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Through a Slab Containing Anisotropic Irregularities

Abstract

Y/

In general, satellites are moving at such a fast velocity that the
ioncsphere as well as the imbedded irregularities can be considered as
frozen. The interest is then in cross-correlating signals received at
two or more receivers as the satellite speeds across the sky. This report
is a study of the cross-correlations between two spherical waves passing
through a slab containing anisotrcpic irregularities.

The cross-correlation functions are derived as functions of the distance
between the transmitters. A condition for maximum correlation is obtained
and is found to correspond to the case when two rays intersect in the slab,
thus proving the often intuitively assumed condition for maximum cross-
correliation, This maximum correlation function pM is then expressed as
a function of the distance between the receivers, x. For large values of
X Py varies as 1.2, The results indicate possibilities of determining
the height and slab thickness of the ionospheric irregularities fri:é:atellite

scintillation data.
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I. Introduction

This report is a study of the cross-correlation of satellite signals
through a slab containing small anisotropic irregularities. The cross-
correlation is defined as the correlation between signals at one receiver
when the satellite is at one position and signals at another receiver when
the satellite is at a new position. 1In spaced-receiver experiments, one
often uses the observed correlations to determine the height, thickness and
other parameters of the ionospheric irregularities. Intuitively, the correla-
tion should be a maximum when the two rays intersect in the slab of irregu-
larities. One of the purposes of this report is to prove mathematically
that this indeed is the case. We follow closely Yeh's derivation of auto-
correlation functions (Yeh, 1962) to formulate the cross-correlation functions
as functions of the distance d between the two satellite positions. The
value of d which makes the cross-correlation function a maximum is denoted
by dMn From the geometry of the problem (Fig. 1), it can be shown that
this dM corresponds to the case when the two rays intersect in the slab.

The maximum value of the correlation is then expressed as a function of x,

the distance between the two receivers, and is found to agree with the

result derived by McClure and Swenson (1964).

II. Derivation of the Cross-Correlation Functions

Assume the slab is characterized by a refractive index:
nX = <> [1 +e p@] (1)

where <n> is a constant, p(?) is a random variable of position and ¢ is a

small constant.



The geometry of the problem is shown in Fig. 1. The slab is assumed
to be extended to infinity in x and y directions.

The origin is taken at 0, at the level where the satellite is moving.
a, b, c, respectively represent the distance between the satellite height
and the top of the slab, the thickness of the slab, and the distance between
the bottom of the slab to the level where the receivers are located.
Al(xT,Oyo) is the first position of the satellite, A2(xT-d,0,0) is the other
one, while d measures the distance between these two positions. The receivers

are at Bl(—x/290,h) and B2(x/2,0,h) respectively. S(x',y',z') represents
1]

the position of an arbitrary scatterer in the slab. r )Ty

1 and R1 are the

distances between the satellite A1 and receiver Bl’ between A1 and the
scatterer, and between B1 and the scatterer respectively. If we assume

harmonic time variation, exp(i®t), and all lengths are normalized by the

wave number k defined by:

£
A
5’/

k = (2)

(¢}

then the signal from A1 to B1 can be expressed as, assuming small fluctuation

per wave length, (Karavainikov, 1957; Yeh, 1962)

RAGR))  -ilr +Q (X))

—
V&) = —— e (3)
r
1
where -~
e pGp 3 ot
Q1 = 2a v r, " sm(r1 + Rl - rl) d X (4)
1 1
—
r.e p(x.) ' ;
A 1 1 3
S1 = log X j. - cos(r1 + R1 rl) d X (5)
0 vi r. R
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Here Ql is the phase departure from original spherical wave and S1 is the

logarithmic amplitude.

1
+ R, = r

Note that r1 1 1

of the irregularities.
between the scattered path and the direct path.

Similar expressions can be written for A_ and B,.

2 2

correlation functions are then defined by:

The integrations are carried out in the whole region

represents the phase difference

The normalized cross-

2 ! .
<Q Q2> r.r.e <p(’}? )p(;{" > ; ; ! !
1 1" 2 1 2 ) . 3" 3 »
Q - = 5 5 ———— 51n(rl+R1—r1)51n(r2+R2—r2)d de 9
<Q2> <Q>47 v'v' r_ r_R_ R
1271 2
(6)
. 2 - -
< < >
Pa = SlSZ> = rlrze H(xl)u(xz) cos(rV+P r )cos(r'LR by )13 ;jdg §J
= =3 R R YT o tR, T, ) :
5 <Sg> 47 <Sg> vivi r. r_R. R il 2202 1 2
17271 2
(7
where <Q%> and <S%> are auto-correlation functions for phase and amplitude
respectively (Yeh, 1962),
We shall derive the correlation functions as functions of d. We see
from Figs. 2a, 2b that d1 and d2 are the distances for the two extreme
cases in which the rays intersect at the top and the bottom of the slab
respectively. For any d such that dl <dc< dz, the rays will intersect in
the slab. From Fig. 2, we have:
d1 = ax/(h-a) (8)
d2 = (h—C)X/C (9)

We shall prove that the correlation is maximum for values of d in such a
range. Making the usual assumption that the characteristic scales of the

irregularities are much larger than a wavelength,

(Chernov, 1961; Karavainikov,



1957; Tatarski, 1961) we can approximate the distances in the integrals

(6) and (7) as follows. When appearing in the phase factor,

) ~ 1 92 o 1 ?4. . 2
r, o+ Rl -r =y {-yl + [(xl-xT) + zl(xT+x,2)/h] } (10)
23
1
J ~ 1 19 i v , p .2
r, + R2 -r, =—— { Vo * [(xz-xT+d) - zz(x/2—xT+d),hj } (11)
23,
2
1] ¥ 4 ? ¥ ¢
31 = z (h-z)/h S, = z,(~z,)/h (12)

and when appearing in the denominator,

r' =z°%, R=h-2z’', r = h (13)

Let us define

]
1

7(<Q Q> + <8,5>)/ <p (14)

2
I, = mEQQRy - <S50/ <% (15)

and the normalized correlation function of the medium by

<p(x1)p(x2f>
p x) = ——a (16)
M <p,2.>
We have then, from equations (6), (7), and (10). to (15),
>, 32 3o "2 ex Vaix s '
. n.laﬁf pH(X )a'x,d7x, cos{yl +[(x1 xT)+(xT+x/2)zlfh]
3 7 ! ; 0
15 35 2
e L, ) ~ (/2% +d) z/m 1
Vo + [ (x, = x_+d) - (x/2-x_+d) z_/h
72 2 T T 2 }(17)
23,

2



=, 3! 3 2t ' 2
Jj. p (x")d xld X, COS{-y +[(x1 xT)+(xT+x/2)z1/h]

1

25,

2 ! ' 2
X Vo o+ [(x2 - xT+d) - (x/2 - X +d)z2/h] }

22 (18)

Following the usual procedure of changing to relative and center of mass

coordinates:

_ _ z ez -2 relative (19)
2 17 Y SV ¥y = 29 1 coordinates

_ l(x + x.) = l( ! + ') _ l(z ‘2z center of
T2 > B o= 271 Y2?s Y T3 2’ mass coordinates

(20)
We can carry out the o', and B' integration in (16) and (17):

p}l (; )ds}?' dy'

23, + 3

si

in 'l 13
253

= Jf

{-y'z + [(x+d)y—(xT-d/2)zi-(x’+d)h]2/h2}
(21)

p ENdTrdy .
B sin

2(5,+3)

7 ; {y'z + [(X+d)y-(XT-d/2)z'-(x‘+d)h]2/h2}
2(Si F <E&)
(22)

Now, we shall introduce an auto-correlation function for the medium of the

form:

. \2 92 ,2 ,,2 ,2 ,,2
PH.(X) = exp{-(x /1x+y /1y+z /Iz)}

Note that in general Ix % ly #“ Iz, and irregularities are anisotropic.
Substituting (23) into (21) and (22), we can integrate with respect

to x' and y', and obtain:



[ )y ' /b= (epmd/2)z /h-a)® 2
exp {- - }

a+b b

I3 = Im 7 J.dy' J~dz' o =
a2  z=tb A/[Zz'(2y'/h—1)/1y—1][2z'(2y’/h-1)/1x—1]

2 s ] 1 S
Ix + i2z'(2y'/h-1) ]

(24)
[] 1 - 2
oxp {; [ (x+d)y /h—(xT—d/Z)z /h-d] i Z,ZI}
a+b b li[i Dx—iz'z/h li +1] 22
14 =Im7 J‘dy' _g‘dz' > = > > ;
a ‘4/(D -z'"/hd” - i) - z'"/h T - 1)
y y X X
(25)
] t 12 [} [ 12
where D_ = 4y'(h-y')/hd_, D, = 4y (h-y')/h v (26)

are the equivalent wave numbers. Im represents the imaginary part. For
z' integration, we note that since b >> lz, the contribution of the integral
mainly comes from z' < lz, the 1limit can then be taken as -o to + o. Also
. . 2 2,92 .
since £ >> 1, terms like 2z'(2y/h-1)/1y , z' /hlz in the integrand can be

neglected compared to unity. With these simplifications, we have

ﬂz lezh x+d x+d x+d
13 = 2— % + d {erf[—h— qQa - (]_d + Tab] - erf[—h— aqa - ad]} (27)
Where a = —53 2h 2.1/2 (28)

[Ixh + iz(xT—d/z) ]
a+b
il L g 2 2
3/2 Yx -B7[ (x+d)y'/h-d]

I4 = Im7q J~ ————————7§ e dy' (29)

a (1L+iD )1
y



where g = h (30)

2,2 ] 2 2,1/2
Ih lx(l + 1DX) + lz(xTﬂd/Z) i

Assume the slab is thin as compared to the distance between satellite and
the top of the slab. In the slab, the values of D's will not change much.
We can represent them by some average values D's. Then, equation (29)

can be integrated, treating D and 3 as constant, we obtain finally:

2 . £ 4 n

_ T_ i X z x+d _ x+d a x+d _
I, =1Im 5 — 173 “xid [erf(—h pa - Bd + - Bb) erf(——-—h pa - Bd)]
(1+1Dy)

(31)

The cross-correlation functions can be then written as., from (i4) and (15):

2 g
pQ@ = e“<u> (I, + 1) (32)
2m<Q®

23
€__<p > -
5 (- 1) (33)

P (D)
S 27 <S8 >

where 13 and I4 are given by (27) and (31) respectively. For very thin
slab, further approximations can be made in the expressions for 13 and 14,
We consider the following two cases, using Yeh's (1962) results for <S%>

and <Q%>.

(1) D's >> 1, Fraunhober region, for xb/hlX <1,
~ 2 2,2 2 -az[ax’h - (l-a/h)d]2

pQ(d) = ps(d) = alx[ 1-q ab(x+d) /h"+a b(x+d)d/h]-e ’ -

(34)

(2) D's << 1, Fresnel region, for xb/hlx <1,



2[axfh—(1—a/h)d]2

2 2 -
pQ(d) = q!x[l—a ab(x+d)2/h2 + a b(x+d)d/h]-e a (35)
'62/1;2< 1, = - - = 2.2 2 2 -2 - = 2 .2
= - = -D & /4 g Qe - -
ps(d) e {1+96 A[ 4Dx(1+96)(3DX+Dy Dxb / X)& 7 x,96( 12DX 4Dny+86 /lx) ]}
(36)
where e = (x+d)b/h1i
6 = d(l-a/h)-ax/h (37)
A = 352_ + 3D° + 2D D
x y Xy
In the case of isotropic irregularities, Ix = Iy =4, Dx = Dyo Pg is reduced
to:
2,2 _4 4 3b(x+d) o 2 ,2 .4 4 _62/12
ps(d) = [ (-2 4%+ /20 7)Y + —r T (1-6"/87:67/64 ") e ’ (38)

III. Maximum Correlations

If we differentiate equations (34) and (35) with respect to d and set

the result equal to zero, we have the eguation for d corresponding to

M_Q
the maximum (or minimum) values of correlation functions. After some

algebraic manipulations, the equation becomes :

2 2
abqg x ax 1-2a/h bx

2 2 2 2
b a aba x ax ,a bx 2a abx
- —_— —_— —_ e - — - ——— — -

a 2 )% *1cam on * dwn "G R @ 7 )ty & 7)1+
h h h
ax 2b ab 2 a sz 2 2abx 2 a azb ab 2 3

a a a a , gl 2 _ aba _

G - hz)' a- P& 2 )idy - G- g hz)dm‘o

(39)



Here we have assumed that q is independent of d. From (28) we can see that
this is a fairly reasonable approximation. In most cases,

o~

X

To solve equation (39)ﬁ we notice that as a result of our assumption of
thin slab, terms containing (b.’n) are small compared to unity. We can
use perturbation method tc solve for dM as a series expansion of (b/h).

Neglecting all (b/h) terms, we get first:
ax;h = dMO(lmaﬁ) = 0 (40)

Therefore dM0 = ax. (h-a) = dl (41)

where d1 is given by equation (8). Next. let dM = ot A\, substitute

d
M
this into equation (39), solve for \ to the order of (b/h), we have:
1 bx 1

N = TGen) T2 (1masm) (42)

Theref d o T
= T v T Ty
erefore M h-a 2¢ (l-a/h)

(ST
[

©

o0

| i

+.d.) (43)

N
=
N

Corresponding to this de the point of intersection for the two rays is:

(from Fig. 2)

b{b+c)
Z = —_—

M e

which is the center of the slab.
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It can be shown that this dM does indeed correspond to the maximum
. s . 82 82"
value of correlation functions by calculating (Y p/9 d) at dMn Therefore,
we have obtained the result that the cross-correlation is maximum when the
two rays intersect at the center of the slab. This maximum value of the

correlation function is:

- £
J;“ (h-a) X : bx bx bx 1+b,2¢
pM = 2 xb(1+b,/2c) [erf(Zczx) - erf(ZCIX - T; " "h-a )] (44)

We notice that for x = O, Py = 1, as it should be. For large values of x,
pM is proportional to 1/x, since the difference between the two error functions
approaches a constant 2 approximately.

The above discussion is for both pQ and Pg in the case D>> 1 and also
for pQ when D << 1, To find the maximum of the amplitude correlation function
pS in the case when D << 1, we differentiate equation (38) with respect to

d, and set the result equal to zero, we obtain:

65 65° 6 3b(xed), . 55° 1765 &%, 8b 52 §° 1
TT2tT3t 8t gLl gt T ]l T S v ) Fooy = O
£ 2 £ h{ 1 el 34 h{ { 64
(45)

where § is given in equation (37).
Again, if we first neglect terms in (b/h), we have one root of the

equation, 6§ = 0, which corresponds to:
d = — = d (46)
Now if we 1let

& = (l-a/h) )\? (47)



Substituting them into equation (45), solve for \' to the first order of

(b/h), we have:

bx 1

o= 2
- 2 h-(a+b) (l-a,/h)

(48)

Exactly the same as eguation (42). Therefore, for the case D << 1, the
maximum of the amplitude cross-correlation function pS also occurs when

the two rays intersect at the middle of the slab.

IV. Results and Graphs

The cross-correlation functions are plotted in Figs. 3-6 against d,
for several values of x. The maximum value of the correlation function
is also plotted as a function of x. We have used the following general

satellite experiments data: (McClure, Swenson, 1964)

h = 1000 km a = 650 km c = 300 km b = 50 km £ =1 km.

V. Conclusion

We have derived the cross-correlation functions for spherical waves
propagating through a slab with anisotropic irregularities as functions of
distance between the two source points. We have proved, for a thin slab,
that the correlation is a maximum when the two rays cross at the middle
of the slab. This fact can be of some practical use. For example, we can
determine the height and slab thickness of the ionospheric irregularities

from satellite scintillation data (McClure and Swenson, 1964).
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