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ABSTRACT 

This report considers the peak response behavior of a mass 
excited, linear mechanical oscillator when the applied random 
excitation is either stationary or nonstationary. The stationary 
random excitation is Gaussian bandwidth limited white noise and 
the nonstationary random excitation is Gaussian bandwidth limited 
white noise shaped in time by (1) a rectangular envelope function or 
(2) a half - sine envelope function. Thus, the nonstationary excitation 
appears as a pulse of white noise shaped as either a rectangle or a 
half-sine. 

Using data from an analog computer study, two topics are 
explored in detail. 

0 the expected maximum peak response in a finite time 
interval for a specified probability of occurrence 

l a measure of the time duration for the oscillator to 
achieve stationarity in its response 

The peak response is expressed as parametric, dimensionless plots 
of the peak to rms response ratio anda dimensionless time param- 
eter. In this form, the oscillator response to stationarywhite noise 
and to the pulsed random excitation can be conveniently compared 
and canbe used to estimate directly the time duration for an oscil- 
lator to achieve stationarity in its response. It is found that for 
values of the dimensionless time parameter greater than about one, 
the stationary results can be applied to conservatively predict the 
oscillator peak response to the pulsed excitation. 

For both stationary and nonstationary excitations, the peak 
behavior is noted to be dependent on the oscillator damping for a 
small number of response cycles. As the number of response 
cycles becomes large, the peak to rms response behavior tends to 
become independent of damping. 
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THE MECHANICAL RESPONSE OF A 
LINEAR MECHANICAL OSCILLATOR TO STATIONARY 

AND NONSTATIONARY RANDOM EXCITATION 

1. INTRODUCTION 

This report treats the response behavior of a linear, time invariant 

mechanical oscillator subjected to Gaussian random excitation. For these 

conditions, the response is random in nature and is characterized by Gaussian 

properties. As such, only the first two statistical moments are required to 

provide the probabilistic description of the random response. The complexity 

of the statistical moments, however, depends upon whether the random excita- 

tion is stationary or nonstationary, whether the system is unimodal or multi- 

modal, and whether the transient response of the system is included or ignored. 

The classic unimodal system is the mechanical oscillator (also commonly 

referred to as a single degree- of-freedom mechanical system) whereas the 

multimodal system implies a distributed elastic structure. The distributed 

structure generally requires attention be given to, space-time correlation of 

the random loading whereas the mechanical oscillator requires only correlation 

in time. Including transient conditions in a solution introduces nonstationarity 

into the response for the initial intervals of time. 

Reports dealing with response properties categorically include the mean 

value, mean square response, correlation functions and power spectra. This 

report, however, comments only in passing on these properties and emphasizes 

the peak response behavior of the oscillator when the applied excitation is 

(1) stationary and (2) nonstationary. 

The output response to stationary Gaussian random excitation of a lightly 

damped, linear mechanical oscillator appears as sketched in Figure 1. The 

output is Gaussian and appears like a sinusoid at frequency f, with a slowly 

varying random amplitude and random phase. The amplitude of the response 

is shown as enveloped in time so that it becomes proper to speak of the statistical 

properties of the envelope as well as the response time history. The 
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Figure 1. Response of a Lightly Damped Mechanical Oscillator 
to Broadband Stationary Random Excitation 

instantaneous probability density for the amplitude of the response time history 

is Gaussian. The probability density is nearly Rayleigh for the distribution 

of the peaks of the response time history. As the oscillator damping approaches 

zero, the probability density of the peaks of the time history approaches a 

Rayleigh distribution. In the limit, that is, when the oscillator damping 

becomes infinitesimally small thus defining an infinitely narrow bandpass filter, 

the peaks of the response time history are distributed according to the Rayleigh 

distribution. The probability density for the envelope maxima obtained by 

passing white noise through an ideal bandpass filter is given by Rice on page 223 

of Reference 1. Although resembling the Rayleigh distribution, the envelope 

maxima density is noted to appear as neither Rayleigh nor Gaussian. Even 

though these properties and other such relationships (Reference 2) are known 

for simple linear systems and stationary random excitation, several important 

questions still cannot be answered. 

One such question is, “What is the probability of exceeding a stated 

amplitude within a finite period of time? ” Expresses in an alternate manner, 

“For a stated probability, how large an amplitude will occur (on the average) 
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within a finite period of time? ” To answer this question demands a time 

dependent probability whose analytical expression still remains unknown at 

this writing. The solution, however, finds immediate application in the 

mechanical design of missiles and spacecraft. Since exposure to maximum 

levels of random excitation occurs for short time periods (for example, at 

launch, near Mach 1, or at maximum Q in the flight profile), it may be 

possible to save considerable weight by establishing structural reliability 

criteria based on a time related probability of extreme loads. 

Another related question is, “What is the time duration for a mechanical 

oscillator to achieve stationarity in its response to impulsively applied random 

excitation? ” If the nonstationary excitation is white noise enveloped in time 

by the unit step function, the response will not be stationary for the initial 

intervals of time. After some finite time duration, however, the oscillator 

response exhibits stationary characteristics and the results from stationary 

analyses then can be applied. If the nonstationary excitation is white noise 

enveloped in time by a rectangular or half-sine pulse, the response charac- 

teristics become somewhat more difficult to codify. A solution for this problem 

finds application in the design of systems subjected to random shock loadings. 

Answers to these questions based on the peak response of a linear 

oscillator require knowledge of the distribution of the response maxima in time. 

Specifically, it is required to know the distribution of time between level cross- 

ings or, alternatively, the distribution of time intervals between peaks above a 

stated level. This is an extremely difficult problem and no general analytical 

solution is available at this time for these time dependent distributions. Thus, 

it becomes appropriate to make rather sweeping simplifying assumptions so that 

an approximate time dependent distribution can be written for the response 

maxima. The main portion of this report traces the analytical development of 

one such “approximate” time dependent distribution and compares predicted 

analytical results with empirical data from an analog computer study. 
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2. STATISTICAL PROPERTIES 

Although the statistical properties of a Gaussian random process are 

discussed elsewhere, it is instructive to briefly consider here the definitions 

of those functions which are alluded to in this report. The statistical quantities 

of interest are the mean, the variance, and the covariance functions. The se 

are defined for stationary and nonstationary random processes. 

2.1 STATIONARY AND ERGODIC CONDITIONS 

Consider the statistical moments of a stationary ergodic random process 

x(t). The assumption of ergodicity allows one to calculate the statistical 

properties of the random process by time averaging a single record from the 

random process. The first order statistical moment is the mean TV and is 

defined as 
T 

p = E[x(t)] = := lit-n + 
I 

x(t) dt (2.1) 
T-03 0 

A second order statistical moment is the autocorrelation function R -id 

and is defined as 

R-(T) = E [ x(t) x(t + T) ] (2.2) 

For -r = 0, the autocorrelation function reduces to the mean square value +‘ 

which may be written as 

T 
2 

R=(O) = +2 = E [ x2(t) ] = x = 
1 

lim T 
I 

x2(t) dt 
T-+00 0 

(2.3) 

The covariance function C-(T) 1 a so is a second order statistical moment and 

appears as 

-d[x(tW - d (2.4) 
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For T = 0, the covariance function reduces to the 

written as 

Cxx( 0) = a2 = E )= k4th12 = Tag _ ‘o lim 7 [x(t) - ~1 2 dt (2.5) 

variance u 
2 

which may be 

For a zero mean, the covariance function is identical to the autocorrelation 

function, i. e., 

Rxx( T) = C=(T) when TV = 0 (2.6) 

The cross-covariance function C p is still another second order moment 

and is defined as Cq(T) = E [x(t) - pxl [ y(t) + T) - pyl I (2.7) 

For zero mean values, Eq. (2.7) reduces to the cross-correlation function 

which appears as 

Rxy(d = E (2.8) 

Consequently, for zero mean values, the cross-covariance function and the 

cross-correlation function are identities. Rxy(0) has no particular significant 

statistical meaning. 

The frequency composition of x(t) may be described by the Fourier 

transform of the autocorrelation function which appears as 

a3 

Sxx(f) = / 
Rxx(~)emiZnfr dr 

-03 
(2.9) 

where S=(f) is shown in terms of cyclical frequencies and is called the power 

spectral density function with the units of mean square value per cps. As 
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defined here, S=(f) is a two-sided function where f ranges from -a, to 00, 

and is related to the spectral density in radians per second as S 
xx 

(f) = 27rS (w). 
xx 

Since the autocorrelation function is symmetric with T, then the imaginary 

part of Eq. (2.9) may be deleted so that 

co 

Sxx(f) = Lx 
R (T) cos 2lTfT dr 

-03 

The cross-spectrum may be written as 

co 

Sxy(f) = / Rxy(r) e 
-iZlTfT 

dr 
-Cl3 

(2. 10) 

(2. 11) 

The real part of the cross-spectrum is called the co-spectrum and the 

imaginary part of the cross-spectrum is called the quad-spectrum. 

Given that y(t) defines the output response of a linear time invariant 

mechanical system due to the input excitation x(t), the relationship between 

the input and response power spectral densities is given by 

Syv(f) = lWd2 S-0) (2. 12) 

where H(f) is the frequency response function for the linear system. Similarly, 

the cross-spectrum is related to the excitation power spectral density by 

Sxy(f) = H(f) S-(f) (2. 13) 

Other such relationships are given in Reference 3. 

For distributed elastic structures, the preceding statistical definitions 

must be modified to account for spatial dependence as the response and 

excitation are both functions of space as well as time. Rather than dwell at 

this point on the statistical properties of distributed structures, the reader 
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is directed to Reference 4. For a practical interpretation of these statistical 

properties as applied to the testing of structures, the reader is directed to 

References 5 and 6. 

2.2 NONSTATIONARY CONDITIONS 

As contrasted to the statistical moments for ergodic random processes, 

the statistical moments for nonstationary processes are time dependent and 

are calculated by averaging over an ensemble of records instead of time 

averaging a single record. Time averaging, however, can be performed but 

the interpretation of these results is not obvious as is discussed in References 

7 and 8. 

Assuming that x(t) is from a nonstationary random process, the mean 

is given as 

t-4) = E[x(t)] (2. 14) 

The autocorrelation function appears as 

Rxx(tl> t2) = E[x(tJ x(t2)l (2. 15) 

Letting tl = t2 = t, the autocorrelation function reduces to the mean square 

value defined as 
+‘(t) = E[x2(d (2. 16) 

The covariance function may be written as 

C&s t2) = E [x(tl) - t4tl)l b4t2) 
c 

(2. 17) 

Letting tl = t2 = t, the covariance function reduces to the variance of x(t) 

which may be written as 

u2(t) = E 

7 

(2. 18) 



For a zero mean value over all time, the covariance function becomes identical 

to the autocorrelation function; i. e., when p(t) = 0, 

R*(t) = Cxx(t) 

The cross-covariance function may be written as 

c (t xy 1 s tz) = E - Px(t,)l [ Yb,) - Pyb2)1 

For zero mean values, the cross-covariance function reduces to the cross- 

correlation function RW(tl , t2) which may be expressed as 

R& a t2) = E [ x(tl)l [ y(t2)l 
C 

(2.19) 

(2.20) 

Basic relationships between the input and output power spectral density, the 

cross-spectral density, and the frequency response functions for a linear 

system are discussed in Section 5 of Reference 9. 

(2.21) 



3. RESPONSE OF A MECHANICAL OSCILLATOR 

This section deals with approximate solutions to the two questions cited 

in the introduction regarding the oscillator response to stationary white noise 

and pulsed random excitation. It is recalled that the first question deals with 

the maximum response attained in time T with probability PM(p) whereas 

the second question considers the time duration for the oscillator to effectively 

attain stationarity in its response. 

As one answer to the second question, Section 3..1 paraphrases the work 

of Caughey and Stumpf (Reference 10) where the excitation is white noise shaped 

by the unit step function. Section 3. 2 considers an analog study by Barnoski 

and MacNeal (Reference 11) which provides an empirical solution to the first 

question when the excitation is stationary. Section 3. 3 discusses analog data 

by Barnoski and MacNeal (Reference 12) which provide empirical solutions to 

both questions for nonstationary random excitation. 

3.1 RESPONSE TO WHITE NOISE SHAPED IN TIME BY THE STEP FUNCTION 

Much of the literature concerning the response of simple mechanical 

systems to stationary random excitation considers only the stationary aspects 

of the dynamic response. In including the transient motion of the mechanical 

0s cillator , the response of the system to white noise shaped by the step function 

is nonstationary for the initial intervals of time. Two excellent papers in this 

subject area are found in References 10 and 13. 

In keeping with the discussion of Reference 10, the equation of motion 

for the mechanical oscillator acted upon by a random acceleration excitation 

applied to the mass may be written as 

2 + 29; + w ,“x = a(t) (3. 1) 

where 

9 



c= damping ratio of the mechanical oscillator 

x= displacement of the mass from static equilibrium 

;r= velocity of the mass 

;;= acceleration of the mass 

0 = 

CL&‘; = 

undamped natural frequency of the mechanical oscillator 

random acceleration acting on the mass 

The undamped natural frequency and damping ratio are related to the physical 

parameters of the mechanical system by 

2 k &I =- 
n m 

5= c 
2mw 

n 

where 

k= linear spring constant 

m= mass of the system 

c= viscous damping coefficient 

The random excitation is assumed to have the following properties 

0 Q(t) is stationary 

0 (Y(t) is Gaussian 

0 (Y(t) has a zero mean value 

0 a(t) has the power spectrum G@(w) which is considered to 

be smooth and contains no sharp peaks 

0 cr(t) is assumed to be mean square continuous 

(3.2) 

(3.3) 
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Assuming small values of damping (5 < 1) and that the initial conditions are 

x(0) = a; G(O) = b (3. 4) 

then, a solution of (3. 1) may be written as 

-by 50 
x(t) = a e 

n 
cos w 

d 
t + - 

d 
sin 0 t 

d I 

b -5(-Q 
t 

+ -e sino tf / 
d 0 

h(t - 7) O(T) dr 
“d 

(3. 5) 

where 

Od = 
= damped natural frequency of the oscillator (3. 6) n 

and for t 2 0 

-t; ant 

h(t) = e sin w t = impulse response 
d 

of the system (3. 7) 
Od 

Since the response is noted to be a Gaussian process, only the mean and the 

variance need be calculated to characterize the response properties. The mean 

value of x(t) is formed by an ensemble average and appears as 

CJJ Y 
p(t) = E[x(t)]= a e- n 

0 t 
n 

Wdt t - 
d 

sin 0 t 
d 1 

6.l t;t 
t 

t b -n -e h(t - T) E[(Y(T)] dT (3. 8) 
Wd 

For the mean value of the excitation asumed equal to zero, the mean of the 

response appears as 
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p(t) = E[x(t)] = a e 
-“,5t wn5 

d 
t + - sin 0 t 

“d 
d 1 

i-be 
- o,Ct 

sin 0 t 
Wd 

d (3. 9) 

The variance of x(t) is formed also by an ensemble average and is given 

as 

In somewhat different form, the variance for the mechanical oscillator 

appears as t t u2(t) = h(t - T) h(t - T’) E [(Y(T) (Y(T’)] dr dr’ (3. 11) 

From Eq. (2. 2), the expression containing the product of the acceleration 

terms is noted to be the autocorrelation function for Q(T). This function may 

be written as 

RaQ(r,rl) = E[Q(T) - Q(T')] (3. 12) 

Note that the T nomenclature in Eq. (2.2) refers to a time difference whereas 

the T symbols in Eq. (3.11) refer to variables of integration. For the 

stationary assumption, the autocorrelation function depends only on the time 

difference (T - r’) rather than on T and T' individually. Expressed in terms 

of the physically realizable one-sided power spectrum, Eq. (3.12) appears 

as 

RQIY(At) = RQa( T - T’) = GQ(a) cos O(T - 7’) dw (3.13) 

Substituting (3.13) and (3.7) into (3.11) and performing the double time 

integration yields 
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2w 
1+ >5 d sin 0 t cos w t 

Wd 
d 

“,‘t 2 (J-g 
- e cos odt + - sin 0 cos ot 

Od 
d 

(3. 14) 

Wn5t 20 (wng)2 - w; t cd2 2 
-e - sin w 

Wd 
d 

t sin wt t 2 
sin w t 

d 
/dw 

Od 

where 

IZ(m)l 2 = (w," - cd2)2 t (2w cQ2 (3. 15) 

If G ( o) is a smooth function of w with no sharp peaks and 1: < < 1, then 
CY 

Eq. (3. 14) can be approximated by Laplace’s method of evaluating integrals 

which provides 

oZ(t) c ‘~~~~) f - ‘25;’ [a:+ (2>C)2 sin20dtt ~n~d~sin;2~dt]} 

(3. 16) 

where Go (w,) denotes the magnitude of Go(a) at w . n 
Alternatively, 

Eq. (3. 16) can be expressed as a nondimensional variance in the form 

3 
20-‘(t) On - 1 i 
-_ 

lr Gcr(mn)--x 
0 t 

n 

(3. 17) 

Figure 2 is a family of curves of Eq. (3. 17) for various values of damping 5 

and is an extension of the same plot shown in Reference 10. All curves 
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Figure 2. Dimensionless Variance of the Displacement Response of a lMechanica1 Oscillator 
Excited by White Noise Shaped in Time by the Step Function 
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begin at zero and, except for 5 = 0, asymptotically approach l/25 as limiting 

values . Of particular interest is the value of mnt as the magnitude of the 

ordinate approaches an asymptotic value. This value yields the time or 

number of cycles for the mechanical oscillator to attain stationarity in its 

response. For example, _ wntnr 67~ when & = 0.10; this corresponds to 

approximately three cycles for the system response’ to achieve stationarity. 

3.2 PEAK RESPONSE PROPERTIES TO 
STATIONARY RANDOM EXCITATION 

The probability density is not yet known for the distribution in time of 

the peak response of a mechanical oscillator excited by white noise. Rice 

(page 223 of Reference l), however, derived a probability density for the 

envelope maxima of the output from an ideal rectangular bandpas s filter 

excited by white noise. In addition, Rice showed that the average number of 

envelope maxima is 

‘n 
= 0.641B (3.18) 

where B is the noise bandwidth of the filter. Aspinwall (Reference 14), in 

turn, defined a mechanical equivalent to the electrical ideal bandpass filter 

and used these two results of Rice to obtain an approximate answer to the 

question regarding the probability of exceeding a stated amplitude within a 

finite time interval. For completeness of this discussion, it is appropriate 

to paraphrase the arguments of Aspinwall. 

An equivalent ideal bandpass filter is obtained in the following manner. 

In Figure 3, the frequency response characteristics are shown for both a 

rectangular bandpass filter and a mechanical oscillator. The ordinate is noted 

as an absolute value of the frequency response function and the x-axis is the 

ratio of the excitation frequency to the undamped natural frequency of the 

oscillator. B is shown as the bandwidth for an ideal rectangular filter. 
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Mechanical Oscillator and an Ideal Rectangular Band- 
pass Filter 

The sketch for the mechanical oscillator depicts the magnitude of the 

velocity to force frequency response function for a mass excited oscillator. 

This function is expressed as 

. 6 1 1 H(w) l/C = = m . 2 = 
-0 1 (3. 19) 

1t 
k n 

st2t;w t- 
=s If2 

C n S [ 1 ms 

where s = iw and other relationships are provided by Eqs. (3. 2) and (3. 3). 

In terms of the frequency in cycles per second, the absolute magnitude of 

(3. 19) is 

‘H(f)’ = J$@yy (3.20) 



As shown by the sketch in Figure 3, Eq. (3.20) is zero at both extremes of the 

frequency axis and,for small values of damping, has a maximum value given 

approximately by 

I I lTf 
H(f) 

1 
max 

=z =; (3.21) 

Bandwidth equivalence between the ideal bandpass filter and the mechani- 

cal oscillator is defined by requiring the output responses to white noise to 

have the same mean square value. It is tacitly assumed and shown in 

Figure 3 that the center frequencies and gain for both systems are the same. 

Thus, the mean square responses to white noise are 

mechanical 2 ‘IT fn 2 
X =--. 

oscillator 2 Q I 01 Hf 
max l Go(f) 

ideal 
bandpa s s 
filter 

-2 
X = B l 1 H(f) 1 iax . Go(f) 

(3.22) 

(3.23) 

where B is the noise bandwidth, I 01 H f 
2 
max 

is the square of the maximum 

value of the frequency response function, and Go(f) is the magnitude of the 

white noise input excitation. Equating (3.22) and (3.23) yields the following 

relationship between the filter noise bandwidth and the oscillator half-power 

point bandwidth 

(3.24) 

where the half-power point bandwidth is 

(3.25) 

Substituting Eq. (3.24) into Eq. (3.18) yields the average number of envelope 

maxima as 
f 

P-J (3.26) n- 
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Alternatively, substituting (3.21) into (3.22) yields the mean square velocity 

response as 3 
,2 

0 
x = ; Go(f) -+ (3.27) 

k 

Having an estimate for pn, an expression for predicting the probability 

of exceeding a given amplitude within a finite time interval is argued as 

follows. If it is assumed that the envelope maxima are independent random 

variables and that the number of envelope maxima for the time interval T 

is given by y,T, THEN the occurrence of each envelope maxima is one of 

pnT Bernoulli trials where success is attained if the maxima < p. The 

probability that the maximum value of the envelope maxima remains < p 

during the time interval T is then given as 

P,(P) = [P,(P)] %-lT (3.28) 

where 

p,(P) 

p,(P) 

‘nT 

‘n 

T 

is the probability that M, the maximum value for the envelope 
peaks in time T, is < p times the rms value of the response 

is the probability that the maximum value of any envelope peak 
is <(3 times the rms value of the output response. For the 
ideal bandpass filter, this value is obtained by integrating the 
probability density function of the envelope maxima (Reference 1, 
page 223) over the limits of interest. 

is the average number of envelope maxima during time T 

is the average number of envelope maxima per second 

is the time interval for observing the output response 

Alternatively, the probability of an envelope maxima exceeding p in time 

T is expressed as 

P,PP) = 1 - P,(P) (3.29) 
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By way of interpreting Eqs. (3.28) and (3.29) consider their application 

to this classic statistical problem of flipping a single coin; what is the proba- 

bility of flipping five heads in a row? For this problem, Eq. (3.28) can be 

used directly. In this context, 

p,(P) denotes the probability of flipping five heads in a row 

p,(P) denotes the probability of flipping a head in a single 
toss of the coin, that is l/2 

‘nT 
denotes the total number of trials or flips of the coin, 
which, in this example, equals five 

so that 
P,(P) = (1/2)5 = 0.031 (3.30) 

From Eq. (3.29), the probability of not flipping five heads in a row is 

simply 

PM@+) = 1 - .031 = 0.969 (3.31) 

Substituting (3.26) into (3.28) yields P,(p) f or the mechanical oscillator 

as 

pM(P) = [p,(P)] T” (3.32) 

where 

T” = fnT 
a 

(3.33) 

T+ is noted as a dimensionless time parameter and f,T may be interpreted 

as the number of cycles for which the random response is observed. The 

P 
E 

(f3) term is obtained directly from the probability density for envelope 

maxima given by Rice on page 223 of Reference 1. 



As sketched in Figure 4, Eq. (3.32) can be displayed as a family of 
:g 

probability curves in P,(g) plotted as log T versus Q. These curves 

represent the results of a theoretical development by Aspinwall and are 

appropriately called Aspinwall curves in this report. It is remembered that 

these curves are applicable to the peak properties of the stationary response 

for a lightly damped mechanical oscillator where the excitation is stationary 

white noise. 

t 

log T* 

Figure 4. Parametric Plot for the Peak to RMS Response of a 
Mechanical Oscillator Subjected to Broadband 
Stationary Random Excitation 

As mentioned in Reference 14, the errors inherent in the Aspinwall 

curves are associated with the following assumptions: 

(1) Differences between the actual number of envelope maxima 
and the approximate number given as p,T. 

(2) Differences in p for the rectangular bandpass filter and 
the mechanical n oscillator. 
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(3) Errors in assuming the P,(p) d eveloped by Rice for an ideal 
rectangular filter to be directly applicable for the band- 
pass of the mechanical oscillator. 

(4) Errors in assuming the envelope maxima to be statistically 
independent. 

Although these factors bias the numerical results of the theoretical analysis, 

the trends displayed by the curves in Figure 4 were believed to be valid. 

In Reference 11, Barnoski and MacNeal examined the validity of 

Aspinwall curves bycomparing these theoretical results with empirical data 

from an analog computer study. For this study, a mechanical oscillator was 

simulated by the operational amplifier circuits shown as Figure 5. The 

triangles denote simple electronic amplifiers, the K’s represent potentiometers, 

C’s are capacitors, R’s are resistors, Ei is the input excitation and e 

represents the velocity of the mechanical system. In terms of the s operator, 

the ratio of the velocity to the input excitation is 

e -= 
E 

i 

KR 
3 3 

K2R4 

R3C1 s 
‘+ K 1 t 

AK1 

2 RlClR2C2 s2 1 
Comparing the terms of (3.19) with (3.34) yields 

1 
KR 

3 3 - = - 
C 

K2R4 

Q R3Cl -= - 
w 

n K2 

2 AK1 
w = 

n 
RlClR2C2 

(3.35) 

(3.36) 

(3.37) 
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Selecting the appropriate values for the components in (3.35), (3.36), and 

(3.37) guarantees the simulation of the velocity to force frequency response 

function for the mechanical oscillator. 

E 

r/ 
i 

t 

d 
3 

R3 
+ 

2 c 

YT- 
: I 

R4 

Ill-+ I 

/ 

e 

I I -0 t 1 

I Rl 

-w R2 

Figure 5. Operational Amplifier Circuits for a Linear 
Mechanical Oscillator 

In the analog study, the oscillator was excited continuously by white 

noise and the velocity response was observed for time intervals (T) ranging 

from a minimum of 0.1 second to a maximum of 20 seconds. The white noise 

was provided by a random noise generator and the noise level was set so 

-J 6~ peaks of the output voltage would not be clipped by the amplifiers. 

For each time interval and value of fn/Q , the output signal was sampled 

100 times where the time duration for each sampling was T seconds. 

Figure 6 shows two typical time histories as observed during the sampling 

interval T=O.l second, and where Q = 20 and fn = 318 cps. 

For each sampling, the maximum positive and negative values for the 

output signal was measured and recorded. After 100 samplings, these data 

then were arranged in rank order to yield histograms of probability versus p. 
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Through each histogram, a mean curve was drawn which represents an 

empirical plot of P,(p) versus 6. These empirical curves were used to 

create empirical plots of fnT/Q versus p for values of P,(p) as illustrated 

by Figures 7 and 8. 

The coordinates in these figures are noted to be the coordinates of 

Figure 4 so that the Aspinwall probability curves can be compared directly 

with the empirical curves. The empirical curves are plotted as a family in 

Q for Q values of 5, 10, 20, and 50. Each data point shown was obtained from 

mean curves of the histograms alluded. to in the previous paragraph. Also 

shown are the approximate number of cycles for which the oscillator was 

observed. It is interesting to note that for the larger values of f,T/Q, the 

constant probability curves tend to appear as straight lines on the semi- 

log graph paper. This implies the fnT/Q and p are related in form as 

1% 
fnT 
- = rnp t constant Q (3.38) 

where m is the slope of the straight lines. 

From Figures 7 and 8, it can be concluded that the empirical data lend 

support to the theory embodied in Aspinwall curves although the response 

ratios (p) are consistently higher than those predicted by the Aspinwall theory. 

In other words, the numerical values provided by the theoretical curves are 

not conservative. By noting the vertical alignment of data points for the 

larger number of cycles, it may be concluded that the response ratio (p) 

tends to become independent of Q for a large number of cycles. 

Figure 9 is a family of curves in PM (p) for the peak to rms response 

ratio ((3) versus the dimensionless time parameter (fnT/Q). These curves 

are based on the empirical plots from Figures 7 and 8, as well as similar 

data from Reference 12. Only two values of PM(p) are shown and each 

P,(p) curve is noted to be influenced by the damping values of the oscillator. 
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The p ordinate values where T = 0 become the instantaneous values of the 

amplitude time history. Since the probability density of the instantaneous 

values is normal, these magnitudes are obtained from most any tabulated 

table of the Gaussian density function. All the curves of Figure 9 exhibit a 

rapid rise in the p value for initial intervals of fnT/Q. After passing through 

a knee in the vicinity of fnT/Q = 1, the p values increase very slowly for 

relatively large increases in f,T/Q. Although the plots are shown only up 

to fnT/Q = 7, it is understood that these curves, in the limit, extend to 

infinity where the (3 ratio theoretically becomes infinite. Thus, an infinite 

peak is to be expected in an infinite time. 

The curves of Figure 9 show that peak to rms response ratios of 

3[ P,(p) = 0.601 and 4[ P,(p) = 0.951 are not uncommon in short time inter- 

vals for a linear oscillator. On the other hand, a large time lapse is 

required before 6 ratios of 5 or 6 are expected. These curves assume signi- 

ficance to a designer if they are applied to establish structural reliability 

criteria based on a time dependent probability of extreme loads. In addition, 

these curves can be used to define stationarity in the peak response as the 

shown plots are the stationary results of an oscillator excited by stationary 

white noise. 

Figure 10 depicts families of curves in P,(p) for the peak to rms 

response ratio plotted versus the number of cycles for the oscillator (f,T). 

The equation for this theoretical boundary was developed by Thrall using non- 

parametric statistics (Reference 15) and can be expressed as 

f,T = 
[ 1 - P,(P)1 

2 
.Pz/2 

(3.39) 

The shown theoretical curve is only for P,(p) = 0.95 whereas the remaining 

P,(p) plots are empirical plots formed from the analog data of Figures 7 and 

8. Figure 10 clearly points out that the p response ratio becomes independent 
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of the oscillator damping for a large number of cycles. Although the 

theoretical P,(p) plot is based upon an average value for the number of 

level crossings per unit time, Eq. (3.39) appears as a valid bound for large 

values of T. For small T values, however, the theoretical bound is noted to 

be inexact, but conservative, when compared with the empirical curves. 

By comparing the Q curves for any value of P,(p), it is noticed in 

Figure 10 that the p values are higher for the larger damping values. This 

behavior requires further explanation. The output maxima response of an 

oscillator excited by white noise may be considered to consist of clumps of 

envelope maxima per unit time. For a very high Q system, the envelope 

maxima (clumps) are noted to be well separated in time. As damping is 

increased, the time separation between envelope maxima becomes less so 

that a greater number of maxima occur per unit time. Hence, the greater 

the clump density in time, the greater the likelihood of experiencing higher 

peak to rms values. 
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Figure 6. Two Typical Time Histories for the Response of a Mechanical 
Oscillator Excited by Stationary White Noise 
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Figure 7. Dimensionless Time Parameter Versus the Ratio of Peak to 
RMS Response for the Output of a Mechanical Oscillator Excited 
by Stationary White Noise: P,(p) = 0.60 
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Figure 8. Dimensionless Time Parameter Versus Ratio of Peak to RMS 
Response for the Output of a Mechanical Oscillator Excited by 
Stationary White Noise: PM(Q) = 0. 95 
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Figure 9. Experimental Envelope for the Peak to RMS Response of the Mechanical 
by Stationary White Noise (p versus fnT/Q) 
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Figure 10. Experimental Results for the Peak to RMS Response of the Mechanical Oscillator Excited 
by Stationary White Noise (p versus f,T) 
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3.3 PEAK RESPONSE PROPERTIES TO 
NONSTATIONARY RANDOM EXCITATION 

Attention is focused in this section upon the peak response behavior 

of a mechanical oscillator when the excitation is white noise shaped in time 

by either a rectangular or half-sine envelope function. Hence, the excitation 

is nonstationary and appears as a pulse of white noise shaped either as a 

rectangle or a half-sine. This problem is typically associated with structural 

response to shock loading where the shock can be due to phenomenon as earth- 

quake s, nuclear blasts, or missile launch. Barnoski and MacNeal (Reference 12) 

treated this problem for a linear oscillator using an analog computer and much 

of their data form the basis of this discussion. 

To display the peak response results to nonstationary excitation using 

the f,T/Q and p parameters of the previous section, a time duration 

analogous to the sampling interval T need be defined. It is recalled that 

T refers to the time interval for sampling the response of the linear oscillator 

to stationary white noise. For the nonstationary study, the response is con- 

tinuously monitored so that a time interval analogous to T is stated in terms 

of the duration of the input pulse. An effective or analogous time interval AT 

is defined by requiring the input energy in the nonstationary pulse to be equal 

to an equivalent amount of energy for stationary conditions. Hence, the non- 

stationary time interval is expressed as 

03 

A-r = 
1 

EEnax 

E’(t) dt (3.40) 

where E(t) is an envelope function denoted as 

E(t) = E 
max is(t) (3.41) 
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E is the maximum value of the envelope function and g(t) is the shape 
max 

function. For the rectangular and half-sine shape function, E(t) and the 

effective time intervals (AT) for these pulses appear as shown in Figure 11. 

t 
Rectangular 
Shape Function E(t) 

LE * time 

Half -Sine 
Shape Function 

A 

E(t) 

e time 

Figure 11. Rectangular and Half-Sine Envelope Functions for the 
Pulsed Random Excitation 

Thus, the effective time interval for the rectangular pulse is equal to its 

actual time duration whereas the effective time interval for the half-sine 

pulse is one-half its actual time duration. It is to be noted that the rectangular 

shape function approaches a step function as AT becomes very large. 

The dimensionless time parameter for the nonstationary conditions 

becomes 

(3.42) 

where Eq. (3.42) differs from Eq. (3.33) only in the definition of the time 

intervals T and AT. 
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The expression for the pulsed excitation can be written as 

f(t) = Go E(t) (3.43) 

where G 
0 

is the magnitude of the white noise spectrum. Equation (3.43) is 

created electrically by multiplying the outputs from a random noise source 

and an envelope generator. 
:‘:: 

In their analog study, Barnoski and MacNeal varied T in discrete 

steps ranging from a minimum value of 0.25 to a maximum value of 5. 00. 
::: 

This maximum value of T is considered large enough so that AT is long 

compared to the natural period of the oscillator. For this condition, the 

input excitation appears as stationary white noise to the oscillator and the 

p response should be nearly the same as in Figure 9. The undamped natural 

frequency of the system (fn) was set at 159 cps and Q values were 5, 20, and 

50. 

For a specified T”, the oscillator was excited by either a rectangular 

pulse or a half-sine pulse of white noise and the maximum positive and 

negative values of the peak to rms time histories were recorded. This pro- 
::: 

cedure was repeated 100 times for each T value. As with the analog data 

of Section 3.2, these recorded data were arranged in rank order to construct 

P 
M 

(p) versus p curves; then, to create the desired f,Ar/Q versus p plots. 

Figure 12 shows a typical rectangular pulse of white noise and the 

resulting response of a linear oscillator to such an excitation. The experi- 

mental constants are Q = 20 and AT = 0.03 14 second which defines 

T:‘< = fnAr/Q = 0.25. The effective time interval (AT) defined by Eq. (3.40) is 

equal to the actual time duration of the pulse and is noted to be five times 

the natural period of the oscillator. The response is a velocity time history 

and is observed as a damped harmonic oscillation after the pulse is terminated. 

Figure 13 shows a half- sine envelope function and a typical resulting 

pulsed random excitation when this envelope function is multiplied with the 
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output of a random noise generator. This half-sine pulse of white noise has 

an effective time interval (AT) of one-half the time duration of the envelope 

function. As with the rectangular pulse, the effective time duration is five 

times the period of the mechanical oscillator. Figure 14 depicts two typical 

responses of the oscillator when disturbed by the half-sine pulse of white 

noise. Such responses were continuously monitored and the positive and 

negative peak to rms values were recorded and used to form P,(P) versus p 

plots in a manner identical to that for the rectangular pulse. 

The results of the analog study are summarized in Figures 15 through 

20. These figures are families of curves in P,(p) for both stationary and 

nonstationary conditions with the peak to rms response ratio (p) plotted versus 

the dimensionless time parameter (T ). Figures 15, 16, and 17 are the 

results for Q = 5, 20,and 50 respectively, when the nonstationary excitation is 

the rectangular pulse of white noise. Figures 18, 19, and 20 are the results 

for Q= 5, 20, and 50 respectively, when the nonstationary excitation is the 

half-sine pulse of white noise. 

All of the curves exhibit the same characteristic behavior: that is a 
::: 

very rapid rise in p for the initial intervals of T , passing through a knee 
$ 

in the vicinity of T = 1, then increasing in p very slowly beyond the knee. 

As would be expected, the magnitudes. of the curves for the pulsed nonstationary 

excitation are bounded by the stationary curves from Section 3.2. These 

figures, therefore, can be used to assess the time duration for an oscillator 

to effectively achieve stationarity in its response. Beyond T”.: =l, the p 

results for stationary white noise can be used for predicting peak to rms 

response values and are noted to yield conservative estimates for p in all 

cases. 
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Figure 12. Typical Excitation and Response of the Mechanical Oscillator 
Subjected to Pulsed Random Excitation; Rectangular Envelope 
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Figure 13. Typical Excitation of the Mechanical Oscillator Subjected 
to Pulsed Random Excitation; Half-Sine Envelope 
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Figure 14. Typical Responses of the Mechanical Oscillator Subjected 
to Pulsed Random Excitation; Half-Sine Envelope 
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Figure 15. Ratio of Peak Response to RMS Response of the Mechanical 

Oscillator (p) Versus the Dimensionless 

Time Parameter (T:‘:)for Stationary and Pulsed Random Excitation. Rectangular Envelope, Q  = 5 
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Figure 16. Ratio of Peak Response to RMS Response of the Mechanical Oscillator @)versus the-Dimensionless 
Time Parameter (T”)for Stationary and Pulsed Random Excitation. Rectangular Envelope, Q  = 20 
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Figure 17. Ratio of Peak Response to RMS Response of the Mechanical  Oscillator ((3) versus the Dimensionless 
Time Parameter (T*)for Stationary and  Pulsed Random Excitation. Rectangular Envelope, Q  = 50  



0 1 L 
T* = f Ar/Q - . . ‘I 

Figure 18. Ratio of Peak Response to RMS Response of the Mechanical Oscillator (Q) versus the Dimensionless 
Time Parameter (T*) for Stationary and Pulsed Random Excitation. 

Half-Sine Envelope, Q = 5 
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19. Ratio of Peak Response to RMS Response of the Mechanical Oscillator (p) versus the Dimensionless 
Time Parapeter (T+) for Stationary and Pulsed Random Excitation. Half-Sine Envelope, Q  = 20 
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Figure 20. Ratio of Peak Response to RMS Response for the Mechanical Oscillator (P) Versus the Dimensionless 
Time Parameter (T*) for Stationary and Pulsed Random Excitation. Half-Sine Envelope, Q  = 50 



4. CONCLUDING REMARKS 

4.1 SUMMARY 

This report considers the peak response behavior of a linear mechani- 

cal oscillator when subjected to stationary and nonstationary random excitation. 

The peak response is expressed as a ratio of peak to rms response and is 

denoted as p. The stationary random excitation is white noise and the non- 

stationary random excitations are pulses of white noise shaped in time as 

either a rectangle or a half-sine. The peak response results were obtained 

by an analog computer study and are displayed as a family of constant proba- 

bility curves with /3 plotted versus a dimensionless time parameter denoted 
::: 

asT . This parameter contains the undamped natural frequency of the 

oscillator (f ), the damping of the oscillator expressed as Q, and a time 
n 

duration noted as T for stationary white noise and AT for the shaped white 

noise. 

The p results for stationary white noise are seen to establish an upper 

bound on the p results for the pulses of shaped white noise. Thus, the 

stationary white noise p plots can be applied to conservatively predict the 
:: 

peak response of an oscillator to pulsed random excitation. For T values 

<l (that is, the time duration of the pulse is relatively short as compared 

to the natural period of the oscillator), the p results for stationary white 
* 

noise yield highly conservative estimates. For T > 1, the white noise p 

results, although still conservative, are more nearly the same order of 

magnitude as the p results for the shaped white noise. For a small number 

of response cycles, the peak to rms response ratio is noted to be dependent 

on the Q of the oscillator for each PM(p). For a larger number of response 

cycles, however, these peak to rms results tend to become independent of Q. 

For the linear oscillator, the p curves provide an empirical answer 

to the following basic nontrivial questions which are of practical importance 

in mechanical design: 

44 



(1) How high an amplitude would be reached in a finite time inter - 

val T with probability P,(p) ? It is recalled that P,(p) is 

defined as the probability that M, the maximum value for the 

envelope peak in time T, is < /3 times the rms response value. _ 

(2) What length of time is necessary for an oscillator to effectively 

achieve stationarity in its response after being excited by a 

pulse of random excitation? 

The first question arises in extreme value problems where one is concerned 

with the likelihood of a single catastrophic event. For example, what is the 

probability that some basic structure of an ail;craft will experience an extreme 

stress beyond ultimate strength due to a gust load during its service life? 

For a second example, what is the probability that a resiliently mounted equip- 

ment package in a spacecraft will collide with neighboring structure due to 

random vibration during the launch phase? The second question arises in 

those cases where one is concerned with making stationary approximations 

for nonstationary environments. For example, will a stationary vibration 

test properly simulate the most severe response conditions which a com- 

ponent experiences during exposure to a nonstationary vibration environment. 

Continuing with the example of vibration testing, assume the first 

crossing of a given extreme stress level will produce a failure of the component 

to be tested. Such a failure criterion is often acceptable for components sub- 

jected to intense, short duration vibration environments such as launch environ- 

ments for space craft. As indicated by the p curves, the probability of a 

given extreme value is a function of both the rms value for the vibration and 

the exposure time. Hence, the p curves can be used as a criterion to 

arrive at appropriate test levels by specifying (1) the time varying rms 

magnitude of the environment, (2) an acceptable peak value probability, 

i. e. , a PM(p) value, and (3) the expected time exposure in the random 

environment. From these data and the p curves, a stationary vibration 

test can be specified which simulates a nonstationary vibration environment. 
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The p curves depict in a general way the time-probabilistic be- 

havior of the peak response of a linear oscillator excited by both stationary 

and nonstationary random excitation. These results, however, can be 

applied to provide qualified solutions to various specific problem areas such 

as for test specifications which are discussed briefly on the previous page. 

It must be understood that conclusions drawn from the p curves are based 

upon an extreme value criterion and can be applied to problems only where 

such a criterion is plausible. 

4.2 RECOMMENDATIONS FOR FUTURE STUDIES 

On the basis of this report, several important topic areas are 

recommended for future study. For the mechanical oscillator: 

0 Repeat the analog study for other values of f 
n’ 

Q, and T 

(or AT) to establish response results which are statistically 

more significant. 

0 Consider envelope shape functions other than a rectangle or 

half-sine (for example, a triangle or a trapezoid). 

0 Consider the effects on the p parameter of varying the 

oscillator center frequency (fn) over the frequency band of 

the input excitation where the input spectrum is other than 

white noise. 

0 Consider the effects of nonlinearities on the p parameter. 

Similar studies also should be performed for multi degree-of-freedom 

systems to determine the significant parameters affecting the /3 response. 

Although the above recommendations can be effectively carried out 

using electrical analog equipment (as in this report) an alternative program 

would be to perform the suggested analog experiments by digital or hybrid 

methods. In these ways,the vast amount of peak response data can be 

routinely and efficiently organized to form the desired P 
M 

(p) versus p plots 

as well as the /3 versus fnT/Q curves. 
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