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This document covers the derivation of a set of linearized

dynamic equations for use in missile stability analyses. The

eot2ations are presented in matrix form and repr_sent the transfer

1'anction from engine command sigaal to gyro output signals. The

derivation includes the effects of propellant sloshing, elastic

deformation of the vehicle structure, and the dynamics of gimballe_

engines. The effects of fixed thrusting engines and the effects

of inertia corrections to the bending data have also been .considered.

The vehicle structure is taken as a multi-branched beam under the

influence of bending deflections, shear deflections, rotary inertia,

and axial accelerations.

The results are presented in terms of a set of generalized

coordinates representing rigid body motion, bending deflections,

engine deflections, and slosh mass deflections. The equations are
i

transformed :Intonormal coordinates and the results are also

presented in terms of a set of orthogonal combined modes.

.d L
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This document covers the derivation and progr_ning of"a set oi" ' "
" :'0 '

linearized dynamic eaua=ions for use in missile c,Labili_y analysis. T:_,(:

work presented here is essentially an expansion of the equations and digital -

computer program de_,crioed in _eference i= Since the complete derivation is " i

presented in detail, this document supersedes i{ef'erencei. The revi.sionwas

undertaken in order to increase %he flexibJJicy of the computer program with

regard to the types of missiles to be studied and to incorporate chan_es in
°-

the nomenclature and data output found desirable as a result of the use of the

p_'eviousprogrsm. 'l'bcmajor changes incorporated are as follows: "

(_) [kuqdi_/. d_.L:_deri_.ed for _tulti.-branc.ncdbe[uzl_may be used,

[

(o) The output, including punched cards for the system matrix,

may be obtained in either generalized coordinates or normal -
F

coordinates (comtined mode representation. )
\

(c) A plotting option is provided so that either the input or

the output modes may be machine plotted.

(d) Inertia corrections can be made at any of twenty Joca+ion_

on the missile independent of slosh tank loca+._on_;

(e) Oyro slope data is punched in the system matrix and provi/;jonr.

are made to mix the s_gnals from two rate gyro locations° ."
.

(f) Input bending data need not be normalized to total missile mas_.

(g) Y_,eecuations and the program ha'rebeen arranged to accept a

massless enginc for use with secondary injection type thru::.t

vector control.

(h) In order to utilize the ability to reduce truncation errors

with combined mode representation, the program has been arranged

so that higher frequency combined modes may be dropped from the

punched output, i

(i) Changes may be made in bending data which has been irtroduced _

;_ into the program from column binary bendin_ decks.

' f

_; I ""

i 'r

i
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(3) When studying the effects of variations in damping or performing

a limit cycle study using non-linear damping it is necessary to

obtain output data for various values of damping. Since damping

has no effect on the inpub or output,modes, and is only l_tro-

duced during the calculations for the punched output, an option

is provided to allow a number of output,decks to be punched from

a single run. This option provides a series of output decks for

various values of damping with a minimum of machine time.

(k) An option is also provided to punch out the eigenvector or modal

matrix on cards for use in the root analysis program used in

limit cycle studies.

This document has been issued in two volumes. Volume I covers the

formulation of the dynamic equations and the system matrix. Volume II describes

the programming of the equations for solution by 7090 digital computers and con-

tains detailed instructions for the use of the program. Section I of Volume I

contains an introduction and a statement of the problem to be solved. In Sec-

tion II the dynamic equations and system matrix are formulated in generalized

coordinates. These equations and syst(m matrix are then transformed _nto normal

coordinates in Section III.

The development of the equations in this document Lucludes all linear

terms consistent with the follo_ing assumptions:

(a) All physical parameters of t2e missile such ms mass, inertia,

and thrust are considered constant. Although these parameters

actually vary slowly with time, such variations w_ll have

negligible effect on the short time missile response and stability.

(b) Input bending modes are determined for free-free end conditions

with engine and sloshing mass rigidity attached and include the

effects of bending, shear deflections, rotary inertia and axial

accoleretion.

(c) Aerodynamic forces normal to the missile axis are assumed to

be independent of the local structural bending slope and are

considered to vary linearly wltn the angle of attack developed

by the underformed elastic axis of the missile.

1966001467-008
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(d) Aerodynamic forces along the missile axis are assumed to bc

independent of local bending and angle of attack.

(e) The dynamic equations are developed for motions in the missile

yaw plane, defined as a plane contaln-ng the missile velocity

vector anl a perpcndicular to tne [o.ai vertical The trim

conditions on 5, @, and 6 rill be zero _n this plane. The

equations are also applicable to the pitch plane if the trimmed

"_'-_ re,.b_ '_<.__'ctcd t_c;:.,"values

for a gravity ;urn are _ [ki-_tCe, These conditions are usually

appl-oached wi%h thP approxitna_e gravity turns employed Jn practice.

I - Z MISSILE STABILITY

A+ any instant oC ._'ilghttime, a missile in its r._,_,,,:,.dor trimmed

condition may be conside-eO _ a system in dyn&_lic equilJbr,_:". All external

forces are steady forces _u _quil!brium with inertia force_ . accordance with •

O'Alembert's principle, ane :hw inbernal kinetic and pote._ . , energies are

constant. Under these condi..icpsthe missile is an Mth ;i,; ._.of freedom closed

dynamic system and when disp] _ "_;qe:._cr pe_urbed from ..... : _nal or trimmed condi-

tion, the resulting motion with respeci to the t'."i_,', ,'_ -.ditlonwill be diver-

gent for an unstable missile or will damp out f/or8 uta;.,iemissile. A stable

missile must be stable for the slightest displaceme;.ts from the equilibrlum

position and a stability analysis is concerned with %he stable and unstable

tendencies of the system at the equilibrium position. Therefore, the analysis

may he based upon the assumption of small displacements for which the affects of

second and higher order tez_s may be neglected.

In the absence of external driving forces the motion of the system

can be re_resented by M llnearized homogeneous second order differential _,

equmtlons In M independent variables. When exprecsed in LaPlace notation

these equations become M homogeneous linear algebraic equations in the M

independent varlabl_ where the coefficients are linear combinations of the

LaPlace operator, s, and s2. In m_trlx form these equations may be written as

/

,]

|
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where the M x M coefficient matrix _R] -s a function of s and is referred

to as the system matrix. The column matrix {QM_ is a column of the "_ndepend-

ent generalized coordln_tes of the system. The system matrix [R_ can be

written s,s -f

The system of dynamic e_aations expressed in LaPlace notation I-Z.l

represents an eigenvalt_eproblem which has 2M eigenval_es or roots _ound by

equating
I. J

degree polynomial in s and when equated to zero may be written as the product

of M quadratics

z (s2 /{ q + Ais + Bi)= 0 I'Z.3

The roots may be real or complex. However 3 all complex roots a_#ear

in conjugate pairs and a plot of the roots in the s plane is symmetrical about

the real axis. Corresponding to each eigenvalue or root, there is an a,_sociated

eigenvector having M consten% components. These components are the elements

of the col,-, matrix {_ which satisfies,,equation I-2.1 when the corresponding _
value of s is _ubstltuted in the _R_ matrix. The ratios of the components of

the associated eigenvector then represents t._eratios of the generalized vari-

ables present in the motion for that particular root,

The system he,,_2M roots each with an associat2d eigenvector to

represent the relative motion associated with that rOO_o However, as stated

previously, the system has M degrees of freedom and, therefore, M natural modes

of motion which are or_hogonal to each other or completely uncoupled. Each of

these orthogonal or uncoupled modes of motion can be represented dynamically by

a single degree of freedom system as shown in Figure I-i.
t

L- ..,1_ Z

Figure No.,I-i

8ingle Degree of Freedom 8ygtem , •

1966001467-010
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I

where

z = ne:_;aicoordinate F_r mode

in= normalized mass for <_de

<

k = modal spring const_tnt= _ m

= modal frequency

d = modal damping

,o

mz + dz + kz = 0
mm-_-

(ms_ _ d_ + k) z = 0

Id2
-y?: s =-_ + -_ .

o =o-t)_ z-2._

" then
_t ' t --k

5 z = e [Ae + Be -- I-2.5

In the case of under-damped modes where the damping ratio is less than unity

_= j_.

Substituting for A reduces equation I-2.5 to

:- _t [
:. z : e a cos _t - b sin a_ I-2.6

Therefore. _ach complex pair of roots produces a single mode of oscillatory

mot[#n defined in terms of the generalized variables by the components of

, the associated eigenvector. It should be noted that the negative frequency

represented by -j_ results from the mathematical possibilit/ of negative

rotation of the amplitude vector generating sinusoiOal functions. Since the

_" components of the eigenvectors are complex numbers showing both amplitude and

phase relationships between the g_nerali_ed variables, the eigenvectors corre- --

spondln6 to a pair of conjugate roots will be identical except that the signs

of the imaginary parts wl]l b_. opposite. When the eigenvector is used to study

the motion re,ultlng from a pair of complex roots _he eigenvector corresponding •

to poelti%-e frequency should be used.

• f
i i

g
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In +he case of over-damped modes where the damping ratio is

greater than unity _ is real, and equation 1-2.5 can be written

z = _ A+B) cosh At + (A-B) sinhAt I-2.7

Therefore, each over-damped mode represents the motion of two real

roocs o The relative magnitudes of the generalized variables in the

resultant motion can be described by a linear combination of the

elgenvectors corresponding to the two roots. The only other type of

mode which may occur is a damped mode for which the modal spring k is

zero.

Then

and s --0

s-_2 _

equation I-2.5 reduces to

z _ Ac 2m=t + B I-2.8

Therefore, each mode of this type represents the motion corresponding

to two roots one of which is at the origin. The motion corresponding

to the root at the origin is simply B equal to a consts.ut, and since

the motion has been taken as the motion wi_h respect to the nominal or

trimmed condition, this constant must be zero. It may be seen that in

order for a root to appear at the origin, one of the equations of motion

must contain s in all terms such that s may be divided out of the equation.

Since the motion resulting from these roots is zero, this operation is

Justified, an_ the M equations of motion need not all be second degree

in s in which case the number of roots may be less than 2M. However, the

number of orthogonal natural modes of motion will always be M.

Any free or driven motion of the system must be a linear comblna-

tion of the M natural modes of motion. In any such combination representing i

the free motion of the system, the stable natural modes of motion will das_

out in accordance with their damping ratios, reducing the motion to a

combluation of any unstable modes present. Therefore, a stability analysis

of the system for any form of excitation reduces to the study of the stability

I

1966001467-012
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of each of the M natural modes of motion. A simple stable cr unstable

type of analysis for an existing missile could be performed by formulating

the dynamic equat ions, obtaining the roots of 5he system m_trix and noting

the root locations in the s plane. However# such an analysis does not lend

itself to the determination of stability margins, the study of system

modifications, the design of new systems, or limit cycle studies. A

considerable reduction in computer exyJense together with a greater in-

2i@ht into the physical aspects of the problem will rest_Itif the analysis

is performed in a number of steps. In general these steps consist of the

following :

(a) _%e free-free uncouple_ bending modes and the rigid tank

fluid sloshing parameters are obtained from separate computer

programs.

(b) The bending and slosh data together with trajectory and

engine data are introduced into a set of homogeneous

: dynamic equations repres_uting the missile d_namics.

_"_neseequations in LaPlace notation are expressed _s a

coefficient matrix where the coefficients are functions

of the LaPlace operator, s.

(c) The coefficient matrix expresslnz rlssile dynamics is then

expanded to the system matrix by the addition of the auto-

pilot and guidance parameters.

(d) The system matrix is used to perform a number of different types

of stability studies. It may be used to obtain the system

roots end associated eigenvectors which in turn are used to

indicate the stability of each mode of motio_ or the amplitudes

_- of limit cycles. The system matrix is also used to obtain the

poles and zeros of the open loop transfer function of the

system. These data are in turn used to obtain open loop

frequency response generally used in bending and rigid body

studies or they may be used to obtain closed loop root loci,

' generally used in f11,4_"_°h "_'"_"'"
l
3

¶ I
i
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The equations formulated in Volume I of this aocument and zhe

digital computer program described in Volume II are used in performing

+,.hework ouLliqed in step (b). The input data consists of the bending,

slosh_ trajectory, and engine data, while the output is the missile

dynamics coefficient matrix in the form of punched cards.

; I - 3 SYST_I MATRIX

A general block diagr_un for a missile coptrol system is shown

in Figure I-2. f_ noted in Section I-2, the system has M degrees of

freedom and will have M natural modes of motion when @ is zero, Since
c

the missile mass is considered as a distributed mass in the calculation

of bending modes there are an infinite number of elastic modes. Likewise,

; integration over the tots/ fluid to obtain the equivalent slosh parameters

produces an infinit_ number of fluid modes for each fluid tank. It is

: therefore necessary to limit the number of bending and slosh modes which

may be incorporated into the analysis in order that M remain a finite

number. _ne effects of limiting the number of bending and slosh modes

considered is discussed in Section II and it is assumed here that M has

been reduced to a finite number°
J

In Section !-_ it was assumed the dynamics of the system was

expressed by M second order linear differential equations In M generalized

independent variables, Using LaPlace notatlon_ these equations become M

_econd degree linear algebraic equations in the same variables where the
2

coefficlen_s were linear functlons of s and s .

The M x M square coefficient matrix for these equations was defined

as the system ma_rlx. However, the dynamic equations and the system matrix

may be expanded by the addition of a number of dependent variables and an

equal number of auxiliary equations. Therefore, the system matrix for the

M degree of freedom system may be a square matrix of any order greater than

M. The total number oT roots of the system will remain ZM less any roots

_u _**_ orlgln, -.._"-A,_.......__.+=-..-will have M orthogonal natural modes of motlon

_,_ Independent of the order of the system matrix.

1966001467-014
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That portion of the system matrix representing the equations

formulated in this document and referred to as the missile dynamics

matrix in Section I-?, corresponds to the transfer functiuns between

thc gjIro angles % and @R and the engine command signal, 8c (Figure I-2).

This :latrix, which appears in the program output both in printed _brm and

as a punche,_ deck of cards, is not a square matrix. The number of columns

will be one greater than the number of rows, therefore_ the matrix repre-

sents the coefficients of a series of homogeneous equations for which the

number of varia0les _s one greater than the numoer of equations. The

addition of an equation relating the engine command signal to the gyro

ouZputs will produce the square system matrix from which the closed loop

roots may be detcrmined.

In practice the command signal. 8 , is related to the gyro outputsc

b2 the addition of a number o1' auxiliary equations and dependent variables.

The final equation relates the output variaole to the input variaole thereby

closin 6 one loop producing the square system matrix.

In order to determine th, open loop characteristics of the system

with the loop opened at point such as F in Figure I-_, the dependent variable
W

@F is introduced together with an auxiliary equation relating @F to @F" This

auxiliary equation should always be represented by the last row in the system

matrix. The non-square matrix obtained by omitting the last row of the sys-

tem matrix then represents the transfer function @F which is defined as the
W

system transfer function. @F

W

The auxiliary equation relating @F to @F may be written

a @F + b @F = 0 7-3.1
\

therefore, the last row of the system matrix will have a in the column

representing @F and b in the coltmm representing @F" Substituting -1

for either a or b and +! fo_ the other vil! m-_ke @F equ&!1 to @F and the

solution of the system matrix will give the closed loop roots and the

- corresponding modes of motion for the system.

o
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Letting b equal anity and a equal zero reduces equation I-3.i

to

@F = 0

and @F is arbitrary. _e resulting motion when %he input is zero must

be the natural modes of the system, therefore, solutions of the system

matrix will give the open loop poles and the corresponding modes of

motion.

Since the system also has M degrees of freedo_ for the open loop

condition there will be 2M roots and M natural modes of motion.

Letting a equal unity and b equal zero reduces equation I-3.1 to

@F = 0

and @F is arbitrary. The solution of the system matrix under these conditions

will give the roots and modes of motion required to produce zero output for an

arbitrary input. These roots are defined as the open loop zeros of the system.

The system transfer function may be written

eF = Y_ (s - zi) _-3.2

where (KR)N = nominal gain of system
w

-_(s - zi)= pzoduct of (s - zi)

- _(s - pj)= product of (S - pj)

zi = Open loop zero

pj . open loop pole

For the closed loop condition the transfer function is equal to unil,y

and equation I-3.2 becomes

,i

1966001467-017
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J

Letting the system gain become a variable, then for the open loop condition

KR is zero and I-3.3 becomes

-pj) = 0

az,d the open loop poles are the system roots. However, if KR becomes

infinite equation I-3.3 becomes

zi) --o
and it may be seen that the open loop zeros are also the roots of the closed

loop system when the system gain is infinite. As the system gain is varied

from zero to infinity the closed loop roots will move from the open loop

poles to the open loop zeros passing through the nomiual closed loop roots

when the gain is equal to the nominal gain. As the gain approaches infinity

in an Mth degrees of freedom systemj the system may have less than M degrees

of freedom and less than M natural modes of motion. In this case the roots

must app_.-oachzeros which are at infinity. Solution of the system matrix

for th_ zeros of the system will produce only finite zeros and the difference

between the number of zeros found and 2M represents the number of zeros at

infinity.

iii i|
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II-i COORDINATE SYSTEM

It is assumed that at some time, t, the missile in its nominal or

trimmed condition flies along an inertialaxls, H, _uch that the missile pitch

plane contains the local vertical and the missile yaw plane m_Ees an angle r

with the local vertical, see figure II-i.i. The ceLter of gravity of the missile

is displaceda distance, QH' along the H axis m_asured from a second inertial
axis, L, in the yaw plane perpendicularto the H axis.

FIGURE II - i.I "

1966001467-019
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It is ftu'therassumed that the miss%is is displaced or perturbed in the yaw

plane and acts as a system of mass elements, 6m, each of which has relative

motion with respect to the total system center of gravity. Th, dizplacem_nt

in tDe yaw plane of the total system center of gravity at time, t, is defined

by the coordinates QH and QZ measured along the H and L axes, see figures II-1.2.

L P .4"
R dla -/4_

P

_r

%
b"

_ H
g cosy -_ r

YAW PLANE

FIGURE II - 1.2

The R and P axes are non-rotating in inertial s_ace and are translating in the

yaw plane with the total system c._. at a velocity Vcg making an angle SI with
the R and H axes. _1_eR and P axes remain parallel to the H and L axes. The

yaw plane coordinates of the mass element dm in inertial space are H, L, and

where J_ = rotational displacement of dm with respect to R

H=_+R

L=QL+P

The component of the acceleration of gravity in the yaw plane is g cos y

directed along the negative H axis.

When the missile is in its nominal or trimmed conaition, QL'/I ,

and _ are zero, R and P are constant, and _. is increasing along the H axis.

The dynamics of the system is e,;ehthat"the magnitudes of these coordinates

have oscillatory components when the missile has been displaced or perturbed.

The oscillatory components are damped in a stable system and divergent in an

_st_ab le system.
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The motion of the m_ss elements, din,with respect to the system C.G.

is defined with respect to a third set of coordinateaxes defined in the yaw

plane such that the origin is at the center of gravity and the axes are angu-

larly displacedby an angle @ with respect to the R and P axes, see flgure

II-1.3.

P

( x

% .

g cosy _ ___R

cg

FIGURE II - 1.3

The displacementsof the element of mass dm with respect to the i -

axes are x, y and _.

LL , 9, and G are taken as positive for rotation about the - k axes
O

while and _are taken as positive for rotation about the + k axis. It should

be noted that no restrictionshave been placed upon the selection of O, which is
[

arbitrary. The only restrictionplaced upon the i - S coordinate system is that

the origin be at the total c.g. of the system. _gaillrestriction requires that .

xdm = 0 [ #din --:0 II-l.lJ
TM TM

f

where J represents integrationover the total mass or total missile.

TM 1 l
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From equatlon II-i.i

f

_ dm = 0 = total linear momentum along the _ axis rebvlting

JTM from motion with respect to c.g.

f _ dm = 0 = total linear momentum along the J axis resulting
J from motion with respect to c.g.
TM 11-1.2

dm = 0 = net inertia force in the i direction r_sulting

TM from motion with respect to C.go

f o-

j y dm= 0 = net inertia force in the S direction resulting
TM from motion with respect to c.g.

The angular momentum of the mass element dm about the k axis due to motion

with respect to the c.g. is

d_Txy = (@x - _y + r2 _) dm II-l.3

wher, r = radius of gyration of the element of mass, dm.

From the geometz_ of the system

R = x cos @ + y sin @

P = y cos @ - x sin @

Z'_ = @ + ob Ii-1.4
0

H = QH + x cos @ + y sin @ I_

L = QL + y cos @ - x sin @

m

iml
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Placing the origin of the _ - _ coordinate system at the c.g. makes the net •

linear momentum in any direction, resulting from motion with respect to the

e.g., equal to zero. Therefore, the sum of the ex±ernal forces in any direction

must equal the rate of change of linear momentum of the total mass located at

the total c.g. This _: effect uncouples the motion of the center of gravity

from the motion of the mass eJements with respect to the c.g.

Likewise the sum of th_ external moments about the c.g. equals the

time rate of change of angular m_nentum about the e.g. and it would be desira-

ble to define the angle @ such tBat the rotation of the i - 3 axes is a func-

tion of the external torques only and independent of _he motion of the mass

elements with respect to the c .g.

_etting _/)T = angular momentum of tot_l mass about c.g.

s_stituting from equations II-l.4

" "-- d_/_ = (.$x- _y + r2_)am - @(x2 + y2 + r2)dm

_)T = (_x- _y+ r2_)dm - @ / ,x +y +z ,
TM

The first integral is the mngular momentum of the total mass resulting from

motion with respect to the c.g. and equals _xv from equation II-1.3. The

secom_ _-tegral is the total mass moment of inertia about the c.g. which is

def:l.nc_l &s I.

%-- -

Torque = = / -

" Equation II-1.6 shows that it is desirable to define @ such that

= 0 II-1,7

1966001467-023



8414-6046-TU000

?age 18

@ will then always take a value such that

_Ixy = constant II-1.8

and

_-(External torques ) = d (I@) II-1 9
4_ " _ '

It will be noted that the rotation of the i - J axes, @, is still coupled to

the motion with respect to the c .g. by the term 7@ which results from the non.-

linear centrifugal and coriolis forces. However, for first order linearization,

.d (I@) = I@ and the motions are uncoupled. Furthermore, for a linear oscil-.dt

latory system "_,Txvmust be a sine function which can only have the constant
value of zero.

The displacemens of the total system, can be defined by the displace-

ment of the e.g., _ and QL' the rotation of the i - J coordinate system, 8,

and the displacement of the system with respect to the _ - J axes. The motion

of the system with respect to the i - J axes will have N degrees of freedom and

can be described by N generalized coordinates _. The coordinates x, y, and_ r

for each element of mass can then be defined in terms of the _'s and the con-

straints of the system such that

x = x(_'s)

Y = Y(Qn'S) II-l.lO

where equations II-l.lO need not be linear.

The total system then has N + 3 degrees of freedom and cam be des-

cribed by the generalized coordinates QH' QL' @_ and N coordinates _. It h_s

already been indirectly shown that the dynamic eq_tions associated with the

_ _ and @ coordinates are

: : ofe er=l fo oealo EP.

P = _ = oma of external forces along L axes

d
- _ (l@) = sum of external moments about c.g.

1966001467-024
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It will also be shown that the motion of the system with respect

to the i - J axes can be defined in terms of N normal coordinates qa" The

dynamic equations derived in terms of the generalized coordinates Qn will then

be transformed in terms of the norm_l coordinates qa"

The displacements of the mass element dm in inertial space are given

by equation II-1.4 as

H = _ + x cos @ + y sin @

L= _ +y cos @ - x sin @

The coordinates of the _ - 3 axes are _, QL' and @ which are con-

sidered as ge,,eralized coordimate and are only a function of time. The

coordinates of the mass element dm with respect to the i - J axes are x, y,

and _. The motion with respect to the i - J axes has not been defined in

;-- terms of the constraints of the system. Therefore, x, y, and _ cannot be con- __

siderealgeneralized coordinates and the general dynamic relationships discussed

in this section will apply to any system of mass elements.

II-2 .I VELOCITIES

Differentiating equations II-].4 with respect to time

--_ +_coso-x_sino+y_cos
II-2.1

_..% +_coso-_ sino-_,_o-x__os_

0

The total velocity of the mass element, dm with respect to the fixed

H and L axis, _xpressed as components along the rotating i - _ axes is i

.o_ v--_ F_cos,-_sino +3 [_sino+_,o_o _.

• (. substituting for H and L

_' V = i ( cOS @ - sin @) .+ _: + 3,@ + J ( in@ + QL cos @)

_ + _" - x(_ II-2.2
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since V is the velocity of c.g. at time t
cg

f-h

= Vcg cos_ _= Vcg cos (@ +

,_ 11-2,3

;_:-Vogsin,_--Vg.in (o+%)
Therefore

II-2.2 KINETIC ENERGY

The kinetic energy of the mass element dm is

i V2 1 2d_=_ _m+_r ( -_)2_m

substituting from equations II-2.2 and using 11-1.2

J i / (_2+_2+r_2)d m1 _2 (x2+y2+ r2)dm + E
JTN TN

TN

IM( + )+E_'_" xy xy

i _cg+E xy--EM i l_Z+_ -_ 11-2.5

where _ is the kinetic energy of the system due to motion with respect to the
xy

{ - 3 axes and is only a fanction of the _ 's and their derivatives. By equation

11-1.8, _xy is a constant. The generalized momentum associated with each gener-
alized coordinate is then

__L= M_Qz, 11-2.6
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The generalized inertia force associated with each generalized coor-

dinate is then

d _)

II-2.7
d _ d

The generalized force associated with each generalized coo_linate

-- as a result of non-liaearities are

_=o

II-2.8

_'¢ :0

For a linear system _ne last equation of II-2.8 is also zero.

II-2.3 PC_ERTIAL E_ERGY ARD DISSIPATION _ION

The potential energy of the system will be divided into two types,

the potential energy resulti_ from the positions of the mass elements in the

gravity field, and the internal potential energy stored in elastic defor_tion

of the structure.

dVo - _ cost_n
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substituting from 11-1.4 and using II-1.2

_%=M % g _osr n-z.9

The potential energy due to gravity is taken as zero at the origin of

the inertial axes L-H and the acceleration of gravity is assumed constant for

all mass elements.

It is _sst_med that the internal potential energy VI is a function of

the x's and y's corresponding to the positions Of the mass elements with res-

pect to the { - 3 axes and is not a function oC the generalized coordinates QH,

QL' and @.

VI = VI(Qn's) II-2.10

The rate at which energy is dissipated in the system is defined as

2FD. If it is assumed that all of the energy dissipated results from relative

motion of the mass elements with respect to the i - 3 axes, the dissipation

function, FD, _s then independent of the generalized coordinates QH' QL and $.

_D=FD(%'") n-2.n

II-2.4 THE LAGRANGE EQUATIONS

The general form of Lagrange's equations of motions are

dd_#_ _ _VG _VI _FD

_. - _ + -_ + _--_+ _--= PQ II-2.12

where

PH = Component of external force P along H

P = Component of external force P along LL

The external force P can be lefined by ,_

P = { Px + 3 Py II-2.i3

o
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then

PH = P cos @ + P sin @x y

PL = Py cos @ - Px sin @

and _ I" #jPQ: _ % cos_ sin_)__-_ �%cos% cos_-PxSing;

The point of application of P is Hp and Lp defined by equation
II-l. _ as

Hp : QH + Xp cos & - yp sin @

= QL + YP cos @ - Xp sin @

then

3%

------ 0

r 3%

--= 0

L = 1 II-2.14

_@ - -Xp sin 9 + yp cos @

::-ypS_ e-XpCOS 9
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PQH = COS@ I P + sin@ !Pp x p y

PQL = cos@ I p - sin@ I P II-2.15 iz_
p y p x

P9 = -I [P XP - P_YP] = - m°ment °f external forces ab°utc'g'Pj

PQn =

From equations 11-2.7, 11-2.8, 11-2.9, 11-2.10, 11-2.11 and 11-2.15

the Lagrange equations of motion for coordinates Q_, QL' _' and % are

,,

.%+_co,_:cos__P +sin__P
p x p y

.% :cos91 _ sinsI F
p y p x

: zp

,, ee

% and % are the accelerations of the total center of gravity in the

direction of the nominal flight path and normal to the nominal flight

path. From equations II -2.16

.. P P
x

P P

also by differentiating equations II - 2.3

e,

: -Vc_(_+ao) sln(_+C%)+ Vcgcos(9+ %)
11-2.18

% : - v g(_+%) cos(o+ %) -Vegsin(_+%)

'!
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The second equation of II-2.18 is the so called normal force equation

emd ttzefirst will oe referred to as the axial force equation. The

equations of motion can now oe written

"_ _x P

% = -Vg(_o)sin(_o) +vcgcos(_o)=0o-__p--_+ si_e___p_Z_M-g _osr
11-2.19

% : -Vc_(_o)cos(_+%)-VcgSin(O+%): cose_ _ sineZ _xP _ - e -_- 11-2.2o

d (I@) = - ZIP x --PxypJ 11-2.21dt p[yp

From the fact that the motion of the center of gravity is independent

of the motion with respect to the c.g., and the definition of @, equations

II-2.19, II-2.20, and II.-2.21 could ha_e been simply derived from Newton's

equations. Also equation II-2.22 is Lagrange's equations for the motion

of the total mass with respect to the [ - _ axes and is independent of QH'

QL and@.

The acceleration of the center of mass can also be expressed as

components along the I and j axes_ ax and a whereY

a = QH cos@ - QL sine
x II-2_23

o, .,

a = % COSe + % sineY

substituting for QH an_ QL equations ll-Z.19 and 11-2.20 become
P

.Vcg( o)sin_° = x cos@ gcosr 11-2.24ax" ' e+_ + VcgC°_o _" M
P

= - VcgSir_o = Z _ - sln@ gcos%, II-2.25"Vcg(@+_o)C°_o p Mmy

It should be noted that a linear system and small angles have not been

assumed. The only restrictions placed on the system are that the origin

of the i - _ axes be at the total c.g. and_xy., -- constant,.

!
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• ,. , , ,
: T I- -. ;,'iT';SI_!_ .'Di,_ IoU<,AI I0_,

< In Section II-_ _enera_ dynamic equations were derived for a

:_ scstem o_ mass el_ments having relative motion with respect boa set of

... rotatin_ body axes, z - j. The system was assumed to have N degrees of

l'reeaoH_described by _ 6eneralized coordinates Qn' In this sec.ion thec:
_suc_.._L _:.a._s_±ementJ ._i±± oe de_inea in terms by a missile configuration

anq cne _ genera±ized coordinates will De es_ao±isned.

The missile bog3 is assumed to consist oi'a relative slender

£±exioie oodj incorporating R £luid tan_s which may oe only partially

filled. A numOer oz'thrusting engines are assumed to be a_tached to

tne missile ood_,such that they may or may not be rotated with respect

to the body center line. In addition provisions are provided to make

, inertia corrections a_ various points on the missile body, These inertia

_. corrections in efCect consist of the addition of a quantity of matter which

has no mass out has _ mass moment of inertia_I.

II-3.1 SLOSH REPRESEIffATION

Translational or rotational motion of each partially filled fluid

il tanA will result in relative motion between the fluid and tan_, thus producing
• d_namic forces oz the tan_° The mo_in6 fluid represents an infinite degree

of freedom system having an infinite number of modes of motion. It has been

/ shown (_{eferences 2, 5, and _) that equivalent tank loads for each fluid mode

will result from a sprin_ mass analogy. The anslogy consists of placing a cap

•: or 0ul_nead at the free fluid surface to confine the fluid and prevent sloshing

and attaching a portion of the fluid mass to the structure by a simple spring.

_, Equations for the calculation of the equivalent sloshing mass, natural frequency

of the spring mass combination, and the required attach station on the fluid

tank are derived in Reference 4 for tanks of arbitrary shape° The equations

'-, for tan_s with axial s_nmnetryhav_ been programmed for computer computation.

A description of this progrmn and instructions for its use are contained in

Reference 5. Results obtained from the slosh program show that the slosh

masses associated w_th fluid modes above the first mode are small and in

",_ general these modes may be negiec_ed.

q
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Foz th_ cuzculacion oi" the mass moment oC inertia of the missile

abOUt its center of bra_it.y and the computation of sending modes, it is

necessary to consider une moment of inertia of the fluid in tne capped tank.

The equation for finding the mass moment of inertia asout the fluid c.g. for

a £]uid in a c_]indrica] tank is derived in R ference 3. These data are pre-

sented a-. a correction factor, :<I to ue applied to the moment of inertia

that aould result if the £1uid were frozen as a solid. This correction l'actor

J_l has been plotted against tank aspect ratio (length divided by diameter)in

figure II-3.l. The frozen or solid inertia of a fluid mass mf in a cylindrical

tank of radius I{T and length LT is

Isoli d mf + L T ii_3.1

The free fluid inertia If is then

If-- _I Isolid II-3.Z

The mass moment of inertia that results when the f_',,_ is

considered as a filament concentrated along the missile cente, line for

a distance _ is given by

_- 11-3.3
IFi L = mf 12

When the missile inertia or bending modes are based upon a filament of

fluid, the correction factor that must be applied at the fluid cg is

- _Z-3.4
AI = IF IFj L

where ZII may oe positive or negative.

It should De noted that the slosh mass amplitude _)j used in

this analysis is the amplitude of motion of the equivalent slosh mass of

the spring mass analogy, pj does not represent the slosh amp![rude o£ the

fluid in the tank. The fluid amplitude is obtained by applyi,_z a correction

factor 5o p . This correction is obtained from the output data of the
L:

s]osh [ng prosram.

, I
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II -3.E 3Z;_D!XL';[ODZS

_e free-r'rc_. £:exiD_e miss'.'_ieoody acting in _ne yaw plane

represents an infJ::ite de6ree oi" freedom system consisting oi' , tee zero

frequency or rigid 3od,_'_.odes and an infinise numoer of elastic or oendin6

modes. However, in an 8/_alysis of this type only a £inite numoer, i_, of

the _des can o__cc::_id__;ec _nd it is assumed tnat the elastic deformation

modes in order oz" incre_sin_ modal £requency. _xpprienee has ShOWn that

_he system b ,in_ studied is relaDively ±oose-y coupled, that is, the re-

_uitin_ system natural z're0uencies _re nea£ bne input oendin6, sAosh, and

en6ine frequencies and the resulting modes consist primarily of _he corre-

spondin_ aending, slosh, and engine motions. Therefore, i£ the TTM oendin M

frequency is well adore une hi6hest slosh and e_ine input, frequency, the

driving £unctions for the higher modes abo%'e the Tth mode will De small and

the t._/ncation errors for aiz out the highest mode, --T_h, should be negligible

and the aoo-.e assumption is considered justified. The output data for the

Tth mode should never De used in a staoi!ity analysis. The input data shoul_

always include at Aeast one mode abo%e the aighest mode to oe studied.

A/I elastic deflections are taaen with respect to the undeformed

elastic axis (UEA). Th? UEA is defined as the body center line in the

aosence of elastic deformation and is assumled to be a straight line. The

. center of mass for every beam element for all beam branches must lie on the

UEA in the absence of elastic deformation. _en_ing mod_ calculations are made

assuming that all mass elements are distributed aionM the center line with radii

of gyration, r. The location of a poizAt on the body is defined as xh measured

_ forward along the UEA from the total system center o£ gravity, see figure II-3._.

For the purpose of this analysis it is assumed that the bending modes have been

calculated for a multi-branched beam taking into account, shear deflection,

UEA C .G, _FWD

FIGURE II - 3.

Total Deflection Due to Bending and S_¢ar 1
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rotary inertia, and axial acceleration, and %hat all engine and slosh masses

-_ are rigidly attached _o the missiie. The transtational deflection of a Desk,
f

[ eleme_,. _t .:.,_perpendieuJar _o the UI,_Ais ti,_en a:_ u and, toe gotal slope o_'

[ Li,e oe_rl center line at _ with respect to the UEA is u . The uoba± _aop_AA

_s the sum of the slope due to 0endin 6 deformation and the slope due 5o snear

defo,nnation. The bending slope is defined as_and is the rotation of the beam
element at 2_ since shear deformation produces no rotation. The translatlen&ln

deflection in the direction of the UEA is neg/ected. The deflection u and slopes _

u and_at any point xh are defined oy the following equations:!.
L

_. u.,5"_i bi
i- i

!

|t_ u':_ ¢i bi H-3.6
i
b

• i
I

I where&

¢i = deflection of the ith bending mode at _h

- i _i -- t_tal slope of the ith bending mode at xh

_i = bending slope of the ith bending mode at xh

b. = ith bendlng coordinate
.t

jl

/ t

C.G _ UEA

FIGURE II - 3.3

Bending Deflection Due ith Mode

,, m I I
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•th
The oendin_ deflection due to the t mode is shown in figure II-3.3.

! %

For multl-branched beams _i' _i and _i will hare values for each ranch

present at xh. The normalized mass for the ith mode is given by

/(_iZ + r2 _)dm= Mi II-3.7
TM

where the inteMration is the sum of the integrals carried out over each

orancn of the oeam. It is desirable to normalize each mode such that

Mi is t_e tots/ missile mass. Since the mode shapes normalized to mass

., ._am_e normalized to the mass M by multiplying _i' A i and _i by _k i

_re

M H-3.8
ki = %

It will be assumed that all bending modes are normalized to total missile

mass.

i th
!

For the mode sha_e shown in Figure II-3.3 the values of _i' _i

and )'i are functions of x h only. _i is the deflection when the bendingI

coordinate is unity, and is non dimensional. Since _l and _i are t_e

%

slopes wheu the bending coordinate is unity they have the dimension of

1/ft. The bending coordinate b i is then defined at the value of xh where _i

is unit)- for a mode shape normalized to total mass, The i th bending mode

represents the maximum deflections at each point along the beam ror sinusoidal

motion since b 1 is a sine function of time t and the modal frequency. There-

fore, for the input mode shown in figure II-3.3 the deflection and slopes

could be multiplied by -1 and a new input mode slope would be defined which

would shift the phase of the final b i by 180 degrees. Eil_uer input mode can

be used, however, in order to be consistent a positive input mode is defined

as that phase of the mode which results in a positive deflection at the aft end

of the missile.

Since the input modes are orthogonal

/TM (_i_t �r2_i_t)din" O t { i II-3.9

also since the bending modes produce no translation of the e.g. and no

, the linear of the total and the angularrotation of the UEA momentum system

momentum about the e.g. must be zero. Therefore

I
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•_ fTM_i _--°
II-3.i0

,. j7 o
ai_d I udm=O

: /_ (UXh + r2_)dm = 0

- As previously noted, this analysis assumes that the oending

modes have been calculated for a multi-branched beam taking into account,

shear deflection, rotary inertia, and axial acceleration, and that all

engines and slosh masses _re rigidly attached to the beam. If the effects

of the beam column loads due to axial acceleration are to be neglected, no

changes in the input data are required. If the effects of she&r deformation are

neglected in the bending modes, the total slope is made equal to the bending

slope. If the inertial energy stored in the beam elements due to ro_ation are

to be neglected, the radius of gyration of each beam element becomes zero in

all equations. However, the en&ine input data and the dyaamic equations are

based upon a mass moment of inertia about the gimbal point, IGe, for each

glmballed engine and the rotary inertia of these engines cannot be neglected.

The moment of inertia of the engine about its gimbal point is

IGe = _e_GE2 + Sr2 d_.
e

th

where MGe --mass of e engine

_Ge-- distance from gimbal to e.g. of engine
eth

Therefore, when using bel,ding data which neglects the effects of rotary

inertia, it is necessary to introduce an inertia correction AIe at each

gimballed engine c.g. such that

j- ,
e i

,)
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LIt is again noted that the engines and slosh masses are assumed to be

rigidly attached to the beam when the bending mode are determined. It

is l_ant that the engine mass distribution be such that the static

moment of the mass about the engine glmbal point be equal to Moe _C_ used

as gimballed e_glne input data; and in aaditlon each slosh mass must appear

in the mass distribution as a concentrated mass at the spring mass attach

point. Any other distribution of these masses will introduce errors in

the analysis the magnitudes of which are a _hmction of the effect of the dis-

tribution on the modal deflections and slopes at the attach points.

II-3.3 ENGINES

Two types of thrusting engines are considered, fixed engines,

and gimballed engines. Fixed engines are those engines which are fixed

or locked to the missile such that the thrust vector is always tangent

to the body center line at the point of attachment. These engines do not

produce modes of oscillation but do provide thrust forces which drive

other modes and must therefore be trea_ed separately from the glmballed

engines each of which does produce an additional mode of oscillation.

The eth gimballed en6ine is conside_-ed free to 1._tate about its glmbal

point such that the engine center llne makes an angle 5 with the oody centere

llne. It should De noted that a gimballed engine which Js locked during

some portion of flight time by locking the engine actuator or by making the

command signal zero, must be considered glmballed at all times of flight

since engine angles will result from the flexibility of the actuating

mechanism. Although only fixed and gimballed engines are considered iD

the derivs_lon of the dynamic equations, a third type of engine is of

i,_ortance. For secondary injection, Jet vane or jetavator thrust vector

control systems the thrust vector Is deflected through an angle but the

engine mass remains fixed to the missile center line. This type of engine

is essentially a fixed engine with controlled thrust deflections or a mass-

less gimballed engine engine. The engine does not produce a mode of

oscillation but is the controlled driving force for all other modes.

ii

I
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No difficulties are encolmtered when a gimballed engine mass and inertia

of zero are introduced into the equations derived in this section. However,

;- when using the combined mode representation covered in section III, a mass-

less engine produces a mass _atrlx which is not positive and definite and

which will Oe rejected by the eigenvalue subroutine used. A program sub-

routine provided to handle this case is discussed in Volume II.+

II-3.4 MASS MOMENT OF INERTIA

In the introduction to this section it was noted that provisions

are included to make inertia corrections at various points along the missile.

_nese corrections _re introduced primarily to compensate for the fluid

_- inertia in the propellant tanks as discussed in section II-3.1. Equation

II-3.5 gives the inertia correction that must be applied at the fluid

center of gravity when the bending modes are based upon the fluid massdistributed along the missile center line. For the general type of bending

I data normally used, rotating inertia is taken in account and the fluid

inertia correction can best be introduced in the inertia distribution, in

which case no inertia corrections are required in the dynamic equations. In

the case of sending data neglecting rotating inertia it is desirable to

introduce the fluid inertia correction from Equation II-3.5. In adaition if

the inertia distribution for the non-fluid portion of the structure is known

the effect of cotatin6 inertia can be intzoduced. In any case where rotating

inertia is neglected it is necessary to introduce the rotary inertia of all

gimballed engines since the derivation of the dynamic equation assumes this

inertia to be present. The inertza corrections _re not system parameters

which affect t_e dynamics of the system but should be considered correction

factors introduced to correct the bending data. The mass moment of inertia

I of the system is

I = _ (x2 + y2 + r2)dm ii.3.11

expressed in terms of the coordinates along the _ - 3 axes. In the

previous derivation (reference i) the inertla corrections were _ided to the

v=. ,e of I introduced into the equations. However s for the present derivation

-_ it is assumed that the value of i inputed has already been corrected for

fluid inertia and the self inertia of the beam elements.

o

I
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II-3.5 NOTATION

Input data pertaining to the engines, slosh masses, bending

modes, and inertia corrections are designated by the following notatio. :

GIMBALLED SLOSHING BENDING FIXED I_IA

ENGINES MASSES MODES E._I_NEG CORRECTIONS

Numbering 1 thru P 1 thru R 1 th-_ T 1 thru F 1 thru K

General

Subscript e j ' f k

Specific

Subscript p r t o -

Attach point Xhe Xhj (Xhi=0) _nf Xhk

Thrust TGe - -- TFf -

Deflection 5e D_ bi - -d

The subscript h used for the attach points indicates that the
-

_oordinate is measured along the UEA and not the i axis. The specific

subscripts p, r, t have Oeen introduced sirce general expressions contain

summations of e, j, and i and must be differentiated with respect to specific

engines, slosh masse_ and benaing modes. For example, the general expression
1

8_° Therefore the generalfor kinetic energy contains the term
n[e

e=l
th

expression for the p engine equations will contain the term

P
d v 1 • ..

--_ ,-- L _-meS_) = mp 8p _ me8 e
7%

th
The subscripts p, r, and t will appear in the p engine equation,

the rth sloshing equation, and the tth bending equation.

The motion of the mass element dm with respect to the _ - _ axes

is the sum of the rigid body motion due to motlon of the UEA, and the elastic

deflection, due to motion with respect to the UEA. The rigid body motion of

the _ is a function of the engine angles 5e and the sloshing deflections .Dj_

and also the bending coordinate b i when inertia corrections are applied to the
/

bending modes. The bending deflections are only a function of bi. Therefore_
the motion of each element of mass can be defined in terms of the P values of

_e' the R values of pj and the T values of bi. The total number of generalized
coordinates N is then
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N = P + R + T II-3._2

These N generalized coordinates, Wn, are then defined as follows:

the £irst P coordinates are the engine deflections, 8 in radi_ns, for thee

P glmballed engines in the order of input, the next E coordinates are the

sloshing mass deflections p. in feet, for one _ slosh masses in tne order

o_"input: the last T coordinates are the input oendin6 _de coordinates,

0i, in feet for the T input sending modes in the order of input.

r h

, !

{%}, l° I : °'.I,,.J
Column matrix QP+R :bl

1 f
|

• I
% .% J

in L s ana±jsis the braces_ will be used as a symool dcnotinz
K

a c_Ji_m ma_r3x _d _he suosctipt T will" be used to denete a transposed

matrix, therefore t _T is a row matrix composed of the elements o±"the

_:o±_m matrix.

The resulting motion with respect to the [ - [ axes when bi is unity

and all other generalized coordinates _re zero has oecome known as the ith

input bending mode. Likewise the resulting motion when 8e is unity and I
th

all other coordinates are zero is defined as the e input engine mode,

and the resultant motion when .o is unity and all other coordinates are

\ zero is defined as the jth input slosh mode. These so called input modes

or non-orthogonal modes are not true modes of the system. However, for a

linear system superposition is valid and the output modes are a linear

w

i r
!
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comoina_ion oi"these modes. These input mode_ are numbered from i tnru N

in the same order as their corresponding generalized coordinate. The motion

of the missile with respect to the _ - _ axes can then be defined by N

dynamic equations in N generalized coordinates. This motion is a linear

combination of N so called input modes. The subscripts m and n will De used

th nthto designate the m and of these coordinates, equations and modes.

Where possiole n _iil oe used for the coordinates and m for these equations

and input modes.

It will be noted that with the definition o£ _ni = O, there is an

attach point associated with each input mode and each generalized coordinate.

Therefore, an attach point can oe defined for each input mode or coordinate

': Xne

+R_ I_T- j. , ,I.

Likewise for each fixed engine and each inertia correction

xF = F x 1 = Xnf II-3.15
Column matrix

{xi__ = Kx 1 --(Xk} II-3.i6Column matrix

The only input bending data required in the dynamic equations of the

system are the deflection and bending slope at each of the attach points.

Therefore, the requited bending data can be defined by a system of subscripts

where the first subscript denotes the attach station and the second sub-

script the mode or coordinate causingthe deflection, For example
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I = th_ei bending slope at e engine attach point due to ith sending mode.

_ji = bending slope at jth slosh attach point due to ith 0ending mode.

_Ffi = bending slope at fth fixed engine due to ith sending mode.

.th
_Iki = bending slope at kth inertia correction due to i sending mode.

_ne same subscripts are used in connection with the deflection _.

However, in each case the slopes and deflections must 0e taken fc_ the

correct beam branch at each attach point. By further defining

a_d the corresponding deflections all equal _o zero, general s3nnbols

for the bending slopes and deflections can be defined as
th

= Deridingslope at th attach point due to n mode

_nm = bending slope at nth attach point due to mth mode

= th
_mn deflection at mth attach point due to n mode

th

_nm = deflection at nth attach point due to m mode '_
th

_Ffn = bending slope at fth fixed engine attach point due to n mode
th

• _Ffn = deflection at fth fixed engine attach point due to n mode
th

_Ikn = bending slope at kth inertia correction due to n mode

_Ikn = deflections at kth ir_ertia correction due to nth mode

In Section II-2 the dynamic equations were deri,Jed in terms of the

x, y and_coordinates of each element of mass with respect to the ] -

axes. In section II-3 a missile configuration wa_ developed for uich the

motion with respect to the i-j axes can oe des,cribed by N generalized co-

ordinates Q. The motion of the missile wihh respect to the i - _ axes will I

be developed in this section. %_nedevelopment i_;based upon first order

linearization.

I

' I | "
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FIGURE II-_.i

" The x and y displacements o_' the origin on the UEA are defined

{ as x° and v arid the rotation of the UEA as _. The el_stic displacements

',;itill°e.qpect to the UEA are u _'_nd[/:,.det'J.ned b3 equ._tions II-3.6. The

Gh,oa.;.;ed unoi.ne ti[,_p.,:bc,'cnS: :', :_L'e5a_en t'or posiSive rotation ._].tn

red,peeL to the + .__._[s. 81o:_,lJ.na_di_p.taLcc_,,en_s _re def'ined positive

up'<_.r'd,..::li.cn.Is opposite 5u the d,_l'ini_ion used in reference i. This

cnan&e .';L_1,_a,dCin ordel' £nat a slosh motion in phase with rigid body motion

would be in the s_le direction as the Fi6id body motion,

Coordinates of a Point on Beam ,--

AD = XO + Xh COSW - U slnw

Yo -- v + xh sinw + u eOSW II-4.1 _,

_th
Coordinates of the _ Slosh Mass Attach Point _

xj = xO + Xh_ cosw- uj slaw - _)_ sln(_+w) . xbj - _ sin (_/_+w) iI-_.?.
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r

_ _ Coordinates of the kth Inertia Correction Attach Point

I

xk = Xo + _k cosw - uk sinw = Xbk

{ ii.4. 3
Yk --"_ + Xhk sinw + uk cosw = Ybk r

_k= w +_Ik

th
Coordinates of a Point on e EnGine

[I Ue

FIGURE II-4.2

5 8

xE XbE + 2ze sin ._e e= 2 sin(w*'e*--:)
5 5 II-l_o4

e (w _. e
i YE = YbE + 2Ze sin -_- cos +_6 e --_ )

th

[e is the bending rotation of the beam at the gimbal of the e engine.
The angle required is the rotation of the rigid engine as a result of

eAastic d_formation of the beam. The use of__e for this angle assumes
that the engine rotation is _ue to bending deflections only. If the "_

engine actuator supporting structure is such that engine rotation results :,

from shear deflection in addition to bending deflection, a small errc_

will be introduced which may be corrected by modification of the input

bending data.

The value of _ _, ,v be detemined from the fact that the origin
O

of _ - _ axes remain¢ _< _'_" ._nter of gravity.

r_

r_

11
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Therefore tr.

TN xda-O

J e

substituting frcm II-_.l, II-_.Z and II-4.3

a_d /e Ze _=aGe._G e
th

_Ge-= mass of e e_ine

_Ge = distance from gimbal to c.g. of e th engine

The 41spla_eme_.t of the or_tn of the UE& in the dire_tion of the

axes Is the _ of second order terms and Js therefore neglected in llnea_l-

,_ _ zat._on of the syste_ and

x = 0 II-_,5
o

The _'alue of v may also be deter_tned f_m the fat that the

orig. , of I - J axes remains at the center ¢,f gravity.

T_ y_u=O

-_ e_aiD substitutiag for y_ y_ and YE

• z
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!

_i assumlr_ small angles

I ' oJ_
J j M Pj+ e M

i

Let vj : . _A_M&

V =
e M

vi=O

th_ _ : T.V_e+ Tv p + T ,,ibl n-_.7
e j j J I

>.I_ .

: i::li
Col,-,-matrix

_bere va,vl, and vi are constants for each input mooe or coordinate.
For the linear system the coordinatesgiven by equations II-_.l tbru

II-_.4 become

Coordinates of a Point on Beam

Yb : V + N W + U r" ZZ._.9

!

. :_2C
;,.9

I
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_ Coordinates of the _th Slosh Mass Attach Point

xj-

,C_ yj = v + XhjW + uj + pj = Xbj + O_ II-4.10

:' Coordinates of the kth Inertia Corrections Attach Points

Yk = v + Xnkw + uik = Ybk II-k.ll

!-
coordinatesOf a point on the e th Engine

m

- YE = v + XEw + uE - ZeBe -, Ybe " ZeBe II-4.12

Coordinate of Attach Point of fth Fixed E_ine

I

'_ YFf = v + xi_w + ui_ = Yof II-4.13

Equations II-i.9 thru II-i.13 show that x coordina_e along the

[ axis is equal to the xh coordinate along the UEA for all input

parameterso Therefore the c_l_ matrix de£1n_l by equation IT-3.11_

also represents the x coordinate along [ axis for each ._ttach point.

Also since x h at a_7 point is a constant and not a function of time,

all of the mass elements of the missile have no motion in the direction i

i of the [ axis and all motion is in the direction of the _ axis. The

_ value of w can _e found f_u the fact that the angular momentum, about _i

( the e.g. due to motion w_th respect _o [ - _ axes is zero.
t

i

g
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: _xy = 0 for linear system

Substituting for x, y, x aa_

k j

sino_J_,(x2,r21,_+Z,__" I

_e 2 ra)dm ICe .mass mament of inertia of eth engine about(Ze + = = glmbal

sinee_xy__= 0 for a linear system

--- Z__Oe"%l_'C__ ge" ___'_ Z_kk_----_'k

e ,:I

Define we = - Ge

wi = .. I

T
wi = " '-- Iki "

k
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then

e j i

aerlnlng. = o for_e= PO= hi = 0

-=g. o +[ .jp.j+ g.pt 11-_._7
e 0 i

W = _:tT :.Pitt = _W_T <_ II-4.18 -

where

i

where w is a constant
m

II-_.2 KINETIC mEeKlY WITH P_SP_ TO _ -_ AX_S

"_xy = _xy (translation) + _XY (rotation)

�__k_Ik(_k+ .)2 _i

%--0

_J
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i
i

_cE=O

3"E= _'bg " z 5e e

XE= x - ze e

_ --ue -%'-o
SubstitutinE

2"xy (trans') = ¢2M+ w2 J'TMX2 dm+J_u2dm+r "ZWfTM x_ dm

'2+ 2" [_,+ xj_r+ ])+_-'j(,,j oj %
O

+ZI52e _e z2 chn-2¢ 5e mC'e_Ge"25e_VXegGemGe+25W_eZe2ee dm

" 25e Ue mGe_Ge + 25e_ efe ze2 dm1

+Z'&Ik[__k + 2_ k _+ 1_2]

sdding

"_x,y= T + T I_z+ T v_i + T 3mjp j j 3

. +1__. e_ Iqe 5_" _ Ae [W:IGe'Xe/GemGe ) +_e IGe'moJGe Ue " mGe_Ge_¢]

F.Aik[J".2 _k"]+ [TFk +k

since _ _ vj ..

X "_ _

,1 M vj

TCe- xe I c.emGe -. Ive

_ • •

Q
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[i [i o1 ]"[_e _+eVe - Z_j _J_+_J " T'hT i_+v_

From equation II-8.8_-, dynamic equation associated with each of the

generalized eoo,x1Jnates _ is the Lag;cage Equation for motion with

respect to %he i - _ axes

__ (_/i__).

The second term is zero for a linear system therefore the Lagreage

equation divided by the total system mass becomes

1 d __ 1 _)VI 1 _._ Pm(

Equation I!-_._0 represents a series of N dynamic equations one for

each _. In matrix form II-4.20 becomes

The first column matrix represents the inertia for.'esassociated wlth

the _m coordinates. Where _m equals Bp, the inertia force associated
with the pth engine is

1

( ,

.1
t
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th

The inertia force associated with the r sloshing coordinate pr is

Mdtld (_) = -v _r " _ 6e w w + VeV - [_ wjw r + vjr
-Qr e J j

Z b'i[Iwiwr + vivr"i _bii r _ri II-4.23

The inertia force associated with the tth bending coordinate bt is

i d (_LxY_ _e'Se [I w wt VeVt] _ II ]R _ "_" " ='l_t" . + " . "_ wjwt + vjvtbt

""biL'"['-:["wiwt + viv e L x "_-el;, Ve _e

g_

_j _ Vj ,jt _ibi (_ _Ik Aiki _ikt) II-4.24" + _k -_-

Equations II-4.22, 11-4.23, and II-4.24 can be written as

P

i i_d ( ) = rn_T = "Vr _ " Wr+Wn+Vrv T Ti Mdt r

' ._ (i d ) = ( _njT = " WtWn+ VtVn} TI'Qn_ + _e'Se Aet'Ve'e

IGe

--------- BjDefining Bm where Be M , = -vj_ Bt = 1.0

"f

IGe

Cm where Ce =--_----, -Cj = 0 , Ci = 0

./

j
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then _-_ _mj

and in LaPlace notation

m = row

n = column

Ban Bm 8(re,n) - WmWn + + CmAmn + CnAnm

-Vn Cnm + Z AI_ AIkm ),Ikn II-4.26
k

The B matrix is the dynamic coupling matrix where MB gives the
mn

{ generalized force along Qm resulting from unit acceleration of Qn

"- which is equal to the generalized force along Qn resulting from unit "

acceleration of Qm" Therefo-e,

B =B
mn r_n

and [B] must be a symmetric matrix.

In consid_rlng the power balance of the system, rate uf

energy input equals rate of energy absorbed, the energy of the engine

actuators must be taken into accotnt. When the actuator moment, _e

is in the same direction as the actuator velocity, 5ae the work _ate

or power Mse 5 is positive and the actuator acts as an external force

increasing the system energy. However, when the directions are opposite

in sign the work rate or power is negative and the actuator acts as a

damper decreasing the energy of the system. Since the actuator can

introduce eno.rgy and absorb energy it also appe_'s as a spring storing o

potential energy. Altho1_h each approach will produce the same dynamic

/ equations, the energy of the actuator will I,_ introduced as potential

energy in this analysis.

1966001467-055



i 8414-6046-TU000
Page 50

._i _ tBactuator axes

_ _ { Missilemmy

* ethe4 i engine
gimbal

r_

: FIGURE 11-4.3

Kae = Torsional spring constant between eTM engine and its actuator

,_ in pound-feet per radian.

l th
Mse = Actuator moment of the e actuator equal to reaction torque

from the eth engine.

Mse = Kae (Sae " 5e)

1 1

Vlel= 7 M6e(Sae " 51 = _ Kae (6ae " _e)z

For a given engine angle, 5e, the magnitude of 5ae determines the

potential energy stored in the engine spring Kae.

It is also assumed that due to fluid lines etc. there i_ a
th

torsional spring, Kne, between the e engine and the missile body.

The energy, stored in this spring is

i 52 ._
Vle_=_Ke e

The total internal potential energy stored by the engine springs,

due to both engine deflection and actuator deflection is i

- . :]
The t_al internal potential energy stored by the engines, slosh

springs, and elastic deformation is

Vl = Vle + i _k_ _. i _ 2
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r
but

2

kj = mj_j

2

ki;M_ i

Therefore,

v_--7 K( +_ _e e _ mj®jpj+7 M _ibl

; zz-_..28

[ The second term of equation II-_.21 then becomes:

" th _,_,, For the p engine
_,,

zz-4._

th
For the r slosh mass

?

_ k M _Pr -gr mr Or II-4.30

_' _r the tth bending mode

1 " VI 2

: M bt = _t bt II-4.31
(

Defining N x 1 column matrices {Amt and such that

| IIA _}
} i"
.l

e

:_ {k_ _j]O} II-4.33 "

l
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q

5a2
I

0

0

0

0

then

1 _VI _ [A - [k] (San_ II-4.35

where

= k "_(m,n) II-4.37k
lira in

The A matrix is the static coupling matrix where MA gives

the generalized force along Qm resulting from unit deflection of Qn'

_hich .!gequal to the generalized force along Qn rem_Iting from unit

deflection of Qm" Therefore [A] must be symmetric, however the system [

is statically uncoupled end

A =A _0whenn¢m
. q

hence IA I is a diago_,al matrix.

II-_.4 DISSIPATI0_ FUNCTION

The dissipation function FD appearing in the third term of

equation II-4.21 is defined as one half of the rate at which energy

is dissipated in the system. It is assumed that all _amping forces

re_uit from bend_ngj slosh, and engine velocities such th._t.

|
1

where DGe = eng,-'uedamping in _ound feet per radien _--_

Dsj = slosh dam_ing in pounds per feet per second

Dbi = bending damping in pound per feet per second.
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but

Dj = z _j _j_ j

_ere _[j is the damplng ratio associated with the J slosh mass

and_i-is the damping raLlo associated with the I bending . ode
%

then

1 _.2 2 .2

FD=2 _DGe "e + Z._.._o. ._ II-_.38e j j j_j Pj + Mi a_i i b"1

Since the engine dmxplng is usually given as torque per deflection

rate es found from t_.sts, the engine damping wIJ_l be left as DGe,

It should be noted that _i is v_t the frequency of the jth slosh

spring and mass when attached to the missile body but is the frequency

when the sprJlq_ mass is attached to a fixed point. _tJ equal to unity
does not re_resent critical damping for the missile system when the

jth sloshing mode only is present but represents critical duping

for the jth tank when rigidly held fixed. Likewise _l is not the
frequency of the input bending mode when inertia corrections have

been made.

th
The third term of equation II-_.21 then becomeE for p engine

1 _FD':"= __pM II-_.39R _'8
P

th
For the r slosh mass

1 _FD

For the t th bendin_ mode

1 _D
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Defining a N x 1 column matrix _D_such that
t--J

\

Lhcn

II-i_.42

%
_ere

A
D = D 5 (re,n)
mn m

The /D] matrix is the dsmping matrix where _mn. gives the generalized

force along % resulting from unit velocity of % which is equal to

the generalized force along _ resulting from unit velocity %.f_

Therefore,r_ [B] must be symmetric. However,
for the coordinate system

used [DJ is a diagonal matrix.

From equations II-h.25, II-_.35 and II-_._Z equation _.Z!

ca_ be written, in La Place transform notation _°_ 1

s2 [B]{C_+ [AI_ + s [D]_ = [k] 15an)+ l_-_I II-_.43

II-h.5 INPUT FREQUENCIES

The undamped and undriven motion that results when a single

generalized coordinate Qm is given a magnitude of unity and all other

generaltzed coordinates are m_e zero, has been defined as an input mode.

Since the system is linear the damped driven modes represented by

equation II-_.4 S will be linear combinations of these input modes. ",

For studying the frequency shift of the system, it is necessa_ to know

the natural frequencies of these lh-put modes. For a sin_.e coordinate

undamped and undrlven mode, the [D], [k] anti,matrices become zero
and the [Bland [A]matrices are 1 x 1 matrices. Equation II-_.4._ becomes

L J L J
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s 8,_%+A=%: o

then
A

2 _ns =
B

Plii ,i"

[_,._.j 1/2 li

A

<+

but

m

- r _ _ + m }7-F',,t

: The slosh mass± mj_ has an associated sloshing frequency of _j calcu-
lated by the sloshing p_grF... This frequency is equal to the square r_ot

of kj and is the natural frequency of the spring mass system when attached ,
mj

to a stationary body. In the slosh input _ode the spring mass is attached to

a moving missile body and the input natural frequency as given by equation

'_ II-_._ will be higher than the square root of __ . Llkewise the engine
i

mj
• input frequency calculated from equation II-_._4 will be higher than

K +Kne
_. • the square root of ae . In the case of the input bending modes
_ IGe

the input frequency is equal to the inputed modal frequency unless

inertia corrections have been made. The a_tion ofAi's will produce

higher input bending frequencies.
,?

/
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II-5 EXTERNAL FORCES

The external forces are ass_ed to result from _he thrust of

the gimbalAed engines, TGe, the thrust of the fixed engines, TFf,

and the aerodynamic force_ P . The external forces will be expressed

_ by components along the _ - _ axes in the form
P = I Px + _ Py T

3
. N DEA

_e "

FIGDq_ 11-5.i V
eg

The e_ternal forces due to the gimballed engine e are

Pxe_% cosCw \ �_e_e

Pye; % s_ (w+_Ie + _e)_%(w+_ + _e)
x = x II-5.i
pe e

.2 yp =V+ XW+ Ue e e

The external forces due to the fixed engine f are

= TFf cos (w +_Ff)_,_TFfPxf -,

_ xpf = XFf II-5._

Ypr= v + x_w + uFf

*I
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The aerodynamic forces are obtained from the pressure

distribution on the surface of the missile body. The net aero-

dynamic force on an element of the missile dxh in length, measured

along the UEA, is found by integrating the pressure over the ex-

ternal surface of that element. This uet force is resolved into

components dPN normal to the UEA and dPD along the UEA. These forces

are defined by

dPN _ _CNx dx q S )

dPD = dD+ u Ct_x dx q S

where the axial or drag forces are measured positive aft and

= (_o + w) = angle of attack of the UEA

q = dynamic pressure

S = reference area

CN_ distributed non-&imensional force coefficient

CAx= distributed non-dimenslonal force cG_.fficient

dD = drag force independent of angle of attack

Defining

Nux= CNxq S

AOCX=CAx q S

then

The distributed normal and axial force coefficients N_x and An_ are

functions of xh and are the force per unit length per raglan of angle
of attack.

]

°

| iii ii i i ,i i i
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: For the purpose of this analysis, it is assumed that axial

force is not a function of the angle of attack (Ax = O) and

dPD= dD

' L• PD = dD = D

where D is the &rag force in pounds and is considered a constant a't

a given time nf flight.

' It is further assumed that the normal force distribution is

not a function of elastic deformation and is independent of the local

bending slope.

: The external aero forces due to drag are then
F

PxD = " D cosw_-D

PyD = " I' sin w,_-Dw

: XpD = _p II-5.3

• YpD-+lp-

: where _p is the xh coordinate of the center of pressure defined below.
The external aero forces due to normal force _re then

dP i_= - dPN sin w_O

dPyN= dPN cos w_dP N

XpN = xh II-5.

: yp_= v+xhw+u

The total normal force PN is then

i i i iiiiii i ii i|1 ii -- "
ii
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i where N is the total normal force coefficient

TAking moments of the aero forces about the origin on the UEA

¢1

where_p is the location of the center of pressure

Then for th_ aerodynamicforces

_ Pxa D

D_
,_:' P N

: M i_ M

Px.Yp: -D(v+4w)

11-5.1 FORCING FUNCTION FOR AXIAL ACCELERATION EQUATION

The axial accelerationequation 11-2.24 requires the feecing

, function_ Px

1 TGe
" = + _ M

_, .L_ _-D- i Px " _ = I_x II-5.5

t

t_
i ii i i i i i
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11-5.2 FORCING FUNCTION FOR NORMAL ACCELERATION EQUATION i
B

The forcing function associated with normal acceleration equation

II-8.25 is Py

i Tae(w+_ ) TFf(w

i_ _ [IT_ TFf_ J %
_[-p _ c, +

f e c

D_flne_ /lei+ -W AFf =%

Gln is a constant for each bending mode and is zero when n not

equal to i.

> Then

i _ p _ + + II-5.6
- T

l _ _n}

where

ayn = _)xWn + (_in+ TG'--_nM 11-5.8

TGn
where ---_ ls zero for all modes except englne modes

II-5.3 FORCING FUNCTION lrO.__RMD_ EQUATION

The forcing function for the moment equation II-2.21 is the net
!

moment of the external forces about the system center of gravity,

4

i , i i! ii
i

i
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4j

"--,, The total external moment will be found in two parts, the moment due to y

compouents and the moment Cue to x components of the forces.

: Z P x ._ _ TGe (w +_e + Be) Xe + Z TFf (w +_Ff)+ (N_ - Dw)_p_ p YP _- f

._' dividing by total mass M

_i i M Xe_ei _f "M fA,'iJ bi �_eXe 5e

_. Define _ xe + _ xf - = _T = constant II-5.10

i:. _ =,Aei+ -w =

, or -_- XeAen + Xf IFfn = G2n

,&

_. _2n is a cor.stantfor each bendl1_ mode and is zero when n not equal
, _ to i

_" then

TGn
•_, _ = II-5.11

for the x components the mom-_t is
J_

_."_ ZpP_yp- Ze_ (v+_e,,+Ue)+ _f% ("+_fw+u_.)-_"';._pw)

dividl_4_ by M

:. i " f

t.

%

i i
............. , , ,, , ,_
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£ _ Define _ Toe TFf

L7 r
P

• or --_ _en + _ Ffl -(Z3n 11-5.12

,) C_3n is a constant for each bending mode and is z_:_owhen n not equal
; to io

• Therefore,

t

' M PxYP = xVn + 0TWn + _3 T II-5.13

From equation II-5.9, II-5.11, and II-5.13 the total external moment is

_ dividing by I

g xp - P = U + _ xn " _xVn + e2n " e3 T 11-9.14

i = _ ._:_-5.1_

Let M (Ton 11-5.16Y " M Xn " _Vn + C_2n " (_3n) " Un

i _p [PyXp . pxyp] = _GG+ <_nl T _Qn} II',.17

', II-5.k _ORCING --._CTION mR ---.mth------MODALEQUATION

The forcing function associated with the th generalized co-

ordinate is given by equation II-2.2_- as

3
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Since _e' _f' ana _a as given by equations II-5.1, II-5.Z,
and II-5.4, are all constants

_---_:o

for all coordinaues and all driving forces result from components of force

in the y direction. Therefore,

P

e f _%

-_ , + _)+

F
e f

= _ + " f _re-+ Cn',,,
• • .J

- 11-5.18

p

S _M is the sum of the forces in the y direction divided by M and is
L

,, given by equation II-_.7. _ -/- x is the ex*_ernal moment due to the
:- p M p

y components divi_ed by M and is given by eq_%ion II-5.11. Letting

• the last two _erms of equation II-5.18 equal Xm

i

z

1 | i 1 1
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_erinln_ Naom = f_ _m _x dx

P N

-_-Cvm+ _m)_+-_-_+ va +_+ x

II-5.i9

where

x=_ ye
._ e f

'! T TFff x F oe
| m e _e f

X =wCl3m+ _ _em+ _ -_-AFfi _Ffm bi + Z-M - _nm Qn
m _ .1

_ Define en _em + _ A Ffn _ = _nm II-5.gO

_mn is a constant for each eomblnation of m and n and is zero unless

both m _nd n represent bending modes.

then

{" -}N --
thenfrom II-5.19

--R= ..-W-(_ )_+--_--_+ va +m yn _TWmWu + Wmgl2n + win-M- Xn+Wn _3m

+ U_mn + _ T II-5.EI

{%I=_Jm} -'_+ [P]_nl II-5._-2 -

where

Jm = _ (Vm +fp win) + -_-- II-5.a3

#

i , ,,,_
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P_n= v,. a_ + PT_,_n_' + ";az. + "m -y--xTGn+ w_:_ + a_mn + -W-TGn¢_-" n

II-5.2k

II-6 DYNAMIC EQUATIONB IN GENERALIZED COORDINATES

Combinin_ the results of sections II-2, Ii-_ and II-5, the dynamic

equations representing the motion of the displaced or perturbed missile can be

written in terms of generalized coordinates.

II-6.1 AXI____ACCEI_ION ERUATION

The axial acceleration slong the nominal flight path and along the 1

axes are given by equations II-2.19 and II-2.2_ as

Qa= °+ )sJ_(o+%) +Vegec,(,_+%) --cos_ + slnO

- g cos y

_o " Px= -vcg(.;+ )s_% +vcgcos% - Z _ - co.e g cosrP

For small angles and dropp_ non-linear terms these accelerations become

mo • P

x
_Q_=vcg= L._- gcosr

P

. P

Za = "! = -_-- g cos r
x cg p

from equation II-5.5

eo •

_= ax = Vcg = _.x " g cos y = a constant II-6.1

Therefore for the linear system under consideration the acceleration along

the nominal flight path is equal to the acceleration along the _ axis which

is a constant.

"_ II-6.2 NORMAL ACCELERATION _U_ION

The normal accelerations perpendicular to the nominal flight path

and perpendleulaz to the I axis are give11 by equations II-2.20 and II-2.25

as i
t. I

i i
l
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_ .... P

-Vcs(O ao . __x%= + )COS(@+ _01 - Vcg sin(@ + (_o1 = cos @ _ 2" sin @_ Pp M p M

5(; &
ay = -Vg + o) cos e° - Vcg sln_o= _ M-_ _ sin e g cos r

For small angles and clroppin_ non-linear terms, where V is a constant,
cg

these accelerations become

.. . P P

QL = - Vcg(@ + %) " Vc6 (@ + %) ffi _ y " @ _M _ MP

• . P

from II-5.5 and II-5.6

P

g ---if-= 13x
P

-- -Z- U
P M =M cz+ T

-- N

QL= -Vcg(@+_)- Vcg(@+_o) =--_--Cz-Cg .x +_yn_ T _Q_ II-6.2
• N

"Vcg(@' _O1--' u _(% {ayn_T tQnl II-6.3#a"-_ . -Vcga = a- @g cosr+

These equations show that the acceleA-a_ions normal to the nominal

flight path and normal to the _ axis are. not equal in the linear

system but

oe •

= % + @ Vcg ,,%_ + ax O II-6.h%

In addition eqvation II-6.2 shows that the velocity of the system

center of gravity normal to the nominal flight path is given by -,

QL = "Vcg (@ + Uo) II-6.5

1966001467-072
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By equations II-6.2 and II-6.3 the normal accelerations can be expressed in

terms of either _o or _ aud the remaining coordinates, where _ is the angle

of attack of the UEA and (_o is the angle of attack of the _ axis, therefore

°= f o!,
Since _ is the more convenient variable, Cx° is replaced by ((%-w)in

equations II-6.2' and II-6.3. In addition V is replaced by the constant
cg

ax = Ox " g cos _. Then in terms of the LaPlace operator, s, these

equations become

=-(VcgS+ a )(_+a)+ s+x (Vcg ax) _ =-_ a -_x + _ "
ii-6.7

ay=-Vce.,-(VcgS+ ax)_+ (VcgS+ ax) • = _ " _g co.r

+Cayn} T {_ II-6.8

Usir_ either equation II-6.7 or II-6.8 the dynamic equation in terms of the

variable _ is

(VcgS _ N ax)C_+ (Vcgs g cos _)@+ {ay n (VcgS + ax) Wn)T {Qn1
. -W-+ - - =0

II-6.9 ____

Since it is con_enlent to know the normal acceleration in the system_ it is
u_

desirable to retain either QL or ay and convert either equation I!-6.7 or
II-6.8 into two equations retaining (_ as a dependent variable. In the

previous analysis of reference i_ ay _he acceleration along the _ axis was

• used. Eowever_ in this present analysis QL_ the acceleration normal to the

! nominal trajectory, will be retained. Equation II-6.7 then become_

,

1
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i Equation II-6_lO is the so called normal force equation and II-6.11 is

the normal acceleration equation. The normal force equation can theo be
!

written as

I (VcgS + ax)a 4- + (VcgS + ax) @ - s T " T = 0 II-6.12

where N = V w
i vn cg n

N = a w
an x n

'_| The normal acceleration equation can be written as

:I _ = o Iz-6.13

! .
i II-6.3 MOMENT EQUATION

The moment equation ll-Z.21 is

1 d--K-d(I@) = o _p[PyXp - Pxyp]

For small angles and a linear system

-- "-7- _ Pyxp

! From equation II-5.1'[

:r " (4e = "_aa -I T

!I in terms of the LaPlace operator the moment equation becomes
_E

!i _n} (Qnl "0 II-6.1__i _ua+ s2e + T

_!: II-6._ MODAL EQUATIONS
4

From equation II-4._S the modal equations can be written as h

I

i
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From equation II-5.21

Finmlly the modal equations become

II-6.5 SDI_ARY OF EQU_IONS

The dynamic equations derived for a missile configuration con-

sid2ring flexible body_ sloshing_ and engine dynamics are:

Axial Acceleration equation II-6.1
o

Vcg = ax = 8x " g cos r II-6.16

Normal Force E_uation II-6.1Z

(Vcgs + a) a+ + (VcgS+ ax) @ - s - ,,0 IZ-6.17

Normal Acceleration E_uation II-6.1_

- _a + QL + _x _ " T =, 0 II-6.18 ,

Normal Equation II-6.1_

_uu+ s2@+ _n} T (_ = 0 II-6.19

Modal E_uations II,6.15_

where n has values from 1 thru N

As pointed out in section II-_, the system has N + 3 degrees of

freedom. The motion of the system is described by the above N + _ equations

in the N + _ variables {xI axJ @s QL and N values of Qn" However I the variable

HI ii H i
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.e

: _ can be expressed as a linear combination of QL' @ and the Qn's by

equation II-6.18, therefore, G is a dependent variable and is retained along

with equation II-6.18 as a matter of convenience as liscussed in section

II-6.2. The N + 3 coordinates which define the motion of the llneary system
• ee

are then Vcg, QL' @ and..the N values of Qn" For the linear system the degree

of freedom defined by QH = Vcg = ax = constant, equation II-6.16, Is un-
coupled from the other coordinates and consists of a constant acceleration

along the _ axis. Since the force along the QH axes is constant, it is

independent of QH and _ and there are no spr._.ngor dampin& forces along

i' the axes and the value of QH ..andQH.at time t are arbitrary. The constant,

} ax,.has been substituted for QH or Vcg and Veg has been arbitrarily assigned

to QH in the normal force equation II-6.17, therefor% the axial translational

mode of motion has been eJ.i_linatedfrom the system of equations. Elimination

of equation II-6.16 reduces the system to N + 2 degrees of freedom equivalent

to defining the missile motion _th respect to a set of axis translating

along the _ axes with velocity V . The L inertial axes is then coincident
cg

with the P axes and the coordinate QH is zero.

II-7 MISSILE DYNAMICS IN GENERALIZED COORDINATES

The dynamic equations given in section II-6 together with an engine

hydraulic equations and an instrument equation_ are the data required for the

missile dynamics _lock of figure I.-2 . The missile dynamics represents the

transfer ft_uction from delta command, 8c, to the F_yro outputs, @p and @R"

Figure II-7.1 contains a block diagram showing the effective flow of the data

in the dynamic equations, it is assumed that in a system containing P gimbsAled
L

engines, the command signals for each engine or group of engines may be different.

The engine hydraulic equations which give the engine actuator position 5as

corresponding to a given delta cow,stud, can be of any form but will usually

appear in the form

+ z2) + (z3s + + = o rT-?.l 'c

requiring a feedback of engine positions 8 •
e

1966001467-076
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, The engine actuator position, and the angle of attack feedback drive the:

! modal equations 11-.6.15producing the moda_ coordinates Qn" These coordinates

i in turn drive the normal acceleration and moment equations together withthe equation

w= I w Qnn n

to produce the rigid body rotation of the I - J axes, @, the rigid body

rotation of the UEA with respect to the T - _ axes3 w_ and the angle of

attack 5. In addition the engine defl=ctions are fedback to the engine

hydraulic equations and the bending coordinates are comblne_ with the

bending data to produce the bendiz_ slopes at each gyro location. These

bending slopes are combined with the rigid body rotations to produce the

gyro signals,

@p = @ - w -Fp

. @RI --@ " w "_RI 11-7.2

@PSI = @ " w -FRII l

@R = @RI + aR @RII

It is assumed that one position and two rate gyros are used and the

net rate signal is a ratioed sum of the two rate gyros.

That portion of the system matrix representing missile dynamics is
l

_, shown in Figure II-7._. The first row of the matrix represents the normal

_' force equation II-6.12. The second row Is the normal acceleration equation

II-6.13, and the third row is the moment equation II-6o14. The next N rows

are the N modal equations II-6.15. The system shown Is assumed to have three

glmballed engines, therefore, columns 11, 12, and IS re_resent the three

engine actuator positions. Row 11 and column 14 _ntorduce the rigid body

rotation with respect to the _ - J axes were
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The next four r_'_sa_& columns introduce the inst_ment equations II-7.2

while the last three rows represent the eng_ine hydraalic equations II-7.1.

For the system shown it is assu_ed that a single command signal, column 19

controiL_ the actuators of the first _;w'o_imballed engines and the third

engine is restraine_ b_ making its _ommand signal, zero.

The input to the _Lissile dynamics is 5 of column 19 while thec

output is the _vro signals o£ columns 15 and 18. The syetem matrix is

co_le_ed by adding rows and columns representing the autopilot vhich operltes

on the gyro signals to produce the comman_ signal.

The matrix re_resenting missile d_na_cs, as shown in Figure II-7.2,

have a number of columas one greater than the number of rows. Adding

an additional row to the matriy,by p±acing unity in the delta command column,

5 c , rill _ake the input 5 c zero and the output arbitrary. The values of s

which make the determinant of the resulting square matrix zero represent

the natural frequencies of the miss_le dynamic system, and are the open

loop poles of the system due to missile dynamics. The eigenvector associated

with each pole or natural frequency represents the mo_.e s.hs_e for that l_ole

or frequency expressed as a linear combination o£ the lnp,_t Nodes.
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iIi-i COMBINED MODE REPRESENTATION

In Section II the dynamic equations were derived for a missile

configuration consideri._ flexible oody, slosnir_, sad engine d_namics.

These equations of motion are.

Normal Forc: Equation

I] }()(%1= O III-l.l

" 'Q " Nan T(VcgS + ax)_ . % + (VcgS + ax)@ s Nvn T [ n

Normal Accelerat.on Equation

_ ('ol(%>o ,,,_
Moment Equation

_o°"_°_(_:I•(%1=0 _'_'
_bdu_ Equations

where n has v_lues from 1 through N.

As noted in Section Iio6.5, the system has N+Z degrees of freedom

with respect to a translating set .)f inertial axes. The motion of the sya-

tern is descrised by the above N+ 3 equations in the variables 5, @, % and

the N values of Q_, where _ and Equation III-I.Z are a dependent variable

and equation. The variables @, s_td the %'s are generalized coordinates

and _ is a function of @, the %'s sad the rate of change of the generalized

coordinate QL"

The generalized coo.':dinate % is the displ_cement of the missile

center of graivty normal to the nominal flight path. The generalized co- -

ordinate @ I_' the rotation of the body axes, i-J, and the N coordinates,
m

Qn define the motion of the missile w._th respect to the i-J axes. The

displacement of the center of gravity alon_ the nominal fli_t path has

ii i ii
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been eliminated from the equations by assuming the reference axes to be

translating along the flight path at a velocity Vcg.

For each o£ the N coordinates Qn there is a so-called input mode

as defined in Section II-4. Each input mode is the amplitude of motion

_'esulting when the corres1_nding coordinate Qn has an amplitude of unity

and all other coordinates are zero. The input modes when Qn represents an

engine deflection, a sloshing deflection, and a bending deflection are shown

in Figure III-l. The input engine modes are normalized to an engine de-

flection of 1 radian and the motion consJsts of a rigid body translation,

Ve, and a rigid body rotation, _e' of the UEA. The input slosh modes are

normalized to a slosh mass deflection of 1 foot and the motion consists of

a rigid bo_y translation, v j, and a rigid bo_y rotation, wj, of the UEA.
The input bending modes are normalized to a mass equal to the total mass of

• he missile for motion with respect to the UEA. The rigid body translation

v i is zero and the rigid body rotation, wl, exists only when inertia correc-

tions have been made. Since a bending coordinate, hi, of unity represents

motion equivalent to a normal mode, b I is measured at the point where the

deflection is uuity. The nods/ deflections and slopes are in ft. per ft.

and radians per ft. since b i is in feet.

As noted in Section II-4 the _des defined as input modes are not

true modes of the system since each can only exist if all other coordinates

are held fixed. However, since the system is liu_,r, superposition is valid

and any free or driven motion of the system is a linear combination of the

motions associated with the input modes and may be defined in terms of nor-

real coordinates which are a linear combination of the input coordin&_es _.

It was also noted I_ Section II-7 that the modes of oscillation associated

with the open loop natural frequencies or pole8 are a linear combination of

the input modes. Likewise_ the modes of oscillation associated with the

clo._edloop natural frequencies or roots of the complete autopilot configura-

tion are a linear combination of the input modes. Therefore_ the motion

associated with the closed loop roots is a linear cc_binatlon of the motion

associated with the open loop poles: From the above it can oe seen that
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4

the modes for _he closed loop roots, or the final motion of the system can

be expressed in terms of a linear combination of any set of modes and their

coordinates which are in turn a linear combination of the input modes. _ese

new modes will be referred to in Chis analysis as "combined modes." It may

be seen that the modes corresponding to the open loop poles of the system

are in effect combined modes each with a normal coordinate which is a linear

comblnatic:, of the input coordinates %. _e final motion of the system

corresponding tc the closed loop roots may then be expressed in terms of a

linear combination of these normal coordinates°

Combined mode representation in con-ection with missile d_namlc

equations consists of defining a set of orthogonal modes in terms of a linear

• combination of the so-called input modes defined in Section II-_ and shown

in Figure III-i. Replacing the input modes by this set of orthogonal combined

modes produces s set of missile dynsm_ic equaitbns in a form which is independ-

ent of missile configuration with regard to propellant tank and engine arrange-

ment. By using this representation the final stability equations retain the

/ same form regardless of the missile system confiKuratlon. Also, as noted in

Section II-3.2, the hiKhest input bending frequency should be above %,he high-

: est engine or slosh mode frequency in order to reduce truncation errors due

to the use of a finite number of bending modes. This criterian usually re-

sults in the use of from three to five bend_.n6 modes. The use uf add/tional

modes increases the size of the system matrix and requires addltonal computer

time to obtain the solutions. With the use of combined mode representation,

a larger number of bending modes may be used in the calculation o1" the _m-

bined modes and the dropping of the higher frequency orthogonal combined modes

from the syste_ equations will tend to reduce truncation errors.

III-2 SELECTION OF COMBINED MDDES

_ In Sect_.en III-i the principle of superpo_itlon in a linear system

was used to show that the motion of the missile may be des-.ribed in Ð"X/Ä�|�of

a linear combination of a set of combined modes and the dynamic equ_ons can

be expressed in terms of their normal coordinates which iv turn are a linear

comb_nation of the coordinates Qn" Let the normal coordinates of the combined

"
?

,, • i i i IH ii i i i
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i modes be represented by qa' a equals 1 tnrough N. Combined mode representation

consists of making a linear coordinate transformation from the generalized, co-

_ oz_inates Qn to the normal coordinates qa and defining the motion in terms of

+ the combined modes instead of the input modes. Considering the modal equation

represented by lll-l._,

! s B +s D + A = k + (_+ P

4

i The left side of the equation is a function of only the Qn'S and

when equated to zero represents a eigenvalue problem, the solution of which

gives the natural frequencies and mode shapes for the system when the actuator

I position, aerodynamic forces, and thrust forces are zero. The right side of

" the equation then represents the driving forces for these new combined modes.

The matrix IP1_Irepresents the spring forces resulting from engine thrust

A

$

'_ and is also only a function of the Qn's. This term may be transferred to the

left side of the equation and the combined modes then become the undriven

It damped modes with engine thrust forces present. Likewise, the aerodynamic

 orces be   ctlonsofthe%'sonl  ing uationsm-ll,
III-1.2, and III-1.3 to express _ as a function of Qn'S. Transferring this

term to the left side of the equation will result in combined modes for un-

driven, damped modes with _ngine thrust and aerodynamic forces present. The

only driving force remaining on the right side is [k]_Sam_due to engine
actuator positions. These mode shapes and frequencies require only the

addition of the engine hydraulic equation to yield the system open loop poles

and associated mode shapes. Calculation of the combined modes with the loop

opened in this manner would require a considerable expenditure of computer

time approaching thmt required to obtain open loop poles. The use of combined

modes is only Justified if the modes can be obtained quickly wi a small ex-

penditure of computer time. This crlterian requires that the aerodynamic forces

_Jml (_ and the thrust spring forces [PI_Qn_ remain on the right side of Equa-
k--/

tion III-l._ as driving forces. In addition, the damping forces represented •

by s [DifQntmake the coustants which express the combined modes as a linear
r

P

+

___..__ i --.-
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combination of the input modes, complex numbers which greatly increases the

required computer time. The more suitable form of Equation III-1.4 for com-

bined mode calculations is then

s2 [B]_I + [A]{_I = -s .[D](_+ [k](5_ + _Jml _+ [P](_} III-2.1

In this form the homogeneous equation

' [iI,,ls B + A = 0 III-2.2 .=

may be solved by the AX =IBX computer subroutine (Reference O). This

subr°utine is extremely fast but requires that the[AIv, and [B! matrix be

syunetric and that the [B] matrix be positive and definite. The solution of

Equation III-2.2 will give the undamped natural frequencies of the system when

the actuator positions, the aerodynamic forces, anS the thrust forces are all
o _

zero. The [P] matrix representing the thrust spring forces cannot be placed

on the left side of the equation since it is not a symmetric matrix. In the

[,previous analysis, Reference 1, the symmetric components of the PJmatrix

were placed on the left side and included in the combined modes; however, for

thi_ analysis all of the effects of the thrust forces are considered driving

forces.

III-3 COORDINATE TRANSFOH_ATION

Solution of Equation III-2.2 will restLlt in N values of 82 where

2 ._2 _ I Where:s = and N associated eigenvectors ena .
th

._a = natural frequency of the a combined mode

{e } = a columnmatrix of the values of {Qnlobtained from III-2.2na 2 2
when

S _ "_a '

Then e is the amount of q_ present in the ath combined mode. The eigenvectors

°"en obtained from the sut.routlne are normalized such that

{e } [B_{e al = i III-3.I• T n

IW

5

I
_ i ii i
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_, and since the modes are orthogonal

Let

<:n4
.hen IE_ is _ N x, square matrix, the columns of which are t,e eigenvectors

t J

: found in the solution of Equation 111-2.2. This [E]matrix is defined as the

normalized modal matrix of Equation III-2.2 From III-3.1, III-3.2, and

III-3.3

Since the values of B and A in Equation III-2.2 are the masses and

': spring constants divided by the total mass of the system, Equations III-3.1

and III-3._ are equivalent to normalizing the combined modes to a mass equal

{ a} is the solution of III-2 2 when s2 Q2to the total mass. Since en " : " a

[A](ena} :Q2a [B]lena} from which [A][E] = [B][E]I._2] 111-3.5

wher4d_l is a diagonal matrix of the values of_ , premultiplying
7

' [],._[1[] rr] ][][_]
.. using III-3.4

_ th
Since e is the amount of Qn present in the a combined mode and qa is the

na th
amount of the a combined mode present,

,,,,:__o,,q...{ot,,_,,o,[_.i}f_,a}
i

tLen !

J
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Substituting this coordinate transl_ormation into Equation III-l._

s2 [B:iE'(qal + [A]IEl_qa? = "s [DilEi_qa_ + [k;{Sa_} + {Jm} C_+ IP][El_qai

S2 [E;T [B][E]{q,_ + [E]T [A![E]<q_---s fElT [Dl[E]_qa_ + [E]T [k](Sam_

i'romI!I-Z.6 a_d 111-2.8

,." where

normal coor0_nates where Dab is I/M times the damping force associated

with the qa coordinate due to unit velocity of the qb coordinate.

where kab is I/M times the driving force for the ath combined mode due to

unit deflection of the bth engine actuator.

-' where Jca is I/M times the driving force for the _h combined mode due

to a unit angle of attack.

?I /
i'

{ :
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th

where Pab is I/M times the thrust spring force associated w!th the a
normal coordinate due to unit deflection of the bth normal coordinate.

' Then the modal equation in normal coordinates becomes

(

lll-i DYNAMIC EQUATIONS IN NORMAL COORDINATES

!. Substituting the coordinate transformation {Qn_ = [El _qa_into the normal

I force equation III-i.iq

or

- = 0 III-4.1

(Vcg s + ax)_ + QL + (Vcg s + ax)@ - s cv T c T

| where

{Ncvj = [E]T (Nvn1 III-4.2

_Ncaa_ =[EJT (NanI IlI-_.3

The normal acceleration equation IIl-l.2 becomes

-,-r-a-_Q,+13x@- E --0
T

_ N ..

(X _ aI _al = 0 III-4.4" _"- °_+ QL+ _x 9 " c
T _

F,

" where

• _yca_ = [E]T (ayn} III-4.5

The moment equation III-1.3 becomes:

f

i,

• ,,_,

m mm mm m m m | i |_m i _ ii • mm mm mm
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_g + s2e + E 0
T

_U + s8@ + c T

where

the modal equation .s given by III-3.13.

III-5 OOBI_IED MODES

The combined modes selected in Section III-2 are defined by the
r

solutions to Equation III-2.2

The resulting N values °f ha and the c°rresp°nding N eigenvect°rs _na_
_ represent the N combined mode frequencies and mode shapes. The order of

numbering the combined modes is arbitrary and is a function of the manner

_ in which the root3 of Equation III-2.2 are mr_bered. Since the equation

is to be solved by means of the AX =_BX computer subroutine, it is con-

venient to order the roots and therefore the combined modes inthe order

which the computer subroutine finds the roots. This process is not arbitrary

since in a loosely coupled system the routine tends to find roots in an order

correspondin6 to the frequencies represented by the data along the main

diagonals of the A and B matrices. As a result, the first combined mode

will usually have a frequency close to the first input engine frequency and

will contain the largest first engine amplitude. Like_ise_ the second com-

bined mode will. have a frequency close _o and contain 1,arge second engine

am_litudes t eta,. Th_s correspondence between the input sod- _ frequencies and

the combined mode frequencies has resulted in a tendency to name the combined

in the same order ms the input modes_ first engine mode_ first slosh mode,

second slosh mode s etc. However_ it should be noteO that this correspondence

of input and output frequencies m_y not hold for tightly coupled modes such as

two slosh or engine modes with input freq'_¢eaeles close together. In fact,

t
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a rerun of the program with slight changes in parameters may cause two such

! modes to exchange position in the output. This process has no effect upon

the equations or their solutions once the combined modes e.renumbered but

does lead to some confusion if the combined modes are as_c:iated with a

correspondlng input mode.

(e a_ is the solution [As noted in Section IIl-3, the eigenvector n

to Equation III-2.2 when s2 = -_2a Therefore_ e is the amolmt of Qn
th na

present inthe a combinedmodej and letting_Qn_ equal _ a_definesth n
the a c,_nblned mode.

From Equation III-3.3

[E] "--[.en_ _n2_ (en31 .... (ena_ " " _ fenNil't.j
and -- - _.],

T

[E]T= _en2_Tt

 eual

the a column of the modal matrix E gives the composition of the aLJ th
combined mojle in terms of the normalized input modes. Likewise, the a

th
row of i-_m also gives the composition of the a combined mode.

It was noted in Section II-3.2 that the deflections and slopes of i
u.

an input bending mode could be multiplied by -1 thereby definin6 a n_w input

bending mode and shifting the phase of the finial bi by 180 deg:_ee. In

order to be consistent, m positive input bending mode was _fined as that

phase of the mode which results in a positive defle-tir'a at the aft end of

the missile. Likewise, the positlve input engine and _iosh modes _ere d_-

fined in Section III-i Figure III-i as that phase of the motion resulting

- from positive engine end slosh deflections. Since ena is the amount _f the

nth input mode preseLt in the ath combined mode, a value of ena o[ +.7 for

1 example indicates that the mode shape of the ath combined mode contains . 7

,_.

,i i ii iiii |11 iiiii, ._ "
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times the aormal nth input mode. Defining the opposite phase of the input

mode would 1_suit in an e of -,7 and the resulting combined mode would bena

the same, Therefore, it may be seen tnat the definition of a positive phase

for the input modes is not required in order _o determine the combined modes

or to perform a s_aoiii_y analysis but has been done in order to provide a

consistent basis upon which to compare the pahse relationship between the

input modes for different missile configurations or for different times of
th

flight. It may also be seen that the phase of the a combined mode and

therefore the phase of q_ can be changed by 180 degrees if the ath column

[ ,[jof EJ or the ath row o E T Is multiplied by a factor of -i.O. It is then

desirable to define a positive phase of the combined modes or in effect a

positive phase of each qa" Since the engine actuator positions represent

the external driving forces for the d_namic equations, and the first inputed

engine is usually the main control engine, the deflection of the first input

engine provides a c_avenient common reference for the combined modes. The

positive phase of each combined mode is then taken as that phase for which

the first engine deflection is positive. This phase relationship is
d- q

by plus or minus unity such that all of the elements of the first row of
th

the matrix are poeitive numbers. The a combined mode then represents

the motion with respect to the i-j axes when the normal coordinate qa is

equal to + io0.

Referring to Figure III-5.1

3

ca
?

"/

.: FiNe III-5.1
F
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The deflection of the a combined mode at station is

,4
= V + I I W + u _ III-5.1

c_ a ca 12 ca c_ a

The total slope of the aTM combined mode at station _ is

! !

= w + u III-5.Z

_c_a ca c/a

th _The bending slope of the a combined mode at station is

= W + fCko_ _ _ __ i_-5.3
From Equation Iio4.8

v= _VmlT _Qnl

_o_:_ol__o _-_-_
o_ {Vc_l_[_]_{Vm} I_
From Equation II-4.18

O<Wm__o_ _Wca T n

o_ (_c__]_lw_ _-_
from II-3.6

u_ = i_ _i bi --_'_ n_T _Qn} III-5.8

U_ i i bl n T III-5.9

:' _ :[ A_ui :(X iii-5.1o" i T

"i
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= III-5.12Uc a T n

Equations Iii-5.1, III-5.2, and III-5.3 become

= + n III-5.14
_c_a m wln+ _ T

- = + III-5.15c_a n
T

_c_a ={wm + _n! T <_nat III-5.16

where m = n.

From Figure III-5.1 and the above equations it may be seen that

where the input bending modes are the natural frequencies and mode shapes

for the system with engines and sloshing masses locked to th= Oeam, the

combined modes are the natural frequencies and mod_ shapes for the same

system with the engines and sloshing masses free and restrained by their

respective springs and inertia corrections are applied to the beam.

The magnitude of the engine deflections and sloshing deflections

associated with each combined mode can be obtained from the modal matrix

[E] = [e a]Slnceen na is aamplitude °f the nth generalized c°°rdlnate

in the ath combined mode.

In combined mode repreP,entation the motion of the system is

described in terms of the normal _.ombinedmode coordinates qa' However,

a feedback of engine deflections is required for the engine hydraulic

equations, therefore, each engine deflection must be expressed in terms of

the normal coordinates qa" From Equation III-3.7

!

&

i
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8e = row of

Defining the th row of [Ej e 111-5.17

then

111-6 MISSILE DYNAMICS IN NORMAL COORDINATES

In Section II-2, the dynamic equations were derived for a system

of masses in terms of the translational motion of the system center of

gravity, the rotation of a set of _ - j bod_ axes, and the motion of the

masses with respect to the i - J body a_.es. The system of masses was

defined in terms of a missile configuration in section II-3, and the motion

with respect to the i - j axes was derived in section 11-4 in terms of a
r

set of N generalized coordinates, Qn" The generalize'/ coordinates used where ___

those for which the motion was statically uncottpled. Missile _vuemics in

terms of these generalized coordinates is preeented in section _1-7.

The motion of the system with respect to the [ - S axes has bce_

redefined in section III in terms of the normal modes of the undamped,

undriven system and the associate4 normal coordinates. The dynamic equations

for the system transformed into normal coordinates are given in section 111-4.

These equations together with an engine hydraulic equation and an instru,_ent

equation are the data required for the missile dynamics block of Figure I - 2.

The missile dynamics represents the transfer function from delta command,

8c, to the gyro outputs, @p and @R" Figure III-6.1 contains a block 4tiagram

showing the effective flow of the data in the d_namic equations in normal

coordinates. It is assumed that in a system containing P gimballed engines,

the command signals for each engine or group of engines ma_ be different, r

The engine hydraulic equations will again be of the form of equation II-7.1

requiring a feedback of engine posi_ons 5e. The engine actuator positions

together with the sng2.e of attack feedback drive the modal equations III-3.13

producing the normal coordinates qa" These coordinates in turn drive the

t
o

m
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i normal force, normal acceleration and moment equations to produce the rigid

,_ body rotation of the i - j axes, @, and the angle of attack _. In addition

! the normal coordinates operate with equation III-5.18 to produce the engine

! deflection to be fedback to the engine hydraulic equations and are combined

with the combined mode bending data to produce the bending slopes at each

gyro location. These bending slopes are combined with the rigid _ody ro-

i tations to produce the gyro signals. Since the rigid body rotation due to

._ motion with respect to the i - 5 axes, w, is included in the combined mode

slope& this term does not appear in the instrument equations when in normal

i coordiaates_ Equations II-7.2 then become

i @RI= @ "_'RI

@RII= @ "_/RII III-6.1

i @R = @RI + aR @RII

_ That portion of the system matrix representi_ missile dynamics in

normal coordinates is shown in Figure III-6.2. The first row of the matrix

_. represents the normal force equation III-4.1. The second row is the normal

acceleration equation III-_.4, and the third row is the moment equation

{ III-4.6. The next N rows are the N modal equations III-3.13. The system

_ shown is assumed to have three gimoalled engines, therefore, columns II, J_

,_ and 13 and rows ii, 12 and 13 represent the engine angles found from

ii equation III-5.18 while columns 14, 15 and 16 represent the three engine

!_ actuators. The next four rows and columns introduce the instrument equa-

_i tions 111-6.1 while the last three ro4s represent the engine hydraulic _-

il equations 11-7.1. For the system shown it is assumed that a single command
,_ signal, column 21, controls the actuators of the first two gimballed engines

and the third engine is restrained by making its command signal zero. t

The input to the missile dynamics is 5 of column 21 while the i
c

output is the gyro signals of columns 17 and 20. The system matrix is completed

by adding rows and col_mms representing the autopilot which operates on

' the gyro signals to produce the command signal.

I __ I IIliD -- I If" , ,,,, , , am IIID ili
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The matrix representing missile dyna_,ics, as shown in figure

III-6.2, will have a number of columns one greater than the number of

rows. Adding an additional row to the matrix by placing unity in the

delta command column, 8c, wlll make the input 8c zero and the output

arbitrary. The values of s which make the determinate of the zesultlng

square matrix zero represent the natural frequencies of the missile

dynamic system, and are the open loop poles of the system due to missile

dynamics, the eigenvectors associated with each pole or natural frequencies

represents the mode shape for that pole or frequency e_ressed as a linear

combination of the comblne_ modes.

{

i I,
w
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GLOSSARY

th
a - subscript denoting a combined mode

a - coefficient used in combining rate gyro outputsr

n - acceleration of c.g. along i axisx

a - acceleration of c.g.alorlg J axis
Y

' b - subscript denoting bending

. bi - generalized tending coordiante for ith bending
mode

c - subscript denoting combined mode data
th

e - subscript denoting e gimballed engine

f - subscript denoting f_n fixed engine

g ..acceleration of gravity

i h - subscript referring to the UEA

i i - subscript denoting ith bending mode.

i - rotating reference axis

', J - subscript denoting jth sloshing massi

"i J - rotating reference axis

i k - subscript denoting kth inertia correction

kI - fluid inertia correction factor

ki - equivalent bending spring constant

kj - slosh spring constant

_k_ - spring matrix

: _Ge " distance from gimoal to center of gravity of eth gimbmlled eng_=e

_p - distance from c.g. to center of pressure

m - subscript denoting mTM generalized coordinate

mf - total fluid mass in tank

_ mj - equivalent slosh mass •-n - subscript denoting n_ generalized coordinate

p - subscript denoting pth gimballed engine

._ qa - normal coordinate for ath combined mode

_, r - radius of gyration of element of mass dm !
_ r - subscript denoting rth slosh mass

,i s - LaPlace operator
i

t - time

t - subscript denoting tth bending mode

' I
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(Cont 'd) GLOSSARY

u - translational deflection of beam element at xh due to elastlc
deformation

u' - total slope at xh due to elastic deformation

v - displacement of UEA along J axis

w - rotation of UEA in i-J plane

x - coordinate slong _ axis

y - coordinate along J a_-is

z - coordinate on eth gimballed evgine measured aft from gimbale

[A] - normalized spring matrix

EB3 - normalized masu m_trix

D - total aerodynamic drag

[D] - dam_1_ng matrix

th engine (ft-lbs per radian)DGe - gimbal damping for •

D - damping for jth slosh mass (ibs. per ft/sec.)

sJ i_
"- Dbi - damping J bending mode (ibe. per ft./see. )

E - subscript denoting a point on & gia_SAed e_ine

Y - number of fixed engines

F - subscript denoting a fixed engine

FD - dissipation function

H - inertial axis

I - mass moment of inertia of system abou% its c.g.

IGe - mass moment of inertia of eth engine about its gim_l point

_] - matrix representing aerodynamic forces

K - number of inertia corrections

K - spring constant for eth engineae

L - inertial axis

- length of fluid tank

M - total mass of system

Mi - normilized mass of ith bending mode

MGe - ma,s or eth _m_11ed e_ne

Mse - moment at gim_ll for •th gimbe/led engine

N - number of degrees of freed_n with respect to _-_ ames

1966001467-103
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(Cont'd) GLOSSARY

N_ = normal force coefficient (ibs per radlm,)

B_PD- distributed normal force coefficient

N - normal force due to nth coordiante as a result of the velocity
vn th
N - normal force due to n coordiante as a _sult of aerodynamics
an

P - axis parallel to L axi_ but translating with c.g.

P - number of gimballed engines
m •

P - external force when used with subscript
i

Q - generalized coordinate when used with subscript,

R - axis parallel to H axis but translating with c,,g.

R - number of fluid tanks rm

- fluid tank radius

• T - number of bending modes

TGe., thrust of •th gimballed engine)

TFf - thrust of fth fixed engine

_ TT - total thrust of all engines
T _ used as subscript to denote the treaspose oz a m_trix

" V - velocity of center of mass at time t
• cg

VG - _oten_ial energy due to gravitj
!

VF - internal potential energy

- angle of attack of UEA

_o - angle cf attack of i axis

8x - thrust constant TT - D

Y
- angle between local vertical and nomimai traJecto._y

8 - deflection of eth gim_.lied engine mm
e

- _osition of _c%u_tor on eth gimballed engineae

@ - rotetlon of _-J axis in inertial space

@p - l_Ositlon gyro angle ---

@R - rate gyro angle

Aea - engine angle of e th engine due to ath can_ined mode

_/_ - l_rtebation of V._
th_

frequency of a combined mode
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(Cont 'd) GLOSSARY

_'k2]- frequency matrix

_A. - rotation of mass element am with respect to the R axis

- rotation of ,masselement dm with r_..spectto the R axis

- rotation of mass element dm with respect to the UEA

"_rl - mementum

- Kinetic energy

AT - Inex_ciacorrecClon

- slosh amplitude in feet

- damping ratio

- modal deflection

_' - total modal slope

- modal bending slope

- input modal frequenc_r

_ - rotational acceleration per unit angle of attack

_ un - rotational acceleration per unit

C - real part of root

UEA - undeformed elastic axis
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