-1 to 2-15. The other sections in Chapters 1 and 2, even though they were written before the faulty assumption was abandoned, contain material of such generality as to be applicable to cases where the class $U$ contains functions of $x$.

## Chapter 1, Section 2:

The first comma of $1.11, \mathrm{p} .1-10$, should be omitted.
Chapter 1, Section 3:
The $K$ in formula (3.2) should be $A$
On p. 1-13, 1. 2, the word "say" should be "any".
On p. l-17, last line, $F$ should be $G$.
Chapter 1 Section 4:
On P. l-19, second line, $X \rightarrow Y$ should be $X \rightarrow Y$.
On p. l-19, line 9, "be" should be "by".

## Chapter 1, Section 5:

On p. l-2l, last line, $[0, t]$ should be $[0, T]$.
The title of this Section is misleading. The problem considered is essentially a "maximin" problem rather than a "minimax" problem. We were led to it because of the faulty assumption that $U$ contained functions of $t$ only.

On p. l-22, line $2, ~ u \in U$ should be $u^{*} \in U$.
Chapter 1, Section 6:
This section is defective in several respects and is superceded by Chapter 2, Section 2.

## Chapter 2, Section 1:

This section is still based on the assumption that the class $U$ of admissible controls consists of functions of time. It sets forth a maximin problem in $W x U$ and shows how this may be transformed into a minimax problem in a new cross product set $W x H$.
p. 2-5, line 4, WxH should be WxU.

## Chapter 2, Section 2:

On p. 2-9, 1. 6. "number" should be "member".
This section, although it satisfactorily corrects the errors of Chapter 1 , Section 6 , is itself superceded by the more general Sections 2 and 3 of Chapter 4, pp. 4-4 to 4-11.

## Chapter 3:

Here is found the exact formulation of the minimax problem using control functions which depend on the state-variables alone.

## Chapter 5, Section 3.2:

On p. 5-17, Definition 3.1 is correct albeit awkwardly stated. It may be simplified as follows:

Definition 3.1 Let $u_{1}, u_{2} \in U$. We say that $u_{2}$ contains $u_{1}$, written $u_{2} \supset u_{1}$, iff $Q\left(u_{2}\right) \supset Q\left(u_{1}\right)$.

Proposition 3.1 then becomes true by definition.

$$
\begin{aligned}
\text { p. 5-21, line 12, } & {\left[-A+\frac{\alpha-1}{T}, A-\frac{\alpha-1}{T}\right] \text { should be } } \\
& {[-A+(\alpha-1) T, A-(\alpha-1) T] }
\end{aligned}
$$

## Chapter 5, Appendix to Section 1:

p. 5-23. Part of the proof of the Theorem on this page is incorrect, but this material is superceded by Chapter 6, Section 1. Chapter 6, Section 1:
p. 6-3, 1. 7. The formula in Theorem 1.1 should be numbered (1.1).

## Chapter 9, Section 2:

p. 9-11, 1. 7. $|\mathrm{h}|$ should be $|\mathrm{h}|$.

## Chapter 10:

p. 10-6. The definitions of sets $X_{3}{ }^{+}$and $X_{3}{ }^{-}$are defective in that the conditions $x_{1}=x_{2}=0$ are missing. The definitions of $P_{1}$ and $P_{2}$ are defective in that the condition $x_{3}=0$ is missing.
p. 10-8, line 3, "below plane" should read "below the plane".
p. 10-12, 11. 14, 15, 16, the $g$ in formulas $\Gamma(t, g, \alpha, u *)$ and $x_{2}\left(t, g, \alpha, u^{*}\right)$ should be replaced by $q$.
p. 10-12, line 17. The first nine words and $\pi$ should be omitted.
p. 10-14, last line, ( $\left.x,(t), x_{2}(t)\right)$ should read $\left(x_{1}(t), x_{2}(t)\right)$.
p. 10-15, 11. 19 and 20. The sentence, "But $\left(x_{1}(t), x_{2}(t)\right)$ has the least possible value throughout this wedge", should read as follows: "But for points $\left(y_{1}, Y_{2}\right)$ in this wedge it is geometrically obvious that $y_{2} \geqslant x_{2}$.

## Chapter 11, Section 1:

p. ll-5, l. 16. $w_{2}(t)$ should be replaced by $w_{2}\left(t-t_{1}\right)$. Chapter 11, Section 2:
p. 11.9, l. 17. $O_{1}$ should be 0.
p. 11.11, l. 11. $x_{2}(0)$ should be $x_{1}(0)$.

Chapter 11, Section 3:
p. 11-15, line 4 from bottom, "caome" should read "come".
p. ll-16, line $5, x_{1},\left(t, p, \alpha, u^{*}\right)$ should read $x_{1}\left(t, p, \alpha, u^{*}\right)$.

