

THEORETICAL CHEMISTRY INSTITUTE

THE UNIVERSITY OF WISCONSIN

INPROVEMENT OF UNCOUPLED HARTREE-FOCK EXPECTATION VALUES

FOR PHYSICAL PROPERTIES.

- Dy Debbie Fu-tai Tuan

Saul T. Epstein

and

Joseph O. Hirschfelee

September 1965

WIS-TCI-121

MADISON, WISCONSIN

IMPROVEMENT OF UNCOUPLED HARTREE-FOCK EXPECTATION VALUES

By

Debbie Fu-tai Tuan⁺, Saul T. Epstein, and Joseph O. Hirschfelder University of Wisconsin Theoretical Chemistry Institute

Madison, Wisconsin

ABSTRACT

It is shown that if one uses the uncoupled Hartree-Fock method as a zero-order approximation for calculating atomic and molecular second-order properties (either static or dynamic), then the first order corrections to this approximation are determined solely by quantities already available from the zero-order calculations. No new equations need be solved.

- - - - -

- * This research was supported by National Aeronautics and Space Administration Grant NsG-275-62.
- + Present address: Department of Chemistry, Kent State University, Kent, Ohio 44240.

INTRODUCTION Ι.

such as

First-order properties, such as permanent dipole and quadrupole moments, diamagnetic susceptibility, charge density at the nucleus, etc., are the straight expectation values of operators W which are the sum of one electron operators w(i). For a system with Hamiltonian H in a state with energy E, such expectation values can be brought into the framework of perturbation theory by introducing a perturbed Hamiltonian 1,2

$$\mathcal{H} = H + \mathcal{U} W$$
 (1)

$$\mathcal{E}_{a} = E + \mathcal{M} E^{(1)} + \mathcal{M}^{2} E^{(2)} + \dots \qquad (2)$$

Here $E^{(1)} = \langle W \rangle$, the expectation value of W. Second-order properties
such as electric polarizabilities, paramagnetic susceptibility, optical
rotatory constants, chemical shifts, and nuclear shielding constants

are proportional to $E^{(2)} = \langle Q \rangle$ where Q can be regarded as the symbolic operator Q = - (W - < W >) (H - E)⁻¹ (W - < W >).

Since the exact eigenfunctions for many-electron atoms and molecules are not known, the calculation of first- and second-order properties starts with an approximate eigenfunction u which satisfies a Schrödinger $H_{\bullet} \mathcal{Y} = \mathcal{C} \mathcal{Y}$. The Hamiltonian H can be written in the equation form H = H_o + λ V where λ V is the correction for the "badness" of the approximate eigenfunction. The first and second-order properties can then be expanded in powers of λ ,

$$\langle w \rangle = \langle w \rangle_{a} + \lambda \langle w \rangle_{b} + \dots$$
 (3)

$$\langle q \rangle = \langle q \rangle + \lambda \langle q \rangle + \dots$$
 (4)

In this paper we wish to discuss $\langle W \rangle$ and $\langle Q \rangle$ when ψ is the Hartree-Fock approximation to the wave function of a ground state atom or molecule containing an even number, N = 2n, of electrons. $\langle W \rangle$ is then the familiar Hartree-Fock Approximation to $\langle W \rangle$ and, as will be shown below, $\langle Q \rangle_0$ is the uncoupled Hartree-Fock approximation^{3,4} to $\langle Q \rangle_0$.

As is well known,⁵ and as we will rederive below, $\langle W \rangle \equiv 0$ for this situation. It is our purpose to show that $\langle Q \rangle$ can be calculated using only quantities <u>already available from the calculation of $\langle Q \rangle_{2}$ </u>. Thus values of second-order properties can be made accurate through firstorder in λ with out too much extra effort.

It is important to note however that first-order in λV is not the same as first-order in the error of the <u>coupled</u> Hartree-Fock approximation³ to $\langle Q \rangle$. Hence the statement that $\langle Q \rangle + \lambda \langle Q \rangle$ is accurate through first-order, and the statement that coupled Hartree-Fock is accurate through first-order³ have a somehow different content. We plan to return to this point elsewhere. It is our hope, of course, that $\langle Q \rangle + \lambda \langle Q \rangle$ will have a accuracy comparable to that of the coupled Hartree-Fock approximation, but yet be easier to evaluate.

II. REVIEW OF HARTREE-FOCK THEORY

 ψ is a single Slater determinant composed of ortho-normal spinorbitals u^{0}_{1} , u^{0}_{2} , ..., u^{0}_{N} . If \mathcal{A} is the antisymmeterizer,

$$\mathcal{U} = \mathcal{Q} \, u_{1}^{\circ}(I) - \cdots - \mathcal{U}_{n}^{(\circ)}(N) \tag{5}$$

The spin-orbitals are determined by minimizing the expectation values of H,

$$\widetilde{E} = \langle \psi | H | \psi \rangle \tag{6}$$

If the Hamiltonian is

$$H = \sum_{i=1}^{N} h(i) + \sum_{i \in j} r_{ij}^{-i} , \qquad (7)$$

then

$$H_{0} = \sum_{i=1}^{N} \left[h_{i} + S_{i} \right] + C , \qquad (8)$$

where

$$S(i) = \sum_{k=1}^{N} \left[\int u_{k}^{\circ *}(g) \frac{1}{tig} \quad u_{k}^{\circ}(g) \, dZ_{g} \\ - u_{k}(i) \int u_{k}^{\circ *}(g) \frac{1}{tig} \, dZ_{g} \quad P_{ig} \right]$$
(9)

and P commutes the coordinates of electron i into those of electron q iq The orbitals satisfy the characteristic equation

$$\int h(1) + S(1) \int u_{k}^{\circ}(1) = e_{k}^{\circ} u_{k}^{\circ}(1)$$
(10)

The constant C may be written in the form

$$C = -\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \left\{ (ij) + (ij) - (ij) + (ij) \right\}$$
(11)

where we use the notation

$$(i^{\alpha}j^{\beta}/k^{r}e^{\delta}) = \int \mathcal{U}_{i}^{\alpha*}(i) \mathcal{U}_{j}^{\beta*}(z) + \frac{1}{F_{12}} \mathcal{U}_{k}^{r}(i) \mathcal{U}_{i}^{\beta}e^{idz_{i}}dz_{i}$$

The Hartree-Fock wave function than satisfies the Schrödinger equation $H_{0} = \mathcal{L} = \mathcal{L}$ where

$$\mathcal{E} = \sum_{k} e_{k}^{\circ} + \mathcal{C} = \widetilde{E}$$
⁽¹³⁾

The errors in the Hartree-Fock approximation correspond to

$$\lambda V = \sum_{i \neq j} r_{ij} - \sum_{i=1}^{N} S(i) - C \qquad (14)$$

However, since < $\psi/v/\psi$ > = 0 , if one expands E in powers of λ ,

$$E = \mathcal{E} + \lambda \mathcal{E}^{(\prime)} + \lambda^2 \mathcal{E}^{(2)} + - - - - \qquad (15)$$

 $\epsilon'''=0$ and the difference between E and ϵ is second-order in λ .

An important property of the Hartree-Fock wave function is that it is stable with respect to one electron excitations (Brillouin's theorem 6).

4

ł

That is, if a Slater determinant \mathcal{X}_{k} differs from the Hartree-Fock \mathcal{Y} only in having the one spin-orbital u_{k}° replaced by a spin-orbital v_{k} , then

$$\langle \mathcal{Y} | \mathcal{H} | \mathcal{X}_{\mathcal{H}} \rangle = \epsilon \langle \mathcal{Y} | \mathcal{X}_{\mathcal{H}} \rangle \tag{16}$$

For our purposes, it is convenient to restate the Brillouin theorem in the form

$$\lambda \langle \Psi | V | \chi_{k} \rangle = \langle \Psi | H - H_{o} | \chi_{k} \rangle$$
$$= \epsilon \langle \Psi | \chi_{k} \rangle - \epsilon \langle \Psi | \chi_{k} \rangle$$
$$= 0 \tag{17}$$

III. EVALUATION OF FIRST-ORDER CORRECTIONS

We now consider the Schrödinger equation $(H_0 + \mathcal{M} W) \oint = E^* \oint$ where H_0 is the Hartree-Fock Hamiltonian given by Eq. (8). Since $H_0 + \mathcal{M} W$ is the sum of one electron operators, \oint can be expressed as the Slater determinant

$$\oint = \mathcal{Q} \quad \mathcal{U}_{n}(\mathcal{U}) \quad \dots \quad \dots \quad \mathcal{U}_{n}(\mathcal{W}) \tag{18}$$

where the spin-orbitals u_k satisfy the characteristic equation

$$\int h(1) + S(1) + \mathcal{M} w(1) \int u_k(1) = e_k u_k(1)$$
(19)

The $u_k(1)$ and the e_k can then be determined as solutions to a one electron perturbation problem starting with $u_k^0(1)$ and e_k^0 as the zeroth order eigenfunction and eigenvalue respectively. Expanding u_k (1) in powers of $\mathcal M$ gives

$$\mathcal{U}_{k}(I) = \mathcal{U}_{k}^{\circ}(I) + \mathcal{U}_{k}^{(I)}(I) + \mathcal{U}_{k}^{\circ}(I) + --- \qquad (20)$$

In a similar fashion, \oint can be expanded in powers of $\mathcal M$,

$$\oint = 2 + \mu 2^{(0,1)} + \mu^2 2^{(0,2)} + \dots$$
 (21)

Here

$$\mathcal{U}^{(0,1)} = \sum_{i=1}^{N} \alpha \, u_i^{(1)} \cdots u_i^{(n)} \cdots u_i^{(n)} \qquad (22)$$

and

$$\mathcal{U}^{(0,2)} = \sum_{\substack{\lambda=j}}^{N} \mathcal{Q} \ u_{j}^{(0)}(j) - \cdots - u_{j}^{(2)}(i) + \cdots - u_{N}^{(0)}(N)$$

$$+ \sum_{\substack{\lambda=j}}^{N+j} \sum_{\substack{\lambda=j\\ \lambda=i+j}}^{N+j} \mathcal{Q} \ u_{j}^{(0)}(j) - \cdots - u_{j}^{(1)}(i) - \cdots - u_{N}^{(1)}(N)$$

$$(23)$$

The $\mathcal{Y}^{(0,1)}$, $\mathcal{Y}^{(0,1)}$, ... are terms in the double expansion of $\underline{\mathcal{Y}}$,

$$\mathcal{Y} = \sum_{n=0}^{\infty} \sum_{m=0}^{n} \chi^{n} \mu^{m} \mathcal{Y}^{(n,m)}$$
(24)

If we also expand \mathcal{E} as a double power series and use double perturbation theory¹, we can then identify:

$$\langle W \rangle = \Gamma \psi / W / \psi \rangle$$
 (25)

and

$$\langle Q \rangle_{o} = \langle \Psi^{(o,1)} / W / \Psi \rangle \tag{26}$$

the formula for $\langle Q \rangle$ being exactly that of the uncoupled Hartree-Fock approximation.^{3,4} Furthermore, as a result of the Dalgarno Interchange Theorem^{1,2},

$$\langle W \rangle = \langle \psi^{(\alpha)} | V | \psi \rangle + \langle \psi | V | \psi^{(\alpha)} \rangle$$
⁽²⁷⁾

and

$$\langle Q \rangle_{i} = \langle \mathcal{Y}^{(0,2)} | \mathcal{V} | \mathcal{Y} \rangle + \langle \mathcal{Y}^{(0,1)} | \mathcal{V} | \mathcal{Y}^{(0,1)} + \langle \mathcal{Y} | \mathcal{V} | \mathcal{Y}^{(0,2)} \rangle$$
(28)

Let us now expand $\langle \oint / V / \oint \rangle$ in powers of ${\cal M}$ in the form

$$\langle \vec{\Phi} | V | \vec{\Phi} \rangle = \mathcal{M} A_1 + \mathcal{M}^2 A_2 + \dots \qquad (29)$$

Then, since \bigvee is independent of \mathcal{M} , it follows from Eqs. (21), (27) and (28) that $\langle \mathcal{M} \rangle = A_1$ and $\langle \otimes \rangle = A_2$. Making use of Eqs. (9), (11), and (14), together with the notation of Eq. (12), we then find

$$\langle \bar{\Psi} | V | \bar{\Psi} \rangle = \frac{1}{a} \sum_{i=1}^{N} \sum_{j=1}^{N} \left(\frac{ij}{ij} | \frac{ij}{j} \rangle - \frac{ij}{ij} | \frac{j'}{j'} \rangle \right)$$

$$= 2 \left(\frac{ij}{ij'} + \frac{ij}{ij'} \right) + \frac{ij}{ij'} \left(\frac{ij'}{j'} - \frac{ij'}{ij'} \right)$$

$$+ \left(\frac{ij'}{ij'} + \frac{ij'}{ij'} - \frac{ij'}{ij'} \right) \right)$$

$$(30)$$

Expanding the u_k in powers of \mathcal{M} , and collecting terms, gives $\mathcal{A}_1 = \langle \mathcal{W} \rangle = 0$. Furthermore,

$$A_{z} = \langle \omega \rangle_{i} = \frac{1}{z} \sum_{i=1}^{N} \sum_{j=1}^{N} \left[(\lambda_{j} + \lambda_{j}) - (\lambda_{j} + \lambda_{j}) + \lambda_{i} + (\lambda_{j} + \lambda_{j}) - (\lambda_{j} + \lambda_{j}) - (\lambda_{j} + \lambda_{j}) - \lambda_{i} + (\lambda_{j} + \lambda_{j}) - \lambda_{i} + \lambda$$

The interesting and important feature of these formulae is that they do not involve the $\mathcal{U}_{\underline{k}}^{(2)}$. All one needs are $\mathcal{U}_{\underline{k}}^{(0)}$ and $\mathcal{U}_{\underline{k}}^{(1)}$ which are already available from the calculation of $\langle Q \rangle$. This simplification has come about in the following way:

Since $\mathcal{Y}^{(0,1)}$ is the sum of one electron excitation Slater determinants, it follows from the Brillouin Theorem, Eq. (17), that $\langle \mathcal{Y}^{(\alpha_1)} / \mathcal{V} / \mathcal{Y} \rangle = \mathcal{O}$ and hence $\langle \mathcal{W} \rangle = 0$. In a similar manner, since $\mathcal{Y}^{(0,2)}$ only involves $\mathcal{U}_{\mathcal{F}}^{(2)}$ through one electron excitation Slater determinants, $\langle \mathcal{Y}^{(\alpha_2)} / \mathcal{V} / \mathcal{Y} \rangle$ is independent of the second-order spin-orbitals. Thus, Eq. (31) provides us with a very simple expression for $\langle \alpha \rangle$ which only requires the knowledge of the unperturbed and first-order spinorbitals.

Similar results can be shown to hold in the calculation of 7second-order frequency dependent properties. In the notation of reference 1, Chapter 9, one can prove that if $\mathcal{Y}^{(o)}$ is the Hartree-Fock function then (i) one electron excitation terms in θ_{\pm} do not contribute to L , and (ii), the two electron excitation terms in $\theta_{\pm} + \theta_{-}$, which is the quantity one needs to compute L , are all expressible in terms of the spinorbitals of $\mathcal{Y}^{(o)}_{\pm}$ which are available from the zero order calculation.

Details and results of calculations for specific examples will be published as soon as possible.

ACKNOWLEDGMENT: The authors wish to thank W. Byers Brown for many valuable discussions.

REFERENCES

1.	J. O. Hirschfelder, W. Byers Brown, and S. T. Epstein,
	"Adv. Quantum Chem. <u>1</u> , 255 (1964).
2.	A. Dalgarno and A. L. Stewart, Proc. Roy. Soc. (London)
	<u>A247</u> , 245 (1958).
3.	A. Dalgarno, Proc. Roy. Soc. (London), <u>A251</u> , 282 (1959).
4.	There are different schemes of uncoupled Hartree-Fock
	approximation, which have been discussed by P. W. Langhoff,
	M. Karplus and R. P. Hurst. "Approximations to Hartree-
	Fock Be rturbation Theory" (preprint). Our discussion in
	this paper is limited to Dalgarno's uncoupled Hartree-Fock
	approximation 3 (Approximation "C" of Langhoff, et al) with
	S(i) defined by Eq. (9).
5.	G. G. Hall, Adv. Quan. Chem. 1, 241 (1964) and references
	given there.
6.	L. Brillouin, Act. Sci. et Ind., Nos. 71, 159 (1933-34).
7.	However, small corrections to uncoupled Hartree-Fock are
	probably not of much interest for frequency dependent
	properties because the frequency dependence of the uncoupled
	approximation is qualitatively incorrect (see for example
	reference 4).