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ABSTRACT

Advance Research on Control Systems

for the Saturn Launch Vehicles /0_ _

Presented are the results of Contract NAS8-II143 on

studies of a minimax problem in launch vehicle control.

This is the general problem of finding a control which

minimizes the maximum peak value of a selected index of

performance over a class of admissible disturbances while

satisfying a bounded state variable constraint. Under

this contract, some rigorous mathematical foundations were

established for the minimax problem. These include a

precise formulation of the problem and existence theorems

for solution of the problem. In connection with the

bounded state variable problem, a new concept called the

"core of the region of bounded state variables" is intro-

duced. This is roughly defined as the largest set of

initial conditions for which solution trajectories remain

inside the bounded set of state variables under any admis-

sible disturbance. Existence and uniqueness of the core

of a region are discussed, and for some sample second and
third order problems, the core is computed. _ jj_



PREFACE

During the period from March, 1963 through December, 1963 a program

of research relating to the synthesis of optimal control techniques

for the saturn launch vehicle was carried out. This work was done

under Contract NAS 8-5002. The scope of this work comprised three

specific areas of endeavor:

(a)
(b)
(c)

time optimal control

time optimal control with constraints

certain mihimax problems in control theory

All intended areas of Part (a) were covered. This included a search

for the control law in closed form for the fourth order linear control

system (single control element) having two zero eigenvalves and two

real and equal but oppositely signed non-zero eigenvalves.

Substantial results relative to Part (b) were obtained. The out-

come of this preliminary work indicated that useful results could

probably be obtained through further research. The formulation of

the minimax problem of Part (c) as well some preliminary qualitative

results in that area were obtained.

The work of this contract (NAS 8-11143) is a direct follow-on to

the work on Contract NAS 8-5002. The main emphasis herein is centered

on the minimax problem.

At the outset of this project it was decided that rather than sub-

mit informal progress reports with a single detailed report at the end,

CRA would prepare detailed progress reports each month with the intent

that each of these reports would be used as a chapter in the final

report. This approach to the documentation of our work has been fol-

lowed. The main advantage of this method is that it provides NASA

with monthly reports which explain exactly and in detail the nature

and direction of our progress. Hence, the technical officer is better

able to direct the efforts of the contractor towards the desired NASA

goal and also NASA personnel are able to digest our results continuously

rather than be burdened with the necessity of having to read one large

weig_rty report after the contract is over to learn the results of our

work. The main disadvantage to this approach is that some of the material

in later chapters supercedes certain material in the early chapters. The

reader is urged to refer to the Appendix of Notes and Errata in order to

overcome this difficulty.
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CHAPTER 1



1. Introduction: Rough Statement of th___eMinimax problem In Control _e_

Consider the system

s: _ = f(x, w, u), (l.1)

where x is ann-vector representing the system's state, _ represents dif-

ferentiation with respect to time t, f is an n-vector function of (x, w, u),

while w = w(t) and u = u(t)

described below. The function

restricted to a certain class

are n-vector functions to be more properly

f is glven. The vector w = w(t) is

W of all,able '_inds", while u = u(t),

the control vecto__r, is restricted to a given class U of admissible controls.

The system S is viewed as being subject to various disturbances

(winds) belonging to the given class W. It is controlled through the

imposition of controls belonging to the given class U. It is assumed

hereby that the classes U and W are such that it is always possible

to control the system so that its deviation from the desired state is in

any case bounded by preassigned bounds, say, through inequalities of the

form

Ixil< ai, i = i, ....,n, (1.2)

where al<... , a are given positive constants. This assumption may ben

formulated more generally by the statement that a proper choice of cc_trol

exists so that x(t)¢R for all t in some interval (say, 0 __ t __ T),

where R is a preassigned set in the space of x.



During the course of its controlled motion the systemmayrecede from

its desired state, or somefunction F(Xl,...,Xn) maygrc_ uncomfortably

large. Theminimaxproblemmaybe described briefly as the problem of

identifying the control (or controls) suchthat the maximumdeviation

of the system (or of F), throughout its motion, from its desired state

shall be a minimum. In the event that IFI is our criterion, the con-

straints embodiedin (1.2) must still be satisfied.

It mustbe apparent to the reader that the question posedaboveis

hopelessly general and hopelessly vague. Our first task _ill be to attempt

a precise formulation of a moretractable problem
¢

-1-2-



2. Non-TopoloGical Aspects of Minimax Problems

We consider two spaces X and Y and a mapping of the cartesian

product space XxY into a bounded set S of the real numbers. Thus,

with x_X and ycY, F(x, y)¢S. Since S is bounded,

l.u.b.F(x,y) --_(y)
xEX (2.1)

exists for all yet

and

g.l.b.;(x,y) = _(x)
ycY

exists for all x_X. Moreover _(y)eS for all yeY and _(x)c_

for all xeX, where S, being the closure of a bouxlded set S of

real numbers 3 is itself bounded. Hence, there exist real numbers A

and BeS, such that

(2.2)

and

g.l.b.
yey _(y) = A (2.3)

I.u.b.
x_X _(x)= 8. (2.4)

Then without introducing any topology at all into the spaces X and Y,

_e are able to prove the following theorem

Theorem 2.1 A __ Bj that is

ycY LxeX F(x, y __ l.u.b. I_ "l'b" F(x, y_.xcX eY

-1-5-



Proof. Let e be any positive number. Thensince B-_ is not an

upper boundfor _(x) for all x in X even though B is an upper

bound (in accordancewith (2.4)), there must exist gX such thatX
0

B-c < _(xo) (2._)

By (2.2), for all ygY,

_(xo) _ F(xo, Y)

which by (2.1) does not exceed _(y).

(2.6) that

B-_ _ _(y)

Hence, we see from (2.5) and

(2.6)

(2.7)

for all yeY.

Similarly from (2.3), we see that there exists y_Y

_(:) < A + ¢

Hence, from (2.7) and (2.8), on taking y = in (2.7), we find that

(2.8)

B-¢ < A+¢

Since this is true for every positive number ¢, we conclude, by

allowing c to approach 0, that B _ A, as we wished to prove.

In the special case where the various functions mentioned above

take on their greatest lower and their least upper bounds the sense

of Theorem 2.1 is to the effect that

rain max F(x, y) __ F(x, y

y_Y _X xcX _Y

-1-4-
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It is not,

Theorem 2.1 (or,

by the sign =.

elements

in general, possible to prove that the signs in

even in the more special case (2.9)) can be replaced

For example, suppose that X and Y contain only two

0 and 1 and let

;(o,l): o, F(l,l): l

;(0,0): l, ;(1,0): 0

then we see at once that

Hence A = min _(y) = 1

A > B.

@(0) = _(1) : 1 while _(0) = _(1) = 0.

and B = max _(x) = 0, so that we have here

Nevertheless there exist familiar cases in which A = B. For

2 2
instance, if F(x, y) = y - x where -1 _ x, y _ +l. Here we have

_(x) = -x2, _(y) = y2 so that A = B = 0. This might suggest to the

beginner that when F(x, y) is an amalytic function of the two real

variables x and y we might expect to have A = B. That even this

need not be the case is easily shown by the following example:

_(x,y): i- (__y)2

rain f2x -x2

y F(x,y) =,(x) [z_x2

0__x, y__l

maxF(_,y) = _(y)--i
x

min q_(y) = A = i, max _(x) = 5/4 = B

so that A >B.

-1 -7-
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A further investigation of the question of when A = B leads

to Theorems 2.2 and 2.33 which are slight generalizations of corres-

ponding theorems of Von Neumsmn. We first, however, introduce the

following definition

DEFINITION: Let _ be any positive number.

said to below to an z-saddle set S_:XxY if

A point (Xo, yo) eXxY is

l.u.b. F(x, yo ) _ F(Xo, yo) +xeX (2.1o)

and

g.l.b.

F(xo,Yo) -n _ F(xo,Y)
yeY

(2. ii )

Theorem 2.2 If for every q > O, S is not empty, then A = B.
n

for every 8 > 0, and for every point (xo, yo) c S ,

Moreover,

IA- F(%, Yo) I<

Proof Let (Xo, yo) c S

(2.2), (2.5), and (2.4),

so that (2.10) and (2.11) are valid. From (2.1)

we write the alternative definitions of A and

B

g.l.b.
A=

y_Y

1.u.b.

B=

x_X

From(2.13)B

.u.b. F(x,y

eX

_g.l.b. F(x,y)l

Ly_Y

F(Xo, y). Hence, from (2.11), we have

(2.12)

(2.13)

B __F(Xo, yo) -

-i-6-
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From (2.12) A _- xcxl'U'b"FCx, yo). Hence,

A __F(Xo, yo) +

Hence, from (2.14) and (2.1_) we see that

from (2.10), we have

A _ B + 2_. Since this

is true for every positive number h_ it follows that A _ B. But,

by Theorem 2.1_ it is already known that A _ B. Hence 3 A = B. Hence

(2.14) can be rewritten

(2.1_)

A __F(Xo,yo) -

The last assertion of the theorem then follows at once from (2.1_)

and (2.16).

(2.16)

Theorem 2.3 Conversely, let A --B and let _ be any positive number;

then the set S is not empty.

Proo_____fLet ¢ = (1/2)_ Let x° be any point in X such that

B-c< _(xo)__B

and let Yo be any point in Y such that

(2.17)

A_(yo )<A+c

Since we are assuming that A = B, we can write this last formula as

B___(yo)<B+ c

Evidently then, from (R. 18),

from (2.17) is less than

F(x, yo) = _(yo) < B + e, which

(2.18)

_(xo)+2_=g'l't F(Xo' y) +ygY

-1-7-
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so that

g.l.b. F(Xo ' y) +1.u.b. F(x, yo)< ycyx£X
(2.19)

Hence, for every x c X3

F(_,yo) l.u.b. F(x, yo)x_X g'l'b'F(Xo, y) + _ < F(Xo, Yo ) +yeY

1.u.b.
It folloWs that

xeX F(x,yo) __F(xo,yo) + (2.20)

Going back to (2.19), we also see that, for every 9 ¢ Y,

1.u.b.
F(x o, 9) _ g.l.b. F(Xo ' y)> xeX- yeY F(x, yo) - q _ F(Xo, yo) - q

It follows that g.l.b.
yeY F(Xo' y) _ F(Xo' YO ) - q (2.21)

From (2.10), (2.11), (2.20), and (2.21), it is now seen that (Xo, yo)

c S, which establishes the theorem.

Our next result is somewhat more transparent.

Theorem 2.4 1.u.b. [1.u.b. )] l.u.b. [l.u.b. )_
ycY _cX F(x, y = xcX LyeY F(x# y

1.u.b. F(x,y)
= (x,y)_ XxZ

with a similar result on replacing l.u.b, by g.l.b.

l.u.b F(_,y)= x(x)
Proof Let yeY

(2.22)

Lu.b. X(x) = M
xcX

(2.23)

l.u.b F(x,y) = _(y)
xeX

(2.24)

- 1-8-



1.u.b. _(y) _-
yeY

l.u.b. F(x, y) = P
(x, y) cXxY

From the boundedness of the set S into which F maps XxY, it is

obvious, as above, that all these least upper bounds exist. We wish

to prove that M = N = P. From (2.23), we have k(x) __M for all

and from (2.22) we have F(x, y) __k(x) for all xeX and all

Hence F(x, y) __M for all (x, y) _ XxY. Hence P__ _L

On the other hand, if _ is any positive number, we see from

(2.23) that there exists a point XoeX such that M-e __k(Xo).

Keeping fixed this point

a point yoeY such that

M-e¢ _ k(Xo) - e S F(Xo,

Xo_ we see from (2.22) that there exists

X(Xo) - e __F(Xo, yo). Hence we find that

yo) __P. Thus M-2c __ P for every positive

number e. Hence M _ P, which, combined with the result P a M obtained

above, shows that M = P.

Using (2.24) and (2.29) as we used (2.22) and (2.23), it is also

easy to prove that N = P. Hence M = N = P as we wished to prove.

The minimax problem is said to have a solution if there exists

points XoeX , and yoeY, such that

rain [max F(x, y)_F(Xo# Yo ) = ycY xcX

It will be proved later that the minimax problem always has a solution

if X and Y are sequentially compact spaces, if F(x, y) is upper

semicontlnuous in its dependence on x, and if _(y) is lower

sen/continuous in y. It will also appear that both these conditions

involving semi-continuity are automatically satisfied if F(x, y) is

continuous in XxY.

-1-9-
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J

From a practical standpoint, however, one might well question

the usefulness of this result. For even without assuming any

topological properties of X and Y, the following theorem makes

it obvious that there always exist approximate solutions in a quite

satisfactory sense.

Theorem 2._ Let g.l.b, l.u.b. F(x, y)
yeY x_X

the notation used in Theorem 2.1 Let c

= A in accordance with

be an arbitrary positive

number. Then there exist points XoeX and yoeY such that

F(Xo, yo) - A < ¢

Proof: As previously, we let _(y) = l.u.b. F(x, y) so that (2.3)
-- xEX

holds. Since A is thus a l_er bound for _ but A + e, is not, we

see that there exist yoeY such that A _ _(yo) < A + e.

With this Yo fixed, there exists x ° such that _(yo) - e <

F(Xo, yo) _ _(yo). Hence A - e _ _(yo) - e <F(Xo, yo) _ _(yo) <A + ¢.

Hence we have A - ¢ <F(Xo, yo) _ A + e for the x° and Yo chosen

in the way indicated.

3. Sufficient Condition for the Existence of a Solution of a Minimax

Problem.

In the previous section we promised to prove a theorem on

the existence of a solution to the minimax problem

.xy ycY _X

- 1 -10-



That is, wewish to prove the existence of a point

a point yocY, such that

F(Xo' Yo) = ycymin[_Xcx F(x, y)_

Thehypotheseson which our proof is basedare as follows:

Hl:

H2:

HS:

H_:

x _X and
o

F is bounded on the product space XxY

Both X and Y are not only topological spaces, but are

also sequentially compact.

F(x, y) is upper semi-continuous in its dependence on x.

lira sup F(x, y) _ F(X, y) for every
This means that x-_x

_X.

max F(x, y), the existence of which is insured by_(Y) = x_x

H3, is lower semi-continuous, This means that

lim inf

Y_ _ _(y) ___(y) for every ycY.

Notice that the hypothesis H4 refers to a function 9(y) whose

existence must first be established from the other hypotheses. This

is done as follows:

We must prove that F(x, y) for each fixed y must take on

a maximum value. Since F(x, y) is bounded and since every bounded

set of real numbers has a least upper bound, it makes sense to let

_(y) = l.u.b.F(x,y),
x_X

and we now have only to prove that there exists a point x* = x* (y) cX

such that

_(y)= F(_ , y).

- i-II-
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1
u mSince _(y) n is not an upper bound there will exist at least

one point x cX such that
n

1
F(x n, Y) > _(y) - :

We may also restrict attention to the case where F(xm, y) J _(y),

for each n; for otherwise we could take x* to be equal to an x
n

for which this condition is not fulfilled. Since X is sequentially

compact the sequence Xl, x2, x3,

sequence_ say_ x x x
nl_ n_ n3,...

such that

.... , has at least one convergent sub-

This means that there exists x*_X

(3.l)

lim

X =X *

k._ _ n
k

From (3.1) we also have F(Xn_ , y) > @(y) - i/n k. This shows that

lira inf F(Xn _ y) _ _(y). On the other hand from Hypothesis H3, wek_ ' -

have lira sup F( , y) _ F(x* y). Hence _(Y) _ k->

lim sup F( _,y)g F(x*
k-'>_ % -

know that _(y) _ F(x* ,

, y), so that _(y) __F(x* ,y). But we also

y) since $(y) is an upper bound for F(x,y).

Hence it is clear that @(y) = F(x_ y), as we wished to prove.

We next need to prove that there exists a point yoCY where

$(y) takes on a mlni_ Let A = g.l.b.
ycY _(Y)"

sequence of points in Y, say YI' Y2_ YS' ....

_(yn) < K + n_1

We can then find a

such that

(3.2)

- 1-12_



andwe can limit ourselves to the non-trivial case where

_(yn) J A for say n. 0ther_ise we could take Yo equal to

a Yn for which this condition is not fulfilled. Since Y is

sequentially compact, the sequence Yl' Y2' Y3'.... has at least

' Y%' Yn'"" This meansone convergent subsequence, say, Yni 3

that there exists a point Yo in Y such that

lim

k-_ _ Ynk = Yo

From (3.2) we also have 9(ynk ) < A + i/nk. This sho_s that

lim sup _0(v ) _ A On the other hand from Hypothesis H4, we have
k_ _ "nk

lira inf _(Ynk ) _ _(yo)" Hence _(yo) _ lira inf _(Ynk ) _ A, so thatk-_ _ - - k-_ _ -

_(yo) __A. But we also kno_ that qO(yo) __A, since A is a lo_er

= g.1.b.
bound for _(y)_ Hence _(yo) = A ycX qo(y).

Thus we are justified in _riting for the Yo thus found

min qg(y) min [max )__(Yo): y_Y = yc_ [x_X F(x,y

But we have already proved above that there exists x° = x* (yo)

such that

F(x o, Yo ) = _(yo )

Thus, from (3.3) and (3.4), we see that there exists Xo_X and

yocY such that

min

F(Xo_ Yo ) = ycY

thus completing the proof of the theorem-

(3.3)

(3.4)

-i-135
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We summarize the existence theorem just proved as follows:

Theorem 5.1 If F(x, y) satisfies hypotheses H1, H2, H3, and H4 given

above, there exists a point (Xo, y6) £XxY, such that

sin _ax F(x,y)_ (5._)F(Xo' Yo ) = y_Y cX

We next want to show that hypotheses H3 and H4 can be replaced

by the single hypothesis to the effect that F(x, y) is merely continuous

on XxY, at least provided that X and Y are metric spaces as well as

being sequentially compact. Thus the semicontinuity requirements of H3 and

H4 are conceived of as being perhaps unnecessarily general. The main facts

are more exactly formulated belo_ in Theorem 3.2. Before proceeding to this

theorem, we cite the following lemma:

_MMA.

6

is denoted by

Let G be a continuous mapping of a metric sequentially compact space

onto a metric space A • The distance between two points _ and _'e

is denoted by J_, _' J and the distance between two points co, co' e

JJ_, _' JJ. Then, corresponding to every positive number c, there

can be found a positive number 8 = 8c, such that

Ila(_),a(_, )II < _ as long as _ _ _ , _'_ _ and If, _' I < _-

Although this lemma is probably well known, we submit the following

proof. For the reader may not be acquainted with the theory of uniform

continuity in the generality here formulated.

_ i ¸

- 1 -i$-



If the lemmawere false there would be somepositive number

that no matter howsmall 5 is taken, say 5 = l/n, it would be possible

to find two points, say _n and _'n suchthat

]_n' _'n I <I/n

e such

(3.6)

while at the same time

Since _ is sequentially compact, the sequence

at least one convergent subsequence
_n1' _n2' _n3,""

(3.v)

gl' g2' _3'"" has

We therefore write

lim = _ * (3.8)

From (3.6) we thus have <
so that we also have

llm _' = _* (3.9)
k_ _k

From (3.7)we have IIG(_%),G(_'_)II_ _- e- Hence, on letting k--_ %

we find on using the assumed continuity of G that lIG(_* ), G(_ *)!I_-c.

But this is absurd since the distance of any point from itself is always

zero. Thus the assumption that the lemma is false leads to a contradiction.

The lemma has therefore been proved.

Theorem 3.2 Let F(x_ y) be continuous in the produce space XxY, where

max F(x,y).X and Y are sequentially compact metric spaces. Let _(Y) = xeX

Then _ is a continuous function of yeY.
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Proof. Of course the existence of ma_
xcX F(x, y) is an obvious consequence

of the continuity of F(x, y) in x(with y fixed), since X is sequentially

compact.

Since both X and Y are sequentially compact, the sameis true of

the product space. Hencewe mayuse our lemmawith _ = XxY, G(_) = F(x, y).

This meansthat if e> 0 is preassignedwe maychoose 8 in such a manner

that

IF(x_y) -F(x', Y')I < e as long as x, x', e X, y, y' e Y,

Ix,x'l<8 and ly,y'l

Her% of course_ we use Ix, x' I to represent the distance between x and x',

IY_ Y'I the distance between y and y', while It, _'I = max (Ix, x'l, ly_yl)

is the distance between points (x,y) = _ and (x'_y') = _' in the product

space.

Now let y' be arbitrary and choose x' so that 9(Y') = F(x', y').

This is possible, since F(x_y') for fixed y' assumes its maximum for some

value x' of x. Then

F(x', y') -e < F(x,y) if Ix,x' I and IY,Y'I are both less than 8.

Since F(x,y) '_ _(y) by definition of _(y) and since F(x',y') = _(y') we

have

_(y') - e S $(y)

for every pair (y,y') such that IY,Y' I < 5 and y, y' e Y.

Reversing the roles of y and y' we also have

- 1 -16-
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under the same conditions. Hence

as long as IY Y'] < 5. This completes the proof of the theorem.

max F(x, y) is thus a continuousIt is worth noting that while xcX

function of y, the point x = x(y) where F(x, y) assumes its maximum

may be a quite discontinuous function of y. Thus if F(x, y) = xywhere

X and Y are the closed intervals I-l, +l] , we have _(y) = IYl which

is continuous 3 but x(y) = +l for y >0, x(y) = -1 for y < 0, and x(0)

is multiple valued.

W close this section by replacing the hypotheses H1, H2,H3, H4 in

Theorem 3.1 by hypotheses to the effect that F is merely continuous and

that X and Y are sequentially compact metric spaces. This is justified

by Theorem 3.2. However, in order to have a formulation involving a max-min

rather than a min-max_ we shall replace F by -G, The final theorem then

reads as follows:

Theorem 3.3 If G(x_y) is a real valued function defined for xcX,

ycY; if X and Y are sequentially compact metric spaces_ and if G is

continuous at every point of the product space XxY, then there exists

max min G(x_y)
a point (Xo,Yo)CXxY such that F(Xo, Yo) = y_y x_X

- i -17-



4. Some Remarks on Function Spaces

The present section enumerates various definitions and results used

in the sequel. No attempt is made to state the most general definitions

or the most general results. For further detail the reader is referred

to the literature (e.g. Kelley 3 General Topology).

Let R designate the field of real numbers and let X be a vector

space over R. We say that X is normed if there exists a real valued

function IIxll on x having the following properties:

(i) IIxfl_>o; Zlxll: o if_d onlyif x : 0

(ii) II_'_I: I_111_IIforall =_R =_ all x_X

(iii)JJx+yJl_< lJxjJ+ llyllforallx,y_X

(_._)

Every normed space is a metric space. In fact_ if x and y are

any two points in X, we define the distance from x to y, written

d(x_ y)_ to be the non-negative real number IIx-yll. It is well known

that d(x,y) satisfies all the requisite axioms of a metric. The topology

of X may now be defined in terms of d(x,y). Specifically, a spherical

neighborhood of a point xeX is the set of all points yeX such that

d(x,y) < r, r_ a sequence {x_ in X is said to converse to a pomt

x_X if d(Xn_ x)-_ 0 as n-_ + _.

A topological space X is said to be sequentiall_ compact if every

sequence in X has a convergent subsequence. The cartesian product of

a finite collection of sequentially compact spaces is sequentially compact.

- 1-18-



Let Y be a real normedvector spaceand let X be sequentially

compact. Let f: x-_ Y be continuous. Thenit is _ell knownthat

llf(x)ll attains both its maximumand minimumvalues in X.

Let C(X, Y) denote the family of all continuous functions f: X-> Y.

C(X_Y) is a real vector space. Moreover_the function II II: C(X_Y)_ R

defined by

IIfll= _ llf(x)ll
xgX

(_.2)

is well-defined and furnishes a norm in C(X,Y). The topology induced

on C(X_Y) be this norm is called the uniform topology. If fn-_ f in

the uniform topology_ we say that fn converses uniformly to f.

In the special case when Y = R_ one has

L1fll= x_X If'(x)l,

where I I denotes the familiar "absolute value"_ Still assuming Y = R,

we have: q-_ f if and only if II% - flle o or, equivalently, if and only

if

marx
x_x lq(x)- _(x)l_o as n+ + .

Let a and b be real numbers_ with a < b. Let Em denote

the m - dimensional Euclidean space. Em is a normed real vector space.

Hence_ in accordance _ith the preceding paragraph, C(E%b]_ E TM) is alSO

a real normed vector space. In order to simplify our notation we shall_rite _

C(a, b; m) for C([a,b] ,_).
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Let K be a subset of C(a, b; m). Then K is said to be

uniformly bounded if there exists a number M > 0 such that

IIfllM forall

K is said to be uniformly continuous if given any _ > 0 there

exists a 5 = 5(e) such that Ix-yl < 5 implies llf(x)-f(y)ll < e for

all x,y_ [a,b] ana all fcK.

In the sequel we shall make use of the following famous theorem.

_neorem (ASCOLI) Let K be a uniformly bounded and uniformly continuous

subset of C(a, b; m). Then K is sequentially compact (in the uniform

topology ).

Otherwise stated, the theorem says that a family K of functions

f: [a,b] _, _hich is (1) uniformly bounded, and (2)uniformly continuous,

has the property that any sequence in it contains a (uniformly) convergent

subsequence.
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5. Precise Formulation of A Minimax ,Problem In Control Theory

Let X be the space of x and let R be a closed bounded region

in X which contains the origin. For the s_ke of definiteness the reader

may take R to be the set

R = _x I Ixil __ ai_ i = l_ ..._ n_, (5.2)

where a. are preassigned bounds (cf. § 1). However, other sets R may
1

be of interest in the future.

We shall say that the system S is T - tame with respect to R if

given the positive number T there exists a subregion RTCR such that for

any Xo_R T and any _cW there exists a control ucU such that

x(t_ Xo_ _ u)eR for all 0 _gt __T. We assume hereby that x(O_ Xo, _ u) = xo.

Let R and T be fixed (given) and assume that S is T-tame with

respect to R.

Let XoeR T. Let

g(Xo,_,u)= _ax0__t__T llx(t3Xo_U)ll (5-_)

h(Xo3m ) g.l.b.= ucu g(xo'_'u) (5.4)

1.u.h.h(xo,e) (5.5)m(Xo)--_eW

We shall show that the functions g, h and m are well-defined.

(i) g is well defined. This is so because x(t, Xo_,U ) is continuous

in t, whence llx(t)ll attains its maximum over the interval [0_ t].
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(2) h is well defined. S is T-tame s hence given XoeE T and

_W there exists at least one u eU such that x(t, xo_u* )eR for all

te [0,T] . H is bounded, hence there exists an r > 0 such that R

is contained in a sphere of radius r with center at the origin. Hence

g(Xo,_,u* ) __r.

Hence# h (Xo3 _) __ r.

(3) m is well defined. We have h(Xo,_ ) __r for all _gW_ hence

_cwl'u'b"h_Xo,__, , _ r_

hence m(x o) is well defined.

We are now in a position to give the first precise formulation of a

minimax problem:

(1) For a given XoeRT, find m(xol.

(2) Determine whether there exists a u* in U such that

I.u.b. max u *
m(Xo) = eeW O__t__T llx(t'Xo'e' )II

(3) Determine whether u* is unique.

(4) Determine whether there exists a e * in W such that

raax
m(Xo) = 0__t__T llx(t,Xo, CO_ u* )II.

Item (4) is of lesser importance than items (1) - (3).
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6. Existence of Solutions To The Minimax Problem In Control Theory

Consider the system

s: _ = f(x,_,u) (6.1)

where x, f_ wand u are as described in § i. We assume that f satisfies

a Lipschitz condition in _, u_ namely that

IIf(x,_,u) - f(x,_,ul)il _-c1 II__ll + c2 llu-ulll. (6.2)

It is well known that these assumptions are sufficient to assure the

existence and uniqueness of solutions for S.

Theorem 6.1 If U and W are sequentially compact and S is

T-tame then there exists a solution for the minimax problem for S. In

other words_ given XoeR T there exist u*eU and _*eW such that

= max IIx(t, Xo,_ u*)ll-m(Xo) O_t_T

Proo____ff.The solution to system (6.1) is given by

t+ f(x(_),_(_),u(_))d_x(t'Xo'_'u)= Xo o

Let x be fixed. We shall show that the mapping
o

p" WxU@[O, + _)

defined by

_(_,u)= g(Xo,_,u)

is continuous.

(6.3)

(6._)

(6.5)
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One has

x(t'Xo'_'u) = Xo o

tx(t, Xo,_'_' ) = x + f(x(_),_'(_), u'(_)) d_,o o

whence

x(t_Xo_u) = x(%Xo_'_u')=/t o _(x_u)- f(x_'_u')] d_

so

]Ix(t,Xo,_,_)-_(t,%,_,,u')il

- o Iff(_,_,u)- f(x,_',u')lle_

_- _ _cI H_'i)+c2 ll_-_'lJ}_

_- M([l_-_'1t+ II_-u'It),

where M = max (ClT _ c2T)_ and t is any number in the interval [O,T] .

It foll_s that

whence _ is continuous.

Theorem 6.1 now follows as an immediate consequence of Theorem 3.3.

The proof is complete.
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Corollary i. In the case of a linear system

S : _ =Ax +Bu +_,

where A and B are nxn constant matrics and c is a constant

n-vector_ the Lipschitz condition (6.2) is satisfied and hence Theorem 6.1

applies.

Corollary 2. Let S be as in Theorem 6.1' Let U and V be uniformly

bounded and uniformly continuous subsets of C(O_ T; n) and C(0, T; 1),

respectively. Then the conclusion of Theorem 6.1 holds.

Proof. Theorem 6.1 together with Ascoli's theorem.
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CHAPTER 2



I. Alternative Formulations Of The First Minimax Problem In Control Theory

In § 5 _f our Second Progress Report we formulated our first minimax problem

in control theory. This formulation involved a set R defined by inequalitie_ of

the form Ixil _ ai, i = 1,...3 n, where the ai_s

We repeat thisformulation hereexcept that the set

is here replaced by a sphere R of given radius r

were given real constants.

R of our SecQnd Progress Report

with center at the origin. The

reason for this change is that the parallelopiped set R of our Second Progress Report

entails certain non-trivial difficulties which are avoided in the event that R is a

sphere. The nature of these difficulties will be brought out in our next progress

report. Suffice it to saythat the following discussion is _trictly limited to the

case when R is a sphere and that changing R into a parallelopiped (or some other

bounded set) would require non-trivial modifications.

Considerthen thesystem

s: _ = f(x,w,u) (1.1)

and the (given) set

R _ (1.2)

Assume that

Let XoCR T

S is T-tame with respect to R

(loc. cit. ). Define

max llx(t,Xo,W,U)l 1g(Xo'W'U) = O__t__T

g.!.b.
h(Xo'W) = u ¢ U g(Xo'W'U)

l.u.b, h(Xo,W )m(Xo): w _ w

-2-1-
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We have shown (loc. cit., pp. 21-22) that g, h and m are well-defined. Our first

.minimax problem consists of the following questions i

(i) _For a given Xo6RT, find m(Xo).

(2) Determine whether there exists a u*eU such that

1.u.b. max iix(t,Xo,W,u.)iim(Xo) = w • W O__t__T

Determine whether u* is unique.

Determine whether there exists a _*¢w such that

m(Xo ) = max llx(t,Xo,_.,u.)lIO__t__T

For the sake of _tUiti_ee clarity, we nowallow ourselves a certain looseness

of speech and replace g.l.b, and l.u.b, by man and max, respectively. The

problem of determining m(Xo) is then the problem of finding

max min
_W u_U g(Xo'W'u)' (l.6)

}_here g(Xo,W,u ) is as defined in (1.3). Therefore, strictly speaking, our first

minimax problem was notreally a min-_x problem bhti,amax-min problem. This

reversal of the order of min and max is forced in the sense that a simpleminded

attempt to interchange the min and max in (1.6) must of necessity lead to a

meaningless problem.

In fact, let g(x0,w,u )

l.u.b.
k(Xo,U) : wee

be as defined in (1.3) and let

g(Xo,W,u)

g.l.b, u)._(Xo): ucU k(Xo'

-2 -2 -
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Speaking loosely again,

_(x0 ) : min maxu_U wow g(xo'w'u)

so that m(Xo) corresponds to the interchange of the order of min and max in

(1.6).

Let xocR T be fixed. A choice of i w_W and uEU gives rise to a u_ique

trajectory x(t,Xo,W,u ) passing through x° at time t = 0. The function

g(Xo,W,U ) gives the maximum value attained by llx(t,Xo,W;u)l I along the arc of

this trajectory corresponding to the time interval 0__t__T. Now, it has been

assumed that S is T-tame. Hence given any wcW there exists a u' = u(w)_U

such that x(t,Xo,W,u')gR for all O__t__T. This; however, does not preclude the

possibility that given a ucU there exists a w;'¢W such that x(t,Xo,W',u )

strays out of R during the time interval O__t__T. As a matter of fact, it

appears necessary to assume this very possibility, namely that .for any initial

point XoER T and any fixed control u_U there must always exist a "bad enough"

wind w_W which drives the system ou_ of the set R during the time interval

0__tg_T. 0therwise_ there would exist at least one initial point x and one
o

control function u = _(Xo)¢U such that x(t,Xo_W;u_-)¢R for all 0__t__T and

al___lwEW. Since _ is completely independent of w, the existence of such a

control would be nothing short of a panacea. It would be a control which is

fixed throughout the motion, unresponsive to any winds encountered in flight

(being, as it is_ solely dependent on the initial point x° and nothing else_

and yet sufficient to assure the s_ety of the system (by keeping it neatly

tucked within the set R) against all winds _. If we assume that the class

W is neither empty nor otherwise trivial (for example, it is natural to

require that if w_W then kw_W for all real k satisfying -l__k__l)

then the existence of u3 perhaps even for one particular point Xo, would

-2-3-
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rule out most systems S of practical significance. The only type of system

S which is likely to remain would be so inherently stable relative to the whole

class W, or the constant T so small or R so large that the safety of S

was never jeopardized in the first place.

At any rate_ itis not Iruly necessary at this point to decide whether

the existence of U(Xo) must be ruled out at every single point of RT-

Suffice it to saythat it mus____tberuled out in a substantial part of RT.

We assumehereby that the initial point x under consideration is one for
o

which no u (Xo) exists within the class U. This, in t_rn, means that given

any ucU there exists a wcW such that x(t',xoJw,U) # R for some

t'e_,T_.

It follows that

k(Xo,U) > r for all ueU,

whence

r.

The number m(x0) does not measure what we set out to obtain, namely the

"least possible deviation attainable (starting at Xo) under the most adverse

circumstances". This is so due to the unfortunate definition (1.7)-(1.8) in

which the natural order of things is reversed. Thus (1.4) measures the best

possible defense against a given wind (control follows perturbation), whereupon

(1.5) determines the least success of this procedure. On the other hand, (1.7)

measures the worst possible performance (i.e. failure_) of a given control

(control precedes wind)_ whereupon (1.8) measures the leastpossible such

failure. Equation (1.10) simply states that the least of all failures is

itself a failure.

-2-4-
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Nevertheiess_ there is a way to formulate our first problem as a true

rain-max problem except that this formulation requires a more subtle approach

than that embodied in (1.7) - (1.8). We proceed in two steps-First we show

that the max-mAn m(x o) defined by (1.4) - (1.5) in W×H may be replaced by

an equivalent max-mAn m'(Xo) defined by (1.12) in a new cross product set

_XH (Theorem i.I). Next we show that

(cf. (1.13))which is also defined in

what we set out to accomplish.

Let

winds W

Let

m'(Xo) equals the mAn-max V(Xo)

_XH (Theorem 1.2). This establishes

H = H(W,U) be the set of al__! functions h which map the set of

into the set of controls U. In symbols

H(W,U) = [h[h: W _U_

l.u.b, g.l.b.
m'(xo)= _w h_ g(Xo'_'h(w))'

where g is as defined in (1.3).

Theorem 1.il m'(x o) = m(x o)

Proof. For every ucU let hueH

is [u]; thus

be that element of H whose rang_

h (w) = u for all w_W.
U

Let w'¢W be fixed. Then

(h(.')Ih_H)9 _hu(_')Iu_U)= U.

(i. ii)

(1.12)
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Onthe other hand_one has trivially

whence

_h(w')J _ = u.

Since w' is arbitrary it follows that

[h(w)lheH , w fixedl = U for every waW.

Therefore

g.l.b, g(_o,W,h(w)) = g.l.b.h c H u c U g(Xo'W'u)'

whence

m'(Xo) = m(Xo) ,

and the proof is complete.

Let

that

g.l.b, l._.b,g(Xo,W,h(w))V(Xo) = h'£ H W E W

Theorem 1.2. V(Xo) = m'(Xo)-

Proof. We note first (cf. Second Progress Report, p. 3, Theorem 2.1)

g.l.b. 1._.b. g. gtXo,W,hrw_'' ,,,h w g(_o 'w'_(w)) _ 1._.b.w hl'b"

(1.!3)
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whence

v(xo) > m'(xo) (1. _4)

We shall now show that V(Xo) @ m'(Xo) .

Let ¢DO be fixed. For every w_ choose a uc(w ) such that

g(_o,W,_e(w))< g.l.t.u g(Xo'W'u) + e (l.15)

Let he; W -eU be the element of H defined by

he(w ) = ue(w ) for every weW. (1.16)

Then, by (1.15) and (1.16), we get

l.u.b. i.u.b, g.l.b.
(w))_< g(_o,W,u)+ ew g(Xo'W'he w u (i.17)

so

l.u.b.
w g(Xo,W,h e (w)) _ m(Xo) + e (1.18)

On the other hand_ it is easy to see that

g.l.b, l.u.b.
h w g(XO'W'h(w) _ l.u.b.w g(Xo'W'he(w))" (I.19)

Hecate, by (1.13), (1.18) and (1.19), we get

V(Xo) _ m(Xo) + e

But e is arbitrary_ so

v(x o) _ m(x o) = m'(Xo) (1.20)
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 ence v(xo) = m (Xo).

Corollary I.i

respectively.

Let g and H be as defined in (1.3) and (l.ll),

Then m(Xo) = mf(Xo) = V(Xo).

2. Existence of Solutions to the first Minimax Problem in Control Theory

In this section we give a corrected proof of Theorem 6.i of the previous

progress report. The proof depends upon an essentially well known lemma on

the continuity of solutions of differential equations with respect to small

variations in the equations themselves. This lemma is formulated below as

Theorem 2.1 in the form convenient for our purposes; and since the theormm

in exactlythis form may be hard to find in the literature, we give its

complete proof using familiar techniques. The main theorem is, however,

Theorem 2.2 which is essentially a repetition of Theorem 6.1 of the

previous progress report; but it also contains a statement tending to

give meaning to the quantity m(Xo) in the case where R is a sphere.

In this connection the reader is referred to the first paragraph of

Section 1.

In what follows leading up to Theorem 2.1 we have replaced the

pair (w3u)_ i.e. (_wind", "control" ), by a single vector _. The purpose

of this modification is sQlely to abbreviate the statement andproof of

Theorem 2.1. Once this theorem is proved, we revert to the previous

terminology.

We consider a differential system of the form

= f(x,_(t))

_2-8-
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where x is an n-vector; the dot denotes differentiation with respect to the

independent variable t(_ef_rred to as the time)_ f is an n-vector function_

and _ is a k-vector. We suppose f (x;_) to be defined for all x in

n-dimensional vector space or some open subset X thereof and for all _ in

a bounded portion V of k-dimensional vector space.

The known functions _(t) inserted in the right handnumber of (2.1)

are assumed to belong to a space ¢ of functions whose domain is the time

interval 0_t_T* and whose range is z!V. We introduce into the space ¢ a

metrie_ denoted by _-_ and defined by

= 1.u.b. lip(t) -  (t)ll
O_t_T*

We assume that f(x3_ ) is continuous in XxV and_ denoting by K any

bounded subset of X_ we assume that there exists a constant L K such that

the following Lipschitz condition

- f(x  )li - xll (2.2)

is valid whenever x and x both lie in K and _eV. Finally we assume

that f [x(t)_ _(t)] is Lebesg_e measurable whenever _E_ and whenever x

is a continuous function of t with values in X. These conditions are

sufficient to insure the existence and uniqueness of the solution x(t_Xo;_)

of (2.1)_ conresponding to any _6¢_ such that x(0_Xo_) = x o. It is

assthnled that this solution exists over a time interval [0_T_ [0_T*J

regarded as fixed at least for fixed Xo_ for any _e¢. That is T may

depend on x but not on _.
o
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Theorem 2.1. If V is sequentially compact_ then x(t,Xo,_) is continuous

in t and 9 for te [0_T] and 9e¢.

Proof. Let _ _ _ <_ and _£ { and let e be a preassigned positive

number. Now x(t;Xo,9 ) and x(t_Xo_) both exist for 0_t_T if 9 as

well as _ belong to ¢. It is required to show how to construct a number

5 such that

llx(t,Xo,_. ) - x({,Xo,_)ll < c (2.3)

It-{l _n_ I_-_I bot_ donot exceed_.as long as

For this purpose choose a positive number _ < 2-!e and let the set K

be defined as follows:

xeK if and only if IIx - x(t,Xo_ _)II _ _ for some t on [0,T].

Since X is open and the set of points x on the trajectory x = x(t_Xo_)

for 0_t_T is c0mpact_ K will be a subset of X if _ is sufficiently

small. We assume that _ has been so chosen. It is also obvious that K

is bounded and closed.

Since KxV is sequentially compact and f(x_) is continuous 3 it must

also be bounded in KxV. Let us therefore write

llf(x,_)ll< B for all xeK and q)eV. (2._)

Moreover the Lipschitz condition (2.2) is available.

Let _ = _L(eLT-1)-l_ where L =LK_ is the Lipschitz constant appearing

in (2.2). Choose _ so that

llf(x,_) - f(_,m)ll < _ for II_-_II< _, (2.5)
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provided also, of course, that q_, as well as _ Ss in V. This is

possible since we have uniform continutiy in KxV. Notice that, if q_c@

and l_-_i < _,we alsohavea_-_-" (fromthedefinitionof I_-_I)

that liB(t) - q0(t)ll< _, so that

t on [o,_ and xgKe

Corresponding to any q_ ¢

llf(xj_(t)) - f(x,q_(t))ll < _ for any

such that |_ - _I < _, we consider the

sequence

x°(t): x(t,Xo,_)

-1 , )]_t) = X 0 + f (@) q_(_ d_, m ....

We first prove by induction that the members of this sequence exist and

that for

m

Z LS_ltsl[xm(t) - x(t,xo,_(t)II _-n s:

s =l

which, for O_t_T does not exceed _L-I(eLT-I) .= _ sothat our inductive

proof also establishes the fact that xm(t)cK for m=0_l,2_...and for

The statement is obviously true for m =0. Make the inductive

hypothesis that (2.7) hoids when m is replaced by m-i and that con-

sequemtiy xm-l(t) _K- Using the abbreviation x(t)= x(t,Xo_) we

evidently have

Jot[ )3_(t): xo + f _(_),_(_ d_

(2.6)

(2.7)

(2.8)
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This is true, since (2.8) is merely the integrated form of (2.1) with

_=_ and x=x. Usingthis sameabbreviation our inductive hypothesis

appears in the form,

m-1

s=l

Ls -IT. S

(2.9)

for 0_x__T. Subtacting (2.8) from (2.6) and performing some obvious

estimates 3 we find that

-f [xm'-l( T),_!_)] ]l dr + /otl]f[xmTl(_),_(.,)3

Since xm-l(T)cK_ x(T],_<, ,_O and I_.- _ < _, we may use both

(2.5) (with X replaced "oy xm-l) an8 the Lipschitz condition. We accordingly

find that

Ii_m(t) - x(t)ll _- + T. ) -x(_)tl d._
vO

Hence_ from our inductive hypothesis (2.9) we deduce that

m-i m

Z I,St s+l Z LS-l_"Ilxm(t) _(t)ll -_ nt + n _ = n s:
s=l s=l

This completes the induction.

Now that xm(t)is known to lie in K_ where the uniform Lipschitz

conditionis valid; it is easy to see that the well known technique due

to Picard and LindelZf is available to prove that as m_ _, the xm(t)

tend uniformly to the solution of (2.1), which takes on the initial value

x. Since this solution is unique_ we thus are enabled to write
O
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lira xm(t) = x(t,Xo_q_ ) uniformly on [O_T_m --> oo

Hence, from (2.7) , we find that

as long as |_| < _. Mo_eove=,_om (2.1) and (2.<) , it i._ also clear

that

IIx(t,Xo,_) - x( t,Xo,_)II __ BIt,t I <(1/2.) e

if It-tl < (2B)-le. From (2.10), (2.11), and the triangle inequality, we

thus find that

provided that l_-t I and I_1 are both less than 8 = man [_,(2B)-ii7 ._.

This co_lets the proof of Theorem 2.1.

We now revert to the system

s: A =f(x,w,u)

where x_X_ f_ w and u are as described in § i of the Second Progress

Report. We assume that f is continuous in x, w_ and u_ and moreover

satisfies a Lipschitz condition in x,

llf(x_,w,u) ÷ f(_,_,u)ll _-_II _' - =II

(2.10)

(2.!!)

(2.12)
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when x and x' belong to any fixed bo_idedregion E_X and w and u take

on any values in the ranges of functions in the sets W and U respectively.

It is well knownthat these assumptionsare sufficient to insure the existence

and uniquenessof solutions for S; at least if f [x(t)_w(t)_u(t)] is measur_

able when x(t) is continuous_ and w£W and u_U.

Theorem 2.2 If U and W are sequentially compact and S is T-tame_

then there exists a solutionfor the first minimax problem for S. In otherwords_

given Xo_RT, there exist u*_U and w*eW such that

_lax _: llx(t,Xo, ,u )Jl,m(Xo) 0St_T

where x(t_Xo#W#u ) is the solution of S reducing to x° when t = O.

Moreover_ the trajectory x(t_Xo_W*_u* ) does not leave the sphere R for

O_t_T and therefore the number m(Xo) is of significance in the sense tha t

it measures the worst possible result which might be obtained when'the best

control is used to counteract any wind.

Proof. We invoke Theorem 2.1 to insure us that x(t_Xo#W#u ) is continuous

in t_ w and u. In doing this_ of cours% we interpret the _ of Theorem 2.1

to stand for the pair (w, u) and the space $ then consists _ of all pairs of

functions (w, u) in which wcW and ueU. It is seen that the hypotheses_ both

those stated explicitly in Theorem 2.1 and those contained in the preamble_ are

satisfied.

Since x(t_Xo,W3u ) is continuous# as stated_ the same is true of

llx(t Xo,W,u)ll.
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FromTheorem3.2, of the SecondProgress Report_ it nowfollows that

g(Xo,W,u)= max
O_t_T IIx(t_Xo,W,u)II is a continuous function of w and u.

From Theorem 3.3_ of the Second Progress Report 3 we now conclude that there

exist w*¢W and u*_U such that

]w_W u_U g(Xo'_,u

Using equations (1.57 , (1.4), (2.137 and (1.37 in this sequence we thus

obtain

(2.137

=ax h(Xo,_)= max _uin )J

max

= O__t__T IIx(t,Xo,W*,u*711,

thus completing theproof of Theorem 2.2
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In previous progress reports we dealt with a certain minimax problem which

appeared to be of limited significance in regard to control systems for !a__uch

vehicles. We now propose another problem, which at first sight might seem only

trivially different from the previously considered problem. Yet, the difference

is just enough so that we are led to a significant minimax problem, whereas pre-

viously we had decided that the only immediately significant problem was a

_naximin problem_ even though at the end of § i of the Third Progress Reportj

we managed, by fairly sophisticated ideas_ to rephrase it as an equivalent

minimax problem.

We now consider the system

s: _ : f(x,w,u)

where x is an n-vector representing the system's state, the dot represents

differentiation with respect to time t_ w and u are vectors (of any

dimensionalityj not necessarily n)_ and where

of x_w_u_ defined_ say_ for xcX_ w_W*_ and

We consider a class W of functions w

f is an n-vector function

u_U _.

(referred to as "winds") which

map the time interval

u (referred to as controls) which map X into U*.

Under suitable conditions on f and the class

S_ which is now thought of as taking the form_

[O_T] into the set W* and a class U of functions

W and U_ the system

:

admits through each initial point Xo, a unique solution

x : x(t,Xo,W,U), ith x(O,Xo,W U): Xo"
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Moreover, the systemis supposedto disintegrate wheneverthe solution

emergesfrom somegiven region RC X. Wefind it therefore useful to say

that the system S is uniformly T-tamewith respect to R_ if there exists

a subregion RT(C R) and a non-vacuoussub-class V(_ U) of controls, "such

that x(t,Xo,W_U) e R as long as xoeRT_0 __t__T_wEW_and ucV. Wehence-

forth assumethat S is uniformly T-tamein the sense of this definition.

Supposenext that it is desirable that a given function F(x) be kept

as small as possible during the motion. Moreprecisely_ we are interested

in minimizing by proper choice of the control u the maximumvalue of

F[x(t_Xo,Wju )] for Xo_RT_O__t__T_and for woW. Thus3 letting

_ maxg(_,u)= _x o____r [x(t,Xo,W,u)],
RT, x O

we pose the question as to the existence of a :"bad" wind w*eW and a "good"

control u*cV_ such that

g.l.b. _ l.u.b.u _ v hw _ w g(w,_) = g(_*,u*).

If we prefer not to make our results independent of Xo3 we could let

]g(Xo'W'U) = 0 __t__Tr

and pose the question as to the existence of a tad" wind w*eW

(relative to this particular initial point) and a "good" control u*eV

(also relative to this particular initial point)_ such that

u e v w e W g(Xo'W'u = g(_*, u*).
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Thematerial given in sections 2 and3 of the SecondProgress Report is

probably sufficiently general to apply to such questions of existence in the

present problem. However_it is clear that considerable care must be exercised

in specifying the class U. If this class is not Lipschitzian_ for instance_

we could be faced with the loss of the uniquenessof solutions of S.

In comparingthe present problemwith the one formulated previously

in § 5 of the SecondProgress Report and treated more fully in the Third

Progress Repor% it is seen that in the previous work the class U wasa

class of functions u(t) defined on the interval 0_t_T_ whereas nowthe

class U is a class of functions u(x) defined for xcX. Of course_ since

x is eventually thought of as a function of t_ it appearedat first sight

that this difference was only superficial_ u(t) = u(x(t)). But this appearance_

itself_ is superficial. Our previous fundamentaldifficulty was connectedwith

the fact that it did not seemsensible to select a good control u(t) in-

dependently of the wind w_whereas_now_even though u(x) maybe selected

independently of the wind, we are led inevitably to a u(t) = u[x(t)]_ which

is indeed no___tindependentof the wind w_ since the x(t) written above is

just an abbreviation for x(%xo_w_u), whichI of cours% dependsexplicitly

on both the wind and the control.

It mayhave been noticed by the reader that in the aboveformulation

we have used and defined the expression "uniformly T-tamel'!. Evident!y3

_t is up to us to explain the significance of this term and its relationship

to the (non-u_.iform) "T-tameness"first introduced in the SecondProgress

Repor% po 21. For this purpose consider again the system
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s: _ = f(x_w,u). (1)

We say that a set A(_R) is T-tame with respect to R if for any XoCA and

any weW there exists a control u(x) = u(X;Xo,W ) in U such that

x(t,Xo,_,u)c_ (2)

for all O_t_T. Thus_ for any XoCA the set

U(Xo_W) = I u_U I conditi°n (2)is satisfied 1

is not empty.

We say that the system S is T-tame with respect to R if there

exists a non-empty subset RT of R which is T-tame with respect to R.

Let A be T-tame with respect to R. If XoaA we know that

U(Xo,W ) _ _ for every weW. However, the set

v(xo)= n _(Xo,W)
w6W

may be empty.

Now let A be T-tame with respect to R. We shall say that a

point XoCR T is uniformly T-tame with respect to R if V(xo) / _.

This is equivalent to the requirement that there exists at least one

v*(x)eU such that

x(t;Xo;W;v* ) eR for all O_t&T and all weW

(3)

(k)

(_)
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Here v* is_ of course_ independent of w.

A set A is uniformly T-tame with respect to

is uniformly T_tame with respect to R and_ in addition_ the set

v(xo)
x cA
o

is not empty. Thus_ a set A _R is uniformly T-tame with respect to

R iff there exists at least one (fixed) v*_U such that

R if every point in A

(6)

x(%Xo,W(t),v*(x)) eR for O__t:T. I'a:l ]:_6_Jana-_al: x O
(7)

Here v* is independent both of w and xo.

If A is uniformly T-tame with respect to R we denote the

(non empty) set (6) by V(A).

We say that the system S is uniformly T-tame with respect to

R if there exists a non-empty subset RlCR such that V(R1) / _.

Let A (_ R) be uniformly T-tame with respect to R. If V1 is

any non-empty subset of V(A) then clearly

x(%Xo_W,u ) :R for all O__tST, all XoaA , all wcW and all vgV I

The converse also holds: If V1 satisfies (8) then VI_V(A).

Given a non-empty subset V in U, the set

IXo6R I x(%Xo_W_U), eR for all Og_t__T_all weW, all vcV 1

will be denoted by R(V).

(8)

(9)
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The following relations clearly hold:

(1) _._ s_:s) _ v(s) _ v(A)

(2) Vl=Vz(_u) _s(v 2) ms(v1).

(3) s(v(A)):_ A

(_) v(S(Vo))_v o.
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CHAPTER 4



i. INTRODUCTION AND FORMULATION OF THE EXISTENCE PROBLEM

In the fourth progress repot% we indicated a desirable modification

of the minimax problem as previously understood. While this modification

permits the application of certain general results contained in the second

progress report, it was found necessary to generalize Theorem 2.1 of the

third progress report in order to obtain a suitable tool for establishing

the desired existence theorem. The generalized Theorem 2.1 is likewise

denoted as Theorem 2.1 and appears in the next section of the present report

with complete proof. The method of proceeding to the proof of the_ existence

theorem is given in Section 3. The problem itself has already been formulated

in the fourth progress report. For the sake of completeness, we reproduce the

formulation here.

We consider the system

s: _ = f(x,w,u)

where x is ann-vector representing the systemls state, the dot represents

differentiation with respect.to time t, w and u are vectors (of any

dimensionality, not necessarily n)_ and where f is an n-vector function of

x_ w, u_ defined_ say_ for x_X, w_W*, and u_U*.

We consider a class W of functions w(referred to as "winds _) which

map the time interval [O,T] into the set W* and a class U of functions

u(referredlto as _controls _) which map X into U*.

Under suitable conditions on f and the class W and U,

Sj which is now thoug_of as taking the form

= f(x,w(t), u(x)),

admits through each initial point Xo, a unique solution x = x(t,Xo,W,U)

the system
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such that x(O,Xo,W,U ) = xo.

Moreover, the system is supposed to disintegrate whenever the

solution emerges from some given region ReX. We find it therefore useful

to say that the system S is uniformly T-tame with respect to R, if there

exists a subregion RT (CR) and a non-vacuous sub-class V(_U) of controls,

such that x(t,Xo,W,U ) _R as long as Xo_RT, 0 _ t _ T, wow and u_V.

We henceforth assume that S is uniformly T-tame in the sense of this

definition.

Suppose next that it is desirable that a given continuous function

F(x) be kept as small as possible during the motion. More precisely, we

are interested in minimizing by proper choice of the control u the maximum

for XoCRT, 0 _ t _ T_ and for woW. Thus_value of F[x(%Xo,W,U )]

letting

g(w,u) = m_x
Xo_R T

max

O__t__T F[x(t'Xo'W'u)]_ '

we pose the question as to the existence of a "bad J°wind w*_W and a "good'_

control u*cV, such that

g.l.b. Fl.u.b. q

u c V Lw c W _g(w'_j= g(w*,u*).

In section 3 we answer the question in the affirmative_ at least if

f[x,w(t), u(x)] satisfies a certain reasonable Lipschitz condition and if

RTJ W, and V are compact.

There remains a lot to do in examining the usefu!iness and significance

of bhis result. For instance, both the Lipschitz condition on f[x,w (t), u(x)]

and the hypothesis on the compactness of _ W preclude the possibility of using
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discontinuous controls. Also the limitation of u to the set V is awkward.

Onemight expect a better result if wewere to contemplate

u e U L w e w g(w,u ,

but this leads to technical difficulties, since g(w,u) may fail to be

defined throughout the product space W x U. Other unanswered questions con-

cern the properties of the maximal controllable region RT. Is it connected?

Does it contain the origin?

We hope to answer questions of this type in the next progress report.
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2. ON THE CONTINUITY OF SOLUTIONS OF D!F_TIAL SYSTEMS.

We consider a differential system of the form

= f[x,_(x,t)] (2.1)

where x is an n-vector, the dot denotes differentiation with respect to the

independent variable t (referred to as the time), f is an n-vector function,

and _ is a k-vector. We suppose f(x,_) to be defined for all x in _

n-dimensional vector space or some open subset X thereof and for all _ in a

bounded portion V of k_dimensional vector space.

The functions _(x,t) inserted in the right hand member of (2.1) are

assumed to belong to a space ¢ of functions whose domain is the Cartesian pro-

duct space of a fixed open time interval I and the set X; and the range of

the functions _ in ¢ is assumed to lie in V. We make ¢ a normed metric

_pace by defining the norm of _ as follows:

= 'l.u.b.
t¢I,xcx Ilm(x,t)ll •

Contrariwise ][_1] refers to a norm for the k-dimensional vector space of which

V is a subset. Likewise IlxH refers to a norm for n-dimensional vector space.

There is never any possiblity of confusion regarding the use of II-..II to

denote a norm in k- oT n-dimensional space.

f(x_@) is assumed to be continuous in X x V.

Denoting by K a bounded subset of X_ we assume that there is a

_Lipschitz _ constant LK such that

llf[x, _(x,t)]-f[x,_(x_t)] II _ LKI I x-xll (2.2)

whenever _ and x both lie in K and _¢.
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Wealso assumethat f[x(t), 9(x(t),t)] is Lebesquemeasurable

whenever 9 _ ¢ and x is a continuous function of t with values in X.

Let x(t,Xo,9) denote the solution of (2.1) which reduces to x°

when t = 0 _ I. Here 9 is a fixed element in @. The classical

existence theoremsfor systemsof differential equations assure us that

sucha solution exists and is unique for 0 _ t _ T for somesufficiently

small T. Given XoCK*r-X, we further assumethat x(t,Xo,9) exists over

the time interval [O,T]_I, where T is independent of Xo, and 9, as

long as x eK* and 9_¢.o

Theorem 2.1 If V is sequentially compact, then x(t,Xo,9 ) is continuous

simultaneously in t,xo, and 9, for t_[0,T], Xo_K*, and 9_¢.

Proof Let t_[0,T], _c¢, XoCK *, and letl _ be a preassigned posi-

tive number. Now x(t,Xo,_) and x(t_Xo,_ ) both exist for 0 _ t _ T, if

and 9 (as well as x and _) belong to K* and ¢ respectively. ItXo o

is required to show how to construct a number _ such that

Ilx(t,Xo,9) - x(_,Xo;_)I_ < c
(2.3)

as long as It - tl, HXo - Xoll and _ - _I __ So

For this purpose chooose a positive number < 2-1 _ and let the

set K be defined as follows:

llxxI  o;  ll some t on [0,T].
Since X is ppen and the set of points x on the trajectory x = x (t,Xo,_)

for 0 __t __ T is compact, K will be a subset of X if Cz is sufficiently

small. We assume that c_ has been so chosen. It is also obvious that K

is bounded and closed.

Since KxV is sequentially compact and f(x,_) is continuous, it
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must also be bounded in KxV. Let us therefore write

ll_x,_ll<_ _o__ x_ o__v

Moreover, the Lil_Sduitz condition (2.2) is available. Let

where L = L K is the Lipschitz constant appearing in (2.2).

provided also, of course, that % as well as _j is in V. This is possible

since we have uniform continuity in KxV. Notice also that, if _¢ and

_ - q01< o, we also have afortiori (from the definition of J_ q_l) that

I!_(t) - qD(t)II < _ so that

Ilf(x,_(t)) - f(x,_(t))ll < _ for any t e I and x _ K.

Corresponding to any qDc¢ such that I_ - q0[< o, we consider the

sequence,

x°(t): x(t,Xo,_)

• ...o.e.oo..,oe.e

: x ° + ._ f[xm-l(T), @(xm-I(T),T)]dT, m : 1,2,3,... (2.6)xm(t)

o

(2._)

_] = O_ L(2e LT- i) -I,

Choose _ so that

We first prove by induction that, ifIIXo_oll<_ __l themom_o_sof

Lkt k m-i Lktk+l

_: + =_o n T_T)T .(2.7)

this sequence exist and that for m = 0,i_,...

/i x:m(t ) x(%_o,_(t))# _ _m-1- _ / _

k=o

J

__ _e 5T + _L-I(. LT -i) -0_ < 2 _e..

..... _nductive proof thus also establishes the fact lhat xm(t)eK for m = 0,1,2,...
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The statement is obviously true for m = O. Make the inductive

hypothesis that (2.7) holds when m is replaced by m-i and that consequently

xm-l(t)cK. Using the abbreviation x(t) = x(t,Xo,_) , we evidently have

t

Sx(t) = x0 +

o

fix(?), _(£(?),_)] d? (2,8)

This is true, since (2.8) is merely the integrated form of (2.1) with

and x = x. Using this_:!same abbreviation our inductive hypothesis

appears in the form_

- m-2 Lk Tk m-2 LkTk+l

= k=o

(2.9)

for 0 __ T __T.

x_(t), - x(t) = x ° - x°

Subtracting (2.8) from (2.6), we find that

t _ ]_

0

t

-i= Xo - XO

0

f[xm-i (_%),_(xm-i (-_),-_)]-f[_(¥),_(x(_), %) ]

0

Hence ,7.

t

:[Ixm(t)-x(t)l/ -_llXo- _ol/ + J_/[f[xm-l(_),_(xm'l(_),_)]-f[xm-l(*),_(xm-l(_)j_]]l d_
o

t

o
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We next use the fact that IIxO - x°II< _' as well as (2.5)and (2.2). We thus

find that

,t
o o

Hence, from our inductive hypothesis (2.9)we deduce that

m-2 Lk+itk+l m-2

ilIxm(t)-i x(t)ll<_ + _t + _ _ (k+l)_ + X_k=o

Lk+itk+2

(k+2)[

m-i L_ .%.-_ m-i

_-_o.

This completes the induction.

Now that xm(t) is known to lie in K,

L _ t _+I

(_+!)!

where the uniform Lipschitz

condition is valid_ it is easy to see that the well known technique due to iPicard

and LindelSf is available to prove that as m_oo, the xm(t) tend uniformly

to the solution of (2.1), which takes on the initial value Xo, Since this

solution is unique, we thus are enabled to write

xm(t) = x(t,Xo,_) uniformly on [O,T].

Hence, from (2.7), we find that

IIx(t,Xo,q_ ) - x(t,Xo,_(t))]l < 2 -1

as long as |_-_|<a an_11_o - xoll< _.

is also clear that

(2.10)

Moreover, from (2.1) and (2._), it

Ux(t,Xo,_), -x(t,Xo,_)ll _- Bit- t_ < 2-1G (2.11)
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if _t - _I_ (2B)-1 c. From (2.10)_ (2.11)_ and the triangle inequality_ we

thus find that

lix(.,,Xo,,>-x(_Xo,,_>jf<<__/,>_-,-(_./,>_=_
provided thatI_ - tl,l_ * _| and II_o - Xoli arealllessthan 8 = min[_,(2B)-l_,_].

This completes the proof of the Theorem.
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3. EXISTENCE OF SOLUTIONS TO A MINIMAX PROBLEM IN CONTROL THEORY.

We recall the problem introduced on p.2 of the Fourth Progress Report,

where we set

g(w,u):
max { max

XoeR T O_tST

F being a continuous real valued function of the vector x. We posed the

"go_'question as to the existence of a nbad_ wind w*eW and a control u*cV_

such that

g.l.b.I l.u.b. }
u _ V w _ w g(Wl_U) : g(_*,u*).

The answer to this question is affirmative if W and V are sequentially compact

and if RT is closed as well as bounded. We support this statement with the

following proof:

According to Theorem 2.1_ x(t_Xo,WjU) is continuous in t,Xo_W , and u.

In reaching this co_elusion_ we, of course, interpret the @(x,t) of Theorem 2_i,

to stand for.the-l_ir .....(W(t)._ n(_)), and the space ¢ then consists of all pairs

of functions (w,u) in which w£W and u6V. It is _een that the hypotheses,

both those stated explicitly in Theorem 2.1 and those contained in the preamble_

are satisfied.

Hence F(x(t_Xo_W_U)) is continuous in t_Xo,W _ and u. According to

Theorem _3.2, p. 15 of the second progress report_ it then follows from the

compactness of RT and the interval O__t__T as well as of W and V, that g(w_u)

is continuous in w and u. Finally_ according to Theorem 3.3, P. 17 of the

second progress report_ there exists w*eW and u*eV such that
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g(w*,_*):

as we wished to prove.

[ Xwul
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CHAPTER5



1. SOME ELF_TARY THEOREMS CONCERNING UNIFORMELY T-TAME SETS

As in the previous progress report, we consider the system

s: _= f(x,w,u),

•where x is an n-vector, the dot represe_s differentiation with respect to time
L

t_ w and u are vectors (of any dimensionality_ not necessarily n)# and where

f is an n-vector function of x, w, u, defined, say, for xeX_ w_W*, ucU*.

We consider a class W of functions w which map the time interval

[0,T] into the set W* and a class u of functions u3 which map X into U*.

Under suitable conditions on f and the classes W and V_ the system S1

which is now thought of as taking the form

= f(x,w(t), u(x)),

admits through each initial point, a unique solution x = x(t,Xo,W,U), such that

x(O,Xo,W,u) = xo

According to Theorem 2.1 of the previous report x(t,Xo,W_u ) is continuous

in all its arguments if W and V are sequentially compact metric spaces. This

continuity is used in some parts of the present section and in Section 2. It is

not used in Section 3. Nat_rally, wherever the continuity of _f+ Y _ n_ is not
_\ _2--O, • ) --,

assumed 3 we are concerned with results which hold even when W and V are not

sequentially compact.

For convenience we begin with a reformulation of some definitions already

introduced (cf. fourth progress report p. 9) and add thereto a few simple

theorems.

Definition i.i A non-empty set A_R is said to be uniformly T-tame with respect

to R under the (non-empty) set V(_ of controls if

x(t,Xo,W_u) cR

for all Xo¢A , te[0,T], ueV, and w¢W.

Definition 1.2 Let A be an arbitrary (non-empty) subset of R. Then let
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V(A) be the largest subset ofL_ underwhich A is uniformly T-tamewith respect

to R. That is,_ V(A) consists of all uc_ such that x(t,XoJW,u)¢R for all

x _A_ tc[0, T] and w_W.o
Of course, if V(A) is vacuous, A is not uniformly T_tameunder any subset

of_ .

Theorem i.i Let A and B be subsets of R. Then

V(A_ B) = V(A)_ V(B)

V(A._B)_V(A)@ V(B).

Proof of (1.1) Let ucV(A_ B). Then by Definitions 1 and 2, ucV(A) and ucV(B).

Hence

V(AU B) _ V(A)_ V(B), (1.3)

On the other hand, if ugV(A)_ V(B), then ucV(A) and ucV(B), so

that x(t,XoJW_U ) cR as long as O_tgT and x o is in A or B. In other words,

as long as x aA_ B. This means that u_V(AU B). Hence we conclude that
o

V(AUB)= V(A) V(B). . (1.4)

and then (1.1) follows immediately from (1.3) and (1.4).

Proof of (1.2). Let ugV(A)_ V(B). Then x(t,XosW_h)cR for O_t_T and for all

XoC A_ B_ so that ucV(A_ B). Hence (1,2) is seen to be valid.

Incidentally we notice from Theorem 1.1 that the union of two sets A and

B 3 each of which is uniformly T-tame under non-vacuous subsets of@ _ , need not

be T-tame under any subset of_ . For V(A) and V(B) may have no common element.

We also notice the following obvious

Corollary i.i If A_CCU, then V(C)_V(A). '(of. Fourth Progress Report p. 6(2)).

Proof Let B = C-A; so that C= A_ B. Then from Theorem i.i, 'we find that :

V(C) = V(AU B) = V(A)_ V(B)=V(A).

Definition 1.3 If V is any non-empty subset of U, we denote_ by. Q(V), the

set _f points_ XoCR , such that x(t,x._.,u)_. _ _R for all tc[0,T], all wcW and



all u_V. In other words, Q(V) is the largest subset of R that is uniformly

T-tamewith respect to R under V. Weshall refer to it briefly as a maximal

uniformly T-tame set (under V with respect to R).

Notice that Q(V) was called R(V) in the Fourth Progress Report, pp. 5-6.

Since the letter R is used also for another purpose, it seemswise to changethe

Theorem 1.2 Let V1 and V2 be subsets of U. Then

Q(VlU V2) = Q(Vl) _ Q(V2) (1.5)

Proof of (1.5). Let XoCQ(ViUV2). Then x(t,Xo,W,U)cR for all tc[0,T], all

woW and for ucV i (i = i or 2). Hence xo_Q(Vi) both for i = i and i = 2. In

other words XoC Q(VI)_Q(V2), which establishes (i.5) within the sign =

replaced bye.

Next let XoC Q(VI)_ Q(V2), This means that XoCQ(Vi) for i = both i and 2.

By definition 1.3 we now have x(t,Xo,W,U ) _R for all tc[0,T], all wow 3 and

all ucV i (i = i or 2); that is, as long as ucV I or uEV2; that is, as long as

UCVl U V2" _........ _ i _ +_ m_ans that x _ Q(VIU V2), which establishes

(1.5) with the sign = replaced by _.

This result combined with the previous result proves (1._) completely.

Corollary 1.2 If: VI_V3_U, then Q(V3_Q(VI).

Proof Let V2 = V3 - VI, so that V3 = VIUV 2. Th_n from Theorem i,2we. find

that

Q(v3)= Q(v Uv2) = Q(vI)D Q(v2) Q(Vl).

Theorem 1.3 Let R be closed and let A be a subset of R. If U is sequentially

compact, then so is V(A).

Proof Let Ul,U2,U3,... be an arbitrary sequence of controls in V(A) . Then,

since _ is sequentially compact, there exists a convergent subsequence Ul*,U2*,u3*,...,
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limwhoselimit u* =
n -->

is an element of _. It suffices to show that

u* ¢V(A). Since Un*eV(A), we have x(t,Xo,t,W,Un*)_R for all XoeA ,

t6[0,T], weW. Since x is continuous 3 we have

lim x(t,Xo,W,Un. ) = x(t,Xo,W,U.)"
n -_

Since R is closed x(t,Xo,W,u*) eR for all XoeA , te[0,T] and woW. Since

V(A) consists of all u for which x(t,Xo,W,U ) cR for all XoC A , tc[O,T] and

w6W, it follows that u* cV(A)3 as we desired to prove.

Let L be a class of controls contained in U under which it is known that

some set _ R is uniformly T-tame (with respect to R). The largest such set 3

we call RT. According to Definition 1.5, RT = Q(L). Now let

v = V(RT), (1.6)

this being the largest class of controls contained in _ under which RT is

uniformly T-tame with respect to R.

Theorem 1.4. RT = Q(V).

Proof Let R* = g(V) (1.7)

Since L_V_, we have by Corollary 2 (of Theorem 2)

In other words,

R*_R T (1.8)

By (1.6) RT is uniformly T-tame under V. But by (1.7), R* is the largest

uniformly T-tame set under V. Hence R*_R T. Combining this result with (1.8),

we have R* = RT, as we wished to prove.
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2. ON THE INTERPRETATION OF THE SOLUTION OF THE MINIMAX PROBLEM

In what follows the V and the RT may have been introduced in the manner

indicated at the end of Section i. However all results hold as long as

RT= Q(V)_ that is_ as long as RT is the largest subset of R, which is T_tame

under V (with respect to R).

Let F(x) be continuous in R; and let

g(w,u) = i. u. b.

Xo_RT, O__t__T

F[x(t,Xo,W,u)] •

Then, as proved in the last progress report, if V and W are sequentially

compac% there exists u* cV and w*_W, such that

minimaxg(w*,u*) = ueV weW g(w,u .

If 3 however, V or W are not sequentially compact but are merely such that

g(w,u) exists, we still have theoretically a result almost as good. In fact,

±±u_L _ieorem 2. u± the _.... _ _u_=_ _.... _j

any positive number c3 there exists u*cV and w*_W 3 such that

We wish to examine the significance of the number g(w%u*) in case R is

represented by a formula of the type H(x) _ k, where H is a continuous real

valued function of x and where k is a constant. R is thus a closed set.

Among other things we wish to examine the connection between g(w*,u*) and k

in the special case where F _ H. It will appear that g(w*,u*) _ k. Whence_

if g(w*,u*) is actually less than k_ the advantage of using the control u*

instead of any u c V_ is that the system may be controlled in a smaller region

than Rj namely H(x) _ g(w*,u*). This leads to an increased factor of safety

but gives less indication of how a larger region than RT might be controlled

within the original R (that is_ with an unchanged factor of safety).
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Theorem 2. I R is closed.
T

Proof Let Xo_R - RT. Since RT is the maximal uniformly T-tame set in R_

the point x(t_Xo_W_U ) will leave the region R for some t on the interval

[0,T], at least, for a suitably chosen w6W and u6V. That is_ for this

w_ u3 and t_ we shall have

> k.

From the continuity of x(t,Xo,W_U), considered as a function of its second

argument, we see that we must also have (for the same t,wj and u)

H[x(t,_o_W,U)] > k for all Xo in R sufficiently close to xo. Hence_ by

defintion of RT and R we conclude that _o c R - RT. In other words

R - RT is open in R. Hence RT is closed.

In the seque± we suppose that H is of class CI and that _H/_x / 0

at any point where H = k. This insures that such points are true boundary

points of R.

%-- TTr..{$ .... 11_] < _ for all
Theorem 2.2 If xo6 RT - osT3 then _L_o,-,-_ . .....

t £ [O_T]_ weW_ and ueV. That is x(t,Xo,W,u ) is an interior point of R.

Proof By definition of RT_ we already know that

k. (2.1)

Suppose_ now it were possible to find t* e[0,T],

that

H[x(t*,Xo,W%U* )] = k

w*£W_ and u*£V_ such

(2.2)

Then, since we assume that _H/_x / 0_ there are points in every neighborhood of

-5-7-



x(t%Xo,W%U* ) for which H > 0, that is_ points outside of R. Now the

homeomorphism x = x(t*,x,w*,u*) between x and x maps every neighborhood

of x onto a neighborhood _ of x(t*,Xo,W*,U* ). Since x iso o

interior to RT, N may be chosen so s_ll that N _R T. But then _ still

contains points outside of R. Thus there are points x in N _RT which are

taken by the transformation x = x(t%x,w*_u*) into points outside of R.

Hence R T is not uniformly T-tame, contrary to assumption. Thus 3 since (2.2)

leads to a contradiction_ we see that the equality sign must be excluded in (2.1),

and this establishes the theorem.

-5 -8-



Assu_.ing that H is continuous over all x-space and that for every x
o

in this space H[x(%Xo,W,u)] is bounded for tc[O_T], wcW_ ueV, we let

l.u.b. _[x(t,Xo,W,u)]m(Xo) = t,w,u

By definition of least upper bound_ we know that_ corresponding to any positive

number c_ we can find t* c[0_T]_ w*cW, u*eV, in such wise that

m(Xo) - e < H]x(t*,Xo,W*,U* )] _ m(Xo)-

If_ in addition_ W amd V are sequentially compact the

found in such wise that

max

H[x(t%Xo'W*'U*)] = m(Xo) = t,w,u

(2.3)

t*_ w%u* can always be

H[x(%Xo_W,U)]. (2.4)

Moreover, by Theorem 3.2 of the second progress report, we also know that m(Xo)

is continuous in x in the case of sequential compactness. In general we can
o

prove much more in the case of sequential compactness than in the more general case

where compactness is not present. In Theorems 2.3 and 2.4 we summarize some further

facts about m(Xo).

Theorem 2.43 we do.

Theorem 2.3 I

In Theorem 2.3 we do not hypothesize compactnessj while in

If x ° eR T - _RT, m(Xo) __ k

II If x ° cR - RT, m(xo) > k

Proof of I By Theorem 2.2_if XoCR T - _RT, then H[x(t_Xo,W,U )] < k for all

tc[O,T], wcW_ and u6 V. Hence k is an upper bound. Hence the least upper

bound m(Xo) can not exceed k as stated.

Proof of !I Since R T is maxim_liy uniformly T-tame under V 3 we can say

tha% when XoCR - RT, there exists some t_[%T], some wcW_ and some ucV,

such that
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H[x(t,Xo,W,U)] > k. Hence, any upper bound, including in particular the

least upper bound m(Xo) , must exceed k. Thus we have m(Xo) > k as stated.

Theorem 2.4 If W and V are sequentially compact, then

I If XoCR T - SRT, m(Xo) < k

II If Xo_RT, m(Xo) = k

Proof of I By (2.4), we have, since W and V are sequentially compact,

m(Xo ) = H[X(t.,XoJW. u.)] (2.5)

for a suitably chosen t*,w _, and u*. But, since XoCR T - _RT, we know from

Theorem 2.2, that the right member of _-5 ) is less than k. Hence the left

member is also less than k.

Proof of ii If Xo_R , every neighborhood of x ° has points in R - RT-

Let Xl,X2,X3,... be a sequence o£ points in R - RT such that

lim
X = X.

-9 co n

Since x is not in the maximally uniformly T-tame set RT, there exist
n

tnc[O_T], Wn_W 3 and UnCV _ such that

H[x(tn,Xn,Wn,Un)] > k
(2.6)

Since [0_T], W: and V are all sequentially compact, we may (by extracting a

suitable subsequence) assume that

lim lim
lim = t* c[0,T], w = w*_W, u = u*_V

n_t n-_ _ n n_ n
n

Hence: passing to the limit in (2.6), we see from the continuity of H and

x(t:Xo,W:U ) that

H[x(t*,Xo,W*:_*)] __k
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On the other hand_ since Xo_RT_:_ RT_ we know that

for all t c [0,T]_ weW, and ueV. Hence, we find that

H [x(t*,Xo,_*,u*)]= k,

which, of course_ is the _ximum possible value for H[x(t,Xo,W_U )]

te [0,T]_ Xo_RT_ woW, and ueW, and ueV. Hence_ for such Xo,

have m(Xo) = k, as we wished to prove.

In the special case where F = H_ we have

g(w_u) = Xo_RT_ 0_t_T 'Xo_

for

we must

at least, if we restrict attention to the case where we have sequential compact-

ness_ so that we can write _max _ instead of "!.u.b.. Evidently from Theorems

2.3 and 2.4

max m(x )= _x m(Xo) = k
xo eRT _ Xo_R T

Hence k =
maxCma_ima_XoeR T _ 0__t__T w _ W

i (t,Xo,W,U)]'_# "'_ '_
m a x H[x _ "_'_
_ev a'il

smax max max

u e V t_.w e W Xo_RT_0__t__T

according to Theorem 2.4 of the second progress report.

k _

max C max _.
u _ V _ w _w g(w'u)i "

Hence_ we find that

On the other hand, if we let

m i n _ ma x (w,u) -_
= u6 V _ weW g

we have _ __k and _ is equal to k if and only if m a x (w_u)
weW g
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is the samefor every u e V. This would meanthat the class V contains

only the set Ve of controls for which the minimaxis attained. Otherwise

Ve is a proper subset of V and _ < k. And letting
1. u. b.

me(Xo): t'e[0,T] H[x(t,Xo,W,U)]
wcW_uEV*

we find that me(Xo)= _ for Xoe_RT and that this

max ¢ max, _} rain { max g(w,u)]
= ueV*lw_W gkw, u) : ueV* weW

The region with respect to which we have uniform T-tameness under Ve is the

region Re represented by H(x) 6 _ instead of the region R represented by

H(x) S k. Since _ < k, it is clear that ReaR.

Thus our analysis shows how_ by limiting attention to the class V* of controls

which solve the minimax problem, we reduce the size of the region R with respect

to which we can control RT. This is what we referred to previously as an

increased factor of safety.

If we wish to retain the original R_ we could replace RT = Q(V) by

R_ = Q(V*), which by Corollaryl_2 is a larger set than the original RT. If

V* were to contain more than a single element, we could then repeat the entire

process, using R} ; V*_ and R; instead of RT, V, and R respectively.
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3. FIRSTCOMPUTATiO_Tq_LASPECT OF TP_ _NiMAX PROBZ__EM: THE CORE OF R.

3.1 Preliminaries

In previous sections of the present and past Progress Reports we discussed

in great length the question of the existence of an optimum minimax

control. It was shown that such a coltro! (or controls) does indeed exist

under the assumption that the function spaces U and W of admissible

controls and admissible winds are sequentially compact. This assumption is

rather severe. It excludes_ among others_ the rather important case of piecewise

continuous c_ntrols. However_ it was remarked above_ and is reiterated here_

that in the case of non-compact sets U and W one may interchange min and

max by g.l.b, and l.u.b._ respectively_ without affecting the results signifi-

cantly. Instead of arriving at g distinct element u*£U which attains the

minim_x_ we would obtain elements in U which come arbitrarily close to

the g.!.b, of the l.u.b.. In order to hue closely to the line of greatest

practical interest_ we hereby adopt the second point of view. Thus_ when we

--_- _ ............... max we no_p_m of an "_p+_ _i • control" longer imply the existence of a

distinct element in U which attains the u_niu_x. Instead we refer to an

element which may or may not attain the minimax_ but at any rate_ comes co_Zortably

close to it.

It is felt that a meaningful class U must contain at least the class of

all piecewise constant and all piecewise linear controls. However_ for the time

being we shall adopt an even larger class. Specifica!ly_ we shall assume that

the class U is the class of all uniformly bounded_ piecewise continuous con-

trollers. The class W will be introduced in the examples.

The proofs contained in our previous work concerning the existence of opti_l

minimax controls were not constructive in nature. They contain no hint as to the

-5-15-



nature of these controls_ nor do they yield an algorithm for computingthem.

The results are adr_ttedly of sometheoretical significance_ yet they leave

the practical problemunresolved.

It is the object of the present section to initiate the search for the

actual computationof optimal minimaxcontrols. Thereader will recall that the

words "optimal minimaxcontrols" are nowbeing used in the senseof our re_rks

in the first paragraphabove.

The_ain results are contained in the following subsection (3.2). Section

3.3 illustrates these ideas by meansof two elementary examples.

-5 -14-



_ CORE OF R.

Consider the system

where x is a real n-vector_ f is a real n-vector function of (x,wju)]

w = w(t) and u = u(x) are elements of the (given) function spaces W and

U_ respective!y_ and the whole system is well-behaved in the sense that it

satisfies sufficient conditions for the existence and uniqueness of solutions.

In the space X of the vector x we are given a closed bounded set R

(the set of constraints). We are also given a positive constant T and a function

F(x).

Let now V be a subset of U. We recall the following definition: A non-

empty set A is uniformly T-tame with respect to R under the(non-empty)set of

controls V if for every x _A and every weW_ the arc
O

is eomtained in R for every element ueV. Whenever there is no ambiguity

concerning the definition of the set R we shall simply say that A is uniformi_

T-tame under V.

If V I is any subset of U_ and A is any subset of R_ then the sets

Q(VI) _ V(A) are well-defined. The reader is referred to section i of the

present Progress Report for the precise definitions.

A first attempt at a for_mlation of the "practical" (i.e. computational)

aspect of the minimax control problem must proceed essentially as follows:

Let a non-empty set V_U be given. Suppose that Q(V) is not empty

and let V' = V(Q(V)). Find a control u*eV' which minimizes (over V') the

quantity
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_x max max F(x).
wow XoCQ(V ) O__t_T

The reader is again reminded of the convention established in the first paragraph

of the Preliminaries to this section.

A major question arises: Which class V (in U) should we start with? Our

first impulse _y be to take V = U. However_ on second thought this impulse

appears to be misguided. The class U is rather large; it is the class of all

uniformly bounded (with bound i) piecewise continuous control functions. It has

already been shown that if VI_ V2 then Q(VI)CQ(V2). Since U is the

largest subset of itself_ Q (U) is the smallest uniformly T-tame set available

in R. In zany,_ _' Q(U) may well be empty. For if XoCQ(U) then every (J) piece-

wise continuous controller constricts the trajectory through Xo_ against any wind_

for all OGt__T_ within the set R. The system may not even have such points. But

be that as it may_ the fact remains that choosing our initial V to be the whole

set U would result in a uniformly T-tame set Q(U) which is the very s_l!est

_ossible (_nis is our "controllable" set' ). If we were to proceed from here and

actually obtain an optimal minimax control for this choice of V_ we would have

found the "best" control for the smallest possible "controllable" set' But surely

one of our main concerns is to _ake the "controllable" set as large as possib!e_

for this is the set of initial values in R for which an eventual optimal minimax

control will at least insure the safety of the system. We may summarize our

dile_ as follows: If we maximize the initialset V_ we minimize the "controilable"._

Q(V_)corresponding to it. H_ then is one to proceed in order to arrive at the best

(i.e m_ximal) uniformly T-tame set within R? In fact_ is there such a m_xin_l

tuciformly T-tame set? And if the answer to the last question is in the affirmative_

what is the set V of controls under which it is uniformly T-tame?
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The remainder of this section will provide the answer to the last three

questions.

Let (u} be the set whose sole element is u. Denote Q([u}) by Q(u).

We shall _ke use of the following definition,

Definition 3.1 Let ui_u 2 be elements of U. We say that u2 contains uI

written u2_u I (or equivalently ul_u2) ±ff _he following condition holds:

Whenever an arc

• ! and w fixed_ Xo6Q(Ul)}

is contained in R_ then also the a::",:

{_(% Xo__, %) ] o_t-<x8

is contained in R.

The reader will note that if u is a me_oer of U such that Q(u) is

empty_ then u is (vacuously) contained in any other member of U.

Prooosition3.! Ul_U2 :_ffQ(Ul)CQ(%).

The proof is trivial. This Proposition furnishes an alternative definition of

Proposition 3.2 If Ul_ u2

l_roof Proposition 3. i.

and u2c u i the_ Q(_I ) = Q(_2)"

___position 3.3 _he relationS'is transitive.

_roof Let uiCu 2 and le_ u2C u3. We rr:astshow that

_._follows directly from Proposition 3.1_ for one ....

Ul_U 3. _his

Q(_l ) C e%)C Q(%),

whence uq_T. u_.
-- J

Defintion 3.2 An ad_issibie control _eU is said to be an upper botm_d in U iff

u_ for every ucU.
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It should be noted that it is poss_bie _hat ui_ u2 and u2_ uI and

yet u_yo.-_-u2. _aerefore an upper boundin U is not necessarily unique.

Definition 3.3 A set Bc.R is said to be a core of R if__

(1)

(2)

AC B.

The set R may or _y not have a core. However_ if it does_ then the core

is clearly tu_ique, in fact_ if _i and 32 are cores of R then B I C _2

and on the other hand B2 C Bio Hense BI = 22 . We _y thus speak of th___ core

of R. If R has a core we designate it by RT. It is th___elargest uniformly

T-tame set in R.

?_e are naturally led to the following _jor decision: If R.T exists_ _ve

shall require _..a_ an o_timai min:i:s_x control must be effective throughout the

B is _iformiy T-tame

If A is any u_iformly T-ts_me subset of R_ then

full core of R.

_£c_osition 3o4 If u_ and _2 are upper bounds in U_ then Q(_I)=

The proof follows trivially from _roposition 3.2.

The reader will recall that if Q(u) is empty for every u6U_ then the

opti_l minimax problem is vacuous (no controls are available to choose from).

_erefore we must ass_e that there esists at least one control u such that

We are now in a position to state the main result of this section.

Theorem 3.1 The core of R exists iff U has an upper bound. If u is

an upper bound in U then RT = Q(U)o If RT exists then V(RT) is the set of

all upper bounds in U.



_ [ be an upper bo'_qdin Uo T_en_ by definition, Q([) isP_o± Let

uniformly T-tame. Let A be an arbitrary _uiformly T-tame subset of R.

Suppose A is uniformly T-tame u:_der Vo Since V_U and _ is an upper bound_

we have

Hence

v_ u for all v _ V_

Q(v) cQ( ) forallv V.

rA_qUS

_eV

It follows that Q(u) is a core_ hence th___ecore_ of R.

Conversely_ let RT be the core of H and let V = V(RT). Let _EV. Then

Q(_)_ RT. Since RT is the core of Rj Q(_) = RT. Let now u be an

arbitrary element of U. The set Q(u) is uniformly T-tame and hence Q(u)_ RT.

It foilows iby Proposition 3.1 that ucu. Hence _ is an upper bound in U.

This complete the proof.

T_eorem 3.1 provides us with a key to the first computational a_pec% of the

practical _ optimum minimax problem. It may be sun_rized as follows:

(I) The most desirable set to control is the full core of R (if it exists).

(2) The core of R exists iff U has an upper bound.

(3) The core of R is o_uz_ormly T-tame under the set of all upper bounds in

U.

(4) The core of R _y be Obtained by find:ing an upper bound u in U, then
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].i) The Si]stem 9. : w + Uo

Let x be a r@_ -_ '_. • var_ab:e and consider the system

,=_(t) + u(x) (3.2)

Here w = w(t) is restricted to a certain class W of admissible winds while

u = u(x) is restricted to the class U of admissible controls. The class U

is the class of all real piecewise continuous functions of the real variable x

which _r_p some given interval R containing the origin (the constraint set)

into the interval [-i_i]. The class W is a given collection of admissible winds

whose do_,_in is [O_T] and whose range is [-£z_(Z]. It is assumed that W contains

all piecewise constant winds (whose domain and range are restricted as above) and

.;that it is_ _._oreover_ reasonable enough to insure that system (.'2) satisfies suffi-

cient conditions for the existence and uniqueness of solutions.

Let R be the interval -A ( x < A. We shall show that the core of R

exists. _This will be done by showing that U has an upper bound. _ne core of

R will also be computed°

Let

_(x) =

-i for all. 0 < x _ i

O for x = 0

+I for all -i _. x < O.

We shall sh@¢ that _ is an upper bs'&ad in U.

Suppose first that _ S i. Consider the system k = w(t) + u(x). Let

x >0_ xER.o o _hen w(t) + E(x(t,_o,w,[))<_ O for _ny wEW so _ongas
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x(i..,Xo_W._u')> O. f4o:reover._ th__ tzajectory x(tjXo;W_u ) cap=aot cross over into

the negative half' of R;. since :if ic were to do so the direction of %he vector

field would be reversed° He._c__ n -

0 < x(t) < xO for all 0 _ t < T arid every WEWo

T__erefore_ (o:A]CQ(_o:)o Sim:ii.a:riy [-A_O)=Q(u). We also bare x(t,Op%{/) : 0

for all _ t _ '_ and all w e W° Henae_ OEQ({)o Thins R_-Q({) whence

R : Q({)o It folio_s.+hat Q(u) e.sntains every u_n:iformly T-tame subset of R

and therefore u is am upper bo'_:<u_ and R is the core of R. --

The case _hen _ > i also _ _'<_sthe fact that [ is an upper bo_u_d in

U. The details of the proof are sc,:i_what more co_plicated and are left out for

lack of t:ime, .They _ill be supplied in the next Progress Report. The core of

R turns out to be the set [-A . -'_-_'_i; A- -_--_-I]o

i__'] The STstem "i = w + u

Let Xl_ x2 be two real variables and let the vector (Xl,X2) be

demoted by x,

Consider the system

il = w(%) + u(x)
(3.3)

_2 : Xl

Here w = w(t) is restricted to a c=_rtain class W of ad_ssibie winds; while

u = u(x) is restricted to the class U of admissible conirolso The classes W

and U are both _u<iform!y boo_ded i_<:the sense that

u.(,x)!h "_ for all u e U_
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these inequalities holding true for all t and x for which w(t) and _(x) are

defined.

The class U is the class of all real piecewise continuous f'_uctions of _he

real variable x defined in some region R (the constraint set) containing the

origin and satisfying (3.4). We are not as specific about the class W except to

require that it be reasonable enough to insure that system (3°3) satisfies

sufficient conditions for 'the existence and _iqueness of solut±ons. We do_ how-

ever_ specifically assume £,_.!ii!-_ class W contains the class of all piecewise

constant winds whose range l_es in the in±erval [-_]. The domain of all winds

is 0__ t _ T_ where T is some preassigned positive constant.

It will be shown in _e next P_ogress Report that the function

_(x) =

# _l for all x suclh that x ! > 0

I 0 for all x such that xI = 0

+i for all x such that xI < 0

t_J_n_ out to be an _pper _o_ud in U° The computation of RT is also left

for the next Report.



4. APPEKD!XTOSECTION!

The striking simi!s,ri-y of the lottoalas i-q Theorems i.I and 1.2 suggests

that these theorems are but sgeclLal cases of general "theorems in set theory° We

shall show that ±his is the case.

Let @ and _ be arbitrary sets and ±ez]_ be a fixed set of certain pairs

(f;g) where f e @ and g _ '_-o (/! does not_ }Lowever_ ordinarily contain all

such pairs).

A mapping F of the subsets 9 of _" into the subsets 9 of @ is defined

as follows: To say +_hat 9 =F(y) means that 9 is the largest subset of @

with the property that _ x ._c::/%. this means two things:

(2) If'(f_s)_P_forall g c% _,henf cF(_).

Theorem Let { __, dencte any family of subsets of __ . He-_e _ represents an

index which ranges over the index set A_ which need not be finite or

even countable.

_nen

Proof Let f _ F[b'@ ._@]- By (i)_ if g is an element of any of the V@,

we have (f_g) c ./_t• _aus_ we have (f_g) c;q for all g _ _c_ so that by (2)

have f _ F(#£_) for all _ e A. Hence f e _ F(_£p. This establishes thewe

formula of the '_neorem when the sign = is replaced by the sign _ .

/%

_ex_ let f _ G_ _t%)" _e_ore f_ S(%_)_ foralZ a _ A. Zr

g e _a' we have (f_g) £ ./"t by (i). t.hat is, (f,g) £/it for all g e _(_. In

T_hen_ by (2)_ f s F[I!_?_] This establishespartio_!ar(f_g) </. fo=_al_ g _, _%.
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the formula of the Theorem when the sign : is replaced by the sign _ .

Prom these two :results; the proof of the _neorem is complete.

In the applications to Section i the set _ (or _) is the set _ of __i.__ts

and the set _ (or _) is the set U of controls. The set J_ consists of the

- _r c R and u c U; which have the property thatpairs (Xo_U)_ _h__e x°

x(t_Xo;W;u)c R for all t c [0_T] and all w c Wo In Section i, we con-

sidered only the case when the index set A contained two elements. A special

case in which the index set contains infinitely many elements occurs; however;

in the proof of Theorem 3°i.

It is also interesting to observe that the formula of DeMorgan to the effect

that

where C [_]

baeozem. In this case

(f;g) in which fc %

denotes the complement of _ in _ is also a special case of o_J_

and %_ are identical and_ consists of all pairs

g_ _, and f _ g.
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l° A'__ Abss:ac_: !:%:_o:ry of "" ' - _? .....::a-spi2_:_ .... p20s£,s-s 1.r..2o S_osef:.s+

We proc_-e.i _q-_:-_ 5c ioveioo ats _--= .... ÷ "__= ".... c-..a!_; ma!pir_gs from the

_u%s_÷s of a gnv-:: ..... _" ( or ¢ ) ±o the subsets of ano±her giveL2 Set @ ( C: _

_nese mappi__g_; ire all defin:-_£ i:: terms of a subset _% of the product space ¢ _=.]£

Tn t_-, appiieaLio2 %0 Jo::trol m' -_ .--....... _.n_o,.y, one can take @ to be %he -- _'' -_. _ e_lo_.. R of i&.?.2 £L- S

x in %he .beievanD rat% of phas-_ space, while _ is the set U of allowa'ols conCrcl._, £._
O _

and ( Xo_ u. ) c _ 2f and only if ( i:::,the noLatio: of previous progress ze::c:.t:,

X ( %_ W; U \ _"Xo_ , £ R for all % £ [ 0, :2 ] alld all %_ £ _o

Theorem i,i was give2 iYi the AppeLdix to Sectio=: 1 ol the previous progr: :._.z,_cor-.

The Corollary to .?_eorem 19Jr essemtfiaiiy an abstract generalization of __ropc:_2-:fio:,

9. I in the 2-,_'_, _ _-" "....7_o...: L=o,sress report, while Tne(,rem i. ii 2s an abstract versio::, of

m _ ......... po_ _. Other relationships between +_ -re__:i s=he_em 3ol of +m:_ previous progress .... ÷ ....

of this section ar/_ .w-__ __=_ o-os._£p,-_l'2__i:_s_ of previous progress reports will be obvious to _"_-

reader,

......_,__=_ T s.nd O car. be 22%t_rpreted as the mapoings V ar_d Q of 2%+

Control _- -_-- . ,= "s ",=n_.:oO, as _re_o_ !_ developed° But the mappings H and J_ even i:::,_'c::crane

form, have :te-.-e:" p:'eviously " =-" - ....oe;_ con-sidered_ IIhether H and J will give -_;<-, %o

useful co::oel_.ts in 3c_2-L.-rolTheory is doubtful° They could inieed be used, "b'.X,c.:_

aeco,,int of Lie formulas ( io 5 ) ar_d ( io 6 ) they will proba%iy merely i_-:ai %£

-__ +'_ _ _o Perhaps by us i::____o___e_, road results already obtained by way of F and 8, ,_

another 9 %h_v" <:ay help _o obtain ne,w results° in ary evens, it seems w!sa To i_}-

velop such a_:: abs-:Ta,2t theory as cor:pletely as possible,

Let @ a::i 0-" be ar'oi_.rary sets and let _ be a fixed set of certain: r_.i'::

( f, g ] whor_ f s @ a:nd _ s _° _ __o_-_ _Ot, however, ord:xarily contal2 ai] 5u::n

pairs., A m:%cs:i<r _ of %he _ubseis T of _ into the sGose_s @ of @ 2_ i f2 _ i

as follows: To _ay tna% qo = F ( @ ) means -ha2 _p is %he largest subse't c<= ? w:: r_

the proper'<; tha< _ x @ _ f.°
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This means two _hz__.

(!) If f c F(T) and g c _, then (f_g) c D.

(!i) If (f,g) c _ for all g c _, then f c F("@).

Theorem i.i Let { _}denote any family of subsets of _. Here _ represents an

index which ranges over an index set A, which need not be finite or even countable°

t_en

Proof. Let f { F[U_(J. By (I), if g is an element of any of the %_ _ we

have (f,g) c 9o _-mus, we have (f,g) c _ for all g c _'_, so that by (Ii), we

have f c F (9_) for all _ _ A. Hence f c _F(9_). This establishes (i.i) when

the sign = is replaced by the sign _.

Next, let f c _F (_). Therefore f c F(%'_) for all _ c A. If g c _y we

have (f,g) c _ by (I). That is, (f,g) c _ for all g _ _ _or all _ c A,

therefore for all g c_9<z. < Then, by (II), f c F [U_cJ. This establishes (!oi)

when the sign = is replaced by the sign_.

From these two results, the proof of Theorem i.i is complete.

Notice that F (0) = ¢, where 0 is used here to denote the null set. This is

true because @ x 0 is void. Therefore ¢ x 0_.

We next introduce a mapping G of the subsets 9 of _ into the subsets

of _ defined as follows: To say that 9 = G(_) means that _ is the largest

subset of _ with the property that q0x 9_D. This means two things:

(!II) If g c G(_) and f _ q0, then (f,g) c D,.

(IV) If (f,g) c _ for a!i f c 9, then g c G (_)

Evidently G is a m_pping very similar to F, the only difference is that it

romps subsets of _ into subsets of "_ instead of the other way around. Thus Therem

l°Ican aiso be stated for the _pping G and we thus have for any family {_'Oc]
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of sT_b<=+s_._,_,_ oi _ the foilowing_ formula:

: &_i"_ a (9 c)

-X- , r_
_'heoz,em i_ 2 _e-c'' _ : F('#) and _ : G(_}o Tn_=,__ # _U _o

in other words O[F('#)]_y, or, reversing the roles of F ar_d G, F[G(_)]t-_-_Q

for any _ c %.

l_'oo__ff. Let g £ ? and let f _ m : F(9)o Then (f,g) E S

,-x-

this is true for all f in e, we have g £ O(q0:) =_

element of V is also an element of 9 o

t!.2

Theorem i_, .£f _i_2 , then F(?I)_F(?2)

by <I_). Tnus_ every

z# m2, then O(ml) O(m 2)

_A_'oof. L =+
_ Y3 : _2 "@i, so that ?2 = _i _ '_9

By _.<@eo-rem i.i, F (,_l(]_3) : r(_z)_r (_3)

Kence_ F(92) = __i) D __(V3)C_(#I)° This estao!ishes the first part cf _-he

_heorem. _ne second part is obtained by using G instead of F and ._ z::st:ad of

_.R._heorem 1.4 9-'[ _% 9"C_] :Z) & F(J_O_ ) 1,, _5)

We co___sider orly the first of these two formulas, in as much as the secor-d

follows from the first merely through a change of notation.

First R_oofo Let I yC_ (indexed by Cz E A) _ arbitrary° 'i_en defi'te

= -.' _ , orp ,DO; 2[.'vC_;_ _]"- kl.2 ) G[ U ,:pO_] = _"_O(q00_ ) = {']t L "(YOp]

He,_qce, "by 'rk.eoram 1_ 2 , O[ Ur-pOgK:D {'},¢'CZ.

Hence., by _':.'-,'= , . " " : U}"(,$ro.:;.

Second Rzoof. Let f E UF(%'_). Hence there exists C_ _ A, such tha:

f E F(I_c_)o Hence, if g { _C_' (f'g) { _ by (!). This is true in particui.-rr, _f
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f c F[{]@_], as we wanted to prove°

T_me second proof is more fuL_damental than the first proof° But the first proof

also brings out the fact t.hat the sig__ in the formulas of Theorem 1o4 may be

replaced by the sign =, whenever the same is true in T_eorem 1.2° __nis is the

case in the De _._organ for_mlas of Boolean algebra° In general, however, this cm_L mot

be dome° As a counter-example consider the following-

Let _ demote the set of the four Letters a, b, c, d; let __ denote the

set of the four letters _, #, y, $; and let _ consist of the eight pairs

._a_ _b, _c, _d, cg0_ _c, y'd_ Sao Let _i = _c_ _ _/2 = _d_,. Then _'i_ _2 is

the null set O_ Hence %[TI_ _'2] = F[0] = __ according to a previous re-

mark° On the other hand F(_I_ = F(_cl_ = It,T1

F (,2) -- F ( ) = .

Hence F(_) U F (_2) = It, y_ _ _ which is a proper subset of

= <c_,#, y, _, so that F(_I)UF(._2) is a proper subset of F.[ Wi:_T2].

_._.us we lost the elegant duality of the De Morgan formulas which remain valid

when the signs U and _ are interchanged. In order to restore this duality, we

may introduce two other T_ppings H, taking subsets of _ into subsets #, a_nd

J, taking subsets of @ into subsets of _o The duality is restored in the sense

that the formulas remain valid when simultaneously with the interchange of _ and

i ; we interchange _ with K, G with J, and _ with_.

_ne needed new definitions are as follows: (_ = H (T) is the smallest sulbset

of @ such tnat (C'@) x (C9)_o Here C_ means the complement of _ in _

and C_ means the complement of _ in _ According to the definition of F

this is equivalent to saying that C_ = F(CT). In other words

-6- 5 -



It also gives rise to the following characteristic properties

(V) If f c CH(_) and g c C V, then (f,g) c _q

(\n_) If (f,g) £ N for all g c C "_, then f c C H('_).

Similarly _ = j (_) is the smallest _ c _ such that (CT) x(C@) c _o

Equivalently

J (_) : C a(co) (1o6)

and we have the chazacteristic properties

(VII) If' g £ C J (q0) and f c C % then (f,g) _ 2

_/ £ o for all f £ C e, ther,_ g s < J .(@).

_(/9_ %) : _ J (%)

It will bbviously be sufficient to consider (1.7),

one based on formula (1.5) and Theorem 1.!, while the other is based on the

characteristic properties (V) and (Vi).

_.__rs__proof°' Let _C_ = C @(z' so that ?cz = C _cf 'Then by (I.9)

H (i1'v_) :cF[c(h_p] : cs[U(c%)] :cF[U_].

But this last set_ by Theorem i._ is the same as

u_ c s (c %) U H (_p,

_%ere, of course, -che last step is taken in accordance with (1.5).

Second proo_'o ,net r _ C H (Pta). _en b (V), if S s C[f]_a], _e _ust

have (f,g) _ n° That is, (f,g) s 2 for all g _ C[_C_] : U [C ?cJ" In particular

(f,g) s 2 for all g s C ? for each _ s A. _nat is, by (VI), f s C H (%'), for

each _ _ A° Hence, f £ OC H (_) = C [_H (gcz)]. Hence we have proved that

H (_a)] (1.9)

(lo :)

(_oS)

for which we give two proofs,
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Next let f c C [UH (4_)] = _[C H (4_)]. Hence f c C H (4(_) for each _ c A.

By (V)_ if g c C 4_, then (f,g) c _. That is, (f,g) c _ for all g c C _ _

Hence (f,g) c _q for all g £UC 4_ = C[_ 4(_]. Hence, by (V-I) f c C H [C',_r]o

Hence C [UK(4_) ]_ C H [_4_]. Combining this result with (1.9), we have

CH (_4p : C [UH(4a)]

which is equivalent to (1.7)

Theorem 1° 6 ":

J[ H (4)]_ 4

H[ J (_)] _

Proof of (ioi0) Let _ = H(4) and 4

From (1.5) we have C_ = F(C4) and from

(ioi0)

(l.ll)

= J(_). We need to prove that 4_°

(1.6) we have C ? = G[_@] =

G_F(C4]_. Hence_ from Theorem 1.2 , we find that C _ _ C 4. Hence _? as
__" "d

desired.

_ne proof of (i. Ii) is similar.

Theorem 1o 7 If 41_)2, then H (?i)_ _(72)

If 91_2 , then J (_i)_ _(_2 ).

__Or___qoo_.Since ?i _ 72 ' we have 41_ 42 = 41. Hence, using Theorem 1.5 we

have K ( ?i ) = H (41_42) = H (?I)_H (42)_ (72). This establishes the first

part of _ueorem 1.7, and the second part may obviously be proved in the same rr_nner.

Theorem i°8

Hi_ %] _ _ H (%)

t

Proof of (1.1 2 ) By Theorem 1.4,

_[ _c_] _ 0s (c 4a)

_;nerefore_ by n_king free use of (1.9) , we find that

(1.12)

(loZ_)
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Thus c ], which is equivalent to (1.12)

_ne proof of (i._) is entirely similar.

Any one of these functions can be used to introduce a partial ordering amomg the

subsets of<f or _ which, in general, is quite distinct from the natural one

afforded directly by the relationship of sct[nclusion. For instance, we in%roduce

the relationship _ or _ by means of the following

Definitions I_Io _o subsets 91 and 92 of _ satisfy the relationship

_i _ _2 or 92 >K 91 if and only if K(_I)_ K (92) , where K may stand for

either F or H.

Similarly we may also contemplate

Definition 1.2. Two subsets MI and M2 of @ satisfy the relationship

_I <K M2 or _2 _ _2 if and only if K (_I)_K (_2), where K may stand

for either G or J.

It follows from Theorem_ 1.3 and 1.7 that these relations are transitive and

reflexive° These definitions also afford a partial ordering of the individual

elements of _ or @, because an element of _ or @ may always be viewed as a

subset of _ or @ containing but a single element. Of course, it is possible in

particular instances that the set of order relations between individual elements may

turn out to be void.

Theorem i._ Let _i and _2 be subsets of _. Then

[(f,g) c fl for all g ¢ 91] _\ [(f,g) ¢ _ for all g c _2 ] (1.13)

if and only if _i <F _2"

Proof Suppose _i _2" Then, by definition, F(_I)_F(_2).

c fi thatfor all g _ 91 , we know from (i!)

the fact that fc F(_2) , we conclude that

If n_¢ (f,g)

f _ F (_1)_:::2(_2). But from (I) and

(f_g) _ fl as long as g _ _2" In other
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words the ass_@tion _I <FIL_ leads to the implication (1.13)

Next, let us start from (1.13) as our assumption. Let f be an arbitrary

element of F(WI). men, by (!), (f_g) c _ for all g c _i" Then, by our

assumption, (f_g) c _ for all g c _2" But, by (!I), this meansthat f c F(_2)o

Hence,wehave F(_I)_F(_2) , which duly interpreted, meansthat _i _ _2°

Corol!ary_. Let g£ and g2 be elementsof _. Then [(f,g!) £ _]=_}
<

[(f,g2) c _] if and only if gl F g2"

This follows iiT_ediately from Theorem1.9 by taking _i = _gi_'

the subset of [ consisting of the single element gi (i =I o_,_n_2).

Weuse gl F g2 , of course, as_n abbreviation for i 2 '

Definition 1.3 An element g { _ is said to be an upper bo<ud in

(with respect to F ) if and only if g _ g for every g c 9.

Definition 1.4 A set 9 _ is said to be a G- core of _ iff

(i) G (_*) is not vacuous

(ii) if _ is ar_vsubset of _ such that G(_) is not vacuous, then

The set ¢ maynot have a G- core. However_if it does, then the core is
* ** are cores of ¢ , we see from (ii)

clearly tuuique° in fact, if _ and
@ @@ @_ @ @ @@

that _ _ _ and _ _ 9 , so that _ = _ .

_neorem i.i0 If gl and g2 are upper bounds in _ , then F(_i) = F(g2)o

P oofo Sincegl have,by Definition1.1,

since g2 _ gl we also have F(gl)_F(g2). Hence the theorem.

Theorem ioi!o k_e G-core of @ exists if and only if @ has an upper

_nd with respect to F. If g is an upper bound in _, then F(g) is the

@

G-core of _ if the G-core of ¢, denoted by _ , exists, then "G(_*) is

the set of all upper bounds _ith respect to F in _.
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Fs'oof. bet g be an upper bound in £-o Then _(_) is a set _ such -that

9*G( ) is r.otvao_ous. For O(__) = O[F(_)I, in accordance_it_ Theore_1_2,

contains the no._s-void set { g _ . Let q0 be an arbitrary subset of ¢ suc£

that G(@) = _ is not vacuous. Since "_ _ and g was assumed to be a-i upper

bound, we have g < g for all g c _. Hence F(g)_ F(g) for all g c _o _
m ' --±_ _

gE# gEg

_ _ "s_ P( forF(g) has already bee:o_sroved to be con_z___u in g) all g £ _, leads to

Je

•tile result t=_ _?(g). Hence from (1.14), we bare _ F(g) : _ H,:nce

9 is the C-core of @o

Conversely _ let 9] be assuf._ed to be the G-core of @ and let _ :G(Q*)o

Let g £ , o Ther:, s:_ Theorems 1.3 and 1.2, we have F( g )_F(**) =

F[G(@*)]_9 o Also, since _0 is the G-core of ¢ and since G[F )_ !

is not vacuous, we see from (ii) that F( )_ . He-_ce F ( g = %_

zf is a-o arb± raryele:entof the set is suchthat G: I :

@IF( )]_ is not empty. Hence, by (ii), q0Cq0 . Thus F( g )<_F( . )_

Hence,. by the definition of <F _ we must have g <F g " Since g was arbitrary_

this means that g is an upper boumd as we desired to prove.

__=core...loqPo__ Let _! :'and _2 -be subsets of Then_ }

[(f,g) £ n for all g _ C _1] _> [(f,g) £ S for all g _ C T2 ] (1.15)

>
___9oof_ Suppose _'1 H _2" _,en, by definition H(T1)_H(_2)o Hence, _u___=_.._

co_rolemer_ts_ C__\_l)__O<_(_2). If now _q for a!q g =_C _i_ we k_no_7from

(Vi) that f _ CH('_t)mCK('¢2 ), But from (V) we conclude (from the fact that

f _ C H ('{2) )' that (f%g) { S as long as g ¢ C _2" in other words the assu<:p%iou

¢_i H _2 leads to the zmplmcauzoz_ (1.15).
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Next let us s±art from (I_15) as our ass_mptiono Led f be an arbitrary

element of C H ( 41 )o Then_by (V), (f,g) c _ for all g c C 41• Then_by

assumption_we have (f_g) c _ for all g c C _2o But, by (V!), this means

which duly interpreted meansthat _i _ _2"
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-" ...... _mTr>7_ ,_. _-_:_T-'^_'V TUT\r,_rDT_A

(i) 2he S?/5tem _,=_..T+Uo

Let x be a real variable and consider the system

= _r(t) + u(x) (2ol)

' Here w = w(t) :is restricted %o a cer±ain class W of ad_.missible winds _//_i!e

a u(x) is _e ....._cd to the class U of admissible controls° The c-lass O: -_ $_.-_ ' -_._.....

iS ..... _c:___class of all real p:iecewise cor_tinuous ftm_ctions of the real variabqe x

_./h:ich me@ some giver_ interval R containing the origin (the constraint set)

_to t.he .'.,+=-_,,._7 r-7 _I].... z:......._ _ _. o The class }! is a given collection of ad_ziss_fo[:. ,;:C:-::i;

-;<those do_min is [0_T] and whose range is [-C_]o It is ass'_ted that W .......

all piece}rise co/-stant }rinds (whose do_._min and range are restricted as ahoye) and

that it is_ moreover_ reasonable enough to insure that system (2ol) satisfies suff-

cient conditions for the existence and u_uiqueness of solutions.

Let R be the interval -A < x < Ao We shall show that the core of R

_x,_s_=. This will be done by showing that U has a_ upper boum_do The core of

R
will also be eompu%edo

Let

i -i for all 0 < x < I

u(x) = 0 for all x : 0

+i for all -i < x < Oo

_,.Te shall sh@r that _ is an upper bo'_cd in U.

Suppose first that < !o Consider the system _ : w(t) + _(X)o Let

Xo > O, Xo { Ro :ihen w(t) + [(x(t,XoPr,[]).... <_ O for any w_W so long as
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x<"_,Xo,w_u) > Oo_ Moreover, the trajectory x(t,Xo,W,U) cannot cross over into

the negative half of R, since if it were_o do so the direction of the vector

field would be reversed° Hence

0 < x(t) < x for all 0 < t < T and every woW.
-- -- O -- --

Therefore, ( ^ - =%_]_Q(u)o Similarly [-A,_ CQ(:). We also have x(t,0,w,:) 0

for all 0 _ t _ T and all w c W. Hence, 0aQ(:). Thus R_Q(:) whence

R = Q(:). It follows that Q(:) contains every uniformly T-tame subset of R

and therefore u is an upper bound, and R is the core of R.

Consider next tLe case when @ > !o There are two possibilities:

either (@-i) T > A or (@-i) T < A. If the first inequality holds it is not

hard to sho_¢ that Q(u) =@ for every u in U. In fact, let x > 0 and
O --

let u be arbitrary. Consider the system

=w I (t)+u(_)

where v I (t) _ _o We have

=_+u> _-i_

, x (o) = _o (2°2)

whence

> (_-l)T(T) -x (o): _ (T)- _o-

ahd therefore

_ + (_-l)m > (_-I)T>A._(m) > _o

It fd!o_s that x ° # Q (u). We have thus shown that [O,A]_l Q (u) = # for

< 0 and (t) _ - _ we obtain, in a completely
every u c U_ N_¢ taking x ° _ w_

a.... _ that[ .... (u) _ for every u c U° Combining these_=_lo_o_s fashion, -A,0]f] Q =

two facts we get that R[_iQ (u) : _ for every u 6 U. In other words, the given

system admits no uniformly T-tame set. Such a system plays no role within the

context of the minimax problem.

We _y therefore assume, without loss of generality, that

- 6-13-



(_-i)_< io

Prooosition 2ol Let I be L<e interval [-A +(C_-I) T_ A -(_-I) T]. _%.en

q (u)_l for every u c U

P_oof° _he arg_r_ent of the preceding paragraph sho-_s that (R-Z) DQ(u) : /

for every u c Uo The result follows.

F_,o_osi£ion 2°2 I = q (_).

Rroof. Let x e !_ let w be an arbitrary member of W and let
O

x(_,x o, _, ._) be _:__o_d "W _(t). Set

_ o]r= t t _ [o, _.] I _(t) >

• [o, Ix(t)< o}
+

_l£_en for all t c T one has

,4t) + _ (_(t)) = _(t) -1 < _-l,

wnu__as for all t £ T one has

_(t) + u (x(t)) = w(t) +I > -(:Z + 1.

Let

+
t = g. io % t

t c T +

ml_ ._ T +__=e__, for every % c one has

0 < x(t) : x(t +) + +i '{i[
T ",./'; " O,t]

t = g.l.b, t

t cT

[.(_) + _ (=(_))] d

=(t +)+_+ (_-l)_=<

< =(t +) + (_-;)_ < A.
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Simi!ar!y; for every t £ T o,_ne__a_

F
U

>_ x(-_-)+j_
T

(-0_ +1) d _

> =(-_-) +(-_+i)T > -Ao

He'_.tce x £ Q ([)o _nis co:.._pletesthe proof,
o

T}_omositaon o 9 Let @ > io The__ _. is an upper bour_d in U

the core of Ro

Pz-oofo Rropositions 2oi and 2,2,

and i is
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(ii) The System _" = w + n

Let Xl_ x2 be two real variables and let the vector (xi_x2) "oe

denoted by Xo

Consider the system

"x2 : Xl

Here w = w(t) is restricted to a certain _lass _,_ of admissible winds, _Thile

u = u(x) is restricted to the class U of admissible controls. The classes _,7

and ]_ a.re "b.:,tk uni.2or_:.'.7- to_oz_d<-d i:: the ser.s_., ikat

f, (t)Is _ for all w E W,

lu(x)l< 1 ='orall u (2.4)

these inequalities holding true for all t and x for which w(t) and u(x) are

defined.

The class U is the class of all real _mcewtse continuous functions of t_:_

real variable x defined in some given rectangular region R (the constrai_t set)

contals.ing the origin and satisfying (2.4). We are not as specific about the class

W except to require that it be reasonable enough to insure that system (2o3)

satisfies sufficienS conditions for the existence and uniqueness of solutions.

We d% however_ specifically assume that the class W contains the class of all

s__c_ __ uo_o_anL winds whose range lies in the interval [- %@]. The domain

of all winds is 0 < t < T, where T is some preassigned positive constant.

Ehe region R is defined by means of inequalities such as IXll<_ A_ Ix2!< 3_

_},.___ A and B are given constants.
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For the time being we shall restrict our attention to the casewhen _ < io

Let

f

_ _-i for all x such that Xl> 0

u (x) = I 0 for all x such that Xl= 0
+i for all x such that Xl< O.

';,_eshall show that u(x) is an upper bound in U.

Let w be an arbitrary (but fixed) wind in W and consider the system

(2°5)

i2 = xI

Let -B __ x2 __ B. Let J be the interval

J =_ (O,x2) ' -_ __ x2 __ B _ •

The vector field defined by system (2.5) is discontinuous at every point of

J° In fact_

lim i! < 0 , lim

Xl-_ O+ Xl_ 0-

0 0

x2-_ x2 x2-_ x2

Xl >0.

in other words_ the vector field of (2.5) reverses its direction across Jo

Hence a trajectory of (2.5) which passes through (O,x_) at time tj will

be "stopped" there for all subsequent time. This fact will be employed in the

sequel.

Let u e U and let (_ q) e Q (u). Suppose first that _ > O° Let

Wo(t ) _ W and let
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xl(t ) = xl(t,_,_,Wo,U ) Xl (t) = x!(t,_,_,Wo,U )

x2(t ) = x2(t ,_,_,wo,u) x2(t) = x2(t ,_,_,wo,u).

As long as both xl(t ) and xl(t ) are positive, wehave

Let

let

let

d xl(t)/dt = w(t) + u(x) _>w(t) - i = d xl(t)/dt.

[O,tl) be the largest subinterval in [O,T] throughout which xl(t)>O;

[O, t2) be the largest subinterval in [0,T] throughout which xl(t) > 0;

t3= min(tl,t2). Then, for every t _[0,t3] we have
t

0 < £1(t) = _ +S0 [w(_)-l]d

t

< _ +fo. [_(=)÷u(= (_))]d • : =_(t) < A.

!t follows, in particular, that t3 = t2. Hence

0 <_ xl(t ) <_ xl(t ) <_A for all t c[0,t 2]

and therefore, for all t c[0,t2] ,

t t

_2 (t) : _ +J0 _I (T)d _ <- _ +J0 Xl(_)d T : x2(t) <- B°

Xoreover, d x2(t)/d t > 0 throughout [0,t2) ,

that x_t) >-B for all t c[O,t 2). Therefore

-B<__2(t)< B for all t c[o,t2].

If t2= T_ one now has

(xl(t), x2(t))c R for all t _[0, T].

=_,f t 2<:T then _l(t)= 0 ____d_2(t)--x2(t 2) for all t>_t 2.

_,,_ith (2.6).and (-_.7), i_.plies that (2.8) stiKhoHs.

apply to any wind w c W it follows that (_,_) _ Q(u).
O

(2.6)

and since h > - B we conclude

(2.7)

!2.8)

_nis together

Since these considerations
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___2_positio_!2.4 Q(u)cQ(_ ) for every u _ Uo

Proof. It has been shown that if (_,q) c Q(u) and _ > 0 then

The case when _ < 0 is analogous. Moreover, J_Q(u). This completes the proof.

Corollary 2.1 _ is an upper bou_ud in U.

Proposition 2.5 Let w*(t) = _; let _ > O; let xi(t)=xi(t,_,_,w ,_), i=i_2 o

@ @

if (xl(t), x2 (t)) c R for all t c[O,T] then (_,n) c Q(u).

Proof. Let w _ W; let x.(t)m = xi(t'_'_'w'_)' i= 1,2.

if (xl(t)_ x2(t)) intersects J at some time tj it re_ins "stopped" thare

for all subsequent times. We therefore need concern ourselves only with the interval

[O,tj). For all t in this interval one has

d _l(t)/dt= w(t)- I< _- 1 = d _l (t)/at"

Hence, for all t _ [O,tj),

O<_l(t)< xl(t)SA,

>fnence

Horever,

x2(t) < x2(t) <_ B.

- B < n < _2(t),

_nence finally

(_,_) _ Q (_).

_is co_letes the proof.
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!

_Pr_qposition 2.6 Let w.(t) _ - _ ; let _ < 0; let x.(t) =xi(t,_,_w_ )
! T

i = i, 2. If (xI (t), x2 (t)) c R for all t c[0jT] then (_,_) c Q (u).

Proof. The proof is analogous to the proof of Proposition 2. 5.

Let R+ be the set _ (Xl, x2 ) I 0< Xl <A,_ 2< x2 < B

We shall use Proposition 2. 5 to determine Q (u)_ R +.

Consider the system

hl : 5-1

_2 = Xl" (2.9)

Clearly Xl < 0 and x2 > 0 throughout R +. If (_,_) e R + then the solution

(xl(t,_,_), x2 (t,_,_)) of (2.9), when continued in the direction of increasing

t, can only reach the boundary of R+ on the set J or on the set

K= _ (Xl, B) I 0 < Xl < A _.
One has

Xl(t,_,_)= _ +( _-l )t

x2(t,_,_)= _ + _ t + (1/2)(_-1)t2_

_ne solution of (2.9) passing through the point (0,B) lies on the parabola

2

x2 = B + Xl
2( _-l )

Therefore, if _ _ B + _2/2 ( 5-1 ) t_en (xl(t,_,_), x2 (t,_,_)), when

continued in the direction of increasing t, will reach the set J. All such points

are clearly in Q([)_ To get the re_inder of Q(u)_R +, continue the solutions of

(2.9), starting on K, for a time interval of length T, in the direction of de-

creasing time. One has

Xl(-m,_,B)= _-(_-l)

=2(-T,_,B)= _-_ m X1/2)(_-1)m2
(2.11)
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Elimination of _ yields

x2

Let B+(I/2) (i-_) T2 = _. Let L be the line x2= - T xI + _. On K we

have O< xI _<A. Hence in (2.11), 0 < _ <A, and (i- _)T < xI (-T,_,B)

<_ A + (I-_)T. However, since we are restricted to R, we must limit our

attention to those points of L which satisfy

(1-_)T< Xl S A.
o

me point P on _ whoseabscissai_ (1,-_)Thas orainatem(1/2)(_-l)_-o

This point also lies on the parabola (2.10); in fact_ this is the point obtained

by solving (2.9) starting at (0,B), in the direction of decreasing time to the

point where t= -T. If P / R + then

s+ {([)_R+ ({,_c I_ B +

If P ¢ R+, let Q be the point at which the line L intersects the set

J_l-a2_ 92-'_-3 (Figure i). (The point Q may be on AIA 2 on on A2A3). In

S+this case is the set obtained by deleting J from the closed set bounded by

_ :, S+the curve BOA QPB (Figure i). Let S be the set obtained by reflecting
i

through the origin. Let S=S-_J_S + .

_roposition 2.7 S is the core of R.

Pro___of: By definition, S+ = Q(_Z)_R +. The fact that S- : Q(_)_ R- follows

in completeiaz;lalog_g from proposition 2.6a This completes the proof.
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CHAPTER7



i. COMPA_&_ILITYOF The3 SOLUTIONS OF TWO DIFFERENTIAL EQUATIONS
OF THE SAIV_ ORDER

We have previously indicated a method of partially ordering the controls

u eU and we have shown that an important part of our problem is solved if we

can identify the upper bounds of these controls. To implement this procedure,

we need to compare the trajectories of the system ui_der different controls. This

amounts to comparing the solutions of pairs of systems of differential equations

with respect to various criteria. In this and the next section we present several

theorems which we hope will be useful in this connection.

In this section the system is represented by means of a single differential

equation of possibly high order. It is always possible, at least in the linear

case according to a known theorem, to reduce the system to this form_if there

is but a single actuator and if the system is controllable at all.

Theorem ioi Suppose x(t) and _(t) are both of class Cn+l on [O,T] and

satisfy the initial conditions,

_(k) (0) _ x (_) (0), k=0,1, • " , n (1.1)

and the differential equations,

x (n+l) (t)=f[x (n) (t), • • -, x (h) (t), . • .,t], h:O, • •., n-i

(1.2)

g(n+!) (t)= pig (n) (t)," " g(h)(t)," " " t] (1.3)

Suppose, furthermore, that

9[x(n),... , _(h),.. ",t] >f[x (n), " " "x(h)," " %] (1.4)
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as long as

_(h) > x(h) for h = 0,. n - i (1.5)
= , 2

Then

> x(k)(t) for 0 < t < T and k : O, i,- • • , n.

Proof. By Taylor's theorem with the remainder
n-k

.e' " (n-k+l)! "
,_=0

*

where t is a suitably chosen positive number not greater than t. According

to (i.i), the first (n-k+!) terms in the above sum are non-negative. If

they are actually positive, then the whole sum must be positive for sufficiently

small t > O, since the last term is an infinitesimal of higher order than any

of the other non-vanishing terms. If_ however, the first (n-k+l) terms of the

above sum happen to vanish, we have

_(k+2)(O) : x(k+_)(O), _ = O, I,- • • , n- k

and in particular (by taking _ = n - X),

'i.: _(n)(o): x(n)(o) (1.6)

We also observe that the last term in the above sum differs from

(_(n+l) (0) x(n+l)(0)} tn-k+l "
(n[k+l);

by an infinitesimal of order higher than tn-k+l. This is because of the fact

that _(t) and x(t) are of class Cn+l. Hence, if t is sufficiently s_ll,

_!-k)(t) - x(k)(t) must have the same sign as

_(n+l)(o ) _ x(n+l)(o) = 9[_(n)(o),- • • ,_(h)(o),. • .,O]-fEx(n)(o),. • .,x(h)(o)_.°O],
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which, by (1.67, is the same as

q0 Ix(n)(0), • " -, _(h) (0)," • ",0] - fix (n) (0)," • ", x(h)(0), • • ", O]

3ut the sign of this latter quantity is positive because of (i.i) _ (1.4) and

(1.5). Hence, we have proved that in all cases there exists a positive number 5

such that

_(k)(t) > x (k) (t) for 0 < t __5 (1.7)

and k = 0_ i_ 2," • ", n.

if 5 __ T, there would be nothing more to be proved. We therefore assume

in the sequel that 5 < T. For the sake of brevity we let z(t)=[(t)-x(t). Then

(1.7) means that z(t) and its first n derivatives are positive for 0 < t __5.

We wish to prove that they are also positive for 5 < t __T. If this were not

true, one at least of the functions z(k)(t) would have to vanish on the interval

(5_T] at some point tk (k=O,!,. - -,n). But, if k < n, we can then say that

z(k+l)(t) would have to vanish on the interval (5,T] at some point tk+ I < tk.

For z(k)(5) and z (k+l) (5) are both known to be positive while --_(k)(tk) = O.

Hence z(k)(t) would have to have a maximum at some point tk+ I in_terior

to the interval (5,tk). At such a maximum, we, of course have

z(k+l)(tk+l): O.

It follows that_ if the theorem were false, there would exist a point

t
n

on (5_T] such that

(in): o

z(n)(t)>o for  t<t n

z(h) (tn) = _(h)(tn) - x(h) (tn) > 0

h = O_ i_ 2_- • _ n-i

(1.8)

(1.9)
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(1.8) and (1.9) _e have z (n+l)(tn) __ O. Hence from (I.i) and

z(_i+l)(_): _(_+l)(t) _ x(n_)(tn)

= q0[_(n)(tn) ,. .._(h)(tn) _. • -,t.]-f[x(n)(tn), • . .,x(h)(tn), - • -,tn]_<-O.

From (1.8), we have _(n)(t )=x(n)(tn). Hence, we have shown that

_.,,_ (:_) ,x(h) , -_[x:"";'(t ),o - . ,[ (tn) ,- - ,tu]__ f[x(n)(tn) ,- • • (tn),- • • ,¢n j.

_ut, in virtue of (i. i0), this is a co_Ltradiction of (1.4) and (i.9). The

theorem follows at once from this contradiction.

The hypothesis, that the inequality (1.4) should hold as long as the

(1.5) hold, ca__cot be replaced by the less restrictive hypothesisinequalities

that merely

_[_(_),. • • , x(h), • - ,t] > fix(n), • - • , x (h) • ,t] (i.l!)

To show this we consider an elementary example in which n=l. (The ease n= 0

is also covered by Theorem i.i, but in this case the set of the variables x (h)

for h=O_.. - _ n-! becomes vacuous, so that the weaker hypothesis (i.!i)

coincides with the hypothesis of the theorem embodied by (1.4) and (1.5)) •

Our example with n = ! is as follows:

_t _([, _,t)=-(_+_)[-__+_

and f(x,x,t) = - (_+#)x - _ # x,

where _, #, and e are all real non-zero constar_ts and e is positive. We are thus

concerned with the equations

x+(_,_)x+_x=O.

_ + (C_ + #) i + C_# [ = e and
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It is seen that the hypothesis (1.4) - (1.5) is fulfilled if and only if

and _ have opposite signs, whereas the weaker hypothesis (i. ii) is fulfilled

in any case. We consider initial cor_ditior±s x(O) = _(0) and x(O) < _(O).For

brevity, we let Z(t) = _(t) - x(t)o _ne___ Z(t) satisfies the differential

equation "7 + (_+_) 7 + _ _ Z = e and the initial conditions Z(O) > O, Z(0)=O .

Evidently "Z(O) = - _ _ Z(0) + c. Hence'_(O) < 0 if _ and _ have the same

sign and Z(O) > c / (5 _). Hence, i_i such a case _t) = _t)-x_t) is negative

for all sufficiently small positive values of t. Since _(0) = O, the same:is

true for Z(t) = _(t) - x(t), contrary to the conclusion of the theorem. On

the other hand, if cz and _ have opposite sign, it is obvious that both

_(t)-x(t) = Z(t) and _(t) - x(t) = Z(t) are positive for sufficiently small

positive t in accordance with the theorem. The theorem also asserts (in case

_ < O) that these differences are positive for all t > O; but this fact is

not quite so obvious if CZ+ _ > O, even though the equations are, of course, easily

integrated.

Theorem I.B Same hypotheses as in Theorem lol, except that (1.4) is modified

to read

_[x(n) (h) ,t]__ f[x (n) (h) ,t]
30 • • , _ • - • • o 0, X o • •

as long as (1.5) holds.

Then (k)(t) for0<t _ andk=O, 1,"" " ,

Proof. Let _(t,£) satisfy the differential equation

_:(n+l_(t,e) = q0[q(n)(t,e), • • • , _(h)(t,e),- ° • ,t] + c and the initial

conditions q(k)(o,c) = _(k)(o) __ x(k)(0) for k= O, I," " ", n.

Then, by Theorem ioi, _[k)(t,c) > x[k)(t), for k = O, i,o o _ ,n, and for tc(O,T]_

p % t %

if c > O. It is also known from theorems on the solutions of differential

equations containing parameters that
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iim (k) (k)
: (t)o_-_0

Hence, passing to the limit in the above inequality, we get

as desired°

_(k) (t)__x(k) (t),

2. COMPARABILITY OF Th_ SOLb_i0NS OF TWO SYSTEMS OF DIFFERENTIAL EQUATIONS

In this section we prove some theorems similar to those of the preceding

section. But they apply directly to a pair of systems of differential equations

rather than to a pair of single differential equations°

in the form

and

= f(t,x)

We write the systems

(2ol)

(2.2)

where _, x, % and f are n-vectors, while _ and

Lipschitzian with respect to _ and x respectively.

with these systems a scalar function H(x) of class

Starting with solutions of (2.1) and (2.2)

conditions_

x(O) = _(0) =
o

we wish to compare H [_(t)] and H[x(t)]

f are continuous and

We consider in connection

C1 in the components of x.

satisfying the same initial

for t > 0. If we let

(2.3)

Q_(x,t) = Hx(X ) _ (t,x) and Qf(x,t) = Hx(X ) f(t,x), it is clear that Q_[_(t),t]

is the rate of increase of H[_(t)], while Qf[x(t),t] is the rate of increase of

H[x(t)]. Hence it might be conjectured that H[x(t)] G H[_(t)], if, for all

x and t, we had

Qq_(x,t) > Qf(x_t)
(2.4)
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or, in other words, if Q_(x;t) -Qf(x,t) were positive definite.

This turns out not always to be true (as we will show immediately below by

means of a counter-example ). This is because the two trajectories _(t) and

x(t) may be quite distinct. Hence we will need to replace the hypothesis (2.4)

by a more stringent one. Before stating and proving the main theorem 3 we first

present our counter-example in order to establish the necessity for such a more

stringent hypothesis.

Let us consider the two systems

= _ &, _ = # _ + T q (2._)

and

= a x + by; y = cy

together with the initial conditions

_(o) = x(o) = xo, _(o) = y(o) =Yo

We are here temporarily using (_,q) and (x,y)

previously denoted by _ and x respectively, n

now take H(x,y) =(!/2_(x 2 + y2), we have Q__(_,q)

2 2
and Qf(x,y)_ : a x + b x y + c y Then

q_(x,y) - qf(x,y)=(_ - a) x2 + (#-b) x y + (W-c) y2

(2.6)

(2.7)

to represent the vectors

being equal to 2. If we

B2+ 2_

is certainly positive definite if G > a, T > c and l#-bl

small. These conditions are fulfilled if we assume that

y>c>_>a, _ =b/O.

Both systems are easily integrated. The solution of (2.5)

_t # _t # x° at
_=xo e ' q = [Yo- Xo]e + e

is sufficiently

(2.8)

is

(2.9)
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while the solution of (2.6) is

b Y_o at b Yo ct
X= [x ]e + e ,

o c-a c-a Y = Yo e ct (2.10)

From these explicit solutions and from (2.8) we see that

X

H[_(t),_(t)] = O(e 2yt), except when Yo __yo - O. But

_x
o - 0 and x _ O.H[_(t),_(t)] = 0(e 2_t), if Yo-'(_-_ o

(Here we use f(t) = 0(g(t)) to mean that f(t) and g(t) are defined for t

lira f(t)/g(t) exists andsufficiently large, that g(t) _ O, and that t -_

is not zero. This convention is more strict than the one sometimes used, which

is merely to the effect that f(t)/g(t) is bounded). In the case cited above,

_x

0 _ 0 and x _ O, we also have Yo _ O, since _ / O. Hence, wewhere Yo - _-_ o

see from (2.10) that H_x(t),y(t)] = 0(e2Ct). Since c > 5, it is evident

that for solutions starting at any point of the straight line (G-y)y-Sx = D,

except the origin, we must eventually have H[x(t),y(t)] > H[_(t),_(t)]. This

is contrary to the conjectured theorem.

Theorem 2.!.

whenever

Suppose that

Q_(_,t) > Qf(x,t)
(2.11)

H(x). (2.12)

Then the vector functions _(t) and x(t), satisfying (2.1), (2.2), and (2.3)

for 0_ t _ T, have the property that

H[_(t)] > H[x(t)] (2.13)

for all t c (0,T]
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Proof. Let w(t) = H[_(t)] -H]x(t)]. Then according to (2.11) and (2.12),

w(0) = Q_(Xo,O ) - Qf(Xo,O ) > O. Therefore, since w(O) = O, there exists a

positive number 8 such that w(t) > 0 for OCt __8. If 5 _ T_ there is

nothing further to be proved. We therefore assume from now on that 0 < 8 < T;

and, of course, w(5) > O.

If the theorem were false, there would exist a number t _(5,T] such that

w(t*) = 0 and such that

w(t) > 0 for t e (8,t*) (2.14)

Since w(5) > O, there would have to exist numbers _ between 5 and t where

w(t) is not increasing; for otherwise w(t*) > w(8) > 0 contrary to the def-

.
inition of t . For such a _ we would therefore have simultaneously _

W'(_) = Q_ [_(_)_] - Qf[x(t),_] ;:__0 and v(t) = H[_(t)] - H[x(_)] > 0, the

latter following from (2.14). We thus have a contradiction of the hypothesis

expressed by (2.11) and (2.12). From this contradiction, the theorem is

established.

Theorem 2.2. Suppose that

whenever

Q_(_,t) __Qf(x,t)

(2.16)

Suppose also that the two vector functions _(t) and x(t) satisfying (2.1),

(2.2), and (2.3) for 0 _ t _ T have the property of not simultaneously

passing through a point where the vector Hx(X ) vanishes. Then

H[_(t)] _ H[x(t)] (2.17)
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for all t E [O,T].

Proof. Let 6 be a positive parameterand consider the two systems

= = +

and

x = fc(t,x) = f(t,x) - CHx(X)

and the vectors _(t,e) and x(t,e) satisfying (2.18) and (2.19)

(2.18)

(2.19)

respectively and the initial conditions,

_(0,6) = x(O,_) = x
o

(2.20)

If _ is a preassigned positive number, one knows that these vectors will be

defined for 0_ t _ T - q(at least, if e is sufficiently small) and that

Lim lim x(t,c) = x(t), (2.21)

uniformly for 0 _ t _ T - _. By hypothesis the two vectors Hx[_(t)] and

H [x(t)] never vanish simultaneously (i.e. for the same value of t). Hence,
x

if e is sufficiently small Hx[_(t,¢ )] and Hx[X(t,e)] can never vanish

simultaneously for 0 _ t _ T - _. To substantiate this last statement, we

observe that otherwise there would exist sequences, el, e2,. • • and

tl, t2 . such that _ _0 , 0 _ t _ T- _ and such that• " n - n -

Hx[_(tn, en)] = Hx[X(tn, en)] : 0. (2.22)

From the compactness of the interval [0,T-o] we mayalso assume, by confining

t , whereattention to suitable subsequences if necessary, that tn

.
0 g t G T- _. We now omit numerous details regarding the passage to the limit

in (2.22). Suffice it to say that the uniformity in (2.21) and the uniform

continuity of H in a suitably chosen region lead to the result that
x

Hx[_(t*)] = Hx[X(t* )] : 0,

which contradicts the hypothesis. Hence, Hx[_(t,_)] and Hx[X(t,c)] can
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never vanish simultaneously_ as already stated, at least if

small.

It follows that _Hx[_(t3_)J. Hx[_(t_£)] } and

_Hx[x(t,_)] Hx[x(t,c)]_

Wealso have

and

e is sufficiently

can never both fail simultaneously to be positive.

Wethus see from (2.15_ and (2.16)

region in which

> Qfc[x,t]

as long as H[_] > H[x]. Hence applying Theorem 2.1, we have

for

Passing to the limit as e _0, we thus find that

Qcpe [_($,_),t] = %r_(t,e),t] + _ fHx[_(t,¢)] • Hx[_(t,_)] }

Qfe [x(t,c),t] = Qf[x(t,c),t] - _ fHx[x(t,¢)] .Hx[x(t,_)]_j_

that we can confine attention to a

H[_(t)] _ H[x(t)]

Since equality holds for t = 0

positive number, we have

H[_(t)] __H[x(t)]

Finally, by continuity at t= T,

for 0 < t __T -

because of (2.3) and since is an arbitrary

for 0 _ t < T.

we see that the theorem is true as stated.
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EXIoT_IC_ OF UPPER BO_DS FOR THE SYSTEM

= _ (_,x,t)+ w + _.

in this section we wish to indicate the manner in which Theorem 1.2

may be used to generalize the work of the previous Progress Report on the

system _ = u + _'. We hereby consider a system of the form

= h (_,x,t)+ u + _ (3.1)

in which h(_x_t) is monotone non-decreasing in x for each fixed _ and t. •

E_e system can also be _rritte_: in the form

, _ (_._)x! = hiXl_X2_ _) + u + w

P. ...

._ .-. X 1 ._

if _,_a'set :_o = x and x_ = #. In %he sequel we use (Xl_X2) and (_x)

:_:qtercha_)_ge,abi._ wi%hou% f'_"ther co;r_.e,-tacco-_cding to convenience.

T -.___ wish the motion to be confined in 'the recta_gle R : I xI I _-A aad

! _2 I _-_ 2or t._ [o,m]. _e "oo:_t_o_" "_,=u(xl,x2) _U is _J<_.__,,

to vario_.s restrictio._',_swhich may be 'used in the def2_.ition of U° TTm_ on]:j

or_e of these condit'.ons essential for the moment is the condition ! u I s io

S:_miiar!y the " wind " w = w(t) _ W is assumed to satisfy the condition

i w i _ _ _dhe're C_< i.

We suf!.'osewe have a non-negative f_uction k(x2) defined for

Ix21 __ .-_ aud such that _heu the point (Xl,X2) is :initially within the. :'_t

J def:!,:o.,ed by' Ixi} __ k (x 2) it remains trapped within this set for all

time d_v._ir_gthe motion defined by (3.2) with u (Xl_X2) replaced by

_ (-.:,.I_:.:2)where _(Xl_X 2) = - sgn xI for (x!,x2) outside the set Jo

TLi:._ .........._.._-,_ " supposed to hold for any w _ W mud no m_tter how _ _.
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defined inside the set J, so long as it is such that _ ¢U.

In the special case h(Xl,X2) _ 0 treated in the previous Progress

Report the set J could be the interior and boundary of the ellipse

2 2
x2 + Xl = I
B2 C2

where C is sufficiently small. Weomit the proof of this fact. In the

previous Progress Report only the limiting case C _ 0 wasconsidered,

so that the set J was the line segment Xl= O, Ix2[ _ B. This necessitated

the assumption that the class U contained discontinuous functions. But for

C > O, we can consider the class U as containing only functions that are

continuous in the interior of R and _ might be defined throughout the

interior of R as follows:

= - sgn x I if k (x 2) < IXll _< A

-- - xI / 2) if IXll x(x2).

In the special case where J is the interior and boundary of the ellipse

C @'IB2_ x2 " The above definition then makesmentioned above k = -_

continuous on the boundary of R as well as in the interior except at the

points ( O, _B ), where it is left undefined.

Let u be an arbitrary control c U. By Q(u) we mean (as in previous

Progress Reports) the maximal subset of R that is controllable by u. We

shall now prove that Q(u)_ Q(u), or, in other words, u_u. Let

(_o,Xo) be an arbitrary point of Q(u). We then consider the solution

x = _(t) of the system

such that

= m(_,_,t) = h(_,_,t) +u(_,_) + w(t)

i(_(0) = x° and O) = xo. Since the initial point is in the
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i

controllable region, we have for all t e [O,T] and all w c W

(t) li (t) I (3.3)

We also consider the solution x = x(t) of the system

= f(2,x,t) = h(_,x,t) + u(_,x) +w(t) (3.4)

such that x(O) = x° and _(O) = Xo" If the initial point (_o,Xo) is

in J, the complete motion is trapped in J under the control _ by

definition of J. Hence (_o,Xo) c Q(u) and there is nothing further to be

proved in thi_ case.

Suppose therefore that the initial point is not in J. Then

[Xll = I_I > k(x2) and initially u(_,x) = - sgn xI. We consider the case

xI > 0 so that u = - i. If the solution [_(t),x(t)] ever enters J for

any t < T, it will be trapped there, nor can xI ever become negative without

the solution first passing into J. Hence, it is only necessary to consider

the system (3.4) with u = - i. Since lu(_,x)l _ i, we see at once that

_(_,x,t) = h(_,x,t) + u(_,x) + w(t) _ h(_,x,t) - i + w(t) = f(_,x,t)

and moreover f(#,x,t) is monotone non-decreasing in x. Hence, the hypotheses

of Theorem 1.2 are fulfilled and we find from this theorem and (3.3) that

and (t) i(t) A for O t m.

We have already noted that in the case now under consideration _(t) > 0 > -A,

_ _ - B.and, since _(t) > O, we have also x(t) _ x(O) = xo -
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Hence [_(t), x(t)] c R for 0 _ t _ T. The case in which xI is initially

negative canbe similarly treated. Hence_in all cases in which

(_o_ Xo) _ Q(u) wehave also (Xo' Xo) c Q(u). Hence Q(u_Q(u), as

stated. _ is an upper bound.

Note: Strictly speaking wehave not used Theorem1.2 in exactly the form

there stated. For the hypothesis there usedwas to the effect that

_(_,_,t) _ t(k3x,t ) whenever _ _ x. However,it is obvious that this

hypothesis holds if _(k,x,t) _ f(_,x_t) for all _,x, and t and if, in

additionjeither _ or f is monotonicnon-decreasingin its secondargument.

Observethat it is not necessarythat both _ and f should have this

property of monotonicity.

The theoremsof Section i also enable us to prove that_ if (_o,Xo) ¢ R

and Xo > k(Xo) and if the solution _(t) Of the system,
eo

= h(i,_,t) - 1 + _ = _(i,_,t), (3-9)

with initial conditions _(0) = x o, i(O) = Xo' remains within R for

t c [O,T], then (_o,Xo) c Q(u). In other words (Xo' Xo) is _n the core

of R.

To prove this we consider the solution of the system

• Here w is an arbitrary element of W, andsuch that x(O) : Xo, _(0) : Xo

and u = _(_,x) = - 1 when _ > k (x). Thus u is initially -1. If the

solution were to enter J, it would be trapped there and there would be nothing

more to prove. Hence in the only case of interest k > 0 and u = - 1 as

long as the solution stays in R. Thus we are led to compare the system

= f(_,x,t) = h(_,x,t) - 1 + w (3-7)

with the system (3.9) • Since w _ 5, we see that _(_,x,t) _ f(_,x_t)_

and the monotonicity requirement is also satisfied. Since, by hypothesis,
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l i (t)I _ A and I _(t)I _ B for 0 _ t _ T, we therefore have by

Theorem1.2, _(t) _ _(t) _ A and x(t) _ _(t) ! B for 0 ! t _ T. Moreover_

since in the only case of interest _(t) > O_ wehave both x(t) _ x(O) _ - B

and _(t) > - _. Hencethe solution of (3.6) under the given initial conditions

remains within R for the given time interval and this completes the proof°

A similar result holds if Xo< - k(Xo)" Thusthe way remains wide open

for describing the complete core of R as in Section 2 (ii), of the previous

Progress_Report, although the description will necessarily not be quite so

explicit becauseof the greater generality of the systemhere considered°

A further generalization which will probably work is not to define J as

a set in which the motion would be permanentlytrapped but merely as a suitably

chosenset from which the motion(nomatter what the wind w e W) could not

reach the boundary of R within the time T. This would free us from

supposingnecessarily that _ < 1.
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I. ON UPPER BOUNDS FOR TKREE DIMENSIONAL SYSTEMS.

We have indicated in our previous Progress Reports how to partially

order the admissible controls and we have shown that an important part of

the minimax problem is solved if we can identify the upper bounds of these

controls. These ideas were extensively illustrated by means of two

dimensional examples. However, the usefulness of the notion of upper bounds

as well as the corollary notion of a core would be rather limited if it

were not possible to identify upper bounds for systems whose dimension is

higher than 2.

We have therefore expended considerable effort in the analysis of

various three dimensional systems, notably the familiar one with three zero

eigenvalues. Most of our attempts led to a dead end. In fact, not only

were we unsuccessful in finding an upper bound, but we even came to consider

the very existence of such an upper bound as questionable.

Yet during the past week we conceived of a control function which appears

to have the properties we were searching for. A quick preliminary study

encourages us to believe that we have indeed come upon an upper bound for

the controllable system of dimension 3 with 3 zero eigenvalues. However,

the proof is still heuristic in nature and we prefer to postpone the

presentation of this "result" until an exact proof is available. At the

present time we would like to restrict ourselves to the remark that our

conjecture involves the definition of an upper bound for the 3 (i.e. n)

dimensional system by means of the time-optimal solution of an appropriate
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2 (i.e. n-l) dimensional system• if our conjecture turns out to be

correct_ it will be discussed in detail in our next Progress Report.

2. REMARKS ON THE COMPARABILITY OF SOLUTIONS OF DIFFERL_T!AL EQUATIONS•

In Section i. of the eighth Progress Report were proved some theorems

on camparing the solutions of two differential equations of order, say n + lo

The equations were written in the form

[x(n) (t x(h)(t),. • t] (1)x(n+l) tjr _ : f ),... , . ,

and

g(n+l)(t) = _[g(n)(t)_. - ._g(h)(t)_.. - _t] (2)

where h = O, 1,. • - , n-1. Both f and _ are supposed to satisfy

hypotheses sufficient to insure existence and uniqueness of solutions in

appropriate regions starting with given initial conditions• In Theorem 1o2

the fundamental additional hypothesis was made that

(n)
_(h) t] f[

(n)
_[x ,. • ., , .... , _ x ,-

as long as

• _x(h),- - ,t]

_hsC _ _ x_hJC_ for h = O, i, • n-1. We shall refer to this

as hypothesis _. It is clear that this hypothesis will be automatically

satisfied if

(n) (h) (n) (h)
_[x ,...,x ,...,t]__fEx ,... ,x ,... ,t] (3)

and if either _ or f (But not necessarily both) is monotonic non-

decreasing in x(°), x (1),- • • , x (n-l) for each fixed x (n) and t.

We shall refer to this latter hypothesis, formulated in terms of monotonicity_
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as hypothesis H2. It was found in Section 3 of the previous Progress Report

that hypothesis H2 was moreconvenient to use than hypothesis H1.

Unfortunately hypothesis H2 is not likely to be satisfied inproble_of

significance. For example, a problem in the control of a Saturn Launch

vehicle leads to a differential equation suchas

'_ = - .022@+ .200_ - .006_ + _ (4)

where

wind.

except

= @(_,_,t) will dependon the control law adoptedas well as the

This equation was obtained by eliminating all dependentvariables

from the third order systemof equations obtained from the

Marshall SpaceFlight Center at Huntsville and using the numerical values

for certain constants obtained from the samesource. Onemight then wish

to comparethe solutions of (4) with the solutions of somesuchequation

as the following:

,oo

y : -.O02"y + .200_ - .O06y + G(t). (9)

where _(t) is a bound for _; say, a lower bound, so that

_(_,@,_,t) _ _(t) (6)

Then assuming y(0) = _(0), _(0) = ¢(0), y(0) = _(0), one might wish to

conclude that _(t) _ y(t), _(t) _ y(t), _(t) _ _(t) for t > O. This

conclusion would, however, be unjustified on the basis of Theorem 1.2; for

although the condition (3) is satisfied the right hand member of (9) is

not monotonic non-decreasing in both _ and y (but only in _), while
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nothing at all is knownabout the monotonicity of the right memberof (4)

in @ and _ (without further knowledgeof _). Thushypothesis H2 is

not satisfied. It is found, however, that a suitably chosen transformation

on the dependentvariables reduces the equations to a form in which Theorem

1.2 maybe used to obtain a modified result. Thus, if we set

= e-_l/5)tqD and x = e-(1/9)ty (7)

we find that equation (4) appears in the form

'[: -.622 + .o712 + .o29 2 + e-(I/9)t (8)

and that equation (9) appears in the form

x = -.622 E +:.0712 _ + .02912 x + e-(1/5) (t) (9)

Since G(t) __ _[e (1/5)_ _, e (1/5)t (_/_), e (1/9)t ('_2/$_/29)_),t]

we also have

e-(I/9)_(t)__ e-(1/9)t*[e (I/_)_ _,e(1/9)_ (_/9_ _), e(I/9)tl (_/_/29) _),t].

Morever, the right hand member of (9) is monotonic increasing in both _ and

x. In other words the hypothesis H2 (and hence Hl) is fulfilled. Hence

Theorem 1.2 is immediately applicable to equations (8) and (9). We conclude

that, if _(O)=x(O), _(0)=_(0), and '_(0)= _(0), then x(t)___(t), _(t)__

_(t), _(t)__'_(t) for t > O. Interpreting these results in terms of (4)

and (9) with the help of (7) the following may be stated:

If y(O) = _(O),_(O)--<p(O),_(O)=_(O), then, for t > O, we must have
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y(t) ___(t)

_(t) -(1/_)y(t) ___(t) -(1/_#_(t)

"y(t) -(2/_)_(t) +(1/2_y(t) ___(t) -(2/_o(t) +_l/2_)_O(t).

It is not clear what application can be madeof these results.
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i. THE CORE OF A REGION RELATI_ TO A SUBSET THEREOF°

The program outlined in the Sixth Progress Report (for initiating an

approach to the minimax problem by searching for the upper bounds in a certain

partial ordering of the control functions) has run into difficulties whenever

we have attempted to apply the idea to systems of order greater than two. Th_is

has certainly been the case for systems with only one actuator and with a

finite allowable region R. It just so happens that in such cases there is no

reason to suppose that an upper bou_ud need exist. We now wish to discuss and

illustrate a simple modification which will permit the ideas of the Sixth

Progress Report to be retained for some systems of higher order.

The modification consists, roughly speaking, in the preliminary abandon-

ment of any hope of controlling all points initially in R. More precisely we

.

make a preliminary specification of a suitably chosen region R _---R and

define, for each V C_, the set Q(V) to be the largest set of points in R

(rather than in R, as previously) which are uniformly T-tame with respect to

R under V. With this modification, we define Q(u) = Q({u)) and say that

uI _ u2 if and only if Q(Ul)(-_Q(u2), just as we did previously. Again, if

is an upper bound under the order relation _ , we can prove, as previously,

that Q(u) is independent of the particular upper bo_ud u considered; and

we may thus call Q(_) the core of R(relative to R*). Evidently the core is

.
now always a subset of R .
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Wewish to illustrate the foregoing by considering a system of the form

"_ = h(_,_,x,t) + u + w

in which h(_,_,x,t) is monotonenon-decreasingin x

can also be written_in the form

(i.i)

and _. The system

Xl = h(Xl'X2'x3't) + u + w

x2 = Xl (1.2)

x3 = x2

if we s@_x3 = x_ x2 = _, and xI = E. In the sequel we use (Xl, x2, x3)

and (_,_,x) interchangeably without further commentaccording to convenience.

Wewish the motion to be confined in the rectangular parallel@.pipexl

R: Ixll_ A, Ix21_ 8, Ix31_ c+_ for t_ EO,_I.TheregionR __R of

initial states is to be the rectangular parallelepiped, IXll _ A, Ix21_B, Ix31_ C.

The "control" u= u(xi,x2,x3,t ) _is subject to various restrictions which

may be used in the definition of U. The only one of these conditions essential

for the moment is the condition lU(Xl,X2,X3,t)I_(t), where _(t) is a given

positive function defined for 0_ t_T. Similarly the "wind" w = w(t) c W is

assumed to satisfy the condition lwl _ G(t) < _(t).

Parenthetically we note that our conception of the classeslUand w

is somewhat more general than that displayed in previous progress reports. We

introduce this generalization in order to take care of certain transformed

equations such as equations (8) or (9) of the Ninth Progress Report. For a
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bi-product of the transformation there discussed is a modification of the

classes U and W.

Wesupposewehave a non-negative function k(x2, x3) < A defined for

Ix21 _ B and Ix31 _ C + B T and such that whenthe point (Xl,X2,X3) is

in the set J defined by IXll _ k(x2,x3_ at time t.o, (assumingthat it
@

started at time 0 from a point of R ) it remains trapped within this set

t m T during the motion defined by (1.2) with U(Xl,X2,x3,t)for t o _ _

replaced by U(Xl,X2,x3,t), where _(Xl_X2,x3,t ) = - _(t) sgn x I for

(Xl,X2,X3) outside the set J (but within R ). This supposition is

supposed to hold for any w c W and no matter how u is defined inside the

set J, so long as it is such that u c U.

Let u be an arbitrary element of U. By Q(u) we mean the maximal

subset of R that is controllable by u. We shall now prove that Q(u)cQ(_),

_or, in other words, u < u.
Q

Let (Xo,Xo,Xo) be anarbitrary point of Q(u). We then consider the

solution x = _(t) of the equation,

= q_('_,_,_,t) = h(_,_,_,t) + u('_,_,_,t) + w(t),

such that _(0) = Xo' _(0) = Xo' _(0) = Xo. Since the initial point is in the

controllable region, we have for all t _ [0,T] and all w c W

l_(t)l __A, I _(t)1% B, l_(t)l __C + B T

We also consider the solution x = x(t) of the equation

(1.3)
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"_ = f(%,_,x,t) = h(_,_,x,t) + u(_,_,x,t) + w(t) (1_4)

such that "_(0) = _o' _(0) = Xo' x(O) = xo. If the initial point (Xo,Xo,Xo)

is in J, the completemotion is trapped in J under the control u by

definition of J. Hence (_o,_o,Xo) c Q(u) and there is nothing further to

be proved in this case•

Supposetherefore that the initial point is not in J. Then

IXll = I_I _ k(x2,x3) and initially u(x,x,x,t) = - _(t) sgn xI. Wefirst

consider the case Xl_ 0, so that u = - _(t). If the solution ['_(t),_(t),x(t)]

ever enters J for any t _ T, it will be trapped there, nor can xI ever become

negative without the solution first passing into J. Hence, in the casenow

under consideration, it is only necessaryto consider the equation (1.4) with

= f_(t). Since lu(_, _, x, t)I __G(t), we see at once that

q0(E,_, x, t) = h(M, _, x, t) + u(_, _, x, t) + w(t) __h(_, _, x, t) - _(t) + w(t) =

f(_, _, x, t), and moreover f(_', _, x, t) is monotonenon-decreasing in

and x. Hence,the hypothesesof Theorem1._ of the Eighth Progress Report are

fulfilled and we find from this Theoremand (1.3) that, for te [0, T],

_(t) __ _(t) __A

_(t) ___ (t) __B

x(tC) ___ (t) __C + BT

Moreoverxl(t ) = _(t) _ 0 _ -A in the case under present consideration so that

,I_I __A. And, since __ O, _ ___(0) __-B, so that I_I __B. Finally, since

__-B, x __x_- BT__-C-BT, so that Ixl __c + BT. Hence,in this case, in which

xI is initially positive, [_(t), _(t), x(t)] _R for 0 __t__T and so

[_'O' _:o' x] _Q(u).
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The case in which xI is initially negative is treated as follows:

Here, wehave initially u = +_t). If the solution [_(t), 5(t), x(t)]

ever enters J for any t < T, it will be trapped there, nor can xI ever

becomepositive without the solution first passing into J. Hence, in the

case nowunder consideration, it is only necessaryto consider the equation

(1.4) with u =+ _(t). Since iiu(_, 5, x, t) I ___(t), we see at once that

q0(_,_, x, t) = h(E, _, x, t) + u(_, _, x, t) + w(t)

h(_, 5, x, t) + _(t) + w(t) = f(E, 5, x, t),

and moreover f(_,-_, x, t) is monotonenon-decreasing in _ and x. Hence,

Theorem1.2 of the Eighth Progress Report, together with (1.3), showsthat,

for to[0, T],

"_(t) ___(t) __-A

_(t) ___(t) __-B

x(t) ___(_)i__ -C-BT

Moreoverxl(t ) = 5"(t) < 0 < +A in the case now being considered, so that

l_I __A. And, since _ < O, 5 < 50 < +B, so that 151 _ B. Finally, since

5 __B, x __x0 + BT __C + BT, so that Ixl __C + BT. Hence, in this case also,

in which xI is initially negative [_'(t), _(t), x(t)] £R for 0 __t __T and

so 50' x]

We have thus proved completely that Q(u)_ Q(_), as we desired to do.

is an upper bound. Q(n) is the core of R relative to R_.

We now pass to a more explicit representation of the core of R relative

to R_. Namely it is possible to show that this core is the union of three sets,

say SI, $2, and $3 defined as follows!

S1 = Jn R*
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S2 is the set of all points (_' _0' Xo) in _with _ > _(_0' xo)

such that the solution _(t) of the equation

"_ = hcf, _, _, t) - _(t) + _(t) : _(_, 5, _, t) (1.5)

with initial conditions _(O) = _, _(0) = Xo' _(0) = Xo, does not leave

R for 0 S t _ T, unless it previously enters J.

S3 is the set of all points (_0' x0' x0) in RWwith _0 < -k(Xo' Xo)

such that the solution _(t) of the equation "_ = h('_, _, _, t) + _(t) - _(t) =

_(_, 5, _, t)

with the initial conditions _(0) = X0, _(0) = x0' _(0) = Xo, does not leave

R for 0 S t _ T, unless it previously enters J.

By definition of J, it is obvious that S1 is part of the core.

Wenext prove that S2 is part of the core, namelythat S2_Q(u). To

prove this we consider the equation

_" = h(_, _, x, t) + u + w (1.6)

and its solution such that _(0) = _O' _(0) = x0' x(0) = xO. Here w is

an arbitrary element of W, and u (E, _, x, t) = _(t) when _ > k(_, x_.

Thus _ is initially - _(t). If the solution were to enter J, it would

be trapped there, and there would be nothing moreto prove. Hence, in the

only case ofinterest _ > 0 and u = -_(t) as long as the solution stays in

R. Thus weare led to comparethe system

"_ = f(_, _, x, t) = h(_, _, x, t) -_(t) + w (i._)

with the system (1.9). Since w _ _, we see that _(_, _, x, t) _ f(_, _, x, t),

and the monoton_ity _requirement is satisfied. Since, by hypothesis,

Ir(t)l _ A, 15(t)I _ B, and I_(t)l _ C+ BT for O_t_T (at least as long as

J is not entered), we therefore have by Theoremi._ of the Eighth Progress Report
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_'(t) ___(t) __A

_(t) ___(t) __B

x(t) ___(t) __C + BT

for 0 __t __T. Moreover. since _(t) > 0, we have _(t) _ 0 __-B and

_(t) > -A. Hence I_(t)l __A and l_(t)l __B. Finally, from the fact

that _(t) _--B, we find that x(t) __x0 - BT__-C - BT, so that Ix(t) I __C + BT°

Hence, the solution of (1.6) under the given initial conditions remains in R

for the given time interval. This completesthe proof that S2_Q(u).

The fact that those points of Q(u) Tor_ which xI > h(x2, x3) must belong

to S2 is obvious from the fac_ _hat suchpoints are controlled by _ no matter

_hat the wind is and hence, in particular,

J is entered, if it everls entered.

Similar statements can be madeabout

the core of R relative to _3 is
1

= s3.

if w = G(t), while u =- _(t) until

S3 and so it is easy to see that
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2. A GENERALIZATION OF THE MINIMAX PROBLEM.

Our concept of the minimax problem has undergone a number of changes

in the course of this study. The latest formulation occurred in the Fifth

Progress Report. Although this formulation seems to meet the main requirer

ments, there are two respects in which it now seems wise to introduce a slight

generalization. In the first place, in Section l, we have already indicated

a reason forallowing the control function to depend explicitly upon t as

well as implicitly through the mediation of x. In the second place, the

quantity F to be minimaxed, should be allowed to depend not only onthe

state variables x but also upon both the control function u, and the

wind w. For instance, from the physical point of view, F m_ght represent ?

the bending moment of a launch vehicle, a quantity which could depend very much

on both the wind and the control function as well as on the state variables.

Hence we would wish to replace the continuous function F(x) of Section 1

of the Fifth Progress Report by a continuous function F(x,w*,u*), where w*

is an element in the union of the ranges of all the functions w ¢ W and where

.
u is an element in the union of the ranges of all the functions u ¢ U, and

x has the same meaning as before.

present formulation as follc_s

For the sake of clarity we give the complete
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Weconsider the system

S: _ = f(x, w, u)

where x is an n-vector representing the system's state, the dot represents

differentiation with respect to time t, w and u are vectors (of any

dimensionality, not necessarily n), and where f is an n-vector function

of x, w, u, defined, say, for xeX, weW_ .and ueU_

We consider a class W of functions w (referred to as "winds")

which map the time interval [0, T] into the set W* and a class U of

functions u (referred to as "controls") which map the cartesian product

of X by [0, T] into U*.

Under suitable conditions on f and the class W and U, the system

S, which is now thought of as taking the form

= fix, w(t), u(x, t)],

admits, through each initial point Xo, a unique solution,

x = x(tj Xo, w _ u) such that x(o, xo, w, u) _x O.

Moreover, the system is supposed to disintegrate whenever the solution

emerges from some given region RCX. We find it therefore useful to say

that the system S is uniformly T-tame with respect to R, if there exists

a subregion RT(CR) ahd a non-vacuous sub-class V(_U) of controls, such

that x(t, _o' w, u)cR as long as XoeRT, to[O, T], weW and ucV. We

henceforth assume that S is uniformly T-tame in the sense of this definition.



Supposenext that it is desirable that a given continuous function

F(x, w, u) defined for xcR, woW*, and ucU*be kept as small as possible

during the motion. Moreprecisely, weare interested in minimizing by proper

choice of the control u the maximumvalue of

F[x(t, Xo, w, u), w(t), u(x(t, Xo, w, u), t)]

for XoCRT,to[0, T] and for wcW. This is a peculiar expression because

of the way the three u's enter betweenthe square brackets. The first and

third u represent an element of U, which is, of course, a function, whereas

the second u represents the value of this function at a certain point and is

thus an element of U*. Nevertheless it is intuitively evident that this F

dependscontinusouly on Xo, t, w, and u; and in the sequel we give a formal

proof of this fact under suitable hypothesis regarding U and W. Thus, letting

max _max ,w,u),t)l_
g(w, u) = XoCRT_ 0 __t__TF[x(t'Xo'W'U)' w(t), u(x(t,x O

we pose the question as to the existence of a "bad" wind wow and a "good"

control ueV such that

g.l.b.Fl.u.b. ]u) =

The answer to this question is in the affirmative, at least if

f[x, w(t), u(x,t)] satisfies the Lipschitz condition demanded in formula

(2.2) of the Fifth Progress Report, with _ = {w, u_, and if RT, W, and

V are compact. The proof of this existenc@ theorem is the same as that

previously given for the problem formulated in the Fifth Progress Report,

the proof being given in Section 3 thereof.

-9-10-



The only thing which needsto be addedis a formal proof of the continuity

of the F introduced above, considered as a function of t, Xo, w, and u.

Weturn our attention immediately to this proof after first makingthe explanation

that the symbol II._ ]I is used to denote the norm-of a finite dimensional vector, while

I... | is: used:.to:_deno%e_:a:i'n_m:_o_:a vector _funetion;_.wi_Aa_.f±nitenumberof scalar

funetlons as:compenbnts.Specifically, if h:T_s:_a' ve_tor_functioh_with componentshl3 ..°_
l°u.b.

_ wi:th_domAinU'Y, we take lhl = ycY IIh(Y)II"

Weseek to prove continuity of F at an arbitrary fixed point t, Xo' _' _#

where t¢[O, T], XoCRT,wcW,u_V.

In our proof wehave the following four facts to work with

I F(x, w*, u*) is continuous in x, w*, u_ by hypothesis.

II x(t, Xo, w, u) is continuous in t, xo, w, u, as proved in the Fifth Progress

Report.

III If ucU, _(x, t) is continuous in x and t, by hypothesis.

IV If wcW,w(t) is continuous in t, by hypothesis.

Welet _* = w(t), u* = u(x(t, Xo' _' _)' _)

and x = x(_, Xo' _' _)" If ¢ > 0 is preassignedwe choose 81'

with I, so that

IF(x, w*, u*)i - F(x, _7-*,_*) I < _

as long as llx - _II,II_-_I, llu-a*ll< 81

By definition of lui as max max llu(x, t)ll, it is evident that
x t

Jim(x, t) - u(x, t)l] <(1/2)51 if _u - u_ <(1/2B51. using III choose

52 <(1/_ 1 < 51 so that ll_(x, t) - u(x, t)II <(1/_l as long as

]Ix - xlI, It - tl < 52 • Hence by the triangle inequality we see that

llu(x, t) - u(x, _)II< _i

aslongas llx- _II,It- _I,_u -a_< _2"

in accordance

(2.l)

(2.2)
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• i

By definition of _wl as t

Ilw(t) - w(t)}l <(1/2)51 if _w - @_ <(1/2)5 I- Using

53 < 82 <(1/_ 1 < 51 so that liP(t) - _(_)1 <_/2_ 1

It - 41 < 53 .

Hence by the triangle inequality we see that

max llw(t)II, it is clear that

IV choose

as long as

llw(t) - w(4)_ < 51

as long as It - 41, ]w -_| < 53_

Using III choose5 4 < 53 < 52 <_/_l < 51 so that

llx(t,Xo,W,u) - x(4,Xo,W,U){l < 52 < 51

_s _ongas it - 41, If% - _oII, _w - _1, lu - _! < 54-

From (2.4) and (2.2), it is seen that

llu* - a* II < 51

as long as It - 41, Ilx o - _o11,5w - _|, lu - _1< 54, where, of course,

we have set u*: u(x(t, Xo, w, u), t). From (2.3) we also have

II_*-_ II< 51

as. long as It - _I, _w - wl < 54 < 53' where, of course, we have set

w* = w(t). Finally, from (2.4) we have

(2.3)

(2.4)

(2.m)

(2,6)

(2.7)

IIx - _11< 51,

as long as It - 41, I1%- _oll, |w - *|, lu - _t < 54, where, of course,

we have written x as an abbreviation for x(t, x o, w, u). Hence from

(2.1), (2.9), (2.6) and (2.7), we find that

IF[x(t,Xo,W,u), w(t), u(x(t,Xo,W,u), t)] - F[x(t,Xo,W,u), _(t), u(x(t3Xo,W,u),t)]l < _

as long as It - 41, llxo - Xo}l, Iw -wl, _u - _I < 54 , which completes the proof

of the desired result.
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ON THE EXISTENCE OF UPPER BOUZ_DS: A THREE DIMENSIONAL EXAMPLE.

(i) Introduction

Consider the third order linear controllable system with three zero

S3 :

eigenvalues, namely

_l = w(t)+ U(Xl,x2,x3)

x2 = Xl

_3 : x2

We are interested in solutions to this system subject to the constraints

Cl:

C2:

C3:

Ixi(t)l <_A i ; i : l, 2, 3 , for all t _>O.

lw(t)l _ G < 1 for al].t _>0 -

lu(xl,x2,x3)l<_z.

It is assumed that u and w belong, respectively, to classes of

functions [/and W which assure the existence and uniqueness of

solutions for the system S3. We shall show that if A1, A 2 and A3

satisfy certain inequalities, the given system admits an upper bound

within the parallelopiped R3 defined by C1.
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(ii) The System S2

It will prove useful to refer to the system

Xl : w(t) + U(Xl, x2)

S2 :

_2 = Xl

together with the constraints

t

l

c 3 :

h(t)i <A i, i = l, 2,w(t) I < G< 1 for all

u(xl, x2)l < i.

for all t > 0

t> '0

We recall that the system S2 was shown in our previous progress reports

I

to admit an upper bound within the rectangle R2 defined by C1. Indeed,

it was shown that the function

whenever xI > 0

u(xl, x2) 0 whenever xI = 0

+ I whenever xI < 0

was such an upper bound. The core E2 of S2 consists of that region

of R2 which lies between the two parabo_c arcs

and

_i : x2:A2+ 2/2(o__1),_1 >°'

x2= -A2 +x_/2(l_),_l<o,

(i)

(2)

(Figure I). However, upper bounds in S2 are not unique.

!

any member u (Xl, x2) of [7 satisfying
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I,

I

I

I

I

I

I

I

I

I

,r.,

i

!

u (Xl,X2)

- i on the line xI = A 1 3

- 1 in the region xI > 0, x2 _A 2 + x_i/2(_-I). ,

+ 1 on the line xI = - A 1 ,

+ 1 in the region x I < 0, x2 _ - A 2 + x_/2(1-a)

is an upper bound. The reader should have no difficulty in establishing

this fact by showing that Q(u') = K2. For the sake of clarity we note

that the difference between the core E2 of the present example and the

core established for S2 in our previous work results from the fact

that here we take T to be +_. The case of a finite T also yields

an upper bound; however, we prefer to deal first with the case T=+

in order to simplify our proofs.
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Let

Proposition 1. Let u be an upper bound for the system S2 with

respect to the rectangle R2, the class W and the time T = + _. Then

u controls the core _ within itself with respect to any wind w e W.

Proof. Let p ¢ E2 and let P(t, p, u, w,) be the (unique) trajectory

with wind w and control u such that P(o 3 p, u, w) = p. Suppose

q = P(tl, p, u, Wl) / _ for some t I > Q and some Wl_ W. Then

q ¢ G1 or q c G2. Suppose q ¢ G1. Let

w2= I w I for all 1,0<_ t <_ t1
for all tI <t.

(It is hereby assumed that W is large enough so that w 2 e W ). The

trajectory P(t, p, u, w2) , when continued beyond q in the positive

direction, must leave the rectangle R2. But then p / Q(u) = _,

contrary to assumption. If q ¢ G2, modify the definition of w2,

replacing _ by - 5. This completes the proof.
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(iii) The Function u*(xl, x2, x_).

Let

Re = _(Xl, x2, x3)I Ixll __Ai, i = 1, 2; x3 = 0 _ ,

x_ =_(xl,x2, x3) I

PI = _(Xl' x2' x3) I

Hi=

0 < x3 5 A3 _ ,

0 > x3 _ - A3 _ ,

xI = A1 _ D R3 ,

(did R2) U Pi'i:l' 2.

#x,

Li = R2 - Hi , i = i, 2.

For any set A_R 2 we now define

Let

A+ = AXX 3 , A- =A_(X 3

+

-1 in U

* +

u (Xl,Xa,X31 = +l in T.i U H2

U(Xl, x2) in R2.

(Figure 2). We shall show that if A
5

u is an upper bound in R3.

_s large enought, the_ function

Remark: Throughout the remainder of this proof we shall refer only to

Case II (Figure I). Cases I and la require slight modifications of

little significance. The inclusion of these cases does not change the

nature of the results; it only produces a slight refinement of the

inequality constraint affecting %.
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(iv) Some Properties Of u*(x l, x2, X_).

Forneach_fixedt_$_ u satisfies (3) and therefore, if P is any

point in the set _ U K2 U _ and if P(t, p, w, u*) is the trajectory

through p with wind w and control u satisfying P(0, p, w, u*) = p,

then F(t, p, w, u*) cannot leave R3 through any of the four walls

x i = + Ai, i = l, 2. It follows that F(t, p, w, u ) can leave R3

only through the wall x3 = A 3 or the wall x3 = - A 5.

We shall denote the winds w(t) --G and w (t) =- - 5 by 5 and - 5,

respectively.

3/2 --,/2
4 _-2 A 2 (1-5) Let p+_+K_UK+2UK _.Lemma 1. Let A3 _> _

If F(t, p, 5, u*) does not leave _ through the wall x3 --_, then

r(t,p,w,u*) doesnotleave_ thro$ _ =_ for_ w _ W.

o o _ *).Proof. Let p = (Xl, x2, _). Suppose < O. Let P(t) = P(t, p, w, u

In order for F(t) to reach the plane _= _ it must first cross the plane

= 0 and we may as well choose this _i_tas our point of departure. We may

thus assume, without loss of generality, that _ __ O.
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Supposenext that x_ < 0. Then at time t = 0 the derivative

along F(t) is negative and the trajectory F(t) begins its motion by

descending below plane _ = _ • In order for F(t) to leave R3 through

the wall _ = _ it would have to return to this plane and cross it_ We

may therefore assume, without loss of generality that x_ _> 0. (This ilast

assumption is particularly desirable when _ = 0).

Denote the plane x3 = 0 by _ . Let xi(t), xl(t), i = l, 2, 3,

denote the x i cordinates along F(t, p, _, u ) and F(t, p, w, u ),

respectively. We note first that along 7f2 the vector field of the system

S2 is discontinuous. Therefore any trajectory whose projection on

7f2 will proceed in such a manner that its projection remain on _2

it (the projection) reaches Z2. Moreover, except for the point Z2

throughout the duration of this part of the motion we have

reaches

until

itself,

= (A2+x2) along

independently of the wind.

If p c 7r2 then x2(t ) = xl(t) until the respective projections reach

@

the point Z2 (simultaneously) at timel t.

For t _> t we have xl(t ) = x (t) = 0 ; x2(t) = x (t) = -A 2

(and therefore _(t) = xs(t)_ _) as longas _ >0. Hence if p c_ 2

the proof of the Lemma is complete.
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In the set K2 -_2 we have

w +u =w (t) - i<_ a-l<O

Therefore, if p e K2 - 7r2,we get

!

xl_t) <_ xl(t)

so long as (xl(t), x2(t)) and (xll(t),xI (t)) remain in _ - 7r2.

Throughout this part of the motion we _herefore have

xl(t) _< x2(t)

_(t) <_x 3 (t)<_ _.

The slope of _r2 is negative throughout. Hence (xl(t), xl(t)) reaches

_2 before (Xl(t), x2(t)) does.

 (ngure3).

Figure 3
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Let the time of impact be to. Then xl(to) __ xl(to). So long as
T

xl(t) __ xl(t) , t __ t o , we still have x2(t) __ x2(t ). Let tI >t o
I

be the first (if there are any) time such that xI (tl) = xl(tl). Then
!

clearly x2(tl)__ x2(tl) , whence (xl(tl) , x2(tl) ) lies either on _2

! I

or above it. In the first case we have (xl(tl) , x2(tl) ) = (xl(tl) , x2(tl)),
T T

whence (xl(tl) , x2(tl) ) = (xl(tl) , x2(tl) ) for all t __t I for which

both trajectories are still in the half space x3 > 0. In the latter case

we note that _l(tl) = _-l < 0 and therefore the projection (xl(t), x2(t))
T t T

moves to the left of the line xI = xl(tl). At the same time (xl(t), x2_(t))

moves to the right of this line. Hence (xl(t), x2(t)) will intersect
T f

_2 (if at all) at some time t2 > t I at a point " above " (xl(t2) , x2(t2) ).

therefore, again, so long as both trajectories are still in the half space

x3 > O, we have
t

x2(t) x2(t).

Hence, so long as x3(t ) > 0 and x3 (t) > 0 we have

_(t) ___(t) __ A3. (4)

! T T

As long as _(t)> 0, the projection (Xl, x2) proceeds in K2 towards

_2 and then along _2 towards Z2. If the plane _ has not
T

yet been reached, the projection is " stopped " at Z 2 and x3(t ) decreases
T *

monotonically at a fixed rate % = - A5 towards 0. Eventually, P(t, p, w, u )

descends into the lower half space x 3 < O. Prom that point on the inequalities

(4) can no longer be applied for all subsequent time. Surely, however, there

is no risk of P(t, p, w, u*) emerging from _ through the wall x3 = %

!

so long as _(t) < 0. Suppose then that P(t, p, w, u*) returns to _ at

some subsequent point PI" The proof of Lemma i would be complete if we knew

- i0-i0 -
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*)
that P(t, Pl' 04 u does not leave % through the wall x3 = A3 for

any point Ple K2; for then we could simply apply the results obtained "

above to the point Pl" The fact that P(t, pl 3 (_, u*) does not leave %

through the wall x3 = % will be proved in the following Lemma.

Lemma 2. Let % _> } _ A5/2 (1-_) -1/2 and let p e K2. Then

P(t, p,G:, u ) does not leave _ through the wall x3 = _.

O O

Proof. Let p = (Xl, x2, 0). As in the proof of Lemma 1 we may assume,

without loss of generality, that x_ _> 0.

Suppose first that p = _ = (_2(1-<_) A2, 0 , 0 ) .

\ ./ / f ""t -. _

...... -

Z2.

Figure 4

The solution P(t, M1, G, u*) isJgiven by

xl(t ) = q2(1-a) A2 + (G-l) t

(G-l) t2
x2(t ) = (q2(1-_)A2)t +

t2

x3(t ) = (q2(1-G) A2) _-- + _ t3

- i0 - ll -



Starting at _ at time

at time tl--2 4_

Since % > _,

t = 0, the projection of this trajectory reaches

Thevalue of _ at that time is found %obe

4 _2 A23/2 (1-(_)-1/2 =x3(tl) =

and since _(t) is monotonically increasing for all

0 _ t _ tl, we congludethat for all t in this interval _(t) < A3.

After the projection of P(t, _, G, u*) reaches _ it proceeds

along _2 towards Z2 and continues to do so as long as _(t) > 0. If it

reaches Z2 it is " stopped " there until x3(t) = 0, that is, until

P(t, _, _, u*) returns to the plane _ at time, say t2. At that point

x2(_) < 0 and P(t, _, w, u*) descends into the half space _ < 0. It

reemerges on the plane v at some later time and some other point

• ! T !

(Xl, x2, 0), with x2 _0.

! T

This phenomenon is general: starting with any point q = (Xl, x2, 0) e K

T

with x2 _ 0, the trajectory P(t, g, G, u*) rises monotonically into the

half space _ > 0 and continues to do so as long as x2(t,g 3 _, u*) > 0.

Eventually x2(t , g, _, u*) becomes < 0, the trajectory descends to _,

enters the lower half space whence it returns to _ , enters the lower half

space whence it returns to _ at a later time and at another point.

Clearly then, P(t, _, _, u*) or for that matter any P(t, p, _, u*),

can cross the plane _ = % only during one of these intervals of monotonic

increase in _. We shall show that the maximum rise in the value of

attainable d_ing one of these intervals, starting from any point in the upper

half of _, is 8. Once this is shown the proof of Lemma 2 would be complete.

- i0 - le-



Supposefirst that p lies in the region Z1 _ % % Z1 (Figure 4).

The projection of the trajectory t._ough p would proceed along a parabolic

arc until it reaches 77-2,then descendto _. This is the interval of

rise in the value of x3(t). It is clear that if a given point p is replaced

by the point on (the line segment) _Z 1 which9recede_ it on the trajectory

through p, the rise in x3 would be increased (See _ Figure 4). Moreover_

x2' viewed as a function of x I is a monotonically increasing function. It

is therefore easy to see that

f_ x2(t ) dt <_ f_x2(t)dt + 2(t) dt <_ f x2(t ) dt.

% _ % Zl

But M2 zl _2

y x2(t ) dt < fx2(t)dt + f x2(t ) dt =

ZI M1 Z I

Hence our assertion is proved when p ¢ Z1 _ % % Z1.

If p _ 5 Zl_ o _, onehas

fM82(t)dt +f_Xe(t)dt - F _ +fM_x< j x2(t ) dt 2(t)dt =

P % % _%
f x2(t)dt-

%

Let _ = (a,0,0) . The trajectory through M 6 (whose projection on

is given by _ _ _ ) is given by

- 10-13-
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The value of _ (t)

Hence

xl(t ) = a + (G-l) t

t2

x2(t ) = a t + (G-l) _-

at 2 t3

_(t) =-_- + (G-l) _-.

is a monotonically increasing functions of ae

2 / _x2(t)dt 2 F Zl_< j xe(t)dt = _.

It follows that the maximum rise attainable (in the direction of _) by
or_3;_e_ J

any trajectory A in _! is _. This completes the proof of Lemma 2.

Lemma _. Let _ _> _. Let u ¢_, p ¢ _. If p e Q (u) then

P(t, p, G, u*) cannot leave _ through the wall _ = _.

0',_ 0 0Proo___._f.Let p = (Xl, xe, ). Since p e Q (u) it follows that (Xl,X2) ¢ K2.

Hence (x,(t,p,G,u*) , x2 (t,p,=, u*)) e _ for a]it _> 0. Hence if 1

P(t, p, (_, u*) ever reaches the plane _ , it could not (by Lemma 2) sub-

sequently cross the plane 5=_. Thus if _ <_ 0 the proof is complete.

We therefore restrict our attention to the case when _0.

Denote xi(t , p, G, u*) and xi(t , p, G, u), i = l, 2, 3, by xi(t )

and Yi(t), respectively.

Suppose first that (Xl, x_ ) e _ - _2" Then as long as both

(x,(t), x2(t)) and (_(_),y2(t)) belong to _ - W"2 and both x3(t ) and

- i0 -14 -
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Y3(t) are positive, wehave

+ u > _ + u

whence

= _ -i,

xl(t ) <_Yl(t) , x2(t ) <_y2(t), _ (t) <_Y3 (t) <_ (5)

If _(t) vanishes at time t before (xk(t), x2(t)) reaches _2'

@

the proof is complete on account of the fact that P(t, P3 5, u ) reached

_. Otherwise (xl(t), x2(t)) reaches _2 at some time to, at which time

x3(to) is still > O.

The situation is now somewhat analogous to that which obtained in the

proof o@ Lemma 1. We first note that due to the negative slope of _2 and

the inequalities (_5) it is necessary that (xl(t), x2 (t)) reach _2

before (Yi (t), y2(t)) does. Moreover

xl(t o) _< Yl(to ) , x2(t o) <_Y2(to).

So long as xl(t ) <_ Yl(t), t_> to, we still have xe(t ) < y2(t). In order for

y2(t) to "catch up" and become _< x2(t ) the projection (Yl(t), y2(t))

must proceed to left of the (moving) line xI = xl(t ). However, since

p e Q (u) this projection must remain to the right of _2" This "catching up"

process can therefore proceed only through the wedge indicated by diagonal

shading in Figure 9. But (xl(t), x2(t)) has the least possible value throughout

this wedge. Hence

x2(t) _< Y2(t)

as long as _(t) >0. Hence

- l0 -15 -
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_(t)< y3(t)< A3

asio_as x3(t)> 0. _iscompletestheproofintheca_ewhenx_> 0

_ (x_,,x_)_-_.

X_> O O ..There remains the case when -0 and (Xl, x2) c _2" This case is ,:

disposed of by using the "wedge argument" given above: In order to

surpass (xl(t), x2(t)) the point (Yl(t), Y2(t)) must proceed through
!

the wedge. If at any time t the latter point coincides with the former it

can either continue to move on _2 (in which case it would coincide with

(xl(t), x2(t)) since the vertical component x2 of the_ vector: field is

forced on _2) or move to the right of _2" In neither case can y2(t)

become __ x2(t ). This completes the proof of Lemma 3.

The following Lem_as are proved In_complete analogy with Lemmas 1,2 and 3.

Lemma4. let _ _> _. Let P ¢ _U_L)_..

not leave _ through the wall _ =-_ , then

leave_ thro__ = _ for_ w_W

_emma _: Let _ _>_ and let p ¢ _.

through the wall _ = - A3.

Then

If F(t, p, -_, u ) does

P (t, p, w, u*) does not

IF, ¢¢

r(t, p, . a, .u ).does:not, leBve

Lemma 6. Let _ _>_. Let u ¢ U , P ¢ _. If p _ Q (u) then

r(t, p, -a, u ) o_t leave _ thro_ the wall _ = - _.

- i0 -16-



Weare nowin a position to state our main result.

Theorem. Let _ = 34_2 A23/2 (1-_) -1/2. If _ _> _ then u*(xl,x_, x3)

isanupperbo_ forS3 i_ _. _roo_or,_ _ Q(u*)

o o x_)Proof. Let u _ U and let p c Q (u)° If p = (Xl, x2, then

(Xl, x_) _ _. It now follows from Lemmas 3, l, 6 and 4 that

p ¢ Q(u ). Hence Q(u) _Q(u*) for all u c U .

The fact that _ _ Q(u*) follows from Lemmas 2, l, 5 and 4.

This completes the proof.

_Z

Figure 5
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1. THE CORE FOR THE SYSTEM _ = h(_x_t) + w + u.

Eventually we shall restrict h to be independent of t, but We

can begin without making this restriction.

We refer to Section 3 of the Eighth Progress Report, in which the

system

=h(_, x, t) +_ + u

was considered subject to certain constraints. We suppose h(_, x, t)

be monotone non-decreasing in x for each fixed _ and t.

can also be written in the form

(1.1)

to

The system

Xl = h(Xl'X2't) + U(Xl'X2) + w(t)

_2 = kl

The constraints to be considered are

Ixi(t)l __A i , i = l, 2, for al t c [0,T)

I

C1 :

I

C2 :

T

c3 :

lw(t)I__c_<I, w cw,

lu(xl,x2)I_-i, u _U.

We hereby use A! instead of A and A2 instead of B as in the Eighth

Progress Report.

We suppose we have a non-negative continuous function k(x2) defined

for Ix21 __ A 2 and such that when the point (Xl, x2) is initially

within the set J defined by iXll __h(x2) it ren_ins trapped within

(1.2)

(1.3)



this set for all time during the motion defined by (1.2) with U(Xl,X2)

replaced by u (Xl,X2) , where u (Xl,X2) = - sgn x I for (Xl,X2) out_side

the set J. This supposition is supposed to hold for any w _ W and

no matter how _ is defined inside the set J, so long as it is such that

The first _main result of Section 3 of the Eighth Progress Report was

to the effect that such a function u ¢ U was an upper bound for the

I

rectangle R2 defined by C1 and for any time interval [0,T]_

The second main result of this section of the Eighth Progress Report

was concerned with the systems

21 = h(Xl, x2, t) - 1 +

22 = x I

(Of. equation (3.5) of the Eighth Progress Report where the system was

written as a single equation of the second order _ = h( , _, t) - 1 + c_)

and

_l = h(Xl, x2, t) + 1 _

2 = Xl'

The following result was implicitly developed although it _as not explicitly

stated in the Eighth Progress Report:

Theorem l°| The core of the system (1.2), that is Q(_)3 is JUT_1 UL2,

where Li consists of those points (Xo' Xo) with

h (Xo) < (-i) i-I 2 ° __ AI and IXol __ A2

such that the trajectory of _ , with initial point (_o' Xo)3 either
i
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enters the set J (where it would, of co_se, be trapped) at some

time t _ T without previous_ having left the rectangle _, or else

it leaves the rectangle _ only at some time t _ T.

If T = % the second alternative in the definition of _ may

be o_tted, and the pict_e becomes co_espondingly simpler. As in the

_elfth _o_ess Report, we restrict _tention to this case.

A further simpli_ing assumption will also be _de to the effect that

t_ou_out R2, h(Xl, _, t) - 1 +_ is ne_tivewhile h(Xl, _, t)

+ 1 - _ is positive. _is is, of co_se, true in the particular case

h(Xl, _, t) _ 0 studied in the _el_h _ogress Report and is true

also in the sli_t_ more general case in which h (being continuous)

is independent of t and _nishes at xI = _ = O, and in which A 1

and _ are sufficiently s_ll. Physieal_ it means that a sufficient_

p_er_l control is a_ays a_ilable to pre_il against the combined effects

of the wind a_ the _t_al characteristics of the system emb_ied in the

function h.

As a result of these assumptions, it is seen that the trajectories

_haveof positive slopes when x I < 0 and negative slopes when

> O. _e opposite is true of the trajectories of L " _ex I

trajectories of both _ _d _ c_ the x2 - axis at ri_t angles.

_us trajectories of _ _d _ foll_ c_ves si_lar to parabolas,

symmetric in the _ - axis, which plied such an important role in the

_elfth _o_ess Report. We therefore call these c_ves pseudo_arabolas

a_ _cs of these c_ves are called pseudo_arabolic arcs. Althou_

these pseudo-parabolas have " pse_o-vertices " on the _ - axis, where

they i_ersect this axis at right _gles, they are not necessarily

symmetric in this axis, _less h(-Xl, x2, - t) _ h(Xl, _, t), an identity
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which we do not assume.

If T = _ and if h does not dependexplicitly on t, as we hence-

forth assume,it Is easily seen from Theorem1.1 that the core _,

illustrated in Figure l, of the system (1.2) Is bounded_ the fblloWing:

A pseudo-parabollc arc

from the point _l = (0, A2)

positive abscissa x1. (N1

V_
_l'

associated wlth the system
3

to a point N 1 on the boundary of R2

may be on xI = A1 or on x2 = - A2).

The part of the right-hand boundary of R2

mentioned point N1 to the point _= (0, - A2).

reaching

with

extending from the last

V_

A pseudo-parabolic arc _2' associated wlth the system _, reaching

from the point _2 = (0, - A2) to a point N2 on the boundary of R2

wlth negative abscissa x1. (N2 may be on xI = - A 1 or on x2 = + A2-.

The part of the left - hand boundary of R2 extending from the last

(A,.¢_

mentioned point N2 to the point Z 1 = (0, A2).

_XA

Z,

w,,

Figure i
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b tj

In following _! from the point N1 we first reach the boundary of

the set J either at the point Z!, or at an earlier point P. But since

_! is part of the boundary of _, it is easily seen that it can not enter

into the interior of J. And from the characteristic property that J haa

of trapping within its interior, when u = _, anything that ever gets there

including some of the points near P, it is not hard to prove that _f must

coincide with the boundary of J from P until it reaches its terminal at

gl"

We have already restricted ourselves to taking T = _. The class W

of functions defined on [ O, _ ) is, as previously, assumed to be bounded

in absolute value by the positive number _ < 1. We now suppose further-

more that W is wide enough so that, for any t I ¢ [ O, _ ), whenever Wle W, and

w 2 ¢ Wj the function w and w, defined as follows also belong to W.

w (t) = wl(t I + t) for t __ 0

w (t) = wl(t ) for 0 _ t < t1

w _t) = w2(t) for t __tI

(1.,4)

The following theorem which generalizes Proposition 1 of the Twelfth

Progress Report gives a further indication of the advantage of taking T = _ .

Theorem 1.2 Let u be an upper bound for the system (1.2) , assuming that

h(Xl_ x2, t) = h(Xl, x2) is independent of t. The upper bound u is assumed



with respect to the rectangle R2 and the class W with the properties

specified above. Then u controls the core _ within itself with respect

to any wind w c W.

Proof. If p c R2, let F (t, p, u, w) be the unique trajectory with

the wind w and control u suchthat P(O, p, u, w ) = p. Supposenow

that p ¢ K2 but that q = P(tl, p, u, Wl) / _ for some t I > 0

and some w I ¢ W. Then q is still in R2, since p ¢ Q(u)= K2.

But since q / _, there will exist a w 2 ¢ W, such that the trajectory

F(t, q, u, w2) will leave the rectangle. We now define w(t) in terms of

wl(t ) and w2(t ) in accordance with (1.4). Then the trajectory F(t,p,u,w)

follows the same path as F(t, q, u, w2) for t > t I and will hence leave

the rectangle _. But this is absurd since w ¢ W and u controls the

system within R2 relative to the whole class W. Hence there can exist

no point q = F(t, p, u, w, ) / _ (if p c _), as we desired to prove.

2. ON THE EXISTENCE OF UPPER BOUNDS FOR THE SYSTEM

x = h_, _) + w(t_u¢_, _, x)

By setting "_ = Xl, _ = x2, x = _ we write the system in the form

-- + u(xI, x2, + w(t)

--Xl (2.1)

= x2
W

Our immediate purpose is to define a function u (Xl, x2, _) which

will later be proved to be an upper bound. The definitisn is analogous

to the one that should have been given on p. 6 of the Twelfth Progress

Report. It will be observed, however, that this definition (though its

imtentio_ is fairly clear) contains a couple of errors. The definition

- ll-6-
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is also slightly changed in some other unessential respects. Thus the

following is a modification, generalization, and correction of the one

which appeared in the Twelfth Progress Report.

Let

R3 = { ( xI,x2,x3 ) I

_2 _ (xI,x2,o )I
1,-

Pi= _

Gi = _

where Xl = gi (x_

I xi I __ Ai, i = I, 2, 5

Ixll __ Ai, i--i, 2

(0,0, 5) Io< 5 _ A3

(0,0, 5) I o> x3>_-A3_

(-(-1)i A1 , x2, o )_ _, i = l, 2
i

(xr x2, 0) I - i-l) gi (x2) < _(_l)i Xl

is an equation for the half of the pseudo-parabola

belonging to _. and passing through the point Zi for which -(-1) i x1> 0.

See the previous section for the meaning of _ and Z i. Let

_i=%U Pi, i =i, 2.

For any set

Let

Li = R2 - Hi ,

A_R 2 we now define

i =i, 2.

+

A+ = A x _ , A'- A x X'5
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u(xl,x2,xs)=
-i in R2 if xI > 0

+i in R2 if xI < 0

See Figure 2 of the Twelfth Progress Report. We shall show that, if A3
.

is large enough, the function u is an upper bound in _.

For each fixed _, u (Xl, x2, _) is seen to be an upper bound for

the system

Xl = h(Xl' x2) + u + w (2.2)

x2 = Xl"

Therefore, if p is any point in the set _UE2U _ and if P(t, p, w, u*)

is the trajectory through p with wind w and control U satisfying

P(0, p, w, u*) = p, then P(t, p, w_ u*) cannot leave _ through any of

the four walls xi = + A., i = 2. This is a consequence of Theorem 1.2.-- i

It follows that P(t, p, w, u )
can leave R3 only through the wall

_ =_ or the wall _ = -_,

We shall denote the winds w(t) m _ and w(t) m - a by a and -a ,

respectively.

Let _i) (t) be the solution of the system _ (i = l, 2; k = l, 2)

satisfying the initial conditions x (i) (0) = 82k l-l) i+l A2 and let it

: " ' '' 'i
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intersect the

Then we set

(1) < 0 and at t = _(X) >_ O. ,
xI - axis at t = _l

' F_p(i) x (±) (t) dt II

In the special case considered in the Twelfth Progress Report, the

solutions x_ I) (t) and x(_)(t) of systems _ and _ respectively

intersect each other at two points M1 and M2 on the x I axis. See

Figure 4 of that report. This need not be the case for the present more

general system. If, however, A 1 is large enough relative to a fixed A2,

it is geometrically obvious that these two pseudo-parabolas intersect each

other at two points within R2, one on each side of the x2 - axis. We

restrict ourselves to this case. The other cases are not conceptually more

difficult but they do present more annoying details. Let the point of

intersection on the right side of the x2 - axis have the ordinate x2 = a1

and the one on the left side have the ordinate x2 = a2. These points lie

on the pseudo-parabolic arcs _i and _2 respectively. We again refer to _-

the equation for the pseudo-parabolic arc vi' given in the form x I = gi(x2)

Zor Ix2 I A2.

If (-i) i ai _ 0, define Ti = 0. If, however, (-I) i ai > 01, we let

Idx
a.

l

In this latter case, the significance of _i is that i_gives the time it

takes for a point (Xl, x2) to pass from the intersection point (gi(ai), ai) O_

- 11-9-



_i to the xI - axis wheneverthe control is such that it compelsthe

point to movealong the arc _i" The result is, of course, obtained by

integrating x2 = Xl = gi (x2)"

Moreover, if we let x2(t ) be the solution of the differential equation

= gi(x2) and the initial condition x2(O) = ai, then

f?Xi = I x2(t) I dt

is the increase in (-1) i x3 (under the assumption _ = x2) as the

projection of the point (Xl, x2, _) on the plane _ = 0 moves along

_i from (gi' (ai)' ai) to the x2 - axis as previously described, in

the case that (-1) i ai > 0. Otherwise, of course, hi = 0.

We now take k = max (hl, _) and state our main result to the effect

*

that u is an upper bound for the system (2.1) with respect to R3

provided that _ __ B + _.

We have not had time to write up the complete details of the proof of

this result. We will do this for the next Progress Report. Actually the

proof for the special case treated in the T_elfth Progress Report needs only

to be modified so as to avoid the explicit integration of the systems

and _ . It turns out that this can be done by appealing to Theorem 1.2

of the Eighth Progress Report and the following simple corollary thereof:

Lemma 2.1 Let f(xl, x2) be a monotonic non-decreasing function of x2

for each fixed x1. Let f(xl, x2) __ - _ , where _ is positive. Let

xl(t,a), x2(t,a), _(t,a) satisfy the system of differential equations

Xl = f(xl' x2)' x2 = Xl ' _ = x2 and the initial conditions, Xl(O,a ) = a,

x2(0,a ) = _(0,a) = 0, a > 0. Then there exists a positive number T --T (a)
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such that x2 (t,a) > 0 for 0 <t < T and such that x2(T) = O. Moreover

T(a) and _(T(a), a) are both monotonicincreasing functions of a.

Proof Since x2(0) = O, and _2(0) = Xl(0 ) = a > O, x2 (t) > 0 for

sufficiently small positive values of t. Nowevidently xl(t ) __ a -_t.
1

Hence x2(t ) __ at - _ _t2 , which is negative for sufficiently large values

of t. Hencewe let T be the (first) point where x2(t ) ceasesto be positive.

This proves the first statement of the Lemma.

Let a <a l, xi(t ) = xi(t,a ) and xI (t)= xi(t,al), i = l, 2, 3.

Then _2 = f [x2(t)' x2(t)1 and x2 = f[_ (t), (t)1 and wealso have

the initial condidtions, x2(0) = xl(0) = 0.

• x2(x2 (o): o)=a<aI: x_:_ (o).

It follows from Theorem 1.2 of the Eighth Progress Report that

x2(t ) __ xI (t) and that xl(t ) = _(t)=<.l x_(t).--x_(t)

for t > 0. Since x2(t ) > 0 on the interval (0,T(a)), it follows that

xl(t) is also positive on this interval. Hence T(a) __T(al). Finally

fo T(a) JoT(a)xl (t) pT(al) 1_[T(a)l = x2(t ) dt __ dt -_Jo x2(t ) dt = _ [T(al)1.

This proves the last statement of the Lemma.
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3- ON TEE EXISTENCE OF UPPER BOUNDS: MODIFICATION OF A PREVIOUS EXAMPLE.

(i) Introduction.

As in our Twelfth Progress Report (T P R) we consider the third

order linear controllable system with three zero eigenvalues, namely

91 = wCt) + u (Xl, x2, x3)

%: %:Xl

We are interested in solutions to this system subject to the constraints

Cl, C2, C3 of T P R. It is assumed that u and w belong, respectively,

to classes of function U and W which assure the existence and uniqueness

of solutions for the system S3. In T P R we showed that S3 admits an
@

upper bound U within the paralleloplped _ defined by CI. In the present

section we shall exhibit the existence of still another, more sophisticated,

@

upper bound v which, apart from being an upper bound in _, has certain

additional desirable properties within the core of _.

Throughout this section we shall refer freely to the Figures , definitions

and notations of T P R.

(ii) The Function v (Xl, x2, 9)

Let R2, _, _, PI' P2

_3' _ be the two parabolic

2

_3 x2_xl
2

be as in Section 2

arcs

/2 (=- 1),xI _>o

/2 (1- _),xI_< o,

of the present report. Let
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(Figure 2). Let _ and M2 be the regions shaded, respectively, in

Figure 2 by horizontal and vertical lines. Let GI, G2

Figure 2

be as in T P R. (These are NOT the same as the sets Gi of Section 2 of

the present report). Let

Ji= (_inR2)U PiU _i '

T'i = R2 - Ji ' i = 13 2.

For any set A C R2 we now define

A÷= , A=AX 

i=1,2.
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(xl,x2,5)= +lin_VJ2

where u is as defined in T P R

x3>O

x3<O

i k '

Figure 3

•"\ '\

\\ --
\ +t
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4 _2 A32/2 (1-_)-1/2 If A3 > _ thenTheorem _.i. Let 8 = 5 " -

v (Xl, x2, _) is an upper bound for S3 in _. Moreover, _Q (v*),

where K2 is as in T P R.

The prbof proceeds along lines which are fairly analogous to the proof

in T P R. The reader may therefore wish to review the latter proof before

proceeding with the present one.

(iii) Proof of Theorem _.i

Lemma _.l Let % __ _ and let p e K2. Then P(t, p, (z, v*) does

not leave _ through the wall _ = %.

o 0). As in the proof of Lemma 2, T P R, weProof. Let p = (Xl, x2,

may assume, without loss of generality, that x2 __ O. Starting with any

o 0)¢ K2, with x 2 > 0, the trajectory F(t, p, (_, v*)point p = (Xl, x2,

rises monotonically into the half space x3 > 0 and continues to do so as

long as x2 (t, p, (_, v*)> 0. Eventually, x2 (t, p, G, v*) becomes

*)
0, at which time _ (t, p, (_, v begins to decrease monotonically.

Moreover, once x2 (t, p, _, v*) becomes < 0 it remains __ 0 as long as

_(t, p, G, v*) is still __ O. Thus, once x2 (t, p, G, v*) becomes

O, the trajectory P (t, p, (_, v*) begins a monotonic descent and it

cannot start a new ascent before first returning to the plane _(see T P R).

Finally, if a subsequent ascent of r(t, p, G, v*) towards the wall x3=

does take place, then it can only Caome after F(t, p, G, v*) first passed

1 1
through some point q = (xl, x2, 0) with x2 __ 0. It is then sufficient

to study F(t, q, _, v ), t __ 0, directly, without reference to its "past"

history. In other words, for the purpose of this Lemma, it is sufficient to

- ii-19 -



o 0) c K2 with x2 > 0 and consider the arc oftake p = (Xl, x2,

P(t, p, 5, v*) corresponding to the first maxin_l interval, say

0 < t __ tl, during which P(t, p, a, v*) is ascending. However,for

all 0 __ t __ t I wehave xi(t , p, a, v*) __ O, i = 2, 3., and therefore

v (xl(t , p, _, v ), . .., _(t, p, _, v*)) = u (Xl,(t , p, G, u ), . ..,

_(t, p, _, u*))

whence

P(t, p, _, v*) = P(t, p, _, u*)

for all 0 __ t __ t 1. This, together with Lemma2 of T P R, completes

the proof of Lemma3.1.

Lemma _.2 Let _ __ _ . Let p ¢ K2U K2U K2. If P(t, p, _, v*)

*

does not leave _ through the wall _ = _, then F(t, p, w, v ) does not

leave _ through _ = _ for any w c W.

o _) As in Lem_ 1 of T P R we may assumejwithoutProof. Let p = (Xl, x2, .

loss of generalit_ that _ __ 0, x2 __ 0._'JLet xi(t), xl(t), i = l, 2, 33

denote, respectively, the x i coordinates of P(t, p, G, v*) and

P(t, p, w, v ). Let [0, tl] be the maximal interval throughout which both

1
x 2 (t) __ 0 and x2(t ) __ O. Then for all t c[0, t l] we have xi(t ) __0

and x I (t) __ 0, i = 2, 3,

whence

P (t, p, G, v*) = F (t, p, _, u*_

P (t, p, w, v*) = F (t, p, w, u*)
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where u is as in _ T P R. Henceit follows from the proof of Lemma1

in T P R that
1 •

x3 (t) < x3 (t) <

for all 0 < t < t 1. Thus P(t, p_ w, v*) cannot reach the wall x3= %

during the interval [0, tl]. A subsequentascent towards this wall would

1 0) c K2 with x_ > 0. Buthave to start from somepoint q = (x_, x2,

then we maychoose q as our starting point and argue as above.

This completesthe proof.

Lemma _._. Let % __ _° Let u ¢ U, p c _. If p c Q(u) then

r(t, p, _, v ) cannotleave_ t_ou_thewallx3 =A3.

o x_).Sincep _Q_u)itfono_sthatCx_,x_)__2"Proof. Let p = (Xl, x2,

*

Hence (xl(t , p, _, v ), x2(t , p, _, v*)) ¢ K2 for allt __ O. Hence

if P(t, p,_ , v*) ever reaches the plane _, it could not (by Lemma 3.1)

subsequently cross the plane x3 = %. Thus if _ __ 0 the proof is

complete. We therefore restrict our attention to the case when __ > 0.

Denote xi(t , p, 5, v*) and xi(t , p, _, u), i = l, 2, 3 by xi(t )

s_ud Yi(t), respectively.

O

If (Xl, x2) ¢ % then x2(t , p, _, v*) remains __ 0 as long

as x3(t ) __ 0. Hence P(t, p, G, v*) cannot start an ascent towards the

plane x3 = % until and unless it first reaches the plane _. This

completes the proof in the case when (Xl, x_) ¢ %. We may therefore

assume that _ __0 and (Xl, x_) ¢ K2 - %. However, in K2 - % the

. *

function v is identical with the function u of T P R and the proof

of Lemma 3 in T P R applies. Therefore, as long as (xl(t), x2(t))
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and (Yl(t)'Y2(t)) arebothin

x2(t)<_ Y2(t)

and

_-_ wehave

x3(t) _ Y3 (t) __ A3-

It follows that (xl(t), x2(t)) reaches the set _ before Y2(t) becomes

negative. But once (xl(t), x2(t)) reaches the set _ it cannot leave

it until and unless P(t, p, G , v*) reaches the plane _ . This completes

the proof of Lemma 3.3.

The following Lemmas are proved in complete analogy with Lemmas 3.1,

3.2 and 3.3.

Lemma_.4 Let _ __ _ and let p c K2. Then P(t, p,-_, v*) does not

leave _ through the wall x3 =- _.

Lemma 3.5. Let _ __ _. Let p c _+ •_ K2U _-. If P(t, p, - _, v*)

does not leave _ t_oug_ the _._all _ = - _, then P(t, p, w, v*)

doesnotleave_ t_o_ b o- _ for_ w _W

Lemma _.6 . Let _ __ _ . Let u c U, p e _. If p ¢ Q(u) then

P(t, p, -_ , v*) cannot leave _ through the wall _ = - A3.

The reader will easily convince himself that the proof of Theorem 3.1

is contained in Lemmas 3.1 - 3.6.

The function v is clearly superior to the function u of T P R

inasmuch as it eliminates the worst oscillatory features of a trajectory moving

.
under the influence of u . A more detailed discussion of the exact nature

.
of v does not seem warranted at this time.
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i. PROOF OF THE EXISTENCE OF UPPER BOUNDS FOR THE SYSTEM.

= h (_, 2) + w (t) + u C_, 2, x)

The conditions ur.der which the system referred to in the section

title has sin.upper bound were stated in Section 2 of the Thirteenth Progress

Report. In the present section we present the details of the proof that

an upper bou_nd actually exists under the stated conditions. The proof

depends upon six lemmas, which are discussed in the following pages, after

which the main theorem becomes almost self evident.

The notation of the section is intended to be the same as the notation

of Sections 1 and 2 of the Thirteenth Progress Report. It may be noted,

however, that the k of this section is the same as the k

of the Thirteenth Progress Report, but has nothing to do with

of the Thirteenth Progress Report.

Lemma i. Let _ _ B + k a=_ let p ¢ K2. Then P (t, p, (_, u*)

does not leave _ through the wall x3 = _.

Proof. Let p = (Xl3 x2, 0). If x_ < 0, we see, from the fact that

= x2, that the system begins its motion by descending below the plane

x3 = 0. It can never reach the plane x3 = + _ until it first returns

to the plane _ = 0, and this must happen (if it happens at all) at a

point where x2 _ 0. Hence, without loss of generality we may assume in

o
the first place that x2_ 0.

of Section 2

k of Section 1
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Supposefirst that p = _, the point where the pseudo-parabolic

arc _l intersects the xI - axis.
% &

%

Fi_are ]a _ Figure Lb

The solution P (t, Ml_S , u*) in terms of the _(i) (t) introduced

in the Thirteenth Progress Reporg, bottom of p. 8, may be written as follows

xl(t)= x_ I) (t + "_l))

x_.(t)= x(I) (t + _i))

'__" (1)+t

% (t)= /t tx2 (s)_--/ "2_(1)_s+_(1))_s'1 :[ x2(1)(_)_'
o o (1)
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Starting at _ the projection of this trajectory reaches Z1 at
(1) (1) Theprojection of the trajectorytime - _l , by definition of _l "

maythen return to the xI - axis at a point _ before it meetsthe

pseudo-parabolic arc _2 at _ as shownin Figure la or it maymeet

the arc _2 at and then follow along _2 until it reaches the

xl- axis at the point _ where _2 crosses the xl- axis, as shownin

Figure lb.

In the case illustrated by Figure la3 the projection of the traJector_i_

proceeds i_om Z1 to _ after the lapse of a time _(1) . Henceit

passes from M1 to M2 after a total time t I = _(1) _i(1), _The.valueof x3

at that time is found to be

(1) + tl _(1)

x3(tl ) = _(1) x(1)(s)ds = _l) x_1)(s)ds _- _ _- _ + k
1

Since A3 __ _ + k, and since _3(t) is monotonically increasing for

all t _ (0, t 1), we conclude that for all t in this interval _(t) __%, -

After the projection of P (t, _3 G, u reaches M2, _(t) starts to

decreasewhile the projection goestoward _ and, if it actually reaches

, it then continues along _2 toward Z2 as long as _(t) is still

positive. Whenonce _(t) becomes __0, there is no possibility for

the trajectory to pass through the wall _ = + % until it emergesagain

at somepoint (Xl, x2, 0) c K2 for which x2 __0. Also, if the projection

reaches Z2 before _(t) __0, the projection will be stopped at Z2 until

_(t) __O, and the previous sentenceis again applicable.

In the case illustrated by Figure lb, the projection of the trajectory

proceeds from Z1 to _after the lapse of a time _ < • . Henceit
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passes from _ to after a total time t I =

of x3 at that time is found to be

(i) @

+ tl _l)
(

x3(t_) = F(1) _l)(s)ds _ f(1)
x !)Cs ds

The value

After reaching _ the projection proceeds along _2 until M2 is

reached at time tI . In terms of previous notation, Thirteenth Progress i

Report pp. 9 and 10,

_(tl) - _(tl) = f x2 (s)ds =k 2 _- k
0

Hence, again, we find that _(tl) ___ + k _- A3,

see that, for all t ¢ (0, tl) , _(t) __ A3.

A_

Figure 2a

and thus,'"as before, we

./

, "N_\

o

_.

Figure 2b ,
i !

I



l
Suppose first that p lies in the region bounded by Z1 _ _3Zl

in the case of Fig_re 2b. The projection of the trajectory through

p would proceed along a pseudo-parabolic arc until it reaches _2 and

descend to _ and on to _. We already know that the amount that

x3 increases during the passage from _ to _ is __ _. Hence we

examine the amo_ut that x3 increases during the passage from p to

. It is clear that, if a given point p is replaced by the point

on the llne segment _ Z1 which precedes it on the projection of the

trajectory through p, the increase in x3 would be made greater. Even

this greater increase in _ _lll be sh_n to be < _.

Let [xl(t), x2(t )] denote the motion of the projection along the

path _ _ _ starting at _ when t = 0 and ending at _ when

t = Tx, say. Let [_l(t)_2(t)] denote a corresponding motion along

Z1 _ starting at Z1 when t = 0 and ending at _ when t = T_.

Since Xl(O ) < _l(O), x2(O ) = _2(0), _2(t) = xl(t), and _2(t)=_l(t),

it is clear that x2(t ) < _2(t) for positive t _ atLleast as long as

xl(t ) _< _l(t). But_ if the point (Xl, x2) is below (_l' _2)' it is

clear _-_om Figure 2b_ that it is impossible for it to be to the right

of (_l' _2 )" This is because the slope of the pseudo-parabolic arc

Z 1 is everywhere positive and the point (Xl, x2) is at all times

in the closure of the region bour_ed by Z1 _ _ Z1. Thus it is impossible

for xl(t ) ever to exceed _l(t) during the motion toward _. It is there-

fore clear that x2(t ) remains < _2(t) during this motion. Hence the

point _ is reached more quicklyalong _ _ thanalong Zl_ .
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In other words Tx < T_. Hence

Tx Tx T_

f x2(t)dt < F _2(t)dt < f _2(t)dt"
o O O

(1.1)

Since % = x2, it is therefore seen that the rise in x3 during the

passage from_ to _ is less than the rise in _ during the passage

from Z1 to _- But this latt_z_ than the rise in x during the3

passage from _ to _ which is already kr.own to be < 6. We have

therefore disposed with the case illustrated in Figure 2b.

Suppose next that p lies in the region bounded by ZlM2_Z 1 in

the case of Figure 2 a. The projection of the trajectory through p

would proceed along a pseudo-parabolic arc until it reaches _2 or the line

segment _ _. In the former case it proceeds along _2 until it reaches

on the xI - axis. As in the case of Figure 2b we can, without loss

of generalit_ take p at _. Again we consider the motion of the point

[xI (t), x2(t)] beginning at M_ when t = 0 and ending on the Xl- axis

= with _2(t) = xl(t ). We also consider the motion ofwhen t Tx

[_l(t), _2(t)] along Z1 _ beginning at Z1 when t = 0 and ending

at _ when t = T_. Exactly as in the case of Figure 2b, we prove that

Tx<T _ and that x2(t) < _(t) for 0<t _ Tx. Hence the formula (1.1)

is again valid. This disposes of the case illustrated in Figure 2a.

The only remaining cases to be considered occur when the initial point

is in the shaded area illustrated in either Figure 2 a or Figure 2 b.

Without loss of generality we may clearly suppose that the initial point is

at _ on the positive xI - axis. In the case of Figure 2a, it then

follows at once from Lemma 2.1 of the Thirteenth Progress Report that the
- 12 - 6 -



increase of _ during the passagefrom _ to _ along the indicated

pseudo-parabolais less than the rise of _ during the passagealong

Z1 _, which is knownto be __ _. The case of Figure 2 b is slightly

moredifficult but the details maystill be left to the reader. Before

applying the Lemmaone should extend the pseudo-parabolic arc Z1 _ until

it intersects the negative xl- axis. Thepoint _ maybe on the arc

_2 instead of on the negative xl- axis as shownin Figure 2 a. If this

is the case one should also extend the arc _ _ until it crosses the

negative xl- axis. Onethus finds that the rise in _ during the pa_ssage

from M6 to _ is < _. If _ is on _2' there is a further rise in

_ which, however, is obviously less than k.

Ler_ma 2. Let % __ _ + _ Let p c _UE2U _.

* = _, thenIf P(t, p, 5, u ) does not leave _ through the wall

P(t, p, w, u*) does not leave _ through the wall _ = _ for any

W £W.

Proof. Let p = (xl, x_, _). Suppose _ < 0. Let P(t) = P(t, p, w, u*).

In order for P(t) to reach the plane _ = A3 it must first cross the

plane _ = 0, and we may as well choose this point as our point of

departure. We may thus assume, without loss of generality, that _,_ 0.

Suppose next that x_ < 0. Then at time t = 0 the derivative

% alor_ P(t) is negative and the trajectory P(t) begins its motion by

O

descending below the plane _ = _. In order for P(t) to leave _
\
\

through the wall _ = A3 it would have to return to this plane and cross

it. We may therefore assume, without loss of generality, that _ _ 0.
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i

coordinate along
/

t _ 0. We

Let xi(t),xi(t)3 i=1,2,3, denote the xi

P(t, p, 5, u*) and P (t, p, w, u _ ), respectively. 0ur

hypothesis is to the effect that x3(t ) _< _ for all

wish to prove that _(t) __ %.

We note first that along _2 the vector fields of the systems governing

the motions of the projections (on the plane x3 = 0) of both P(t, p, G , u*)

and P(t, p, w, u*) are discontinuous as long as _(or _) > 0. Morever,

any trajectoi_ whose projection on the plane x3 = 0 reaches 7r2 will

proceed in such a manner that _s projection remains on 7T2 until the

projection reaches Z2 or until the trajectory has an _-coordinate which

is no longer positive. Except for the point Z2 itself, throughout this

part of the motion we have

: g2(x2)

where xI = g2(x2) is the equation of 7r2. This is true independently of

the wind. If the projection of p ¢ _2' then x2(t ) = _2(t) and xl(t)= xl(t)

until the respective projections reach the point Z2 simultaneously or

tuutil the trajectories simulteneously meet the plane _ = 0. In the

former case, after Z2 is reached, we have xl(t ) --xl(t) = 0, x2(t ) =

x2(t) : -A 2. Hence, in either case, xl(t ) : xl(t) and x2(t ) : x2(t)

as long as _(t) = _(t) > 0. Since _(t) _< _ by hypothesis, we have

_(t) _< _[3 on the time interval during which _ is initially positive.

We next wish to obtain a similar result when the projection of p ¢ K2-Tr2,

Lu the set F_ - _2' we have

@

h(Xl, x2) + w + u = h(Xl, x2) +w(t) -1 __h(Xl, x2) + G - 1 < 0, where,

- 12 -8-



by hypothesis, h(Xl, x2) is monotonicnon decreasing in x2. By Theorem1.2

of the Eighth Progress Report, we therefore have

_l(t) __xl(t), _2(t) __x2(t ) and %(t) ___(t),

so long as (xl(t), x2(t)) and (xl(t), x2(t)) remain in K2- 77"2 and as long

as %(t) > 0.

Throughout this part of the motion we therefore have %(t) ___ since,

by hypothesis x3(t) g_ %.

The slope of v2 is negative. Hence (_l(t), £2(t))reaches _2

before (xI (t), x2(t)) does. Let the time of impact be to. Then

xl(to) __xl(to). So long as _l(t) <_ xl(t), we still have x2(t) __x2(t).

Let tI > to be the first (if there is any) time such that xl(tl) = xl(tl).

Then clearly x2(tl) __x2(tl), whence (xl(tl) , x2(tl) ) lies either on

v2 or above it. In the first case we have (xl(tl), x2(tl))=(xl(tl)];x2(tl))

whence (xl(t), x2(t)) = (9.1(t)_ x2(t)) for all t _> t I for which both

trajectories are still in the half space x3 > O. In the latter case we

note that _l(tl) = h(Xl(t), x2(t)) + G - 1 < 0 and therefore the projection

(xl(t), x2(t)) moves to the left of the line xI = _l(tl). At the same time

(_l(t), _2(t)) moves to the right of this line. Hence (xl(t), x2(t)) will

intersect 7r2 (if at all) at some time t2 > tI at a point above

(xl(t2) , _2(t2)). Therefore, again, so long as both trajectories are still

in the half space x3 > 0, we have x2(t) __x2(t). Hence so long as

x3(t ) > 0 and xs(t) > 0 " _' we have _!%t)_3(t ) _g%.

As long as _(t) > 0, the projection (Xl' x2 ) proceeds in K2

toward 7r2 and then along v2 toward Z2. If the plane _ = 0 has not

yet been reached, the projection is "stopped" at Z2 and %(t) decreases

monotonically at a fixed rate x3 = - _ toward 0. Eventually,
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all subsequent time.

R3 through the wall

that P(t_ p_ w, u*)

P(t, p, w_ u *) descends into the lower half space x3 < O. From that

point on the inequality %(t) _ x3(t ) can no longer be applied for

But surely P(t, p, w_ u* ) can not escape from

x3 = % as long as %(t) < 0. Suppose then

returns to the plane x3 = 0 at some subsequent

point Pl" This can only happen if pl_2. But it is already known from

I_mma l_ that P(t, pl3 5, u* ) does not leave _ through the wall

x3 =A 5. (The p of that Lemma is the present pl ). Hence we can apply

the results obtained above for the point

that P(t, Pl' w, u* ) can not leave R3

unless it first descends below the plane

again at a point P2 _ E2 and so forth.

by induction is thus clearly indicated.

p to the point Pl to show

through the wall x3 =A 3

x3 = 0 and then emerges there

The complete proof of Lemma 2

Lemma _. Let A3 __ _ + k. Let u _ U, p ¢ _. If p e Q(u), then

P(t, p, a, u*) cannot leave R5 through the wall x3 : %.

o o xo oProof. Let p = (Xl, x2, x ). Since p e Q(u) it follows that (Xl, E2.

Hence (xl(t , p_ G, u *), x2(t , p, _, u* )) c K2 for all t _> 0. Hence if

P(t, P3 _, u*) ever reaches the plane x3 = 0, it could not (by Lemma l)

subsequently cross the plane _ = _. Thus, if x_ __0 the proof is

O

complete. We therefore restrict attention to the case when x3 > 0.

Denote xi(t , p, 5, u* ) and xi(t , p_ 5, u), i = l, 2, 3, by

xi(t ) and Yi(t), respectively.

Suppose first that (Xl, x_) ¢ K2 - _2" Then as long as both

(xl(t), x2(t)) and (Yl(t), y2(t)) below to _2- _2 and both _(t)

and y3(t) are positive, we have

h(Xl, x2) + _ + u __h (Xl, x2) + a + u* = h(Xl, x2) + G - 1.
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Since h is monotonicnon-decreasing in x2, wehave from Theorem1.2

of the Eighth Progress Report

xl(t) __Yl(t), x2(t) __y2(t)_ x3(t) __ y3(t) __ A3 (1.2)

If x3(t ) vanishes at time t before (xl(t), x2(t)) reaches

_2' the proof is completeon account of the fact that F(t, p, G, u*)

reached the plane x3 = 0 so that Lemma1 can be invoked. Otherwise

(xl(t)_ x_ (t)) reaches _2 at sometime to, at which time, x3(to)

is still > 0.

Since _2 has a negative slope, we see from (1.2) that

(xl(t)_ x2(t)) reaches _2 before (Yl(t), y2(t)) does. Moreover

xl(t o) __ Yl(to), x2(t o) __ Y2(to).

As long as xl(t ) __ Yl(t), t __to, we still have x2(t ) __ y2(t).

In order for y2(t) to "catch up" and become__ x2(t ) the projection

(Yl(t), y2(t)) must proceed to the left of the moving line xI = xl(t ).

However,since p ¢ Q(u), this projection must remain to the right of

_2" This " catching up" process can therefore proceed only through the

"wedge" indicated by shading in Figure 3. But for points (Yl' Y2) in
this _

Figure 3
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wedgeit is geometrically obvious that Y2 _- x2(t)" Hence
4.

x2(t) _< Y2(t)

as long as x3(t) > 0. Hence x3(t) _< Y3 (t) _< A3 as long as

x3(t ) > 0. This completes the proof in the case when _ > 0 and

O O

There remains the case _ > 0 and (Xl, x2) ¢ Ir2. Initially

the two points (xl(t), x2(t)) and (Yl(t), y2(t)) coincide. The former

point must, of course, move along _2; and, if the latter point also

moves along _2 it must coincide with the former point, since motion along

7r2 is always governed by x2 = g2(x2 )" If at any time tI the point

(Yl(t), y2(t)) leaves _2 it can only do so by moving to the right of

o o _)..2_ since (Xl, x2, e Q(u).
J

Since the point (Xl, x2) and (Yl'Y2 ) part company at time t = t l,

we see that the non-negative function

p (t) : [Yl(t) -xl(t)] 2 + [y2(t) -xR(t)] 2

i t1is not identically zero on any inter_l t < t < + 8 no matter how

small the positive number 8 is. It might, however, "_aaish in_finitely

often on such an intex-ral. Let t" be any point on the interval

(tl, tI + 5) such that p (t") > 0. Since p (t) is continuous, there

is an open interval (G,8) containing t" such that p ((_) = 0 and such

that p(t) > 0 for t c (G, _)_(t l, t I + 6). We wish to show that it is

not possible to have x2(tl) > y2(tl) at any point tlc (G, _). Choose

__ G so that x2(_ ) - y2(_ ) = 0 and so that x2(t ) - y2(t) >0 for

t e (_*, tl). Then we can find t* " * " *¢ (_*, tl) such that x2(t ) "Y2 (t)> 0.

But, since _2= xI and _2 = Yl' this would mean that xl(t ) > Yl(t ),

while simultaneously (since t* * * *¢ (G , tl) ) we also have x2(t )>y2(t ).

- 12 -12-
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Hence the point (Yl(t*), y2(t*)) would lie to the left of _2 ' which

is impossible. Hence we must have x2(tl) __ y2(tl) for any tI ¢(% _).

Hence, in particular, x2(t" ) __y2(t").

Since t" was any point on (tl, tI + 8) for which p (t") > 0,

we see that x2(t ) __y2(t) on any sufficiently small interval (tI tI + 8).

Moreover x2(t ) is not identically y2(t) on any such interval, because

then we _Eould have xl(t ) = _2(t) = _2(t)= Yl(t), which contradicts the

assumption that (Xl, x2) and (Yl' Y2 ) actually parted company at tl'

When once we know that x2(t) < y2(t) for some t > tI (as we know no_),

we may apply the argument about the wedge which was previously discussed,

at least if xl(t) <y_l (t). If, however, x l(t) __Yl (t)' the point

(Yl' Y2 ) is already in the wedge. In either case the argament shows that

y2(t) can never become < x2(t ). This completes the proof of Lemma 3.

The following Lemmas are proved in complete analogy with Le_nas l, P, 3-

(tj p, -<_3 u i*) does not

if P (t3 P3 "<_3 u_ ) does not

(t3 p, w, u*) does not leave

/I

If pcQ(u), then P (t, p, -(_, u _)

Lemma 4. Let A3 _ B + k and let pcK 2. Then P

leave throu thewall = -A3.
÷

Lepta 5. Let _ ___ + _. Let p_ _E2_.

leave _ through the wall _ = -_, then P

wall =

Le=_6. Let _+x. Letu_, p_.

cannot leave _ through the wall x3 = _.
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Our main result is an almost obvious consequenceof these six lemmas.

It maybe stated as follows:

Theorem Let _ be defined as at the top of p. 9 of the Thirteenth Progress

Report and let _ be defined as on p. lO of the same report. If % _ _+ k,

then u* (Xl, x2, x5) is an upper bound for the system

Xl : h(Xl' x2) + U(Xl' x2' x31 + w(t)

x2 = Xl

x3 = x2

in R3. Moreover K2_Q(u* ).

Proof. Let ucU and let pcQ(u). _en the projection of p on the

plane x3 =0 lies in K2. It now follows from Lemmas 3, 2, 6, 9 that

peQ(u* ). Hence Q(u)_Q(u* ) for all ueU. In other words u* is an

upper bound. The fact that E2CQ(u* ) follows from Lemmas 13 2, 4, and

5.
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During the monthof _rch 1969attempts were madeto describe the cores of

the third order systems considered in the Thirteenth and Fourteenth Progress Report.

Since it wasproved in these reports that these systemsadmitted upper bounds, it

is knownthat the cores exist, but we have not yet succeededin describing them in
I

a simple explicit manner. On the contrary, the present status of this work is both

tentative and complicated, and we can not report in detail upon it here.

We have also attempted to generalize the results of the last two progress

reports by omitting the requirement on h(Xl, x2) that it should be monotonic

increasing in x2 for each fixed Xl, or at least by replacing this requirement

by a weaker one. In particular it was thought for a while that the Lemma 2.1" of

the Thirteenth Progress Report could be proved without the monotonicity requirement,

since it is not hard to see that it does indeed hold in many special cases when the

monotonicity requirement is violated. Although we have failed to find a satisfactory

substitute for this Lemma 2.1, the following considerations, besides indicating the

nature of part of last month's work, many yield some insight into this problem.

Theorem 1.

Suppose also that

equations

_2

In the half-plane

f¢C'. Let

x2 _ 0, suppose f(xl, x2) _ - _ where _ is positive.

xl(t , a), x2(t, a) satis_- the system of differential

= f(xl'x2) (1)

: xI (2)

and the initial conditioas

xl(O, a) =a>O

x2(O, a) = 0

i

*There were some errors in the typing of the proof of this Lemma 2. I.

Should read

should read

Line ii on p. ll

"_2(0) = Xl(O ) : a < aI = xll(o) = _21(0)'' and line 13 of the same page

"x2(t ) _ _(t) and that XlCt) = _2(t) _ _l(t) = xlCt). ''
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Then there exists a positive number T = T(a)

0<t<T and such that x2(T,a ) = 0. Moreover,

of a has a derivative; T' (a), given by the formula

{ _x2(t' al. i
_t t --T(a)

where

_(t,a) < 0.

3t
t = T(a)

such that x2(t, a) > 0 for

T, considered as a function

} T'Ca3 + _ _x2Ct'a)_aI

Proof. Since x2(O , a) = 0 and 52(0 , a) = Xl(O , a) = a > O, x2(t , a)

must be positive for sufficiently small positive values of t. Since

51 = f(xl, x2) _ - _, we evidently have xl(t , a) S a -_t, at least as long

as [xl(t,a),x2(t,a)]staysinthe if- lane x2 O. Hence,from(2),we

find that x2(t,a ) _ at -(1/2)_t 2 which is negative for sufficiently large

values of t. We let T be the first point where x2(t,a ) ceases to be positive.
I

This proves the first statement of the theorem.

As noted above, x2(t , a) > 0 for sufficiently small positive values of t.

Because of (2), x2(t , a) continues to increase as long as xl(t , a) > 0. Hence

x2(t , a) > 0 as long as 0 _ xl(t, a) < a. In this connection it should be remembered

that xl(t , a) is monotonic decreasing, according to (1) and the fact that f _ -_,

at least as long as [Xl, x2] stays in the half plane x2 _ 0. But x2(T , a) = 0

by deflnition of T. Hence Xl(T,a ) can not lie on the interval [0, a). Since

T > 0 and xl(t , a) is monotonic decreasing in t, we also know from (3) that

Xl(T,a ) can not be greater than or even equal to a. The only alternative is that

Xl(T , a) < 0. From (2), we now see that (5) must hold.
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Now T(a), of course, satisfies the equation

x2ET(a), a] = 0 (6)

Since (_) has been shownto hold, the equation (6) suffices for a local unique

determination of T(a) in accordancewith the implicit function theorem. The

implicit function theoremyields the further information that T' (a) exists and

satisfies the equation written abovein the statement of Theorem1. This completes

the proof of Theorem1.

It is clear from Theorem1 that the sign of T'(a) is the sameas the sign of

._x2(t,a)

t = T(a)

and the sign of this latter may be referred to the variational equations of the system

(1),

(1),

(2). But no useful criterion has been discovered in this way.

Another way of proceeging is first to eliminate t from the autonomous system

(2), thus obtaining

dx2 xl (7)
_l = f(xl'x2)

where the denominator on the right is not zero, for x2 _ 0, since

f(xl, x2)_ - _ < 0.

Equation (7) is used to define a solutlcn x2 = Y(Xl, a), such that

y(a, a) = 0. This solution is defined for

"b ixl_a

(8)

(9)
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where b = b(a) = -Xl[T(a), al > 0 in accordance with Theorem l, and we know

also that y[-b, al = 0. From (1) we obviously get an explicit formula for

T(a) in terms of y(x, a), namely

_(a)=- _ dx (lO)
rex,y(x,a)]

-b{a)i

The graphs of the two functions y(x,a) and y(xla') can not intersect if

a # a'; for, if they did, the uniqueness theorem for the solutions of (7) would

be violated. It follows then that

b'(a)_ O, _(x, a) __0 (ll)
_a

Differentiating the integral in (10) we obtain

_'(a)= - 1 + -b'(a)
f(a,O) fC-bCa),O)

a f [x,y(x,a)] _y(x,a)+ y • dx (12)
,b(a) f[x,y(x,a)]_

Because of (ll), the last written integral is _ 0 if f[xl, x2] is monotonic

increasing in x2 for each fixed Xl, while the other two terms on the right

hand side of (12) are _ 0 in any case because of (8) and (ll). We may state

this result in the form of a theorem.

Theorem 2. T(a) is a monotonic increasing function of a if the right hand side

of (12) is always non-negative. This will automatically be the case if f(xl, x2)

is monotonic increasing in x2 for each fixed x 1.
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i. Some Final Remarks.

During the last part of the present contract a substantial amount

of work was invested in the following two directions:

(a) A complete analysis of the cores of the third order systems

considered in the thirteenth and fourteenth Progress Reports was com-

pleted. The geometrical configuration of these cores was carefully

analyzed in detail in order to determine whether any pathological

behavior of the systems had been overlooked. This analysis was both

tedious and complicated and led to the conclusion that no pathological

behavior occurs. Apart from this fact, which does have some significance,

the exact geometrical configurations obtained by us are not of sufficient

importance to warrant the additional investment of time and effort which

would be required in order to present them here in detail. They are there-

fore omitted.

(b) Investigations designed to explore various approaches to the

solution of the minimax problem within the core were initiated. The

two main approaches attempted fell in the categories of functional

analysis and differential games, respectively. The first of these led

to negative results. The second was terminated at an early and

inconclusive stage.

During the same period the preparation and editing of the final

report was undertaken and completed.

2. Recommendations for Future Research on the Minimax Problem

I. It appears to us at the present time that further research

on the minimax problem should proceed mainly along lines suggested by

differential games.

II. Further research along lines suggested by our own approach

during the past year should also yield additional results of interest.

The following objectives of such research can be specifically formulated:
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A. Research Relatinq to Upper Bounds

l . On the existence and nature of upper bounds for

linear systems•

• On the existence and nature of upper bounds with

respect to a-subset of R.

3. (i) Relation between the existence of upper bounds

and the set R.

(ii) Relation between the existence of upper bounds

and the given system.

4. (i) The existence and nature of upper bounds for the

controllable linear system with three zero roots

and suitable R.

(ii) The existence and nature of upper bounds for the

controllable linear system with four zero roots

and suitable R.

(iii) The existence and nature of upper bounds for the

linear system with roots 0, k, - k and suitable

R.

• The existence and nature of upper bounds for other

(particular systems) of interest.
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B. The Minimax Problem Inside the Core of R•

i. Re-examination of the minimax problem inside the core of R.

2. Possible new criteria for choice of control inside the core.

• On the qualitative nature of solutions to the general minimax

problem inside the core.

• On the quantitative nature of solutions to the general

minimax problem•

• Qualitative and quantitative investigation of the minimax

problem (inside the core) for the particular systems listed

in Part A.

Methods suggested by the theory of differential games should prove

useful in pursuing items 3, 4, 5 above•

III. It appears to us at the present time that additional research

on the minimax problem would yield various results of a mathematical

nature which would provide deeper insight into the problem. Such in-

sight may have useful engineering and/or computational implications.

However, the probability of obtaining closed form solutions to the

minimax problem for systems which are of practical relevance to the

Saturn Launch Vehicle is at best difficult to evaluate at the present

time and at worst somewhat pessimistic.
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APPENDIX

NOTESAND ERRATA

Chapter i, Section i:

The statement of the problem given here, in spite of its

vagueness, is sufficiently precise to have started the investigation

on a somewhat wrong track. Namely the class U was supposed to

have been a class of functions of t rather than functions of x,

or at least rather than functions of x as well as of t. It was

not until the Fourth Progress Report (i.e. Chapter 3) that this point

of view was abandoned. The following sections were written under this

assumption (that the class U was composed of functions of t a_one):

Sections 5 and 6 of Chapter i, pp. 1-21 to 1-25. Sections 1 and 2 of

Chapter 2, pp. 2-1 to 2-15. The other sections in Chapters 1 and 2,

even though they were written before the faulty assumption was aband-

oned, contain material of such generality as to be applicable to cases

where the class U contains functions of x.

Chapter l, Section 2:

The first comma of i. ll, p. i-i0, should be omitted.

Chapter i, Section 3:

The K in formula (3.2) should be A

On p. 1-13, 1. 2, the word "say" should be "any".

On p. 1-17, last line, F should be G.

Chapter 1 Section 4:

On p. 1-19, second line, x_ Y should be X _Y.

On p. 1-19, line 9, "be" should be "by".
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Chapter i, Section 5:

On p. 1-21, last line, _, t_ should be [0, T].

The title of this Section is misleading. The problem considered

is essentially a "maximin" problem rather than a "minimax" problem.

We were led to it because of the faulty assumption that U contained

functions of t only.

On p. 1-22, line 2, ueU should be _*eU.

Chapter i, Section 6:

This section is defective in several respects and is superceded

by Chapter 2, Section 2.

Chapter 2, Section i:

This section is still based on the assumption that the class U

of admissible controls consists of functions of time. It sets forth

a maximin problem in WxU and shows how this may be transformed into

a minimax problem in a new cross product set WxH.

p. 2-5, line 4, WxH should be WxU.

Chapter 2, Section 2:

On p. 2-9, i. 6. "number" should be "member".

This section, although it satisfactorily corrects the errors

of Chapter i, Section 6, is itself superceded by the more general

Sections 2 and 3 of Chapter 4, pp. 4-4 to 4-11.

Chapter 3:

Here is found the exact formulation of the minimax problem

using control functions which depend on the state-variables a_one_
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Chapter 5, Section 3.2:

On p. 5-17, Definition

It may be simplified as follows:

3.1 is correct albeit awkwardly stated.

u 2 contains Ul,Definition 3.1 Let u I, u 2 e U. We say that

written u2_u I , iff Q(u2)_Q(Ul).

Proposition 3.1 then becomes true by definition.

"T

-A + _-___i A- __-i__ should beT TJ

[-A + _-i) T, A - (_-i) T].

p. 5-21, line 12,

Chapter 5, Appendix to Section i:

p. 5-23. Part of the proof of the Theorem on this page is

incorrect, but this material is superceded by Chapter 6, Section i.

Chapter 6, Section l:

p. 6-3, 1. 7. The formula in Theorem i.i should be numbered (I.i).

Chapter 9, Section 2:

p. 9-11, i. 7. lhl should be

Chapter i0:

p. 10-6. The definitions of sets X3 + and X 3- are defective

in that the conditions x I = x 2 = 0 are missing. The definitions

of P1 and P2 are defective in that the condition x 3 = 0 is missing.

p. 10-8, line 3, "below plane" should read "below the plane".

p. 10-12, ii. 14, 15, 16, the g in formulas

and x 2 (t, g,-_. u*) should be replaced by q.

p. 10-12, line 17.

omitted.

The first nine words and

p. 10-14, last line,

p(t, g, 04, u*)

should be

(x, (t), x2(t)) should read (xl(t), x2(t)).
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po 10-15, ii. 19 and 20. The sentence, "But (xl(t), x2(t)) has
the least possible value throughout this wedge", should read as
follows: "But for points (YI' Y2) in this wedge it is geometrically
obvious that Y2_ x2'' •

Chapter ii, Section i:

p. 11-5, 1. 16. w2(t) should be replaced by w2(t-tl).

Chapter ii_ Section 2 :

p. ii.9, i. 17. O 1 should be O.

p. ii.ii, i. ii. x2(o) should be Xl(O).

Chapter ii, Section 3:

p. 11-15, line 4 from bottom, "caome" should read "come".

p. 11-16, line 5, x I, (t, p, _ , u*) should read xl(t, p,_, u*).
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