

```
SPACE TEGHOLOGY LSPORATORIES, INC.
OLE EDPCE PAPT
WMORDO BNCH, C!LIFORIL.
```

-ICOLL: DNIUHICS FOR STABTLITY ARMLYGIS

Wextancil - Derivation of Eguations

By: J. T. Palmer

ABSTRACT

This document covers the derivation of a set of linearized dynamic equations for use in missile stability analyses. The equations are presented in matrix form and represent the transfer function from engine command signal to gyro output signals. The derivation includes the effects of propellant sloshing, elastic deformation of the vehicle structure, and the dynamics of gimballed engines. The effects of fixed thrusting engines and the effects of inertia corrections to the bending data have also been considered. The vehicle structure is taken as a multi-branched beam under the influence of bending deflections, shear deflections, rotary inertia, and axial accelerations.

The results are presented in terms of a ser, of generalized coordinates representing rigid body motion, bending deflections, engine deflections, and slosh mass deflections. The equations are transformed into normal coordinates and the results are also presented in terms of a set of orthogonal combined modes.

Author

8414-6046-TU000

TABLE OF CONTENTS PAGE
I - 1 INTRODUCTION 1
I - 2 MISSILE STABIIITY 3
I - 3 SYSTEM MATRIX 8
II - 1 COORDINATE SISTEM 13
II-2.1 VELOCITIES 19
II-2.2 KINETIC ENERGY. 20
II-2.3 POTERNITAL ENERGY AND DISSIPATION FUNCTION 21
II-2.4 THE LAGRANGE EQUATIONS 22
II - 3 MISSILF CONFIGURATION 26
II-3.1 SLOSH REPRESENTATION 26
II -3.2 BENDING MODES 23
II-3.3 ENGINES 33
II-3.4 MASS MOMENT OF INERTIA 34
II-3.5 NOTATION 35
II - 4 MOTION WITH RESPECT TO $\bar{i}-\bar{j}$ AXES 38
II-4.1 DISPLACEMENT 39
II-4.2 KINETIC ENERGY WTITH RESPECT TO $\ddot{i}-\bar{j}$ AYES 45
II-4. 3 INTERNAL POTENTIAL MERGY 49
II-4.4 DISSIFATION FUNCI LII 52
II-4.5 INPUT FREQUENCIES 54
II - 5 EXTERNAL FORCES 56
II-5.1 FORCING FYNCTION FON AXIAL ACCELERATION EQUATION 59
II.5.2 FORCING FUNCTION FOR NORMAL ACCELERATION EQUATION 60
II-5.3 FORCING FUNCTICN FOR MOMENT EAUATION 60
TABLE OF CONTENTS PAGE
II-5.4 FORCTNG FUNCTION FOR $\mathrm{m}^{\text {th }}$ MODAL EQUATION 62
II-6 DYMAYIIC EQUATIONS IN GENERALIZED COORDINATES 65
II-6.1 AXIAL ACCELERATION ZUUATION 65
II-6.2 NORMAL ACCELERATION EQUATION 65
II-6.3 MOMENT EQUATION 68
II-6.4 MODAL EQUATIONS 68
II-6.5 SUMMARY OF EQUATIONS 69
II-7 MISSILE DYNAMICS IN GENERALIZFD COCRDDINATES 70
III-1 COMBINED MODE REPRESENTATION 75
III-2 SEIECTION OF COMBINED MODFS 78
III-3 COORDINATE TRANSFORMATION 80
III-4 DYNAMIC EQUATIONS IN NORMAL COORUINATES 33
III-5 COMBINED MODES 84
III-6 MISSILE DYNAMICS TN NORMAL COORDINATES 89

ILLUSTRATIONS

Figure Title Page
I-I ORTHOCOHAL MODE REFRESENTATIOIN 4
I-2 GENERAL CONTROL SYSTEM HLOCK DIAGRAM 9
II-1.1 ZNERTIAL C'OORDINATES 13
II-1. 2 TRANSLATING COORDINATES 14
II-1. 3 ROTAIING COORDINATES 15
II-3.1 FLUTD INERTIA CORPECIION FACTOR 28
II-3.2 TOTAL DEFLECTION DUE TO BENDING AND SHEAR 29
II-3. 3 DEFTECTION DUE TO $i^{\text {th }}$ MODE 30
II-4.1 DISPTACEMENTS WIIT RESPECT TC $\bar{i}-\bar{j}$ AXES 39
II-4.2 ENGGINE DISPLACIEMENTS 40
II-4. 3 EMTGINE ACTUATOR DISPLACFMENTS 50
II-5.1 EXTERNAL FORCES 56
II-7.I MISSIIE DYNAMINS IN GENERALIZED COORDINATES 71
II-7.2 SYSTEP MATKIX IN GENERALIZED COORDINATES 73
III-1.I INPUT MODESS 77
III-5.2 COMBINED MODES 86
III-6.1 MISSILE DYNAMICS IN NORMAL COORDINATES 9 C
III-6. 2 SYSTEM MATRIX IN NORMAL COORDINATES 92

3414-6046-1し() ?
Por:

I . 1 INTHODJCTIOM
This document covers the derivation and progranming of a set of linearized dynamce equations for use in missile stability analysis. Tre work presented here is essentially an expansion of the equations and digital computer program descrided in Reference 1 : Since the complete derivation is presented in detail, this document supersedes Reference l. Tne revision was undertaken in order ti incrase the flexibjlicy of the computer program with regard to the types of missiles to be studied and to incorporate changes in the nomenciature and data output found desirable as a result of the use of the previous progran. 'the major canges incorporated are as follows:
(i) Dendine dean devived for ulati-branenca beams may be used.
(0) The output, including punched cards for the system matrix, may je obtained in either generalized coordinates or normal coordinates (combined mode representation.)
(c) A plotting cption is provided so that either the input or the output modes may be machine plotted.
(d) Inertia corrections can be made at any of twenty loca+ions on the missile indcpendent of slosh tank location;
(e) Gyro slope data is punched in the system matrix and provisjon are made to mix the signals froin two rate gyro locations.
(f) Input bending data need not be normalized to total missile mass.
(g) Tue equations and the program have been arranged to accept a massless engine for use with seccndary injection type thrust vector control
(h) In order to utilize the ability to reduce truncation crrors with combined mode representation, the program has been arranged so that higher frequency combined modes may be dropped from the punched output
(i) Changes may be made in bending data which has been irtroduced into the program from column binary bending decks.
(J) Wher studying the effects of variations in damping or performing a limit cycle study using non-linear damping it is necessary to obtain output data for various values of damping. Since damping has no effect on the input or output modes, and is only untroduced during the calculations for the punched output, an option is provided to allow a number of output decks to be punched from a single run. This option provicies a series of output decks for various values of damping with a minimum of machine time.
(k) An option is also provided to punch out the eigenvector or modal matrix on cards for use in the root analysis program used in limit cycle studies.

This document has been issued in two volumes. Volume I covers the formulation of the dynamic equatiors and the system matrix. Volume II describes the programming of the equations for solution by 7090 digital computers and contains detailed instructions for the use of the program. Section I of volume I contains an introduction and a statement of the problem to be solved. In Section II the dynamic equations and system matrix are formuiated in generalized coordinates. These equations and system matrix are then transformed into normal coordinates in Section III.

The development or the equations in this document includes ail linear terms consistent with the following assumptions:
(a) All physical parameters of the missile such as mass, inertia, and thrust are considered constant. Although these parameters actually vary slowly witt time, such variations will have negligible effect on the short time missile response and stability.
(b) Input bending modes are determined for free-free end conditions with ensine and sloshing mass rigidity attached and include the effect.s of bending, shear deflections, rotary inertia and axial acceleration.
(c) Aerodynamic forces normal to the missile axis are assumed to be independent of the local structural bending slope and are considered to vary linearly with the angle of attack developed by the underformed elastic axis of the missiie.
(d) Aerodynamic forces along the missille axis are assumed to bs independent of local bending and angle of attack.
(e) The dynamic equations are developed for motions in the missile yaw plane, defined as a plane containing the missile velocity vector an: a perpondicular to the local vertical The trim conditions on α, θ, and ô will be zero in this plane. The equations are also applicable to the pitch plane if the trimmed
 lor a gravity zurn are rerisut'e. These conditions are usually appioached with the epproxinate gravity turns employed in practice.

I - ¿ MISSILE STABILITY

A^{+}any instant $0:$ ilight time, a missile in its nis": or trimmed condition may be considered \Rightarrow a system in dynamic equilibrs:". All external forces are steady forces in aquilibrium with inertia forces.. accordance wioh D'Alembert's principle, and the invernal kinetic and pote:*. . energies are constant. Under these condi.ions the missile is on $M^{\text {th }} \Leftrightarrow \because$ of freedom closed dynamic system and when displaces er perturbed fron $: .$. , nal or trimmed condition, the resulting motion with respes to the toma dition will be divergent for an unstable missile or will damp sut fere: "arie missile. A stable missile must be stable for the slightest displacemenis from the equilibrium position and a stability analysis is concerned with the stable and unstable tendencies of the sjstem at the equilibrium position. Therefore, the analysis may te based upon the assuraption of small displacements for which the effects of second and higher order terms may be neglected.

In the absence of external driving forces the motion of the system can be represented by M linearized homogeneous second order differential equations in M independent variables. When expressed in LaPlace notation these equations become M homogenecus licear algebraic equations in the M independent variables where the coefficients are linear combinations of the LaFlace opeiator, s, and s^{2}. In matrix form these equations may be written as

$$
[R]\left\{Q_{M}\right\}=0
$$

8414-5046-T1:000
 Fage 4

where the $M \times M$ coefficient matrix $[R]$ is a funciion of s and is referred to as the system matrix. The column matrix $\left\{Q_{\mathrm{m}}\right\}$ is a column of the independent generaiized coordinates of the system. The system matrix $[\mathrm{R}]$ can be written es

$$
[R]=\left[a^{2}[A]+s[B]+[C]\right]
$$

I-2.2
where $[A],[B],[C]$ are matrices of constants.

The system of dynamic equaڭions expressed in Laplace notation I-2.1 represents an eigenvalue problem which has 2 M eigenvalues or roots found by equating the determinant of $[R]$ to zero. The determinant of $[R]$ is a $2 M^{\text {th }}$ degree polynomial in s and when equated to zero may be written as the product of M quadratics

$$
T_{T}\left(s^{2}+A_{i} s+B_{i}\right)=0
$$

The roots may be real or complex. However, all complex roots apear in conjugate pairs and a plot of the roots in the s plane is symmetricul about the real axis. Corresponding to each eigenvalue or root, there is an acsociated eigenvector having M constant components. These components are the elements of the coll ${ }^{r}$ matrix $\left\{\alpha_{M}\right\}$ which satisfies equation I-2.l when the corresponding value of s is substituted in the $[R]$ matrix. The ratios of the components of the associated eigenvector then represents t.le ratios of the generalized variables present in the motion for that particular root.

The system hes 2 M roots each with an associatsd eigenvector to represent the relative motion associated with that rooi. However, as stated previously, the system has M degrees of freedom and, therefore, M natural modes of motion which are orthogonal to each other or completely uncoupled. Each of these orthogonal or uncoupled modes of motion can be represented dynamicaliy by a single degree of freedom system as shown in F-gure I-I.

Figure No. I-1
then

$$
z=e^{\sigma t}\left[A e^{\lambda t}+B e^{-i s t}\right] \quad I-2.5
$$

In the case of under-damped modes where the damping ratio is less than unity
$\lambda=j \omega$.
Substituting for λ reduces equation $I-2.5$ to

$$
z=e^{\sigma t}[a \cos \omega t-b \sin \omega t]
$$

Therefore, =ach complex pair of roots produces a single mode of oscillatory motiun defined in terms of the generalized variables by the components of the associated eigenvector. It should be noted that the negative frequency represented by -jw results from the mathematical possibilitf of negative rotation of the amplitude vector gecerating sinusoical functions. Since the components of the eigenvectors are complex numbers showing ooth amplitude and phase relationships between the g^neralized variables, the eigenvectors corresponding to a pair of conjugate rocts will be identical except that the signs of the imaginary parts will bs opposite. When the eigenvector is used to study the motion reaulting fiom a pair of complex roots the eigenvector corresponding to poeitive frequency should be used.

In the case of over-damped modes where the damping ratio is greater than un!ty λ is real, and equation $I-2.5$ can be written

$$
z=e^{\sigma t}[(A+B) \cosh \lambda t+(A-B) \sinh \lambda t] \quad I-2.7
$$

Therefore, each over-damped mode represents the inotion of two real. roots. The relative magnitudes of the generalized variables in the resultant motion can be described by a linear combination of the eigenvectors corresponding to the two roots. The only other type of mode which may occur is a damped mode for which the modal spring k is zero.

Then

$$
\begin{aligned}
\lambda & =\sigma \\
s & =0 \\
s & =2 \sigma
\end{aligned}
$$

and $\quad s=0$
equation I-2.5 reduces to

$$
z=A e^{2 \sigma t}+B \quad I-2.8
$$

Therefore, each mode of this type represents the motion corresponding to two roots one of which is at the origin. The motion corresponding to the root at the urigin is simply B equal to a constant, and since the motion has beea taken as the motion with respect to the nominal or trimmed. condition, this constant must be zero. It may be seen that in order for a root to appear at the origin, one of the equations of motion must contain s in all terms such that s may be divided out of the equation. Since the motion resulting from these roots is zero, this operation is justified, and the M equations of motion need not all be second degree in s in which case the number of roots may be less than $2 M$. However, the number of ortiogonal natural mudes of motion will always be M.

Any free or driven motion of tne system must be a linear combination of the M natural modes of motion. In any such combination representing the free motion of the system, the stable natural modes of motion will damp out in accordance with their damping ratios, reducing the motion to a combination of any unstable modes present. Therefore, a stability analysis of the system for any form of excitation reduces to the study of the stability
of each of the M natural modes of motion. A simple stable cr unstable type of analysis for an existing missile could be performea by formuiating the dynamic equations, obtaining the roots of the system maitix and noting the root locations in the 5 plane. However, such ar analysis does not lend itself to the determination of stability margine, the study of system morifications, the design of new systems, or limit cycle studies. A considerable reduction in somputer exjeense together with a greater in--ight into the physical aspects of t'le problem will result if the analysis is performed in a number of steps. In general these steps consist of the following:
(a) The free-free uncouplea bending modes and the rigid tank fluid sloshing parameters are cotained from separate computer programs.
(b) The bending and slosh data together with trajectory and engine data are intreduced intu a set of homogeneous dynamic equations represcnting the missile dynamics. These equations in LaFlace notation are expressed es a coefficient matrix where the coefficients are functions of the Laplace operator, s.
(c) The coefficient matrix expressing missile dynamics is then expanded to the system matrix by the addition of the autopilot and guidance parameters.
(d) The system matrix is used to perform a number of different types of stability studies. It mey be used to obt.ain the system roots and associated eigenvectors which in turn are used to iudicate the stability of each mode of motici or the amplitudes of iimit cycles. The system matrix is also used to obtain the poles and zeros of the npen loop transfer function of the system. These data are in turn used to obtain open loop frequency response generally used in bending and rigid body studies or they may be used to obtain closed loop root loci, generally used in fluid slogh studica.

3414-6046-9u90
Pase 8

The equations formulated in Volume I of this aocunent and the digital computer program descrioed in Volume II are used in performing the work ourlinel in step (b). The input data consists of the bending, slosin, trajectory, and engine data, while the output is tne missile dynamics coeffiriel:t matrix in the form of punched cards.

I - j SXSTEM MATRIX

A general block diagran for a missile control system is show in Flgure I-2. As noted in Section I-2, the system has M degrees of freedom and will have M natural modes of motion when θ_{c} is zero. Since the missile mass is considered as a distributed mass in the calculation of bending modes there are an infinite number of elastic modes. Likewise, integration over the totel fluid to ootain the equivalent slosh parameters produces an infinite number of fluid modes for each fluid tank. It is therefore necessary to limit the number of bending and slosh modes which may be incorporated into the analysis in order that M remain a finite number. The effects of limiting the number of bending and slosh modes considered is discussed in Section II and it is assumed here that M nas leen reduced to a finite number.

In Section I-2 it was assumed the dynamics of the system was expressed by M sccond order linear differential equations in M generalized independent variables: Using Laplace notation, these equations become M recond degree linear algebraic equations in the same variables where the coefficients were linear functions of s and s^{2}.

The $M \times M$ square coefficien: matrix for these equations was defined as the system marrix. However, the dynamic equations and the system inatrix may be expanded by the addition of a number of dependent variables and an equal number of auxiliary equations. Therefore, the system matrix for the M degree of freedom system may be a square matrix of any order greater than M. The total number of roots of the system will, remain $2 M$ less any roots at the oxiota, and the syntem will have Morthogonal natural modes of motion indepenient of the order of the system matrix.

Abstract

That portion of the system matrix representing the equations formulated in this document and referred to as the missile dynamics matrix in Section $I-2$, corresponds to the transfer functiuns between the siro angles θ_{p} and θ_{R} and the engine command signal, δ_{c} (Figure I-2). This natrix, which appears in the program output both in printed form and as a punched deck of cards, is not a square matrix. The number of columns will be one greater than the number of rows, therefore, the matrix represents the coefficients of a series of homogeneous equations for which the number of variabies is one freater than the number of equations. The addition of an equation relating the engine command signal to the gyro outputs will produce the square system matrix from winich the closed loop roots may be detcrmined.

In practice the command sisnal. δ_{c}, is related to the byro outputs by the addition of a number of auxisiary equations and dependent variables. The final equation relates the output variaole to the input variable thereby closing the loop producing the square system matrix.

In order to determine th, open loop characteristics of the system with the loop opened at point such as Fin Figure I-2, the dependent variable θ_{F}^{*} is introduced together with an auxiliary equation relating θ_{F} to θ_{F}^{*}. This auxiliary equation should always be represented by the last row in the system matrix. The non-square matrix obtained by omitting the last row of the system matrix then represents the transfer function $\frac{\theta_{F}}{\theta_{F}^{*}}$ which is defined as the system transfer function.

The auxiliary equation relating θ_{F}^{*} to θ_{F} may be writiten

$$
a \theta_{F}+b \theta_{F}^{*}=0 \quad \ddot{i=3.1}
$$

therefore, the last row of the system matrix will have a in the column representing θ_{F} and b in the column representing θ_{F}^{*}. Substituting -1 for either a or b and +1 for the other will maire Θ_{F} equal to e_{F}^{*} and the solution of the system matrix will give the closed loop roots and the corresponding modes of motion for the system.

Letting b equal unity and a equal zero reduces equation I-3.1 to

$$
\theta_{F}^{*}=0
$$

and θ_{F} is arbitrary. The resulting motion when the input is zero must be the natural modes of the system, therefore, solutions of the system matrix will give the open loop poles and the corresponding modes of motion.

Since the system also has M degrees of frecdora for the open loop condition there will be $2 M$ roots and M natural modes of motion.

Letting a equal unity and b equal zero reduces equation I-3.1 to

$$
\theta_{F}=0
$$

and θ_{F}^{*} is arbitrary. The so.'.ution of the syatem matrix under these conditions will give the roots and modes of motion required to produce zero output for an arbitrary input. These roots are defined as the open loop zeros of the system.

The system transfer function may be written

where $\left(K_{R}\right)_{N}=$ nominal gain of system

$$
\begin{array}{rl}
T & T\left(s-z_{i}\right) \\
T T\left(s-p_{j}\right) & =\text { product of }\left(s-p_{j}\right) \\
z_{i} & =\text { open loop zero } \\
p_{j} & =\text { open loop pole }
\end{array}
$$

For the closed loop condition the transfer function is equal to unity and equation I-3.2 becomes

$$
\left\lceil\Gamma\left(s-p_{j}\right)=\left(K_{R}\right)_{N} \Gamma\left\lceil\left(s-z_{i}\right)\right.\right.
$$

Letting the syster gain become a variable, then for the open loop condition K_{R} is zero and $I-3.3$ becomes

$$
\Pi\left(s-p_{j}\right)=0
$$

ard the open $200 p$ poles are the system roots. However, if K_{R} becomes infinite equation I-3.3 becomes

$$
T\left(s \cdot z_{i}\right)=0
$$

and it may be seen that the open loop zeros are also the roots of the closed loop system when the system gain is infinite. As the system gain is varied from zero to infinity the closed loop roots will move from the open loop poles to the open loop zeros passing through the nominal closed luop roots when the gain is equal to the nominal gain. As the gain approsches infinity in an $M^{\text {th }}$ degrees of freedom system, the system may have less than M degrees of freedom and less than M natural modes of motion. In this case the roots must approach zeros which are at infinity. Solution of the system matrix for the zeros of the system will produce only finite zeros and the difference between the number of zeros found and $2 M$ represents the number of zexos at infinity.

8414-6046-TU000
Page 13

II-1

COORDINATE SYSTEM
It is assumed that at some time, t, the missile in its nominal or trimmed condition flies along an inertial axis, H, such that the missile pitch plane contains the local vertical and the missile yaw plane makes an angle r with the local vertical, see figure II-1.1. The center of gravity of the missile is displaced a distance, Q_{H}, along the H axis measured from a second inertial axis, L, in the yew plane perpendicular to the H axis.

FIGURE II - 1.1
84.14-6046-TUO000

Page 14

It is further assumed that the missile is displaced or perturbed in the yaw plane and acts as a system of mass slements, om, each of which has relative motion with respect to the total system center of gravity. The displaceneint in the yaw plane of the total system center of gravity at time, t, is defined by the coordinates Q_{H} and Q_{I} measured along the H and L axes, see figures II-1.2.

YAW PIANE

FIGURE II - 1.2

The R and P axes are non-rotating in inertial space and are translating in the yaw plane with the total system $c . e$, at a velocity $V_{c g}$ making an angle Ω with the R and H axes. The R and P exes rema in parallel to the H and L axes. The yaw plane coordinates of the mass element $d m$ in inertial space are H, L, and Λ
where $\quad \Lambda=$ rotational displacement of dm with respect to R

$$
H=Q_{R}+R
$$

$$
L=Q_{L}+P
$$

The component of the acceleration of gravity in the yaw plane is g cos r directed along the negative H axis.

When the missile is in its nominal or trimed conaition, Q_{L}, Ω, and Λ are zero, R and P are constant, and Q_{q} is increasing along the H axis. The dynamics of the system is such that the magnitudes of these coordicates have oscillatory components when the missile has been displaced or perturbed. The oscillatory components are damped in a stable system and divergent in an unstable system.

The motion of the mass elements, dm, with respect to the system C.G. is defined with respect to a third set of coordinate axes defined in the yaw plane such that the origin 1.3 at the center of gravity and the axes are angularly displaced by an angle θ with respect to the R and P axes, see figure II-1.3.

FIGIRE II - 1.3

The displacements of the element of mess $d m$ with respect to the $\bar{i}-\bar{j}$ axes are x, y and Ψ.
Ω, θ, and α_{0} are taken as positive for rotation about the $-\bar{k}$ axes while Λ and Ψ are taken as positive for rotation about the $+\bar{k}$ axis. It should be noted that no restrictions have been placed upon the selection of θ, which is arbitrary. The only restriction placed upon the $\bar{i}-\bar{j}$ coorrinate system is that the origin be at the total c.g. of the system. 'Mhis restriction requires that

$$
\int_{T M} x d m=0 \quad \int_{T M} y d m=0
$$

Where $\int_{T M}$ represents integration over the total mass or total missile.

From equation II-1.1

$$
\begin{aligned}
& \int_{T M} \dot{x} d m=0=\begin{array}{l}
\text { total linear momentum along the } i \text { axis resulting } \\
\text { from motion with respect to } c \cdot g .
\end{array} \\
& \int_{T M} \dot{y} d m=0=\begin{array}{l}
\text { iotal linear momentum along the } \bar{j} \text { axis resulting } \\
\text { from motion with respect to c.g. }
\end{array} \\
& \int_{T M} \ddot{x} d m=0=\begin{array}{l}
\text { net inertia force in the } \bar{i} \text { direction resulting } \\
\text { from motion with respect to } c . g .
\end{array} \\
& \int_{T M} \ddot{\mathrm{y}} \mathrm{dm}=0=\begin{array}{l}
\text { net inertia force in the } \bar{j} \text { airection resulting } \\
\text { from motion with respect to c.g. }
\end{array}
\end{aligned}
$$

Placing the origin of the $\bar{i}-\bar{j}$ coordinate system at the c.g. makes the net linear momention in any direction, resulting from motion with respect to the c.g., equal to zero. Therefore, the sum of the eiternal forces in any direction must equal the rate of change of linear momentum of the total mass located at the total c.g. This i: effect uncouples the motion of the center of gravity from the motion of the mass elements with respect to the c.g.

Likewise the sum of tine external moments about the c.g. equals the time rate of change of angular momentum about the $2 . g$. and it would be desirable to define the angle θ such that the rotation of the $\bar{i}-\bar{j}$ axes is a function of the external torques only and independent of the motion of the mass elements with respect to the c.g.

Tetting $9 n_{T}=$ angular momentum of totel mass about c.g.

$$
\left.d m_{T}=\dot{R}-\dot{R} P\right) d m+r^{2} \dot{\Lambda} d m
$$

substituting from equations II-1. 4

$$
\begin{aligned}
& \mathrm{a}^{\prime} \|_{T}=\left(\dot{y} x-\dot{x} y+r^{2} \dot{\Psi}\right) d m-\dot{\theta}\left(x^{2}+y^{2}+r^{2}\right) d m \\
& m_{T}=\int_{T M}\left(\dot{y} x-\dot{x} y+r^{2} \psi\right) d m-\dot{\theta} \int_{T M}\left(x^{2}+y^{2}+r^{2}\right) d m
\end{aligned}
$$

The first integral is the angular momentum of the total mass resulting from motion with respect to the c.g. and equals $M_{x y}$ from equation II-1.3. The second integral is the total mass moment of inertia about the c.g. which is defined as I.

$$
\begin{align*}
m_{\mathrm{T}} & =m_{\mathrm{xy}}-\mathrm{I} \dot{\theta} \\
\text { Torque } & =\dot{m}_{\mathrm{T}}=\dot{i}_{\mathrm{xy}}-\frac{d}{d t} \quad(\dot{\mathrm{\theta}})
\end{align*}
$$

Equation II-1.6 shows that it is desimable to define θ such that

$$
\dot{\eta}_{x y}=0
$$

9 will then always take a value such that

$$
\pi_{x y}=\text { constant }
$$

and

$$
\Sigma(\text { Externai torques })=-\frac{d}{d t}(I \dot{\theta})
$$

It will be noted that the rotation of the $\bar{i}-\bar{j}$ axes, θ, is still coupled to the motion with respect to the c.g. by the term $\dot{\mathrm{i}} \dot{\mathrm{\theta}}$ which results from the nona. linear centrifugal and coriolis forces. However, for first order linearizaiion, $\frac{d}{d t}(\dot{\theta})=\ddot{i} \ddot{\theta}$ and the motions are uncoupled. Furthermore, for a linear oacil." latory systen 'm ${ }^{\prime}$ must be a sine function which can only have the constant value of zero.

The displacemen; of the total system, can be defined by the displacement of the c.g., Q_{H} and Q_{L}, the rotation of the $\bar{i}-\bar{J}$ coordinate system, θ, and the dispiacement of the system with respect to the $\bar{i}-\bar{j}$ axes. The motion of the system with respect to the $\bar{i}-\bar{j}$ axes will have N degrees of freedom and can be described by N generalized cuordinates Q_{n}. The coordinates x, y, and Ψ for each element of mass can then be defined in terms of the Q_{n} 's and the constrainte of the system such that

$$
\begin{align*}
& x=x\left(Q_{n}^{\prime} s\right) \\
& y=y\left(Q_{n}^{\prime} s\right) \\
& \Psi=\Psi\left(Q_{n}^{\prime} s\right)
\end{align*}
$$

where equations II-1. 10 need not be linear.
The total system then has $N+3$ degrees of freedom and can be described by the generalized coordinates Q_{H}, Q_{L}, θ, and N coordinates Q_{n}. It has already been indirectly shown that the dynamic equations associated with the Q_{H}, Q_{L} and θ coordinates are
$\sum P_{H}=N \ddot{a}_{H}=$ sum of external force along H axes
$\sum P_{y}=\dot{M} \ddot{q}_{L}=$ sum of external forces along L axes
$-\frac{d}{d t}(I \ddot{\theta})=$ sum of external moments about c.g.

It will also be sinow that the motion of the system with respect to the \bar{i} - \bar{j} axes can be defined in terms of N normal coordinates q_{a}. The dynamic equations derived in terms of the generalized coordinates Q_{n} will then be transformed in terms of the normal coordinates q_{a}.

The displacements of the mass element $d m$ in inertial space are given by equation II-1.4 as

$$
\begin{aligned}
& H=Q_{H}+x \cos \theta+y \sin \theta \\
& I=Q_{L}+y \cos \theta-x \sin \theta \\
& \Lambda=\Psi-\theta
\end{aligned}
$$

The coordinates of the $\bar{i}-\bar{j}$ axes are Q_{H}, Q_{L}, and θ which are considered as geueralized coordinate and are oniy a function of time. The coordinates of the mass element am with respect to the $\bar{i}-\bar{j}$ axes are x, y, and Ψ. The motion with respect to the $\bar{i}-\bar{j}$ axes has not been defined in terms of the constraints of the system. Therefore, x, y, and Ψ cannot be considered generalized coordinates and the gereral dynamic relstionships discussed in this section will apply to anj system of mass elements.

II-2.1 VELOCITIES

Differentiating equations II-1. 4 with respect to time

$$
\dot{H}=\dot{Q}_{H}+\dot{x} \cos \theta-x \dot{\theta} \sin \theta+y \dot{\theta} \cos \theta
$$

$\dot{L}=\dot{Q}_{L}+\dot{y} \cos \theta-y \dot{\theta} \sin \theta-\dot{x} \operatorname{tin} \theta-x \dot{\theta} \cos \theta$
$\dot{\Omega}=\dot{\theta}+\dot{\boldsymbol{a}}_{0}$
$\dot{\Lambda}=\dot{\Psi}-\dot{\theta}$
The total velocity of the mass element, dm with respect to the fixed H and L axis, expressed as components along the rotating $\bar{i}-\bar{j}$ axes is

$$
V=\bar{i}[\dot{H} \cos \theta-\dot{L} \sin \theta]+\bar{j}[\dot{H} \sin \theta+\dot{L} \cos \theta]
$$

substituting for \dot{H} and \dot{L}

$$
\begin{aligned}
V=\dot{i}\left[\left(\dot{Q}_{H} \cos \theta-\dot{Q}_{L} \sin \theta\right)+\dot{x}+y \dot{\theta}\right] & +\bar{j}\left[\left(\dot{Q}_{H} \sin \theta+\dot{Q}_{L} \cos \theta\right)\right. \\
& +\dot{y}-x \dot{\theta}]
\end{aligned}
$$

since $V_{c g}$ is the velocity of c.g. at time t

$$
\begin{align*}
& \dot{Q}_{\mathrm{H}}=v_{\mathrm{cg}} \cos \dot{\zeta}=v_{\mathrm{cg}} \cos \left(\theta+\alpha_{0}\right) \\
& \dot{Q}_{\mathrm{L}}=-v_{\mathrm{cg}} \sin \dot{i}=v_{\mathrm{cg}} \sin \left(\theta+\alpha_{0}\right)
\end{align*}
$$

Therefore

$$
v=\bar{i}\left[v_{c g} \cos \dot{u}_{0}+\dot{x}+\dot{\theta} y\right]+\bar{j}\left[-v_{c g} \sin \alpha_{0}+\dot{y}-\dot{\theta} x\right]
$$

II-2.2 KINETIC ENERGY
The kinetic energy of the mass element dm is

$$
d \tau=\frac{1}{2} v^{2} d m+\frac{1}{2} r^{2}(\dot{\Psi}-\dot{\theta})^{2} d m
$$

substituting from equations II-2.2 and using II-1.2

$$
\begin{align*}
& \tau=\frac{1}{2}\left(\dot{Q}_{H}^{2}+\dot{Q}_{L}^{2}\right) \int_{T M} d m+\frac{1}{2} \dot{\theta}^{2} \int_{T M}\left(x^{2}+y^{2}+r^{2}\right) d m+\frac{1}{2} \int_{T M}\left(\dot{x}^{2}+\dot{y}^{2}+r^{2} \dot{\Psi}^{2}\right) d m \\
& \left.\tau=\frac{1}{2} M\left(\dot{Q}_{H}^{2}+\dot{Q}_{L}^{2}\right)+\frac{1}{2} I \dot{y}^{2}+\tau_{x y}-\dot{\theta} m_{x y}+\dot{\Psi}_{r^{2}}^{2}\right) d m \\
& \tau=\frac{1}{2} M V_{C g}^{2}+\frac{1}{2} I \dot{\theta}^{2}+\tau_{x y}-\dot{\theta} m_{x y}
\end{align*}
$$

where $\tau_{x y}$ is the kinetic energy of the system due to motion with respect to the $\bar{i}-\bar{j}$ axes and is only a function or' the Q_{n} 's and their derivatives. By equation II-1.8, $\mathscr{Z}_{x y}$ is a consts.nt. The generalized momentum associated with each generalised cnordinate is then

$$
\begin{align*}
& \frac{\partial \tau}{\partial \dot{Q}_{H}}=\dot{Q}_{H} \\
& \frac{\partial \tau}{\partial \dot{Q}_{L}}=M \dot{Q}_{L} \\
& \frac{\partial \tau}{\partial \dot{\theta}}=\dot{I}-m_{x y}
\end{align*}
$$

$\frac{\partial \tau}{\partial Q_{i}}=\frac{\partial^{\tau} x y}{\partial Q_{n}}$
The genemalized inertia force associated with each generalized coordinate is then
$\frac{d}{\overline{d t}}\left(\frac{\partial \tau}{\partial \dot{Q}}\right)=\ddot{M}_{H}$
$\frac{d}{d t}\left(\frac{\partial \tau}{\partial \dot{Q}_{L}}\right)={\stackrel{M}{\ddot{Q}_{L}}}_{L}$
$\frac{d}{d t}\left(\frac{\partial \tau}{\partial \dot{\theta}}\right)=\frac{d}{d t}(I \partial)$
$\frac{d}{d t}\left(\frac{\partial \tau}{\partial \dot{Q}_{L}}\right)=\frac{d}{d t}\left(\frac{\partial^{\tau} x y}{\partial \dot{Q}_{n}}\right)$
II-2.7

The generaiized force associated with each generalized coordinate
as a result of non-lisearities are
$\frac{\partial r}{\partial \theta_{H}}=0$
$\frac{\partial \tau}{\partial Q_{L}}=0$
II-2. 8
$\frac{\partial x}{\partial \theta}=0$
$\frac{\partial \tau}{\partial Q_{n}}=\frac{\partial^{\tau} x y}{\partial Q_{n}}$
For a linear system the last equation of II-2. 8 is also zero.

II-2.3 POIENTIAL ERUKRGY AND DISSIPATICN FUMCTION

The potential energy of the system will be divided into two types, the potental energy resulting from the positions of the mass elements in the gravity field, and the internal potential energy stored in elastic deformation of the structure.

$$
d V_{G}=H g \cos r d m
$$

substituting from II-1,4 and using II-I. 2

$$
V_{G}=M Q_{H} g \cos \gamma
$$

The potential energy due to gravity is taken as zero at the origin of the inertial axes L-H and the acceleration of gravity is assumed constant for all mass elements.

It is assumed that the internal potential energy V_{I} is a function of the x 's and y 's corresconding to the positions of the mass elemeats with respect to the $\bar{i}-\bar{j}$ axes and is not a function of: the generalized coordinates Q_{H}, Q_{L}, and θ.

$$
V_{I}=V_{I}\left(Q_{n}^{\prime} s\right)
$$

The rate at which energy is dissipated in the systen is defined as $2 F_{D}$. If it is assumed that all of the energy dissipated results from relative motion of the mass elements with respect to the $\bar{i}-\bar{j}$ axes, the dissipation function, F_{D}, is then independent of the generalized coordinates Q_{H}, Q_{L} and 3 .

$$
F_{D}=F_{D}\left(Q_{n} ; s\right)
$$

II-2.4 THE LAGRANGE EQUATIONS
The general form of Lagrange's equations of motions are

$$
\frac{a}{d \dot{t}}\left(\frac{\partial \tau}{\partial \dot{Q}}\right)-\frac{\partial \tau}{\partial Q}+\frac{\partial^{V_{G}}}{\partial Q}+\frac{\partial^{V} I}{\partial Q}+\frac{\partial^{F} D}{\partial \dot{Q}}=P_{Q}
$$

where

$$
\begin{align*}
& P_{Q}=\sum_{\bar{P}}\left[P_{H} \frac{\partial H_{P}}{\partial Q}+P_{L} \frac{\partial L_{P}}{\partial Q}\right] \\
& P_{H}=\text { Component of exiernal force } P \text { along } H \\
& I_{L}=\text { Component of external force } P \text { along } L \\
& \text { The external force } P \text { can be lefined by } \\
& P=\bar{I} P_{x}+\bar{j} P_{y}
\end{align*}
$$

8414-6046-TU000

Page 23
then
$P_{H}=P_{x} \cos \theta+P_{y} \sin \theta$
$P_{L}=P_{y} \cos \theta-P_{x} \sin \theta$
and
$P_{Q}=\frac{\Gamma}{P}\left[\left(P_{\bar{x}} \cos \theta+P_{y} \sin \theta\right) \frac{\partial H_{P}}{\partial Q}+\left(P_{y} \cos \left(P_{y} \cos \theta-P_{x} \sin \theta\right) \frac{\partial L_{P}}{\partial Q}\right]\right.$
The point of application of P is H_{P} and L_{P} cefined by equation
II-1. 4 as

$$
\begin{aligned}
& H_{P}=Q_{H}+x_{P} \cos \theta-y_{P} \sin \theta \\
& L_{P}=Q_{L}+y_{P} \cos \theta-x_{P} \sin \theta
\end{aligned}
$$

then

$$
\begin{aligned}
& \frac{\partial H_{P}}{\partial Q_{H}}=1 \\
& \frac{\partial L_{P}}{\partial Q_{H}}=0 \\
& \frac{\partial_{P} H_{P}}{\partial Q_{L}}=0 \\
& \frac{\partial L_{P}}{\partial Q_{L}}=1 \\
& \frac{\partial F_{P}}{\partial \theta}=-x_{P} \sin \theta+y_{P} \cos \theta \\
& \frac{\partial L_{P}}{\partial \theta}=-y_{P} \sin \theta-x_{P} \cos \theta \\
& \frac{\partial H_{A}}{\partial Q_{n}}-\cos \theta \frac{\partial x_{P}}{\partial Q_{n}}+\sin \theta \frac{\partial^{y_{P}}}{\partial Q_{n}} \\
& \frac{\partial I_{P}}{\partial Q_{n}}=\cos \theta \frac{\partial y_{P}}{\partial Q_{n}}-\sin \theta \frac{x_{P}}{\partial_{n}}
\end{aligned}
$$

$$
\begin{align*}
& P_{Q H i}=\cos \theta \sum_{F} P_{x}+\sin \theta \sum_{P} P_{y} \\
& P_{Q L}=\cos \theta \sum_{P} P_{y}-\sin \theta \sum_{P} P_{x} \\
& P_{\theta}=-\sum_{P}\left[P_{y} x_{P}-P_{x} y_{P}\right]=- \text { moment of external forces about c.g. } \\
& P_{Q n}=\sum_{P}\left[F_{\kappa} \frac{\partial x_{P}}{\partial Q_{n}}+P_{y} \frac{\partial y_{P}}{\partial Q_{n}}\right]
\end{align*}
$$

From equations II-2.7, II-2.8, II-2.9, II-2.10, II-2.11 and II-2.15
the Lagrange equations of motion for coordinates Q_{H}, Q_{I}, ε, and Q_{n} are

$$
\begin{aligned}
& \ddot{M Q}_{\mathrm{H}}+M g \cos \gamma=\cos \theta \sum_{P} P_{x}+\sin \theta \sum_{P} P_{y} \\
& \ddot{M Q}_{L}=\cos \theta \sum_{P} P_{y}-\sin \theta \sum_{P} F_{x} \\
& \frac{d}{d t}(\dot{I})=-\sum_{P}\left[P_{y} x_{P}-P_{x} y_{P}\right] \\
& \frac{d}{d t}\left(\frac{\partial^{l} x y}{\partial \dot{Q}_{n}}\right)-\frac{\partial^{\tau} x y}{\partial Q_{n}}+\frac{\partial^{V_{I}}}{\partial Q_{n}}+\frac{\partial^{F}}{\partial \dot{Q}_{D}}=\sum_{P}\left[F_{x} \frac{\partial x_{P}}{\partial Q_{n}}+P_{y} \frac{\partial_{P}}{\partial Q_{n}}\right]
\end{aligned}
$$

\ddot{Q}_{H} and \ddot{Q}_{L} are the accelerations of the total ceater of gravity in the direction of the nominal flight path and normal to the nominal flight path. From equations II -2.16

$$
\ddot{Q}_{H}=\cos \theta \sum_{P} \frac{P_{x}}{M}+\sin \theta \sum_{P} \frac{P_{y}}{M}-g \cos \gamma
$$

also by differentiating equations II - 2.3

$$
\begin{align*}
& \ddot{Q}_{H}=-v_{C B}\left(\dot{\theta}+\dot{\alpha}_{0}\right) \sin \left(\theta+\alpha_{0}\right)+\dot{v}_{c g} \cos \left(\theta+\alpha_{0}\right) \\
& \ddot{\theta}_{I}=-v_{C g}\left(\dot{\theta}+\dot{\alpha}_{0}\right) \cos \left(\theta+\alpha_{0}\right)-\dot{v}_{c g} \sin \left(\theta+\alpha_{0}\right)
\end{align*}
$$

8414-6045-TUOOO

Page 2.5

The second equation of II-2. 18 is the so called normal force equation end the first will de referred to as the axial force equation. The equations of motion can now oe wricten

$$
\begin{align*}
& \ddot{Q}_{H}=-V_{c g}\left(\dot{\theta}_{\alpha} \dot{\alpha}_{0}\right) \sin \left(\theta+\alpha_{0}\right)+\dot{V}_{c g} \cos \left(\theta+\alpha_{0}\right)=\cos \theta \sum_{P}^{\tilde{I}} \frac{x}{M}+\sin \theta \sum_{P} \frac{P_{y}}{M}-g \cos \gamma \\
& \text { 15-2.19 } \\
& \ddot{Q}_{L}=-V_{c g}\left(\dot{\theta}+\dot{\alpha}_{o}\right) \cos \left(\theta+\alpha_{o}\right)-\dot{V}_{c g} \sin \left(\theta+\alpha_{o}\right)=\cos \theta \sum_{P} \frac{P_{y}}{M}-\sin \theta \sum_{P} \frac{P_{x}}{M} \quad \text { II-2.20 } \\
& \frac{d}{d t}(\dot{I} \dot{\theta})=-\sum_{P}\left[P_{y} x_{p} \cdots P_{x} y_{P}\right] \\
& \frac{d}{d t}\left(\frac{\partial^{\top} x y}{\partial \dot{Q}_{n}}\right)-\frac{\partial^{\tau} x y}{\partial Q_{n}}+\frac{\partial^{V} I}{\partial Q_{n}}+\frac{\partial^{F_{D}}}{\partial \dot{Q}_{n}}=\sum_{P}\left[P_{x} \frac{\partial^{x_{P}}}{\partial Q_{n}}+P_{y} \frac{\partial^{Y_{P}}}{\partial Q_{n}}\right]
\end{align*}
$$

From the fact that the motion of the center of gravity is independent of the motion with respect to the c.g., and the definition of θ, equations II-2.19, II-2.20, and II-2. 21 could have been simply derived from Newton's equations. Also equation II-2.22 is Lagrange's equations for the motion of the total mass with respect to the $\bar{i}-\bar{j}$ axes and is indeperdent of Q_{H}, Q_{L} and θ.

The acceleration of the center of mass can also be expressed as components along the \bar{i} and \bar{j} axes, a_{x} and a_{y} where

$$
\begin{align*}
& a_{x}=\ddot{Q}_{H} \cos \theta-\ddot{Q}_{L} \sin \theta \\
& a_{y}=\ddot{Q}_{L} \cos \theta+\ddot{Q}_{H} \sin \theta
\end{align*}
$$

substituting for \dddot{Q}_{Q} anc \ddot{Q}_{L} equations II-2.19 and II-2. 20 become

$$
\begin{align*}
& a_{x}-V_{c g}\left(\dot{\theta}_{\theta} \dot{\alpha}_{0}\right) \sin \alpha_{0}+\dot{V}_{c g} \cos \alpha_{0}=\sum_{P} \frac{P_{x}}{M}-\cos \theta g \cos \gamma \\
& a_{y}=-V_{c g}\left(\dot{\theta}^{(\dot{\alpha}} \dot{\alpha}_{0}\right) \cos \alpha_{0}-\dot{V}_{c g} \sin \alpha_{0}=\sum_{P} \frac{P_{y}}{M}-\sin \theta g \cos \gamma
\end{align*}
$$

It should be noted that a linear system and small angles have not been assumed. The only restrictions placed on the system are that the origin of the $\bar{I}-J$ axes be at the total c.g. and $M_{x y}=$ constant.

In Section II-̇ generaम dynamic equations were derived tor a Bystem or mass elements naving relative motion with respect to a set of rotating oody ases, $\bar{i}-\bar{j}$. The system was assumed to have N degrees of l'reedon descrioed oy seneralized coordinates Q_{n}. In tnis sec, ion the
 ana tue N generasized coordinates will je estadisned.

The missile vody is assumed to consist ol' a relative slender rıexivie dodj incorporating R fluid tanks wnich may de on $\perp y$ partially filied. A number of tnrusting engines are assumed to be attached to tne misaile body such that they may or may not de rotated with respect to the oody center line. In addition provisions are provided to make inertia corrections at various points on the missile body. These inertia corrections in effect consist of the addition of a quanitity of matter which has no mass out has a mass moment of inertia ΔI.

II-3.i SLOSH REPRESENTATICN

Translationai or rotational motion of each partially filled fluid tank will resuli in relative motion between the fluid and tank, thus producing dynamic forces or the tank. The morint fluid represents an infinite degree of freedom system having an infinite number of modes of motion. It has been shown (rererences 2, 3, and 4) thet equivalent tank loads for each fluid mode will result from a spring mass analogy. The analogy consists of placing a cap or oulknead at the free fluid surface to confine the fluid and prevent slosing and attacning a portion of the fluid mass to the structure by a simple spring. EQuations for the caiculation of the equivalent sloshing mass, natural frequency of the spring mass comoination, and the required attach station on the fluid tank are derived in Reference 4 for tanks of aroitrary shape. The equations for tanks with axial symmetry have been programmed for computer computation. A description of this program and instructions for its use are contained in Reference 5 . Results obtained from the slosh program show that the slosh masses associated with fluid modes above the first mode are small and in general these modes may be negiected.

For the cuacuricion oi lne mass moment of inertia of the missile avout its eenter of erasity and the computazion of sending modes, it is necessary to consider ine moment of inertia of the fluid in the capped tank. The equation for finding the mass moment of inertia aoout the fluid c.g. for a fjuil in a cylindrical tank is derived in R ference 3. These data are presented as a correction factor, K_{I} to se applied to the moment of inertia inat Nound resuit if the lluid were irozen as a solid. This correction factor ${ }^{k}$ I has been plotted against tank aspect ratio (length divided oy diameter)in figure II-3.1. The frozen or solid inertia of a fluid mass m_{f} in a cylindrical tank of radius R_{T} and lengtin L_{T} is

$$
I_{\text {solid }}=m_{f}\left[\frac{R_{T}^{2}}{\frac{T}{4}}+\frac{L^{2} T^{2}}{L^{2}}\right]
$$

The free fluid inertia I_{f} is then

$$
I_{\mathrm{f}}=\mathrm{K}_{\mathrm{I}} I_{\text {solid }}
$$

The mass moment oí inertia that resuits whon the $\mathrm{f}_{-}^{-} \cdot 1$ is considered as a filament concentrated along the missile cente, line for a distance l is given by

$$
I_{F i L}=m_{f} \frac{l^{2}}{12}
$$

II-3. 3

When the missile inertia or bending modes are based upon a filament of fluid, the correction factor that must be applied at the fluid cg is

$$
\Delta I=I_{F}-I_{F i L}
$$

where ΔI may oe positive or negative.
It shouid be noted that the slosh mass amplitude ρ_{j} used in this analysis is the anplitude of motion of the equivalent slosh mass of the spring mass analogy. ρ_{j} does not represent the slosh anpl Itude of the fluid in the tank. The fluid amplitude is obtained by applying a correction lactor to $\rho_{\&}$. This correction is odtained from the output data of the aloshing program.

II - J.C 3ENDIM ODES

The iree-rixe fianiose missile oody moving in the yaw plane represents an inij:ite ciegree or rreedom system consisting oi ree zero frequency or rigid sody modes and en inrinite numoer of elastic or oending moses. However, in an analvsis of this type only a rinite numoer, i, or

 modes in order or increasiñ modal freguency. Fxperisnee nas snown that ine sjstem s inis studied is relatively looseıy coupled, that is, the resuiting system natural rreouencies are near ine input oending, sıosh, and ensine frequencies and tne resucting modes consist primarily of the corresponding vending; slosh, and engine motions. Therefore, if the $T^{\text {th }}$ dending frequency is well aoove the highest slosh and engire input frequency, the driving functions for the higher modes above the $T^{\text {th }}$ mode will de smail and the truncation errors for ali sut the nighest mode, $T^{\text {th }}$, should be negligible and the aoo:e assumption is considered justiried. The output data for the $T^{\text {th }}$ mode should never se used in a staoility analysis. The input data snoulc always include at least one mode above the inighest mode to ve studied.

All elastic deflections are taken with respect to the undeformed elastic axis (UEA). The UEA is defined as the body center line in the aosence of elastic derormation and is assuned to oe a straight, line. The center of mass for every beam element for all beam branches must lie on the UEA in the absence of elastic deformation. bending mode salculations are made assuming that ail mass elements are distriouted aiong the center line with radii of gyration, r. The location of a point on the body is defined as x_{h} measured forward along the UEA from the total system center of gravi.ty, see figure II-3.2. For the purpose of this analysis it is assumed that the bending modes nave been calculated for a multi-oranched beam taking into account, shear deflection,

Totel Deflection Due to Bending and Shear
rotary inertia, and axial acceleration, and that all engine and siosi masses are rigidiy attacned to the missiie. The transiational deflection of a deam
 tile veam center inne at x_{n} witn respect to tne Uef is u. Ine lotal isupe u is the sum of the slope due to bending deformation and the slope due to snear deformation. The bending slope is defined as ψ and is the rotation of the beam element at x_{r} since shear deformation produces no rotation. The translatianal deflection in the direction of the UEA is neglected. The deflection u and slopes u and \int at any point x_{h} are defined oy the following equations:

$$
\begin{align*}
& u=\sum_{i} \phi_{i} b_{i} \\
& u^{\prime}=\sum_{i} \phi_{i}^{\prime} b_{i} \\
& \psi=\sum_{i} \lambda_{i} b_{i}
\end{align*}
$$

where

$$
\begin{aligned}
& \phi_{i}=\text { deflection of the } i^{t h} \text { bending mode at } x_{h} \\
& \phi_{i}^{\prime}=\text { total slope of the } i^{t h} \text { bending mode at } x_{h} \\
& \lambda_{i}=\text { bending slope of the } i^{t h} \text { bending mode at } x_{h} \\
& b_{i}=i^{t h} \text { bending coordinate }
\end{aligned}
$$

FIGURE II - 3.3
Bending Deflection Due $i^{\text {th }}$ Mode

The oending deflection due to ine $i^{\text {th }}$ mode is shown in figure II-3.3 For multi-branched beams $\oint_{i}, \oint_{i}^{\prime}$ and λ_{i} will have values for each ranch present at X_{h}. The normalized mass for the $i^{\text {th }}$ mode is given by

$$
\int_{\mathrm{M}}\left(\phi_{i}^{2}+r^{2} \lambda_{i}^{2}\right) d m=M_{i}
$$

where the integration is the sum of the integrals carried out over eech oranch of the ream. It is desirable to normalize each mode such that M_{i} is the total missile mass. Since the mode shapes ncrmalized to mass M_{i} can be normalized to the mass M by multiplying ϕ_{i}, λ_{i} and ϕ_{i} by $\sqrt{k_{i}}$ were

$$
k_{i}=\frac{M}{M_{i}}
$$

it will be assumed that all bending modes are normalized to total missile mass.

For the $i^{\text {th }}$ mode shafe shown in Figure II-3.3 the values of $\phi_{1}, \phi_{i}^{\prime}$ and λ_{i} are functions of x_{h} only. ϕ_{i} is the deflection when the bending coordinate is unity, and is non dimensional. Since ϕ_{i}^{\prime} and λ_{i} are the slopes when the bending coordinate is unity they have the dimension of $l / f t$. The bending coordinate b_{i} is then defined at the value of x_{h} where ϕ_{i} is unity for a mode shape normalized to total mass. The $i^{\text {th }}$ bending mode represents the maximum deflections at each point along the beam for sinusoidal motion since b_{i} is a sine function of time t and the modal frequency. Therefore, for the iuput mode shown in figure II-3.3 the deflection and slopes souid be multiplied by -1 and a new input mode slope would be defined which would shift the phase of the final b_{i} by 180 degrees. Eitier input mode can be used, however, in order to be consistent a positive input mode is defined as that phase of the mode which results in a positive deflection at the aft end of the missile.

Since the input modes are orthogonal

$$
\int_{\mathrm{MM}}\left(\phi_{1} \phi_{t}+r^{2} \lambda_{1} \lambda_{t}\right) d n=0 \quad t \neq 1
$$

also since the bending modes produce no translation of the r.g. and no rotation of the UEA the linear momentum of the total system and the angular momentiom about the c.g. must be zero. Therafore

$$
\begin{align*}
& \int_{T M} \phi_{i} d m=0 \\
& \int_{T M}\left(\phi_{i} x_{h}+r^{2} \lambda_{i}\right) d m=0
\end{align*}
$$

and

$$
\begin{aligned}
& \int_{T M} u d m=0 \\
& \int_{T M}\left(u x_{h}+r^{2} \psi^{\prime}\right) d m=0
\end{aligned}
$$

As previously noted, this analysis assumes that the bending modes have been calculated for a multi-branched beam teking into account, shear deflection, rotary inertia, and axial acceleration, and that all engines and slosh masses are rigidly attached to the beam. If the effects of the beam column loads due to axial acceleration are to be neglected, no changes in the input data are required. If the effects of shear deformation are neglected in the bending modes, the total slope is made equal to the bending slope. If the inertial energy stored in the beam elements due to rotation are to be neglected, the radius of gyration of each beam element becomes zero in all equations. However, the encine input data and the dymamic equations are based upon a mass mement of inertia about the gimbal point, $I_{G e}$, for each gimballed engine and the rotary inertia of these engines cannot be neglected. The moment of inertia of the engine about its gimbal point is

$$
I_{G e}=M_{G e} l_{G E}^{2}+\int_{e} r^{2} d m
$$

where $M_{G e}=$ mass of $e^{t h}$ engine
$l_{G e}=$ distance from gimbal to c.g. of $e^{\text {th }}$ engine
Therefore, when using berding data which neglects the effects of rotary inertia, it is necessary to introduce an inertia correction ΔI_{e} at each gimballed engine c.g. such that

$$
\Delta I_{e}=\int_{e} r^{2} d m=I_{G e}-M_{G e} l_{G e}^{2}
$$

It is again noted that the engines and slosh masses are assumed to be rigidly attsched to the beam when the bending mode are determined. It is important that the engine mass distribution be such that the static moment of the mass about the engine gimbal point be equal to $\mathrm{M}_{\mathrm{Ge}} \ell_{\mathrm{Ge}}$ used as gimballed engine input data; and in adition each slosh mass must appear in the mass distribution as ε concentrated mass at the spring mass attach point. Any other distribution of these masses will introduce errors in the analysis the magnitudes of which are a function of the effect of the distribution on the modal deflections and slopes at the attach points.

II-3.3 ENGINES

Two types of thrusting engines are considered, fixed engines, and gimballed engines. Fixed engines are thase engines which are fixed or locked to the missile such that the thrust vector is always tangent to the body center line at the point of attachment. These engines do not produce modes of oscillation but do provide thrust forces which drive other modes and nust therefore be treaved separately from the gimballed engines each of which does produce an additional mode of oscillation. The $e^{\text {th }}$ gimballed engine is considered free to 1 , tate about its gimbal point such that the engine center line makes an angle δ_{e} with the body center line. It showd be noted that a gimballed engine which is locked during some portion of flight time by locking the engine actuator or by making the command signal zero, must be considered gimballed at all times of flight since engine angles will result from the flexibility of the actuating mechanism. Although only fixed and gimballed engines are considered in the derivation of the dynamic equations, a third type of engine is of importance. For secondary injection, jet vane or jetavator thrust vector control systems the thrust vector is deflected through an angle but the engine mass remains fixed to the missile center line. This type of engine is essentially a fixed engine with sontrolled thrust deflections or a messless gimballed engine engine. The engine does not produce a mode of oscillation but is the controlled driving force for all other modes.

No difficuities are encolantered when a gimballed engine mass and inertia of zero are introduced into the equations derived in this section. However, when using the combined mode representation covered in section III, a massless engine produces a mass matrix which is not positive and definite and which will be rejected by the eigenvalue subroutine used. A program subroutine provided to handle this case is discussed in Volume II.

II-3.4 MASS MOMENT OF INEKPIA

In the introduction to this section it was noted that provisions are included to make inertia corrections at various points along the missile. These corrections are introduced primarily to compensate for the fluid inertia in the propellant tanks as discussed in section II-3.1. Equation II-3.5 gives the inertia correction that must be applied at the fluid center of gravity when the bending modes are based upon the fluid mass distributed along the missile center line. For the general type of bending data normally used, rotating inertia is taken in account and the fluid inertia correction can best be introduced in the inertia distribution, in which case no inertia corrections are required in the dynamic equations. In the case of oending data neglecting rotating inertia it is desirable to introduce the fluid inertia correction from Equation II-3.5. In addition if the inertia distribution for the non-fluid portion of the structure is known the effect of cotating inertia can be introduced. In any case where rotating inertia is neglected it is necessary to introduce the rotary inertia of all gimballed engines since the derivation of the dynamic equation assumes this inertia to be present. The inertia corrections are not system parameters which affect tae dynamics of the system but should be considered correction factors introduced to correct the bending data. The mass moment of inertia of the system is

$$
I=\int_{T M}\left(x^{2}+y^{2}+r^{2}\right) d m
$$

expressed in terms of the coordinates along the $\bar{i}-\bar{j}$ axes. In the previous derivation (reference 1) the inertia corrections were added to the va. de of I introduced into the equations. However, for the present derivation it is assumed that the value of I inputed has already been corrected for fluid inertia and the self inertia of the beam elements.

II-3.5 NOTATION

Input data pertaining to the engines, slosh masses, bending modes, and inertia corrections are designated by the following notatio. :

	$\begin{aligned} & \text { GIMBAILED } \\ & \text { ENGINES } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { SLOSHING } \\ & \text { MASSES } \\ & \hline \end{aligned}$	BENDING MODES	FIXED ENGINES	INERTIA CORRECTIONS
Numbering	1 thru P	1 thru R	1 treu	1 thru	1 thru

General Subscript	e	j		f	k
Specific Subscript	p	r	t	-	-
Attach point	$x_{h e}$	$x_{h j}$	$\left(x_{h i}=0\right)$	$x_{h f}$	$x_{h k}$
Thrust	$T_{G e}$	-	--	$T_{F f}$	-
Deflection	δ_{e}	ρ_{j}	b_{i}	-	-

The subscript h used for the attach points indicates that the coordinate is measured along the UEA and not the i axis. The specific subscripts p, r, t have been introduced sirce general expressions contain sumations of e, j, and i and must be differentiated with respect to specific engines, slost masset and benuing modes. For example, the general expression for kinetic energy contains the term ${ }_{e=1}^{P} \sum_{1} \frac{1}{2} n!\dot{\delta}_{e}^{2}$. Therefore the general expression for the $p^{\text {th }}$ engine equations will contain the term

The subscripts p, r, and t will appear in the $p^{\text {th }}$ engine equation, the $r^{\text {th }}$ sioshing equation, and the $t^{\text {th }}$ bending equation.

The motion of the mass element $d m$ with respect to the $\bar{i}-\bar{j}$ axes is the sum of the rigid body motion due to motion of the UEA, and the elastic deflection, due tc motion with respect to the UEA. The rigid body motion of the UEA is a function of the engine angles δ_{e} and the sloshing defleciions $\dot{\rho}_{j}$, and also the bending coordinate b_{1} when inertia corrections are applied to the bending modes. The bending deflections are only a function of b_{i}. Therefore, the motion of each element of mass can be defined in terms of the P values of s_{e}, the R values of p_{j} and the T values of b_{i}. The total number of generalized coordinates N is then

8414-6046. iUN00

Page 36

$$
N=P+R+T
$$

These N generalized coordinates, ψ_{n}, are then defined as follows: the first P coordinates are the engine derlections, $\dot{\delta}_{e}$ in radians, for the P gimballed engines in the order of input, the next R coordinates are the sloshing mass deflections ρ. in feet, for ine $F E l o s n$ masses in tne order or input: the last T coordinates are the input bendin ${ }_{S}$ mode coordinstes, b_{i}, in feet for the T input vending modes in the order of input.

II - 3.13
la i s analysis the braces $\}$ will be used as a symool denotine a cofumn macrix and the suosctipt T will be used to dencte a transposed matrix, therefore $\left\}_{T}\right.$ is a row matrix composed of the elements oi the $\}$ coiumn matrix.

The resulting motion with respect to the $\bar{i}-\bar{j}$ axes when b_{i} is unity and all other generalized coordinates are zero has decome known as the $i^{\text {th }}$ input bending mode. Likewise the resulting motion when δ_{e} is unity and all other coordinates are zero is defined as the $e^{\text {th }}$ input engine mode, and the resultent motion when $P_{\text {i }}$ is unity and all other coordinates are zero is defined as the $j^{\text {th }}$ input slosh mode. These so called input modes or non-orthogonal modes are not true modes of the system. However, for a linear system superposition is valid and the output modes are a linear
comoination of these modes. These input modes are numbered from \perp thru N in the same order as their corresponding generalized coordinate. The motion of the missile with respect to the $\bar{I}-J$ axes $c a n$ then be defined by N dynamic equations in N generailzed coordinates. This motion is a linear combination of N so zalled input, modes. The subscripts mand n will be used to designate the $\mathrm{m}^{\text {th }}$ and $\mathrm{n}^{\text {th }}$ of these coordinetes, equations and modes. Where possiole n will ve used for the coordinates and m for these equations and input modes.

It will be noted that with the definition of $x_{n i}=0$, there is an attach point associated with each input mode and each generılized coordinate. Therefore, an attach point can oe defined for each input mode or coordinate

Likewise for each fixed engine and each inertia correction

$$
\begin{align*}
& \left\{x_{\text {Ff }}\right\}=\begin{array}{c}
\text { Folumn matrix }
\end{array}=\left\{x_{n f}\right\} \\
& \left\{x_{I k}\right\}=\begin{array}{l}
K \times 1 \\
\text { Column matrix }
\end{array}=\left\{x_{\mathrm{K}}\right\}
\end{align*}
$$

II-3. 16

The only input bending data required in the dynamic equations of the system are the deflection and bending slope at each of the attach points. Therefore, the required bending data can be defined by a system of subscripts where the first subscript denotes the attach station and the second subscript the mode or coordinate causing the deflection. For example
$\lambda_{e i}=$ bending slope at $e^{\text {th }}$ engine attacn point due to $i^{\text {th }}$ pending mode. $\lambda_{j i}=$ bending slope at $j^{\text {th }}$ slosh attach point due to $i^{\text {th }}$ bending mode. $\lambda_{\text {Ffi }}=$ bending slope at $\mathrm{r}^{\text {th }}$ f'ixed engine due to $i^{\text {th }}$ pending mode. $\lambda_{\text {Iki }}=$ bending slope $a^{+}, k^{\text {th }}$ inertia correction due to $i^{\text {th }}$ oending mode.

The same suoscripts are used in connection with the deflection ϕ.
However, in each case the slopes and deflections must be taken for the correct beam branch at each attach point. By further defining
 and the corresponding deflections all equal to zero, general symbols for the bending slopes and deflections can be defined as

$$
\begin{aligned}
& \lambda_{\mathrm{mn}}=\text { bending slope at } \mathrm{m}^{\text {th }} \text { attach point due to } \mathrm{n}^{\text {th }} \text { mode } \\
& \lambda_{\mathrm{nm}}=\text { bending slope at } \mathrm{n}^{\text {th }} \text { attach point due to } \mathrm{m}^{\text {th }} \text { mode } \\
& \phi_{\mathrm{mn}}=\text { deflection at } \mathrm{m}^{\text {th }} \text { attach point due to } \mathrm{n}^{\text {th }} \text { mode } \\
& \phi_{\mathrm{nm}}=\text { deflection at } \mathrm{n}^{\text {th }} \text { attach point due to } \mathrm{m}^{\text {th }} \text { mode } \\
& \lambda_{\mathrm{Ffn}}=\text { bending slope at } f^{\text {th }} \text { fixed engine attach point due to } \mathrm{n}^{\text {th }} \text { mode } \\
& \phi_{\mathrm{Ffn}}=\text { deflection at } \mathrm{f}^{\text {th }} \text { fixed engine attach point due to } \mathrm{n}^{\text {th }} \text { mode } \\
& \lambda_{\mathrm{Ikn}}=\text { bending slope at } k^{\text {th }} \text { inertia correction due to } \mathrm{n}^{\text {th }} \text { mode } \\
& \phi_{\mathrm{Ikn}}=\text { deflections at } k^{\text {th }} \text { inertia correction due to } \mathrm{n}^{\text {th }} \text { mode }
\end{aligned}
$$

II-4 MOTION WITH RESPECT TO $\bar{i}-\bar{j}$ AXES
In Section II-2 the dynamic equations were derived in terms of the x, y and Ψ coordinates of each element of mass with raspect to the $\bar{i}-\bar{j}$ axes. In section II-3 a misaile configuration wis developed for nich the motion with respect to the $\bar{i}-\bar{j}$ axes can be dekcribed by N generalized coordinates $Q_{i n}$. The motion of the missile with respect to the $\bar{i}-\bar{j}$ axes will be developed in this section. The developnicnt is based upon first order linearization.

84.14-6046-TU000
 Page 39

II-4.1 DISPLACEMENT

The displacement of the missile configuration with respect to the $\vec{i}-\bar{j}$ axes is shown in Figure II-4.1.

FIGURE II-4.1

The x and y displacements oi the origin on the UEA are defined as x_{0} and v ard the rotation $O L^{\circ}$ the UEA as w. The elastic displacements with respect to the UsA are u and $/$, destined by equations II -3.6. The
 respect to the + anis. Sloshing $h_{i j}$ dispucments are defined positive upward, utica is opposite tu the definition used in reference 1. This change ms mad in order nat a slosh motion in phase with rigid body motion would be in the same direction as the rigid body motion.

Coordinates of a Point on Beam

$$
\begin{align*}
& x_{b}=x_{0}+x_{h} \cos w-u \sin w \\
& y_{0}=v+x_{h} \sin w+u \cos w \\
& \Psi_{b}=w+\psi
\end{align*}
$$

Coordinates of the $j^{\text {th }}$ Slosh Mass Attach Point

$$
\begin{aligned}
& x_{j}=x_{0}+x_{h j} \cos w-u_{j} \operatorname{sinw}-\rho_{j} \sin \left(\psi_{j}+w\right)=x_{b j}-\rho_{j} \sin \left(\psi_{j}+w\right) \quad \text { II -4.? } \\
& y_{j}=v+x_{h j} \sin w+u_{j} \cos w+\rho_{j} \cos \left(\psi_{j}+w\right)=y_{b j}+\rho_{j} \cos \left(\psi_{j}+w\right) \\
& \bar{y}_{j}^{\prime}=w+\psi_{j}
\end{aligned}
$$

Coordinates of the $k^{\text {th }}$ Inertia Correction Attach Point

$$
\begin{aligned}
& x_{k}=x_{0}+x_{l k} \cos w-u_{k} \sin w=x_{b k} \\
& y_{k}=v+x_{h k} \sin w+u_{k} \cos w=y_{b k} \\
& \Psi^{\prime} k=w+\psi_{I k}
\end{aligned}
$$

Coordinates of a Point on $e^{\text {th }}$ Engine

$$
\begin{align*}
& x_{E}=x_{b E}+2 z_{e} \sin \frac{\delta_{e}}{2} \sin \left(w+\psi_{e}+\frac{\delta_{e}}{2}\right) \\
& y_{E}=y_{b E}+2 z_{e} \sin \frac{\delta_{e}}{2} \cos \left(w+\psi_{e}+\frac{\delta_{e}}{2}\right) \\
& \Psi_{E}=w+\psi_{e}+\delta_{e}
\end{align*}
$$

ψ_{e} is the bending rotation or the beam at the gimbal of the $e^{\text {th }}$ engine. The angle required is the rotation of the rigid engine as a result of elastic deformation of the beam. The use of ψ_{e} for this angle assumes that the engine rotation is aue to bending deflections only. If the. engine actuator supporting structure is such that engine rotstion resuits from shear deflection in addition to bending deflection, a small errcr will be introduced which may be corrected by modification of the input bending data.

The value $0: \%$ in v be determined from the fact that the origin Of $\overline{1}-\bar{j}$ axes remaine \therefore ir enter of gravity.

Therefore

$$
\begin{aligned}
& \int_{T M} x d m=0 \\
& \int_{b} x_{b} d m+\sum_{j} \int_{j} x_{j} d m+\sum_{e} \int_{e} x_{E} d m=0
\end{aligned}
$$

substituting from II-4.1, II-4.2 and II-4.3
aid

$$
\begin{aligned}
& \int_{e} z_{e} a m=m_{G e} l_{G e} \\
& m_{G e}=\text { mass of } e^{\text {th }} \text { engine } \\
& l_{G e}=\text { distance from gimbal to cog. of } e^{\text {th }} \text { engine } \\
& x_{0}=\frac{1}{M} \sum_{j}\left[m_{j} \rho_{j} \sin \left(\psi_{j}+w\right)\right]-\frac{1}{M} \sum_{e} 2 m_{G e} l_{G e} \sin \frac{\delta_{e}}{2} \cdot \sin \left(w+\psi_{e} \frac{\delta_{e}}{2}\right)
\end{aligned}
$$

The risplavenent of the origin of the UEA in the direction of the \bar{i}
axes is the sum of second order terms and is therefore neglected in lineariration of the system and

$$
x_{0}=0
$$

The value of y may also be deteritned from the fa t that the orig. of $\bar{i}-\bar{j}$ axes remains at the center of gravity.

$$
\begin{aligned}
& \int_{T M} y d=0 \\
& \int_{b} y_{b} d m+\sum_{j} \int_{j} y_{j} d m+\sum_{e} \int_{e} y_{E} d m=0
\end{aligned}
$$

again substituting for $y_{\mathcal{G}} y_{j}$ and y_{E}

$$
v=-\sum_{j} \frac{m_{j}}{M} \rho_{j} \cos \left(\psi_{j}+w\right)+\sum_{e} 2 \frac{m_{G e} l_{G e}}{M} \sin \frac{\delta_{e}}{2} \cos \left(v+\psi_{e}^{\prime}+\frac{\delta_{e}}{2}\right)
$$

assuming small angles

$$
v=-\sum_{j}^{m_{j}} \frac{m_{j}}{M} \rho_{e} \frac{m_{G e} l_{G e}}{M} \delta_{e}
$$

Let $v_{j}=-\frac{m_{j}}{M}$

$$
\begin{aligned}
& v_{e}=\frac{m_{G e} l_{G e}}{M} \\
& v_{i}=0
\end{aligned}
$$

then $v=\sum_{e} v_{e} \delta_{e}+\sum_{j} v_{j} \rho_{j}+\sum_{i} v_{i} b_{i}$
where

$$
v=\left\{v_{e}\right\} T\left\{\delta_{e}\right\}+\left\{v_{j}\right\} T\left\{\rho_{j}\right\}+\left\{v_{i}\right\} T\left\{\left\{_{i}\right\}\right.
$$

$$
\left\{v_{m}\right\}=\begin{gathered}
N \times 1 \\
\text { Column matrix }
\end{gathered}
$$

$$
=\left\{\begin{array}{l}
\left\{\begin{array}{c}
v_{e} \\
e
\end{array}\right\} \\
\left\{\begin{array}{c}
v_{j} \\
j
\end{array}\right\} \\
\left\{v_{i}\right\}
\end{array}\right\}
$$

where v_{e}, v_{j}, and v_{i} are constants for each input mode or coordinate. For the linear system the coordinates given by equations II-4.1 thru II-4. 4 become

Coordinates of a Point on Beam

$$
\begin{aligned}
& x_{b}=x_{h} \\
& y_{b}=v+y_{h} w+u \\
& \Psi_{b}=w+\psi
\end{aligned}
$$

II-4.9

Coordinates of the $j^{\text {th }}$ Slosh Mass Attach Point

$$
\begin{align*}
& x_{j}=x_{h j} \\
& y_{j}=v+x_{h j} w+u_{j}+p_{j}=x_{b j}+\rho_{j} \\
& U_{j}=w+\psi_{j}
\end{align*}
$$

Coordinates of the $k^{\text {th }}$ Inertia Corrections_Attach Points

$$
\begin{align*}
& x_{k}=x_{h k}=x_{b k} \\
& y_{k}=v+x_{h k} w+u_{r k}=y_{b k} \\
& \Psi_{k}=w+\psi_{I k}=\Psi_{b k}
\end{align*}
$$

Coordinates of a point on the $e^{\text {th }}$ Engine

$$
\begin{align*}
& x_{E}=x_{h e}-z_{e} \\
& y_{E}=v+x_{G} w+u_{E}-z_{e} \delta_{e}=y_{b e}-z_{e} \delta_{e} \\
& \Psi_{e}^{\prime}=w+\psi_{e}+\delta_{e}
\end{align*}
$$

Coordinate of Attach Point of $f^{\text {th }}$ Fixed Engine

$$
\begin{align*}
& x_{F f}=x_{h f} \\
& y_{F f}=v+x_{F f} w+u_{F f}=y_{D f} \\
& \Psi_{F f}^{\prime}=w+\psi_{F f}
\end{align*}
$$

Equations II-4.9 thru II-4. 13 show thai x coordinate along the \bar{I} axis is equal to the x_{h} coordinate along the UEA for all input parameters. Therefore the column matrix defined by equation II-3.14 also represents the x coordinate along \bar{i} axis for each attach point. Also since x_{h} at any point is a constant and not a function of time, all of the mass elements of the missile have no motion in the direction of the \bar{i} axis and all motion is in the direction of the j axis. The value of w can be found firm the fact that the angular momentum about the c.g. due to motion with respect to $\bar{i}-\bar{j}$ axes is zero.

$$
\eta_{x y}=0 \text { for linear system }
$$

$$
\begin{equation*}
m_{x y}=\int_{T M}(\dot{y} x-\dot{x} y) d m+\int_{T M} r^{2}(\dot{w}+\dot{\psi}) d m+\sum_{e} \int_{e} r^{2} \dot{\delta} d m+\sum_{k} \Delta I_{k}\left(\dot{\psi}_{k^{\prime}}+\dot{w}\right) \tag{II-4.14}
\end{equation*}
$$

Substituting for x, y, \dot{x} and \dot{y}

$$
) \quad m x y=\dot{w I}+\sum_{j} x_{j} m_{j} \dot{\rho}_{j}+\sum_{e}\left[I_{G e}-x_{e} \ell_{G e} m_{G e}\right] \dot{\delta}_{e}+\sum_{k} \Delta I_{k} \dot{\psi}_{k}
$$

$$
\text { since } m_{x y}=0 \text { for a linear system }
$$

$$
\dot{w}=-\sum_{e} \frac{I_{G e}-x_{e} \ell_{G e}{ }^{m} G e}{I} \dot{\delta}_{e}-\sum_{j}^{m_{j} x_{j}} \frac{\cdot}{I} \dot{\rho}_{j}-\sum_{k} \frac{\Delta I_{k}}{I} \dot{\psi}_{k}
$$

$$
\dot{\psi}_{k}=\sum_{i} \lambda_{I k j} \dot{b}_{1}
$$

$$
\dot{w}=\sum_{e} \frac{I_{G e}-x_{e} \cdot l_{\sigma_{e}}^{m} G e}{I} \dot{\delta}_{e}-\sum_{j}^{m_{j} x_{j}} \frac{\dot{p}_{j}}{I}-\sum_{i}\left[\sum_{k} \frac{\Lambda_{k}^{I}}{I} \lambda_{I k i}\right] \dot{b}_{i}
$$

II -4.15

$$
\text { Define } w_{e}=-\left[\frac{I_{G e}-x_{e} \ell l_{G e} m_{G e}}{I}\right]^{j}
$$

$$
w_{j}=-\frac{m_{j} x_{j}}{I}
$$

$$
w_{i}=-\sum_{k} \frac{\Delta I_{k}}{I} \lambda_{I k i}
$$

$$
\begin{aligned}
& \eta_{x y}=\dot{w}\left[\int_{T M}\left(x^{2}+r^{2}\right) d m+\sum_{k} \Delta I_{k}\right]+\int_{T M}\left(\dot{u x}+r^{2} \dot{y}^{\prime}\right) d m+\sum_{j} m_{j} j_{j} x_{j} \\
& +\sum_{e} \dot{\delta}_{e}\left[\int_{e}\left(z_{e}^{2}+r^{2}\right) d n-x_{e} \ell_{G e}{ }^{m} G e+\sum_{k} \Delta I_{k} \dot{\psi}_{k}\right. \\
& \text { since } \int_{T M}\left(x^{2}+r^{2}\right) d x+\sum_{E} \Delta I_{k}=I \\
& \int_{T M}\left(\dot{u x}+r^{2} \dot{\psi}\right) d m=0 \\
& \int_{e}\left(z_{e}^{2}+r^{2}\right) d m=I_{G e}=\frac{\text { mass moment of inertia of } e^{\text {th }} \text { engine about }}{\text { gimbal }}
\end{aligned}
$$

then

$$
\dot{w}=\sum_{e} w_{e} \dot{\delta}_{e}+\sum_{j} w_{j} \dot{p}_{j}+\sum_{i} w_{i} \dot{b}_{i}
$$

defining $w=0$ for $\delta_{e}=\rho_{j}=b_{i}=0$

$$
w=\sum_{e} w_{e} \delta_{e}+\sum_{j} w_{j} \rho_{j j}+\sum_{i} w_{i} b_{i}
$$

$$
w=\left\{H_{\rho}\right\} T\left\{\begin{array}{l}
\delta \\
e
\end{array}\right\}+\left\{w_{j}\right\}_{T}\left\{p_{j}\right\}+\left\{w_{1}\right\}_{T}\left\{\begin{array}{l}
b_{i} \\
j
\end{array}\right\}
$$

$$
w=\left\{\begin{array}{l}
\left\{w_{e}\right\} \\
\left\{w_{3}\right\} \\
\left\{w_{i}\right\}
\end{array}\right\}\left[\begin{array}{l}
\left\{\begin{array}{l}
0_{0} \\
c_{e}
\end{array}\right\} \\
\left.\rho_{j}\right\} \\
\left.\rho_{0},\right\}
\end{array}\right\}=\quad=\quad\left\{w_{m}\right\} \quad\left\{Q_{n}\right\}
$$

$$
\left\{\begin{array}{l}
\text { where } \\
\left\{w_{m}\right\}=\underset{\text { column matrix }}{N}=\left\{\begin{array}{l}
\left\{\begin{array}{l}
\left.w_{e}\right\} \\
\left\{w_{j}\right\} \\
\left\{w_{i}\right\}
\end{array}\right\}
\end{array}\right\}
\end{array}\right.
$$

where w_{m} is a constant
II-4.2 KINETIC ENERGY WITH RESPECT TO $\bar{i}-\bar{j}$ AXES

$$
\begin{aligned}
& \tau_{x y}=\tau_{x y}(\text { translation })+\tau_{x y} \text { (rotation) } \\
& { }^{T}{ }_{x y}(\text { trans })=\frac{1}{2} \int_{b}\left(\dot{x}_{b}^{2}+\dot{y}_{b}^{2}\right) d m+\frac{1}{2} \sum_{j} \int_{j}\left(\dot{x}_{j}^{2}+\dot{y}_{j}^{2}\right) d m+\frac{1}{2} \sum_{e} \int_{e}\left(\dot{x}_{E}^{2}+\dot{y}_{E}^{2}\right) d m \\
& r_{x y}(r o t)=\frac{1}{2} \int_{b} r^{2}\left(\dot{\psi}(+\dot{w})^{2} d m+\frac{1}{2} \sum_{j} \int_{j} r^{2}\left(\dot{\psi}_{j}+\dot{w}\right)^{2} d m+\frac{1}{2} \sum_{e} \int_{e} r^{2}\left(\dot{\psi}_{e}+\dot{w}+\dot{s}\right)^{2} d m\right. \\
& +\frac{1}{2} \sum_{k} \Delta_{I_{k}}\left(\ddot{\psi}_{k}+\dot{w}\right)^{2} \\
& \dot{x}_{b}=0 \\
& \dot{y}_{\mathrm{b}}=\dot{\mathrm{v}}+\mathrm{x} \dot{\mathrm{w}}+\dot{\mathrm{u}} \\
& \dot{x}_{j}=0 \\
& \dot{y}_{j}=\dot{\underline{y}}_{b j}+\dot{\rho}_{j}
\end{aligned}
$$

$$
\begin{aligned}
& \dot{x}_{E}=0 \\
& \dot{y}_{E}=\dot{y}_{b E}-z_{e} \dot{\delta}_{e} \\
& x_{E}=x_{e}-z_{e} \\
& u_{E}=u_{e}-4 / e^{2} e
\end{aligned}
$$

Substituting

$$
\begin{aligned}
& 2 \tau_{x y}(\text { trans. })=\dot{v}^{2} M+\dot{w}^{2} \int_{T M} x^{2} d m+\int_{T M} \dot{u}^{2} d m+2 \dot{w} \int_{T M} x \dot{u} d m \\
& +\sum_{\dot{j}}^{\dot{m}_{j}}\left(\dot{p}_{j}^{2}+2 \dot{\rho}_{j}\left[\dot{v}+x_{j} \dot{w}+\dot{u}_{j}\right]\right) \\
& +\sum_{e}\left[\dot{\delta}_{e}^{2} \int_{e} z_{e}^{2} d m-2 \dot{v} \dot{\delta}_{e} m_{G e} l_{G e}-2 \dot{\delta} \dot{e}^{\dot{w}} e_{e} l_{G e}{ }^{m} e^{+2 \dot{\delta} \dot{w}} \int_{e}^{z_{e}^{2}} d m\right. \\
& \left.-2 \dot{\delta}_{e} \dot{u}_{e} m_{\mathrm{Ge}} l_{G e}+2 \dot{\delta} \dot{e} \dot{\psi} \dot{f e}_{e} \int_{e} z_{e}^{2} d m\right] \\
& 2 \tau_{x y}(r o t)=\int_{T M} r^{2} \dot{\psi}^{2} d m+2 \dot{w} \int_{T M} r^{2} \dot{\psi}^{d m+\dot{w}^{2}} \int_{T M} r^{2} d m+\sum_{e} \int_{e} r^{2}\left[2 \dot{\delta} \ddot{\varphi}_{e}+2 \dot{\delta} \dot{\hat{w}}+\dot{\delta}^{2}\right] d m \\
& +\sum_{k} \Delta r_{k}\left[\ddot{\psi}_{k}^{2}+2 \dot{\psi}_{k} \dot{w}+\dot{w}^{2}\right]
\end{aligned}
$$

adding

$$
\begin{aligned}
& { }^{\tau}{ }_{x y}=\frac{1}{2} M_{i}^{2}+\frac{1}{2} I \dot{w}^{2}+\frac{1}{2} \sum_{i} \dot{m}_{i}^{2}+\frac{1}{2}{ }_{j} m_{j} \dot{\rho}_{j}^{2}+\sum_{j} m_{j \rho \cdot j}\left[\dot{v}+x_{j} \dot{\underline{w}}+\dot{u}_{j}\right] \\
& \left.+\frac{1}{2} \sum_{e} I_{r e} \dot{\delta}_{e}^{2}+\sum_{e} \dot{\delta}_{e}\left[\dot{w}_{i}^{\prime} I_{G e}-x_{e} l_{G e} m_{G e}\right)+\dot{\psi}_{e} I_{G e}{ }^{-m_{G e}} l_{G e} \dot{u}_{e}-m_{G e} l_{G e} \dot{v}\right] \\
& +\sum_{k} \Delta I_{k}\left[\frac{1}{2} \dot{\psi}_{k}^{2}+\dot{\varphi}_{k}^{\dot{w}}\right] \\
& \text { since } \frac{m_{j}}{M_{M}}=v_{j} \\
& x_{j}=\frac{I}{M} \frac{w}{v_{j}} \\
& I_{G e}-x_{e} l_{G e}{ }^{m}=-I w_{e} \\
& \ell_{G e} \mathrm{mae}=M v_{e}
\end{aligned}
$$

$$
\begin{align*}
\frac{r_{x y}}{M} & =\frac{1}{2} \dot{v}^{2}+\frac{1}{2} \frac{I}{M} \dot{w}^{2}+\frac{1}{2} \sum_{i} \dot{b}_{i}^{2}-\frac{I}{2} \sum_{j} v_{j} \dot{\rho}_{j}^{2}+\frac{1}{2} \sum_{e}\left(\frac{I_{G e}}{M}\right) \dot{\delta}_{e}^{2}+\frac{l}{2} \sum_{k} \frac{\Delta I_{k}}{M} \dot{\psi}_{I k}^{2} \\
& -\sum_{e} \dot{\delta}_{e}\left[\frac{I}{M} w_{e} \dot{w}+v_{e} \dot{v}\right]-\sum_{j} \dot{\rho}_{j}\left[\frac{I}{M} w_{j} \dot{w}+v_{j} \dot{v}\right]-\frac{\sum_{i}}{i} \dot{b}_{i}\left[\frac{I}{M} w_{i} \dot{w}+v_{i} \dot{v}\right] \\
& +\sum_{e} \dot{\delta}_{e}\left[\frac{I_{G e}}{M} \dot{\psi}_{e}-v_{e} \dot{u}_{e}\right]-\sum_{j} \dot{\rho}_{j}\left[v_{j} \dot{u}_{j}\right]
\end{align*}
$$

From equation II-2.22, dynamic equation associated with each of the generalized coordinates Q_{n} is the Lagrange Equation for motion with respect to the $\bar{i}-\bar{i}$ axes

$$
\frac{d}{d t}\left(\frac{\partial^{T} x y}{\partial \dot{Q}_{m}}\right)-\frac{\partial^{\top} x y}{\partial Q_{m}}+\frac{\partial^{V_{i}}}{\partial Q_{m}}+\frac{\partial^{F} D}{\partial \dot{Q}_{m}}=P_{m}
$$

The second term is zero for a linear system therefore the Lagrange equation divided by the total system mass becomes

$$
\frac{1}{M} \frac{d}{d t}\left(\frac{\partial^{i} x y}{\partial \dot{Q}_{m}}\right)+\frac{1}{M} \frac{\partial V_{I}}{\partial Q_{m}}+\frac{1}{M} \frac{\partial_{D}}{\partial \dot{Q}_{m}}=\frac{P_{m}}{M}
$$

Equation II-4.20 represents a series of N dynamic equations one for each Q_{m}, In matrix form II-4.20 becomes
$\left\{\frac{1}{M} \frac{d}{d t} \frac{\partial^{\tau} x y}{\partial Q_{m}}\right\}+\left\{\frac{1}{M} \frac{\partial^{V_{I}}}{\partial Q_{m}}\right\}+\left\{\begin{array}{ll}\frac{1}{M} & \frac{\partial^{F_{D}}}{\partial \dot{Q}_{m}}\end{array}\right]=\left[\frac{P_{m}}{M}\right\}$
II-4.2I

The first column matrix represents the inertia for ses associated with the Q_{m} coordinates. Where Q_{m} equals δ_{p}, the inertia force associated with the $p^{\text {th }}$ engine is

$$
\begin{aligned}
& \frac{1}{M} \frac{d}{d t}\left(\frac{\partial^{T} x y}{\partial \dot{\delta}_{p}}\right)=\frac{I_{G p}}{M} \ddot{\delta}_{p}-\sum_{e} \ddot{\delta}_{e}\left[\frac{I}{M} w_{e} w_{p}+v_{e} v_{p}\right]-\sum_{j} \ddot{\rho}\left[\frac{I}{M} w_{j} w_{p}+v_{j} v_{p}\right] \\
& -\sum_{i} \ddot{b}_{i}\left[\frac{I}{M} v_{i} w_{p}+v_{i} v_{p}\right]+\sum_{i} \ddot{b}_{i}\left[\frac{I_{G p}}{M} \lambda_{p i}-v_{p} \phi_{p i}\right]
\end{aligned}
$$

8414-6046-7v000
Page 48

The inertia force associated with the $r^{\text {th }}$ sloshing coordinate ρ_{r} is

$$
\begin{align*}
& \frac{1}{M} \frac{d}{d t}\left(\frac{\partial^{2} x y}{\partial \zeta_{r}}\right)=-v_{r} \ddot{\rho}_{r}-\sum_{e} \ddot{\delta}_{e}\left[\frac{I}{M} w_{e} w_{r}+v_{e} v_{r}\right]-\sum_{j} \ddot{\rho}_{j}\left[\frac{I}{M} w_{j} w_{r}+v_{j} v_{r}\right] \\
& -\sum_{i} \ddot{b}_{i}\left[\frac{I}{M} w_{i} w_{r}+v_{i} v_{r}\right]-\sum_{i} \ddot{b}_{i}\left[v_{r} \phi_{r i}\right]
\end{align*}
$$

The inertia force associated with the $t^{\text {th }}$ bending coordinate b_{t} is

$$
\begin{align*}
& \frac{1}{M} \frac{d}{d t}\left(\frac{\partial^{\prime} x y}{\partial \ddot{b}_{t}}\right)=\ddot{b}_{t}-\sum_{e} \ddot{\delta}_{e}\left[\frac{I}{M} w_{e} w_{t}+v_{e} v_{t}\right]-\sum_{j} \ddot{\rho}_{j}\left[\frac{I}{M} w_{j} w_{t}+v_{j} v_{t}\right] \\
& -\ddot{b}_{i}\left[\frac{I}{M} w_{i} w_{t}+v_{i} v_{t}\right]+\sum_{e} \ddot{\delta}_{e}\left[\frac{I_{G e}}{M} \lambda_{e t}-v_{e} \phi_{e t}\right] \\
& -\sum_{j} \ddot{\rho}_{j} v_{j} \phi_{j t}+\sum_{i} \ddot{b}_{i}\left(\sum_{k} \frac{\Delta I_{k}}{M} \lambda_{I k i} \lambda_{I k t}\right)
\end{align*}
$$

Equations II-4.22, II-4.23, and II-4. 24 can be written as

$$
\begin{aligned}
& \frac{1}{M} \frac{d}{d t}\left(\frac{\partial^{T} x y}{\partial \dot{\delta}_{p}}\right)=\left\{B_{p n}\right\}_{T}\left\{\ddot{Q}_{n}\right\}_{j}=\frac{I_{G p}}{M} \ddot{\delta}_{p}=\left\{\frac{I}{M} w_{p} w_{n}+v_{p} v_{n}\right\}_{T}\left\{\ddot{Q}_{n}\right\}+\left\{\frac{I_{G p}}{M} \lambda_{p n}\right. \\
& \left.{ }^{-v}{ }_{p} \phi_{p m}\right\}_{T}\left\{\begin{array}{l}
\dot{0} \\
\ddot{q}_{n}
\end{array}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{M} \frac{d}{d t}\left(\frac{\partial^{\tau} x y}{\partial \dot{b}_{t}}\right)=\left\{B_{t n}\right\}_{T}\left\{\ddot{a}_{n}\right\}=\ddot{b}_{t}-\left\{\frac{I}{M} w_{t} w_{n}+v_{t} v_{n}\right\} T\left\{\ddot{\theta}_{n}\right\}+\sum_{e} \ddot{\delta}_{e}\left[\frac{I_{G e}}{M} \lambda_{e t}-v_{e} \phi_{e t}\right] \\
& -\sum_{j} \ddot{\rho}_{j j} v_{j} \phi_{j t}+\left\{\sum_{i} \frac{\Delta_{k}^{I}}{M} \lambda_{I k t} \lambda_{I k n}\right\}\left\{\ddot{Q}_{\mathrm{i}}\right\}
\end{aligned}
$$

Defining B_{m} where $B_{e}=\frac{I_{G e}}{M}, B_{j}=-v_{j} ; B_{t}=1.0$

$$
c_{m} \text { where } c_{e}=\frac{I_{G e}}{M},-c_{j}=0, c_{i}=0
$$

then $\left\{\begin{array}{lll}\frac{1}{M} & \frac{d}{d t} & \frac{\partial^{T} x y}{\partial_{\dot{Q}_{m}}}\end{array}\right\}=[B]\left\{\ddot{\dot{Q}}_{n}\right\}$
II-4. 25
and in LaPlace notation
$\left\{\frac{1}{M} \frac{d}{d t} \frac{\partial^{2} x y}{\partial \dot{Q}_{m}}\right\}=s^{2}[B]\left\{\dot{Q}_{n}^{\dot{\prime}}\right\}$
where $[\mathrm{B}]$ is an $\mathrm{N} \times \mathrm{N}$ square matrix $\left[\mathrm{B}_{\mathrm{mn}}\right]$
$\mathrm{m}=$ row
$\mathbf{n}=$ column

$$
\begin{gather*}
B_{m n}=B_{m} \hat{\delta}(m, n)-\left[\frac{I}{M} w_{m} w_{n}+v_{m} v_{n}\right]+c_{m} \lambda_{m n}+c_{n} \lambda_{n m}-v_{m} \phi_{m r} \\
-v_{n} \phi_{n m}+\sum_{k} \frac{\Delta I_{k}}{M} \lambda_{I k m} \lambda_{I k n}
\end{gather*}
$$

The B matrix is the dynamic coupling matrix where $M B_{m n}$ gives the generalized force along Q_{m} resulting from unit acceleration of Q_{n} which is equal to the generalized force along Q_{n} reaulting from unit acceleration of Q_{m}. Therefore,

$$
B_{m n}=B_{n m}
$$

and $[B]$ must be a synmetric matrix.
II-4.3 INTERNAL POTENTIAL ENERGY
In considering the power balance of the system, rate uf energy irput equais rate of energy absorbed, the energy of the engine actuators must be taken into accolnt. When the sctuator moment, $M_{\delta e}$ is in the same direction as the actuator velocity, $\dot{\delta}_{\text {ae }}$ the work rate or power $M_{\delta e} \dot{\delta}$ is positive and the actuator acts as an external force increasing the sijstem energy. However, when the directions are opposite in sign the work rate or power is negative and the actuator acts as a damper decreasing the energy of the system. Sinse the actuator can introduce exergy and absorb energy it also appeai's as a spring storing potential energy. Although each approach will produce the same dyamic equations, the energy of the actuator will $1 . e$ introduced as potential energy in this analysis.

FIGURE II-4. 3
$K_{a e}=$ Torsional spring constant between $e^{\text {th }}$ engine and its actuator in pound-feet per radian.
$M_{\delta e}=A c t u a t o r$ monent of the $e^{t h}$ actuator equal to reactior torque from the $e^{\text {th }}$ engine.
$M_{\delta} e=K_{a e}\left(\delta_{a e}-\delta_{e}\right)$
$V_{I e_{l}}=\frac{1}{2} M_{\delta e}\left(\delta_{a e}-\delta_{e}\right)=\frac{1}{2} K_{a e}\left(\delta_{a e}-\delta_{e}\right)^{2}$
For a given engine angle, δ_{e}, the wagnitude of $\delta_{a e}$ determines the potential energy stored in the engine spring $K_{a e}$.

It is also assumed that due to flusd lines etc. there is a
torsional spring, $K_{n e}$, between the $e^{t h}$ engine and the missile body. The energy, stored in this spring is

$$
V_{I e_{2}}=\frac{1}{2} K_{n e} \delta_{e}^{2}
$$

The total internal potential energy stored by the engine springs, due to koth engine deflection and actuator deflection is

$$
V_{I e}=\sum_{e}\left[\frac{1}{2} K_{a e}\left(\xi_{g e}-\delta_{e}\right)^{2}+\frac{1}{2} K_{n e} \delta_{e}^{2}\right]
$$

II-4. 27

The iutal internal potential energy stored by the engines, slosh springs, and elastic deformation is

$$
v_{I}=v_{I e}+\frac{1}{2} \sum_{j} k_{j} \rho_{j}^{2}+\frac{1}{2} \sum_{i} k_{i} b_{i}^{2}
$$

but

$$
\begin{aligned}
& k_{j}=m_{j} \omega_{j}^{2} \\
& k_{i}=M \omega_{i}^{2}
\end{aligned}
$$

Therefore,

$$
V_{I}=\frac{1}{2} \sum_{e} K_{a e}\left(\delta_{a e}-\delta_{e}\right)^{2}+\frac{1}{2} \sum_{e} K_{n e} \delta_{e}^{2}+\frac{1}{2} \sum_{j} m_{j} \omega_{j}^{2} \rho_{j}^{2}+\frac{1}{2} M \sum_{i} \omega_{i}^{2} b_{i}^{2}
$$

II-4. 28
The second term of equation II-4.21 then becomes:

$$
\text { For the } p^{\text {th }} \text { engine }
$$

$$
\frac{1}{M} \frac{\partial^{V_{I}}}{\partial \delta_{p}}=\frac{K_{a p}+K_{a p}}{M} \delta_{p}-\frac{K_{a p}}{M} \delta_{a p}
$$

For the $r^{\text {th }}$ slosh mass

$$
\frac{1}{M} \frac{\partial V_{I}}{\partial p_{r}}=-V_{r} \omega_{r}^{2} \rho_{r}
$$

For the $t^{\text {th }}$ bending mode

$$
\frac{1}{\tilde{M}} \frac{V_{I}}{b_{t}}=\omega_{t}^{2} b_{t}
$$

Defining $N \times 1$ column matrices $\left\{A_{m}\right\}\left\{k_{m}\right\}$ and $\left\{\delta_{a n}\right\}$ such that
$\left\{A_{I I}=\left\{\begin{array}{l}\left\{A_{e}=\frac{K_{a e}+K_{n e}}{M}\right\} \\ \left\{A_{j}=-V_{r} \omega_{r}^{2}\right\} \\ \left\{A_{1}=\omega_{1}^{2}\right\}\end{array}\right\}\right.$
$\left\{\begin{array}{l}k_{m}=\left\{\begin{array}{l}\left\{k_{e}=\frac{K_{a e}}{M}\right.\end{array}\right\} \\ \left\{k_{j}=0\right\} \\ \left\{k_{i}=0\right\}\end{array}\right\}$.

II -4. 32

II-4. 33
$\left\{\delta_{\mathrm{an}}\right\}=\left\{\begin{array}{c}\delta_{0.1} \\ \delta_{\mathrm{a} 2} \\ \vdots \\ \delta_{\mathrm{aP}} \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right\} \quad$ II-4.34
then

$$
\frac{1}{M} \frac{\partial^{V_{I}}}{\partial Q_{m}}=[A]\left\{Q_{n}\right\}-[k]\left\{\delta_{a n\}}\right.
$$

where

$$
\begin{align*}
& A_{m n}=A_{m} \hat{\delta}(m, n) \\
& k_{m n}=k_{m} \hat{\delta}(m, n)
\end{align*}
$$

$$
\text { II--. } 36
$$

The A matrix is the static coupling matrix where $\mathrm{MA}_{\text {wn }}$ gives the generalized force along Q_{m} resulting from unit deflection of Q_{n}, ohich is equal to the generalized force along Q_{n} resulting from unit deflection of Q_{m}. Therefore $[A]$ must be symmetric, however the system is statically uncoupled and

$$
A_{m n}=A_{n m}=0 \text { when } n \neq m
$$

hence $[A]$ is a diagonal matrix.
II-4.4 DISSIPATION FUNCTION
The dissipation function F_{D} appearing in the third term of equatioin II-4.21 is defined as one half of the rate at which energy is dissipated in the system. It is essumed that all camping forces resuit from bencing, slosh, and engine velocities such that.

$$
F_{D}=\frac{1}{2} \sum_{e} D_{F e} \dot{\delta}_{e}^{2}+\frac{1}{2} \sum_{j} D_{s j} \dot{\zeta}_{j}^{2}+\frac{1}{2} \sum_{i} D_{b i} \dot{b}_{i}^{2}
$$

where $D_{G e}=$ ang' ze damping in pound feet per radian

$$
D_{s j}=\text { slosh damping in pounds per feet per second }
$$

$$
D_{b 1}=\text { bending damping in pound per feet per second. }
$$

unit

$$
\begin{aligned}
& D_{s j}=2 m_{j} \omega_{j} \zeta j \\
& D_{B i}=2 M \omega_{i} \zeta i
\end{aligned}
$$

where ζ_{j} is the damping ratio associated with the f slosh mass and ζ_{i} is the damping raic associated with the i tending ode then

$$
F_{D}=\frac{1}{2} \sum_{e} D_{G e} \dot{\delta}_{e}^{2}+\sum_{\dot{j}} \mathcal{T}_{j} \omega_{j} \zeta{ }_{i}{ }_{j}^{2}+M_{i} \omega_{i} \zeta_{i} \dot{b}_{i}^{2}
$$

Since the engive damping is usually given as torque per deflection rate es found from tests, the engine damping will be left as $D_{G e}$. It should be noted that ω_{j} is not the frequency of the $j^{\text {th }}$ slosh spring and mass when attached to the missile body but is the frequency when the spring mass is attached to a fixed point. ζj equal to unity does not represent critica? damping for the missile system when the $j^{\text {th }}$ sloshing roode only is present but represents critical damping for the $j^{\text {th }}$ tank when rigidiy held fixed. Likewise ω_{i} is not the frequency of the input bending mode when inertia corrections have been made.

The third term of equation II-4.21 then becomez for $p^{\text {th }}$ engine

$$
\frac{1}{M} \frac{\partial F_{D}}{\partial \dot{\delta}_{p}}=\frac{D_{G p}}{M} \dot{C}_{p}
$$

For the $r^{\text {th }}$ sjosh mass

$$
\frac{1}{\bar{M}} \frac{\partial^{F_{D}}}{\partial \dot{\delta}_{r}}=-2 v_{r} \omega_{r} \zeta_{r} \dot{\rho}_{r}
$$

II-4.40

For the $t^{\text {th }}$ bending mode

$$
\frac{1}{M} \frac{\partial^{F_{D}}}{\partial \dot{b}_{i}}=\dot{w}_{t} \zeta t \dot{b}_{t}
$$

Defining a $N \times 1$ column matrix $\left\{\begin{array}{l}D_{m} \\ y_{1}\end{array}\right\}$ such thet
$\left\{D_{m}\right\}\left\{\begin{array}{l}\left\{D_{e}=\frac{D_{G e}}{M}\right\} \\ \left\{D_{j}=-2 v_{j} \omega_{j} \zeta j\right\} \\ \left\{D_{j}=2 \omega_{i} \zeta_{l}\right\}\end{array}\right\}$
$\stackrel{\nu}{\sim}\left\{\begin{array}{ll}\frac{1}{M} & \frac{F_{D}}{\dot{Q}_{n}}\end{array}\right\}=s[D]\left\{Q_{n}\right\}$
II-4. 42
where

$$
D_{m n}=D_{m} \hat{\delta}(m, n)
$$

The $\left[D_{j}\right]$ matrix is the damping matrix where $M D_{m n}$ gives the generalized force along Q_{m} resulting from unit velocity of Q_{n} which is equal to the generalized force along Q_{n} resulting from unit velocity Q_{m}. Therefore, $[B]$ must be symmetric. However, for the coordinate system used $[D]$ is a diagonal matrix.

From equations I1-4.25, II-4.35 and II-4.42 equation 4.21
car be written, in La Place transform notation as

$$
s^{2}[B]\left\{\varepsilon_{n}\right\}+[A\}\left\{\theta_{n}\right\}+s[D]\left\{\theta_{n}\right\}=[\mathrm{k}]\left\{\delta_{a n}\right\}+\left\{\frac{P_{m}}{M}\right\}
$$

II-4.5 INPUI FREQUENCIES
The undamped and undriven motion that results when a single generalized coordinate Q in given a magnitude of unity and all other generalized coordinates are made zero, has been defined as an input mode.
Since the system is linear the damped driven modes represented by equation II-4.43 will be linear combinations of these input modes. For studying the frequency shift of the system, it is necessairy to know the natural frequencies of these input modes. For a singje coordinate undamped and undriven mode, the $[D],[k]$ and $\left(\frac{P_{m}}{M}\right)$ matrices become zero and the $[B]$ and $[A]$ matrices are 1×1 matrices. Equation II- 4.43 becomes

8414-6046-TU000
Page 55

$$
\begin{aligned}
& s^{2} B_{\operatorname{man}} Q_{m}+A_{\text {III }} Q_{\text {mi }}=0 \\
& \left(s^{2} B_{\min }+A_{m m}\right) Q_{m}=0
\end{aligned}
$$

then

$$
\begin{aligned}
& s^{2}=-\frac{A_{m m}}{\bar{B}_{m m}} \\
& \omega_{\text {input }}=\left[\frac{A_{\operatorname{mm}}}{B_{m m}}\right]^{1 / 2}
\end{aligned}
$$

but

$$
\begin{align*}
& A_{m m}=A_{m} \\
& B_{m m}=B_{m}-\left[\frac{I}{M} w_{m}^{2}+v_{m}^{2}\right]+\sum_{k} \frac{\Delta I_{k}}{M} \lambda_{k m}^{2} \\
& \omega_{I N P U T}=\left[\frac{A_{m}}{\left.B_{m}-\frac{I}{M} w_{m}^{2}+v_{m}^{2}+\sum_{k} \frac{I_{k}}{M} \lambda_{k m}^{2}\right]}\right.
\end{align*}
$$

The slosh mass, m_{j}, has an associated sloshing frequency of ω_{j} calculated by the sloshing program. This frequency is equal to the square root of $\frac{k_{j}}{m_{j}}$ and is the natural frequency of the spring mass system when attached to a stationary body. In the slosh input mode the spring mass is attached to a moving missile body and the input natural frequancy as given by equation II-4.44 will be higher than the square root of $\frac{k_{j}}{m_{j}}$. Likewise the engine input frequency calculated from equation II-4.44 will be higher than the square root of $\frac{K_{a e}+K_{n e}}{I_{G e}}$. In the case of the input bending modes the input frequency is equal to the inputed modal frequency unless inertia corrections have been made. The aciastion of $\Delta I^{\prime} s$ will produce higher input bending frequencies.

8414-6046-TUCOO
Page 56

II-5 EXTERNAL FORCES

The external forces are assumes to result from the thrust of the gimbalıed engines, $T_{G a}$, the thrust of the fixed engines, $T_{F f}$ and the aerodynamic forces P_{a}. The external forces will be expressed by components along the $\bar{i}-\bar{j}$ axes in the form

The external forces due to the gimballed engine e are

$$
\begin{align*}
& P_{x e}=T_{G e} \cos \left(w+\psi_{e}+\delta_{e}\right) \approx T_{G e} \\
& P_{y e}=T_{G e} \sin \left(w+\psi_{e}+\delta_{e}\right) \approx T_{G e}\left(w+\psi_{e}+\delta_{e}\right) \\
& x_{p e}=x_{e} \\
& y_{p e}=v+x_{e} w+u_{e}
\end{align*}
$$

The external forces due to the fixed engine f are

$$
\begin{align*}
& P_{x f}=T_{F f} \cos \left(w+\psi_{F f}\right) \approx T_{F f} \\
& P_{y f}=T_{F f} \sin \left(w+\psi_{F f}\right) \approx T_{F f}\left(w+\psi_{F f}\right) \\
& x_{p f}=x_{F f}
\end{align*}
$$

$$
y_{p f}=v+x_{F f} w+u_{F f}
$$

The aerodynamic forces are obtained from the pressure distribution on the surface of the missile body. The net aerodynamic force on an element of the missile $d x_{h}$ in length, measured along the UEA, is found by integrating the pressure over the external surface of that element. This net force is resolved into components $d P_{N}$ normal to the UEA and $d P_{D}$ along the UEA. These forces are defined by

$$
\begin{aligned}
& d P_{N}=\alpha C_{N x} d x q S \\
& d P_{D}=d D+\alpha C_{E x} d x q S
\end{aligned}
$$

where the axial or drag forces are measured positive aft and
$\alpha=\left(\alpha_{0}+w\right)=$ angle of attack of the UEA
$q=$ dynamic pressure
$S=$ reference area
$C_{N} \sqrt{\bar{x}}$ distrituted non-dimensional force cuefficient
$C_{A X}=$ distributed non-dimensional force cosfficient
$\mathrm{dD}=\mathrm{drag}$ force independent of angle of attack

Defining

$$
N_{\alpha x}=C_{N x} q S
$$

$$
A_{\alpha x}=C_{A x} q S
$$

then

$$
d P_{N}=\alpha N_{\alpha x} d x
$$

$$
d P_{D}=d D+\alpha A_{\alpha x} d x
$$

The distributed normal and axial force coefficients $N_{\alpha x}$ and $A_{\alpha x}$ are functions of x_{h} and are the force per unit length per raiian of angle of attack.

For the purpose of this analysis, it is assumed that axial force is not a function of the angle of attack ($A_{\alpha x}=0$) and

$$
\begin{aligned}
& d P_{D}=d D \\
& P_{D}=\int_{T M} d D=D
\end{aligned}
$$

where D is the drag force in pounds and is considered a constant at a given time $n f$ flight.

It is further assumed that the normal force distribution is not a function of elastic deformation and is independent of the local bending slope.

The external aero forces due to drag are then
$\dot{P}_{x D}=-D \cos w \approx-D$
$P_{y D}=\cdot I \sin w \approx-D w$
$x_{p D}=l_{p}$
$y_{p D}=v+l_{p} w$
where ℓ_{p} is the x_{h} coordinate of the center of pressure defined below. The external aero forces due to normal force are then

$$
\begin{aligned}
& d P_{x N}=-d P_{N} \sin w \approx 0 \\
& d P_{y N}=d P_{N} \cos w \approx d P_{N} \\
& x_{p N}=x_{h} \\
& y_{p N}=v+x_{h} w+u
\end{aligned}
$$

The total normal force P_{N} is then

$$
P_{N}=\int_{T M} d P_{N}=\alpha \int_{T M} N_{\alpha x} d x=\alpha N_{\alpha}
$$

Where N_{α} is the total normal force coefficient
Tiking moments of the aero forces about the origin on the UEA

$$
\begin{aligned}
& d M_{A}=x_{h} a P_{N} \\
& M_{A}=\int_{T M} x_{h} d P_{N}=\alpha \int_{T M} x_{h} N_{\alpha x} d x=i i_{\alpha} \alpha l p
\end{aligned}
$$

where ℓp is the location of the center of pressure

$$
l_{p}=\frac{1}{N_{\alpha}} \int_{T M} x_{h} N_{\alpha x} d x
$$

Then for the aerodynamic forces

$$
\begin{aligned}
& \frac{P_{x a}}{M}=-\frac{D}{M} \\
& \frac{P_{y a}}{M}=\frac{N_{\alpha}}{N} \alpha-\frac{D_{w}}{M} \\
& P_{y a} x_{p}=\int T M \\
& P_{N} x_{h}-D w h p=\left(N_{\alpha} \alpha-D w\right) \ell p \\
& P_{x a} y_{p}=-D\left(v+\ell_{p} w\right)
\end{aligned}
$$

II-5.1 FORCING FUNCTION FOR AXIAL ACCELERATION EQUATION
The axial acceleration equation II-2. 24 requires the frcing function $\frac{1}{M} \sum_{P} P_{x}$

$$
\begin{align*}
& \frac{1}{M} \sum_{F} P_{x}=\sum_{e} \frac{T_{G e}}{M}+\sum_{f} \frac{T_{F f}}{M}-\frac{D}{M} \\
& \frac{1}{M} \sum_{P} P_{x}=\frac{T_{T}-D}{M}=\beta_{x}
\end{align*}
$$

where $T_{T}=\sum_{e} T_{G e}+\sum_{f} T_{F f}=$ total thrust

II-5.2 FORCING FUNCTION FOR NORMAL ACCEIERATION EQUATION
The forcing function associated with normal acceleration equation II-2.25 is $\frac{1}{M} \sum_{P} P_{y}$
$\frac{1}{M} \sum_{P} P_{y}=\sum_{e} \frac{T_{G e}}{M}\left(w+\psi^{\prime} e^{+}+\delta_{e}\right)+\sum_{f} \frac{T_{F f}}{M}\left(w+\psi_{F f}\right)+\frac{N_{\alpha}}{M} \alpha-\frac{D w}{M}$ $\frac{1}{M} \sum_{P} P_{y}=\frac{N_{\alpha}}{M} \alpha+w P_{x}+\sum_{i}\left[\sum_{e} \frac{T_{G e}}{M} \lambda_{e i}+\sum_{f} \frac{T_{F f}}{M} \lambda_{F f i}\right] b_{i}+\sum_{e} \frac{T_{G e}}{M} \delta_{e}$ Define $\left[\sum_{e} \frac{T_{G e}}{M} \lambda_{e i}+\sum_{f}^{T_{F f}} \frac{T_{F f i}}{M}\right]=\alpha_{l i}$
or

$$
\left[\sum_{e} \frac{T_{\mathrm{Ge}}}{M} \lambda_{e n}+\sum_{f} \frac{T_{\mathrm{Ff}}}{M} \lambda_{\mathrm{Ffn}}\right]=\alpha_{l n}
$$

$\alpha_{1 n}$ is a constant for each bending mode and is zero when n not equal to i.

Then

$$
\begin{align*}
& \frac{1}{M} \sum_{P} P_{y}=\frac{N_{\alpha}}{M} \alpha+\left\{w_{n} \beta_{x}+\alpha_{1 n}+\frac{T_{G n}}{M}\right\}_{T}\left\{Q_{n}\right\} \\
& \frac{1}{M} \sum_{P} P_{y}=\frac{\alpha}{M} \alpha+\left\{Q_{y n}\right\} T\left\{Q_{n}\right\}
\end{align*}
$$

where

$$
a_{y n}=\beta_{x} W_{n}+\alpha_{l n}+\frac{T_{G n}}{M}
$$

where $\frac{T_{G n}}{M}$ is zero for all modes except engine modes

II-5.3 FORCING FUNCTION FOR MOMENT EQUATION

The forcing function for the moment equation II-2.21 is the net moment of the external forces about the system center of gravity,

$$
\begin{aligned}
& \sum_{P}\left[P_{y} x_{p}-p_{x} y_{p}\right] \\
& \sum_{P}\left[P_{y} x_{p}-P_{x} y_{p}\right]=\sum_{P}\left[P_{y} x_{p}\right]-\sum_{P}\left[P_{x} y_{p}\right]
\end{aligned}
$$

The total external moment will be found in two parts, the moment due to y corponents and the moment aue to x components of the forces.

$$
\sum_{P} P_{y} x_{p}=\sum_{e} T_{G e}\left(w+\psi_{e}+\delta_{e}\right) x_{e}+\sum_{f} T_{F P}\left(w+\psi_{F f}\right)+\left(\mathbb{N}_{\alpha} \alpha-D w\right) \ell p
$$

dividing by total mass M

$$
\begin{align*}
\frac{I}{M} \sum_{P} P_{y} x_{p}= & \frac{N_{\alpha} f_{f}}{M} \alpha+w\left[\sum_{e} \frac{T_{G e}}{M} x_{e}+\sum_{f} \frac{T_{F f}}{M} x_{f}-\frac{D l_{p}}{M}\right]+ \\
& +\sum_{i}\left[\sum_{e} \frac{T_{G e}}{M} x_{e} \lambda_{e i}+\sum_{f} \frac{T_{F f}}{M} x_{f} \lambda_{F f i}\right] b_{i}+\sum_{e} \frac{T_{G e}}{M} x_{e} \delta_{e} \\
\text { Define } & {\left[\sum_{e} \frac{T_{G e}}{M} x_{e}+\sum_{f} \frac{T_{F f}}{M} x_{f}-\frac{D p}{M}\right]=\beta_{T}=\text { constant } } \\
& {\left[\sum_{e}^{T} \frac{T_{G e}}{M} x_{e} \lambda_{e i}+\sum_{f} \frac{T_{F f}}{M} x_{f} \lambda_{F f i}\right]=\alpha_{2 i} }
\end{align*}
$$

C
or $\left[\sum_{e}^{T} \frac{T_{G e}}{M} x_{e} \lambda_{e n}+\sum_{f}^{T} \frac{T_{F f}}{M} x_{f} \lambda_{F f n}\right]=\alpha_{2 n}$
$\alpha_{2 n}$ is a constant for each bending mode and is zero when n not equal to 1
then

$$
\frac{1}{M} \sum_{p} P_{y} x_{p}=\frac{N_{\alpha} l_{p}}{M} \alpha+\left\{\beta_{T} w_{n}+\alpha_{2 n}+\frac{T_{G n}}{M} x_{n}\right\} T\left\{Q_{n}\right\}
$$

for the x components the momint is

$$
\sum_{P} P_{x} y_{p}=\sum_{e} T_{G e}\left(v+x_{e} w+u_{e}\right)+\sum_{f} T_{F f}\left(v+x_{f} w+u_{e}\right)-n\left(v+\hat{\lambda}_{p} w\right)
$$

dividing by M

$$
\frac{1}{M} \sum_{P} P_{x} y_{p}=\beta_{x} v+\beta_{T} w+\sum_{i}\left[\sum_{e} \frac{T_{G e}}{M} \phi_{e i 1}+\sum_{f} \frac{T_{F f}}{M} \phi_{F f i}\right] b_{i}
$$

$\operatorname{Define}\left[\sum_{\mathrm{e}}^{\frac{T_{\mathrm{Ge}}}{M}} \phi_{\mathrm{ei}}+\sum_{\mathrm{f}} \frac{\mathrm{T}_{\mathrm{Ff}}}{\mathrm{M}} \phi_{\mathrm{Ffi}}\right]=\alpha_{3 i}$
or $\quad\left[\sum_{e} \frac{T_{G e}}{M} \phi_{e n}+\sum_{f} \frac{T_{F f}}{M} \phi_{F f n}\right]=\alpha_{3 n}$
II-5.12
$\alpha_{3 n}$ is a constant for each bending mode and is 20% when not equal to i.

Therefore,

$$
\frac{1}{M} \sum_{P} P_{x} y_{p}=\left\{\beta_{x} v_{n}+\beta_{T} W_{n}+\alpha_{3 n}\right\} T\left\{Q_{n}\right\}
$$

From equation II-5.9, II-5.11, and II-5.13 the total external moment is

$$
\sum_{P} P_{y} x_{p}-P_{x} y_{p}=N_{\alpha} \ell_{p} \alpha+M\left\{\frac{T_{\text {Gn }}}{M} x_{n}-\beta_{x} v_{n}+\alpha_{2 n}-\alpha_{3 n}\right\} T\left\{Q_{n}\right\}
$$

dividing by I

$$
\begin{align*}
& \frac{I}{I} \sum_{P}\left[P_{y} x_{p}-P_{x} y_{p}\right]=\frac{N_{\alpha} \ell_{p}}{I} \alpha+\frac{M}{I}\left\{\frac{T_{i n}}{M} x_{n}-\beta_{x v_{n}}+\alpha_{2 n}-\alpha_{3 n}\right\} T\left\{Q_{n}\right\} \text { II-5.14 } \\
& \frac{N_{\alpha} \ell_{p}}{I}=\mu_{\alpha}
\end{align*}
$$

Let $\frac{M}{I}\left(\frac{T_{G n}}{M} x_{n}-\beta_{x} v_{n}+\alpha_{2 n}-\alpha_{3 n}\right)=u_{n}$

$$
\frac{1}{I} \sum_{P}\left[P_{y} x_{p}-P_{x} y_{p}\right]=\mu_{\alpha} \alpha+\left\{\mu_{n}\right\} \quad\left\{Q_{n}\right\}
$$

II-5.4 FORCING FUNCTION FOR $\underline{m}^{\text {th }}$ MODAL EQUATION
The forcing function associated with the $m^{\text {th }}$ generalized co-
ordinate is given by equation II-2.22 as

$$
\frac{P_{m}}{M} \sum_{P}\left[\frac{P_{x}}{M} \frac{\partial x_{p}}{\partial Q_{m}}+\frac{P_{y}}{M} \frac{\partial y_{p}}{\partial Q_{m}}\right]
$$

8414-6046-TV000

 Page 63Since $x_{p e}, x_{p f}$, and $z_{p a}$ as given by equations II-5.1, II-5.2, and II-5.4, are all constants

$$
\frac{\partial x_{p}}{\partial Q_{m}}=0
$$

for ail coordinates and ail arriving forces result from components of force in the y direction. Therefore,

$$
\begin{aligned}
& \frac{P_{m}}{M}=\frac{1}{M} \sum_{P} P_{y} \frac{\partial^{y} P_{p}}{\partial Q_{m}} \\
& \frac{P_{m}}{M}=\sum_{e} \frac{P_{y e}}{M} \frac{\partial}{\partial Q_{m}}\left(v+x_{e} w+u_{e}\right)+\sum_{f} \frac{P_{v P}}{M} \frac{\partial}{\partial Z_{m}}\left(v+x_{F f} w+u_{f}\right) \\
& \left.-\frac{D u}{M} \frac{\partial}{\partial Q_{m}},+l_{p} w\right)+\frac{\alpha}{M} \int_{T M}\left[N_{C x} d x \frac{\partial}{\partial Q_{m}}\left(v+x_{h} w+u\right)\right] \\
& \frac{P_{m}}{M}=\sum_{e} \frac{P_{y e}}{M}\left(v_{m}+x_{e} w_{m}+\phi_{e m}\right)+\sum_{f} \frac{P_{y f}}{M}\left(v_{m}+x_{F f} w_{m}+\phi_{F f u}\right) \\
& -\frac{D_{v}}{M}\left(v_{m}+l_{p} w_{m}\right)+v_{m} \frac{N_{\alpha}}{M} \alpha+w_{m} l_{p} \frac{N_{\alpha}}{M} \alpha+\frac{\alpha}{M} \int_{T M} P_{m} N_{\alpha x} d x \\
& \frac{P_{m}}{M}=v_{m} \sum_{P} \frac{P_{y}}{M}+n_{m} \sum_{P} \frac{P^{y}}{y_{1}} x_{p}+\frac{\alpha}{M} \int_{T M} \phi_{m}{ }^{N} \alpha x d x+\sum_{e} \frac{P_{y e}}{M} \phi_{e m}+\sum_{f} \frac{P_{y P}}{M} \phi_{F f m} \\
& \text { II-5. } 18
\end{aligned}
$$

$\sum_{p} \frac{P_{y}}{M}$ is the sum of the forces in the y direction divided by M and is $\underset{F}{ }$ given by equation II-5.7. $\sum_{P} \frac{P_{y}}{M} x_{p}$ is the external moment due to the y components divided by M and is given by equation II-5.11. Letting the last two rems of equation II -5.18 equal $X_{\text {m }}$

Sefining $N_{\alpha D m}=\int_{T M} \phi_{m} N_{\alpha x} d x$
where

$$
\text { Define }\left[\sum_{\mathrm{e}}^{\frac{\mathrm{F}}{\mathrm{Ge}}} \mathrm{M} \lambda_{\mathrm{en}} \phi_{\mathrm{em}}+\sum_{\mathrm{f}} \frac{\mathrm{~T}_{\mathrm{Ff}}}{\mathrm{M}} \lambda_{\mathrm{Ffn}} \phi_{\mathrm{Ffm}}\right]=\alpha_{4 \mathrm{mr}}
$$

$\alpha_{4 m n}$ is a constant for each combination of m and n and is zero unless both m and n represent bending modes.
then

$$
x_{m}=\left\{w_{n} \alpha_{3 m}+\alpha_{4 m n}+\frac{T_{G n}}{M} \phi_{e m}\right\}_{T}\left\{\varepsilon_{n}\right\}
$$

then from II-5.19

$$
\begin{array}{rlr}
\frac{P_{m}}{M} & =\frac{N_{\alpha}}{M}\left(v_{m}+\ell_{p} w_{m}\right) \alpha+\frac{N_{\alpha D m}}{M} \alpha+\left\{v_{m}{ }^{2} y n\right. \\
& \left.+\alpha_{L_{m n}}+\frac{T_{G n} w_{m} w_{n}}{M} \phi_{n m}\right\} T w_{m} \alpha_{2 n}+w_{m} \frac{T_{G n}}{M} x_{n}+w_{n} \alpha_{3 m} \\
\left\{\begin{array}{ll}
P_{m} \\
M
\end{array}\right\} & =\left\{J_{m}\right\} \alpha+[P]\left\{Q_{n}\right\} & \text { II-5.21 }
\end{array}
$$

$$
\begin{align*}
& \text { where } \\
& J_{m}=\frac{N_{\alpha}}{M}\left(v_{m}+l_{p} w_{m}\right)+\frac{N_{\alpha D_{m}}}{M}
\end{align*}
$$

$$
\begin{aligned}
& \mathrm{X}_{\mathrm{m}}=\sum_{\underline{\mathrm{a}}} \frac{\mathrm{P}_{\mathrm{ye}}}{M} \phi_{\mathrm{em}}+\sum_{\mathrm{f}}^{\mathrm{P}_{\mathrm{yf}}} \frac{\mathrm{M}}{\mathrm{M}} \phi_{\mathrm{Ffm}} \\
& X_{m}=\sum_{e} \frac{T_{G e}}{M}\left(w+\psi^{+} \delta_{e}\right) \phi_{e m}+\sum_{f} \frac{T_{F P}}{M}\left(w+\psi_{F P}\right) \phi_{F_{1}} \\
& X_{\mathrm{m}}=v \alpha_{3 m}+\sum_{i}\left[\sum_{e} \frac{T_{\mathrm{Ge}}}{M} \lambda_{e i} \phi_{e m}+\sum_{\mathrm{f}} \frac{\mathrm{~T}_{\mathrm{Ff}}}{M} \lambda_{\mathrm{Ffi}} \phi_{\mathrm{Ffm}}\right] b_{i}+\sum_{\mathrm{L}} \frac{T_{\mathrm{Gn}}}{M} \phi_{\mathrm{nm}} Q_{\mathrm{n}}
\end{aligned}
$$

$$
P_{m n}=v_{m} a_{y n}+\beta_{T} w_{m} w_{n}+w_{m} \alpha_{2 n}+w_{m} \frac{T_{G n}}{M} x_{n}+w_{n} \alpha_{3 m}+\alpha_{4 m n}+\frac{T_{G n}}{M} \phi_{n m}
$$

II-6 DYMAMIC EQUATIONS IN GENERALIZED COORDINATES

Combining the results of sections II-2, II 4. and II-5, the dynamic equations representing the motion of the displaced or periurbed missile can be written in terms of generalized coordinates.

II-6.1 AXIAL ACCELERATION EQUATION

The axial acceleration along the nominal flight paith and along the \bar{i} axes are given by equations II-2. 19 and II-2.24 as

$$
\begin{aligned}
& \ddot{Q}_{H}=-V_{C g}\left(\dot{\theta}+\dot{\alpha}_{0}\right) \sin \left(\theta+\alpha_{0}\right)+\dot{V}_{\mathrm{Cg}} \operatorname{ccs}\left(\theta+\alpha_{0}\right)=\cos \theta \sum_{P} \frac{P_{x}}{H}+\sin \theta \sum_{P} \frac{P_{y}}{M} \\
& a_{x}=-V_{C g}\left(\dot{\theta}+\dot{\alpha}_{0}\right) \sin \alpha_{0}+\dot{V}_{C g} \cos \alpha_{0}=\sum_{P} \frac{P_{x}}{M}-\cos r \theta g \cos r
\end{aligned}
$$

For amall angles and dropping non-linear terms these accelerations become

$$
\begin{aligned}
& \ddot{Q}_{H}=\dot{v}_{c g}=\sum_{P} \frac{P_{x}}{M}-g \cos r \\
& a_{x}=\dot{\theta}_{c g}=\sum_{P} \frac{P_{x}}{M}-g \cos r
\end{aligned}
$$

from equation II-5.5

$$
\ddot{Q}_{\mathrm{H}}=a_{x}=\dot{v}_{c g}=\dot{B}_{x}-g \cos r=a \text { constant }
$$

Therefore for the linear system under consideration the acceleration along the nominal fiight path is equal to the acceleration along the \bar{i} axis which is a constant.

II-6.2 NORMAL ACCERLERATION EQUATION

The normal accelerations pexpendicular to the nominal flight path and perpendicular: to the \bar{I} axis are given by equations II-2.20 and II-2.25 as

$$
\begin{aligned}
& \ddot{Q}_{L}=-V_{c g}\left(\dot{\theta}+\dot{\alpha}_{0}\right) \cos \left(\theta+\alpha_{0}\right)-\dot{V}_{c g} \sin \left(\theta+\alpha_{0}\right)=\cos \theta \sum_{P} \frac{P_{y}}{M}-\sin \theta \sum_{P} \frac{P_{x}}{M} \\
& a_{y}=-V_{2 g}\left(\dot{\theta}+\dot{\alpha}_{0}\right) \cos \alpha_{0}-\dot{V}_{C g} \sin \alpha_{0}=\sum_{P} \frac{P_{y}}{M}-\sin \theta g \cos r
\end{aligned}
$$

For small angles and dropping non-linear terms, where $\dot{\gamma}_{c g}$ is a constant, these accelerations become

$$
\begin{aligned}
& \ddot{Q}_{L}=-v_{C g}\left(\dot{\theta}+\dot{\alpha}_{0}\right)-v_{C g}\left(\theta+\alpha_{0}\right)=\sum_{P} \frac{P_{y}}{M}-\theta \sum_{P} \frac{P_{x}}{M} \\
& a_{y}=-v_{c g}\left(\dot{\theta}+\dot{\alpha}_{0}\right)-\dot{v}_{C g} \alpha_{0}=\sum_{P} \frac{P_{y}}{M}-\theta g \cos r
\end{aligned}
$$

from II-5.5 and II-5.6

$$
\begin{align*}
& \sum_{P} \frac{P_{x}}{M}=\beta_{x} \\
& \sum_{P} \frac{P_{y}}{M}=\frac{N_{\alpha}}{M} \alpha+\left\{a_{y n}\right\} T\left\{Q_{n}\right\} \\
& \ddot{Q}_{L}=-V_{c g}\left(\dot{\theta}+\dot{\alpha}_{0}\right)-\dot{V}_{c g}\left(\theta+\alpha_{0}\right)=\frac{N_{\alpha}}{M} \alpha-\theta \beta_{x}+\left\{a_{y n}\right\} T\left\{Q_{n}\right\} \\
& a_{y}=\cdots v_{c g}\left(\dot{\theta}: \dot{a}_{0}\right) \cdot \dot{V}_{c g} \alpha_{0}=\frac{N_{\alpha}}{M} \alpha-\theta g \cos r+\left\{a_{y n}\right\} T\left\{Q_{n}\right\}
\end{align*}
$$

These ecuations show that the acceleracions normal to the nominal flight path and normal to the \bar{i} axis are not equal in the inear system but

$$
a_{y}=\ddot{Q}_{L}+\theta \dot{v}_{c g}=\ddot{Q}_{L}+a_{x} \theta
$$

In adiation eq:ation II-6.2 shows that the velocity of the system center of gravity normal to the nominal flight path is given by

$$
\dot{Q}_{L}=-V_{c g}\left(\theta+\alpha_{0}\right)
$$

By equations II-6. 2 and II- 6.3 the normal accelerations cen be expressed in terms of either α_{0} or α and the remaining coordinates, where α is the angle of attark of the UEA and α_{0} is the angle of attack of the \bar{i} axis, therefore

$$
\alpha=\alpha_{0}+w=\alpha_{0}+\left\{w_{n}\right\} T\left\{Q_{n}\right\}
$$

Since α is the more convenient variable, α_{0} is replaced by ($\alpha-w$) in equations II-6.2 and II-6.3. In addition $\stackrel{\circ}{\mathrm{V}}_{\mathrm{Cg}}$ is replaced by the constant $a_{x}=\beta_{x}-g \cos r$. Then in terms of the LaPlace operator, s, these equations become

$$
\begin{aligned}
& \ddot{Q}_{L}=-\left(v_{c g} s+a_{x}\right)(\theta+\alpha)+\left(v_{c g} s+a_{x}\right)\left\{\begin{array}{l}
w_{n} \\
n
\end{array}\right\} \quad\left\{a_{n}\right\}=\frac{N_{\alpha}}{M} \alpha-\theta_{x}+\left\{a_{y n}\right\} T\left\{\begin{array}{l}
\left.Q_{n}\right\} \\
i I-6.7
\end{array}\right. \\
& a_{y}=-v_{c g} s \theta-\left(v_{c g} s+a_{x}\right) a+\left(v_{c g} s+a_{x}\right)\left\{w_{n}\right\} T\left\{Q_{n}\right\}=\frac{N_{\alpha}}{M} \alpha-\theta g \cos r \\
& +\left\{a_{y n}\right\} T\left\{Q_{n}\right\} \quad \text { II-6. } \delta
\end{aligned}
$$

Using either equation II-6.7 or II-6.8 the dynamic equation in terms of the variable α is

$$
\left(v_{c g} s+\frac{N_{\alpha}}{M}+a_{x}\right) \alpha+\left(v_{c g} s-g \cos \gamma\right) \theta+\left\{a_{y n}-\left(v_{c g} s+a_{x}\right) w_{n}\right\} T\left\{q_{n}\right\}=0
$$

Since it is convenient to know the normal acceleration in the system, it is desirable to retain either G_{L} or a_{y} and convert either equation II-6.7 or II-6.8 into two equations retaining α as a dependent variable. In the previous analysis of reference $l_{\text {, }} a_{y}$ the acceleration along the \bar{j} axis was used. However, in this present analysis Q_{I}, the acceleration normal to the nominal trajectory, will be retained. Equation II-6.7 then becomes

$$
\begin{align*}
& \ddot{Q}_{L}=-\left(v_{c g} s+a_{x}\right)(\theta+\alpha)+\left(v_{c g} s+a_{x}\right)\left\{w_{n}\right\} T\left\{a_{n}\right\} \\
& \ddot{Q}_{L}=\frac{N_{\alpha}}{M} \alpha-\beta_{x} \theta+\left\{a_{y n}\right\} T\left\{a_{n}\right\}
\end{align*}
$$

Equation II-6.10 is the so called normal force equation and II-6.11 is the normal acceleration equation. The normal force equation can then be written as

$$
\left(v_{c g} s+a_{x}\right) \alpha+\ddot{Q}_{L}+\left(v_{c g} s+a_{x}\right) \theta-s\left\{N_{v n}\right\} T\left\{Q_{n}\right\}-\left\{N_{a n}\right\} T\left\{Q_{n}\right\}=0
$$

where

$$
\begin{aligned}
& N_{v n}=v_{c g} w_{n} \\
& N_{a n}=a_{x} w_{n}
\end{aligned}
$$

The normal acceleration equation can be written as

$$
-\frac{N_{\alpha}}{M} \alpha+\ddot{Q}_{L}+\beta_{x} \theta-\left\{a_{y n}\right\}_{T}\left\{q_{n}\right\}=0
$$

II-6.3 MOMENT EQUATION

The moment equation II-2.P1 is

$$
\frac{d}{d t}(\dot{I} \dot{\theta})=-\sum_{P}\left[P_{y} x_{P}-P_{x} y_{P}\right]
$$

For small angles and a linear system

$$
\ddot{\theta}=-\frac{1}{I} \sum_{P}\left[P_{y} x_{P}-P_{x} y_{P}\right]
$$

From equation II-5.1]

$$
\ddot{\theta}=-\mu_{\alpha} \alpha-\left\{\mu_{n}\right\} T\left\{a_{n}\right\}
$$

in terms of the Laplace operator the moment equation becomes

$$
\mu_{\alpha} \alpha+s^{2} \theta+\left\{\mu_{n}\right\} T\left\{Q_{n}\right\}=0
$$

II-6.4 MODAI EQUATIONS

From equation II-4, 43 the nodal equations can be written as
$s^{2}[B]\left\{Q_{n}\right\}+[A]\left\{Q_{n}\right\}+s[D]\left\{Q_{n}\right\}=[k]\left\{\delta_{a_{n}}\right\}+\left\{\frac{P_{m}}{M}\right\}$

From equation II-5. 21

$$
\left\{\frac{P_{m}}{M}\right\}=\left\{J_{m}\right\} \alpha+[P]\left\{Q_{n}\right\}
$$

Finally the modal equations become

$$
s^{2}[B]\left\{Q_{n}\right\}+s[D]\left\{Q_{n}\right\}+[A]\left\{Q_{n}\right\}=[k]\left\{S_{a n}\right\}+\left\{J_{m}\right\} \alpha+[P]\left\{Q_{n}\right\}
$$

II-6.5 SUMMARY OF EQUAIITONS
The dynamic equations derived for a missile cunfiguration con-
sidering flexible hody, sloshing, and engine dynanics are:
Axial Acceleration equation II-6.1

$$
\dot{v}_{c g}=a_{x}=\beta_{x}-g \cos r
$$

Normal Force Equation II-6.12

$$
\left(v_{c g} s+a_{x}\right) \alpha+\ddot{Q}_{L}+\left(V_{c g} s+a_{x}\right) \theta-s\left\{N_{v n}\right\}_{T}\left\{Q_{n}\right\}-\left\{N_{8 n}\right\}_{T}\left\{Q_{n}\right\}=0 \text { II-6.17 }
$$

Normal Acceleration Equation II-6. 13
$-\frac{N_{\alpha}}{M} \alpha+\ddot{Q}_{L}+\beta_{x} \theta-\left\{a_{y n}\right\} T\left\{Q_{n}\right\}=0$
Normal Equation II-6.14
$\mu_{\alpha} \alpha+s^{2} \theta+\left\{\mu_{n}\right\} T\left\{Q_{n}\right\}=0$
Modal Equations II-6.15

$$
s^{2}[B]\left\{Q_{n}\right\}+s[D]\left\{Q_{n}\right\}+[A]\left\{Q_{n}\right\}=[r]\left\{\delta_{a_{m}}\right\}+\left[J_{m}\right] a+[P]\left\{Q_{n}\right\}
$$

where n has values from 1 thru N
As pointed out in section II-4, the system has $N+3$ degrees of
freedom. The motion of the system is described by the above $N+4$ equations in the $N+4$ variables $\alpha, a_{x}, \theta, Q_{L}$ and N values of Q_{n}. However, the variable

8414-6046-Tu000

Page 70
α can be expreased as a linear combination of \ddot{Q}_{L}, θ and the Q_{n} 's by equation II-6.18, therefore, α is a dependent variable and is retained along with equation II-6.18 as a matter of convenience as ilscussed in section II-6.2. The $N+3$ soordinates which define the motion of the lineary systein are then $\dot{V}_{c g}, \ddot{Q}_{I}, \theta$ and the N values of Q_{n}. For the linear system the degree of freedom defined by $Q_{H}=V_{C g}=a_{x}=$ constant, equation II-6.16, is uncoupled from the other coordinates and consists of a constant acceleration along the Q_{H} axis. Since the force along the Q_{H} axes is constant, it is independent of Q_{H} and Q_{H} and there are no spring or damping forces alons the axes and the value of Q_{H} and Q_{H}. at time t are arbitrary. The constant, a_{x}, has been substituted for Q_{H} or $V_{c g}$ and $V_{c g}$ has been arbitrarily assigned to Q_{H} in the normal force equation II-6.17, therefore, the axial translational mode of motion has been efininated from the system of equations. Elimination of equation II-6.16 reduces the system to $N+2$ degrees of freedom equivalent to defining the missile motion with respect to a set of axis translating عlong the Q_{H} axes with velocity $V_{C g}$. The L inertial axes is then coincident with the P axes and the coordinate Q_{H} is zero.

II-7 MISSILE DYNAMICS IN GENERALIZED CODRDINATES
The dynamic equations given in section II-6 together with an engine hydraulic equations and an instrument equation, are the data required for the missile dynamics llock of figure I..亡 . The nissile dynamics represents the transfer function from delta command, δ_{c}, to the gyro outputs, θ_{P} and θ_{R}. Figure II-7.l contains a block diagram showing the effective flow of the data in the dynamic equations. It is assumed that in a system containing P gimballed engines, the command signals for each engine or group of engines may be different. The engine hydraulic equations which give the engine actuator position $\delta_{a e}$ corresponding to a given delta command, can be of any form but will usually appear in the form

$$
\left(K_{1} s+K_{2}\right) \delta_{e}+\left(K_{3} s+K_{4}\right) \delta_{a e}+\delta_{c e}=0
$$

requiring a feedback of engine positions δ_{e}.

The engine actuator position, and the angle of attack feedoack drive the modal equations II-6. 15 producing the modai coordinates Q_{n}. These coordinates in turn drive the normal acceleration and moment equations together with the equation

$$
w=\sum_{n} w_{n} Q_{n}
$$

to produce the rigid body rotation of the $i=\bar{j}$ axes, θ, the rigid body rotation of the UEA with respect to the $\bar{i}-\bar{j}$ axes, w, and the angle of attack α. In addition the engine deflactions are fedback to the engine hydraulic equations and the bending coordinates are combinel with the bending data tc produce the bending slopes at each gyro location. These bending slopes are combined with the rigid body rotations to produce the gyro signals,

$$
\begin{align*}
& \theta_{\mathrm{P}}=\theta-w-\psi_{\mathrm{P}} \\
& \theta_{\mathrm{RI}}=\theta-w-\psi_{\mathrm{RI}} \\
& \theta_{\mathrm{RII}}=\theta-w-\psi_{\mathrm{RII}} \\
& \theta_{\mathrm{R}}=\theta_{\mathrm{RI}}+a_{R} \theta_{\mathrm{RII}}
\end{align*}
$$

It is assumed that one position and two rate gyros are used and the net rate signal is a ratioed sum of the two rate gyros.

That portion of the system matrix representing missile dynamics is shown in Figure II-7.2. The first row of the matrix represents the normal force equation II-6.12. The second row is the normal acceleration equation II-6.13, and the third row is che moment equation II-6.14. The next N rows are the N modal equations II-5.15. The system shown is assumed to have three gimballed engines, therefore, columns $1.2,12$, and 13 represent the three engine actuator positions. Row 11 and colume 14 in'corduce the rigid body rotation with respect to the $\bar{i}-\bar{j}$ axes were

$$
w=\left\{w_{n}\right\} T\left\{a_{n}\right\}
$$

PICURE II - 7.2
SYSTHM MAIRIX IN GEITRRALTYAD COORD

	1	2	3	4	5	6	7	8	9	10	11
	α	\ddot{Q}_{L}	\bigcirc	Q_{1}	${ }_{2}$	Q_{3}	Q	Q_{N}	${ }_{8} 1$
1	$\begin{array}{\|l\|} \hline v_{c g} \\ +a_{x} \\ + \\ \hline \end{array}$	1	$\begin{array}{\|l\|} \hline v_{c g} \\ +a_{x} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline-\mathrm{N} \\ \hline \mathrm{vI} \\ -\mathrm{N}_{\mathrm{el}} \\ \hline \end{array}$	$\begin{aligned} & -\pi_{1} \bar{n}_{r 2} \\ & -n_{a 2} \end{aligned}$	$\begin{array}{ll\|} \hline-6{ }^{1} \\ -\mathrm{F}_{83} \\ \hline \end{array}$		$\begin{array}{\|l\|} -n_{v a} \\ -n_{a n} \\ \hline \end{array}$...:	$\begin{array}{ll} -8 \mathrm{H}_{\mathrm{VN}} \\ -\mathrm{N}_{\mathrm{ex}} \\ \hline \end{array}$	
2	$-\frac{n_{\alpha}}{\mu}$	1	β_{x}	$-{ }^{-1}$	$-{ }^{-8} 2$	${ }_{-2}{ }^{4}$	${ }^{-1}$	${ }^{-2} \mathrm{yN}$	
3	μ_{α}		${ }^{2}$	μ_{1}	μ_{2}	μ_{3}	H_{n}	H_{3}	
4	$-{ }^{-}$										$-x_{1}$
5	$-\mathrm{J}_{2}$										
6	$-\mathrm{J}_{3}$										
7	\vdots					$j+8$		[A] -			
8	$-\mathrm{J}_{\mathrm{n}}$										
9	\vdots										
10	$-^{-J}$										
11				${ }_{1}$	${ }^{*}$. $*_{3}$.	*...	v_{n}	\cdots	$\mathbf{V}_{\mathbf{M}}$	。
12			-1	$\lambda_{\text {P1 }}$	$\lambda_{\text {P2 }}$	$\lambda_{\text {P3 }}$. \cdot.	$\lambda_{\text {Pn }}$. \cdot.	$\lambda_{P X}$	
13			-1	$\left.\mid \lambda_{\mathrm{RI}}\right)^{\prime}$	$\left(\left.\lambda_{\text {RI }}\right\|_{2}\right.$	$\left.\mid \lambda_{\mathrm{RI}}\right)_{3}$	$\left(\lambda_{\text {RI }}\right)_{n}$	$\left(\lambda_{\text {RI }}\right)^{\prime}$	
14			-1	$\mid \mathrm{XRII}_{1}$	$\left(\lambda_{\mathrm{BII}}\right)_{2}$	$\left(\lambda_{\text {RII }}\right)_{3}$	$\left\|\lambda_{\text {RII }}\right\|_{\text {n }}$	$\mid\left(\lambda_{\text {RII }}\right)_{y}$	
15		.									
16			$\mathrm{X}_{1}{ }^{\text {a }}$ + K_{2}								$\mathrm{x}_{2}{ }^{3}+\mathrm{X}_{3}$
17				$\mathrm{R}_{4}^{8+K_{5}}$							

2
8414-6046-TJ-000
Page 73

The next four rovs and column introduce the instrunent equations II-7.2 wile the last three rows represent the engine hydraulic equations II-7.1. For the system shown it is assumed thet a single command signal, column 19 controis the actuators of the firit two gimballed engines and the third engine is restrainet in making its =omand signal zero.

The input to the inssile dynamics is δ_{c} of column 19 while the output is the gyro signals of columns 15 and 18 . The system matrix is completed by adding rows and colums representing the autopilot which operates on the gyro signais to produce the command signal.

The matrix representing missile dynamics, as shown in Figure II-T.2, will have a number of columns one greater than the number of rows. Adding an additional row to the matrix by piacing unity in the delta comaniz column, δ_{c}, will make the imput δ_{c} zero and the output arbitrary. The vailues of s which make the determinant of the resulting square matrix zero represent the necural frequencies of the missile dynamic system, and are the open loop poles of the system due to missile dynamics. The eizenvector associated with each pole or natural frequency represents the mode shape for that pole or frequency expressed as a linear combination of the input modes.

III-1 COMBINED MODE REPRESENTATION

In Section II the dynamic equations were derived for a missile configuration consideriag flexible oody, slosning, and engine dynamics. These equations of motion are:

Normal Fore: Equation
$\left(v_{C_{B}} s+a_{x}\right) \alpha+\ddot{Q}_{L}+\left(V_{c G} s+a_{A}\right) \theta-s\left\{N_{v n}\right\}_{T}\left\{Q_{n}\right\}-\left\{N_{Q_{n}}\right\}_{T}\left\{Q_{n}\right\}=0$
III-1. 1
Normal Accelerat on Equation
$-\frac{N_{\alpha}}{M} \alpha+\ddot{Q}_{L}+B_{X} \theta-\left\{a_{y n}\right\}_{T}\left\{Q_{n}\right\}=0$
III-1.2

Moment Equation
$\mu_{\alpha} \alpha+s^{2} \theta+\left\{\mu_{n}\right\}_{T}\left\{Q_{n}\right\}=0$
Nodeu Equations
$s^{2}[E]\left\{Q_{n}\right\}+s[D]\left\{Q_{n}\right\}+[A]\left\{Q_{n}\right\}=[k]\left\{\varepsilon_{a m}\right\}+\left\{J_{m}\right\} \alpha+[P]\left\{Q_{n}\right\}$
where n has values from 1 through N .
As noted in Section II-6.5, the system has N+2 degrees of freedom with respect to a translating set of inertial axes. The motion of the syatem is descrined by the above $N+3$ equations in the variables $\alpha, \theta_{,} Q_{L}$ and the N values of Q_{n}, where Q_{K} and Equation III-1. 2 are a dependent variable and equation. The variables θ, and the Q_{n} 's are generalized coordinates and α is a function of θ, the $Q_{n}^{\prime} s$ and the rate of change of the generalized coordinate Q_{L}.

$$
\alpha=-\left[\theta+\frac{\dot{Q}_{L}}{v_{c g}}-\left\{w_{r}\right\}_{T}\left\{Q_{n}\right\}\right]
$$

The gereralized coo:dinate Q_{L} is the displacement of the missile center of graivty normal to the nominal flight path. The generalized coordinate s i: the rotation of the body axes, $\bar{i}-\bar{j}$, and the N coordinates, Q_{n} define the inction of the missile with respect to the $\bar{i}-\bar{j}$ axes. The displacenent of the center of gravity along the nominal flight path has
been eliminated from the equations ay assuming tie reference axes to be translating along the flight path: at a velocity V_{cg}.

For each of the N ccordinates Q_{n} there is a so-called input mode as defined in Section II-4. Bach input mode is the amplitude of motion resulting when the correspinding coordinate Q_{n} has an amplitude of unity and all other coordinates are zero. The inyüt modes when Q_{n} represents an engine deflection, a sloshing deflection, and a bending deflection are shown in Figure III-1. The input engine modes are normalized to an engine deflection of 1 radian and the motion consists of a rigid body translation, v_{e}, and a rigid body rotation, y_{e}, of the UEA. The input slosh modes are normalized to a s?osh mass deflection of 1 foot and the motion consists of a rigid body translation, v_{j}, and a rigid body rotation, w_{j}, of the UEA. The input bending modes are normalized to a mass equal to the total mass of the missile for motion with respect to the UEA. The rigid body translation v_{i} is zero and the rigic body rotation, w_{1}, exists only when inertia corrections have been made. Since a bending coordinate, b_{i}, of unity represents motion equivalent to a normal mode, b_{i} is measured at the point where the deflection is unity. The motal deflections and slopes are in ft. per ft. and radians per ft. since b_{i} is in feet.

As noted in Section II-4 the modes defined as input modes are not true modes of the system since each can only exjst if all other coordinates are held fixed. However, since the svstem is linesr, superposition is valia and any free or driven motion of the system is a linear combination of the motions associated with the input modes and may be defined in terms of normal coordinates wich are a linear combination of the input coordinc:es Q_{n}. It was also noted in Section II-7 that the modes of oscillation asso:iated with the open loop natural frequencies or poies are a linear combination of the input modes. Likewise, the modes of oscillation associated with the clcsed loop natural frequencies or roots of the complete autopilot configuration are a linear combination of the input modes. Thereiore, the motion associated with the closed loop roots is a linear co ${ }^{-\cdots}$ ination of the motion associated with the open loop poles:. From the above it can de ceen that

8414-6046-T4JO00
Fage 77

INPUT SLOSH MODE

INPUT BRIDIING MODE

FIGURE III-1
INPUT MODES

8414-6046-'TUONO page 78

Abstract

the modes for tine closed loop roots, or the final motion of the sysiem can be expressed in terms of a linear combination of any set of modes and their coordinates which are in turn a linear combination of the input modes. These new modes will be referred to in ihis analysis as "combined modes." It may be seen that the modes corresponding to the open loop poles of the system are in effect combined modes each with a normal coordinate which is a inear combinaticin or the input coordinates Q_{n}. The final motion of the system corresponding tc the closed loop roots may then be expressed in terms of a linear combination of these normal coordinates.

Combined mode representation in connection with missile dynamic equations consists of defining a set of orthogonal modes in terms of a linear combination of the so-called inpui modes defined in Section II-4 and shown in Figure III-1. Replacing the input modes by this set of orthogonal cowbined modes produces a set of missile dynamic equaitions in a form which is independent of missile configuration with regard to propellant tank and engine arrangement. By using this representation the final stability equations retain the same form regardless of the missile system configuration. Also, as noted in Section II-3.2, the highest input bending frequency should be above the highest engine or slosb mode frequency in order to reduce truncation errors due to the use of a finite number of bending modes. Thie criterian usually results in the use of from three to five bending modes. The use of additional modes increases the size of the system matrix and requires additonal computer time to obtain the solutions. With the use of combined mode representation, a larger number of bending modes may be used in the calculation of the $\infty \mathrm{m}$ bined modes and the dropping of the higher frequency orthogonal combined modes from the syster: equations will tend to reduce truncation errors.

\section*{III-2 SELECTION OF COMBINED MODES}

In Secticn III-1 the principle of superposition in a linear system was used to show that the motion of the missile may be desoribed in terms of a linear combination of a set of combined modes and the dyamic equati ons can be expressed in terms of their normal coordinates which in turn are a linear combination of the coordinates Q_{n}. Let the normal coordinkites of the combined
modes be represenied by q_{a}, a equals 1 tnrough N. 工ombined mode representation consists of making a linear coordinate transformation from the generalized coordinates Q_{n} to the normal coordinates q_{a} and defining the motion in terms of the combined modes instead of the input modes. Considering the modal equation represented by III-1.4,

$$
s^{2}[B]\left\{Q_{n}\right\}+s[D]\left\{Q_{n}\right\}+[A]\left\{Q_{n}\right\}=[k]\left\{\delta_{a m}\right\}+\left\{J_{m}\right\} \alpha+[P]\left\{Q_{n}\right\}
$$

The left side of the equation is a function of only the Q_{n} 's and when equated to zero represents a eigenvalue problem, the solution of which gives the natural frequencies and mode shapes for the system when the actuator position, aerodynamic forces, and thrust forces are zerc. The right side of the equation then represents the driving forces for these new combined modes. The matrix $[P]\left\{Q_{n}\right\}$ represents the spring forces resulting from engine thrust and is also only a function of the Q_{n} 's. This term may be transferred to the left side of the equation and the combined modes then become the undriven damped modes with engine thrust forces present. Likewise, the aerodynamic forces $\left\{J_{m}\right\} \alpha$ can be made functions of the Q_{n} 's only by using Equations III-1.1, III-1.2, and III-1. 3 to express α as a function of Q_{n} 's. Transferring this term to the left side of the equation will result in combined modes for undriven, damped modes with engine thrust and aerodynamic forces present. The only driving force remaining on the right side is $[k]\left\{\delta_{a m}\right\}$ due to engine actuator positions. These mode shapes and frequencies require only the addition of the engine hydraulic equation to yield the system open loop poles and associated mode shapes. Calculation of the combined modes with the loop opened in this manner would require a considerable expenditure of computer time approaching that required tc obtain open loop poles. The use of combined modes is only justified if the modes con be obtained quickly wi. a small expenditure of computer time. This criterian requires that the aerodynamic forces $\left\{J_{m}\right\} \alpha$ and the thrust spring forces $[P]\left\{Q_{n}\right\}$ remain on the right side of Equation III-1.4 as driving forces. In addition, the damping forces represented by $s[D]\left\{Q_{n}\right\}$ meike the constants which express the combined modes as a linear
combination of the input modes, complex numbers which greatly increases the required computer time. The more suitable form of Equation III-1. 4 for combine mode calculations is then

$$
s^{2}[B]\left\{Q_{n}\right\}+[A]\left\{Q_{n}\right\}=-s \cdot[D]\left\{Q_{n}\right\}+[k]\left\{\delta_{a_{m}}\right\}+\left\{J_{m}\right\} \alpha+[P]\left\{Q_{n}\right\}
$$

III-2.1

In this form the homogeneous equation

$$
s^{2}[B]\left\{Q_{n}\right\}+[A]\left\{Q_{n}\right\}=0
$$

may be solved by the $A X=\lambda B X$ computer subroutine (Reference 0). This subroutine is extremely fast but requires that the $[A]$ and $[B]$ matrix be symmetric and that the $[B]$ matrix be positive and definite. The solution of Equation III-2.2 will give the undamped natural frequencies of the system when the actuator positions, the aerodynamic forces, and the thrust forces are all zero. The $[p]$ matrix representing the thrust spring forces cannot be placed on the left side of the equation since it is not a symmetric matrix. In the previous analysis, Reference 1 , the symmetric components of the $[\mathcal{Y}]$ matrix were placed on the left side and included in the combined modes; however, for this analysis all of the effects of the thrust forces are considered driving forces.

III-3 COORDINATE TRANSFORMATION Solution of Equation III-2.2 will result in N values of s^{2} where $s^{2}=-\Omega^{2}$ and N associated.eigenvectors $\left\{e_{n a}\right\}$. Where:

$\Omega_{a}=$	natural frequency of the $a^{\text {th }}$ combined mode
$\left\{e_{n a}\right\}=$	a column matrix of the values of $\left\{Q_{n}\right\}$ obtained from III-2.2
	when $s^{2}=-\Omega^{2}$.

Then $e_{n a}$ is the amount of Q_{n} present in the $a^{\text {th }}$ combined mode. The eigenvectors $\left\{e_{n a}\right\}$ obtained from the sui. routine are normalized such that

$$
\left\{e_{n a}\right\}_{T}[B]\left\{e_{n a}\right\}=1
$$

and since the modes are orthogonal

$$
\left\{e_{n a}\right\}{ }_{T}[B]\left\{e_{n b}\right\}=0
$$

III-3.2

Let

$$
[E\}=\left[\left\{e_{n 1}\right\}\left\{e_{n 2}\right\} \cdot \cdots \cdot\left\{e_{n a}\right\} \cdot \cdots \cdot\left\{e_{n N}\right\}\right]=\left[e_{n a}\right\}
$$

when $[E]$ is a $N \times N$ square matrix, the columns of which are the eigenvectors found in the solution of Equation III-2.2. This [E]matrix is defined as the normalized modal matrix of Equation III-2.2 From III-3.1, III-3.2, and III-3. 3

$$
[E]_{T}[B][E]=\left[I_{]}\right.
$$

Since the values of B and A in Equation III-2.2 are the masses and spring constants divided by the total mass of the system, Equations III-3.1 and III-3.4 are equivalent to normalizing the combined modes to a mass equal to the total mass. Since $\left\{e_{n a}\right\}$ is the solution of III-2.2 when $s^{2}=-\Omega_{a}^{2}$
$[A]\left\{e_{n a}\right\}=\int_{C_{a}^{2}}^{2}[B]\left\{e_{n a}\right\}$ from which $[A][E]=[B][E]\left[\Omega^{2}\right]$
where $\left[\Omega^{2}\right]^{2}$ is a diagonal matrix of the values of Ω_{a}^{2}, premultiplying III -3.5 by $[E]_{T}$

$$
[E]_{T}[A][E]=[E]_{T}[B][E]\left[\Omega^{2}\right]
$$

using III-3.4

$$
[E]_{I}[A][E]=\left[\Omega^{2}\right]
$$

III-3.6
Since $e_{n a}$ is the amount of Q_{n} present in the $a^{\text {th }}$ combined mode and q_{a} is the amount of the $a^{\text {th }}$ combined mode present,

$$
Q_{n}=\sum_{a} e_{n a} q_{a}=\left\{n^{\text {th }} \text { row of }[E]\right\}\left\{q_{a}\right\}
$$

ti،en

$$
\left\{Q_{n}\right\}=[E]\left\{a_{a}\right\}
$$

III-3. 7

Substituting tnis coordinate transiormation into Equation III-1.4
$s^{2}\left[B^{\prime}\left[E \cdot\left\{q_{a}\right\}+[A][E]\left\{q_{a}\right\}=-s[D]\left[E:\left\{q_{a}\right\}+\left[n \in\left\{\delta_{a m}\right\}+\left\{J_{m}\right\} \alpha+[P j \mid E]_{\{a}\left\{q_{a}\right\}\right.\right.\right.\right.$
premultiplying by $[E]_{T}$

$$
\begin{aligned}
s^{2}\left[E_{J T}^{-}[B][E]\left\{q_{a k}\right\}\right. & +[E]_{T}[A][E]\left\{q_{a}\right\}=-s[E]_{T}[D][E]\left\{q_{a}\right\}+[E]_{T}[k]\left\{\delta_{a m}\right\} \\
& +[E]_{T}\left\{J_{m}\right\} \alpha+[E]_{T}[F][E]\left\{q_{a}\right\}
\end{aligned}
$$

irom III-2.6 and III-2.8
$\begin{aligned} s^{2}[I]\left\{q_{a}\right\} & +\left[S_{i}^{2}\right]\left\{q_{a}\right\}=-s[E]_{T}\left[D j[E]\left\{q_{a}\right\}+[E]_{T}[k]\left\{\delta_{a m}\right\}+[E]_{T}\left\{J_{m}\right\} \alpha\right. \\ & +\left[E_{j T}^{-}[P][E]\left\{q_{a}\right\}\right.\end{aligned}$
$\left[s^{2}+\Omega_{a}^{2}\right]\left\{q_{a}\right\}=-s[E]_{T}[D][E]\left\{q_{a}\right\}+\left[E \bar{j}_{T}[k]\left\{\delta_{a m}\right\}+[E]_{T}\left\{J_{\tilde{\mu}}\right\} \alpha\right.$

$$
+[E\}_{T}[P][E]\left\{q_{a}\right\}
$$

where

$$
\left[s^{2}+\Omega_{a}^{2}\right] \text { is a diagonal matrix }=\left(s^{2}+\Omega_{a}^{2}\right)[I]
$$

Let $\left[D_{C}\right]=[E]_{T}[D]_{[E}^{[E]}=\left[D_{a b}\right]=$ damping matrix in
normal coordinates where $D_{a b}$ is l / M times the damping force associated with the q_{a} coordinate due to unit velocity of the q_{b} coordinate.

Let $\left[k_{c}\right]=[E]_{T}[k]=\left[k_{a b}\right]$
where $k_{a b}$ is $1 / M$ times the driving force for the $a^{\text {th }}$ combined mode due to unit deflection of the $b^{\text {th }}$ engine actuator.

Let $\left\{J_{c Q}\right\}=[E]_{T}\left\{J_{m}\right\}$
where $J_{c a}$ is $1 / M$ times the driving force for the $a^{\text {th }}$ combined mode due to a unit angle of attack.

8414-6046-TuOOO
Page 8\%

Let $\left[P_{c}\right]=[E]_{T}[P][E]=\left[P_{a b}\right]$
III-3.12
where $P_{a b}$ is $1 / M$ times the thrust spring force associated with the $a^{\text {th }}$ normal coordinate due to unit deflection of the $b^{\text {th }}$ normal coordinate. Then the modal equation in normai coordinates becomes

$$
\left[[I] s^{2}+\left[\Omega{ }^{2}\right]+s\left[D_{c}\right]-\left[P_{c}\right]\right]\left\{q_{a}\right\}=\left[k_{c}\right]\left\{\varepsilon_{a m}\right\}+\left\{J_{c a}\right\} \alpha
$$

III-4 DYNAMIC EQUATIONS IN NORMAL COORDINATEES
Substituting the coordinate transformation $\left\{Q_{n}\right\}=[E]\left\{q_{Q}\right\}$ into the normal force equation III-1.1

$$
\left(v_{c g} s+a_{x}\right) \alpha+\ddot{q}_{L}+\left(v_{c g} s+a_{x}\right) \theta-s\left\{N_{v n}\right\}_{T}[E]\left\{q_{a}\right\}-\left\{N_{a n}\right\}_{T}[E]\left\{q_{a}\right\}=0
$$

or

$$
\left(v_{c g} s+a_{x}\right) \alpha+\ddot{Q}_{L}+\left(v_{c g} s+a_{x}\right) \theta-s\left\{N_{c v a}\right\}_{T}\left\{q_{a}\right\}-\left\{N_{c a a}\right\}_{T}\left\{q_{a}\right\}=0 \quad \text { III-4.1 }
$$

where

$$
\begin{aligned}
& \left\{N_{\mathrm{cva}}\right\}=[E]_{\mathrm{T}}\left\{\mathrm{~N}_{\mathrm{vn}}\right\} \\
& \left\{N_{\mathrm{caa}}\right\}=[E]_{T}\left\{N_{\mathrm{an}}\right\}
\end{aligned}
$$

III-4. 2
III-4. 3

The normal acceleration equation III-1.2 becomes

$$
\begin{align*}
& -\frac{N_{\alpha}}{M} \alpha+\ddot{Q}_{L}+\beta_{x} \theta-\left\{a_{y n}\right\}_{T}[E]\left\{a_{z}\right\}=0 \\
& -\frac{N_{\alpha}}{M} \alpha+\ddot{Q}_{L}+\beta_{x} \theta-\left\{a_{y c a}\right\}_{T}\left\{q_{a}\right\}=0
\end{align*}
$$

where

$$
\left\{a_{y c a}\right\}=[E]_{T}\left\{a_{y n}\right\}
$$

The moment equation III-1. 3 becomes:

$$
\begin{aligned}
& \mu_{\alpha} \alpha+s^{2} \theta+\left\{\mu_{n}\right\}_{T}[E]\left\{q_{a}\right\}=0 \\
& \mu_{\alpha} \alpha+s^{2} \theta+\left\{\mu_{c a}\right\}_{T}\left\{q_{Q}\right\}=0
\end{aligned}
$$

III-4. 6
where

$$
\left\{\mu_{c a}\right\}=[E]_{T}\left\{\mu_{n}\right\}
$$

the modal equation is given by III-3.13.

III-5 COMBINED MODES

The combined modes selected in Section III-2 are defined by the solutions to Equation III-2.2

$$
s^{2}[B]\left\{Q_{n}\right\}+[A]\left\{Q_{n}\right\}=0
$$

The resulting N values of S_{a} and the corresponding N eigenvectors $\left\{\begin{array}{c}e \\ \text { na }\end{array}\right\}$ represent the N combined mode frequencies and mode shapes. The order of numbering the combined modes is arbitrary and is a function of the manner in which the root3 of Equation III-2.2 are numered. Since the equation is to be solved by means of the $A X=\lambda_{B X}$ computer subroutine, it is convenient is order the roots and therefore the combined modes in the order which the computer subroutine finds the roots. This process is not arbitrary since in a loosely coupled system the routine tends to find roots in an order corresponding to the frequencies represented by the data along the main diagonals of the A and B matrices. As a result, the first combined mode will usually have a frequency close to the first input engine frequency and will contaic the largest first engine amplitude. Likewise, the second combined mode will have a frequency close to and contain large second engine amplitudes, ete. This correspondence between the input mca= prequencies and the combined mode frequencies has resulted in a tendency to name the combined in the same order as the input modes, first engine mode, first slosh mode, second slosh mode, etc. However, it should be noted that this correspondence of input and output frequencies may not hold for tightly coupled modes auch as two slosh or engine modes with input frequeacies close together. In fact,
a rerun of the program with slight changes in parameters may cause two such modes to exchange position in the output. This process has no effect upon the equations or their solutions once the combined nodes are numbered but does lead to some confusion if the combined modes are asscaiated with a corresponding input mode.

As noted in Section III-3, the eigenvector $\left\{e_{n a}\right\}$ is the solution to Equation III-2.2 when $s^{2}=-\Omega_{a}^{2}$. Therefore, $e_{n a}$ is the amount of Q_{n} present in the $a^{\text {th }}$ combined mode, and letting $\left\{a_{n}\right\}$ equal $\left\{e_{n a}\right\}$ defines the $a^{\text {th }} c$ mined mode.

From Equation III-3. 3

$$
[E]=\left[\left\{e_{n}\right\}\left\{\left\{e_{n 2}\right\}\left\{e_{n 3}\right\} \cdots \cdots\left\{e_{n a}\right\} \cdots \cdot\left\{e_{n N}\right\}\right]\right.
$$

and

$$
[E]_{T}=\left[\begin{array}{l}
\left\{e_{n 1}\right\}_{T} \\
\left\{e_{n 2}\right\}_{T} \\
\left\{e_{n a}\right\}_{T} \\
\left\{e_{n N}\right\}_{T}
\end{array}\right]
$$

the $a^{\text {th }}$ column of the modal matrix $[E]$ gives the composition of the $a^{\text {th }}$ combined mode in terms of the normalized input modes. Likewise, the $a^{\text {th }}$ row of $[E]_{T}$ also gives the composition of the $a^{\text {th }}$ combined mode.

It was noted in Section II-j. 2 that the deflections and slopes of an input bending mode could be multiplied by -1 thereby defining a new input bending mode and shifting the phase of the finial b_{i} by 180 degrees. In order to be consistent, a positive input bending mode was defined as that phase of the mode which results in a positive deflestran at the aft end of the missile. Likewise, the positive input engine and siosh modes were di. fined in Section III-1 Figure III-1 as that phase of the motion resulting from positive engine end slosh deflections. Since $e_{n a}$ is the amount of the $n^{\text {th }}$ input mode present in the $a^{\text {th }}$ combined mode, a value of $e_{n a} 0 . f+.7$ for example indicates that the mode shape of the $a^{\text {th }}$ combined mode contains .if
times the normal $n^{\text {th }}$ input mode, Defining the opposite phase of the input mode would result in an $e_{n a}$ of -.7 and the resulting combined mode would be the same, Therefore, it may be seen that the definition of a positive phase for the input modes is not required in order to determine the combined modes or to perferm a stability analysis but has been done in order to provide a consistent basis upon which to compare the pahse relationship between the input modes for different missile configurations or for different times of flight. It may also be seen that the phase of the $a^{\text {th }}$ combined mode and therefore the phase of q_{k} can be changed by 180 degrees if the $a^{\text {th }}$ column of $[E]$ or the $a^{\text {th }}$ row of $[E]_{T}$ is multiplied by a factor of -1.0 . It is then desirable to define a positive phase of the combined modes or in effect a positive phase of each q_{a}. Since the engine actuator positions represent the external driving forces for the dynamic equations, and the first inputed engine is usually the main control engine, the deflection of the first input engine provides a cunyenient common reference for the combined modes. The positive phase of each combined mode is then taken as that phase for which the first engine deflection is positive. This phase relationship is accomplished by multiplying the columns of the normalized modal matrix $[\mathrm{E}]$ by plus or minus unity such that all of the elements of the first row of tre matrix are positive numbers. The a ${ }^{\text {th }}$ combined mode then represents the motion with respect to the $i-j$ axes when the normal coordinate q_{a} is equal to +1.0 .

Referring to Figure III-5.1

Figure III-5.1

The deflection of the $a^{\text {th }}$ combined mode at station $\hat{\zeta}$ is

$$
\phi_{c_{\xi}}=v_{c \varepsilon}+\frac{\left|\xi \mathrm{cg}^{-} \zeta\right|}{12} w_{c a}+u_{c_{\zeta}}{ }^{a}
$$

The total slope of the $a^{\text {th }}$ combined mode at station $\hat{\xi}$ is

$$
\phi_{c \xi^{\prime}}^{\prime}=w_{c a}+u_{c}^{\prime}{ }_{\underline{\xi}}{ }^{a}
$$

The bending slope of the $a^{\text {th }}$ combined mode at station ξ is

$$
\lambda_{c_{\xi^{2}}}=w_{c a}+\psi^{c} c \xi^{a}
$$

From Equation II-4. 8

$$
\begin{aligned}
& v=\left\{\begin{array}{l}
\left.v_{m}\right\}_{T}\left\{Q_{n}\right\} \\
v_{c a}=\left\{v_{m}\right. \\
m
\end{array}\right\}\left\{\begin{array}{l}
\left.e_{n a}\right\}
\end{array}\right.
\end{aligned}
$$

or $\quad\left\{v_{c a}\right\}=[E]_{T}\left\{v_{m}\right\}$

From Equation II-4. 18

$$
\begin{align*}
& w=\left\{w_{m}\right\}_{T}\left\{a_{n}\right\} \\
& w_{c a}=\left\{w_{m}\right\}_{T}\left\{e_{n a}\right\}
\end{align*}
$$

$$
\text { or } \quad\left\{w_{c a}\right\}=[E]_{T}\left\{w_{m}\right\}
$$

from II-3. 6

$$
\begin{align*}
& u_{\xi}=\sum_{i} \phi_{\xi_{i}} b_{i}=\left\{\phi_{\zeta_{n}}\right\}_{T}\left\{Q_{n}\right\} \\
& { }^{u_{\xi}^{\prime}}=\sum_{i} \phi_{i}^{\prime} b_{i}=\left\{\phi_{\zeta_{n}}^{\prime}\right\}_{T}\left\{\begin{array}{c}
Q_{n}
\end{array}\right\} \\
& \psi=\sum_{i} \lambda_{i} b_{i}=\left\{\lambda_{n}\right\}_{T}\left\{a_{n}\right\}
\end{align*}
$$

III-5.9

$$
\begin{align*}
& u_{c \xi^{a}}=\left\{\phi_{\Sigma} n_{T}\left\{\begin{array}{l}
n a
\end{array}\right\}\right. \\
& u_{c \xi a}^{\prime}=\left\{\phi_{\dot{\xi}}^{\prime}\right\}_{p}\left\{e_{z a}\right\} \\
& \psi_{c \xi^{a}}=\left\{\lambda_{\xi n}\right\}_{T}\left\{\varepsilon_{n A}\right\}
\end{align*}
$$

Equations III-5.1, III-5.2, and III-5.3 become

$$
\begin{align*}
& \phi_{c^{2} a}=\left\{v_{m}+\frac{\grave{L c g}^{-\xi}}{12} w_{m}+\phi_{\xi n}\right\}_{T}\left\{e_{n a}\right\} \\
& \phi_{c i}^{\prime} a=\left\{w_{m}+\phi_{\xi^{\prime}}^{\prime}\right\}_{T}\left\{e_{n a}\right\} \\
& \lambda_{c \xi a}=\left\{w_{m}+\lambda_{\dot{S}^{n}}\right\}_{T}\left\{e_{n a}\right\}
\end{align*}
$$

where $m=n$.

From Figure III-5.1 and the above equations it may be seen that where the input bending modes are the natural frequeucies and mode shapes for the system with engines and sloshing masses locked to ths beam, the combined modes are the natural frequencies and mode shapes for the same system with the engines and sloghing masses free and restrained by their respective springs and inertia corrections are applied to the beam.

The magnitude of the engine deflections and sloshing deflections associated with each combined mode can be obtained from the modal matrix $[E]=\left[e_{n a}\right]$ since $e_{n a}$ is a amplitude of the $n^{\text {th }}$ generalized coordinate in the $a^{\text {th }}$ combined mode.

In combined mode representation the motion of the system is described in terms of the normal sombined mode coordinates q_{a}. However, a feedback of engine deflections is required for the engine hydraulic equations, therefore, each engine deflection must be expressed in terms of the normal coordinates q_{a}. From Equation III-3.7

$$
\begin{aligned}
\left\{\theta_{n}\right\} & =\left\{E 1\left\{q_{a}\right\}\right. \\
a_{n} & =\left\{n^{t_{2}} \text { row of }[B]\left\{q_{a}\right\}\right. \\
\delta_{e} & =\left\{e^{\text {th }} \text { row of }[E]\right\}\left\{q_{a}\right\}
\end{aligned}
$$

Defining the $:^{\text {th }}$ row o.f $\left[E_{j}\right.$ as $\left\{\Delta_{\text {ea }}\right\}$
then

$$
e_{a}=\left\{\Delta_{e a}\right\}_{T}\left\{q_{a}\right\}
$$

III-6́ MISSILE DYNAMICi3 IN MORMAL COORDINATES
In Section II-2, the dynamic equations were derived for a system of masses in terms of the translational motion of the system center of gravity, the rotation of a set of $\bar{i}-\bar{j}$ body axes, and the motion oi the masses with respect to the $\bar{i}-\bar{j}$ body ases. The system of masses was defined in terms of a missile configuration in section II-3, and the motion with respect to the $\bar{i}-\bar{j}$ axes was derived in section II-4 in terms of a set of N generalized coordinates, Q_{n}. The generalized coordinates used where those for which the motion was statically uncoupled. Missile drasmics in terms of these generalized coordinates is presented in section T.7.

The motion of the systen with respect to the $\bar{i}-\bar{j}$ axes has bcon redefined in section III in terms of the normal modes of the undamped, undriven system and the associated normal coordinates. The dynamic equations for the system transformed into normal coordinates are given in section IJ.I-4. These equations jogether with an engine hydraulic equation and an instrunent equation are the data required for the missile dynamics block of Figure I - 2 . The missile dynamics represents the transfer function from delta comman, δ_{c}, to the gyro outputs, θ_{P} and $\theta_{R^{\prime}}$. Figure III-6.1 contains a block diagram showing the effective flow of the data in the dynamic equations in normal coordinaces. It is assumed that in a system containing P gimballed engines, the cormand signals for each engine or group of engines may be different. The engine hydraulic equations will again be of the form of equation II-7.1 requiring a feedback of engine positions δ_{e}. The engine actuator pcisitions together with the engle of attack feedback drive the modal equations III-3.13 producing the normal coordinates q_{a}. These coordinates in turn drive the

8414-6046-TU000

normal force, normal acceleration and moment equations to produce the rigid body rotation of the $\bar{i}-\bar{j}$ axes, θ, and the angle of attack α. In addition the normal coordinates operate with equation III-5.18 to produce the engine deflection to be fedback to the engine hydraulic equations and are combined with the combined mode bending data to produce the bending slopes at each gyro location. These bending slopes are combined with the rigid body rotations to produce the gyro signals. Since the rigid body rotation due to motion with respect to the $\bar{i}-\bar{j}$ axes, w, is included in the combined mode slopes this term does not appear in the instrument equations when in normal coordinates. Equations II-7.2 then become

$$
\begin{aligned}
& \theta_{\mathrm{P}}=\theta-\psi_{\mathrm{P}} \\
& \theta_{\mathrm{RI}}=\theta-\psi_{\mathrm{RI}} \\
& \theta_{\mathrm{RII}}=\theta-\psi_{\mathrm{RII}} \\
& \theta_{\mathrm{R}}=\theta_{\mathrm{RI}}+a_{\mathrm{R}} \theta_{\mathrm{RII}}
\end{aligned}
$$

III-6.1

That portion of the system matrix representing missile dynamics in nornal coordinates is shown in Figure III-6.2. The first row of the matrix represents the normal force equation III-4.1. The second row is the normal acceleration equation III-4.4, and the third row is the moment equation III-4.6. The next N rows are the N modal equations III-3.13. The system shown is assumed to have three gimballed engines, therefore, columns 11 , it and 13 and rows 11 , 12 and 13 represent the engine angles found from equ.tion III-5. 18 while columns 14,15 and 16 represent the three engine actuators. The next four rows and columns introduce the instrument equations III-6.1 while the last three rons represent the engine hydraulic equations II-7.1. For the system shown it is assumed that a single comrand signal, column 21, controls the actuators of the first two ginballed engines and the third engine is restrained by making its command signal zero.

The input to the missile dynamics is δ_{c} of column 21 while the output is the gyro signals of columns 17 and 20 . The systen matrix is completed by adding rows and columns representing the autopilot which operates on the gyro signals to produce the command signal.

FIGURE III - 6.2 SYSTHPM MATRIX IN NORMAL COORDIN

	1	2	3	4	5	6	7	18	9	10	11	
	α	\ddot{Q}^{2}	0	q_{1}	q_{2}	q_{3}	9	\cdots	8	81	
i	$\begin{aligned} & v_{c g}{ }^{6} \\ & +a_{x} \\ & \hline \end{aligned}$	1	$\begin{array}{\|l\|} \hline v_{c g} \\ +8_{x} \\ \hline \end{array}$	$\begin{aligned} & -\mathrm{sN} \\ & -\mathrm{n}_{\mathrm{cal}} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|l\|} -\mathrm{sN} \mathrm{cv} 2 \\ -\mathrm{n}_{\mathrm{ca} 2} \end{array}$	$\begin{array}{\|l\|} \hline-\mathrm{NN} \mathrm{cv3} \\ -\mathrm{Ni}_{\mathrm{ca} 3} \\ \hline \end{array}$	$\begin{aligned} & -8 \mathrm{H} \mathrm{cva} \\ & -\mathrm{H}_{\mathrm{cea}} \end{aligned}$			
2	$-\frac{\mathrm{N}_{\alpha}}{\mathrm{M}}$	1	β_{x}	- ${ }^{\text {ycl }}$	${ }^{-2} \mathrm{yc} 2$	${ }^{-4} \mathrm{yc} 3$	${ }^{-2} \mathrm{yca}$	\ldots	${ }^{-6} \mathrm{y} \times \mathrm{N}$		
3	${ }^{\mu}$		8^{2}	$\mu_{\text {cl }}$	${ }^{\mu}{ }_{\text {c2 }}$	${ }^{\mu}{ }_{\text {c }}$	${ }^{\prime} \mathrm{ca}$	\cdots	${ }^{\mu} \mathrm{CN}$		
4	${ }^{-J}{ }_{c 1}$			$s^{2}[I]+\left[\Omega^{2}\right]-s\left[D_{c}\right]-\left[P_{c}\right]$								
5	${ }^{-J}{ }_{c} 2$											
6	${ }^{-J}{ }_{c 3}$											
7												
8	${ }^{-J}{ }_{\text {ca }}$											
9	\vdots											
10	${ }^{-J} \mathrm{CN}$											
11				$-\Delta_{11}$	$-\Delta_{12}$	$-\Delta_{13}$	$-\Delta_{\text {Ia }}$	-	$-\triangle_{1 N}$	1	
12				$-\Delta_{21}$	$-\Delta_{22}$	$-\Delta_{23}$	$-\Delta_{2 a}$	-	$-\Delta_{2 N}$		
13				$-\Delta_{31}$	- Δ_{32}	$-\Delta_{33}$	\cdots	$-\Delta_{3 a}$	$-\Delta_{3 n}$		
14			-1	$\lambda_{\text {Pl }}$	$\lambda_{\text {P2 }}$	$\lambda_{\text {P3 }}$	$\lambda_{\text {Pa }}$	-	$\lambda_{\text {PK }}$		
15			-1	$\left(\lambda_{\mathrm{RI}}\right)_{1}$	$\\|\left.\lambda_{\mathrm{RI}}\right\|_{2}$	$\left\|\lambda_{\mathrm{RI}}\right\|_{3}$	\cdots	$\left(\lambda_{\text {RI }}\right)$	$\left.\mid \lambda_{\text {RI }}\right)_{\text {g }}$		
16			-1	$\left(\lambda_{\text {RII }}\right)_{1}$	$\left(\lambda_{\mathrm{RII}}\right)_{2}$	$\left(\mid \lambda_{\mathrm{RII}}\right)_{3}$	\ldots	$\left(\lambda_{\text {RII }}\right)$	-	$\left(\lambda_{\text {RII }}\right)^{\prime}$		
17												
18											$\mathrm{K}_{1}{ }^{\text {a }}+\mathrm{K}_{2}$	
19												
20												

The matrix representing missile dynanics, as shown in figure III-6.2, will have a number of columns one greater than the number of rows. Adding an additional row to the matrix by placing unity in the delta command column, δ_{c}, will make the input δ_{c} zero and the output arbitrary. The values of s which make the determinate of the resulting square matrix zero represent the natural frequencies of the missile dynamic system, and are the open loop poles of the system due to missile dynamics, the eigenvectors associated with each pole or natural frequencies represents the mode shape for that pole or frequency expressed as a linear combination of the combined mudes.

GLOSSARY

a - subscript denoting $a^{\text {th }}$ combined mode
a_{r} - coefficient used in combining rate gyro outputs
r_{x} - acceleration of c.g. slong \bar{i} axis
a_{y} - acceleration of c.g.along \bar{j} axis
b - subscript denoting bending
b_{i} - generalized tending coordiante for $i^{\text {th }}$ bending mode
c - subscript denoting combined mode data
e - subscript dencting $e^{\text {th }}$ gimballed engine
f - subscript denoting $f^{\text {th }}$ fixed engine
g.. acceleration of gravity
h - subscript referring to the UEA
i - subscript denoting $i^{\text {th }}$ bending mode
\bar{i} - rotaiting reference axis
j - subscript denoting $j^{\text {th }}$ sloshing mass
j - rotating reference axis
k - subscript denoting $k^{\text {th }}$ inertia correction
k_{I} - fluid inertia correction factor
k_{i} - equivalent bending spring constant
$k_{j}-$ s.losh spring constant
[k] - spring matrix
$\ell_{G e}-$ distance from gimol to center of gravity of $e^{\text {th }}$ gimballed engine
lp - distance from c.g. to center of pressure
m - subscript denoting $\mathrm{m}^{\text {th }}$ generalized coordinate
m_{f} - total fluid mass in tank
m_{j} - equivalent slosh mass
n - subscript denoting $n^{\text {th }}$ generalized coordinate
p) - subscript denoting $p^{\text {th }}$ gimbelled engine
a_{a} - normal coordinate for $a^{\text {th }}$ combined mode
r - radius of gyration of element of mass dm
r - subscript denoting $r^{\text {th }}$ slosh mass
s - Laplace operator
t - time
t - subscript denoting $t^{\text {th }}$ bending mode
u - translational deflection of beam element at x_{h} due to elastic deformation
u^{\prime} - total slope at x_{h} due to elastic deformation
v - displacement of UEA along \bar{j} axis
w - rotation of UEA in $\bar{i}-\bar{j}$ plane
x - coordinate along i axis
y - coordinate along \bar{j} arts
z_{e} - coordinate on $e^{\text {th }}$ gimballed engine measured aft from gimbal
[A] - normalized spring matrix
[B] - normalized masi matrix
D - total aerodynanic drag
[D] - damping matrix
$D_{G e}$ - gimbal damping for $e^{\text {th }}$ engine (ft-lbs per radian)
$D_{s j}$ - damping for $j^{\text {th }}$ slosh mass (lbs. per $\mathrm{ft} / \mathrm{sec}$.)
$D_{b i}$ - damping $j i^{\text {th. }}$ bending mode (lbs. per ft./sec.)
E - subscript denoting a point on a gimbelled engine
F - number of fixed engines
F - subscript denoting a fixed engine
F_{D} - dissipation function
H - inertial axis
I - mass moment of inertis of system about its c.g.
$I_{\text {Ge }}$ - mass moment of inertis of $e^{\text {th }}$ engine about its gimbal point
[J] - matrix representing serodynamic forces
K - number of inertie corrections
$K_{\text {ae }}$ - spring constant for $e^{\text {th }}$ engine
L - inertial axcs
I_{T} - length of fluid tank
M - total mass of sybtem
M_{1} - normallzed mass of $1^{\text {th }}$ bending mode
$M_{G e}$ - mass of $e^{\text {th }}$ gimballed ongine
$M_{\text {be }}$ - moment at gimbal for $e^{\text {th }}$ gimbailed engine
\mathbb{N} - number of degreen of freedum with respect to $\overline{\mathrm{I}}-\mathrm{j}$ axes
\mathbb{N}_{α} - normal force coefficient (lbs per radian)
$N_{\text {/ }}$ - distributed normal force coefficient
$N_{v n}^{\alpha F D}$ - normal force due to $n^{\text {th }}$ coordiante as a result of the velocity
$N_{a n}$ - normal force due to $n^{\text {th }}$ coordiante as a result of aerodynamics
P - axis parallel to L axis but translating with c.e.
P - number of gimballed engines
P - external force when used with subscript
Q - generalized coordinate when used with subscript
R - axis parallel to H axis but translating with cig.
R - number of fluid tanks
R_{T} - fluid tanl: radius
T - number of beriing modes
$T_{G e}$ "thrust of $e^{\text {th }}$ gimballed engine
$T_{\text {Ff }}$ - thrust of $f^{\text {th }}$ fixed engine
T_{T} - total thruet of all engines
T - used as subscript to denote the transpose ol a matrix
$V_{c g}$ - velocity of center of mass at time t
V_{G} - poteniial energy due to gravit,
V_{F} - internal potential energy
\mathcal{L} - angle of attack of UEA
\mathcal{L}_{0} - angle cf attack of \bar{I} axis
β_{A} - thrust constant $\frac{T_{T}-D}{M}$
y - angle between local vertical and nominai trajectory
δ_{e} - deflection of $e^{\text {th }}$ gimhelied engine
$8_{a e}$ - position of scturtor on $e^{\text {th }}$ giabailled engine
θ - rotition of $\bar{i}-\bar{j}$ axds in inertial apace
θ_{P} - position gyro angle
θ_{R} - rate gyro angle
$\Delta_{e a}^{R}$ - engine angle of $e^{\text {th }}$ engine due to $a^{\text {th }}$ combined mode
Ω - pertebation of V
Ω - Prequency of a ${ }^{\text {th }}$ cg combined mode

GLOSSARY

```
[\Omega\Omega}\mp@subsup{|}{}{2}]\mathrm{ - frequency matrix
    ~ - rotation of mass element dm with respect to the R axds
    \Psi - rotation of sass element dm with rospect to the R axis
    \psi - rotaticn of mass element dm with respect to the UEA
In -mementum
    T" - Kinetic energy
\DeltaI - inertia correction
    P - slosh amplitude in feet
\zeta - dmping ratio
\emptyset ~ - ~ m o d a l ~ d e f l e c t i o n
\phi' - total modal slope
\lambda - modal bending slope
\omega - input modal frequeney
\mu}\mp@subsup{\alpha}{}{\prime}\mathrm{ - rotational acceleration per unit angle of attack
\mp@subsup{u}{n}{} - rotational acceleration per unit Q Q
\sigma - real part of root
USA - undeformed eiastic axis
```


REFERENCES

1. "Dynamic Equations For Missile Stability Analysis," STL/TM - 60-0000-00063, by J. L. Hieatt and J. L. Palmer, dated JuJ.y, 1960
2. "Cn the Sloshing of Liquid in a Flexible Tank," GM - TR - 73, by John W. Miles, dated 28 September, 1956
3. "Notion of Fluid in a Cylindrical Tank," Memorandum from G. L. Gleghorn, dated 2? September, 1955
4. "Fluid Sloshing in Tanks of Arbitary Shape," GM 45.3-378, by N. W. Trerbath, dated 28 August, 1957
5. "Digital Program for Fluid Sloshing in Tanks with Axial Symmetry," TM - $59-0000-00389$, by J. L. Hieatt and J. P. Riley, dated 30 September, 1959
6. "RW EG2F, Eigenvalves and. Eigenvectors of $A X=\lambda B X$ " by John Zancanaro, dated February 26, 1959
