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ABSTRACT
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1iis repo ort considers the pcak response be
excited, linear mechanical oscillator when the applied random
excitation is either stationary or nonstationary. The stationary
random excitation is Gaussian bandwidth limited white noise and
the nonstationary random excitation is Gaussian bandwidth limited
white noise shapedintime by (l)a rectangular envelope function or
(2) a half-sine envelope function. Thus, the nonstationary excitation
appears as a pulse of white noise shaped as either a rectangle or a
half-sine,

Using data from an analog computer study, two topics are
explored in detail.

° the expected maximum peak response in a finite time
interval for a specified probability of occurrence

e a measure of the time duration for the oscillator to
achieve stationarity in its response

The peak response is expressedas parametric, dimensionless plots
of the peak torms response ratio and a dimensionless time param-
eter. In this form, the oscillator response to stationary white noise
and to the pulsed random excitation can be conveniently compared
and canbe used to estimate directly the time duration for an oscil-
lator to achieve stationarity in its response. It is found that for
values of the dimensionless time parameter greater than about one,
the stationary results can be applied to conservatively predict the
oscillator peak response to the pulsed excitation,

For both stationary and nonstationary excitations, the peak
behavior is noted to be dependent on the oscillator damping for a
small number of response cycles, As the number of response
cycles becomes large, the peak to rms response behavior tends to
become independent of damping.
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THE MECHANICAL RESPONSE OF A
LINEAR MECHANICAL OSCILLATOR TO STATIONARY
AND NONSTATIONARY RANDOM EXCITATION

1. INTRODUCTION

This report treats the response behavior of a linear, time invariant
mechanical oscillator subjected to Gaussian random excitation. For these
conditions, the response is random in nature and is characterized by Gaussian
properties. As such, only the first two statistical moments are required to
provide the probabilistic description of the random response. The complexity
of the statistical moments, however, depends upon whether the random excita-
tion is stationary or nonstationary, whether the system is unimodal or multi-
modal, and whether the transient response of the system is included or ignored.

The classic unimodal system is the mechanical oscillator (also commonly
referred to as a single degree-of-freedom mechanical system) whereas the
multimodal system implies a distributed elastic structure. The distributed
structure generally requires attention be given to space-time correlation of
the random loading whereas the mechanical oscillator requires only correlation
in time. Including transient conditions in a solution introduces nonstationarity
into the response for the initial intervals of time.

Reports dealing with response properties categorically include the mean
value, mean square response, correlation functions and power spectra. This
report, however, comments only in passing on these properties and emphasizes
the peak response behavior of the oscillator when the applied excitation is
(1} stationary and (2) nonstationary.

The output response to stationary Gaussian random excitation of a lightly
damped, linear mechanical oscillator appears as sketched in Figure 1. The
output is Gaussian and appears like a sinusoid at frequency fn with a slowly
varying random amplitude and random phase. The amplitude of the response
is shown as enveloped in time so that it becomes proper to speak of the statistical

properties of the envelope as well as the response time history. The

1
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Figure 1. Response of a Lightly Damped Mechanical Oscillator
to Broadband Stationary Random Excitation

instantaneous probability density for the amplitude of the response time history
is Gaussian. The probability density is nearly Rayleigh for the distribution
of the peaks of the response time history. As the oscillator damping approaches
zero, the probability density of the peaks of the time history approaches a
Rayleigh distribution., In the limit, that is, when the oscillator damping
becomes infinitesimally small thus defining an infinitely narrow bandpass filter,
the peaks of the response time history are distributed according to the Rayleigh
distribution. The probability density for the envelope maxima obtained by
passing white noise through an ideal bandpass filter is given by Rice on page 223
of Reference 1. Although resembling the Rayleigh distribution, the envelope
maxima density is noted to appear as neither Rayleigh nor Gaussian. Even
though these properties and other such relationships (Reference 2) are known
for simple linear systems and stationary random excitation, several important
questions still cannot be answered.

One such question is, '"What is the probability of exceeding a stated
amplitude within a finite period of time?" Expresses in an alternate manner,

"For a stated probability, how large an amplitude will occur (on the average)



within a finite period of time?'" To answer this question demands a time

dependent probability whose analytical expression still remains unknown at

mechanical design of missiles and spacecraft. Since exposure to maximum
levels of random excitation occurs for short time periods (for example, at

launch, near Mach 1, or at maximum Q in the flight profile), it may be

Another related question is, "What is the time duration for a mechanical
oscillator to achieve stationarity in its response to impulsively applied random
excitation?'"" If the nonstationary excitation is white noise enveloped in time
by the unit step function, the response will not be stationary for the initial
intervals of time. After some finite time duration, however, the oscillator
response exhibits stationary characteristics and the results from stationary
analyses then can be applied. If the nonstationary excitation is white noise
enveloped in time by a rectangular or half-sine pulse, the response charac-
teristics become somewhat more difficult to codify. A solution for this problem
finds application in the design of systems subjected to random shock loadings.

Answers to these questions based on the peak response of a linear
oscillator require knowledge of the distribution of the response maxima in time.
Specifically, it is required to know the distribution of time between level cross-
ings or, alternatively, the distribution of time intervals between peaks above a
stated level., This is an extremely difficult problem and no general analytical
solution is available at this time for these time dependent distributions, Thus,
it becomes appropriate to make rather sweeping simplifying assumptions so that
an approximate time dependent distribution can be written for the response
maxima, The main portion of this report traces the analytical development of
one such "approximate'' time dependent distribution and compares predicted

analytical results with empirical data from an analog computer study.



2. STATISTICAL PROPERTIES

Although the statistical properties of a Gaussian random process are
discussed elsewhere, it is instructive to briefly consider here the definitions
of those functions which are alluded to in this report. The statistical quantities
of interest are the mean, the variance, and the covariance functions. These

are defined for stationary and nonstationary random processes.

2.1 STATIONARY AND ERGODIC CONDITIONS

Consider the statistical moments of a stationary ergodic random process
x(t). The assumption of ergodicity allows one to calculate the statistical
properties of the random process by time averaging a single record from the
random process. The first order statistical moment is the mean p and is

defined as
T

p=Elx(t)] =x=1lim % f x(t) dt (2.1)
0

T 0

A second order statistical moment is the autocorrelation function Rxx('r)

and is defined as

R}C{(T) = E[ x(t)x(t+7)] (2.2)

2
For 7 =0, the autocorrelation function reduces to the mean square value Y
which may be written as
. T
2 1 2
R (0)=¢2=E[x(t)] = %% = lim —f x (t) dt (2.3)
Xx T 0

T—» 00

The covariance function CXX(T) also is a second order statistical moment and

appears as

C_JAm) = E{[X(t) ~pllx(t+T) - u]} (2.4)



. . . z ..
For 1=0, the covariance function reduces to the variance ¢ which may be

written as

' T
C (0) = = E{[x(t) - p]2}= [x(t) -u] % = lim lT f [x(t) - p]% @t (2.5)
*x T—»o00 0

For a zero mean, the covariance function is identical to the autocorrelation

function, i. e.,

RXX(T) = Cxx('r) when p =0 (2.6)

The cross-~covariance function ny(-r) is still another second order moment

and is defined as
CXY(T) = E{[X(t) - Hx] [ v(t) + 1) - HY]} (2.7)

For zero mean values, Eq. (2.7) reduces to the cross-correlation function

which appears as

ny(T) = E{[x(t)][y(t+v)]} (2.8)

Consequently, for zero mean values, the cross-covariance function and the
cross-correlation function are identities. ny(O) has no particular significant
statistical meaning.

The frequency composition of x(t) may be described by the Fourier

transform of the autocorrelation function which appears as

fo0)
-i2wfT

Sxx(f) = j Rxx('r) e ar (2.9)

where Sxx(f) is shown in terms of cyclical frequencies and is called the power

spectral density function with the units of mean square value per cps. . As



defined here, Sx_x(f) is a two-sided function where f ranges from -oo to oo,

and is related to the spectral density in radians per second as Sxx(f) =2 S (w).
XX

Since the autocorrelation function is symmetric with T, then the imaginary

part of Eq. (2.9) may be deleted so that

0
S (f) :f R (1) cos 2ufr dT (2. 10)
XX XX
-0
The cross-spectrum may be written as

(o)
5., (0 =j R () o T1EmT 4o (2. 11)
“oo
The real part of the cross-spectrum is called the co-spectrum and the
imaginary part of the cross-spectrum is called the quad-spectrum.
Given that y(t) defines the output response of a linear time invariant
mechanical system due to the input excitation x(t), the relationship between

the input and response power spectral densities is given by

S - |uml? s, {f) (2. 12)

()
Yy
where H(f) is the frequency response function for the linear system. Similarly,

the cross-spectrum is related to the excitation power spectral density by
S (f) = H(f) S (f) (2.13)
xy XX

Other such relationships are given in Reference 3.

For distributed elastic structures, the preceding statistical definitions
must be modified to account for spatial dependence as the response and
excitation are both functions of space as well as time. Rather than dwell at

this point on the statistical properties of distributed structures, the reader



is directed to Reference 4. For a practical interpretation of these statistical
properties as applied to the testing of structures, the reader is directed to

References 5 and 6.

2,2 NONSTATIONARY CONDITIONS

As contrasted to the statistical moments for ergodic random processes,
the statistical moments for nonstationary processes are time dependent and
are calculated by averaging over an ensemble of records instead of time
averaging a single record. Time averaging, however, can be performed but
the interpretation of these results is not obvious as is discussed in References
7 and 8.

Assuming that x(t) is from a nonstationary random process, the mean

is given as

p(t) = E[x(t)] (2. 14)

The autocorrelation function appears as

R_(t,t,) = Elx(t)) x(t,)] (2. 15)
Letting tl = tZ = t, the autocorrelation function reduces to the mean square
value defined as
2 2
() = Elx7(t)] (2. 16)

The covariance function may be written as
c_ (t.t,) = E{[x(tl) - wlt))] Bty M(tz)]} (2. 17)

Letting 1:l = t2 = t, the covariance function reduces to the variance of x(t)

which may be written as

crz(t) = E{[X(t) - H(t)]z} (2. 18)



For a zero mean value over all time, the covariance function becomes identical

to the autocorrelation functioh; i.e., when p(t) =0,
Rxx(t) = C_(t) (2.19)
The cross-covariance function may be written as

Gty s 1) = E{[ x(t)) - w (6] [y(t,) - uy(tz)]} (2.20)

For zero mean values, the cross-covariance function reduces to the cross-

correlation function ny(t s tz) which may be expressed as

1

Rt t)) = E{[x(tl)] [y(tz)]} (2.21)
Basic relationships between the input and output power spectral density, the

cross-spectral density, and the frequency response functions for a linear

system are discussed in Section 5 of Reference 9.



3. RESPONSE OF A MECHANICAL OSCILL.ATOR

This section deals with approximate solutions to the two questions cited
in the introduction regarding the oscillator response to stationary white noise
and pulsed random excitation. It is recalled that the first question deals with
the maximum response attained in time T with probability PM(B) whereas
the second question considers the time duration for the oscillator to effectively

attain stationarity in its response.

As one answer to the second question, Section 3. 1 paraphrases the work
of Caughey and Stumpf (Reference 10) where the excitation is white noise shaped
by the unit step function. Section 3.2 considers an analog study by Barnoski
and MacNeal (Reference 11) which provides an empirical solution to the first
question when the excitation is stationary. Section 3.3 discusses analog data
by Barnoski and MacNeal (Reference 12) which provide empirical solutions to

both questions for nonstationary random excitation.

3.1 RESPONSE TO WHITE NOISE SHAPED IN TIME BY THE STEP FUNCTION
Much of the literature concerning the response of simple mechanical
systems to stationary random excitation considers only the stationary aspects
of the dynamic response. In including the transient motion of the mechanical
oscillator, the response of the system to white noise shaped by the step function
is nonstationary for the initial intervals of time. Two excellent papers in this
subject area are found in References 10 and 13.
In keeping with the discussion of Reference 10, the equation of motion
for the mechanical oscillator acted upon by a random acceleration excitation

applied to the mass may be written as

o ] 2
X+ 2w tx + w x = a 3.1
2 ng n (t) ( )

where




t = damping ratio of the mechanical oscillator
x

= displacement of the mass from static equilibrium

X = velocity of the mass
X = acceleration of the mass
@ = undamped natural frequency of the mechanical oscillator
a(t) = random acceleration acting on the mass

The undamped natural frequency and damping ratio are related to the physical

parameters of the mechanical system by

wz = X (3.2)
n m
o
&= 2m w (3.3)
n
where
k = linear spring constant
m = mass of the system
c = viscous damping coefficient

The random excitation is assumed to have the following properties

° a(t) is stationary

° a(t) is Gaussian

° a(t) has a zero mean value

° a(t) has the power spectrum Ga(oo) which is considered to
be smooth and contains no sharp peaks

° a(t) is assumed to be mean square continuous

10



Assuming small values of damping ({ < 1) and that the initial conditions are

x(0) = a; x(0) =Db (3. 4)

then, a solution of (3. 1) may be written as

-Lw t Lw 'I
x(t) = ae n [cos w.tt sin w .t
d d d |
t
b —ant
+ e sin w .t + h(t-T) a(T) dT (3.5)
g d 0

where

/ 2
w4 =_V1 -4 w = damped natural frequency of the oscillator (3.6)

and for t > O

e—éwnt
h(t) = ——— sin wdt = impulse response of the system (3.7)
w
d
Since the response is noted to be a Gaussian process, only the mean and the

variance need be calculated to characterize the response properties. The mean

value of x(t) is formed by an ensemble average and appears as

-wnét wnt
n(t) = Elx)]=ae cos codt + — sin wdt
t

-w {t
e T sin w. t +fh(t-T) E[a(T)] dr (3. 8)
d ¢ 9

b

w

+

For the mean value of the excitation asumed equal to zero, the mean of the

response appears as

11



-wngt “’n{’
p(t) = E[x(t)]= ae [cos w4t + o sin mdt]

-w {t
n

+—b——e sin w .t (3. 9)
@3 d

The variance of x(t) is formed also by an ensemble average and is given

o2 (t) = E{[x(t) -H(t)]z} (3. 10)

In somewhat different form, the variance for the mechanical oscillator

as

appears as

O'Z(t) :[f hit-7) hit-T1') E[a(r) a(r")] dT 47 (3.11)
0

From Eq. (2.2), the expression containing the product of the acceleratiorn
terms is noted to be the autocorrelation function for «(r). This function may

be written as

R (t,7') = Ela(r) - a(t)] (3. 12)
oo

Note that the T nomenclature in Eq. (2.2) refers to a time difference whereas
the T symbols in Eq. (3.11) refer to variables of integration. For the
stationary assumption, the autocorrelation function depends only on the time
difference (T - T') rather than on T and 7' individually., Expressed in terms
of the physically realizable one-sided power spectrum, Eq. (3.12) appears

as
Q0

Raa(At) = Raa(T -7") =‘/o- Ga(co) cos w(T-T'") dw (3.13)

Substituting (3.13) and (3.7) into (3.11) and performing the double time

integration yields

12
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0'2 (t

where

2w
t cos w. t
d

G (w) 2w Gt
)—_-f e s (l+e n [1+ — Lsin @
0 lZ(w)' d
o.)nt-.t 2w
-e 2 cos w,t+ sin w.t] cos wt (3. 14)
d w d
d
w Lt . {w UZ-@_Z+@2 - -n\
n> © . ‘ \w & d 2
- e — sin w.,t sin wt + sin .t ‘dw
w d 2 d
d c.od

(3. 15)

2
IZ(w)I 2 = (wnz - wz) + (2w wn?;)z

If Ga( w) is a smooth function of w with no sharp peaks and { <<1, then

Eq. (3. 14) can be approximated by Laplace's method of evaluating integrals

which provides
-2 t 2
, "G (w) e 2w 1)
[ e - = . + : ;
o (t) 3 1 > wy t 5 sin w ,t wnwdi;s1n det
4L w w
n d
(3. 16)
Alternatively,

where Ga(wn) denotes the magnitude of Ga(w) at w
Eq. (3. 16) can be expressed as a nondimensional variance in the form
2w t 2 %
2 AR
1 -e n[l+ 2%2 sin (1-@,) wnt
1-¢
(3.17)

3

w
n

1
2%

R

20‘2(1:)

1

2

wt]
n

2
+ —g-r- sin 2 (]. - g)
2)z
1-1?)
Figure 2 is a family of curves of Eq. (3. 17) for various values of damping {
All curves

13

and is an extension of the same plot shown in Reference 10.
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begin at zero and, except for { = 0, asymptotically approach 1/2¢ as limiting
values. Of particular interest is the value of wnt as the magnitude of the
ordinate approaches an asymptotic value. This value yields the time or
number of cycles for the mechanical oscillator to attain stationarity in its
response. For example, wntf_\__l 6w when ¢ = 0.10; this corresponds to
approximately three cycles for the system response to achieve stationarity.
3.2 PEAK RESPONSE PROPERTIES TO

STATIONARY RANDOM EXCITATION

The probability density is not yet known for the distribution in time of
the peak response of a mechanical oscillator excited by white noise. Rice
(page 223 of Reference 1), however, derived a probability density for the
envelope maxima of the output from an ideal rectangular bandpass filter
excited by white noise. In addition, Rice showed that the average number of
envelope maxima is

p_ = 0.641B (3.18)

where B is the noise bandwidth of the filter. Aspinwall (Reference 14), in
turn, defined a mechanical equivalent to the electrical ideal bandpass filter
and used these two results of Rice to obtain an approximate answer to the
question regarding the probability of exceeding a stated amplitude within a
finite time interval. For completeness of this discussion, it is appropriate
to paraphrase the arguments of Aspinwall,

An equivalent ideal bandpass filter is obtained in the following manner.
In Figure 3, the frequency response characteristics are shown for both a
rectangular bandpass filter and a mechanical oscillator, The ordinate is noted
as an absolute value of the frequency response function and the x-axis is the
ratio of the excitation frequency to the undamped natural frequency of the

oscillator. B is shown as the bandwidth for an ideal rectangular filter.

15
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pass Filter

The sketch for the mechanical oscillator depicts the magnitude of the

velocity to force frequency response function for a mass excited oscillator.

This function is expressed as

where s = iw and other relationships are provided by Egs. (3.2) and (3. 3).

In terms of the frequency in cycles per second, the absolute magnitude of

(3. 19) is

5 1

H(w):-f}({—t)=——

m

2
s+ 2lw + —
n s

l/c

1+Es
c

1+

k

ms

2

}

(3. 19)

(3. 20)



As shown by the sketch in Figure 3, Eq. (3.20) is zero at both extremes of the
frequency axis and,for small values of damping, has a maximum value given

approximately by

' Tl'fn 1

uel = T e (3.21)
Bandwidth equivalence between the ideal bandpass filter and the mechani-

cal oscillator is defined by requiring the output responses to white noise to

have the same mean square value. It is tacitly assumed and shown in

Figure 3 that the center frequencies and gain for both systems are the same.

Thus, the mean square responses to white noise are

—_ f

mechanical .2 T n 2

= — —— e H * 22
oscillator x 2 Q | (f)lmax GO(f) (3 )
ideal > >
bandpass “-B- IH(~f)|ma £ Gy () (3.23)
filter x

where B is the noise bandwidth, lH(f)l Iznax is the square of the maximum
value of the frequency response function, and Go(f) is the magnitude of the
white noise input excitation. Equating (3.22) and (3.23) yields the following

relationship between the filter noise bandwidth and the oscillator half-power

point bandwidth

T
B = > Br (3.24)
where the half-power point bandwidth is
fn
= — .2
Br o) (3.25)

Substituting Eq. (3.24) into Eq. (3.18) yields the average number of envelope

maxima as

ols™

D) (3.26)
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Alternatively, substituting (3.21) into (3.22) yields the mean square velocity

response as 3
—_— w
S T (3.27)
4 707 2

Having an estimate for . an expression for predicting the probability
of exceeding a given amplitude within a finite time interval is argued as
follows. If it is assumed that the envelope maxima are independent random
. variables and that the number of envelope maxima for the time interval T
is given by p.nT , THEN the occurrence of each envelope maxima is one of
|.1.nT Bernoulli trials where success is attained if the maxima <. The
probability that the maximum value of the envelope maxima remains <

during the time interval T is then given as

kT
P = [P ] o2
B = [ PL®) (3.28)
where
PM(ﬁ) is the probability that M, the maximum value for the envelope
peaks in time T, is <  times the rms value of the response
PE(ﬁ) is the probability that the maximum value of any envelope peak
is <P times the rms value of the output response. For the
ideal bandpass filter, this value is obtained by integrating the
probability density function of the envelope maxima (Reference 1,
page 223) over the limits of interest.
p.nT is the average number of envelope maxima during time T
b is the average number of envelope maxima per second
T is the time interval for observing the output response

Alternatively, the probability of an envelope maxima exceeding P in time

T is expressed as

P (>B) =1 - P (B) (3.29)

18



By way of interpreting Eqs. (3.28) and (3.29) consider their application
to this classic statistical problem of flipping a single coin; what is the proba-
bility of flipping five heads in a row? For this problem, Eq. (3.28) can be
used directly. In this context,

PM(ﬁ) denotes the probability of flipping five heads in a row

PE(ﬁ) denotes the probability of flipping a head in a single
toss of the coin, that is 1/2
I.LnT denotes the total number of trials or flips of the coin,

which, in this example, equals five

so that 5
PM(ﬁ) =(1/2)" = 0.031 (3.30)

From Eq. (3.29), the probability of not flipping five heads in a row is

simply

P (>B)=1-.031 =0.969 (3.31)

Substituting (3.26) into (3.28) yields PM(B) for the mechanical oscillator

as
0 = [po®)]” (3.32)
where
* fnT
T = T (3.33)

ot
e

T  is noted as a dimensionless time parameter and fnT may be interpreted
as the number of cycles for which the random response is observed. The
PE([S) term is obtained directly from the probability density for envelope

maxima given by Rice on page 223 of Reference 1.

15



As sketched in Figure 4, Eq. (3.32) can be displayed as a family of
probability curves in P ((3) plotted as log T versus . These curves

[, 41 e mntar g AL A T o e 1 PR I ey ey <r Pp N Pt
repr S€C nt LIl resuits o1 a I.J.J.UU.L CI-J.Ld..I. dUVU].UPJ.l.lUJ.I.t by L35 pPliw

Ct)

appropriately called Aspinwall curves in this report. It is remembered that
these curves are applicable to the peak properties of the stationary response

for a lightly damped mechanical oscillator where the excitation is stationary

white noise.

log T*

p ———p

Figure 4. Parametric Plot for the Peak to RMS Response of a
Mechanical Oscillator Subjected to Broadband
Stationary Random Excitation

As mentioned in Reference 14, the errors inherent in the Aspinwall
curves are associated with the following assumptions:

(1) Differences between the actual number of envelope maxima
and the approximate number given as pnT.

(2) Differences in pu_ for the rectangular bandpass filter and
. n 11
the mechanical = oscillator,



(3) Errors in assuming the P_(B) developed by Rice for an ideal
rectangular filter to be directly applicable for the band-
pass of the mechanical oscillator.

(4) Errors in assuming the envelope maxima to be statistically
independent.

Although these factors bias the numerical results of the theoretical analysis,
the trends displayed by the curves in Figure 4 were believed to be valid.

In Reference 11, Barnoski and MacNeal examined the validity of
Aspinwall curves bycomparing these theoretical results with empirical data
from an analog computer study. For this study, a mechanical oscillator was
simulated by the operational amplifier circuits shown as Figure 5. The
triangles denote simple electronic amplifiers, the K's represent potentiometers,
C's are capacitors, R's are resistors, Ei is the input excitation and e
represents the velocity of the mechanical system., In terms of the s operator,
the ratio of the velocity to the input excitation is

K_R

3 3
e K2R4
Ei - R_,);l s . AK1 :
2 R1C1R2C2s

Comparing the terms of (3.19) with (3.34) yields

K_R

1 33
~ = (3.35)
C K2R4
. %3%) (3.36)
w K *
n 2
AK
2 1
w =z (3.37)
n RICIRZCZ
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Selecting the appropriate values for the components in (3.35), (3.36), and
(3.37) guarantees the simulation of the velocity to force frequency response

function for the mechanical oscillator.

Ei R3
/‘/ +
2} C e C
2
\ ST I
M
R4
+( :) RZ
— W
"

Figure 5. Operational Amplifier Circuits for a Linear
Mechanical Oscillator

In the analog study, the oscillator was excited continuously by white
noise and the velocity response was observed for time intervals (T) ranging
from a minimum of 0.1 second to a maximum of 20 seconds. The white noise
was provided by a random noise generator and the noise level was set so
~ 60 peaks of the output voltage would not be clipped by the amplifiers.

For each time interval and value of fn/Q » the output signal was sampled
100 times where the time duration for each sampling was T seconds,
Figure 6 shows two typical time histories as observed during the sampling
interval T =0.1 second, and where Q = 20 and fn = 318 cps.

For each sampling, the maximum positive and negative values for the
output signal was measured and recorded. After 100 samplings, these data

then were arranged in rank order to yield histograms of probability versus S.
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Through each histogram, a mean curve was drawn which represents an
empirical plot of PM(B) versus $. These empirical curves were used to

create empirical plots of th/Q versus P for values of PM([S) as illustrated

by Figures 7 and 8. - N

The coordinates in these figures are noted to be the coordinates of
Figure 4 so that the Aspinwall probability curves can be compared directly
with the empirical curves. The empirical curves are plotted as a family in
Q for Q values of 5, 10, 20, and 50. Hach data point shown was obtained from
mean curves of the histograms alluded to in the previous paragraph. Also
shown are the approximate number of cycles for which the oscillator was
observed. It is interesting to note that for the larger values of fnT/Q, the

constant probability curves tend to appear as straight lines on the semi-

log graph paper. This implies the fnT/Q and B are related in form as

fT
log n? = mp + constant (3.38)

where m is the slope of the straight lines.

From Figures 7 and 8, it can be concluded that the empirical data lend
support to the theory embodied in Aspinwall curves although the response
ratios (B) are consistently higher than those predicted by the Aspinwall theory.
In other words, the numerical values provided by the theoretical curves are
not conservative. By noting the vertical alignment of data points for the
larger number of cycles, it may be concluded that the response ratio (f)
tends to become independent of Q for a large number of cycles.

Figure 9 is a family of curves in PM(B) for the peak to rms response
ratio (B) versus the dimensionless time parameter (fnT/Q). These curves
are based on the empirical plots from Figures 7 and 8, as well as similar
data from Reference 12. Only two values of PM(B) are shownand each

PM(ﬁ) curve is noted to be influenced by the damping values of the oscillator.
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The P ordinate values where T = 0 become the instantaneous values of the
amplitude time history. Since the probability density of the instantaneous
values is normal, these magnitudes are obtained from most any tabulated
table of the Gaussian density function. All the curves of Figure 9 exhibit a
rapid rise in the f value for initial intervals of fnT/Q. After passing through
a knee in the vicinity of fnT/Q = 1, the B values increase very slowly for
relatively large increases in fnT/Q. Although the plots are shown only up
to fnT/Q = 7, it is understood that these curves, in the limit, extend to
infinity where the B ratio theoretically becomes infinite. Thus, an infinite
peak is to be expected in an infinite time.

The curves of Figure 9 show that peak to rms response ratios of
3[ PM(B) =0.60] and 4] PM(B) =0.95] are not uncommon in short time inter-
vals for a linear oscillator. Oun the other hand, a large time lapse is
required before § ratios of 5 or 6 are expected. These curves assume signi-
ficance to a designer if they are applied to establish structural reliability
criteria based on a time dependent probability of extreme loads. In addition,
these curves can be used to define stationarity in the peak response as the
shown plots are the stationary results of an oscillator excited by stationary
white noise,

Figure 10 depicts families of curves in PM(B) for the peak to rms
response ratio plotted versus the number of cycles for the oscillator (fnT).
The equation for this theoretical boundary was developed by Thrall using non-

parametric statistics (Reference 15) and can be expressed as

[1-P, (B)] 2
fT= _ M - e[3 /2

n > (3.39)

The shown theoretical curve is only for PM((3) = 0.95 whereas the remaining
PM(B) plots are empirical plots formed from the analog data of Figures 7 and

8. Figure 10 clearly points out that the B response ratio becomes independent
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of the oscillator damping for a large number of cycles. Although the
theoretical PM(B) plot is based upon an average value for the number of
level crossings per unit time, Eq. (3.39) appears as a valid bound for large
values of T. For small T values, however, the theoretical bound is noted to
be inexact, but conservative, when compared with the empirical curves.

By comparing the Q curves for any value of PM(ﬁ), it is noticed in
Figure 10 that the B values are higher for the larger damping values. This
behavior requires further explanation. The output maxima response of an
oscillator excited by white noise may be considered to consist of clumps of
maxima (clumps) are noted to be well separated in time. As damping is
increased, the time separation between envelope maxima becomes less so
that a greater number of maxima occur per unit time. Hence, the greater
the clump density in time, the greater the likelihood of experiencing higher

peak to rms values.
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Figure 8.

A FLRR L

Dimensionless Time Parameter Versus Ratio of Peak to RMS
Response for the Output of a Mechanical Oscillator Excited by

Stationary White Noise: PM(F‘S) = 0.95
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3.3 PEAK RESPONSE PROPERTIES TO
NONSTATIONARY RANDOM EXCITATION

Attention is focused in this section upon the peak response behavior
of a mechanical oscillator when the excitation is white noise shaped in time
by either a rectangular or half-sine envelope function. Hence, the excitation
is nonstationary and appears as a pulse of white noise shaped either as a
rectangle or a half-sine. This problem is typically associated with structural
response to shock loading where the shock can be due to phenomenon as earth-
quakes, nuclear blasts, or missile launch. Barnoski and MacNeal (Reference 12)
treated this problem for a linear oscillator using an analog computer and much
of their data form the basis of this discussion.

To display the peak response results to nonstationary excitation using
the fnT/Q and (B parameters of the previous section, a time duration
analogous to the sampling interval T need be defined. It is recalled that
T refers to the time interval for sampling the response of the linear oscillator
to stationary white noise. For the nonstationary study, the response is con-
tinuously monitored so that a time interval analogous to T is stated in terms
of the duration of the input pulse. An effective or analogous time interval AT
is defined by requiring the input energy in the nonstationary pulse to be equal
to an equivalent amount of energy for stationary conditions. Hence, the non-

stationary time interval is expressed as

AT = ————— f £%(t) at (3.40)

where E(t) is an envelope function denoted as

E(t)= E___gt) (3.41)
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E is the maximum value of the envelope function and g(t) is the shape
max
function. For the rectangular and half-sine shape function, E(t) and the

effective time intervals (AT) for these pulses appear as shown in Figure 11.

Rectangular
E(t
Shape Function (t)

> time

Half-Sine
Shape Function

E(t)

» time

2AT

Figure 11. Rectangular and Half-Sine Envelope Functions for the
Pulsed Random Excitation

Thus, the effective time interval for the rectangular pulse is equal to its
actual time duration whereas the effective time interval for the half-sine
pulse is one-half its actual time duration. It is to be noted that the rectangular
shape function approaches a step function as AT becomes very large.
The dimensionless time parameter for the nonstationary conditions

becomes
" f AT
n

T = Q)

(3.42)

where Eq.(3.42) differs from Eq.(3.33) only in the definition of the time

intervals T and A-T.
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The expression for the pulsed excitation can be written as

f(t) = Go E(t) (3.43)

where GO is the magnitude of the white noise spectrum. Equation (3.43) is
created electrically by multiplying the outputs from a random noise source
and an envelope generator.

In their analog study, Barnoski and MacNeal varied T* in discrete
steps ranging from a minimum value of 0.25 to a maximum value of 5. 00.
This maximum value of T* is considered large enough so that AT is long
compared to the natural period of the oscillator. For this condition, the
input excitation appears as stationary white noise to the oscillator and the
B response should be nearly the same as in Figure 9. The undamped natural
frequency of the system (fn) was set at 159 cps and Q values were 5, 20, and
50.

For a specified T*, the oscillator was excited by either a rectangular
pulse or a half-sine pulse of white noise and the maximum positive and
negative values of the peak to rms time histories were recorded. This pro-
cedure was repeated 100 times for each T* value. As with the analog data
of Section 3.2, these recorded data were arranged in rank order to construct
PM(ﬁ) versus P curves; then, to create the desired an'r/Q versus P plots.

Figure 12 shows a typical rectangular pulse of white noise and the
resulting response of a linear oscillator to such an excitation. The experi-
mental constants are Q=20 and AT=0.0314 second which defines
T*= an'r/Q= 0.25. The effective time interval (A7) defined by Eq. (3.40) is
equal to the actual time duration of the pulse and is noted to be five times
the natural period of the oscillator. The response is a velocity time history
and is observed as a damped harmonic oscillation after the pulse is terminated.

Figure 13 shows a half-sine envelope function and a typical resulting

pulsed random excitation when this envelope function is multiplied with the
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output of a random noise generator. This half-sine pulse of white noise has
an effective time interval (AT) of one-half the time duration of the envelope
function. As with the rectangular pulse, the effective time duration is five
times the period of the mechanical oscillator. Figure 14 depicts two typical
responses of the oscillator when disturbed by the half-sine pulse of white
noise. Such responses were continuously monitored and the positive and
negative peak to rms values were recorded and used to form PM(ﬁ) versus f
plots in a manner identical to that for the rectangular pulse.

The results of the analog study are summarized in Figures 15 through
20. These figures are families of curves in PM(B) for both stationary and
nonstationary conditions with the peak to rms response ratio (f) plotted versus
the dimensionless time parameter (T*). Figures 15, 16, and 17 are the
results for Q = 5, 20,and 50 respectively, when the nonstationary excitation is
the rectangular pulse of white noise. Figures 18, 19, and 20 are the results
for Q=5, 20, and 50 respectively, when the nonstationary excitation is the
half-sine pulse of white noise,

All of the curves exhibit the same characteristic behavior: that is a
very rapid rise in f for the initial intervals of T*, passing through a knee
in the vicinity of T*: 1, then increasing in B very slowly beyond the knee.

As would be expected, the magnitudes of the curves for the pulsed nonstationary
excitation are bounded by the stationary curves from Section 3.2. These
figures, therefore, can be used to assess the time duration for an oscillator

to effectively achieve stationarity in its response. Beyond T*= 1, the B

results for stationary white noise can be used for predicting peak to rms

response values and are noted to yield conservative estimates for P in all

cases,
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4, CONCLUDING REMARKS

4.1 SUMMARY

This report considers the peak response behavior of a linear mechani-
cal oscillator when subjected to stationary and nonstationary random excitation.
The peak response is expressed as a ratio of peak to rms response and is
denoted as . The stationary random excitation is white noise and the non-
stationary random excitations are pulses of white noise shaped in time as
either a rectangle or a half-sine. The peak response results were obtained
by an analog computer study and are displayed as a family of constant proba-
bility curves with [ plotted versus a dimensionless time parameter denoted
as T* . This parameter contains the undamped natural frequency of the
oscillator (fn), the damping of the oscillator expressed as Q, and a time
duration noted as T for stationary white noise and AT for the shaped white
noise,

The B results for stationary white noise are seen to establish an upper
bound on the B results for the pulses of shaped white noise. Thus, the
stationary white noise [ plots can be applied to conservatively predict the
peak response of an oscillator to pulsed random excitation. For T* values
<l (that is, the time duration of the pulse is relatively short as compared
to the natural period of the oscillator), the f results for stationary white
noise yield highly conservative estimates. For T* > 1, the white noise P
results, although still conservative, are more nearly the same order of
magnitude as the B results for the shaped white noise. For a small number
of response cycles, the peak to rms response ratio is noted to be dependent
on the Q of the oscillator for each PM(ﬁ). For a larger nurﬁber of response
cycles, however, these peak to rms results tend to become independent of Q.

For the linear oscillator, the f# curves provide an empirical answer
to the following basic nontrivial questions which are of practical importance

in mechanical design:

L
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(1) How high an amplitude would be reached in a finite time inter-
val T with probability PM([S)? It is recalled that PM((?)) is
defined as the probability that M, the maximum value for the
envelope peak in time T, is < times the rms response value.

(2) What length of time is necessary for an oscillator to effectively
achieve stationarity in its response after being excited by a

pulse of random excitation?

The first question arises in extreme value problems where one is concerned
with the likelihood of a single catastrophic event. For example, what is the
probability that some basic structure of an aircraft will experience an extreme
stress beyond ultimate strength due to a gust load during its service life?
For a second example, what is the probability that a resiliently mounted equip-
ment package in a spacecraft will collide with neighboring structure due to
random vibration during the launch phase? The second question arises in
those cases where one is concerned with making stationary approximations
for nonstationary environments, For example, will a stationary vibration
test properly simulate the most severe response conditions which a com-
ponent experiences during exposure to a nonstationary vibration environment.
Continuing with the example of vibration testing, assume the first
crossing of a given extreme stress level will produce a failure of the component
to be tested. Such a failure criterion is often acceptable for components sub-
jected to intense, short duration vibration environments such as launch environ=-
ments for space craft. As indicated by the B curves, the probability of a
given extreme value is a function of both the rms value for the vibration and
the exposure time. Hence, the B curves can be used as a criterion to
arrive at appropriate test levels by specifying (1) the time varying rms
magnitude of the environment, (2) an acceptable peak value probability,
i.e., a PM(Q) value, and (3) the expected time exposure in the random
environment. From these data and the B curves, a stationary vibration

test can be specified which simulates a nonstationary vibration environment.
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The P curves depict in a general way the time-probabilistic be-
havior of the peak response of a linear oscillator excited by both stationary
and nonstationary random excitation. These results, however, can be
applied to provide qualified solutions to various specific problem areas such
as for test specifications which are discussed briefly on the previous page.
It must be understood that conclusions drawn from the P curves are based
upon an extreme value criterion and can be applied to problems only where

such a criterion is plausible.

4.2 RECOMMENDATIONS FOR FUTURE STUDIES
On the basis of this report, several important topic areas are

recommended for future study. For the mechanical oscillator:

. Repeat the analog study for other values of fn, Q, and T
(or AT) to establish response results which are statistically
more significant,

] Consider envelope shape functions other than a rectangle or
half-sine (for example, a triangle or a trapezoid).

° Consider the effects on the B parameter of varying the
oscillator center frequency (fn) over the frequency band of
the input excitation where the input spectrum is other than
white noise,

° Consider the effects of nonlinearities on the B parameter.

Similar studies also should be performed for multi degree-of-freedom
systems to determine the significant parameters affecting the B response.
Although the above recommendations can be effectively carried out
using electrical analog equipment (as in this report) an alternative program
would be to perform the suggested analog experiments by digital or hybrid

methods, In these ways,the vast amount of peak response data can be

routinely and efficiently organized to form the desired PM(B) versus P plots

as well as the B versus fnT/Q curves.
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