		•		

MANNA NGGO-1.2854 (ACCE BSIDN NUMBER) AGCESSION NUMBER) AGCESS (FAGES) AGCESS (FAGES)

ff 653 July 65

REPORT NO. P65-117

RE-ORDER NO. 65- 715

10

This work was performed for the Jet Propulsion Laboratory, California Institute of Technology, sponsored by the National Aeronautics and Space Administration under Contract NAS7-100.

1.

FINAL REPORT - PART I (Contract No. 951069)

DETERMINATION OF THE EFFECTS OF A THERMAL STERILIZATION PROCESS ON THE MECHANICAL AND ELECTRICAL PROPERTIES OF SOLDERED AND WELDED JOINTS

Prepared for.

let Providence Laboratory Matrician and activity of Technology Passidence California

9 OCTOBER 1965

HUGHES HUGHES FINAL REPORT - PART I

Contract No. 951069

DETERMINATION OF THE EFFECTS OF A THERMAL STERILIZATION PROCESS ON THE MECHANICAL AND ELECTRICAL PROPERTIES OF SOLDERED AND WELDED JOINTS

> by F. Z. Keister, Hughes Project Engineer 9 October 1965

> > The American State of the second state of the

For

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

Approved:

5. F. Smith, Manager Materials Technology Department

Materials Technology Department AEROSPACE GROUP

Hughes Aircraft Company · Culver City, California

CONTENTS

Pa	ige
----	-----

-

1.	Purp	ose and Scope	•	•	•	1
	1.1	Purpose	•	•	•	1
	1.2	Scope	•	•	•	1
2.	Mate	rials and Equipment	•	•	•	3
	2.1	Materials for Solder Joints and Weld Joint	S	•	•	3
	2.2	Raw Materials for Solder Joints	•	•	•	3
	2.3	Equipment for Preparing Soldered Joints	•	•	•	6
	2.4	Equipment for Preparing Welded Joints	•	•	•	6
	2.5	Test Equipment	•	•	•	6
3.	Prep	aration of Test Specimens	•	•	•	7
	3.1	Bake-Out of Conductors	•		•	7
	3.2	Tinning of Connector Cups				7
	3.3	Tinning of Conductors		•	•	8
	3.4	Fabrication of Solder Joints	•			8
	3.5	Fabrication of Weld Joints	٠	•		15
4.	Test	Procedures	•	•	•	23
	4.1	General Test Information	•	•	•	23
	4.2	Dry Heat Sterilization Test Procedures	•	•	•	23
	4.3	Ultimate Strength Test Procedures .	•	•	•	29
	4.4	Electrical Resistance Test Procedures	•	•	•	31
	4.5	Stress-Rupture Strength Test Procedures	•	•	•	36
	4.6	Electrical Test During Vibration Test Procedures.				41
	4.7	Metallurgical Examination	•	•	•	47
	4.8	Electron Probe Microanalysis	•	•	•	50
5.	Test	Resul ts	•	•	•	53
	5.1	Ultimate Strength Test Results	•	•	•	53
	5.2	Electrical Resistance Test Results	•	•	•	58

Page

	5.3	Stress-Rupture Strength Te	est Resul	lts .	•	•	•	68
	5.4	Electrical Test During Vib	ration T	est Res	ults	•	•	69
	5.5	Ultimate Strength After Vil	bration I	est Res	ults	•	•	74
	5.6	Metallurgical Examination	Test Re:	sults	•	•	•	7 7
	5.7	Electron Probe Microanaly	ysis Test	Result	s	•	•	81
6.	Conc	lusions	• •	•	•	•	•	85
	Ackn	owledgment		•	•	•	•	89

ILLUSTRATIONS

1

 $\overline{}$

Figure		Page
1	Photograph showing ten types of solder joint specimens	11
2	Photograph showing solder joint specimens of gold plated Kovar wire to solder coated bifuricated terminals	12
3	Photograph of five types of solder joints - 1.1.1, 1.1.2, 1.2, 1.3.1, 1.3.2	13
4	Photograph of five types of solder joints - 1.3.3, 1.3.4, 1.3.5, 1.3.6, 1.4	14
5	Solder joint specimens of 1/4-watt axial lead resistors soldered to solder coated bifuricated terminals. Specimen number 1.5	15
6	Weld joint configurations	17
7	Photograph of all seven types of weld joint specimens	20
8	Photograph of the seven types of weld joint specimens	22
9	Typical data sheet for recording test results on solder and weld joints.	27
10	Vacuum oven used for dry heat sterilization tests with weld joints inside	29
11	Inside of vacuum oven showing solder joint specimens ready for dry heat sterilization	30
12	Ultimate strength tests on soldered and welded joints	32
13	Weld joint being tested for ultimate strength in Tensile Tester	33
14	Hunter Tensile Tester with solder joint 1.1.1 in position for ultimate strength testing	33
15	Solder joint 1.3.3 mounted in jaws of Tensile Tester ready for ultimate strength testing .	34
16	Test setup for electrical resistance (i.e., voltage drop) tests of soldered and welded joints	35
17	Test setup for electrical resistance measurements of soldered and welded joints	36
18	Solder joint (wire to bifurcated terminal) in test fixture for electrical resistance measurement	37

Figure

19	Solder joint (stranded conductor to connector cup) in test fixture for electrical resistance measurement
20	Weld joint in test fixture for electrical resistance
21	Diagram of stress-rupture test setup
22	Stress-rupture test setup under room temperature conditions
23	Close-up photograph showing a Bendix connector cup solder joint suspended from the specimen rack for stress-rupture testing
24	Stress-rupture test setup for 18 solder joints under condutions of sterilization time and temperature 42
25	<u>Old</u> electrical test setup for electrical measurements of soldered and welded joints during vibration 44
26	New electrical test setup for electrical measure- ments of soldered and welded joints during vibration
27	Weld joint and solder joint specimens mounted on vibration table in preparation for the electrical tests during vibration
28	One weld joint and three solder joints mounted on vibration table
29	Metallographic mounting of solder joints and weld joints
30	Electron Microprobe X-Ray Analyzer 51
31	Failure modes for solder joints 54
32	Bar diagrams of ultimate strength of soldered joints
33	Failure modes for welded joints 59
34	Histograms of strengths of gold plated copper-to-Inco weld joints showing shift due to heat sterilization. 61
35	Bar diagrams of ultimate strengths of weld joints
36	Bar diagrams of electrical resistances of soldered joints before and after sterilization
37	Bar diagrams of electrical resistances of welded joints before and after sterilization
38	Failure modes during stress-rupture strength tests

Figure

* 7

39	Stress-rupture test results at room temperature and at sterilization time and temperature
40	Summation of results for electrical tests during vibration of soldered joints
41	Summation of results for electrical tests during vibration of welded joints
42	Bar diagrams of ultimate strengths of soldered joints after vibration
43	Bar diagrams of ultimate strengths of welded joints after vibration
44	Comparison of the average ultimate strengths of the Hughes and JPL welded joints

TABLES

Table		Page
I	List of materials for solder joints and weld joints .	4
II	Plating thickness measurements	5
III	Fabrication of solder joints	10
IV	Fabrication of welded joints	16
v	Weld schedules for weld joint specimens as prepared by Hughes Aircraft Company and Jet Propulsion Laboratory	19
VI	Test Outline	24
VII	Number of joints for testing	25
VIII	Flow diagram of soldered and welded joints for testing	26
IX	Old and new stress-rupture test loadings .	40
х	Solder and weld joint specimens submitted to electron probe microanalysis	51
XI	Analysis of variance - ultimate strengths of soldered joints	55
XII	Analysis of variance - ultimate strengths of welded joints	60
XIII	Analysis of variance - electrical resistance of soldered joints	62
XIV	Analysis of variance - electrical resistance of welded joints	66
xv	Analysis of variance - ultimate strengths of soldered joints after vibration	75
XVI	Analysis of variance - ultimate strengths of welded joints after vibration	78
XVII	Summary of test results on soldered and welded joints	86

ABSTRACT

12857

The purpose of this investigation was to determine the effects of a thermal sterilization process on the mechanical and electrical properties of soldered and welded joints. An additional scope of work under this same contract was for the determination of the effects of thermal bake-out, heat sterilization, and ethylene oxide decontamination on the solderability of component leads.

This investigation involved the preparation and testing of 1362 soldered joints of 11 different types, including both stranded and solid conductors joined to connector cups and bifurcated terminals. A total of 834 cross-wire weld joints of 7 different material combinations were also prepared and tested. All solder and weld joint types were tested and examined <u>before</u> and <u>after</u> thermal sterilization. Testing consisted of:

- a) Ultimate strength
- b) Electrical resistance
- c) Electrical testing during vibration
- d) Ultimate strength after vibration
- e) Stress-rupture strength
- f) Metallurgical examination
- g) Electron probe microanalysis

Based on a statistical analysis of the test results, it was concluded that there was <u>no significant change</u> in the ultimate strength or electrical resistance of either the soldered or welded joints due to the effects of a thermal sterilization process. Neither the metallurgical examination nor the electron probe microanalysis showed any degradation in metallurgical structure or in the extent of gold diffusion which could be attributed to thermal sterilization. However, the stress-rupture strength tests on the connector cup soldered joints pointed out that steady-state loads of only 10% of the ultimate strength of the joint were enough to cause short-term solder joint failures under thermal sterilization

1. PURPOSE AND SCOPE

1.1 PURPOSE

The purpose of this investigation was to determine the effects of a thermal sterilization process on the mechanical and electrical properties of soldered and welded joints. An additional scope of work under this same contract was for the determination of the effects of thermal bake-out, heat sterilization, and ethylene oxide decontamination on the solderability of component leads.

This work was done for the Jet Propulsion Laboratory under Contract No. 951069 (subcontract under NASA Contract NAS 7-100). Mr. A. G. Fitak was the JPL Project Engineer on this program. During the final stages of this program, Mr. R. F. Holtze became the new JPL Project Engineer on this program, since Mr. Fitak was transferred to other duties.

This final report has been divided into three separate parts. Part I, which is this part, covers the thermal sterilization effects on solder and weld joints. Part II contains the weld schedule isoforce diagrams, raw data sheets, photomicrographs, and electron probe microanalysis charts for the solder and weld joints under Part I. Part III covers the solderability studies. It is therefore possible while reading the test results of Part I to turn to the applicable raw data sheet or photomicrograph in Part II and consult both pieces of information at the same time. Part III, being a separate study and not as lengthy as Part I, is allinclusive with its own data sheets and photomicrographs included under the same cover.

1.2 SCOPE

Part I of this final report is a determination of the effects of a thermal sterilization process on the mechanical and electrical properties of soldered and welded joints. This involved the preparation and testing of 1362 soldered joints of 11 different types including both stranded and solid conductors joined to connector cups and bifurcated terminals. A

total of 834 cross-wire weld joints of 7 different material combinations were prepared and tested. All of the different types of soldered and welded joints were tested and examined <u>before</u> and <u>after</u> thermal sterilization. Testing consisted of ultimate strength, electrical resistance, electrical testing during vibration, ultimate strength after vibration, and stress-rupture strength. In addition certain solder and weld joint types were submitted to electron probe microanalysis. All solder and weld joint types were examined metallographically and 48 photomicrographs were taken. The test results were analyzed statistically. Photographs were taken of each type of solder and weld joint specimen prior to testing and of each piece of test equipment used with at least one of each type of test specimen installed prior to test.

2. MATERIALS AND EQUIPMENT

2.1 MATERIALS FOR SOLDER JOINTS AND WELD JOINTS

The materials used in this program for the preparation of the solder joints and weld joints are listed in Table I. Vendor certifications were required for all materials. Incoming inspection for the materials listed in Table 1 was done by metallographic sectioning, tensile strength tests, spectrographic analysis, and magnified examination. Inspection was primarily aimed at correct plating thicknesses, proper base metal or alloy, and proper material dimensions.

Table II is a tabulation of the plating thickness measurements made on the materials listed in Table I. Certain of the materials were not plated and therefore are not included in Table II. The thickness measurements in Table II are averages of five readings with the minimum-maximum range given whenever possible.

2.2 RAW MATERIALS FOR SOLDERED JOINTS

- 2.2.1 Solvent for removal of flux residue 1, 1, 1-Trichloroethane per Federal Specification O-T-620
- 2.2.2 Protective coating for connector cups and bifurcated terminals
 Lonco Sealbrite No. 230-10.
- 2.2.3 Flux for tinning stranded conductors Alpha No. 100 per MIL-F-14256 C, Type W.
- 2.2.4 Flux for tinning all gold plated and solder coated conductors -Alpha No. 611 per MIL-F-14256C, Type A.
- 2.2.5 Flux for tinning bare nickel conductors Alpha No. 90 Stainless Steel Flux.
- 2.2.6 Cored solder for making all solder joints Kester plastic rosin core solder, per QQ-S-571d, 0.032¹⁰ diameter, Composition Sn63, Form W, Type R, Core P3.

Table I. List of materials for solder joints and weld joints.

- 1. Stranded conductor, #24 AWG, 19/36, per MIL-W-16870, Type E, silver plated, Teflon insulated.
- * 2. Cinch connector cup per JPL 20045/200-E.
- * 3. Bendix connector cup per JPL ZPH-2245-0300-B, JPL DS317, and MIL-C-26482C.
 - 4. Bifurcated terminal, solder coated, per JPL DS167-7.
 - 5. Bifurcated terminal, solder coated, per JPL DS167-3.
 - 6. Bifurcated terminal, gold plated, per JPL DS99-7.
 - 7. Conductor, copper, OFHC, 0.020" diam., gold plated per MIL-G-45204, Type I, Class 1.
 - Conductor, copper, OFHC, 0.020" diam., tin-lead coated, tin 10-70%, 0.0001" average min. thickness -0.001" average maximum thickness per Revision A to MIL-STD-1276. Preferred tin-lead alloy to be 63-37 or 60-40.

*** 9. Conductor, Dumet, 0.020" diam., per MIL-STD-1276, Type D, gold plated per MIL-G-45204, Type I, Class 1.

- 10. Conductor, Kovar, 0.018" diam., per MIL-STD-1276, Type K, gold plated per MIL-G-45204, Type I, Class 1.
- 11. Conductor, Nickel, 0.025" diam., per MIL-STD-1276, Type N-2, gold plated per MIL-G-45204, Type I, Class 1.
- 12. Conductor, Nickel, bare, 0.025" diam., per MIL-N-46026.
- 13. Conductor, Nickel, bare, 0.016" diam., per MIL-N-46026.
- 14. Conductor, Nickel, 0.016" diam., per MIL-STD-1276, Type N-2, gold plated per MIL-G-45204, Type I, Class 1.
- 15. Conductor, Kovar, ribbon, per MIL-STD-1276, Type K, 0.005" x 0.016", gold plated per MIL-G-45204, Type I, Class 1.
- 16. Conductor, Nickel, Inco 200 ribbon, bare, 0.010" x 0.031" (rolled from wire & annealed).
- Printed circuit board material, 0.062" thick, per MIL-P-13949C, Type FL-GE, glass-base epoxy laminate.

* Supplied by JPL

*** Dumet wire supplied <u>without</u> a nickel strike between the copper sheath and the outer gold electroplate.

), **)**

	Material	Type of Plating	Plating Thickness (micro- inches)
1.	Stranded conductor, #24 AWG	Silver	80-110
2.	Cinch connector cup	Gold	120-160
		Copper flash	310-400
3.	Bendix connector cup	Gold	140 - 16 0
		Silver	220-320
		Copper strike	40-76
* 4.	Bifurcated terminal DS 167-7	Solder	140-600
* 5.	Bifurcated terminal DS 167-3	Solder	160-500
6.	Bifurcated terminal DS 99-7	Gold	50-80
		Silver	200
		Silver strike	-
		Copper strike	47
7.	Conductor, copper, 0.020" diam.	Gold	88
** 8.	Conductor, copper, 0.020" diam.	Solder	220-320
9.	Conductor, Dumet, 0.020" diam.	Gold	70-80
10.	Conductor, Kovar, 0.018" diam.	Gold	100-130
11.	Conductor, nickel, 0.025" diam.	Gold	84-90
12.	Conductor, nickel, 0.016" diam.	Gold	88
13.	Conductor, Kovar, 0.005" x 0.016"	Gold	100-120

Table II. Plating thickness measurements.

*Terminals were centrifuged solder coated using an Electrovert "ACTA" Automatic Centrifugal Tinning Apparatus.

**Analysis showed the tin-lead composition of the solder plating to be 55%-65% tin with the balance lead. 2.2.7 Solder in solder pot for tinning conductors - Kester bar solder per QQ-S-571d, Type Sn 63-B-S.

2.3 EQUIPMENT FOR PREPARING SOLDERED JOINTS

- 2.3.1 Soldering iron used for making all soldered joints Weller Model W-TCP (60 watts) thermally controlled soldering pencil with a Type PT-A6 600°F iron clad screwdriver tip.
- 2.3.2 Insulation stripper for stranded conductor wire Pioneer Magnetics Thermal Stripper.
- 2.3.3 Suction method for removing excess solder from tinned connector cups Zeva 70 watt soldering iron equipped with a Bazooka solder gobbler.
- 2.3.4 Solder pot for tinning conductors Dee Melting Pot, Model 13.

2.4 EQUIPMENT FOR PREPARING WELDED JOINTS

- 2.4.1 Hughes Aircraft Company Model VTW-30B Stored Energy Power Supply (100 watt-seconds), Serial No. 30B-299, calibrated on 6-14-65.
- 2.4.2 Hughes Aircraft Company Model VTA-60 Welding Head, Serial Number 60A-364
- 2.4.3 RWMA-1 copper cadmium alloy welding electrodes and RWMA-2 copper-chromium alloy welding electrodes.

2.5 TEST EQUIPMENT

The equipment used for conducting the various tests on the solder and weld joints is listed at the beginning of each section describing the applicable test procedure.

3. PREPARATION OF TEST SPECIMENS

3.1 BAKE-OUT OF CONDUCTORS

Conductor materials for solder and weld joints were baked-out prior to tinning and joining. The following conductor materials were baked-out at 200°C for 168 hours in an inert nitrogen atmosphere using a National Appliance Co. Vacuum Oven, Model 58402, Serial No. B59:

- a) Gold plated copper wire
- b) Gold plated Dumet wire
- c) Gold plated Kovar wire
- d) Gold plated nickel wire
- e) Bare nickel wire
- f) Gold plated Kovar foil

Originally these conductors were baked-out at 200°C for 168 hours in <u>air</u>; however the gold plated copper and gold plated Dumet wires turned black (severe oxidation) as a result of this bake-out schedule and were in an unsolderable condition. It was therefore decided to conduct all bake-outs in an inert atmosphere.

All solder coated copper wires and the leads of 1/4-watt axial lead resistors were baked-out at 150°C for 168 hours in an inert argon atmosphere using a National Appliance Co. Vacuum Oven, Model 58301, Serial No. C58.

The only wires <u>not baked-out</u> were the teflon insulated stranded conductors and the Inco 200 ribbon. None of the connector cups or bifurcated terminals were baked-out.

3.2 TINNING OF CONNECTOR CUPS

Prior to their use for solder joints, the Cinch and Bendix connector cups were tinned. Tinning was in accordance with JPL Interim Procedure "Procedure for Soldering Wire to Connector Pin Solder Cups." This procedure essentially calls out filling the cup cavity with solder using a soldering iron and then removing the excess solder by means of sucking or wicking. Suction (using a solder gobbler) was used to remove

excess solder from the cup cavities. Flux residues were then removed by agitation in trichloroethane solvent. All connector cups were then dip coated with a protective coating of Lonco Sealbrite No. 230-10.

The solder coated bifurcated terminals were centrifuged solder coated by the vendor (Lyn-Tron, Inc.) but had not been protectively coated. Therefore these terminals were protectively dip coated with Sealbrite No. 230-10 at Hughes Aircraft Company.

3.3 TINNING OF CONDUCTORS

All conductor wires used in the preparation of solder joints were tinned prior to joining. Stranded conductors had the Teflon insulation stripped back for a distance of 5/32" - 3/16" using a Thermal Stripper. All wires used in the preparation of solder joints were precut to a length of 2" prior to tinning. Tinning of the conductor wires, stranded conductors, and resistor leads was done by first dip fluxing the end of the wire and then dipping the wire in a molten 63/37 solder pot at 500° F for 5 seconds. Alpha 611 activated rosin flux was used for all conductor wires except:

a) Stranded conductor - used Alpha 100 nonactivated rosin flux.

b) Bare nickel wire - used Alpha No. 90 stainless steel flux. Flux residues remaining after tinning were removed by an agitated rinse in Trichloroethane, except for Alpha No. 90 flux residues which were removed by three successive hot water rinses followed by a distilled water rinse and a hot air dry.

<u>None</u> of conductors used in the preparation of welded joints were tinned prior to welding.

3.4 FABRICATION OF SOLDER JOINTS

Soldering of all solder joints was done in accordance with JPL Process Specification ZPE-1081-0002-A "Soldering of Electronic Equipment," dated 9 Dec., 1964 using a Weller Model No. W-TCP (60watt) soldering iron with a PT-A6 600°F iron clad tip. A non-activated rosin cored solder (Sn 63-WRP3) was used for <u>all</u> joints. All solder joints were made by one operator who was certified for soldering per

NASA Electrical Assembly Specification MSFC-PROC-158B "Procedure for Soldering of High Reliability Electrical Connections."

Prior to making any solder joints, the soldering iron was tested to see if it would meet the temperature requirements of JPL Spec. ZPE-1081-0002-A. This specification states that "the temperature of the soldering iron shall be maintained within $475^{\circ}F$ to $610^{\circ}F$ during the soldering operation. The test results showed that during the soldering operation, the tip temperature is maintained between $530^{\circ}F$ and $580^{\circ}F$ using the PT-A6 tip.

Soldering techniques for specimen standardization were established by soldering samples of all joint types and material combinations and metallographically sectioning typical joints. Inspection of the metallographic mounts was done to insure that, as far as practical, all joints of one type are similar (e.g., same appearance, same mass of solder, etc.).

All solder joints were 100% inspected. No repairs were allowed. Only joints visually acceptable under 20X magnification were tested.

Flux residues from all solder joints were removed by 1,1,1-Trichloroethane.

The number and types of solder joints fabricated for this program are listed in Table III. Figures 1 and 2 are photographs showing all of the eleven types of solder joint specimens prepared for this program. The specimens in Figure 1 are labeled in accordance with the specimen identification used in Table III. This same identification code has been used throughout the entire program. The specimens in Figure 2 are of gold plated Kovar wire soldered to solder coated bifurcated terminals (identification 1.3.4).

Figures 3, 4, and 5 are close-up photographs of the eleven types of solder joint specimens. The ten specimens shown in Figures 3 and 4 have been photographed from two views. The solder joint specimens on the left show the side view and the specimens on the right show the top view of the same type of solder joint. The specimens in Figure 5 are 1/4-watt axial lead resistors soldered to solder coated bifurcated terminals. The terminals have been staked in a 1/16" thick glass-base

1		Number o Specimen Fabricate
1.1 Stranded co connector c	nductor (#24 AWG, Teflon insulated) to up.	
	CH connector cup per JPL Spec. 20045/200-E. NDIX connector cup per JPL Spec. ZPH 2245-	182
0300	D-B, DS317	182
1.2 Stranded cos	nductor (#24 AWG, Teflon insulated, per	
	78D, Type E) to solder coated bifurcated	
terminal pe	r JPL DS 167-7	110
1.3 Solid conduc	ctors per 1.3.1, 1.3.2, 1.3.3, 1.3.4, 1.3.5,	
	solder coated bifurcated terminal per	
JPL DS 167	-	
*1.3.1 Cop	per, gold plated, OFHC, 0.020	114
**1.3.2 Cop	per, solder coated, OFHC, 0.020	110
*1.3.3 Dum	net, gold plated, 0.020 per MIL-STD-1276,	
Typ	e D	110
*1.3.4 Kov	ar, gold plated, 0.018 per MIL-STD-1276,	
Typ		110
*1.3.5 Nich	kel, gold plated, 0.025, per MIL-STD-1276,	
	e N-2	110
*1.3.6 Nick	cel, bare, 0.025, per MIL-N-46026	110
1.4 *Copper, go	old plated, OFHC, 0.020 to gold plated	
	erminal per JPL DS 99-7	114
1.5 Components	(1/4-watt axial lead resistors**) mounted	
	rs of solder coated bifurcated terminals	
	7-3) on glass-epoxy circuit board per	
	49C, Type FL-GE, 0.062"thick	110
		L = 1362
*Leads bak **Solder coa	ed at 200° C for 168 hours in nitrogen. ated leads baked at 150°C for 168 hours in argo	on.

Table III. Fabrication of solder joints.

Figure 1. Photograph showing ten types of solder joint specimens (R104841).

Figure 3. Photograph of five types of solder joints-1.1.1, 1.1.2, 1.2, 1.3.1, 1.3.2 (R105350).

Figure 4. Photograph of five types of solder joints-1.3.3, 1.3.4, 1.3.5, 1.3.6, 1.4 (R105349).

Figure 5. Solder joint specimens of 1/4-watt axial lead resistors soldered to solder-coated bifurcated terminals. Specimen No. 1.5 (R105005).

epoxy laminate printed circuit board and soldered to the gold plated etched circuit pad areas on the underside.

3.5 FABRICATION OF WELD JOINTS

The number and types of weld joints to be fabricated for this program are those listed in Table IV. Note that leads materials 1.1, 1.2, 1.3, 1.4, 1.5, and 2 are baked at 200°C for 168 hours in nitrogen. Lead material 1.6 was baked at 150°C for 168 hours in argon. In addition to the weld joints listed in Table IV, JPL welded ten (10) each of joint types 1.1 thru 1.6 as specified in Table IV using material baked-out and furnished by Hughes Aircraft Company. JPL did not prepare any weld joint specimens for joint 2. (Kovar foil to Kovar foil). All Hughes & JPL weld joints were made using material from the <u>same</u> spool of wire.

			Specimens ricated
		Type A	Type B
1. Nickel	(Inco 200) ribbon, 0.010 x 0.031		
	Nickel, bare, 0.016 per MIL-N-46026 Nickel, gold plated, 0.016,	90	20
	per MIL-STD-1276, Type N-2 Kovar, gold plated, 0.018,	90	20
	per MIL-STD-1276, Type K Dumet, gold plated, 0.020,	90	20
	per MIL-STD-1276, Type D	90	20
	Copper, gold plated, OFHC, 0.020	94	20
	Copper, solder coated, OFHC, 0.020	90	20
	, gold plated, 0.005 x 0.016, IIL-STD-1276, Type K to itself	90	20
	TOTALS	634	140
£	GRAND	TOTAL = 7	774
*Le: **Sol	ads baked at 200 ⁰ C for 168 hours in der coated leads baked at 150 ⁰ C for	nitrogen. r 168 hours	in argon.

Table IV. Fabrication of welded joints.

The configuration of the weld joints is shown in the sketches (Types A and B) on Figure 6. The weld joint shown as Type A will be prepared in accordance with Figure 4 of JPL Spec. No. GPO-30995-GEN. Type B weld joint was used for electrical tests during vibration (before and after heating) and ultimate strength tests after vibration (before and after heating). 1

Weld joints were made in accordance with JPL Spec. No. GPO-30995-GEN "General Specification for the Design and Fabrication of Resistance Welded Electrical Connections." Welding will be done using a Hughes Model VTW-30B Stored Energy Power Supply (100 wattseconds) with a Hughes VTA-60 weld head. This unit is a capacitance discharge resistance welder having a force fired head with controllable welding energy. The weld electrode material was dependent upon the materials being joined. Weld schedule determination was by the <u>isoforce</u> diagram method whereby weld energy (watt-sec.) is plotted against weld breaking strength for constant clamping forces. All welding was done by one certified operator.

Typical specimens of all weld joint types were metallographically sectioned and examined for internal defects and specimen standardization. All weld joints were 100% inspected at 20X magnification. Weld schedule verification was per paragraph 3.3.6 of JPL Spec. GPO-30995-GEN.

In order to prepare weld joints per JPL specification No. GPO-30995-GEN it was necessary to first establish optimum schedules. This required from 100 to 200 weld joints of each type to be prepared and pulled apart while varying parameters such as weld energy, electrode force, electrode material, and polarity and observing percent setdown, percent lead deformation, interface spitting, mean pull strength, etc. Six weld specimens for each joint type were also metallographically examined per paragraph 3.3.5 of JPL Spec. GPO-30995-GEN for weld schedule defects. Weld schedule verification was done by preparing fifty (50) weld joints of Type A in Figure 6 for pull testing. Forty (40) of these fifty (50) weld joints were used to obtain ultimate strength data for another testing portion of this program. Those weld joints giving the most trouble were:

- 1.1 Bare nickel to Inco 200 ribbon
- 1.3 Gold plated Kovar to Inco 200 ribbon

2.0 Gold plated Kovar ribbon to itself.

Attachment 1 in Part II of this final report contains an isoforce diagram for each of the seven types of weld joints. All pertinent data regarding determination of weld schedules has been included on the isoforce diagrams.

Table V is a summation of weld schedule data showing the various weld schedules established by Hughes and JPL for the weld joints. All JPL weld joints were fabricated using a Weldmatic Model 1065 power supply with electrodes having 0.050" tip diameters.

Figure 7 is a photograph showing <u>all</u> of the weld joint specimens (Type A and Type B) prepared for this program. The Type A specimens are on the lower bench top and the Type B specimens are on the upper shelf. The identification numbers for the specimens are coded in accordance with Table IV. The Type B specimens of one type are shown

Weld schedules for weld joint specimens as prepared by Hughes Aircraft Company and Jet Propulsion Laboratory. Table V.

.

s vyyde Ministra

Joint Type	, Material	Electrode Pressure (lbs)	rode sure s)	Weld Energy (watt-sec.)	Weld hergy tt-sec.)	Up Elec	Upper Electrode	Upper Electrode Polarity	oer rode rity	Lower Electrode	'er rode	Lower Electrod Polarity	Lower Electrode Polarity
		HAC	JPL	HAC	JPL	HAC	JPL	HAC	JPL	HAC	JPL	НАС	JPL
1.1	Bare nickel wire to Inco ribbon	6	œ	21	6	RWMA 2	RWMA 2	١	+	RWMA 2	RWMA 2	1	+
1.2	Gold plated nickel wire to Inco ribbon	•	æ	15	9	RWMA 1 RWMA 2	RWMA 2	1	1	RWMA 2	RWMA 2	+	+
1.3	Gold plated Kovar wire to Inco ribbon	1	œ	10	4	RWMA 2	RWMA 2	1	J	RWMA 2	RWMA 2	· + .	+
1.4	Gold plated Dumet wire to Inco ribbon	ور	80	17	6	RWMA 1	RWMA 2	1	•	RWMA 2	RWMA 2	+	+
1.5	Gold plated copper wire to Inco ribbon	80	œ	33	10	RWMA I RWMA 2	RWMA 2	I	I	RWMA 2	MOLY.	+	+
1.6	Solder coated copper wire to Inco ribbon	2	œ	28	10	RWMA 1	RWMA 2	I	1	RWMA 2	RWMA 2	+	+
5	Gold plated Kovar foil to itself	Ŷ	1	6	ı	RWMA 2	ı	•	1	RWMA 2	1	+	•

-

19

,1

Figure 7. Photograph of all seven types of weld-joint specimens (R105346).

directly above the Type A specimens of that same type. Note that certain weld joint specimens have already been labeled with small tags. All specimens were eventually labeled, either before or after destructive testing.

Figure 8 is a photograph showing two each of the seven types of weld joint specimens, all of which were fabricated per configuration A of Figure 6. The weld joints on the left show the Inco ribbon on the bottom and the weld joints on the right show the Inco ribbon on the top. Weld joint 2.0 (Kovar foil to Kovar foil) of course has the same material on the top and bottom.

Figure 8. Photograph of the seven types of weld-joint specimens (R105348).

4. TEST PROCEDURES

4.1 GENERAL TEST INFORMATION

Testing of solder and weld joints was in accordance with Table VI. A more detailed breakdown of the number of joints for testing is given in Table VII.

Table VIII shows a flow diagram of the test sequence and the number of soldered and welded joints which were submitted to each particular test. The numbers (1 through 13) in the circles above the testing blocks refer back to that particular test outlined in Table VI.

All solder and weld joints were separately identified by special labels and code numbers. This was especially important during the electrical resistance tests so that the same joint could be identified and electrically tested before and after heat sterilization. After testing, all joints (separately identified) were bagged for delivery to JPL. Joints which were destroyed by virtue of ultimate strength tests had their mating members taped back together, so that JPL can, if necessary, refer back to this particular specimen at a later date.

Photographs of each type of test equipment used with a typical joint type installed were taken prior to testing.

Calibration data, where applicable, for the test equipment used was recorded in order to allow traceability of test result data to the original recordation made during testing.

Separate data sheets were used for each particular type of test. A typical data sheet is shown in Figure 9. Original raw data sheets for all tests conducted during this program have been included in Part II, Attachment 2, to this final report.

4.2 DRY HEAT STERILIZATION TEST PROCEDURES

A National Appliance Co. Vacuum Oven, Model 58402 (Serial No. B59), was used to accomplish the dry heat sterilization cycling in the following portions of the program:

- (1) Ultimate strength testing.
- (2) Metallographic examination.

Table VI. Test outline.

1

•

Tests		Number of Specimens	
1.	Ultimate strength before heating	1.	40 each of all joints
2.	Ultimate strength after heating	2.	40 each of all joints
3.	Metallurgical examination before heating	3.	5 each of all joints and l each of the JPL welded joints
4.	Metallurgical examination after heating	4.	5 each of all joints and l each of the JPL welded joints
5.	Electrical resistance before heating	5.	40 each of all joints except 1.5
6.	Electrical resistance after heating	6.	40 each of all joints except 1.5
7.	Electrical test during vibration before heating	7.	10 each of all joints and 4 each of the JPL welded joints
8.	Electrical test during vibration after heating	8.	10 each of all joints and 4 each of the JPL welded joints
9.	Ultimate strength after vibration before heating	9.	10 each of all joints and 4 each of the JPL welded joints
10.	Ultimate strength after vibration after heating	10.	10 each of all joints and 4 each of the JPL welded joints
11.	Stress-rupture strength for heat sterilization time and temperature and for the sterilization time period at room temperature	11.	72 each of joints 1.1.1 and 1.1.2
12.	Electron probe micro-analysis for gold diffusion before heating	12.	2 each of soldered joints 1.3.1 and 1.4 and welded joint 1.5
13.	Electron probe micro-analysis for gold diffusion after heating	13.	2 each of soldered joints 1.3.1 and 1.4 and welded joint 1.5

1. ULTIMATE STRENGTH TEST 1100 solder joints (100 each of 11 types) 748 weld joints (100 each of 7 types + 48 JPL welds) 1848 joints 2. METALLURGICAL EXAMINATION 110 solder joints (10 each of 11 types) 82 weld joints (10 each of 7 types + 12 JPL welds) 192 joints ELECTRICAL RESISTANCE TEST 3. 800 solder joints (40 each of 10 types tested 2 times) 560 weld joints (40 each of 7 types tested 2 times) 1360 joints 4. HEAT STERILIZATION A. 440 solder joints (40 each of 11 types) |BEFORE ULTIMATE 280 weld joints (40 each of 7 types) STRENGTH 55 solder joints (5 each of 11 types) | BEFORE в. 41 weld joints (5 each of 7 types METALLURGICAL plus 6 JPL welds) 110 solder joints(10 each of 11 types) | BEFORE C. 94 weld joints (10 each of 7 types VIBRATION plus 24 JPL welds) 72 solder joints (36 each of 2 types) } STRESS-RUPTURE D. E. 4 solder joints (2 each of 2 types) | ELECTRON 2 weld joints (2 each of 1 type) | MICRO-PROBE 1098 joints 5. ELECTRICAL TEST DURING VIBRATION 220 solder joints (10 each of 11 types tested 2 times) 188 weld joints (10 each of 7 types tested 2 times + 24 JPL welds tested 2 times) 408 joints 6. STRESS RUPTURE 144 solder joints (72 each of 2 types) 7. ELECTRON PROBE MICRO-ANALYSIS 8 solder joints (4 each of 2 types) 4 weld joints (4 each of 1 type)

Table VII. Number of joints for testing.

Flow diagram of soldered and welded joints for testing. Table VIII.

26

TEST Ultimate Strength

DATE July 12, 1965

TYPE OF JOINT: Solder Joint

MATERIAL: Gold plated copper to solder coated bifurcated terminal

per 1.3.1

TEST PERFORMED BY: D. L. Teter

SPECIMEN	STRENGTH		RESISTANCE	
NUMBER	A BEFORE HEAT	B AFTER HEAT	© BEFORE HEAT	
1	16.3	16.3		
2	16.4	16.4		
3	16.3	16.1		
		•		
•	•	•		
•	•	•		
•	•	•		
•	•			
• .	•	•		
•	•	•		
•	•			
•	•	•		
	•			
•	•	•		
		. 15.8		
40	15.9	15.0		

Figure 9. Typical data sheet for recording test results on solder and weld joints.

- (3) Vibration testing.
- (4) Electron probe microanalysis.

During heat cycling specimens were mounted in such a manner that the space between them precluded any synergistic effects that might occur. Only specimens of good quality and workmanship were selected for testing and all necessary steps were taken to assure maximum cleanliness of samples prior to test.

To achieve the purity of nitrogen atmosphere required in the test chamber during the heat exposure, a mechanical vacuum pump and nitrogen source (bottled commercial grade nitrogen) was used. Using an appropriately mounted thermocouple, a record was made of temperature as a function of time during the entire cycle.

Heat sterilization of solder joint specimens for stress-rupture testing was carried out in a large Conrad Temperature-Altitude Chamber Model No. FH8-3-3 (Serial No. 7268). This chamber is capable of being evacuated and backfilled with nitrogen. Automatic recording devices were used to keep a constant record of the time-temperature data. Periodic sampling and analysis of the atmosphere within the test chamber was performed to insure that no air leakage has occurred.

All dry heat cycling will be carried out in accordance with JPL Specification XSO-30275-TST-A "Environmental Test Specification Compatibility Test for Planetary Dry Heat Sterilization Requirements" dated 24 May 1963. The thermal sterilization compatibility test conditions are 145° C $\pm 2^{\circ}$ C for 36 hours in a dry nitrogen environment. This test is performed three (3) times with stabilization to room conditions between heating cycles.

In stress-rupture testing, however, a <u>single</u> 108 hour exposure was used since the three 36 hour exposure cycles per the specification would be extremely difficult to accomplish with the test configuration to be used. The test rig cannot be conveniently removed from the chamber once exposure has begun and the large mass of the chamber would require excessively long cooling periods before room temperature is achieved.

A flow diagram for heat sterilization was previously given in Table VIII. Heat sterilization of solder joint 1.5 (components between pairs of bifurcated terminals) was done with the joint still mounted on the printed wiring board. After heat cycling the terminal was removed from the printed wiring board for further testing. To facilitate removal from the circuit board without damage to the solder

joint, the bifurcated terminal was <u>not</u> staked, but was soldered directly to the gold plated etched circuit pad (see Figure 5). Removal was accomplished by clipping the leads from the resistor bodies and quickly de-soldering the terminals from the etched pads using heat sinks in order not to disturb the solder joint between the component lead and the times of the bifurcated terminal.

Figure 10 is a photograph showing the vacuum oven used for the dry heat sterilization tests with the weld joints inside the vacuum oven in separate Petri dishes. Figure 11 is a close-up of this vacuum oven with the solder joint specimens inside. Also shown in Figure 11 are certain of the solderability specimens.

4.3 ULTIMATE STRENGTH TEST PROCEDURES

4.3.1 Equipment

4.3.1.1 Hunter Spring Tensile Tester, Model TJH (Serial No. 175) equipped with a Hunter Mechanical Force Gage, Model D-50-T

Figure 10. Vacuum oven used for dry heat sterilization tests with weld joints inside (R105391).

Figure 11. Inside of vacuum oven showing solder joint specimens ready for dry heat sterilization (R105259).

(Serial No. 261). Calibrated on 26 April 1965. This tensile tester was used for all ultimate strength tests on solder joints.

4. 3. 1. 2 Hunter Spring Tensile Tester, Model TJH (Serial No. 190) equipped with a Hunter Mechanical Force Gage, Model D-50-T (Serial No. 365). Calibrated on 17 March 1965. This tensile tester was used for all ultimate strength tests on welded joints.

4.3.2 Procedures

All ultimate strength tests on solder joints were made by one technician using one tensile tester and all ultimate strength tests on welded joints were made by one technician using one tensile tester. Ultimate strength tests of both solder and weld joints were done at room temperature and were in accordance with Tables VI and VIII. A total of 1100 solder joints and 748 weld joints were tested for ultimate strength. Weld joints and solder joints of similar types were clamped as nearly alike as possible using the same tensile tester jaw attachments and were pulled at the same rate (i.e., identical air pressure).

Weld joints were all pulled in the torsion-shear mode as shown in Figure 12 and as required in JPL Spec. GPO-30995-GEN. Figure 13 is a close-up photograph of weld joint 1.3 being pulled apart. These same jaw attachments were used for all weld joints.

Solder joints to connector cups and to bifurcated terminals were tested for ultimate strength in the direction of pull shown in the sketches on Figure 12. Special jaw attachments for the Hunter Tensile Tester made it possible to the grasp the many different joint configurations. Figure 14 shows the Hunter Tensile Tester with solder joint 1.1.1 (stranded conductor to CINCH connector cup) in position ready for ultimate strength testing. Figure 15 is a close-up of the jaws of the Tensile Tester showing solder joint 1.3.3 (Dumet wire to bifurcated terminal) in position for ultimate strength testing.

After ultimate strength testing of the solder and weld joints, the specimen halves were taped together and labeled accordingly. All strength values were recorded in pounds on separate Raw Data Sheets. These data sheets contained the strength values before and after thermal sterilization for each joint type. In addition each tested joint was examined for the failure mode and this was also recorded on the applicable data sheet. All labeled joints were placed in plastic bags and saved for later submittal to JPL.

4.4 ELECTRICAL RESISTANCE TEST PROCEDURES

4.4.1 Equipment

- 4.4.1.1 Hewlett Packard Model 425A D.C. MicroVolt Ammeter, Serial No. 399-01060. Calibrated on 18 June 1965.
- 4.4.1.2 Daystrom Model 931 D.C. Milliammeter, Serial No. 28020. Calibrated on 18 May 1965.

Figure 13. Weld joint being tested for ultimate strength in tensile tester (R105347).

Figure 14. Hunter tensile tester with solder joint 1.1.1 in position for ultimate strength testing (R104840).

Figure 15. Solder joint 1.3.3 mounted in jaws of tensile tester ready for ultimate strength testing (R105341).

4.4.1.3 Kepco Model SM-36-5M Voltage Regulated D.C. Power Supply, Serial No. C-28791.

4.4.1.4 Ohmite No. 0528 Rheostat, Series A.

4.4.1.5 Various Hughes-designed test fixtures for clamping solder and weld joints during electrical resistance tests.

4.4.2 Procedures

Electrical resistance tests of soldered and welded joints before and after heating were done in accordance with the schedules shown in Tables VI and VIII. A total of 800 resistance tests on soldered joints and 560 resistance tests on welded joints were made. Solder joint 1.5 was not given the electrical resistance test since it must remain mounted in the printed wiring board during thermal sterilization without being separated from the body of the 1/4-watt resistor. For purposes of a final statistical analysis of the test results, each <u>individual</u> joint was separately identified and tested for electrical resistance before and after heating. All electrical resistance tests were made by one technician. The solder joint configuration for resistance testing was per Figure 12. The welded joint configuration for resistance testing was per Type A on Figure 6.

Electrical resistance tests on solder joints were done using the upper test setup shown in Figure 16. Electrical resistance tests on welded joints will be done using the lower test setup shown in Figure 16. Special clips were used to insure that all joints of one type are tested in an identical manner. Precautions were taken to insure that contact resistance was minimized, so that only the resistance of the soldered or welded joint would be read. The test set-up shown in Figure 16 essentially consists of applying a current of 1 ampere dc through the joint and measuring the resultant voltage drop - which is equal to the joint resistance.

Figure 17 is a photograph of the electrical test set-up used for resistance measurements of both soldered and welded joints. All measurements were made after 1 minute of 1 ampere current flow. Readings were then recorded on the applicable Raw Data Sheets.

Figure 16. Test setup for electrical resistance (i.e., voltage drop) tests of soldered and welded joints.

Figure 17. Test set-up for electrical resistance measurements of soldered and welded joints (R105342).

Figure 18 is a close-up photograph of a solder joint (gold plated Dumet wire to solder coated bifurcated terminal) being tested for electrical resistance. A 200 gram weight was used, where applicable, for uniform contact pressure.

Figure 19 is a close-up photograph of a different type of solder joint (stranded conductor to Bendix connector cup) being tested for electrical resistance. The voltage probes are the two inside contacts and the current probes are the two outside contacts.

Figure 20 is a close-up photograph of a weld joint (gold plated Kovar to Inco) being tested for electrical resistance.

4.5 STRESS-RUPTURE STRENGTH TEST PROCEDURES

4.5.1 Equipment

4.5.1.1 Conrad Temperature - Altitude Chamber, Model No. FH 8-3-3, Serial No. 7268. Calibrated on 14 May 1965. This chamber is equipped with a Honeywell Electronik temperature recorder which was last calibrated on 14 July 1965.

Figure 18. Solder joint (wire to bifurcated terminal) in test fixture for electrical resistance measurement (R105343).

Figure 19. Solder joint (stranded conductor to connector cup) in test fixture for electrical resistance measurement (R105344).

Figure 20. Weld joint in test fixture for electrical resistance measurement (R105345).

- 4.5.1.2 Hughes Aircraft Company specially designed stress-rupture test fixtures. Two test fixtures were constructed. Each test fixture consisted of the following:
 - a) One specimen rack capable of holding 9 solder joints.
 - b) Nine Unimax Precision Microswitches, Type 20GMXW-1, SPDT, 15 amps at 125 vac.
 - c) Nine buckets each loaded with shot to provide dead weights.
 - d) Nine panel-mounted Aero Instruments Type 61134-1
 Running Time Meters (120 v, 60~) each with a neon indicator light.

4.5.2 Procedures

Stress-rupture strength was determined under conditions of actual heat sterilization (i.e., 145°C for 108 hours in a nitrogen atmosphere) and also at room temperature for 108 hours. Stress-rupture tests were performed on solder joints 1.1.1 and 1.1.2 (stranded

conductor to CINCH and BENDIX connector cups) in accordance with the schedule given in Tables VI and VIII. A total of 144 solder joints (72 each of joints 1.1.1 and 1.1.2) were tested for stress-rupture strength. In addition two small ink marks were made on each solder joint prior to stress-rupture loading. Any change in axial position of these marks during or after the 108 hours of testing would show evidence of <u>creep</u> in the solder joint.

Testing was done by suspending weights from joint specimens within the test chamber so they will be under constant tensile load. The time to rupture (at a particular stress loading) was recorded. Figure 21 is a diagram of the stress-rupture test setup for a single soldered specimen. When the joint fails, the microswitch will close. Closing of the microswitch stops the time meter and turns off the neon light. The weights were selected so as to cause those joints of questionable strength to fail within the 108 hours of testing, provided that their stress-rupture strength is degraded by thermal sterilization. Since 9 joints were tested simultaneously, the initial selection of weight

Figure 21. Diagram of stress-rupture test setup.

loadings was from 10% to 90% of the ultimate strength of the solder joints being tested--approximately 15 pounds. After the 108 hour testing period. the joint was examined for the failure mode and for any indication of creep. Each joint was then labeled and bagged. The time meter readings were recorded on the applicable Raw Data Sheets.

Stress-rupture tests at room temperature conditions for both the Cinch and Bendix connector cup solder joints were connected using weights ranging from 10% to 90% of the ultimate strength of the joints. However during stress-rupture testing under sterilization time and temperature conditions, all of the Cinch connector cup solder joints failed even at the 10% loading. All failures occurred within 5.2 hours after the start of testing. The majority of joints failed within 1 hour after the 145°C temperature was reached, whereas identical joints would last the full 108 hours at 25°C.

New stress loadings were therefore adopted for the remaining stress-rupture tests at sterilization time and temperature conditions for the Bendix connector cup solder joints. These new loadings are shown in Table IX and were designed to insure that some joints would fail and some joints would not fail after the 108 hours at 145°C in a nitrogen atmosphere. The ultimate strength of these joints is approximately 15 pounds.

Specimen Number	Old Loads (lbs)	% Ultimate Strength	New Loads (lbs)	% Ultimate Strength	Alternate New Loads (lbs)	^o ₀ Ultimate Strength
1	1.625	10.7	0.15	1	0,30	2
2	3.125	20.8	0.30	2	0.45	3
3	4.625	30.7	0.45	ຸ 3	0.60	4
4	6.125	40.7	0.60	4	0.75	5
5	7.625	50.7	0.75	5	1.125	7.5
6	9.125	60.6	1.50	10	ι. 50	10
7	10.500	70.0	2.25	١5	2.25	15
8	12.063	80.4	3.00	20	3.00	20
9	13.563	90.3	3.75	25	3.75	25

Table IX. Old and new stress-rupture test loadings.

Figure 22 is a photograph of the stress-rupture test set-up under room temperature conditions. Nine Cinch connector cup solder joints are shown under test. The front three joints have already failed as indicated by the weight buckets having fallen to the floor.

Figure 23 is a close-up photograph showing a Bendix connector cup solder joint suspended from the specimen rack. The metal cross-piece (not the joint itself) depresses the roller on the snap switch.

Figure 24 shows 18 Bendix connector cup solder joints (1.1.2) in the Temperature-Altitude Chamber ready for stress-rupture testing under conditions of heat sterilization time and temperature. Note the two panels of running time meters outside the chamber.

4.6 ELECTRICAL TEST DURING VIBRATION TEST PROCEDURES

4.6.1 Equipment

4.6.1.1 Ling Electronics Vertical Vibration System, Model C-P 3/4, Serial No. 45. Calibrated on 16 Aug. 1965.

Figure 22. Stress-rupture test set-up under room temperature conditions (R105339).

Figure 23. Close-up photograph showing a Bendix contractor cup solder joint suspended from the specimen rack for stressrupture testing (R105340).

Figure 24. Stress-rupture test set-up for 18 solder joints under conditions of heat sterilization time and temperature (R105736).

- 4.6.1.2 Endevco Accelerometer, Model 2211, Serial No. R5641. Calibrated on 14 May 1965.
- 4.6.1.3 Hewlett Packard Wave Analyzer, Model 302A, Serial No. 149-00127. Calibrated on 28 May 1965.
- 4.6.1.4 Hewlett Packard Electronic Counter, Model 522B, Serial No. 1897. Calibrated on 21 June 1965.
- 4.6.1.5 Hewlett Packard Audio Signal Generator, Model 205AB, Serial No. 6965. Calibrated on 16 June 1965.
- 4.6.1.6 Hewlett Packard Vacuum Tube Voltmeter, Model 400 H, Serial No. 1197. Calibrated on 2 June 1965.
- 4.6.1.7 Hewlett Packard A.C. Current Probe, Model 456A, Serial No. 103-0939. Calibrated on 22 May 1965.
- 4.6.1.8 Chadwick-Helmuth Sweep Synchronizer, Model 201, Serial No. 103AR.
- 4.6.1.9 Chadwick-Helmuth Strobex, Model 121R.
- 4.6.1.10 Dynac Sweep Oscillator, Model DY-2200, Serial No. 167. Calibrated on 6 August 1965.

4.6.2 Procedures

The purpose of this test is to detect electrical variations in joint resistance during vibration and to compare these variations with other specimens. These electrical variations in joint resistance are assumed to be directly related to joint deterioration.

Electrical tests during vibration were done on all solder and weld joint types per the schedules outlined in Tables VI and VIII. A total of 220 solder joints and 188 weld joints were electrically tested during vibration before and after thermal sterilization. Weld joint specimens for this particular test were Type B as shown in Figure 6.

43

Ś

The electrical test setup as originally proposed (see Figure 25) was found unsatisfactory for joints involving magnetic materials. The lines of flux in the magnetic field created by the shake table would be cut by the vibrating joint generating a false display on the oscilloscope. This variation in scope output, although only in the microvolt region, was of a magnitude approximately equal to that of any expected joint variation and therefore it was impossible to tell with any certainty whether the joint or the noise was responsible for the change in waveform. Adequate magnetic shielding of the joint was not practical due to the heavy flux density. A new electrical test setup was developed which proved satisfactory. This setup is shown in Figure 26.

In the new set-up the d-c current source is replaced by an a-c signal and a tuned microvoltmeter is used as a detector. The a-c signal was set at 5 kilocycles and the microvoltmeter was tuned to maximum sensitivity at that frequency. This technique shows considerable improvement over the previous technique and will detect a change in joint resistance (i.e., voltage drop or rise) of less than 5%. A 5 KC

Figure 25. <u>Old</u> electrical test setup for electrical measurements of soldered and welded joints during vibration.

Figure 26. <u>New</u> electrical test setup for electrical measurements of soldered and welded joints during vibration.

signal (ac current as opposed to dc current) is used since this is above the shaker frequency and will eliminate any harmonics. This technique will reject any signal except that through the joint under test. Both good joints and bad joints (loose connections) were tested with this technique to insure that the measured signal was due only to the change in joint resistance. At a current input of only 15 milliamperes, it was possible to get a voltage change of 250 microvolts for bad joints. Good joints showed no change in resistance.

Vibration testing was done by running the joint under test from 60 to 2000 cycles per second at a 15-G acceleration level and noting the resonant frequency. The joint was then allowed to dwell at that resonant frequency for 5 to 10 minutes and any change in joint resistance (i.e., microvolt signal output to the wave analyzer) was noted at resonance. The current probe was used to monitor the current through the joint and the electronic counter was used to measure the resonant frequency. An a-c current input of 100 milliamperes was used for all weld joints and solder joints. All joints of one type were identically mounted on the shake table and were measured at the identical resonant frequency. All joints were mounted taut without slack to prevent different resonant

45

ţ

frequencies for joints of the same type. Using a constant table displacement, weld joints at resonance exhibited a maximum amplitude of about 0.1155 inch. During vibration testing physical resonance was observed by watching the joint displacement and electrical resonance was observed by monitoring the scope display.

Figure 27 is a photograph showing one weld joint and three solder joints of different types mounted on the vibration platform. This photograph was taken to illustrate the different methods of mounting used for each type of weld joint and solder joint. During actual vibration testing, either four or two joints of one type in series were vibrated together. Weld joints and solder joints or joints of different types were not mixed together.

Figure 28 is a close-up photograph of these same four joints. The vibration plane was perpendicular to the plane of the photograph. Before vibration the series circuit of either four or two joints was measured for electrical resistance. The current input, resonant frequency, series joint resistance, and any change in resistance during vibration were all recorded on the applicable Raw Data Sheets.

Figure 27. Weld joint and solder joint specimens mounted on vibration table in preparation for the electrical tests during vibration (R105473).

Figure 28. One weld joint and three solder joints mounted on vibration table (R105474).

4.7 METALLURGICAL EXAMINATION

4.7.1 Equipment

- 4.7.1.1 Zeiss Inverted Metallurgical Microscope, Model No. B-5000. Used for examining unetched mounts of all metallographic specimens at 500X magnification.
- 4.7.1.2 Reichert Metallograph, Model MeF. Used for examining etched mounts of all metallographic specimens at magnifications up to 1000 X. The Reichert Metallograph is equipped with a builtin camera and was also used for taking photomicrographs. The film used was Kodak Super Panchro Press.
- 4.7.1.3 Buehler Model 67-1509 Vibromet Polisher.
- 4.7.1.4 Buehler No. 1330AB Mounting Press.

- 4.7.1.5 Precision Scientific "Precisionite" mounting powder for all hot mounts.
- 4.7.1.6 Fulton Metallurgical "Quickmount" mounting powder for all cold mounts.

4.7.2 Procedures

Metallographic examination was done on all joint types as outlined in Tables VI and VIII. A total of 110 solder joints and 82 weld joints were metallographically mounted, sectioned and examined. This total does not include the additional metallographic mounts which were made for material incoming inspection and for specimen standardization. Photomicrographs were made of 26 weld joints at a magnification of 150X. The total of 26 weld joints included:

- a) One each of 7 weld joint types before heat sterilization.
- b) One each of 7 weld joint types, after heat sterilization.
- c) One each of 6 JPL weld joint types before heat sterilization.
- d) One each of 6 JPL weld joint types after heat sterilization.

Photomicrographs were made of 22 solder joints (2 each of 11 solder joint types - one before and one after heat sterilization). Photomicrographs of stranded conductors soldered to connector cups (joint types 1.1.1 and 1.1.2) were taken at 60X. Photomicrographs of solid wire conductors soldered to bifurcated terminals were taken at 100X. All solder joints were cold mounted in Quickmount and all weld joints (except joint type 1.6 - solder coated copper to Inco) were hot mounted in Precisionite. Weld joint 1.6 was cold mounted in Quickmount.

Metallographic mounts of solder joints (bifurcated terminal and connector cup types) were prepared by multiple mounting, as shown in Figure 29. Five joints which were <u>not</u> submitted to thermal sterilization were mounted directly above and adjacent to five joints which had been thermally sterilized. This enabled a quick visual comparison between specimens without switching mounts. Weld joints were individually mounted in separate mounts as shown in Figure 29. This was necessary since it is very difficult to polish into the exact center of two weld joints on the same mount.

49

. 2

All weld joints and solder joint metallographic specimens were examined for any degradation which could be attributed to the thermal sterilization cycle.

The various etchants used to define the metallurgical structure of the solder and weld joints are listed at the bottom of each photomicrograph.

4.8 ELECTRON PROBE MICROANALYSIS

4.8.1 Equipment

4.8.1.1 Applied Research Laboratories Model 21000 Electron Microprobe X-Ray Analyzer, Serial No. EMX-39.

4.8.2 Procedures

Electron probe microanalysis was subcontracted to the Materials Testing Laboratories, Division of Magnaflux Corp., Los Angeles, California. A total of 8 solder joints and 4 weld joints were analyzed as shown in Table X.

The specimens were primarily examined for any signs of <u>gold</u> <u>diffusion</u> into the copper wire, brass terminal, or Inco (nickel) ribbon. Figure 30 is a photograph of the ARL Electron Microprobe X-Ray Analyzer.

All joints were mounted in standard 1" diameter metallographic mounts and final polishing was accomplished with diamond abrasive. All joints were sectioned in such manner as to expose the cross section of the copper wire.

The Applied Research Laboratories Microprobe was used for these analyses. Monochromatic crystal detectors were peaked out on suitable portions of the specimens, using the following radiation lines.

Copper K Alpha	1.542 Angstroms
Nickel K Alpha (2nd Order)	3.318 Angstroms
Gold L Alpha	1.277 Angstroms
Silver L Alpha	4.154 Angstroms

Specimen Number	Sterilized	Type of Joint	Joint Description
1.4.111 1.4.112 1.4.113 1.4.114	No No Yes Yes	Solder Solder Solder Solder	Gold Plated (approx. 88 micro- inches) Copper Wire (0.020" dia.) to Gold Plated Bifurcated Terminal. Terminal was 1/2 Hard Brass with Copper Strike, Silver Strike, Sil- ver Plate (0.0002" - 0.0003") and gold Plate (70 microinches)
1. 3. 1. 111 1. 3. 1. 112 1. 3. 1. 113 1. 3. 1. 114	No No Yes Yes	Solder Solder Solder Solder	Gold Plated (88 microinches) Copper Wire (0.20" dia.) to Solder Coated Bifurcated Terminal. Ter- minal was 1/2 Hard Brass with Solder Coating (160-500 micro- inches).
1.5.111A 1.5.112A 1.5.113A 1.5.114A	No No Ye s Ye s	Weld Weld Weld Weld	Gold Plated (88 microinches) Copper Wire (0.029" dia.) to Nickel (Inco 200) Ribbon (0.010" x 0.031")

Table X. Solder and weld joint specimens submitted to electron probe microanalysis.

Figure 30. Electron microprobe x-ray analyzer.

The specimen in each case was set so that the beam travel would be in a direction perpendicular to the joint interface and as close as possible to its centerline. Traversing was in all cases by one micron increments. At each step the elements in question were read out after a fixed time integration (i. e. simultaneous counting into each recording channel). The attached charts are identified as to the elements run. A record of sample current was also made, this figure being inversely related to average atomic number. The units in all cases are arbitrary.

The following conditions were used for the analyses:

Exciting voltage	20 Kilovolts
Sample Current	0.05 Microamperes on copper
Integration Time	30 seconds
Beam Diameter	0.5 Micron (Approximately)
Diameter of Excited Area	2.0 Microns (Approximately)

5. TEST RESULTS

5.1 ULTIMATE STRENGTH TEST RESULTS

5.1.1 Solder Joints

Pages 1 through 6 in Part II, Attachment 2, of this final report contain the Raw Data Sheets for the ultimate strength tests on the eleven types of solder joints. For each type of joint, numbers 1-40 were tested before heating (control specimens) and numbers 41-80 were tested after thermal sterilization. All ultimate strength values are given in pounds. After each strength value the mode of failure was noted:

W = Wire failure J = Joint failure

Wire and joint failures for bifurcated terminals and connector cups are illustrated in the sketches shown in Figure 31. Wire failures for bifurcated terminals usually occurred from 1/4" to 1/2" away from the solder joint. Connector cup solder joints (1.1.1 and 1.1.2) all failed at the wire. Certain bifurcated terminal solder joints (i.e., 1.3.4, 1.3.5, and 1.5) were predominantly joint failures and other bifurcated terminal solder joints (i. e., 1.3.6) were <u>all</u> joint failures. Joint failures (see Figure 31) were of two types: 1) the wire broke right at the joint; and 2) the wire was pulled out of the bifurcated terminal without breaking.

Table XI presents a statistical analysis of variance for the ultimate strength test data on solder joints. A single factor analysis of variance was required since this was a destructive test. In view of the nature of the test data the significance level was determined using both the F test and Chi-Square test for significance. For example, a significance level of 0.01 means that there is only 1 chance in 100 that the analysis was wrong and a significance level of 0.001 means that there is only 1 chance in 1000 that the analysis was wrong. The 95% confidence intervals of means was calculated for both the control specimens and the sterilized. Taking the first solder joint in Table XI (1.1.1

BIFURCATED TERMINAL JOINT FAILURE

BIFURCATED TERMINAL JOINT FAILURE

Figure 31. Failure modes for solder joints.

Table XI. Analysis of variance - ultimate strengths of soldered joints.

	Effect of Thermal	Significance	95% Confidence Ir	95% Confidence Intervals of Means
Type of Joint	Sterilization	Level	Control	Sterilized
1. 1. 1 Stranded conductor to Cinch cup	None	1	14.6 - 14.7 lbs	14.5 - 14.6 lbs
1.1.2 Stranded conductor to Bendix cup	Decrease	0.01 (Chi-square)	14.6 - 14.7	14.5 - 14.5 (round-off limits)
 2 Stranded conductor to Solder coated Bifurcated Terminal 	Decrease	0.001 (Chi-square)	14.8 - 15.1	14.4 - 14.9
1. 3. 1 Gold plated Copper to Solder coated Bifurcated Terminal	Increase	0.001 (F-test)	10.4 - 10.6	10.7 - 10.9
 3.2 Solder coated Copper to Solder coated Bifurcated Terminal 	Decrease	0.01 (Chi-square)	11.2 - 11.7	10.8 - 11.2
1.3.3 Gold plated Dumet to Solder coated Bifurcated Terminal	None	1 1 1	23.2 - 25.0	21.9 - 23.7
1.3.4 Gold plated Kovar to Solder coated Bifurcated Terminal	None	1	20.9 - 22.2	20.5 - 21.8
1. 3. 5 Gold plated Nickel to Solder coated Bifurcated Terminal	None	1	25.8 - 28.7	27.2 - 30.1
1. 3.6 Bare Nickel to Solder coated Bifurcated Terminal	None		27.3 - 30.4	26.8 - 29.8
1.4 Gold plated Copper to Gold plated Bifurcated Terminal	Decrease	0.001 (Chi-square)	11.5 - 12.0	11.0 - 11.2
1.5 1/4 Watt Resistor to Solder coated Bifurcated Terminal	None		19.4 - 21.8	18.4 - 20.i

Stranded conductor to Cinch cup), the control specimens have a lower limit of 14.6 pounds and an upper limit of 14.7 pounds. We are 95% confident that the arithmetic mean lies within this interval. The same reasoning applies to all specimens. Four of the solder joint types (i.e., 1.1.2, 1.2, 1.3.2, and 1.4) showed a decrease in ultimate strength due to sterilization and one type (1.3.1) showed an increase in ultimate strength. Thermal sterilization <u>had</u> no significant effect on any of the other joints or, putting it another way, any change in strength values before or after sterilization was due to chance or random error.

Figure 32 is a series of bar diagrams of the ultimate strength values for soldered joints. This is simply a different way of presenting the statistical values of Table XI. The control and sterilized specimen strength values are plotted side-by-side with the shaded area at the top of each bar graph being the 95% confidence intervals of means. When the shaded areas overlap each other, the conclusion is that there is <u>no</u> effect on strength due to thermal sterilization. It is also easy to see which of the solder joint types are strongest. Joint types 1.3.5 and 1.3.6 have higher ultimate strengths than any of the others, both being nickel wire.

Taking as an example joint type 1.1.2 which shows a decrease in ultimate strength after sterilization, this decrease (although significant statistically) is actually only a decrease of 1%. A 1% change in the strength of a solder joint is, for all practical purposes, relatively unimportant in view of the many other variables involved.

5.1.2 Welded Joints

Pages 7 through 10 in Part II, Attachment 2, of this final report contain the Raw Data Sheets for the ultimate strength tests on the seven types of weld joints. For each type of joint, numbers 1-40 were tested before heating and numbers 41-80 were tested after thermal sterilization. All ultimate strength values are given in pounds. At the right of each strength value is noted the mode of failure:

> W2 = Wire broke adjacent to weld R2 = Ribbon broke adjacent to weld WS = Weld separation

حاج

Figure 33 contains sketches illustrating these three failure modes for the weld joints. Certain of the weld joints (i.e., 1.1, 1.2, 1.5) failed predominantly in the W2 mode, while other types of weld joints failed predominantly in the R2 mode (i.e., 1.3, 1.4, 2.0) or the WS mode (i.e., 1.6).

Table XII presents a statistical analysis of variance for the ultimate strengths of welded joints. One weld joint type (1.5 gold plated copper to Inco) showed a significant decrease in strength after sterilization. The "gold plated Kovar foil to itself" weld joint showed a slight effect due to sterilization primarily due to the comparative increase in standard deviation. Although joint type 1.5 exhibited an effect with a significance level of 0.001 by the F test, the actual change in ultimate strength was only 5%. This change is attributed to a shift in the distribution of the test result data, as illustrated by the histogram shown in Figure 34.

Figure 35 is a series of bar diagrams for the ultimate strengths of weld joint presenting, in a more graphical manner, the statistical data given in Table XII.

5.2 ELECTRICAL RESISTANCE TEST RESULTS

5.2.1 Solder Joints

Pages 11 through 15 in Part II, Attachment 2, of this final report contain the Raw Data Sheets for the electrical resistance tests on ten types of soldered joints. For each joint type, specimens 41-80 were tested before thermal sterilization and the identical specimens were again tested after thermal sterilization. All resistance values are given in milliohms (ohms x 10^{-3}).

Table XIII presents a two factor statistical analysis of variance for the electrical resistance test data on solder joints. Four of the solder joint types (i.e., 1.1.1, 1.1.2, 1.3.5, and 1.3.6) exhibited a slight decrease in electrical resistance as a result of thermal sterilization and two of the solder joint types (i.e., 1.2 and 1.3.2) showed a slight increase in electrical resistance due to thermal sterilization.

R 2 = RIBBON BROKE ADJACENT TO WELD

WS = WELD SEPARATION

Figure 33. Failure modes for welded joints.

ì

Table XII. Analysis of variance - ultimate strengths of welded joints.

Ì

oLevel - F-testControloNone9.0 - 9.7 lbsto IncoNone12.4 - 12.8to IncoNone16.5 - 16.9to IncoNone12.1 - 12.6to IncoNone12.1 - 12.6to IncoDecrease0.0019.8 - 10.0ro IncoDecrease0.0019.8 - 10.0foil toSmall drop,7.4 - 7.6foil toSmall drop,0.05 (?)3.5 - 3.6dispersiondispersion0.05 (?)3.5 - 3.6	1		Effect of Thermal	Significance	95% Confidence L	95% Confidence Intervals of Means
None 9.0 - 9.7 lbs None 12.4 - 12.8 None 16.5 - 16.9 None 16.5 - 16.9 None 12.1 - 12.6 Decrease 0.001 9.8 - 10.0 None 7.4 - 7.6 Small drop, 7.4 - 7.6 increased 0.05 (?) 3.5 - 3.6		Type of Joint	Sterilization	Level - F-test	Control	Sterilized
None 12.4 - 12.8 None 16.5 - 16.9 None 12.1 - 12.6 Decrease 0.001 9.8 - 10.0 None 7.4 - 7.6 None 7.4 - 7.6 Small drop, 0.05 (?) 3.5 - 3.6 dispersion 0.05 (?) 3.5 - 3.6	-	Bare nickel to Inco	None	1	9.0 - 9.7 lbs	9.3 - 9.9 lbs
None 16.5 - 16.9 None 12.1 - 12.6 Decrease 0.001 9.8 - 10.0 None 7.4 - 7.6 Small drop, 0.05 (?) 3.5 - 3.6 dispersion dispersion	~	Gold plated nickel to Inco	None	1	12.4 - 12.8	12.1 - 12.6
None 12.1 - 12.6 Decrease 0.001 9.8 - 10.0 None 7.4 - 7.6 Small drop, 0.05 (?) 3.5 - 3.6 dispersion dispersion	m	Gold plated Kovar to Inco	None	1	16.5 - 16.9	16.5 - 16.9
o Decrease 0.001 None Small drop, 0.05 (?) increased dispersion	4	Gold plated Dumet to Inco	None	8	12.1 - 12.6	11.8 - 12.2
None Small drop, 0.05 (?) increased dispersion	ۍ ا	Gold plated copper to Inco	Decrease	0.001	9.8 - 10.0	9.3 - 9.5
Small drop, 0.05 (?) increased dispersion	9	Solder coated copper to Inco	None	1 1 5	7.4 - 7.6	7.4 - 7.6
	0	Gold plated Kovar foil to itself	Small drop, increased dispersion	0.05 (?)	3.5 - 3.6	3.1-3.5

60

۰,

•

Figure 34. Histograms of strengths of gold-plated copper to Inco weld joints showing shift due to heat sterilization.

The F test was used throughout for significance level calculations and all shifts in the 95% confidence intervals of means had a significance level of 0.001.

Figure 36 is a series of bar diagrams for the electrical resistances of soldered joints presenting, in a more graphical manner, the statistical data given in Table XIII. Note the extremely high resistance of the gold plated Kovar solder joint (1.3.4) compared to the others. The average resistance of this joint is 18 times greater than the average resistance of a stranded conductor (1.2) soldered to the same bifurcated terminal. It is also interesting to note that the Bendix connector cup joint (1.1.2) had more than twice the resistance of the Cinch connector cup joint (1.1.1).

Although joints 1.2 and 1.3.2 showed an increase in resistance after thermal sterilization, this increase was only 4.7% in the case of joint 1.2 and 5.4% in the case of joint 1.3.2.

•••

Table XIII. Analysis of variance - electrical resistance of soldered joints.

-.

and a second second

.

.

	Effect of Thermal	Significance	95% Confidence Intervals of Means	tervals of Means
Iype of Joint	Sterilization	Level - F-test	Before Sterilization	After Sterilization
1. 1. 1 Stranded conductor to Cinch cup	Decrease	0.001	0.250 - 0.254 x 10 ⁻³ ohms	0.234 - 0.238 x 10 ⁻³ ohms
 J. 2 Stranded conductor to Bendix cup 	Decrease	0.001	0.555-0.570×10 ⁻³	0.514-0.529×10 ⁻³
 Stranded conductor to Solder coated Bifurcated Terminal 	Increase	0.001	0.167-0.173×10 ⁻³	0.175-0.181×10 ⁻³
1.3.1 Gold plated Copper to Solder coated Bifurcated Terminal	None		0.219-0.226×10 ⁻³	0.218-0.225×10 ⁻³
 3.2 Solder coated Copper to Solder coated Bifurcated Terminal 	Increase	0.001	0.216 - 0.223 × 10 ⁻³	0.228-0.235×10 ⁻³
1.3.3 Gold plated Dumet to Solder coated Bifurcated Terminal	None		0.735 - 0.756 × 10 ⁻³	0. 726 - 0. 747 x 10 ⁻³
1.3.4 Gold plated Kovar to Solder coated Bifurcated Terminal	None	-	2.92-3.15×10 ⁻³	2.98-3.22×10 ⁻³
 J. 5 Gold plated Nickel to Solder coated Bifurcated Terminal 	Decrease	0.001	0.432 - 0.446 x 10 ⁻³	0.384-0.397×10 ⁻³
1. 3. 6 Bare Nickel to Solder coated Bifurcated Terminal	Decrease	0.001	0.470-0.483×10 ⁻³	0. 436 - 0. 449 x 10 ⁻³
1.4 Gold plated Copper to Gold plated Bifurcated Terminal	None		0.211-0.219×10 ⁻³	0.209-0.217×10 ⁻³

6**3**

-

, .Ł,

5.2.2 Weld Joints

Pages 16 through 19 in Part II, Attachment 2, of this final report contain the Raw Data Sheets for the electrical resistance tests on the seven types of weld joints. For each joint type specimens 41-80 were tested before thermal sterilization and the identical specimen was again tested after thermal sterilization. All resistance values are in microohms (ohms x 10^{-6}). A negative sign in front of the resistance reading indicates that the needle of the microvoltmeter indicated a negative polarity for that point. The lack of a sign in front of the resistance reading indicates a positive polarity reading on the microvoltmeter. Note that weld joints 1.1, 1.2, 1.5 and 2.0 have negative polarities, while weld joint 1.3 had a positive polarity. Joints 1.4 and 1.6 had both "+" and "-" polarities. This is a phenomenon observed by others for which no satisfactory explanation is known. Of course a resistance reading has no polarity and therefore the values on the Raw Data Sheets should be interpreted as absolute readings.

Table XIV presents a statistical analysis of variance for the electrical resistances of welded joints. Three weld joint types (i.e., 1.3, 1.5, and 1.6) showed an increase in resistance after sterilization and one weld joint type (i.e., 1.2) showed a very slight decrease in electrical resistance after thermal sterilization. It is interesting to note that the variance of the resistance readings for the weld joints was much greater than the variance for the solder joints and also that the joint resistances for weld joints were a magnitude <u>lower</u> than the solder joint resistances. The gold plated Kovar foil weld joint had a resistance almost 73 times greater than the solder coated copper wire weld joint.

Figure 37 is a series of bar diagrams for the electrical resistances of weld joints presenting, in a more graphical manner, the statistical data of Table XIV. In the case of both solder and weld joints the Kovar materials exhibited high resistances. From Figure 37 one also notes that the nickel weld joints (1.1 and 1.2) had less shaded areas on the bar diagrams indicating the electrical resistances of these materials had less spread (i.e., the joints were more consistent and predictable).

Table XIV. Analysis of variance - electrical resistance of welded joints.

 1.1 Bare nickel to Inco 1.2 Gold plated nickel to Inco 1.3 Gold plated Kovar to Inco 1.4 Gold plated Dumet to Inco 1.5 Gold plated copper to Inco 1.6 Solder coated copper to Inco 	Effect of Thermal	Significance	95% Confidence	95% Confidence Intervals of Means
 1. 1 Bare nickel to Inco 1. 2 Gold plated nickel to Inco 1. 3 Gold plated Kovar to Inco 1. 4 Gold plated Dumet to Inco 1. 5 Gold plated copper to Inco 1. 6 Solder coated copper to Inco 	Sterilization	Level - F-test	Before Sterilization	After Sterilization
 1. 2 Gold plated nickel to Inco 1. 3 Gold plated Kovar to Inco 1. 4 Gold plated Dumet to Inco 1. 5 Gold plated copper to Inco 1. 6 Solder coated copper to Inco 	None	1	46 - 47 x 10 ⁻⁶ ohms	46 - 47 x 10 ⁻⁶ ohms
 .3 Gold plated Kovar to Inco .4 Gold plated Dumet to Inco .5 Gold plated copper to Inco .6 Solder coated copper to Inco 	Decrease	0.05	32 - 33 x 10 ⁻⁶	31 - 32 x 10 ⁻⁶
 4 Gold plated Dumet to Inco 5 Gold plated copper to Inco 6 Solder coated copper to Inco 	Increase	0.01	64 - 76 × 10 ⁻⁶	79 - 92 × 10 ⁻⁶
 5 Gold plated copper to Inco 6 Solder coated copper to Inco 	None		9.1 - 17.4 x 10 ⁻⁶	9.5 - 17.8 × 10 ⁻⁶
. 6 Solder coated copper to Inco	Increase	0.001	10 - 16 × 10 ⁻⁶	19 - 25 x 10 ⁻⁶
	Increase	0.001	1.9 - 9.4 × 10 ⁻⁶	14.9 - 22.3 × 10 ⁻⁶
2.0 Gold plated Kovar foil to itself	None		404 - 412 x 10 ⁻⁶	406 - 413 x 10 ⁻⁶

_

•

66

مع. م

Bar diagrams of electrical resistances of welded joints before and after sterilization. 95 percent confidence intervals of means are shown shaded. Figure 37.

5.3 STRESS-RUPTURE STRENGTH TEST RESULTS

Pages 20 through 23 in Part II, Attachment 2, of this final report contain the Raw Data Sheets for the Stress-Rupture Strength tests on two types of solder joints (i.e., stranded conductor to Cinch connector cup and stranded conductor to Bendix connector cup). Both types of solder joints were tested for the full sterilization time (108 hours) at room temperature (74°F) and also for the full sterilization time at sterilization temperature $(145^{\circ}C)$ in a nitrogen atmosphere. Each test was repeated 4 times with 9 specimens loaded during each test. For each joint type specimens 111-146 were tested at room temperature and specimens 147-182 were tested at sterilization temperature. Failures were of two types: 1) wire failures; and 2) joint failures. These failure modes are illustrated in Figure 38. Wire failures were predominant at the 80% and 90% of ultimate strength loadings (i.e., 12 lb.-1 oz. and 13 lb. -9 oz.) due to untwisting of the wire strands under load. Joint failures occurred at the lower loadings with the wire pulling right out of the connector cup.

Creep was <u>not</u> observed on any specimen. A small amount of creep could have occurred and would not have been detected, since the test was basically for stress-rupture strength. Creep is usually observed over a period of 1000 hours with axial deformation being read periodically.

WIRE FAILURE

JOINT FAILURE

Figure 38. Failure modes during stress-rupture strength tests.

In view of the nature of the data and since the loads were not left on the wires until <u>all</u> joints failed, a meaningful statistical analysis was not possible. However a graph of the results is presented in Figure 39. Considering first the room temperature results, one notes that the Bendix cup joints up to and including 70% of ultimate strength lasted the full 108 hours. The Cinch cup joints up to and including 50% of ultimate strength lasted the full 108 hours. Again from Figure 39 consider the results of sterilization temperature. None of the Cinch joints--even at only 10% of ultimate strength--lasted through 108 hours. Failures occurred within the first 5 hours.

The Bendix cup joints for 1%, 2%, 3%, 4%, and 5% of ultimate strength lasted the full 108 hours. Unfortunately none of the Cinch cup joints were tested at such low loads. Even at 10% of ultimate strength the Bendix cup joints lasted an average of 27 hours. Figure 39 certainly points out that the Bendix cup joints are stronger than the Cinch cup joints in stress-rupture strength. Figure 39 also shows that the stress-rupture strength of a connector cup solder joint decreases considerably at elevated temperatures.

Taking the Bendix cup joint as an example, the strength dropped from 70% of ultimate strength to only 5% of ultimate strength at $145^{\circ}C$. In other words, the strength at sterilization temperature was only 14% of the strength at room temperature.

By way of explaining the higher stress-rupture strength of the Bendix cup, the Bendix cup had a copper + silver + gold outer electroplate while the Cinch cup had only a copper + gold outer electroplate. The Bendix cup was also deeper (0. 134" as compared to 0. 100") and had a larger inside diameter (0.048" as compared to 0.0445").

5.4 ELECTRICAL TEST DURING VIBRATION TEST RESULTS

5.4.1 Solder Joints

Pages 24 through 27 in Part II, Attachment 2, of this final report contain the Raw Data Sheets for the electrical tests during vibration of the eleven types of solder joints. For each joint type, specimens 91-100

ß 8 ₿ ß ß ß 8 0 8 0 80 2 O BENDIX CONNECTOR CUP BENDIX CONNECTOR CUP CINCH CONNECTOR CUP ł HOURS TO FAILURE 8 8 ROOM TEMPERATURE ę STERILIZATION TEMPERATURE (145°C) ٠ ន្ល ۵ CINCH CONNECTOR CUP 8 8 O ٥ ٥ ٥ õ ٥ 0 ۰ **∆** Se Alline 70 2 8 8 ę ያ 8 80 ŝ 0 LOAD, PERCENT ULTIMATE STRENGTH

Figure 39. Stress-rupture test results at room temperature and at sterilization time and temperature.

<u>,</u> \$

were the control specimens and numbers 101-110 were vibrated after having been submitted to thermal sterilization. For each set of either 4 or 2 joints, the a-c joint resistance is given (at 100 milliamperes current input) together with the percentage change in joint resistance at resonance.

In <u>no</u> instance, with either the control specimens or the heated specimens, was any detectable change in joint resistance observed during vibration. Figure 40 summarizes the results showing the various resonant frequencies of each joint type and the series electrical resistances. The Cinch connector cup joints had an unusually high joint resistance--approximately 225 micro-ohms per joint--as compared to the other joint types. However if we compare this resistance value with Figure 36, which contains the electrical resistance test results, we note that the dc electrical resistance of the Cinch connector cup joint was about 250 micro-ohms. Since this was an extremely sensitive test which was capable of picking up resistance changes as small as 5%, it must be assumed that the solder joints were made so well that they, in fact, did not change electrically under vibration conditions.

5.4.2 Weld Joints

Pages 28 through 31 in Part II, Attachment 2, of this final report contain the Raw Data Sheets for the electrical tests during vibration of the seven types of weld joints. For each joint type, specimens 91-100 and JPL specimens 3-6 were tested without prior treatment, while specimens 101-110 and JPL specimens 7-10 were tested after thermal sterilization.

In <u>no</u> instance, with either the control or the sterilized specimens, was any detectable change in joint resistance observed at resonance during vibration testing. Figure 41 summarizes the test results for weld joints in a similar manner as was done for solder joints in Figure 40. One interesting thing to note is that the resonant frequencies of the weld joints are almost twice that of the solder joints. The joint resistances of the Hughes and JPL weld joints are of a similar magnitude. In two joint types (i.e., 1.3 and 1.5) the Hughes joints had lower

	Type of Joint	Joint Resistance 4 Joints in Series	Resonant Frequency	Percent Cha Resistance Du	Percent Change in Joint Resistance During Vibration
		(0×10-6)	(cps)	Control	Sterilized
1.1.1	Stranded conductor to CINCH connector cup	006	244	0	0
1.1.2	Stranded conductor to BENDIX connector cup	520	170	0	0
1.2	Stranded conductor to solder coated bifurcated terminal	400	140	0	0
1.3.1	Gold plated copp e r to solder coated bifurcated terminal	230	220	0	0
1.3.2	Solder coated copper to sold er coated bifurcated terminal	250	252	0	0
1.3.3	Gold plated Dumet to solder coated bifurcated terminal	700	190	0	0
1.3.4	Gold plated Kovár to solder coated bifurcated terminal	600	. 180	0	0
1.3.5	Gold plated nickel to solder coated bifurcated terminal	270	205	0	0
1.3.6	Bare nickel to solder coated bifurcated terminal	500	175	0	0
1.4	Gold plated copper to gold plated bifurcated terminal	140	172	0	0
1.5	Resistor lead to solder coated bifurcated terminal	190	212	0	0

.

Summation of results for electrical tests during vibration of soldered joints. Figure 40.

.

	Type of Joint	Joint Resistance 4 Joints in Series (Ωx 10 ⁻⁶)	iistance n Series 0- ⁶)	Resonant Frequency	Percent Change in Joint Resistance During Vibration	Percent Change in Joint sistance During Vibration
		Hughes	JPL	(cps)	Control	Sterilized
1.1	Bare nickel to Inco	550	550	420	0	0
1.2	1.2 Gold plated nickel to Inco	500	500	420	0	0
1.3	Gold plated Kovar to Inco	1000	1370	411	0	0
l. 4	1.4 Gold plated Dumet to Inco	480	*155 ?	418	0	0
1.5	1.5 Gold plated copper to Inco	240	270	390	0	0
1.6	1. 6 Solder coated coper to Inco	280	240	478	0	0
2.0	2.0 Gold plated Kovar foil to itself	4600	1	280	0	0

Summation of results for electrical tests during vibration of welded joints. Figure 41.

*Questionable

7

73

resistances and in two joint types (i.e., 1.4 and 1.6) the JPL joints had lower resistances.

5.5 ULTIMATE STRENGTH AFTER VIBRATION TEST RESULTS

5.5.1 Solder Joints

Pages 32 and 33 in Part II, Attachment 2, of this final report contain the Raw Data Sheets for the ultimate strength after vibration test results for the eleven types of solder joints. All strength values are given in pounds. After each strength value, a "W" or "J" has been recorded denoting the failure mode for that particular joint.

Table XV is a statistical analysis of variance of the ultimate strengths of solder joints after vibration. <u>None</u> of the joints showed any significant effect due to thermal sterilization. Figure 42 contains a series of bar diagrams which present the statistical data of Table XV in a more graphical manner. Comparing Figure 42 with Figure 32 (ultimate strengths of solder joints without vibration) one notes that the strengths of the joints are approximately the same regardless of whether they have been vibrated or not. Comparing the 95% confidence intervals of means (shaded areas), it is noted that vibration has obviously caused a marked change in the variance about the mean of the strength data. Remembering the difference in sample sizes, it is possible that this difference in variance could be attributed to the fact that only 25% as many specimens were tested for ultimate strength after vibration as were tested for ultimate strength without being vibrated first.

5.5.2 Weld Joints

Pages 34 and 35 in Part II, Attachment 2, of this final report contain the Raw Data Sheets for the ultimate strength after vibration test results for the seven types of weld joints. After each strength value (in pounds) is noted the mode of failure as described earlier in Figure 33. Table XV. Analysis of variance - ultimate strengths of soldered joints after vibration.

•

		Cignificance	95% Confidence Intervals of Means	cervals of Means
Type of Joint	Effect of Internat Sterilization	Level	Control	Sterilized
1. 1. 1 Stranded conductor to Cinch cup	None	1	14.5 - 14.5 lbs*	14.5 - 14.5 lbs*
 I. 2 Stranded conductor to Bendix cup 	None	1	14.5 - 14.5*	14.5 - 14.5*
 Stranded conductor to Solder coated Bifurcated Terminal 	None	:	13.7 - 14.7	13.9 - 14.9
1.3.1 Gold plated Copper to Solder coated Bifurcated Terminal	None	:	10.6 - 11.0	11.0 - 11.4
 3. 2 Solder coated Copper to Solder coated Bifurcated Terminal 	None		11.0 - 11.9	11.5 - 11.9
 3. 3 Gold plated Dumet to Solder coated Bifurcated Terminal 	None	:	19.2 - 26.2	18.0 - 25.0
1. 3. 4 Gold plated Kovar to Solder coated Bifurcated Terminal	None		18.8 - 23.4	17.7 - 22.3
 3. 5 Gold plated Nickel to Solder coated Bifurcated Terminal 	None		22.0 - 29.7	24.0 - 31.7
1.3.6 Bare Nickel to Solder coated Bifurcated Terminal	None	0	26.4 - 33.4	25.7 - 32.7
1.4 Gold plated Copper to Gold plated Bifurcated Terminal	None	8	10.8 - 11.0	10.3 - 11.7
1.5 1/4 Watt resistor to Solder coated Bifurcated Terminal	None	8	20. 1 - 23. 4	19.4 - 22.7

*Within round-off limits

4

١

•

Bar diagrams of ultimate strengths of soldered joints after vibration. 95 percent confidence intervals of means are shown shaded. percent confidence intervals of means are shown shaded. Table XVI is a statistical analysis of variance of the ultimate strengths of the weld joints after vibration. None of the joints showed any significant effect due to thermal sterilization. Figure 43 contains a series of bar diagrams which present the statistical data of Table XVI in a more graphical manner. Comparing Figure 43 with Figure 35 (ultimate strengths of weld joints not vibrated) one notes that the strength values are quite similar in value. As with the solder joints, the variance about the mean was greater with the weld joints which had been pulled apart after being vibrated. Certain of the weld joint types (i. e., 1. 1, 1. 2, 1. 4, 1. 6, and 2. 0) even exhibited slightly higher average ultimate strengths after being vibrated.

Figure 44 demonstrates the consistencies of the ultimate strengths of the weld joints made by Hughes and JPL using different equipment, different weld schedules, and different operators. The values plotted as bar diagrams are the arithmetic means taken from the Raw Data Sheets (Pages 34 and 35) and using the "before heat" readings in all cases. Even the weld joint with the greatest difference of means (number 1.4) shows only a difference of 16%.

5.6 METALLURGICAL EXAMINATION TEST RESULTS

5.6.1 Solder Joints

Figure 1 through 22 in Part II, Attachment 3, of this final report contain the photomicrographs of the metallographic mounts of the 11 types of solder joints. The solder joint in the photomicrograph at the top of each page was <u>not</u> sterilized, while the solder joint in the photomicrograph at the bottom of each page had been thermally sterilized. A potassium dichromate etchant was used for all solder joints to bring out the metallurgical structure. By visually comparing the top and bottom photomicrographs, the observer can examine the solder joints for any metallurgical effect due to thermal sterilization.

Although the photomicrographs are only at magnifications of 60x and 100x, all mounted solder joint specimens (110 in total) were examined at 500x in both the polished and etched condition. <u>None</u> of the

Table XVI. Analysis of variance - ultimate strengths of welded joints after vibration.

、

		Effect of Thermal	Significance	95% Confidence L	95% Confidence Intervals of Means
	Type of Joint	Sterilization	Level - F-test	Control	Sterilized
	Bare nickel to Inco	None	-	9.8 - 11.0 lbs	10.7 - 11.9 lbs
1.2	1.2 Gold plated nickel to Inco	None		11.8 - 13.0	12.3 - 13.4
1.3	1.3 Gold plated Kovar to Inco	None		14.8 - 16.8	15.0 - 17.0
l. 4	1.4 Gold plated Dumet to Inco	None	1	14.2 - 17.5	15.3 - 18.3
1.5	Gold plated copper to Inco	None	-	9.2-9.7	8.8 - 9.3
1.6	Solder coated copper to Inco	None		7.9 - 8.4	8.0 - 8.4
2.0	2.0 Gold plated Kovar foil to itself	None		3.4 - 4.1	3.2 - 3.8

-- -

- -----

78

q1

₫**¢**

Figure 44. Comparison of the average ultimate strengths of the Hughes and JPL weld joints.

eleven types of solder joints showed any degradation in the metallurgical structure of the solder joint which could be attributed to thermal sterilization.

5.6.2 Weld Joints

Figures 23 through 48 in Part II, Attachment 3, of this final report contain the photomicrographs of the metallographic mounts of the 7 types of weld joints. The weldjoint in the photomicrograph at the top of each page was <u>not</u> sterilized, while the weld joint in the photomicrograph at the bottom of each page had been thermally sterilized. For each of the weld joint types (except joint 2.0 - Kovar foil to itself) a set of photomicrographs showing the before and after sterilization structure has been prepared for the weld joints made by JPL. These joints are identified by the letters JPL 1 or JPL 2 following the weld joint number.

80

r,

All JPL 1 joints were not sterilized, while the JPL 2 joints were thermally sterilized. The etchants used for the weld joints were either: a) nitric-acetic; b) Carapella; or c) Carapella + nitric-acetic. All weld joint photomicrographs are at 150x magnification.

All of the mounted weld joint specimens (82 in total) were examined at 500x in both the polished and etched condition. None of the seven types of weld joints showed any degradation in the metallurgical structure of the weld joint which could be attributed to thermal steriliza-The only weld joint showing any unusual characteristic was the tion. gold plated copper to Inco joint (joint no. 1.5). Figures 39-42 in Part II, Attachment 3, show this particular weld joint. An internal structural change was present within the middle of the Inco ribbon in both the Hughes and JPL joints. Looking back at the original weld schedules (Table V), it is noted that this particular joint required the highest weld energy (33 watt-seconds for the Hughes weld joint) of any of the weld joints. This energy has apparently penetrated deeply within the Inco ribbon. However this defect has not seemed to detract from the ultimate strength of this joint, since the ultimate strength bar diagrams (Figure 35 and Figure 43) appear normal.

5.7 ELECTRON PROBE MICROANALYSIS TEST RESULTS

Pages 1 through 8 in Attachment 4, Part II, of this final report contain the electron probe microanalysis charts for both the wire end and terminal end of solder joint 1.3.1 (gold plated copper wire to solder coated bifurcated terminal). Two charts are included for each of the four specimens examined.

Pages 9 through 16 in Attachment 4, Part II, of this final report contain the electron probe microanalysis charts for both the wire end and terminal end of solder joint 1.4 (gold plated copper wire to gold plated bifurcated terminal). Two charts are included for each of the four specimens examined.

Pages 17 through 24 in Attachment 4, Part II, of this final report contain the electron probe microanalysis charts for both the wire side and ribbon side of weld joint 1.5 (gold plated copper wire to Inco (nickel)

81

аO

ribbon). Two charts are included for each of the four specimens examined.

The major consideration in these analyses was the comparative extent of gold penetration into the copper for the sterilized and the unsterilized specimens. To this end the charts were read in terms of the width of the apparent diffusion zone.

For specimens 1.4.111 through 1.4.114 there were two interfaces of interest. The charts show <u>no</u> diffusion of gold into the copper wire or the terminal. The gold coating on the brass appeared to be absent. It should be noted that the 0% Gold point (i.e. background) is higher for the heavier metals than for copper.

Specimens 1.3.1.111 through 1.3.1.114 showed <u>no</u> gold diffusion into the copper. It should be noted that the gold layer did not appear on these specimens.

Specimen 1.5.111 and 1.5.112 showed <u>no</u> evidence of gold in the copper at the point examined. Specimen 1.5.113 showed no penetration at the center and 6 microns of gold diffusion into the copper near one edge of the weld. Specimen 1.5.114 showed 6 microns of gold diffusion into the copper. In these cases there were very large local variations in composition in the weld metal. It appeared that the gold had been caused to migrate to the edges, away from the point of maximum pressure.

Although the results on the weld specimens were somewhat inconclusive, it is concluded that no gold diffusion into the copper or copper alloy was caused by the sterilization treatment. This is particularly borne out by the lack of any indication of diffusion of gold into copper in the gold to copper interface in the soldered joints, where the interface was very sharp. There is no logical reason to expect more gold diffusion in one specimen than another. It is believed, therefore, that all the observed variations resulted from the joining conditions.

The Materials Testing Laboratories has recommended that if further work on this problem is contemplated, it is suggested that the same specimen be examined before and after sterilization, so that

other variables would be blanked out. The use of such tiny weld specimens would involve treating it in the mount. If it is necessary to avoid this, it would seem that more massive specimens would serve the purpose.

6. CONCLUSIONS

Table XVII presents a summary of the test results on soldered and welded joints. A more detailed discussion of the results of each particular test is included in Sections 5.1 through 5.7 of this final report. Analyses of variance, bar diagrams, and histograms of the test results are included in Tables XI-XVI and Figures 31-44.

In general both the welded and soldered joints show <u>little or no</u> <u>change</u> in ultimate strength or electrical resistance as a result of thermal sterilization. This conclusion applies to ultimate strength before and after vibration and to both static electrical resistance tests and the percentage change in dynamic electrical resistance during vibration. From Table XVII it is noted that two solder joints (1.3.3 gold plated Dumet to solder coated bifurcated terminal and 1.3.4 gold plated Kovar to solder coated bifurcated terminal) showed no significant changes for all tests. In the case of the welded joints, two joints (1.1 bare nickel to Inco and 1.4 gold plated Dumet to Inco) showed no significant changes for all tests.

Where significant shifts occurred (increase or decrease), these shifts, although significant statistically, were actually <u>minor</u> in magnitude. For example, in the case of ultimate strengths, the random errors were such that the use of 80 specimens (40 sterilized and 40 unsterilized) permitted detection of strength shifts of considerably less than 5% with ease. Comparing changes in strength or electrical resistance before and after sterilization, these changes were, on the whole, usually less than 5%. Since such small shifts are not likely to be of importance in actual applications, it is concluded that, for all practical purposes, there was <u>no significant change</u> due to the effects of thermal sterilization.

Neither the metallurgical examination nor the electron probe microanalysis showed any degradation in metallurgical structure or in the extent of gold diffusion which could be attributed to the thermal sterilization process.

85 -

እን

Table XVII. Summary of test results on soldered and welded joints.

Various			Effect of	Effect of Thermal Sterilization	tion		
Types of Joints	Ultimate Strength	Electrical Resistance	Stress-Rupture Strength	Electrical Test During Vibration	Ultimate Strength After Vibration	Metallurgical Examination	Electron Probe Microanalysis
Solder Joints							
1.1.1 Stranded conductor to Cinch connector cup	None	Decrease	Decrease	None	None	None .	1
1.1.2 Stranded conductor to Bendix connector cup	Decrease	Decrease	Decrease	None	None	None	I
1.2 Stranded conductor to solder coated bifurcated terminal	Decrease	Increase	1	None	None	None	I
1.3.1 Gold plated copper to solder coated bifuricated terminal	Increase	None	1	None	None	None	None
1.3.2 Solder coated copper to solder coated bifurcated terminal	Decrease	Increase		None	None	None	I
1.3.3 Gold plated Durnet to solder coated bifurcated terminal	None	None	-	None	None	None	ł
1. 3. 4 Gold plated Kovar to solder coated bifurcated terminal	None	None	-	None	None	None	I
1.3.5 Gold plated nickel to solder coated bifurcated terminal	None	Decrease	-	None	None	None	1
1.3.6 Bare nickel to solder coated bifurcated terminal	None	Decrease	-	None	None	None	1
1.4 Gold plated copper to gold plated bifurcated terminal	Decrease	None	-	None	None	None	None
1.5 Resistor lead to solder coated bifurcated terminal	None	I	•	None	None	None	1
Weld Joints							
1.1 Bare nickel to Inco	None	None	1	None	None	None	1
1.2 Gold plated nickel to Inco	None	Decrease	I	None	None	None	-
1. 3 Gold plated Kovar to Inco	None	Increase	I	None	None	None	1
1.4 Gold plated Dumet to Inco	None	None	I	None	None	None	1
1.5 Gold plated copper to Inco	Decrease	Increase	1	None	None	None	None
1.6 Solder coated copper to Inco	None	Increase	1	None	None	None	1
2.0 Gold plated Kovar foil to itself	Decrease	None	1	None .	None	None	I

86

j4

Only the stress-rupture tests demonstrated that thermal sterilization times and temperatures can seriously affect the strength of soldered joints under load. These tests (refer to Section 5.3) pointed out that steady-state loads of only 10% of the ultimate strength of a connector cup solder joint were enough to cause short-term joint failures under sterilization conditions. However these same joints would withstand loads of 50%-70% of the ultimate strength for the full 108 hours at room temperature conditions. It is therefore recommended that solder joints be under little or no stress during the thermal sterilization treatment.

ACKNOWLEDGMENT

This investigator wishes to express his appreciation to the following people for their valuable assistance in the various phases of this program:

Mr. D. Teter for soldering all of the solder joints.

- Miss E. Manning for welding all of the weld joints and for ultimate strength testing of all weld joints.
- Mr. J. Holberton for ultimate strength testing of all solder joints and for assistance in stress-rupture testing.
- Mr. D. Cranmer for electrical resistance testing of all solder joints and weld joints.
- Mr. R. Kassebaum for vibration testing of all solder joints and all weld joints.
- Mr. N. Ferguson for all metallographic mount preparation and photomicrographs.
- Mr. R. Rydelek for conducting all thermal sterilization and lead bake-out tests.
- Mr. D. Hirsch for the design and construction of the various special test fixtures required for ultimate strength testing and stress-rupture strength testing.
- Mr. C. Bahun for statistical analysis of variance calculations.
- Mr. G. Dreyer for assistance in weld schedule determination.
- Mr. J. Fraser and Mr. R. Bays for the design of the electrical resistance test fixtures and for assistance in conducting the vibration and stress-rupture tests.

FINAL REPORT - PART II Contract No. 951069

DETERMINATION OF THE EFFECTS OF A THERMAL STERILIZATION PROCESS ON THE MECHANICAL AND ELECTRICAL PROPERTIES OF SOLDERED AND WELDED JOINTS

by

F. Z. Keister, Hughes Project Engineer 9 October 1965

 \mathbf{For}

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

Approved:

E. F. Smith, Manager Materials Technology Department

Materials Technology Department AEROSPACE GROUP Hughes Aircraft Company · Culver City, California

CONT ENTS

Introduction to Part II

Attachment 1. Weld Joint Schedule Isoforce Diagrams

Attachment 2. Raw Data Sheets

Attachment 3. Photomicrographs of Metallographic Specimens

Attachment 4. Electron Probe Microanalysis Charts for Soldered and Welded Joints

INTRODUCTION TO PART II

Part II of the final report on the determination of the effects of a thermal sterilization process on the mechanical and electrical properties of soldered and welded joints is intended to supplement Part I. Part II contains four basic sections identified as follows:

Attachment 1 - Weld Joint Schedule Isoforce Diagrams

Attachment 2 - Raw Data Sheets (Pages 1 - 35)

Attachment 3 - Photomicrographs of Solder Joint and Weld Joint Metallographic Specimens (Figures 1 - 48)

Attachment 4 - Electron Probe Microanalysis Charts (Pages 1 - 24) Attachment 1 is intended for use with Section 3.5 "Fabrication of Weld Joj. 's" in Part I.

At.achment 2 is intended for use with Section 5 "Test Results" in Part I.

Attachment 3 is intended for use with Section 5.6 "Metallurgical Examination Test Results" in Part I.

Attachment 4 is intended for use with Section 5.7 "Electron Probe Microanalysis Test Results" in Part I.

G

, v⁰

ATTACHMENT 1

WELD JOINT SCHEDULE ISOFORCE DIAGRAMS

1 || ||

ิจ'

. . . .

.

.

ATTACHMENT 2 RAW DATA SHEETS

- 1. Ultimate Strength Before and After Thermal Sterilization
 - a) Solder Joints: Pages 1 6
 - b) Weld Joints: Pages 7 10
- 2. Electrical Resistance Before and After Thermal Sterilization
 - a) Solder Joints: Pages 11 15
 - b) Weld Joints: Pages 16 19
- 3. Stress Rupture Strength of Connector Cup Solder Joints
 - a) Room Temperature: Pages 20 21
 - b) Sterilization Temperature: Pages 22 23
- 4. Electrical Test During Vibration Before and After Thermal Sterilization
 - a) Solder Joints: Pages 24 27
 - b) Weld Joints: Pages 28 31
- 5. Ultimate Strength After Vibration Before and After Thermal Sterilization
 - a) Solder Joints: Pages 32 33
 - b) Weld Joints: Pages 34 35

Page 1

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				TOCHATH	- Silder I	t.		-0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1521	ULII					()	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	type	OF JOINT	5 <u>Stand</u>	ed conductor	to CINCH	connector (cop (1.1.1)	,
We wite failure Absolucin pands Experiment in the from Training tests, table DB-T J = Jaiph failure Absolucin pands Solution for the Section of the Sectin of the Section of the Section of the Section of the S		BYT				DATE 7	-2-65	
w: wir filter Assultation panels Intermediation of the set of t	ب) تر سا <u>ا</u>	0 0. <u>1040</u>	HOLBERIG		Equ	fment : Hunter !	yoning Tensile Te	ster, Model TJN
	w= wire	failure	A	sublues in pour		30 m 31	WA. 195	
	J = Jain	t failure			•	sens []	Ja. 201 , Calibra	HI AN HIMOLOS
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			THE	STRENGTH	TOUTN	STEENETH	Join	STEENSTH .
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2		NUMBER			(Benal)	No.	Crever Herris
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1.1.1	(1.1.1	sterilisation)	1.1.2	- HEAR	and the second division of the second divisio	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	15.0 W	41		<u> </u>			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		1	Contraction of the local division of the loc					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		1					45	H.Sw
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	'5	1					46	4.5W
A 14.5 w 9 15.0 w 42 (4.5 w) 9 15.0 w 43 14.5 w 9 15.0 w 43 (4.5 w) 10 11.5 w 50 14.5 w 10 15.0 w 42 (4.5 w) 11 15.0 w 51 14.5 w 10 15.0 w 52 (4.5 w) 12 14.5 w 52 14.5 w 12 14.5 w 53 14.5 w 12 14.5 w 54 14.5 w 13 19.5 w 53 14.5 w 15 15.0 w 53 14.5 w 14 15.w 55 14.5 w 15 15.0 w 51 14.5 w 14 14.5 w 56 13.0 w 17 14.5 w 54 14.5 w 14 14.5 w 58 14.5 w 10 12.5 w 57 14.5 w 15 15.w 51 14.5 w 15 14.5 w 14.5 w 14.5 w 14 15.w 54 14.5 w 14.5 w 14.5 w 14.5 w 14.5 w <th< th=""><th>6</th><th></th><th></th><th></th><th></th><th></th><th>41</th><th>14.52</th></th<>	6						41	14.52
A 14.5 w 9 15.0 w 49 14.5 w 9 15.0 w 49 14.5 w 9 15.0 w 49 14.5 w 10 14.5 w 50 14.5 w 10 14.5 w 52 14.5 w 11 15.0 w 51 14.5 w 11 15.0 w 51 14.5 w 12 14.5 w 53 14.5 w 13 15.0 w 51 14.5 w 12 14.5 w 53 14.5 w 15 15.0 w 51 14.5 w 13 14.5 w 53 14.5 w 15 15.0 w 51 14.5 w 14 14.5 w 53 14.5 w 15 14.5 w 15.0 w 51 14.5 w 14 14.5 w 58 14.5 w 17 14.5 w 51 14.5 w 15 15.0 w 17 14.5 w 51 14.5 w 15 14.5 w 58 14.5 w 17 14.5 w 16 14.5 w 58 14.5 w 14.5 w 16 14.5 w </th <th>ļ</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	ļ							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		1	a second s	and the second division of the second divisio	4		\$ 2	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							51	-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			1 5.				52	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			-		·		53	
15 14.5 w 25 14.5 w 15 15.0 w 50 14.5 w 16 14.5 w 56 14.5 w 56 14.5 w 17 14.5 w 58 15.0 w 17 14.5 w 58 14.5 w 18 17.5 w 58 14.5 w 13 14.5 w 58 14.5 w 19 15.0 w 59 14.5 w 13 14.5 w 59 14.5 w 20 14.5 w 59 14.5 w 13 14.5 w 59 14.5 w 20 14.5 w 59 14.5 w 13 14.5 w 14.5 w 21 14.5 w 60 14.5 w 21 14.5 w 14.5 w 21 14.5 w 62 14.5 w 21 14.5 w 14.5 w 22 14.5 w 62 14.5 w 21 14.5 w 14.5 w 22 14.5 w 62 14.5 w 21 14.5 w 14.5 w 23 14.5 w 64 14.5 w 21 14.5 w 14.5 w 24	1				1		54	and the second design of the s
12 14 15 14 14 56 14.5w 14 14.5w 57 15.0w 17 14.5w 57 14.5w 18 14.5w 58 14.5w 17 14.5w 57 14.5w 19 15.0w 59 14.5w 17 14.5w 59 14.5w 19 15.0w 19 14.5w 19 14.5w 59 14.5w 20 14.5w 59 14.5w 19 14.5w 60 14.5w 20 14.5w 60 14.5w 60 14.5w 60 14.5w 21 14.5w 60 14.5w 14 14.5w 60 14.5w 21 14.5w 62 14.5w 21 14.5w 61 14.5w 22 14.5w 62 14.5w 23 14.5w 63 14.5w 23 14.5w 24 15.0w 25 14.5w 23 14.5w 64 14.5w 24 15.5w 65 14.5w <th< th=""><th></th><th></th><th></th><th></th><th>15</th><th>15.0W</th><th>53</th><th>14.5~</th></th<>					15	15.0W	53	14.5~
17 14.5w 57 15.0w 17 14.5w 57 14.5w 18 11.5w 58 14.5w 20 14.5w 59 14.5w 59 14.5w 10 15.0w 59 14.5w 20 14.5w 59 14.5w 20 14.5w 60 14.5w 59 14.5w 60 14.5w 20 14.5w 60 14.5w 59 14.5w 20 19.5w 60 14.5w 20 14.5w 60 14.5w 20 19.5w 60 14.5w 21 14.5w 60 14.5w 21 14.5w 60 14.5w 21 14.5w 60 14.5w 21 14.5w 60 14.5w 22 14.5w 62 14.5w 21 14.5w 62 14.5w 23 14.5w 63 14.5w 23 14.5w 64 14.5w 24 14.5w 65 14.5w 24 14.5w 14.5w 21 14.5w					1	14.5.2	56	14.5~
18 14.5 w 58 14.5 w 12 14.5 w 59 14.5 w 19 15.0 w 59 14.5 w 12 14.5 w 60 14.5 w 20 14.5 w 60 14.5 w 20 14.5 w 60 14.5 w 21 14.5 w 60 14.5 w 21 14.5 w 61 15.0 w 21 14.5 w 62 14.5 w 21 14.5 w 62 14.5 w 22 14.5 w 62 14.5 w 21 14.5 w 63 14.5 w 23 19.5 w 63 15.0 w 23 14.5 w 64 14.5 w 24 14.5 w 64 14.5 w 24 14.5 w 65 14.5 w 24 14.5 w 65 14.5 w 27 14.5 w 65 14.5 w 25 14.5 w 65 14.5 w 27 14.5 w 64 14.5 w 26 14.5 w 68 14.5 w 27 14.5 w 14.5 w 26 14.5 w 68 14.5	1				1		57	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					1 17	19.5 W		
20 19.5 w 60 14.5 w 20 19.5 w 60 14.5 w 21 14.5 w 61 15.0 w 21 14.5 w 62 14.5 w 22 19.5 w 62 14.5 w 22 15.0 w 23 14.5 w 62 14.5 w 21 19.5 w 63 15.0 w 23 19.5 w 64 14.5 w 21 19.5 w 63 15.0 w 23 19.5 w 65 14.5 w 23 19.5 w 65 14.5 w 24 19.5 w 65 14.5 w 24 19.5 w 65 14.5 w 27 19.5 w 65 14.5 w 25 14.5 w 60 15.0 w 27 19.5 w 69 14.5 w 21 14.5 w 68 14.5 w 23 14.5 w 69 14.5 w 21 19.5 w 68 14.5 w 23 19.5 w 19.6 w 14.5 w 22 19.5 w 19 14.5 w 23 19.5 w 19.6 w 19.6 w <	1		0	1,4.50	1.03	19.5 W		
21 $(4.5w)$ $(4.5w)$ $(4.5w)$ 32 $(4.5w)$ $(4.5w)$ $(4.5w)$ $(4.5w)$ 32 $(4.5w)$ $(4.5w)$ $(4.5w)$ $(4.5w)$ 23 $(4.5w)$ $(4.5w)$ $(4.5w)$ $(4.5w)$ $(4.5w)$ 24 $(4.5w)$ $(4.5w)$ $(4.5w)$ $(4.5w)$ $(4.5w)$ $(4.5w)$ 24 $(4.5w)$ $(4.5w)$ $(4.5w)$ $(4.5w)$ $(4.5w)$ $(4.5w)$ 25 $(4.5w)$ $(4.5w)$ $(4.5w)$ $(4.5w)$ $(4.5w)$ $(4.5w)$ 26 $(4.5w)$ (63) $(4.5w)$ 23 $(4.5w)$ 63 $(4.5w)$ 27 $(4.5w)$ (63) $(4.5w)$ 23 $(4.5w)$ 63 $(4.5w)$ 28 $(4.5w)$ (63) $(4.5w)$ 23 $(4.5w)$ 10 $(4.5w)$ 30 $(9.5w)$ 70 $(4.5w)$ 31 $(9.5w)$ 74 $(8.5w)$ 31 $(5.0w)$ 73 $(4.5w)$ 33 $(9.5w)$ 74 $(5.0w)$ <th>1</th> <th></th> <th></th> <th></th> <th>2,3</th> <th></th> <th>60</th> <th></th>	1				2,3		60	
22 $(4,5w)$ (22) $(50w)$ 62 $(4.5w)$ 23 $(4.5w)$ (3) $(50w)$ (23) $(4.5w)$ (24) $(4.5w)$ (25) $(4.5w)$ 26 $(4.5w)$ (25) $(4.5w)$ (27) $(4.5w)$ (27) $(4.5w)$ $(4.5w)$ 27 $(4.5w)$ (27) $(4.5w)$ (27) $(4.5w)$ $(4.5w)$ $(4.5w)$ $(4.5w)$ $(4.5w)$ $(4.5w)$ $(4.5w)$ 28 $(4.5w)$ (29) $(4.5w)$ (23) $(4.5w)$ (23) $(4.5w)$ $(4.5w)$ 30 $(4.5w)$ 710 $(4.5w)$ 311 $(4.5w)$ 312 $(4.5w)$ 312 $(4.5w)$ 313 $(4.5w)$ 31 $(15.0w)$ <					1 21	14.5W		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			62					
24 19.5 w 25 14.5 w 25 14.5 w 25 14.5 w 25 14.5 w 26 20 14.5 w 65 14.5 w 27 14.5 w 67 14.5 w 14.5 w 14.5 w 21 14.5 w 67 14.5 w 27 14.5 w 67 14.5 w 21 14.5 w 67 14.5 w 27 14.5 w 68 14.5 w 22 14.5 w 68 14.5 w 23 14.5 w 69 14.5 w 22 14.5 w 68 14.5 w 23 14.5 w 69 14.5 w 30 19.5 w 70 14.5 w 23 14.5 w 70 14.5 w 31 15.0 w 70 14.5 w 31 19.5 w 71 14.5 w 32 15.0 w 72 14.5 w 33 19.5 w 72 14.5 w 33 15.0 w 73 14.5 w 74 15.0 w 73 14.5 w 34 15.0 w 73 14.5 w 74 15.0 w 75	23	1 19.5 W						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	24	19.5 w	and the second se					
Ze $(4.5w)$ Ge $(3.5w)$ Zi $(4.5w)$ $(4.5w)$ Zi $(4.5w)$ Zi $(4.5w)$ $(4.5w)$ $(4.5w)$ $(4.5w)$ $(4.5w)$ $(4.5w)$ $(4.5w)$ $(4.5w)$ $(4.5w)$	25	1 14.5w			-[
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u> </u>				-			
28 $14.5w$ 69 $14.5w$ 23 $14.5w$ 69 $14.5w$ 30 $14.5w$ 70 $14.5w$ 70 $14.5w$ 70 $14.5w$ 30 $14.5w$ 70 $14.5w$ 70 $14.5w$ 70 $14.5w$ 31 $15.0w$ 71 $14.5w$ 31 $14.5w$ 71 $14.5w$ 32 $15.0w$ 71 $14.5w$ 31 $19.5w$ 72 $14.5w$ 32 $15.0w$ 72 $14.5w$ 31 $19.5w$ 72 $14.5w$ 32 $15.0w$ 73 $14.5w$ 33 $19.5w$ 74 $15.0w$ 34 $14.5w$ 74 $14.5w$ 34 $15.0w$ 75 $14.5w$ 34 $14.5w$ 75 $14.5w$ 35 $14.5w$ $14.5w$ 34 $14.5w$ 75 $14.5w$ 35 $14.5w$ $14.5w$ 35 $15.0w$ 77 $14.5w$ 37 $14.5w$ 78	27				and the second s			
P2 $[4,5w]$ $C3$ $(4,5w)$ $2)$ $(4,5w)$ 70 $(4,5w)$ 30 $[4,5w]$ 70 $[4,5w]$ $3)$ $[4,5w]$ 70 $(4,5w)$ 31 $[5,0w]$ 71 $[4,5w]$ 31 $[4,5w]$ 71 $[4,5w]$ 32 $[5,0w]$ 72 $(4,5w)$ $2,2$ $[9,5w]$ 72 $(4,5w)$ 32 $[5,0w]$ 73 $(4,5w)$ 33 $[4,5w]$ 73 $(4,5w)$ 34 $[4,5w]$ 74 $(5,0w)$ 35 $[4,5w]$ 74 $(5,0w)$ 34 $[4,5w]$ 74 $[4,5w]$ 37 $[4,5w]$ 75 $[4,5w]$ 35 $[5,0w]$ 75 $[4,5w]$ 37 $[4,5w]$ 76 $[4,5w]$ 36 $[4,5w]$ 70 $[4,5w]$ 37 $[4,5w]$ 78 $[4,5w]$ 37 $[4,5w]$ 78 $[4,5w]$ 39 $[5,0w]$ 78 $[4,5w]$ 39 $[5,0w]$ 79 $[4,5w]$ 39 $[5,0w]$ 79 $[4,5w]$ 40 $[4,5w]$ 50 $(4,5w)$ 40 $[4,5w]$ 60 $[4,5w]$ 40 $[4,5w]$ 50 $[4,5w]$ 40 $[4,5w]$ $7-6-65$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	_ 27							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		<u> </u>						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	31							14.50
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1_32							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				1-30				15.00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			the summer of the local division of the loca					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$, -							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								19.50
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								14.5~
40 14,5 w 1 20 14,5 w 40 14,5 w 80 14,5 w 7-2-65 7-2-65							~ 79	
7-6-65			L			14.5.	V .	14.50
	<u>[</u>		the second s					C In CAST S

PROJECT ENGR.

F.KEISTIR

TEST	ULTIMATE	STRENGTH -	Solder	Joints	•
------	----------	------------	--------	--------	---

STEANDED CONDUCTOR TO SOLDER CONTED PURCHTO TERMINAL (1.2) Gold plated copper to solder coated bitfur cated terminal (1.3.1) HOLSERTON DATE 1-6-65 TYPE OF JOINT TESTED BY JONN HOLSERTON

WEWILS FAILURE JEJO, J PALULE

ALL VALUES in Persos

(<u></u>	STEBUSTA	1	STERUGTA	JOINT NO.	STRENKTH	Jour	STRENGH
Joint No	(DEFILE	Joinr	(AETOR)		(before her)	NO.	CAFTEL
1.2	(BEITS)	1.2	NOOT!	1.3.1		1.3.1	HEAT
1	14.5 W	41	150 W		11.0 W	11	11.5 12
2	14.5 5	42	13.55	2	10.5 W	42	10.5 W
3	15.05	43	15.50	3	10.5 W	43	11.5W
4	15.0 W	44	14,5W	4	10.5 W	44	10.50
5	15.0 W	45	14.50		11.0 W	45	11.0 W
6	15.07	46	15.0W	6	10.5 W	<u> 46</u>	11.0w
7	15.0 W	47	15,0 w	1 7	10.5 W_	41	11.02
8	15.0 W	48	12.55	8	10.5 W	<u> </u>	11.0 m
3	14.5 W	49	15.5 %	9	10.5 W	49	18.50
12	15.0 W	50	15,02	10	10.5 w	50	11.00
11	15.0 W	51	14.55		10.5 W	51	11.00
12	13.55	54	14,00	12	10.5 W	52	10.52
13	15.0W	53	15.5 %	13	II.OW	53	11.00
14	15.0W	54	15.05	14	10.5 W	34	11.5W
15	15,0 W	55	12.55	15	10.5 W	65	10.5~
16	15.5~	56	14.5 0	16	11.0 W	50	11.0W
	13.05	57	15.0W	17	10.5 W	57	10.5w
19	15.0W	-8	14,55	18	10.5 7	53	1.00
19	15.00	59	150 W	19	10.5 W		10.5w
2'3	15.0W	5	H.5w	20	10.5 W	63	10.50
21	15.0 J		15,5~	21	10.5 W	61	105 0
22	15,5 W		14.5W	22	10.5 W	62	10.5W
23	15.5~		14.5W		10.5 W		11.0W
24	15,0W	4	15.0w	<u> </u>	<u>9.5 w</u>	65	It.ow
25	15.0 W	65	14.50	25	10.5 W		11.0 W
26	15.5 "		13.05	26	10.5 W	66	10.53
27	15.0 W		15.55	27	10.0 M		10.5 W
23	15.5w	68	14.53	28	10.5 W		11.0 4
29	15.5~	62	15.00	29	10.5 4		10,5 6
30	15.00		15.0W	30	10.5 4		10.5W
31	15.5 m		14.50	31	10,9 W		ILOW
32	15.0 %		14.50	32	10.5 W		11.00
1	15.0 m		14.50	33	10.5 0		10.5W
33	15.04		19.50	- 34	10.5 W		11.00
35	15.0	the second s	14.5W	35	11.0 4	<u> </u>	11.0 2
36	15.5		14,50	36	10.5 0	J 76	10.54
37	15,00		15.53	37	10.5 m	רר ,	lion
38	15,0 %	78	19.57	39	10.5 "		1.00
60	15,04		13.07			<u>v 79</u>	10.5 W
41.			(5,0 W	40	11.0 0	0 83	11.0W
L						7-2-65	

PROJECT ENGR.

F.KEISTER

Page 2

TEST	ULTIM	ATE S	TRENGT	TH - Solde	er Joints		
	OF JOINT		1 1	1 . 11.	a contrad live	incoled to	minal (1.3.2)
TESTE	D BY Jon	AN HOL	BERTON	Dume E TO SO	DATE	7-6-6	
$\omega = v$	WIRE FA		D		105 10	FULLE	5
Je.	Join Fi			VILLE			
France Mal	STRENGTA	JOINT	STEENETH	JOINTNO		Jant No.	GTEGLETH (APTER)
1 1	(85FLOR)	$\mathcal{D}^{\mathcal{G}}$	(AFTER HEAT)	1.3.3	(ber set	N.3.5	HEAT)
1.3.2	(HEAT)	1.3.2	10.0J		25.53	4)	20.55
	11.5 m	41	11.5 w	2	26,0W	42	16.53
2	11.5 W	43	11.5 ~	3	26.00	43	20.55
4	11.0 W	44	11.5 W	4	24.0 W	49	250W
6	11,0 W	45	11.0 %	3	26.50	45	25.0W
6	11.5 12	46	11.0 2	6	22.03	96	25.0W
7	10.05	47	11,5 w	7	18.57	47	21.55
9	11.50	48	11.000	3	25.53	43	25.00
3	11.0 W	49	11.00	<u> </u>	27.0 m	43	25.00
13	11.02	50	10.55	13	18.5 7	50	13
N	11,50	51	11.00	<u> </u>	24.05	51	17.55
12	11.0 ~	52	3.05	12	26.0W	53	22.55
13	II.5w	53	11.5 T	13	26.0.0	54	25.0%
.4	11.50	54	11.5 W	14	26.0W	1	24.03
¥5	11.0 W	55	11.0 W	15	22.07	56	25.5w
16	11.0w	56	10.55	16	22.05	57	25.0.2
	11.0w	57	11.00	1	22.5 J	53	23.55
12	11.0m	59	11.00	19	760W	59	17.53
13	11.50		11.5~		26.0 7	60	24.5W
- 202	11.5W	60	II.OW	20	24,07	[0]	25.03
21	1200	62	11.50	27	26,0 W	62	25.0]
22	12.0 0	63	11.5.0		25.5 W	43	24.50
24	12.5 h		11.00	24	23.5 T		23.55
25	9.53		11.05	25	23.5 7		24.01
26	11.5 m		11.5 ~	b	26.5W	66	75.0
27	11.07	67	マリリ	27	22.5J	67	25.05
28	13.0W	48	11.0 W	- 29	19.07	69	10.53
29	12.07	69	11.0~	2.3	26.0W		25.05
30	10.53	10	11.00	30	26.0W	170	25,52
- 31	12.0W	1 71	11.0 w	31	25.07	-1	124 57
32	12.5 1		11.3 -0		2305	72	24.53 25.54 13.55
83	11.50	13	13 6 10	33	26,5W		19.55
34	12.00	14	11.5 %	39	20.53	- 75	25.5 W
35	12.00	-15	11.5%		21.5 1	the second se	18.55
746	11.07		ILSW ILDW	37	124.53	77	240-
37	1953	$\frac{77}{78}$	15	28	22.0	78	240-
38 39	13.0 h		15.05	143 ⁻¹	19.0 7	7 14	17.55
40				Gr I	25.5		25.55
1 40	16.00			and the second se			

PROJECT ENGR. F.KEISTER

Page 3

11,

17257	ULTIM	ate =	STRENCT	H-Solder	Joints		·	
	07 JONT.	- Geld r	lated Kova	r (0.018") to solder a	osted bifur	roted training (e.	<u>1.4)</u>
		Gold	<u>plated nickel</u>	(+025") to 1	older coaled	DI THTCHILL	erminal (1.3.5)
72570	0 0: <u></u>	no Ha	<u>NGERTON</u>		DATE 7-	(-07		
シー	siee 7	FAILURE			s is bu	105		
	Joint F	ALLURG	H.	L V+/LUE	5 10 100	~ 2 3		
			STREWOTH	Taut	STOC-	Jour	STEEVERA	
1.3.4	(BEECRE	Nor	CAFTER		(BETHE)	1.5.5	(ATTER)	
	wer;		HEAT)	1.3.5	ZAIDIT	41	31.55	
1	19.5 5	41	23.00	2	34,55	92	24.55	
2	<u>230 W</u>	43	22.5W	3	20,55	43	25.33	
i 9	122.0 5	44	122.0J	4	35.05	44	32.55	
1 5	23.0 W	45	23.5 3	5	51.02	45	32.05	
	19.5 J		17.55	6	32.05	96	34.55	
<u> </u>	22.0 1		23.0 0		23.55	<u>่ จา</u>	30.05	
1 9 1 9	25.0 W	48	22.5 W	8	35,07	48	21.55	
	18.0]		23.0W	9	30.55	49	24.1.1	
13	1 21.0 5		22.55	10	2855	50	25.05	
	123.5W		18.55		22.0 5	51	31.5.5	
<u> </u>	2007	52	2305	12	26.0 7	52	26.05	
12	12.5 3	1 53	23 O W	13	27.5 J	53	39.55	
	21.07	i A	17,55	.4	31.5 5	59	29.55	
15	122.5 W	55	1,255	15	29.02	55	28.05	
1 16	23.0 W	56	122.5 W	14	2905	56	26.03	
17	118.07		122.5 W	<u> </u>	32.55	57	27.0 5	
<u> </u>	23.05	1 58	22.5 W	8	32.5 J	58	29.07	
1-	122.5W	59	22.5~	13	22.55	59	31.03	l
27	19.53	60	18.05	20	30.07	63	23.51	
	23.5 W	61	23,0 W	21	30.05	61	2905	
22	122.5 7	1 62	22.5W	2.2	70.62	62	36.05	
23	23.0]		10.02		29.51		31.03	
2.47	1 23.54		22.0. J		28.57		35.05	ł
25	20.07		N.5 J		29.05		30.55	1
26	123.5W		22.5 W	26			22.55	1
27	121,05	1 67	18'02		23.05	68	26.55	
23	123.0 h		22.5W			- 69	34.03	
2 3	21.57		ZZISW		23.5 -		35.55	1 -
30	21.03		22.50		28.0		31.55	1
31	18.5 3		20.55		21.0 3		36.55	1
32	20,0 3	72	22.50		21,0 7	000	22.03	1
33	18.5 5	13	18,57	33	25.03		126.03]
3.9	- 23.5 3	79	123.00	31	37.0 W		33.03]
- 25	23.02		118.03	30	29.0 7	76	23,03]
36	<u></u> 23.0 m	76	122,50	37	23.0 7	1 00	27.55]
<u>~ 7,1</u> 	22.0?		18,53		21.53	78	29.55]
33	20,52		155,22		21,0 7	19	25.05	
	1 17.0		22.54		36.55	80	20.03	J
40		<u>×1 00</u>						-

PROJECT ENGR. F.KEISTER

Page 4

Page 5

TYPE	OF JOINT	Bare	nickel to solde	r costed bi	furcated ter	minal (1.3 d termina	3.6] (1.4)
TESTE	D BY JOH	N HOLE	ERIQU_		DATE	1-7-65	
	LIRE FAIL				-		
÷	JOINT TRIL		ALLI	JALUES	10 80	くちじしい	
						JOINT NO	STREVETH
oint Nu	STEENETH	John No	CATTOR HEAT	A Strategy and the	BETWE	_	(AFTER)
3.6	(BEROLE)	1.3.6	STELIZATION	<u>\</u> et	446-27	1.4	HEAT
1	3555	41	30.03	<u>\</u>	12.2 W	42	11.5W
2	23.03	42	40.05		12.0 W	43	11.3 ~
3	26.0 3	43	27.5.5	4	13.00	49	
4	29.5]		31,55	-5	12.5~	45	11.5 W
_5	39.0 5	45 46	28.05	6	11.5 W	46	トリン
وا	23.55	47	25.55		12.5~	41	11.5W
	2305	48	27.00	6.	12.5W	48	122
8	23.55	49	23.05		112.5w	199	11.5 -
<u>، ا</u>	39,0 5	50	31.05	8	12.5W	50	<u> </u>
	30.55	51	155		13.5W	51	11.5 W
	30.07	52	3011	.2	12.0 W	52	<u></u>
12	25.05	53	24.55	12,	11.5w	53	11.2.
14	22.05	=A	22.03		11.5W	54	11
15	30.55	ন্দ্য	120.51	15	13.0W	55	
16	22.05	5%	22:5	1	12.0W	56	
<u>\</u> 7	22.55	57	23 - 5	<u> </u>	12.0 w	58	N. E.
18	29,55		3655	1.2	11.5 w	59	11 24
19	129.05	52	24,05		11.0 w	60	11, 2-5
20	36.55	8	27.57		12.0 W	161	11.01.
	29,03	61	137,0 5		10.5 W	62	$\{W_{i}\}_{i=1}^{n}$
22	20,07	62	127.55	2.3	II.OW	63	W C.III
24	23.5 1	1	25.55	<u> </u>	11.50	64	11.05
25	25,03		27.05		11.50	165	11.00
20	39.03		31.55	1-26	11.50	66	NUM
27	36.57		23.03	27	1 11,0W	67	10.5%
23	26.0		24.55		11.5 2	- 68	11,2%
23	30,5:		24.55	5.2	<u> 11,0w</u>	69	11. 2
2,0	28.5	5 70	24, 7, 2	<u> </u>	1150	170	11. 2.
31	76.03	1 71	109.55		11,00		11.2
32	33.07	72	24.0 2		11.00		I No
33	30.03	73	127.55		11.0W	79	1 11.01
	22.5	74	32.07	•	11.54		1 11.21
35	27,03	75	122.55	1 1.60	ILOW		10.5
- 36	32.53	<u>76</u> TI 77	124.0 2	1 37	11.00		
<u>37</u> 38	37,05	178	134.5 3		11.00	√8	11.20
39	27.05	29	23.55	1	11.5%	179	11.5

PROJECT ENGR. EXCISTER

2.

			CONTRAC				Page 6
TEST	ULTIM	ATE S	STRENG	TH - Solder	Joint		
						BIFUELATED	TERMUN
			ELTON				
wev	NIER FRILL	LE					
7::	JOIN PAIL	_v2C	ALL VAL	Luts in P	towns		
1015 No	- return	JOINT NO.	STRENGTH				
5	(DET.E.) HE.C.)	1.5	(after heat				
in a sublimited with the sublimited withet with the sublimited with the sublimited with the sublimited wit		41	sterilization)				
2	14.0 J	4					
3	22.5 5	43	19.0 I 19.5 W				
A		44	18:55				
5	20,0 W 21.5 J	45	26.0W				
6	19.5 W	46	20.55				
1	20,5 5	47	19.0W				
8	22:53	48	22:= ~				
9	23.0 5	49	20,5 W				
5	20.5 W	50	19.5.2				
V	22.05	51	22.0W				
12	21,05	52	19.0.1				
13	29.05	53	NO J				
14	22.0W	54	18.22				
15	82.5 3	55	11/10/10/10/10/10/10/10/10/10/10/10/10/1				
16	22.05	54	19.0 W				
17	20,5 75	57	17.03				
19	89.0 5	53	19.55				
19	10.5 × 10 × 10 × 10 × 10 × 10 × 10 × 10 × 1	_ 59	18.55				
20	21.0 J	60	160 -				
21	21.3 J	6)	70.5 W 18.05				
22	19.5 W 22.55	12	18,0.2				
23	20.27	- 63	19.55				
24	22.05						
25	21.5 7		21.05				ļ
26	19,0 W		19.0 W	-			
27	22.03	67	20.0 W				
23	E0.22	68	21.5 J				
	18,05	69	2905				
<u>30</u>	21.07	0	13.7 J				
31	7205	71	18.0 J			<u> </u>	
32	21.0 7	72	19.014				<u> </u>
33	22.0 3	73	19.55		<u></u>		
34	22.57	71	16.57				
35	19.55		21.50				¦
	20.5 X	77	ZINGW				
37 38	20.50		22.00				∤
39	22.5W		17.55				<u> </u>
90 -	22.0 1		21.5 W				L

...

-

analysis in the strength of the

Į

PROJECT ENGR. F.KEISTER

TEST	ULTIMAT		CONTRA		·		Pese
	OF JOIN				and Gold pl	-+-1 · · ·	· • /· -
TEST	ED BY <u></u>	. Na					To Lnco (12
		· Asnning			DATE	8-2-65	
w2= w5=	wire broke a Weld separa	ldjæcent hv tim	veld,				
			8-24-65				N all la
OINT NO.	(Luchre hest)	JOINT NO.	STRENGTH	JOINT NO.	STRENGTH	JOINT NO.	8-24-65 STRENGTH
1.1 A	in pounds	1.1 A	(stler heat)	1.2 A	(before hest)		(rfler hest)
1	10.0 H2	<u> </u>		1	13.0 W2	<u> </u>	12,0 W2
2	11.0 W2	42 R		2	12.0 W21	42 P	12.0 W2 13.0 W2
4	- KA	<u>43 ×</u>	9.0 W2		13.0 W2	43 L	12,5 W2
5	8.5 W2	<u> </u>	8.0 W2	4	12.5 W2	- 44 R	13.5 W3
6	10.0 W2		9.0 N2 9.5 W2	6	12.0 W2	- 75 1 41 m	12.5 42
7	8.5 W2	47 2	9.0 W2	7	12.0 W2	49 1	13.0 W2 11.5 W2
e a	8.5 W2	48 R	8.0 WE	8	12.5 WZ	28 R	13.0 W2
9 10	9.5 W2 9.0 W2	<u> </u>	19.5 W3		12.5 WZL	49 1	12.2 WS
	<u>9.0 W2</u> 11.0 W2	<u> </u>	8.5 Na		12.5 NR	-50 X	13.5 WA
12	9.5 W2	<u>51 2</u> 52 R	10.5 W2		135 W2	51 !	13.0 W2
13	11.1 W2	53 X	8.0 Wa	13	1.5 WS -	52 R 53 L	12,5 W2 12,5 W2
14	20 W2	54 R	9.5 W2		12.5 W2	<u>54</u> K	12.5 N2 13.5 W2
15	8.5 W2	<u>55 L</u>	10.5 W2	_15	12.5 W2	55 L	13.0 W2
16 1	9.0 W2	<u>56 R</u>	9.6 H2	16	13.0 WS-	56 R	12.5 W2
18	10.0 WZ	<u>57 /</u> S8 R	8.5 W2	17 18	12.5 W2	571	12,5 W2
19	11.5 W2	59 X	9.0 W2	19	12.5 N2 12.0 W2	58 X 59 1	12,5 W2
20	12.5 W2	40 R	9.0 W2	20	12.0 W2	60 R	14.0 W2 12.5 N2
21	25 W2	61 2	10.5 No	21	11.5 W2		12.5 W2
22	10.5 W2 9.0 W2	- 62 R	9.5 W2-	22	13.0 W2	12 R	12.5 W2
24	2.5 W2	<u>67</u>	7.5 WS-	24	12.5 WZ 12,5 WZ	63 L	12.0 W2
25	8.0 W2	65 X	7.5 W2- 10.5 W2-	25	12,5 W2 12,0 W2	65 1	12.0 W2
26	9.0 W2	66 R	9.0 W2	26	11.5 W2	66 X!	12.5 W2 12.2 W2
27	8.5 W2	67 L	9.5 W2	22	13.0 W2	67 21	12.0 W2
28.	8.0 W2	68 R	9.0 W2-	28	13.0 W2	68 R	11.5 W2
29		<u>69 X</u>	11.0 W2 -	27	13.0 W2	19 L	11.5 W2
31	7.0 W2 8.5 W2	<u>- 20 R</u>	11.0 W24-	30	13.5 W2	<u> 10 R</u>	12.0 W2
32	11.0 W2	<u>ן ד</u> א בר	10.5 W2-	32	12.5 W2	-12 RI	12.0 142 12.0 W2
33	8.0 W2	13 21	11.0 W2	33	12.5 W2	73 L	12.0 W2 12.5 W2
34 1	10.0 W2	74 R !	11.0 W2-	54	12.5 W2	24	12,5 W2
35	<u>7,0 112</u>	<u> </u>	9.5 W2-	35	13.0 W2	25 21	11.0 W2
37	7.5 W2 2.0 W2	<u>76 R</u>	11.0 W2-	32	13.0 W2	16 R	10.5 W2
38 1	8.5 W2	<u> א רר </u> דו או	10.5 W2- 10.5 W2-	38	12.0 WS	<u> </u>	1.0 WS
31	8.11/2	74 21	16.0 112-	39	12.0 NR	[9 1]	3.0 W2

.

· • . • •

1

•

· · ·•¶

1

PROJECT ENGR. F.KEISTER

R2 :	ED BY E.				DATE _	-2-65			
WS	Kibban Lucks		nt to weld.						
	= weld separ	stion						_	
			7-9-1-		1.5705-16711			8-24	
INT NO.	STRENGTH (before heat)	JOINT	NO, STRENGT	JOINT NO.	STRENGTH (before lest)	JOINT	<i>NO.</i>	STRENG AFTER H	
1.3 A	in counds	1.3A	IB5	A	in pounds	14	<u>A</u>	LBS	
1	1/65 T2	41.		22 1	12.0 RZ	41.		12.0	Ra
2	1/6.5 R3	42		2 2	12.6 R2	He	<u></u>	12.5	<u>R2</u>
3	17.0 R2	43		3	11.5 R2	43		12.5	<u>_R2</u>
<u> </u>	16.5 Ra	44 45			13.0 R2	<u>44</u> 45	-5	12.0	<u>R2</u> R2
<u> </u>	120 R2	46	7 17.5	RZ 6	11.5 Rg	42	7	12.0	72
6	12.5 R?	<u>76</u> 47		R2 7	120 R2	47	- 71	11 5	 72
<u> </u>	12.5 R2	7/			120 Ag	48	<u></u>	11.5	71
9	160 RO	419		R2 .7	130 R2	49	2	11.5	71
19	16 C R2	50		R2 10	11.5 73	50	R	11.5	R2
11	125 R.2	51		Ta //	12.0 R2	51	2	11.5	72
12	17.0 RZ	52	R 17.5	12 12	11.5 R2	52	3	11.5	R 2
13	16.0 R2	53	1 17.0 7	2 13	12.5 RE	53	4	13.0	R2
14	12.0 R2	54		2 14	12,0 K.	54	R	12.5	<u>R2</u>
15	17.0 R2	55	1 18.5 1	15	12.0 R3	55	1	11.5	R2
16	12.5 R2	56		R2 16	12.5 R2	56	R	12.0	RI
10	16,5 R2	57		53 12	11.5 13	52	<u>_</u>	12.0	<u>R2</u>
<u></u>	16.5 R2	58		12 18	12.5 Rg	58	<u></u>	12.0	<u>R2</u>
	17.0 R2	59	the second s	P2 /9	12.5 R2	59		1/1.5	<u></u>
20	1/5,5 Ra	60		$\frac{12}{12}$	14.0 R2	60	$-\frac{R}{2}$	12.5	<u>R2</u>
2/	16.0 R2		1.1.1		12.0 R2	62	R	12.0	22
23	165 R2 17.0 R2	63		NS 77 R2 23	1/3082	63	-2	12.0	72
24	17.0 R2	64.	R 1/4.5	Ra 24	12.5 13	H	- R		R2
25	17.0 R2	65		R2 25	12.0 R2	1 65	1	11.2	75
24	16.5 32			2 26	12.5 R2	66	R	11.0	R9
27	16.5 R2			P2 27	12.0 R2	67	1	12.5	7:-
28	12.0 R2	68		82 28-	13.5 Ra	1.65	R	12.5	<u>R2</u>
24	1/2.0 R2		1 16.0 -	R2 29	13.072	6-9	_2	12.5	<u>R</u> 2
36	12.5 X:	21	R 15.5	R2 30	12.0 R2	11/	R	12.0	Rg
21	12.5 Ro	11.		P2 31.	1/2.0 R2			12.0	<u>P</u> 2
	12,5 K			82 12	130 R3		<u> </u>	13.5	72
11	165 R2	13		<u>82</u>	12,5 Ra		<u> </u>	12.0	<u>R2</u>
21	177, R2			R2	- 12,0 Ra		<u> </u>		<u>R2</u>
<u> </u>	16.5 Ra		1/7.0	23 35	12.5 R			10.5	<u><u><u></u><u></u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u></u>
76	10,5 R.			22 + 36			<u> </u>	115	_ <u>R</u>
<u>- 11</u>	145 Ro			R2 37 R2 38	120 R3		<u> </u>	11.2	<u></u>
	16,5 R	2 29	R 16.5	R2 38 R2 39	13.5 R2	a , and the second second second	K -	12.0	<u> </u>
40	16,5 R		R 18.0	WS 40	13.5 72		<u> </u>	1 1 4 4	

.

PROJECT ENGR. F.KEISTER

JPL CONTRACT 951069 Bye 9 ULTIMATE STRENGTH - WELD JOINTS TEST Gold plated copper to Inco (1.5A) and Solder coated copper to Inco (1.6A) TYPE OF JOINT DATE _______ TESTED BY E. Manning W2 = wire broke adjacent to weld. ws = weld separation 8- 1- i 8-24-65 C. 2. 4. - 11 STRENGTH 1. . . I.117 STRENGTH JOINT NO. 51RL 467 11 JOINT NO. JOINT NO. (AFTER HEAT) (lefore hest) (before host) AFTER HEAT) 1 135 1.5 in eeunda. - 4 1.6 A \sim 1.5 A i. Remain 7 W2. Ď 10.0 W2 10.0 W2 41 1.5 WS ٨ W 1 Ł 2025 7. -12 ζ R WS WZ 110 2 10.0 R in 2 L 7.0 R 8.0 Ô . WS .,., WS 9.5 3 З 10.0 W2 2 142 WS WS 4 .14 9.5 4 R WX WS

10.0 W2 10.0 W2 20 7,5 1.5 25 5 WS 7 115 W2 5 1 7.5 7.5 15 R WS 6 46 10.0 W2 T 7.1 42 in 7.5 WS 1.7.0 9.5 17 1 1 W2 10.0 W2 2 8 25 10.0 W2 2.5 8.0 18 9.5 WS R ~ 5 R Wa 8 22.2 110 0 NS L 7.0 9 L 1:2 R: 8.0 7.5 WS :) 19 9.5 5 / W2 0 W2 T 10 117.0 75 =1 9. // WS 5 10<u>.0</u> 122 51 1 W2 R.Z.O 52 7.0 8.0 8.0 WS 0.0 5 ?! R 10.0 32 12 W2 12 J. 52 1.75 7 13 13 WS 1 1 Wa 13 1.11 R. 20 WS 9.5 14 5.1 7 W2 14 0 W2 0 20 WS . . 7.5 2 0 5 C 7. *U* 15 2 15 W2 W3 RI 2 16 ., 9,5 7.5 7.5 WS 5 1 142 R 16 10.0 W2 511 7.5 7.5 λ 17 WS 4 12 1 112 17 9.5 W2 18 Į\$ WS R18.0 9.1 7.5 ÷ } R 122 10.5 W2 170 57 2.0 9, 5 Wa 19 WS 19 0.0 W2 5.7 1 R12.5 2 8.0 2.0 95 22 <u>12</u> WS R W2 10.0 W2 20 8 :/ 21 75 WS: 5 12 1 10.0 ;/ 1 21 W2 22 R: 2.5 ケッ 9.5 2.5 8.0 WS کر مرکز کر کر 9.5 W2 9.5 Wa 123 22 R I 7.5 R 7.5 -;-13 WS 5 Wa 9. 1 12 23 25 4 24 WS \mathcal{R}^{1} 9 75 24 5W2 14 R ty: 2.7.5 65 35 2.0 7.0 WS 1.5 9.5 W2 2 12 25 R'20 ÷.; 26 25 WS 7.5 10.0 W2 R Via 26 کی 1 7.0 R 8.0

9.5

25

9.0

2.5

9.0

<u>7.5</u>

22

1.5

17.5

17.0

IL.

9.6

19.0

9.5

WR

12

14.2

たえ

W2

W2

12

11.7

42

W2

W1

W2

WZ

W2

7

R

2

R

R

Ζ

P

R

L

R1

10.0 W2

5W2

9.5 W2

0.0 W2

10.0 WQ

10.5 W2

10.5 W2

9.5W2 9.5W2 9.5W2

W2

W2

W2

0 W2

10.0

10.0

95

10.

D.

1.17

12 .

1.1

. . .

1 .- :

1.1

17 2

20

11/1

13

1.7

.

9

11.

21

28

29

30

31

32

33

34

35

36

32

39

40

PROJECT ENGR. EKEISTER

25

25

25

-0

75

25

2,5 7,5

5

7.5 WS

25 WS

8.0

7

WS

W.S

WS

WS

WS

WS.

WS.

- WS

WS

WS

- WS

27

28

29

30

21

32

<u>33</u> 34

35

36

31

22

39

40

; 0

~

1.1

71

2:

5.1

..

``1

WS

217.5

R180

2,5

R 8,5

L

7

L

20

7,5

7.0

<u>7. I</u>

25

R 7.0

R

Z

4

7.5

7.5

• .	•	JPL	CONTRACT 951069	Psge 10
	TEST	ULTIMATI	E STRENOTH - weld Joint	
	TYPE	OF JOINT G	It plated Kovar fuil to itself.	
	TESTE	D GY Leff	DATE	- 3-65
		Ribbun broke adjacer		
	w2 =	Wive broke adjacer	it to weld 8-25-65	
Į.	DINT NO.	STRENGTH (before host)	AFTER HEAT	
	<u>2</u> A	in pounds	IRS	
الم مرة	2	3.0 R2	-11 L 2.1 R2 -12 R 3.8 R2	
18	3	3,5 R2 3,7 R2	$\frac{-12}{12} R \frac{3.8}{2.5} R^2$	
7.	<u> </u>	3.7 R2	R # Q R2	
t t	5	2.7 R2	15 L 2.5 R2	
. 1	6	3.9 R2	X: 7 3.5 R2	
	7	2.5 R2	L 2,5 W2	
	8	39 R2	R 3.5 R2	
	9	2.7 R2	12 1 2.8 R2	
	- 12	42 R2	1 7 4.0 R2	
5		30 R2	1 210.5 R2	
	12	4.5 Ra	R 3.7 R2	
No.	<u> 3</u>	3.5 R2	1 2.3 R2	
	14	40 R2	55 L 2.7 R2	
U ŀ	<u>; 15</u> //	3.5 R2 4.4 R2	7. R 4.1 R2	
		3.1 R2	50 1 3.2 W2	
	18	4.4 R2	R 3.9 R2	
	19	3.0 R2	59 1 2.8 W2	
	20	4.3 R2	12 R 4.0 R2 1 L 3.2 R3	
<u>√</u>	21	3.0 R2	1 1 3.2 Ra	
1 V	_ 22	4.0 R2	12 R #0 R2	
	23	<u> </u>	17 1 8.7 RJ	
The we	24	4.C R2		
1. Y	26	3.0 R2 4.4 R2	75 1 2.8 R2 R 3.9 R2	
<u> </u>	27	3.0 R2	$\begin{array}{c} \begin{array}{c} & & \\ & & \\ \end{array}$	
		1.5 R2	R 4,2 R2	
İ	29	3.0 R2	17 129 72	
-	30	4.0 R2	2) P 40 R2	
	31	3.0 R-2	1 2,4 R2	
1 [°]	32	4.2 R2	25 2 3.6 R2	
	<u>33</u> 34	3.0 R2	25 4 3.0 W2	
-	- 34	4.0 RZ	R 3.9 R2	
ļ		33 R	75 2 3.4 R2	
	36	1 3.9 R2	19 2 3.0 W2	
	37	3.0 R2 4.0 R2	73 R 3 9 R 2	
		7.0 K2 3.7 R2	<u> </u>	
A free free	40 Ma,	1 2.5 R2	7. R 3.7 R2	
		<u></u>		

.

~ .

PROJECT ENGR.

F.KEISTER

			stance - Sold			· .
TYPE	OF JOIN	T Stranded	Conductor to C	INCH cup & strande	+ conductor	BENDIX CUP
TESTE	DBYDC	renmer	(ma)	DATE	7-15-45	(1.1.2)
NOTE	: 200 gram	n weight used	for contact pres	iure, where applies	ble	
	Before	After	,		Before	After
	heating	heating			heating	heating
Joint No	Resistance	Resistance	Strength	Joint No	Resistance	Resistance .
1.1.1	ohm x 10	ohm x 10	Ibs	1.1.2	ohm x 10	-3
41	.245	.225		41	ohm XTO	ohm × 10
42	245	.23		42	56	<u>53</u>
43	255	.24		43	50	.49
44	.25	245		44	.57	.53
45	.26	25		45	.59	.54
46	.255 .	.24		46	58.	51
47	.25			47	58	57
4.8	.25	245		48	.57	51
49	.25	.24		49	.57	.54
50	.255 .	245		50	.54.	56
51	.25	235		51	.56	.53
52	.22	215		52	56	.5/
53	25			53	.59	.52
54	.25	<u>. 24</u> _25		54	61	.53
55	23	_215	· .	55	.61	56
56	225	225		56	61	.52
57	25	225		57	.59	_50
58	.255	_235		58	60	.54
59	245	.22		59	.53	.50
. 60	.25	.23		. 60	.52	50
[a]	_255	.23		61	.53	.53
62	255	.235		62	59	54
	.26	.24		63	59	54
64	.25	.25		64	.57	-54 -50
65	.26	.24		65	.61	50
66	.26	23		66	58	.51
67	.24			67	.57	
68	.275	21		68	.60	.52
69	.25	.235		69	:60	
70	.25	-23		70	: 58	54
7/	.27	_25		71	.57	<u> </u>
72	.27	.25		72	.58	.57 .49 .52
73	.25	.23		73	50	
74	265	.24		74	.55	50
75	265			75	52	<u> </u>
76	245	.24		76	50	<u>.52</u> .
77	.255	.24		77	57	
_78	.24	22.		78	.52	
_79	.26	.24		79	.53 .52. .51	.52 .52 · .57
80-	255			80 -	.52	

Page 11

7

PROJECT ENGR, F.

. F.KEISTER

TEST	Electric	al Resis	tance - S	older Jo	ints_	Coll of	Pose It
						sola pis	costed termin
1172		<u>2126430</u>	(1.2)	Soucer_s	osted terminal		(1.3.1)
	D BY <u>p.C</u>				DATE		
			· .	× .			
	Before	After				Before	After
	heating	heating				heating	heating
and No	Resistance		Strength		Joint NO	Resistance	Resistance
	-3	-3			1.3.1	-3 ohm x 10	ohm X 10
1.2	ohmx 10		165			.23	20
41	.16				41	.24	21
42	16	.175			43	.215	.22
_43	the second data was a	.175			44	24	.235
<u> </u>	.185	.192			45	245	235
45		• 18			46	215	.23 -
46	_185	.19			47	21	.22
47	175	18			48	.225	225
48	.165	185			49	.20	.19
49	175.	- 17			50	.22.	.20
50		.165			51	.225	205
51	165	185			52	.22.	.20
52	165	185			53	.22	.19
53	16	.113	1		54	.225	
54	.17	.17			55	.225	.23
55		.19	{		- 56	23	.24
<u>-56</u>	16	195			57	.22	20
<u> </u>	162	175			58	21	. 23
<u>58</u> 59	.165	165			59	.225	245
	16	.175			. 60	.24.	24
60	195	195			61	225	24
62	150	145			63	.22.	22
63	18	175				.23	-235
64	185	16			64	.215	25
65	165	18			65	.22	_ 22_
66	18	185		1	66	.23	21
67		.18		· .	67	22	.21
68	.16	18			68	215	
69	.1/2	.16			69	, 22,	.225
70	: 145	175			70	. 215	-235
71	195	195			7/	_235	235
72	18	18			72	215	.225
73	,185	175			73	2.2.	_23
74	.17	195		_	74	23	24
75	175	175		_	75	21	215
76	.16	16.			76	.22.	22
77	. 18	.17			77	.23	-22 -22
78	16	16	·		78	215	22
79	.15	19			79	.215	2
80 -	.16	18		1	80 -	.22.	.22

Hewlet Packard Hodel 435A DC Hiero WH-Ammeter Bye 13 Serial 399-01040 calib. 6-18-05

Daystram Holel 931 D.C. Hilliammeter No. 28020 (2010 - 10-11

7-14-65

.22

7-14-65

.80

......

<u>7 7</u>

TENGR. F.KEISTER

TEST	Electrical	Resistance	- Solder	Joints
TYPE	OF JOINT	An plated Kova	r to solder	coated terminal (1.3.4)
TESTE	BY D.C.r	Au plated nicke	l to solder	coated terminal (1.3.4) coated terminal (1.3.5) DATE

	Before heating	After heating			Before heating	After heating
Joint No		Resistance	Strength	Joint NO	Resistance	Resistance
1.3.4	ohm x 10	-3 ohm X 10	Ibs	120	-3	
41	1.3		105	1.35	ohm X10	<u>ohm X 10</u>
42	3.2.	2.2.			.43	. 40
43	2.55	3.0		42	.4]	. 37
44	4.1	3.9		44	-42	36
45	4.1	3.5		45	44	
46	2.9 .	3.0			.48.	
				46		43
47	3.2	3.8		47	-42	39
49		3.2.			.45	-40
	3.0	3.2		49	.43	40
50	3.0.	2.8		50	<u>43</u> .	38
_ 51	2.8	2.8		51	.39	34
52	3.6	3.9		52		36
53	3.0	2.9		53	.46	.46
54	2.8	2.8		54	42	34
55	3.2	2.8		55		. 39
56	2.3	2.8 3.2 2.9				. 39
57	2.85	2.9		57	40	38
58	4.0	2.9	1	58	47	.42
59	2.6	2.5		59	46	.44
60	4.0	3.4		. 60	43 -	.40
[e]	3.0	2.8		[0]	44	38
62	2.5	1.9		62	44.	.38
63	3.6	40		63	.48	37
64	4.1	40		64	51	.37
65	3.3	3.8		65	.45	36
66	3.4	3.3		66	.45	39
		2.2		67	44	38
67	2.4	3.3		68	.42	.37
69	3.3.	2.75	1	69	.42	.39
70	3./	3.7				
71	3.1			<u> </u>	: 42	38
72	2.75	2.7		72	43	39
73		2 /				4/
	2.50	3.6		73	-41.	40
74	3.0	2.7		74	42	.37
75	2.4	2.9		75	42	.40
76	3.7	202		76	47	.37
77	2.5	2.2		77	50	46
<u>78</u> 79	3,6	3.8.		78	48	.42 .
	3.2	4.3		79	40	
80 .	2.6	2.7		80 -		

7-14

PROJECT CHES

F.KEISTER

Page 14

 γ

TEST <u>Electrical</u>	Resistance - Sold	er Joints		•
TYPE OF JOINT TESTED BY <u>D. Cra</u>	Bare Ni to solder coal Gold plated copper to go	<u>led terminal</u> (1.3.6 old plated termini DATE) 21 (1.4)	
TESTED DI <u>Di Cra</u>		· · · · ·		
	•		Rofore.	Of.

		Before	After				Before	After
	· .	heating	heating				heating	heating
1	Joint No	Resistance	Resistance	Strength		Joint NO	Resistance	Resistance -3
	1.3,6	-3	-3 ohm × 10	Ibs		1.4	ohmx 13	ohm × 10
		ohm x 10 50	46		~	41	.225	73
	41	46	43			42	.195	215
	43	.55	.42			43	215	.22
	44	.46	42			44	195	.225
•	45	46	43			45	.21	.20
	46	.44	43			46	.22 '	215 22 22 22 22 22 20 26
	47	.46	.45			47	.20	-235
	<u> </u>	.46	.47			48	.20 .22. .20 ·	
	<u>49</u>	46	.44			49	.22.	20
	50	.48.	44			50	.20 .	185
	51	.62,	58			51	.25	.25
	52	.48	42			52	25 22 22 22 22 215 215 235	.27
	53	.48	.4255			53	22	.22.
	54	.48	.47			54	.22	22
	55	.43	.43			55	215	_225
	56	. 44	45			56	. 235	225
	57	.44	.41			57	.210.	.21
	58	49	.41			58	215	.22
	59	.46	41			59	.23	215
	1.0	45	41			60	.23	_185 _21
	60	.45	47			<u>[e]</u>	.205 .195 .21	2/
	102	.42	.44			62		.20
	63	42.	48			63		2/
	64	46	.43			64		_2/
	65	.49	45	<u> </u>		65	.23	.20
	66	.43	.40		<u> </u>	66	.21	
•	67		44			67	.235	22 21
	68	.48	.41			68	2/	
	69	.50	.41			69	.21	21
•	70	: 44	.43			70	:.21	_205_
	71	.45	.41			71		.20
	72	.49	.41			72	22	•215
	73	51	.40	-		73	.21.	20
	74	.5/	43	·		74	.21	195
	75	.44	40			75	•21	2/
	76	48	40.			76	2/	21 .
	77	.50	49			77	215	215
	78	.50	.44			78		- 20 -
	79	.46	44.			79	.225	23
•	80 -	46	42	<u> </u>		80.	.215	- 7/

-

÷

7-14-65

-. ·

. 7-16-65

3

Pone 15

		Cranmer		(1.1A)	DATE	(1.2	A)
	Before heating	After heating		· .	•	Before heating	After heating
oint No		Resistance	Strength		Joint NO		
-	- 6	-4	ibs		1.2A	ohm x 10	ohm x 10
1.1 A	ohm x 10 - 47.	ohm × 10 - 42			41	- 36.	- 35
41	- 48	- 45			42	- 32.	- 35
43	- 45.	- 42			43	- 30.	- 31
44	- 44.	- 43			44	- 32.	- 33
45	- 44	- 42			45	- 30	- 30
46	- 50:	- 50			46	-27:	- 33
47	- 44	- 43			47	- 33	- 33
48	- 45.	- 47			48	- 32.	- 32.
49	- 44	- 48			49	- 30	-30
50	- 43:	- 47			50	- 27:	- 28
51	- 46.	-44 - 50			51	-38.	- 33
52	- 50				52	- 32.	- 32
53	-47.	- 46			53	- 3.3 .	- 32
54	-46.	- 47			54	- 32.	- 32
55	-48.	-46			55	- 34	- 31
56	- 49.	- 52			56	- 33	- 33
57	- 44	- 42				- 34	- 33
58	-47.	- 50			58	- 33	- 33
59	- 43 .	- 43			- 59	- 34	- 26
60	-50	- 53.		 	60	-36 -	- 32
<u>le1</u>	- 48	-47		 	[0]	-30	- 30
62	-50	- 51	<u> </u>		63	-32.	-29 -34
63	- 50 .	- 50	 			- 32.	-34
64	-44	- 47	}	<u> </u>	64		
65	-43.	- 44		<u> </u>	65	- 32	- 32
_66	-5/0	- 49			66	- 33	- 36
67	- 44	- 44	Į		67	- 33	- 33
68	-48	- 47	+		- 48		-35
_69	-47.	- 46			- 69	- 35.	- 30
70	- 48	- 49			70	+ 36.	- 36
7/	- 46	- 45			7/	- 34	- 32
	- 48	- 50		1	72	- 25.	-30
73	- 48	- 45			73	-31	- 3/
74	- 44	- 48			74	-32	
75	-48	- 49	+		- 75-	- 30	- 22
76	- 48	- 49 .			76		
77	-45	- 48			77	- 28.	- 25
<u>78</u> 79	-47.			-	78	-30.	- 33
		- 48			- Lange (- Lange		- James and Second

•

PROJECT ENGR. F.K

F.KEISTER

Page 14

	TEST	Electric	al Resis	tonce - W	eld Jain	ts		
		OF JOINT	- Gold	Plated 1	Kovar	to Inco) (1.3A)	•
			Gold F	lated Dum	et to I	DATE	A) · ·	
	TESTE	D BY <u>D</u> C	ranmer					· · ·
	• •			• •			Before	After
•		Before	After				heating	heating_
۰.		heating	heating			Joint NO		Resistance
Toi	nt No	Resistance	Resistance -6	Strength			-6	-6
1	3 A	ohm x 10	ohm × 10	ibs		1.4 A	ohm XIO	ohm × 10-
_	41	53.	73				8.0	- <u>50</u> + 10
	42	58.	68	· · · · · · · · · · · · · · · · · · ·		42	14.	- 7
	43	62-	110			44	19.	- 2
	44	97	90 99			45	6.0	76
	45	97.	79			46	12:	+ 7
_	46	82.				47	11.	+ 8
	47	61.	<u>63</u> <u>88</u>			49	24.	+20
	<u>48</u> 49	70.	84			49	7.0	- 10
	50	82.	110			50	- 3.5	- 23
	51	77.	77			51	7.	- 7
		62.	74			52	14	* + 2
	53	100	80			53	- 9	+ 10
	54	820	70			54	16	8
	55	76	84			55		= 7.
	56	. 72.	75	<u> </u>		<u>5/c</u>	* 0.2	+ 7.
	57	68	78			- 57_	5.	+ 8.0
	58	68	210			58	9.0	- 32
	59	63.	63			. 60	-10.0	+ 4
_	60	7/.	78			60	18	- 16
_	61	25.	77			62	- 2.	+17
	63	65.	68			63	- 5	- 14
	67	60 .	110			64	2.0	
	65	59.	72			65	-16	- 25
	66	60	64			66	++0.2	- 30.
	67	43	72			67	2.0	- 3.0
	68	88.	72			68	360	- 50.
	69	65.	130			69	5.5	- 5.5
┢	70	:74	82			70	- 45	*-0.2
	71	8	81			7/	4.0	
F	72	70.	85		_	72	20	- 36
ſ	73	62.	85	·		73	12:	- 36
F	74	64 .	62			74	- 12	- 21
T	75	70	110			75	$-\frac{-18}{7}$	7 .
C	76	75.	130	<u></u>		76	-10	- 9
ſ	77	75.	76			78	72	* + 0.2
F	78	68	80	<u></u>		79	15.	- 4.0
	79_	58.	80			80	28:	- 28

÷

ļ

5

• • * Almost the low a resistance to read A

÷;

TEST	Electri	cal Resi	stonce - W	rid Joir	ts_		Page
TYPE	OF JOIN	T. <u>Gold</u>	plated	Copper	to Inc	0 (1.5A)	•
TEST	D BY D.	Soide Cranmer	er coate	copper	to Inco (1. DATE	6A)	•
	•		•	•			
	Before	After		•		Before	After
	heating	heating				heating	heating
oint No	Resistance	Resistance	Strength		Joint No		Resistance
1.5 A	ohm x 10	ohm × 10	165		1.6 A	ohmxio	ohm x 10
41	- 10	- 42_			41-	- 2.8	- 9
42		- 7	•		42	- 7.0	- 24
43	- 8	- 30			43	- 8.2	- 3
44	- 10	-18 -14			<u> </u>	- 1.8	- <u>8.0</u> - 12
46	- 7.5	- 33			46	- 7.5	- 4.0
47	<u>- 7.2</u> - 9.	- 12			47	- 7.4	- 10
49	- 18	- 32			48	- 2.8	- 30
49	- 8.5	- 60.			49	- 4.8	- 10
50	- 16.	- 5			50	- 4.5.	- 40
51	- 12.	- 2			51	- 0.75	- 19
52	- 16.	- 19			52	+ 2.2.	- 32
53	- 10.	- 12			53	- 1.0	- 23
54	-18	- 24		•	54	+ 1.2.	- 18
55	- 12.	- 28			- 55	+ 2.5	-11
56	- 14.	- 24			56	- 42.0	- 16
57	-18.	- 12			_ 57	+ 3.0	-16
58	- 10-	- 23			58	+ 0.5	- 6
59	- 11 .	- 11			59	-20.0	- 38
60	- 8.	- 13			. 60	+ 0.5	- 17
61	-19.	- 17			61	-18.0	- 35 - 16
63	-10.	- 62			63	- 3.5	- 10
64	- 18	- 24	1		64	-19.0	- 40
65	- 17.	- 25			65	- 3.0	- 42
66	- 9.5	- 17			66	- 6.0	- 9
67	- 9.	-13	1		67	-10.0	- 30
68	- 11	- 18			68	- 3.0	- 18
69	- 11 .	- 21			69	+.15	- 13
70	+14.	- 22			70	- 23.	- 38
71	-14	- 20			7/	- 0.2	- 22
72	-10	- 14				+ 2.0	- 5
73	-20	- 35	ļ	Į/		+0.2	- 17
74	-14 - 15	- 9	·	 	74	+2.8	- 5
75		- 35	<u> </u>	}	75	+3.5	- 7
76	- 5	- 3 .	 	}	76	+ 2.5	- 20.
7778	-20 -10	- 40		+	77	- 2.0	-14 -12
79	-18	-45.	1	}	79	+3.0	- 10
80 -	-12	- 20		1	80 .	+1.6	- 15

A/-62

	TEST	Elentri	JTL C		· ·	-		٩	e e
	TYPE	OF JOINT	r Kova	r fil to	Kovar	fail :		•	• •
			•						•
	TESTE	D BY	Cranme	<u> </u>		DATE			•
	• •					1			
	•	Before	After	·		•		• • •	•.
	•	heating	heating				· · ·		٦
כ	Joint NO		Resistance	Strength	· ·				•
	ZA	ohm x 10	ohm x 10	ibs					-1
\vdash	41	- 480	- 480.		ر ب	/			-
	42	- 440	- 430	·					-
	43	- 410	- 410						-
_	44	- 350	- 360						
\vdash	45	- 460	- 460]
1	46	- 450	- 440 - 500				· ·		
L	47	- 500	- 480						
\vdash	<u>49</u>	- 440	- 410						
\vdash	50	- 460	- 380						
F	51	- 500	- 500						
+	52	- 420	- 410						-
\mathbf{F}	53	- 410	- 410					<u>. </u>	
t	54	- 330	- 360		<u> </u>				-1
Γ	55	- 410	- 410				·		
Γ	56	- 360	- 380		_				-
	57	- 360	- 380						
	58	- 360	- 380						
Ļ	59	- 410	- 410						
	. 60	- 440	- 450						
ŀ	<u></u>	- 340	- 340						
\mathbf{F}	62	- 400	- 410						\dashv
f	64	- 400	- 380				ý		
T	65	- 420	- 410					<u>.</u>	
t	66	- 410	- 420						
. [67	- 430	- 420						
t	6.8	- 360	- 360						
ſ	69	- 440	- 440						
	70	- 390	- 390						
ĺ	. 71	-400	- 410			{			
J	72	-430	- 430						
	73	- 390	- 390						
1	74	-330	- 340						
	75	-390	- 400	-					
-	76	-370	- 440						
	77	- 440	- 460						
•	7879	- 400	- 410			•			
-	1	-390	- 400			1	1	3	

:

۰.

PROJECT_ENGR, F.KEISTER

-1

JPL CONTRACT	951069
--------------	--------

		JPL (CONTRA	CT 95	51069		Page 20
TEST	STR	<u> 555 -</u>	RUPT	URE	·		
7773	OF JOINT	STEAN	NDED COND	UCTOR TO S	<u>cinc</u> y con	NELTOL C	201
	20 CY 30						1-14-65
162	r condi		at mospin			in Noci	
SAMPLE		TIMER (HOU	LEADINGS	DT Hes	CREEP HES OR NO)	REMAR	LKS
NUMER	(1/04)	INITIAL		$T_{p} - T_{1}$	8		
111	1116, 10 07		116.4	116.3	64	No FAIL	Vet
112	3165.202		116.4	116.3	No	No FFIL	
113	4 165.1007		116.4	116.3	No	No FAIL	
114	6165,202		116.4	116.3	No	Ho FAI	
_115	71651002		116.4	116.3	No	NO FR	
116	9163.202	1	37.5	37.4		Join	
1117	10 165.802	0.1	908	90.7		LOW F	EN TINEN
113	1211001 08		16.6	16.5	No	CANTONELE	2 WT 7 WEN 2 WT 7 W12 2 W 2 W 2 W 2 W 2
113	13100 902		0.1	2 MIN	No		
120	116: 100E		231.7	115.5	No	No frilur	F
121	316.201	116.4	231.7	115.3	<u>N0</u>	n 11	╂┫
122	14 1bs. 1002	116.4	231.7	115.3	NO	Joint fail	
123	6165.200	116. +	231.3	114.9			
124	7 165.100		231.6	115.2	NO	NO filu WILE BEOKE ATTACHED	WHERE
125	9165.201		60.9	23.4	No		
126	10162 801		97.8	7.0	No	Crime fail Wire fail	
127	12160,1 03		<u> al.l</u>	4.3	No		
123	13163 9 01		0.2	4 MIN	No	WILE FHI	
129	1 4 10 mz,		393.6	161.9		No failur No failu	
130	3 2 20Z.	231.7	393.6	161.9	No	Joint fai	
131	4ª 10.2.		248.7	17.0	————	No Failur	the second se
132	6 2 61		393.1	161.8	No	No failue	
133	7ª 10 02.			1		Joint fai	
134			71.1	30.8	-	Joint fri	1
135	10 80	i the second	128.6	7.1		Joint fai	
136	12*1.4	1	28.2	10 min:		1	ere (Frile ale a straight elevent
137	13* 9.2	0.2	0.3		No No	No failure	
138	1 10 02.	393.6	518.9	125.3	No	No failure	
139	3 202.	,	518,9	125.3	1	he failue	
140	4 1002		373,9	135.2	No	No failur	
141	16 202		518.4	125.3	<u> </u>	No tailur	
142			<u> </u>	84.4		Joint	
143	9 2.12		148,0	19,4			flatilure
144		128.6	42.0	13.8	No	Wire f	
145		0.3	.4	1 .1	No	Wire f	
146	15 701				1		
*			<u>`</u>		1		
1		<u> </u>		-			
			•	· ·	1		
L			and the second				

ï

STARTED ON JULY 19

PROJECT ENGR. F.KEISTER

test

SPECINEN NUNBER	wEIGHT (pounds)	INITIAL TIME (T;)	FINAL TIME (T+)	TOTAL TIME (TF -T;)	CREEP	Remorks
1.1.2	1 1 16. 10.02.	518.9	630,6	111.7	No	No FOILVER
112	316. 2.02.	518.9	1630.6	111.7	No	NO FAILUER
113	4 1h. 10 m.	373.9	485.6	111.7	No	No FAILULA
114	6 1h. 202	518.4	630.1	111,7	! No	No FAULL
115	7 16 10 02	518.7	630.4		110	No Former
116	1 9 16. 202		267.2	W1.7	1 No	No tomes
	1 10 1L 8 02.	148.0	259.7	117.7	! No	No FAILURE
118	12 14 1 02	42.0	: 63,0	ZI. O	<u> </u>	JOINT FAILVER
	13 lb. 902.	0.4	0.5	0.1	NO	Wire Pailore !
120	,116.10 oz		7553	124.7	No	INO FAILURE!
121	316. 2 02		755.3	124.7	No	No FAILURE!
122	1416. 10 02	1 4856	610.3	124.7	No	No FAINE
122	616 2 02	630.1	7548	129.7	No	NO FAILULE
12.5	716. 1002	630.4	755.1	1,24,7	1 No	No FAILFE
125	916 2.02.	2672	391.9	1,24.7	I No	NO FAILURE
	1016, 8 02.	259.7	384.4	129.7	No	No Ferrie
126	1216 1 02		63.1	0.1	I No	WIRE PAULVE
127	1516 9 02.		. 6	0.1	No	WILE FAILVEE
129		1755.3	831.3	1360	No	NO FRALVEL
	316 202	1755.3	1891,2	1135.9	1120	NO FAILURE
130	1416 10 02	610.3	1746.3	136.0		No FAILVES
132	1616 203		1830,7	135.9	No	N. FAILVEE
133	716 80	=155.1	CILEBI	135,9	СИ	VALTE COUNT
134	1910 201	391.9	1527.8	1 135 9	1 10	1. REALVER
135	101520	384.4	520.2	1358	No	NL FAILLES
136	1216 102		1132.2	1.60.1	7	Jan FAILUR
	131b 902		10.7	0,1	1 100	USIKETRILVIE
137	115 10 00		1357	135.1	NO	No Fairves:
		0.0	1 135.7	135.7	No	No 2+1LUZG
139	4/6 1002		1.35.7	1,35,7	No	Non Stankurt
			1357	1,25.7	No	NL FRILVEE
141	1216 20=		125,7	1 175.7	N2	M. FAILURE
192	9120		135.7	1357	No	N. FAILING
<u></u>	:10 1=10	0,0	(35.7	<u></u>	No	No. 19 - and
	12 12 30		21,5	: 21.5	No	Wit to set
: <u> 145 </u>	1312 20		0, 1	: 0.1	i No	WIS THILVE
146	<u></u>				· ·	
			i		R.	
1						
				- <u> </u>	1	

PROJECT ENGR.

F. REISTER

N.

•		JPL	CL A	CT 95	(1069		Page 22
		.		CONDITIONS OF		(Na atmasphere)	J -
Test	STRESS -	RUPTUR	- DURING	HEAT STER	175F. UON	14506	
TYP	E CF CONT	STRA	NOR CO		TO CINC	in connect	ve cup
•		_		9.000.90			
	$co v \underline{1}$				DATE	est Calibrated on Mi	<u>4 N1465</u>
	angung and so	13 Hours	- Lynd off	· c	ONRAD Tem	persture - Altitude	Chamber
+11	and all	_ •	0 11		Hollond, Nich	Madel No. FHS.	- 3-3
		Time Holer				Serial No. 724	<u>{</u>
SPECIMEN NUMBER	(PSIN 13)	TINT	Final	TUTIC mours.			
LUL		(7:)	UTO	$(\overline{\tau_{r}}, \overline{\tau_{i}})$	09:50 K 12:0	· · · · · · · · · · · · · · · · · · ·	
147	1116 1007 19	391.3	t		*	SEE NOTE	ALLACHED
	316 202			0.8		JOINT FAI	
1-13	1416100E	746.3		0.9		Join FA	
150	616 2021 1716 1000		325.2	0.6	<u> </u>	JOINT FA	
152	916 202		21	0.6	i —	JOINT FA	
153	1016802			0.6		JOINT FA	
<u></u>		132.2	<u></u>	0,4	i No	WILE FA	ILVEE
E	13,12 9,2	0.7		0.1	No	WIRE FA	
	116 1002		137.4	<u> \.</u>		and the second se	FAILVER
157			137.4	1.7	·	JOINT FAI JOINT FA	LUET
1.1-07		135.7	1-6-0-	<u>i 0.8</u>		JOINT FA	
r.3	<u> </u>	135,7		0,6		Join FA	
		135,7	112.3	10.6		Joivrt	
		135.7	1 136,2	0.5	·	JOINT FAIL !!	5 + *
		215	1 21, 4	0.1	. No	WILE FAL	LUCS
+		0, 1	0.1	0	No	WILE FAILU	LE XXX
5	116.1022	891,3	1896.5	5.2	-	Joint toi lure	
1 <u></u>	310 2 02	892.1	895.3	3.2		Joint failur Joint failur	
167	416 10:e		1 749.5	1 2.5	-	Joint failure	
*	1010 200 716 Dee		<u> </u>	2.5	-	Joint Bilurd	
) : <u></u>	210 ST		530.4	2,2		Joint failure	
7 1	101h 800		1 523.2	2.4	No	wire failure f	The joint,
172	112 16 12		133.6	0.9	No	Wire failure p	, the joint.
1 173	11310 972	000.8	000.8	\$5 minutes	No	wire failure	
10. 1-7.	1 10 10:		140.3	2,9		Joint Foilure	
173	3 22	1 157.4	1344	1 2.5	\	Joint Failur	
1-1.	410	136.5	138,8	1 2.3		Joint Failure	è
13 <u>(-')</u>	610 200		138.5	<u> 2-2</u> 2.1		Joint Failure	
nt /	$\frac{1710102}{2}$		138.4	2.1	<u> </u>	Joint Failure	
15 ·) 16 · ·)	312 202 1010 100		138.2	2.0 1		Joint Failure	
10 <u> </u>	10.10.00		23.7	1 2.1	£	Joint Failure	
18 122	13 15 80		040.1	Ey minutes	<u> No</u>	wire failure	
·	t		· · · · · · · · · · · · · · · · · · ·				
;		1			<u>.</u>		
-		<u>+</u>					

PROJECT ENGR.

F.KEISTER - 30 ×

Ā.

....

.

TEST STRESS-RUPTURE @ Sterilization Time & Temperature Solder Joint - Stranded conductor to BENDIX connector cup. TYPE OF JOINT

TESTED DY T. K. intu

DATE 1-2-45 the

9-13-6

FELINEN	LOAD	PERCENT OF	INITIAL TIME		TOTAL TIME	TINE AFTER	TYPE OF
NUMBER		ULTINATE	HETER READING	HETER READING	(hours) T _F - T _i = T _T		
1.1.2			896.5	1015.3	118.8	115.3	NONE
147	68gm = . 15 16.		2) 895.3	1014.1	118.8	115.3	NONE
148	136 am = .30 lb.		13) 749.8	868.6	118.8	115.3	NONE
149	1204 gm + 145 BJ		4) 894.1	1012-8	118.7	115,2	NONE
150	272 gm : . 40 1	4		940.5	46.4	42,9	JOINT
	<u>341 am · .75 18</u>			552.0	21.4	17.9	JUINT
152	1 16. 802.	10	<u>6) 530.6</u>	·		0.0	1 JOINT
153	2 1b, 402.	- 15	<u>n 523.2</u>	526.7	3.5	0.2	JOINT
154	316. Q 02.	20	1) 133.6	137.3		1.0	JOINT
155	3 16. 12 02.	25	3) 000-8	5.3	1 <u>4,5</u>	1	1
		ļ				115.0	NONE
154	.15 lb.	<u> </u>	(b) 140.3	258.8	118.5	115.0	NONE
157		2	1) 139.9	1 258.4	118.5	115.1	NONE
158	,45 lb.	1	12) 138.8	1 257.4	118.6	113.1	NONE
159	.60 lb.	9	13) 138.5	256.9		114.9	NONE
160		5	(N) 138.4	256.8	118,4		JOINT
161	1 16, 802.	1	15) 138.4	148.0	9.6	6.1	JOINT
162	214. 402.	15	16) 138.2	145.6	7.4	3.9	
163	311.0 02	20	(1) 23.7	27.6	3.9	0.4	JOINT
164	316. 12.02	25	18) 000.2	003.7	3.5	0.0	JOINT
	4	1		<u> </u>		(TT - 1.0 hr.)	
145	0.30 14.	, 2	1015.3	1152.1	136.8	135.8	NONÉ
liele	0.45 16.		1 1014.1	1150.9	136.8	135.8	NONE
167	0.60 14.		868.6	1005.4	136.8	135.8	NONE
168	0.75 11	5	1012.8	1149-6	136.8	135.8	NONE
169	1.125 16	5) 7.5	940.5	1023.0	82.5	\$1.5	JOINT
170	1.50 14.		552.0	588.9	36.9	35.9	JOIN T
	2.25 1	· ·	526.7	549.9	23.2	22.2	JOINT
<u> </u>	3.00 16		1 137.3	1 140.0	2.7	1.7	THIOL
	3.75 1	1 N .	5.3	8.6	3.3	2.3	JOINT
173_	1 3.13 1				1		
l		. 2	258.8	395.5	136.7	135.7	NONE
174	<u> 0.30 \\</u>		258.4	395.1	136.7	135.7	NONE
175	0.45 1		257.4	394.1	134.7	135.7	NONE
176			25/14	393.6	136.7	135.7	NONE
<u></u>	0.75 1		256.8	297.9	31.1	30.1	JOINT
178	L125_1			1 187.2	39.2	38.2	JOINT
179	1.50		148.0	150.6	5.0	4.0	JOINT
180	2.25		145.6	the second design of the secon	3.2	1 1.2	JOINT
181	3.00		27.6	29.8		0.9	JOINT
182.	3.75	16 (5) 25	003.7	005.6	1.9		

EXEISTER

PROJECT ENGR.

		•	- Javiata	tion - Solde	ing Vibra	Test dur	Electrical	TEST
				, and 1.2	, 1,1,2	1.1.1	OF JOINT	TYPE
		30-65	DATE _7			baum	D BY Kasse	TESTE
					168 95		t input = 10	
	8-10-65)		AFTER			HEAT	BEFORE	
		70 CHANGE	IOINT RELISTANCE	S PECINEN		To CHANGE	JOINT	SPELIMEN
		RESISTANCE		1.1.1		IN JOINT RESISTANCE	KONING	NUHBER
_				101	Š	REAL		91
£		0	A.0009A	102	2	0	0.0009-2	
				103	75.7			23
3				104	7.			94)
conduc				105)	14			25)
-		Q	0.0009 -	106	RESONAN FREQUEN	0	A.0003-A	94
				107	NO.			97
				108)	15 × 1			38
45			0.00045-2	109	~~		0.00045-2	
				110				100 5
	- -		Atter	• -		Hest	No	
			TOINT			% OF CHAUSE	JOINT RISISTHAS	SPECIMEN
_		CHANGE	RESISTANCE	NUMEER			121 21. 144:0	NUMBER
\$				101-			,00026	91
- ALANA		0	.0005-2	102			10002	92 5
Ju el				103			I	93
3				164 -	F N	1	.00052	14
3,				105.	5023	- 4	LECTP E	15
3		0	.00052	106	1 x 0		1	16 -
Strand				107	W.A.	Ì		97
E				108 -		1	1,00052	98
		0	.00026	109 -	· · ·			99
1				110 -	 			100 ~
,		HEAT	AFTER			HEAT	NO	
Ι.	╉╴┈╴╴┥	0/0 OF	TOINT	SPECIMEN		26.00	JOINT	SPECINEN
		CHANGE	EL SISTANCE	NUMBER	ł		Resistar.	NUMBER
Ŧ				1.2		1		1.2
Ì	+	6	0001	101	6			
2			.0004	102		'	204-2	92 (
conductor to		<u> </u>					1:	93 J 94 J
3.				105	2 3	<u>i</u>	1	95
-	1	Ø	.0004	106	Peseu 14		marl	
ě	1			107	200		mgels	96
stranded			·	108	- 		<u>t</u>	96 97 98 - 98 - 99 -
Ŧ	1	6	,0002	109			1002 22	<u>98</u> 99 7
		the second s	and the second secon	and the second second second		· · · · · · · · · · · · · · · · · · ·		/

~

, ···

A HARM OF CAMPAGE

ŧ

PROJECT ENGR.

F. KEISTER

 . : **)**:

- -

PROJECT ENGR. F.KEISTER

13.37

PROJECT ENGR. F.KEISTER

	TEST			ON) - Soli		•		
		OF JOINT		4 and le	5		-7 0 4	, ,
	TESTED	o sy <u>Ka</u>	s.s.cha	14pm		DATE	7-30	-60
		t input = 100						
	Cutren	t input. in No He				Atter H	kst	
_			6 05		PLCINIFN	ROMAT	0/0 OF	
19			2 2 2 2 2 C		NUMBER 1.4	ERCISTANCE	CHANGE	
	1.4	KESISTHINCE		<u>y</u>	101			
Ļ		0014 x			102	,200.28	Ø	
:- İ	93 7			1250 m	103			
terminal	94	.00028 x 1	Ţ.	-n a	104 -			
121	95	i		ě?	106	.00028	ø	
-	96 -				107			
3	97 7	000.28-22	6		108 -	<u> </u>		
	99 5				109	.00014	4	
2019		!				//	/	
ויי ל								
		NO HE	t			After	Hest	•
(SPECIMEN	TOINT	% OF	1	SPECIME	TOINT	% OF	
)	NUMBER	RESISTANCE	CHANGE		NUMBER	RESISTAT	CHANGE	
_	<u> </u>			4	101 -	}		<u> </u>
5	97	.000192	6	4	102	9.00019	9	
<u>ب</u> پر م	93	<u></u>		20	103	4		
	94 -	1.000005	6	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	105 -	\		
sr lead	96 -			5.8	106	9.00010	- P	+
5 3	1 71	1		23	107)	+	+
Resistar solder co	98	.000192			100	7.00019	6	
~ <u>.</u>	99	1			110 -	3	/	<u> </u>
	100		1					_ <u>_</u>
			ļ					
			<u> </u>				-	
			<u> </u>					
•							1	
							<u> </u>	
	·		· · · · · · · · · · · · · · · · · · ·					
			<u> </u>					
			1					
	7	•	1			1	ì	1

•

4

		1-1	CONTRA	CT 95	1069		Pore 24
•							
TEST	Electricz	1 Test	During Vibr	ration - We	1d Jaint		
TYPE	೧೯ ೮೦::::	. weld	Joint - Ban	e nickel to	Inco		
	V	/	/			9-14	-65
			aun		DAIE		
Cur	rent input No hest	- 100 will	subr sc		stanlized		
PECIMEN UMBER	JAINT RESIGTANCE	To CHANGE IN RESISTANCE DURING		SPELIMEN	JOINT RESISTANCE	90 CHANGE IN RESISTANCE DU RING	
		VIBRATION	ł			VIBRATION	
61.91B	.00055	A	7	1,1, 102 B	.000.55		
1.1.93 B	.00033	<u> </u>		1,1, 102 15 (
11.94B				1.1.104 3			
	00028-	ø		- 1. 1. IOS BY			
1.1.9685		• 	1	1.1.1068	.00055	20	
1,97 B)				1.1.1078			
1,1,280	.00055.	<u>h. ()</u>	_	1.1.108 B	.00028.	0	
1.1,100 8				1,1,103			
		ļ	1				
1.1. JPL3		1		1.1.JPL 7		<u></u>	·
LIN PL4		~ Q		LII, JPL &	.00055	<u>p </u>	
1. J. JPL5				1,1, 1, 1, 1, 1, 9, 9			
1.1.JP26	/	·		1.1. JPL10	1		
· .	;	·		Ì	·		
	i	į	Ì	ſ	1	Į	
			104 = 42	ocas	ļ		<u>.</u>
	LURRE	NT = 10	DOMA		<u>[</u>	<u> </u>	
······				<u> </u>		<u> </u>	}
		19. Straber	<u>Chodwick-He</u>	nac Inc. Mod	21 DY-2200 :	Serial#167. L	at colib. K/mla
	LIST D F	OUIPMENT	• •	ł.	<u> </u>	1	
	1	1.VER	. ,	EATION S	VSTEN.	LING EL	TRONICS
	MODEL	C-P3/4	S/N45 H	AST CAT	13 - 8-16		·{}
		1 2 Acc	ElEROM	E <u>TER, E</u>	NOEVCO		-14-65
	nice	EL 22	11SIN	VYZER	HEWLET		=74 - CS
	417	<u> </u>	NE AND	149.00101	ACT CA		18-65
	illep.	<u> 1 302</u>	A SIN	E Cov	WTER.	VEWLETT	PACHARD
	1 Noo	AT1 52	2 B S/	V 1897	LAST	CA, LIR.	6-21-65
		5. A.U	OID SIGA	LAL GI	NERATO	8-HEWLE	TT PACHARD
	110	RE1 20	SAB SI	16965	LAST	<u>AIIB</u>	-/6-65
	Include	1 ode 1 mmb	er Serial num	HCULLO	TT PACK	APA MA	DE/ 400
	••	6. 1.	97 11	OF CA	1, R 6-	2-65	I I
		JA (CUPRA	NTH	POBE	KEWLET	* PACHAR
	1	MADEL	No 456A	B/1/1(3-	1939 LAS	+ Calu	4-5-22.45
			b a	CHAD	WICK-HE	nurt .	MODE #

Ţ

TEST		1 Test During					5. (va)		
	of Johns	<u>Gold pla</u>		Inco (1.2)	and Gold pl DATE	8 - 30 -			
Cur	went input we hest	t = 100 milli:	smbe ac	Stovilized					
SPECINEN		To CHANGE IN ,		PELINEN	FONT :	% OF 1			
NUMBER	JOINT RESISTANCE	RESISTANCE BURING	ł	NUMBER	R	SHANGE			
1.2.918 7				1.2.101					
1.2.928 4	.00055		<u></u>	1.2-1028	_0005	<u> </u>			
1.2.938				103B					
1.2.94 B J		·		1048	.00025	0 0			
1.2.95B)	t			10587	.000				
1.2.96B	.0005 52	0		106B		i			
1.2.978	!	·		107B	.0005.	0			
1.2.98B-	1	·		109B					
1.2.9B-	00000	0		IIOB					
1.2,100 B	.0005 2			110					
	<u>}</u>			1.2. JPL 24					
1.2. 1913]				.0005	0			
1.2.1914-			{	9					
-12.2925-	J			10					
1.2. 3926	Y	PESO	NANT P	REQUENC	Y = 420	Cps	ļ		
-	1			ĺ					
		-1		1					
	-}					1			
	No hest	1	9/14/65		STERILIZED	1			
			,	Cerainia	TOINT	1% OF			
SPECINEN	JOINT	70 CHANGEIN REUSTANCE			R	CHANGE			
NUMBER		DURING		#		CARGE			
1.3.91B	a successive and the second second	1		1.3.101B		1			
1.3,928	1,0010-		· · · · · · · · · · · · · · · · · · ·	162B	1.0010	0	1		
1.3.938	<u> </u>	1		1638		- <u>r</u>			
1.3,448	<u></u>			104B-		n 0	1		
1.3.95B		E		1050		<u>h.</u>			
1.3.948	1.0010	a		106B			1		
1.3.978	1	<u> </u>		107B			<u> </u>		
1.3.9tB	1		ţ	105B	0010	^	-		
-1,3,99B		To C		109 P	1	<u> </u>	1		
1.3,1008		f #	F	IICB.	¢	-i			
ļ	<u> </u>		<u>.</u>	1.3.JP1 7	5	-j	.]		
L. 3. JPL3	7		•	1.3.11	1.00137		Ì		
1.3_1PL4		7:20	1	9	1	1			
1.3.3PL			1	:	1	1	1		
- 1.3, JPL	·		<u> </u>	NCY = 41	Leos	1.			
i	3	00/	+ =0=005	MCY = +L			and the second second second second second second second second second second second second second second second		

i. K

PROJECT SHER. ERSISTER

Page 29

Poge 30

Test	Elect	rical Test Du	ring Vibral	tion - weld J	aviat		
TYPE	೯ ೧೯ ೨೦೫	5 Weld	Joint - Gold pl	ated Durnet to	Inco (1.4)		
TEST	ED GY /	Kazze	E Gold p	lated copper 1	DATE	9-19.	-60-
				lliamperer a			
	No heat			•	STERIUZED		
SPECINEN		% CHANGE IN					
NUMBER	RESISTANCE	AESISTANCE DURING		FRECIMEN H	R	% OF CHANGE	
1.4.918	1			1.4. 101 BY		ļ	
1,4,928	.00048	<u>r 0 1</u>		103B	.00048.	~ 0	
1.4.93 8	<u> </u>	!		_103 B			· · · · · · · · · · · · · · · · · · ·
1.4.94 8	/	<u> </u>	!	<u>1048</u>			
1.4.95B)			10567	.00024.	- 0	
1.4.96B	00048	<u>n 0 </u>		106 B		!	
L.H978	<u> </u>			107B			
1.4.91 B	/	<u></u>		_ IO[B]	.00048	<u>~</u> 0	
1.4.99 B	00024	<u>~ 0 </u>		1095		ļ	
1, 4, 100 B	<u>×</u>			110 B			
	<u>!</u>	<u> </u>		!		<u>!</u>	
1.4. JPL3	<u></u>	<u> </u>		1.4. SP17			
1.4.JPL4 4		52			.000155		
	Same s	EV - TALICIA	1.1 T		/		
LIY, JPL6		ş					
	<u></u>	RESONANT	FREQUE	NLY = 41	K CPS	ļJ	
	•					i	
	1			4 			
	•	<u> </u>					
-	No heat	•		· · ·	STERIULED		•
NUMBER	JOINT RESISTANCE	To CHANGE IN RESISTANCE DURING		Spr Cymr y	JOINT E	CHANSE	
·		VIBRATION		1.5.1016	<u></u>	1	<u></u>
1.5.918 -	1.22224			1 1/21/2	1.00024	C C	
_1.5.93B				1031			
1.5.94 B.				1646			
1.5.95B					1.00012	10 0	
1.5.94B				1-11			
1.5.978		······································		1	<u>,</u>	1	
1.5.98 B				· · · · /	. rend	60	
1.5,99 B).00012	n (1 1 .	[1-4	
1.5,100B		1			•	1	
				1	Ì	1	
1.5 .JPL 3.	4	1		712 11	6	1	·
1.5 JPL4		·		1 11 1	5,002:27	n o)
_1.5 . JPL 5			ſ <u></u>	1 - 12	5		
1.5. 1926	11	,		21	V		
		RESONANT	FREQUEN	Kr: 300	603	1	
			يتين الترجيع كالمراكبة والمتهاجرين			ويترجع والمتحدين بالتكري المرجع	

PROISCT ENGR. EKSISTER

No hest

÷

TERILIZED

\frown	\sim						
SPECIMEN		9 CHANGE IN RESISTANCE	 	SPECIMEN	TOINT	% 05	
WHOLK		DURING URRATION		#	R	CHANGE	
1.6, 91 3)	i	1.	6.101 B4			
1.6,92B	.00028-	601	i	102B	.000 28	<u>n 0</u>	
1.6.938		•		_103B			
1.6.94B)	·	¥	1048	ļ		
1.6.95B	\	!		105B	100014	<u>~</u> O	
1.6.94B	.00028.	<u>h 0 </u>		106 B			
1.6,978	{	l	I_	107B			ļ
1.6.98B)			IN B (100028	<u> </u>	· · · · · · · · · · · · · · · · · · ·
1.6.99B	1.01014-	<u>k C </u>		109B (ļ	·
1.6,1008	<u> </u>			HOB,			l
	i 	<u> </u>	<u>[</u>		<u> </u>		
1,6, 1963-		<u> </u>		JPL7	2	!	·
1.6.JPL4	K. 60024-			JPL 8	4500014	<u>~</u>	
1.6. JPL5	<u></u>		¦-	3127	·		
1.6.JPL6-	<u>y</u>	<u>_</u> !	<u>t</u>	JPL 10			•
	<u> </u>	RESONANT	FREQUENC	<u>x = 478</u>	cps		<u> </u>
·	<u> </u>		!	<u></u>	1	<u> </u>	
	_ <u>`</u>						
			·			!	
					·		<u> </u>
	<u> </u>	1			1	<u>,</u>	
	NO HEAT				STERILIZED		
SPECIMEN	JO INT RESISTANCE	RESISTANCE		SPECIMEN	JOBNT RECISTANCE	SCHANGE I RESISTANCE DURING VIBRATION	
2.918-	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	DUR HE UIGRATH	·	2.1018	-	1	1
2.928	1.00460	- 0	1	2.102 B	6.0040	~ O	Í
2.438	[)	1	2.1038	(
2.948-	J.	1		2-104 8)		
2.95B -	<u>ما</u>			2,105 B	1	· · · · · · · · · · · · · · · · · · ·	
1 2.968	0.0046	a 0		2.106B	0.0046	<u>n 0</u>	
2.978	()			2.1078	4	<u> </u>	
1 - 00 0)! <u>,</u> ,,,	· · · · · · · · · · · · · · · · · · ·		2.104 8	1		
2.99 B	2 0023	2 0	1	2.109 B	7.0023	<u>'a</u>	ļ
2.100 B	<u></u>	ь	1	2.1108	<u> </u>		_l
	1	RESON	ANT PREQU		80 . 01		<u> </u>
ş t	** Dam	abed prive to				Hects	
ì	Note: The	e joints wer	et all of a .	en húb i			<u> </u>
1		1		,	ji .		ι

PROJECT ENGR. F.KEISTER

Pose 31

	test Type		te Streng Solder	ich affer	Vibratio				
·		D CY J.	n C. Holb	erton	V2110US TYPE		Sept. 7, 1945		
		Res	earch hab Analys	st c					
		Wire Failure Joint Failure							
4	NUMBER	STRENGTH (pounds)	NUMBER	(pounds)	SPECINEN	STRENGTH (pounds)	SPECIMEN NUMBER	STRENGTA (pounds)]
5	1.1.1. 91	HA.5 W	1.1.1.101	AFTER HEAT	1.3.1.91	BEFORE HEAT	1.3.1.101	AFTER HEAT	j¢.
-	1.1.1.92	14.5 0		14.5 ~ 3	1.3.1.92	111.0 W	1.3.1.102	11.5 2	- 12
- -	1.1.1.93	14,5 W		.14.5 w 3	1.3.1.93	110.52	1.3.1.10 3	11.0 w	3
.	L1.1.94	14.5 ~	1.1.1.104	19.5 w 3		10.5 %	1.3.1,104	1.5 0	
\$	1.1.1. 95	*		114.5 w	1.3.1.95	11,0w	1.3.1.105	10.5 W	15
3	1.1.96	14.50	1.1.1.106		1.3.1.96	10.5 W	1.3.1.106	11.50	THE REAL
<u>ج</u>		19.5w	1.1.1.107		1.3.1.97	111.0 W	1.3.1.107	11.00	Tri-
	1.1.1.78	14.5 W	1.1.1. 168		1.3.1.98		1.3.1.108	11.5~	
	1.1.1.22	14.5 0	1.1.1.109		1.3.1.99	111,0,00	1.3.1.109	11.00	3
- 5 1_	1.1.1.140	14.5w	1.1.1.110	14.5 WF	1.3.1.100	11.0 W	1.3.1.110	11.0 W	1
4				ļ					ŧ
- 5	1.1.2.9	14.5 w	1.1.2.101	14,5 ~ :	13.2.21	111.50	1.3.2.101	11,5 W	F
¥:	1.1.2.92	14.5w	1.1.2.102	14,5	1.3.2.92	11.50	1.3.2.102	11.5~]¥ -
	1.1.2.93	14.50	11.1.2.103	14.5 0 3	1.3.2.93	12.00	1.3.2,103	12.00	K
	61.2.94	14.50	1-1-2-104	19.50	1.3,2.94	1.55	1.3.2.104	111.5 w	i
	1.1.2.95	15.00	1-1-2-105	19.5 ~ 1	1.3.2.95	12,00	1.3.2, 105	11.5~	14
	1.1.2.96	14.5w	1.1.2.106	14.5 W 5	1.3.2.96	11.52	1.3.2.106	11,52	
- <u></u> -	1.1.2.97	19.5~	1.1.2.107		1.3.2.97	5.55	1.3.2.107	12.0 w	§ (
3.		14.5~	1.1.2.108	14.5 w e	1,3.2.98		1,3,2,108	12.0W	1
		H.5w	1.1.2.109	14,5 ~ 2	1.3.2.99	12.02	1.3.2.109	11.5 ~	in
്ല	1.1.2.100	14.50	1.1.2.110	14,50	1.3.2.100	11.05	1.3.2.110	12.00	[•
F									İ
·	1.2.91	19.5 w 19.5 w	1.2.101	14.0JIW		20.55	1.3.3.101	26.00	
۔ ۲ ب	1.2.93		1.2.102	· · · · · · · · · · · · · · · · · · ·	1.3.3.92	13.5 J	1.3.3.102	22.55	
1	1.2.95	14.5 w 19.5 w	1.2.103		1.3.3.93	25.5 W	1.3.3.103	19.55	3-
			1.2.104		1,33.94		1.3.3.104	26,5W	4
ا بله. مع	1.2.95	11.5J 14.5W	1.2.105		1.3.3.95		1.3.3.105	25,5W	Ī
2		19.5W	1.2.106		1.3.3.96	26.50	1.3.3.106	26,00	61
- 3 [-	1.2.97		1.2.107	13.55:			1.3.3.107	25,05	a he d
À.	1.2.98	14.50	1.2.108		1.3.3.98		1.3.3.108		
3	L2.99	14,5 N 14,5 N	1.2.109			24.55 . 25.5w	1,3.3,109	22,55	Gold P
	1.2.100	17.30	1.2.110		1.3,3.100	- 213W	1.2.3.110	13.07	33
-									-
	* SAMA	E 811	DURING N	t. 80 AF A.	 j			<u> </u>	
· ••	<u> </u>			TORALION					
· -		- 	-		an In				
			• •		1			¦	
			• • • • • • • • • • • • • • • • • • •	i	1				

PROJECT ENGR.

F.KEISTER

5

Page 32

TEST ULTIMATE STRENGTH HETER VIRCATION

TYPE OF JOINT SOLDER JOINTS - VARIOUS THES

DATE SEPT 7,1965

TESTED BY JOHN C. HOLDERTON SERECH LAS AWALYST C RF

	w= Y		LVER	•		_			
		Join FR	LU LS		SPECIMEN	STEELGTH	SPEZIMEN	STRENGTA .	
	SPECIMEN	STREUGTA	GREGMEN	STRENSTU -	NUMBER	(comos)	NUMBER	(100000)	
9		(COUNDA)	NUMBER	(Lonna)	NUMBER	BEFORE HEAT		AFTER HEAT	
1916-	NUMBER	BEFORE HEA	-	AFTER H		10.5W	11.4.101	I II.OW F	2
· b		17.53	1,3.4.101	23.0JE	1.4. 91		1.4.102	11.0 ~	
•	1.3.4. 91		1.3.4. 102	119.55	1.4. 92	110.5 W		11.00	Ŀ.
F	1.3,4. 92	1230 W	and the second se	123.0W"	1.9, 33	+ 11.0W	1.9.103	11.02	
r	1.3.4 93	122.55		129.0 W F	21.9. 34	111.02	4. 104		• •
	1.3.4 94	23.5W	1.3.9.109		4. 95	111,00	1.4, 103	11.50	នូរី
KONE	1,34 95	18.0 7	11.3.4. 105		·	111.0W	1.9.100	8.55	ξŚ
13	1.3.4 96		1.3.4, 106			11.0W	1.4. 107	11.0W	ر ر ه ه
6			1,34, 107	19.03	A. 97		14. 108	111.5 W	0 P
12	11.3.4 97		1.34, 108	113.55	A. 98	11.00	1 4, 109	112.0W	010
5	1.3.4 98		1.34. 100	I IAE T	31.4. 90	11.0 W	1.4, 110	11.50	Ú (
P.	1.34 99	1230 W		123.0W		111.0W	1.7, 110	1110	
ø	91,3.4. 100	5 12955	1.3.4.110					225W	
U					1.5.91	20.55	1.5, 101		
1	10 3611	124.5]	1.3.5.10	121.05			15, 102	27.0 ~	2
10	1.3.5. 91		1.3.5.102	2 23.05		19.0 W	115, 103	3 21.0 W	14
r 1	13.5 92		1.3.5 6	3 38.0 W		24,5 ~	1.5, 10		8
1	13.5 9				17 1,5, 94				3
	F 11.3.5 94					18.5~	and the second division of the second divisio	102 5.1	
7	1,3.5 95	5 118.5]	11.3.5.10				1.5, 100		Į
	1135 30		5 11.3.5.10				1.5, 10		₩
Ē	1,3.5 9		1.3.5.10	125.03	1.5.9-		1.5, 10		1.
			2 1.3.5.10	8128.5	1.1.5.98		1,5,10	9 19.5W	_W_
1	g 1.3.5 9			9 25.0J	191.6, 99		1.5, 110	19.55	d
5	B 1.3.5 9		1,35.1	0 32.55	· 1.5, 10	5 123,0W			=
مرم	\$ 1.3.5 10	* 100							7
			1221.10	1 29.0	5				-1
	1.3.6.9	1 27.5	J 1.3.6.10						-1
- L	1.3.6.9	2 27.0	J11,3.6.10		~ e .				-
			J 1.3.6.1	03 31.0					4
20			J 11.3.6, 10	9 135,5	751				
The second second second second second second second second second second second second second second second se				ing a	5 33				
F	2 1.36. 9			1.000	J.				
	W 1.3.6 . 9	06 27.5	Statistics, successive and successive statistics and successive and successive statistics and su		T 44				
872	F 1.3.6.	27.0	J 11,36, 1	07 31.30	< ; a				-+
		DO JOOF	5 1.36.1	08 21.0		i			
		29.1	55 13.6. 1	09 25.0	7 13				
	4. 1.3.6. 9	100 129.5	J 11.3.6.	10 30,5	<u>Je</u>				
e	E 1.3.6. 9	100 1 2017							
1			· · · · · · · · · · · · · · · · · · ·						
				N VIBEATI	ONI				
~1	*	SAMPLE	RUINED 1	N AIORUI					
	{	۰ ۲							_
1	ļ		a						
	;		······	1					_ •
	/				<u> </u>				_

PROJECT ENGR. F.KEISTER

'Y

Page 34

	5 OC	STRENGTH		9-15-65	-			9-15-6	5
	SPECIMEN	(pounds)	SPECIMEN NUMBER	STRENGTH	SPECIMEN	STRENGTH	SPECIMEN	STRENGTH	
		· · · · · ·	HUMBER	(Cpounds)	NUMBER	(pounds)	NUMBER	(pounds)	
	11010	BEFORE HEAT		AFTER HEAT		BEFORE HEAT	<u> </u>	AFTER MEAT	
	1.1.918		1.1.101 B	ILO WR	1.3.918	14.0 R2	1.3.1018	14.57	
	1.1.92B		1,1,1028	11.5 W2	1.3.928	16.5 R2	1.3.1023	14.17	5
	1.1.93 B	1 -	1.1. 103 B	12.0 WO	1.3.99B	13.5 R2	1.3.103B	14.0 R	
	1.1.948	12.0 W2	1.1.104 B	11.5 WO	1.3.94B	16.5 R2	1.3.104 B		_
	1.1. 15 8	110 W2	1.1. 105B	12.0 W2	1.3.958	14.0 R2	1		T .5
_	1.1. 96 B		1.1.104 B	11.0 W2			1.3.105B	14.5 R	5
3	1.1. 978		1.1. 1078		1.3.968	17.0 R2	1.3.106 B	M.S.R	
nić l	1.1. 98 B			12.0 H2	1.3.978	13.5 R2	1.3.107B	15.0 R	2 :
Ē	1.1.998		1.1.108B	12.5 W2	1.3.98B	17.0 R2	1.3.1088	17.5 R	
2+			1.1.109B	12.5 W2	1.3. 998	16.5 R2	1.3.109B	HOR.	z ¥
, k	1.1. 1008		1.1.108	11.5 W2	1.3.100B	15.572	1.3.1108	14.0 R	5 3
60 -1	1.1. JPL 3	8.5 W2	1.1. JPL7	10.0 W2	1.3. JP13	17.5 R2	1.3.1PL7	19.0 R	
	1.1. JPL 4	10.0 W2	1.1. JPL 8	10.5 W2	1.3. JPL4	17.0 R2	1.3.JPL 8	18.5 W	-
	1.1. JP2 5		1.1. JPL9	10.5 W2	1.3. JPL 5	16.0 R2			
	1.1. JPL6		1.1. JPL 10	9.5 N2			1.3. JPL9	19.5 R	43
	ŧ	•	Te INCO	-Za AR	1.3.JPL6	<u> 17.0 R2</u>	1.3, JPL 10	17.0 R	2
· -							2. 		1
		13 - 10			ļĮ				
•	1.2.918		1.2,101 B	1	1.4.91B	14.0 W2	1.4.101B	12.5 R	2
	1.2.92B		1.2.102 B	14.0 N2	1.4.92B	18-5 W2	1.4.102B	18.5 N.	2 0
	1.2.938		1.2.1038	12.5 W2	1.4.93B	17.5 W2	1.4.103B	19.0 N	
	1.2.948	12.0 WZ	1.2. 104B	14.5 NB	1.4.94 B	13,5 R2	1.4.1048	17.5 W	
	1.2.95B	13.0 W2	1.2. 105B	14.5 WI	1.4.958	18.5 72	1.4.1058	1.11	~ 0
. •	1.2.96 B	12. 8 H2	1-2.106B	10.5 WS	1.4.96B	13.0 Rg		19.5 W	-
تر. لا	1.2.97B	14.0 W2	1.2.1078	13.5 N2		18.5 R2	1.4. 1010 B	10	
Ē	1.2.98 B	12.0 W2	1.2.108 B	13.0 W2			1.4.1078	19.0 W	
-0	1.2.99B	14.0 W2			1.4.988	10-	1.4.10KB	19.0 R	4á
a H	1.2.100 B		the second second second second second second second second second second second second second second second s	1-	1.4.998	18.5 W2	1.4.104 B	19.5 R	2 -
<u>a</u> H			1.2.110B	13.0 W2	1.4.1008	13.5 R2	1.4.1108	19.0 R:	: ٹہ [
e .	1.2.JPL3		1.2. JPL7	12.5 W2	1.4. JPL3	15.0 W2	64.3067	12.0 RG	
₹ ₹	I. Z. JPLY	11.5 W2	LZ. JPLS	11.5 W2	1.4. JPL4 !	* 1	1.4. JPL 8	13.0 RS	-
	1.2. JPL 5	12.0 W2	1.2. JP29	13.0 W2	1.4. JPL5	12.5 R2	1.4. 3019	15.5 W2	
	1.2. JPL6	11.0 W2	1.2. JPL 10	12.0 W2	1.4.1926	*	1.4 .JPL 10		-
		PLATED NICH					IO [16.5 W2	
•	· · · · · · · · · · · · · · · · · · ·								
		And a state of the second second second							1
	·					nens rumed		<u>_0n</u>	
		· · · · · · · · · · · · · · · · · · ·			vibri	etien table.	1		
						1			1
•		t.				Í			
· -	ťi				1		i		1
	·				Ì				
				ł	J R				

PROJECT ENGR. EXCISTER

يەر مەر	•		JPL (CONTRA	CT 9	51069	n Marina a serie a serie a serie a serie a serie a serie a serie a serie a serie a serie a serie a serie a serie	Page 35	
•	TEST	<u>Ultima</u>	te Strengt	to after)	Libration				
	7723	ಂಕ ಕರ್ಮನ	•	Jaiots -		225			
	TEST	20 BY	<u> </u>	~		DATE	9-15	-65	
		broke adjacent h	/	9 wi	3 = Wife bri	ske sway from	-		
	RZ= Ribbon WS= Weld	b b b	M 40		B = Ribbon	N ss N	•		
:	SPECIMEN		SPECIMEN	STRENGTH	SPECIMEN	STRENGTH	SPECIMEN	STRENGTH	ŀ
	NUMBER	(pounds)	NUMBER	(pounds)	NUMBER	(pounds) BEFORE HEAT	NUMBER	(pounds) AFTER HEAT	-
	1.5.918	BEFORE HEAT	1.5.1018	AFTER HEAT	2.918		2, 101 B	3.2 W2	ق ن
Luco	1.5.92B	9.5 W2	1.5, 102 B	2.5 N3	2.92B	14.5 W2	v v		YE è
้ที่	1.5.938	20 W2	1.5,103B	7.0 W2 9.5 W2	2.938	<u>3.7 W2</u>	2.103 B	3.2 R2 3.7 W2	ξZ
<u>م</u> :	1.5,94B	95 W2	1.5,104 B	9.5 W2	2-948	3.2 R2		3.0 R2	7 78 7 78
e.	1.5.96B	10.5 W2		9.0 W2	2-96 B	4.0 R2	2,1048	3.5 R2	e te
da	1.5.978	19.0 W21	1.5.107B	8.5 N2	2.978	3.2 R		40 W2	4 7
e J	1.5.98B	10.0 W2		9.0 W2	2,98 8	4 2 R2		7.2 W2 3.0 R2	501 L
6	1.5.998	9.0 W2	1.5.109B	9.5 W2 8.5 N2	2.998	* 40 R2	2-1108	3.5 W2	ę.
plate	1.5, JPL3	10.0 W2	1.5.110B	9.0 W3	a.1000	1.			
2	I.S.JPL4	9.0 W2	I.S.JPL8	9.0 W2					
5	1.5.JPLS	9.8 W2			* Syee	imen destroye	in disass	emply from	
	1.5. JPL 6	PLATED COOPER	1.5, JPL10	9.0 W2	نن ر	tation table	· · · · · · · · · · · · · · · · · · ·		
-	60LD	PARTED COPPER		Î		1			
!	1.6.913	8.0 W2	1.6. 101B	18.5 N2)			
0	1.6.92B	18.0 WS				- <u>i</u>	ļ		
ษ์	1.6.938	18.0 WS		1 8.0 W2		<u>,</u>	1	- <u> </u>	
	1.6.94B	8.0 WS		8.0 W2		1	\	1	.
, to	1.6.95B	18.0 NS	1.6,1068	18.5 WS			Ì		I .
ad d og	1.6,97B	8.5 W2	5	18.0 N2	1	. <u> </u>			ļ
	1.6.988	18.0 MS		8.5 W2	1.				{
ted	1.6.998	1.5 WS	1 1.6. 109B	7.5 WS		1	<u> </u>	-{	1
60	1. 4. 100 15	175 L/S	<u> </u>	19.0 W2		ή	1		1
er	Liles JPL 4	8.5 W2	I have the	8.5 W.		Į	Ì	4	1
Solder coated	1.6. JPL5	18.5 W	1-6, JPL9	18.5 W	1	ļ	<u> </u>		4
	1.6. 2926		1.6. JPLIC	8.0 Wa			1	_	ł
i		DER CONTED	OPPER TO I	1				1	
1	-	·····					ļ		
1		ť		1	∦	1		<u> </u>	{
1	·			1	-11		<u> </u>		
	\	···· ¹	·			 ;	í		1
							(1
			1	. <u>.</u>			_{	_	4
				<u> </u>		<u> </u>			L
						Pool	ect ansa.	5.::51575	2
· ·				,	•				
• •			•		•				
			· •						

4

ATTACHMENT 3

PHOTOMICROGRAPHS OF METALLOGRAPHIC SPECIMENS

Solder Joints: Figures 1 - 22
 Weld Joints: Figures 23 - 48

fright,

Figure 1. Solder joint 1.1.1.83 stranded conductor to cinch connector cup; not sterilized; 60x magnification; potassium dichromate etch (02344).

Figure 2. Solder joint 1.1.1.89 stranded conductor to cinch connector cup; sterilized; 60x magnification; potassium dichromate etch (02345).

Figure 3. Solder joint 1.1.2.83; stranded conductor to Bendix connector cup; not sterilized; 60x magnification; potassium dichromate etch (02346).

Figure 4. Solder joint 1.1.2.88; stranded conductor to Bendix connector cup; sterilized; 60x magnification; potassium dichromate etch (02347).

Figure 5. Solder joint 1.2.82; stranded conductor to solder coated bifurcated terminal; not sterilized; 100x magnification; potassium dichromate etch (02348).

Figure 6. Solder joint 1.2.87; stranded conductor to solder coated bifurcated terminal; sterilized; 100x magnification; potassium dichromate etch (02349).

Figure 7. Solder joint 1. 3. 1.84; gold plated copper conductor to solder coated bifurcated terminal; not sterilized; 100x magnification; potassium dichromate etch (02350).

Figure 8. Solder joint 1. 3. 1.86; gold plated copper conductor to solder coated bifurcated terminal; sterilized; 100x magnification; potassium dichromate etch (02351).

Figure 9. Solder joint 1.3.2.81; solder coated copper conductor to solder coated bifurcated terminal; not sterilized; 100x magnification; potassium dichromate etch (02352).

Figure 10. Solder joint 1.3.2.87; solder coated conductor to solder coated bifurcated terminal; sterilized; 100x magnification; potassium dichromate etch (02353).

Figure 11. Solder joint 1.3.3.83; gold plated Dumet conductor to solder coated bifurcated terminal; not sterilized; 100x magnification; potassium dichromate etch (02354).

Figure 12. Solder joint 1.3.3.86; gold plated Dumet conductor to solder coated bifurcated terminal; sterilized; 100x magnification; potassium dichromate etch (02355).

Figure 13. Solder joint 1.3.4.83; gold plated Kovar conductor to solder coated bifurcated terminal; not sterilized; 100x magnification; potassium dichromate etch (02356).

Figure 14. Solder joint 1.3.4.89; gold plated Kovar conductor to solder coated bifurcated terminal; sterilized; 100 magnification; potassium dichromate etch (02357).

Figure 15. Solder joint 1.3.5.84; gold plated nickel conductor to solder coated bifurcated terminal; not sterilized; 100x magnification; potassium dichromate etch (02358).

Figure 16. Solder joint 1.3.5.88; gold plated nickel conductor to solder coated bifurcated terminal: sterilized 100x magnification; potassium dichromate etch (02359).

Figure 17. Solder joint 1.3.6.84; bare nickel conductor to solder coated bifurcated terminal; not sterilized; 100x magnification; potassium dichromate etch (02360).

Figure 18. Solder joint 1.3.6.87; bare nickel conductor to solder coated bifurcated terminal; sterilized; 100x magnification; potassium dichromate etch (02361).

Figure 19. Solder joint 1.4.83; gold plated copper conductor to gold plated bifurcated terminal; not sterilized; 100x magnification; potassium dichromate etch (02362).

Figure 20. Solder joint 1.4.90; gold plated copper conductor to gold plated bifurcated terminal; sterilized; 100x magnification; potassium dichromate etch (02363).

Figure 21. Solder joint 1.5.85; resistor lead to solder coated bifurcated terminal; not sterilized; 100x magnification; potassium dichromate etch (02364).

Figure 22. Solder joint 1.5.89; resistor lead to solder coated bifurcated terminal; sterilized; 100x magnification; potassium dichromate etch (02365).

Figure 23. Weld joint 1.1.81; bare nickel wire to Inco ribbon; not sterilized; 150x magnification; nitric-acetic etch (02316)

Figure 24. Weld joint 1.1.86; bare nickel wire to Inco ribbon; sterilized; 150x magnification; nitric-acetic etch (02319).

Figure 25. Weld joint 1.1. JPL 1; bare nickel wire to Inco ribbon; not sterilized; 150x magnification; nitric-acetic etch (02317).

Figure 26. Weld joint 1.1. JPL 2; bare nickel wire to Inco ribbon; sterilized; 150x magnification; nitric-acetic etch (02318).

1.

Figure 27. Weld joint 1.2.81; gold plated nickel wire to Inco ribbon; not sterilized; 150x magnification; nitric-acetic etch (02320).

Figure 28. Weld joint 1.2.87; gold plated nickel wire to Inco ribbon; sterilized; 150x magnification; nitric-acetic etch (02323).

Figure 29. Weld joint 1.2. JPL 1; gold plated nickel wire to Inco ribbon; not sterilized; 150x magnification; nitric-acetic etch (02321).

Figure 30. Weld joint 1.2. JPL 2; gold plated nickel wire to Inco ribbon; sterilized; 150x magnification; nitric-acetic etch (02322).

Figure 31. Weld joint 1.3.85; gold plated Kovar wire to Inco ribbon; not sterilized; 150x magnification; Carapella + nitric-acetic etch (02324).

Figure 32. Weld joint 1.3.86; gold plated Kovar wire to Inco ribbon; sterilized; 150x magnification; Carapella + nitric-acetic etch (02324).

Figure 33. Weld joint 1.3. JPL 2; gold plated Kovar wire to Inco ribbon; not sterilized; 150x magnification; Carapella + nitric-acetic etch (02325).

Figure 34. Weld joint 1.3. JPL 2; gold plated Kovar wire to Inco ribbon; sterilized; 150x magnification; Carapella + nitric-acetic etch (02326).

Figure 35. Weld joint 1.4.84; gold plated Dumet wire to Inco ribbon; not sterilized; 150x magnification; Carapella etch (02328).

Figure 36. Weld joint 1.4.87; gold plated Dumet wire to Inco ribbon; sterilized; 150x magnification; Carapella etch (02331).

Figure 37. Weld joint 1.4. JPL 2; gold plated Dumet wire to Inco ribbon; not sterilized; 150x magnification; Carapella etch (02324).

Figure 38. Weld joint 1.4. JPL 2; gold plated Dumet wire to Inco ribbon; sterilized; 150x magnification; Carapella etch (02330).

Figure 39. Weld joint 1.5.81; gold plated copper wire to Inco ribbon; not sterilized; 150x magnification; nitric-acetic etch (02332).

Figure 40. Weld joint 1.5.88; gold plated copper wire to Inco ribbon; sterilized; 150x magnification; nitric-acetic etch (02335).

Figure 41. Weld joint 1.5. JPL 1; gold plated copper wire to Inco ribbon; not sterilized; 150x magnification; nitric-acetic etch (02333).

Figure 42. Weld joint 1.5. JPL 2; gold plated copper wire to Inco ribbon; sterilized; 150x magnification; nitric-acetic etch (02334).

Figure 43. Weld joint 1.6.82; solder coated copper wire to Inco ribbon; not sterilized; 150x magnification; nitric-acetic etch (02336).

Figure 44. Weld joint 1.6.90; solder coated copper wire to Inco ribbon; sterilized; 150x magnification; nitric-acetic etch (02339).

Figure 45. Weld joint 1.6. JPL 1; solder coated copper wire to Inco ribbon; not sterilized; 150x magnification; nitric-acetic etch (02337).

Figure 46. Weld joint 1.6. JPL 2; solder coated copper wire to Inco ribbon; sterilized; 150x magnification; nitric-acetic etch (02338).

Figure 47. Weld joint 2.83; gold plated Kovar foil to itself; not sterilized; 150x magnification; Carapella etch (02340).

Figure 48. Weld joint 2.86; gold plated Kovar foil to itself; sterilized; 150x magnification; Carapella etch (02343).

ATTACHMENT 4

ELECTRON PROBE MICROANAL SIS CHARTS FOR SOLDERED AND WELDED JOINTS

Solder Joint 1.3.1:	Pages 1 - 8
Solder Joint 1.4:	Pages 9 - 16
Weld Joint 1.5:	Pages 17 - 24

X

- 14

0.0

•. •,

¥.,

, qlo

.

REPORT NO. P65-117

This work was performed for the Jet Propulsion Laboratory, California Institute of Technology, sponsored by the National Accomattics and Space Administration under Contract NAS7-100.

FINAL REPORT - PART III (Contract No. 951069)

DETERMINATION OF THE EFFECTS OF THERMAL BAKE-OUT, HEAT STERILIZATION, AND ETHYLENE OXIDE DECONTAMINATION ON THE SOLDERABILITY OF COMPONENT LEADS

Prepared for: Jet Propulsion Laboratory California Institute of Technology

9 OCTOBER 1965

Pasadena, California

HUGHES AIRCRAFT COMPANY

AEROSPACE GROUP

CULVER CITY, CALIFORNIA

FINAL REPORT - PART III Contract No. 951069

DETERMINATION OF THE EFFECTS OF THERMAL BAKE-OUT, HEAT STERILIZATION, AND ETHYLENE OXIDE DECONTAMINATION ON THE SOLDERABILITY OF COMPONENT LEADS

by

F. Z. Keister, Hughes Project Engineer 9 October 1965

For

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

This work was performed for the Jet Propulsion Laboratory, California Institute of Technology, sponsored by the National Aeronautics and Space Administration under Contract NAS7-100.

Approved:

E. F. Smith, Manager Materials Technology Department

Materials Technology Department AEROSPACE GROUP Hughes Aircraft Company · Culver City, California

ABSTRACT

The purpose of this investigation was to determine the effects of thermal bake-out, heat sterilization, and ethylene oxide decontamination on the solderability of component leads.

This program involved the preparation and testing of 320 specimens, of which 64 were metallographically examined and 256 were solderability tested. The specimens for this program included nine different solid and stranded wire conductor materials, two types of connector cups, and two types of bifurcated terminals. Specimens were solderability tested (by dipping in a solder pot) and examined metallographically before and after three treatments: 1) thermal bake-out; 2) heat sterilization; and 3) ethylene oxide decontamination. Photomicrographs at 1000X magnification were taken of all specimen types before and after treatment. All solderability test results were analyzed statistically.

Based on the test results, it was concluded that thermal bake-out, heat sterilization, and ethylene oxide decontamination had <u>very little</u> <u>effect</u> on the solderability or metallurgical integrity of the specimens tested. Although a few specimen types did exhibit certain effects due to either thermal bake-out or heat sterilization, these effects were minimal and could be attributed to either unrelated causes or to factors which could be corrected in production usage.

av

CONTENTS

Page

1.	Purp	ose and	Scope	:.	•	•	•	•	•	•	•	•	1
	1.1	Purpos	se.	•	•	•	•	•	•	•	•	•	1
	1.2	Scope	•	•	•	•	•	•	•	•	•	•	1
2.	Mate	rials an	d Equ	ipme	nt	•	•		٠	•	٠	• •	3
	2.1	Materi	als fo	r Sol	dera	abilit	y Sp	ecin	nens	•	•	•	3
	2.2	Materi Speci n		r Flu	ixing •	g and •	Sole	der I	Dippi	ing	•	•	3
	2.3	Materi		r Pr	epar	ing 1	Meta	llogi	raphi	ic			5
		Mounts	5.	•	•	•	•	•	•	•	•	•	-
	2.4	Equipn	nent	•	•	•	•	•	•	•	•	•	5
3.	Test	Proced	ures	•	•	•	•	•	•	•	•	•	7
	3.1	Genera	al Tes	t Inf	orma	ation	•	•	•	•	•	•	7
	3.2	Bake-(Out Te	est P	roce	dure	8	•			•	•	7
	3.3	Dry He	eat Ste	eriliz	zatio	n Te	st P	roce	dure	8	•	•	10
	3.4 Ethylene Oxide Decontamination Test												
		Proces		•	•	•	•	•	•	•	•	•	10
	3.5	Solder	ability	y Tes	st Pr	oced	lure	8	•	•	•	•	11
	3.6	Metall Proce	<u> </u>		Exam	ninat •	ion 7 •	Cest •	•	•	•	•	13
4.	Resu	ults .	•	•	• .	•	•	•	•	•	•	•	17
	4.1	Solder	abilit	y Te	st Re	esult	8			•	•	•	17
	4.2	Metall	ograp	hic H	Exam	ninat	ion 7	ſest	Resu	ilts	•	•	25
5.	Cond	lusions	•	•	•	•	•	•	•	•	•		45
	Acknowledgments							•	•	49			

v

ILLUSTRATIONS

Figure		Page
1	Test program plan per (ii) wire specimens.	8
2	Test program plan per (iii) and (iv) specimens	8
3	Ethylene oxide decontamination antechamber	12
4	Specimen (iv) types A, B, C, D, E, and F in ethylene oxide decontamination antechamber .	12
5	Solderability test equipment	14
6	Mounting configurations for treated and untreated specimens	16
7	Solderability test specimens which have been solder dipped before and after bake-out	18
8	Solderability test specimens which have been solder dipped before and after heat sterilization and ethylene oxide decontamination	21
9	Photomicrographs of a typical solid conductor and a typical stranded conductor as metallographically mounted	26
10	Photomicrographs of a typical connector cup and typical bifurcated terminal as metallographically mounted	27
11	Photomicrographs at 1000X of Specimen A(ii) before and after thermal bake-out	28
12	Photomicrographs at 1000X of Specimen B(ii) before and after thermal bake-out	29
13	Photomicrographs at 1000X of Specimen C(ii) before and after thermal bake-out	30
14	Photomicrographs at 1000X of Specimen D(ii) before and after thermal bake-out	31
15	Photomicrographs at 1000X of Specimen E(ii) before and after thermal bake-out	32
16	Photomicrographs at 1000X of Specimen F(ii) before and after thermal bake-out	33
17	Photomicrographs at 1000X of Specimen G(ii) before and after thermal bake-out	34
18	Photomicrographs at 1000X of Specimen A(iii-iv) before and after heat sterilization and ETO decontamination.	35

-

Figure

I

A.

19	Photomicrographs at 1000X of Specimen B(iii-iv) before and after heat sterilization and ETO decontamination	6
20	Photomicrographs at 1000X of Specimen C(iii-iv) before and after heat sterilization and ETO decontamination	7
21	Photomicrographs at 1000X of Specimen D(iii-iv) before and after heat sterilization and ETO decontamination	8
22	Photomicrographs at 1000X of Specimen E(iii-iv) before and after heat sterilization and ETO decontamination.	39
23	Photomicrographs at 1000X of Specimen F(iii-iv) before and after heat sterilization and ETO decontamination.	10

TABLES

Table		Page
I	List of materials	4
II	Statement of work for solderability test program	9
III	Solderability test results for specimens before and after bake-out	19
IV	Bake-out effects on solderability	20
v	Solderability test results before and after heat sterilization and ETO decontamination	22
VI	Solderability test results before and after heat sterilization and ETO decontamination	23
VΠ	Effects of thermal sterilization and ethylene oxide decontamination on the solderability of connector cups, bifurcated terminals, stranded wire, and	
	solid wire	24
VIII	Summary of test results	46

ix

1. PURPOSE AND SCOPE

1.1 PURPOSE

The purpose of this investigation was to determine the effects of thermal bake-out, heat sterilization, and ethylene oxide decontamination on the solderability of component leads. The primary purpose of this contract (refer to Parts I and II) was to determine the effects of a thermal sterilization process on the mechanical and electrical properties of soldered and welded joints.

This work was done for the Jet Propulsion Laboratory under Contract No. 951069 (subcontract under NASA Contract NAS 7-100). Mr. A. G. Fitak was the JPL Project Engineer on this program. During the final stages of this program, Mr. R. F. Holtze became the new JPL Project Engineer on this program, since Mr. Fitak was transferred to other duties.

This final report has been divided into three separate parts. Part I covers the thermal sterilization effects on solder and weld joints. Part II contains the weld schedule isoforce diagrams, raw data sheets, photomicrographs, and electron probe microanalysis charts for the solder and weld joints under Part I. Part III, which is this part, covers the solderability studies and is complete in itself with all its own data sheets and photomicrographs included under the same cover.

1.2 SCOPE

Part III of this final report is a determination of the effects of thermal bake-out, heat sterilization, and ethylene oxide decontamination on the solderability of component leads. This portion of the program involved preparing and testing 320 specimens of which 64 were metallographically examined and 256 were solderability tested. The specimens for this program included 9 different conductor materials, 2 types of connector cups, and 2 types of bifurcated terminals. Specimens were solderability tested (by dipping in a solder pot) and examined

1

AD

before and after three treatments: 1) thermal bake-out; 2) heat sterilization; and 3) ethylene oxide decontamination. Thirty-six photomicrographs were taken (32 of them at 1000 x magnification) of typical specimens before and after treatment. The test results were analyzed statistically. Photographs were taken of typical specimens of each type after being solder dipped and before and after thermal bake-out, heat sterilization, and ETO decontamination. Photographs were also taken of each type of test equipment used.

2. MATERIALS AND EQUIPMENT

2.1 MATERIALS FOR SOLDERABILITY SPECIMENS

The materials used in this program for the solderability specimens are listed in Table I. These materials (i.e., conductors, terminals, and connector cups) are identical to those used in Part I of this program, except for two new materials - items 12 and 13. Both of these conductors had a nickel underplating beneath the outer gold plating. Metallographic and spectrographic examination of these two new materials showed them to be as ordered with the thickness of the nickel strike being 80-92 microinches and the thickness of the gold plating being 100-112 microinches.

2.2 MATERIALS FOR FLUXING AND SOLDER DIPPING SPECIMENS

- 2.2.1 Alpha No. 611 activated rosin flux per MIL-F-14256C, Type
 A. This flux was used for fluxing all gold plated and solder coated solid wire conductors, connector cups, and bifurcated terminals.
- 2.2.2 Alpha No. 100 unactivated rosin flux per MIL-F-14256C, TypeW. This flux was used for fluxing stranded conductors.
- 2.2.3 Alpha No. 90 stainless steel flux. This flux was used for fluxing bare nickel solid wire conductors.
- 2.2.4 Kester bar solder per QQ-S-571d, Type Sn 63-B-S. This solder (63% tin, 37% lead) was used in the dip solder pot.
- 2.2.5 1, 1, 1 Trichloroethane per Federal Specification O-T-620. This solvent was used to remove flux residues from all specimens fluxed with Alpha No. 100 and Alpha No. 611 flux. Water was used to remove residues of Alpha No. 90 flux.

3

Table I. List of materials.

1.	Stranded conductor, #24 AWG, 19/36, per MIL-W-16870, Type E, silver plated, Teflon insulated.
2.	Cinch connector cup per JPL 20045/200-E.
3.	Bendix connector cup per JPL ZPH-2245-0300-B, JPL DS317, and MIL-C-26482C.
4.	Bifurcated terminal, solder coated, per JPL DS167-7.
5.	Bifurcated terminal, gold plated, per JPL DS99-7.
6.	Conductor, copper, OFHC, 0.020" diam., gold plated per MIL-G-45204, Type I, Class l.
7.	Conductor, copper, OFHC, 0.020" diam., tin-lead coated, tin 10-70%, 0.0001" average min. thickness -0.001" average maximum thickness per Revision A to MIL-STD-1276. Preferred tin-lead alloy to be 63-37 or 60-40.
8.	Conductor, Dumet, 0.020" diam., per MIL-STD-1276, Type D, gold plated per MIL-G-45204, Type I, Class 1.
9.	Conductor, Kovar, 0.018'' diam., per MIL-STD-1276, Type K, gold plated per MIL-G-45204, Type I, Class 1.
10.	Conductor, Nickel, 0.025'' diam., per MIL-STD-1276, Type N-2, gold plated per MIL-G-45204, Type I, Class 1.
11.	Conductor, Nickel, bare, 0.025" diam., per MIL-N-46026.
12.	Conductor, Dumet, 0.020" diam., per MIL-STD-1276, Type D, gold plated per MIL-G-45204, Type I, Class 1, having a nickel strike (50-100 microinches) under the gold plating.
13.	Conductor, copper, OFHC, 0.020" diam., gold plated per MIL-G-45204, Type I, Class 1, having a nickel strike (50-100 microinches) under the gold plating.

Ó

2.3 MATERIALS FOR PREPARING METALLOGRAPHIC MOUNTS

- 2.3.1 Precision Scientific "Precisionite" mounting powder for all hot mounts.
- 2.3.2 Fulton Metallurgical "Quickmount" mounting powder for all cold mounts.

2.4 EQUIPMENT

- 2.4.1 Dee Melting Pot, Model 13. Used for solder dipping tests.
- 2.4.2 Leitz Wetzlar (German) binocular microscope, Serial No.
 505106 with an American Optical Illuminator, Model 11144.
 Used for visual examination of solder dipped specimens at
 30x magnification.
- 2.4.3 National Appliance Co. Vacuum Oven, Model 58402, Serial No. B59. Used for bake-out of all specimens at 200°C in a nitrogen atmosphere and also used for dry heat sterilization of all specimens.
- 2.4.4 Hughes Aircraft Company specially-designed antechamber and apparatus for exposure of specimens to ethylene oxide decontamination.
- 2.4.5 Zeiss Inverted Metallurgical Microscope, Model No. B-5000 and Reichert Metallograph, Model MeF. Used for examining metallographic mounts at 500x to 1000x magnifications and also used for taking photomicrographs since the Reichert Metallograph is equipped with a built-in camera. Photomicrographs were taken with Kodak Super Panchro Press film.
- 2.4.6 Buehler Model 67-1509 Vibromet Polisher and Buehler Model 1330AB Mounting Press. Used for preparing metallographic specimens.

3. TEST PROCEDURES

3.1 GENERAL TEST INFORMATION

Figure 1 outlines the test program plan for the seven (7) wire types (i.e., A, B, C, D, E, F, G) listed in (ii) of the Statement of Work. The Statement of Work is included as Table II. Twenty (20) specimens of each of these seven (7) wire types were prepared. Eight (8) each were solderability tested before and after bake-out and two (2) each were metallographically examined before and after bake-out. Thus a total number of 140 specimens were required, of which 28 were metallographically examined and 112 were solderability tested.

Figure 2 outlines the test program plan for the six (6) specimen types (i. e., A, B, C, D, E, F) listed in (iii) and (iv) of the Statement of Work (Table II). Thirty (30) specimens each of types A, B, C, D, E, and F were prepared. Eight (8) each were solderability tested before sterilization and two (2) each were metallographically examined before sterilization. Eight (8) each were solderability tested after ethylene oxide decontamination and two (2) each were metallographically examined after ethylene oxide decontamination. Eight (8) each were solderability tested after heat sterilization and two (2) each were metallographically examined after heat sterilization. Thus a total number of 180 specimens were required of which 36 were metallographically examined and 144 were solderability tested.

In summation the total program involved <u>320</u> specimens of which <u>64</u> were metallographically examined and 256 were solderability tested.

3.2 BAKE-OUT TEST PROCEDURES

In accordance with the Test Program Plan (Figure 1) and the Statement of Work (Table II), bake-out tests of all (ii) specimens (i.e., A, B, C, D, E, F, G) were done in a vacuum oven and consisted of exposure to 200° C for a period of 168 hours in an inert nitrogen atmosphere. Figure 10 in Part I of this final report shows a photograph of the vacuum oven used for bake-out tests.

.

Figure 1. Test program plan per (ii) wire specimens.

Figure 2. Test program plan per (iii) and (iv) specimens.

8

.

Table II. Statement of work for solderability test program.

(i)	The f	ollowing tests shall be performed:		
(ii)	Metallographic Examination and Solderability before and after exposure, of the following listed materials, to 200°C for a period of 168 hours in inert atmosphere:			
	(A)	Copper, Gold Plated		
	(B)	Dumet, Gold Plated		
	(C)	Kovar, Gold Plated		
	(D)	Nickel, Gold Plated		
	(E)	Nickel Ba re		
	(F)	Dumet, Nickel undercoat, Gold Plated		
	(G)	Copper, Nickel undercoat, Gold Plated		
(iii) Metallographic Examination and Solderability before after exposure, of the following listed materials, to sterilization in accordance with JPL Specification No. XSO-30275-TST-A, 24 May 1965:				
	(A)	Stranded Conductor		
	(B)	Brass, Copper Plated, Gold Plated, Connector Cups (Cinch)		
	(C)	Brass, Copper Plated, Silver Plated, Gold Plated, Connector Cups (Bendix)		
	(D)	Copper wire, Solder coated		
	(E)	Bifurcated terminals, Solder coated		
	(F)	Bifurcated terminals, Gold Plated		
(iv)	after comj ment	llographic Examination and Solderability before and exposure, of the following listed materials and ponents, to the ethylene oxide decontamination treat- t as specified in JPL Specification GMO-50198-ETS-A, d 3 September 1964:		
	(A)	Stranded Conductor		
	(B)	Brass, Copper Plated, Gold Plated, Connector Cups (Cinch)		
	(C)	Brass, Copper Plated, Silver Plated, Gold Plated, Connector Cups (Bendix)		
	(D)	Copper wire, Solder coated		
	(E)	Bifurcated terminals, Solder coated		
	(F)	Bifurcated terminals, Gold Plated		

0.08

3.3 DRY HEAT STERILIZATION TEST PROCEDURES

In accordance with the Test Program Plan (Figure 2) and the Statement of Work (Table II), heat sterilization of all (iii) specimens (i. e., A, B, C, D, E, F) was done in accordance with JPL Specification XSO-30275-TST-A "Compatibility Test for Planetary Dry Heat Sterilization Requirements." Heat sterilization consists of three 36 hour cycles at 145°C in a dry nitrogen environment. Dry heat sterilization testing is described completely in Section 4.2 in Part I of this final report. Figures 10 and 11 in Part I of this final report show views of the vacuum oven used for dry heat sterilization testing. In the photograph in Figure 11 can be seen certain of the solderability test specimens in Petri dishes within the vacuum oven on the lower shelf.

3.4 ETHYLENE OXIDE DECONTAMINATION TEST PROCEDURES

In accordance with the Test Program Plan (Figure 2) and the Statement of Work (Table II), ethylene oxide decontamination of all (iv) specimens (i.e., A, B, C, D, E, F) was done in accordance with JPL Specification GMO-50198-ETS-A "Compatibility Tests for Ethylene Oxide Decontamination Requirements" dated 3 September 1964. Exposure is accomplished by subjecting specimens to 12% ethylene oxide - 88% Freon 12 gas mixture by weight at 35% relative humidity and 24°C for 24 hours, followed by a similar exposure at 40°C if specimens show no deterioration of properties. The concentration of the ethylene oxide in the decontamination chamber is 500 \pm 50 milligrams of ethylene oxide per liter of gaseous atmosphere. The gas composition and relative humidity were determined by gas chromatographic analysis. The test chamber is subjected to a vacuum to remove sterilant gas atmosphere within 30 minutes after the exposure period ends. Only specimens of good quality were selected for testing and all necessary steps were taken to assure maximum cleanliness of the samples prior to testing.

Figure 3 is a photograph of the special antechamber used for ethylene oxide decontamination. This antechamber is capable of being evacuated or pressurized.

Figure 4 is a close-up photograph showing specimens A, B, C, D, E, and F in Petri dishes ready for ethylene oxide decontamination.

3.5 SOLDERABILITY TEST PROCEDURES

In accordance with the Test Program Plan (Figures 1 and 2) and the Statement of Work (Table II), all specimens were solderability tested per MIL-STD-202C, Method 208A "Solderability" dated 12 September 1963. Essentially this test method consists of dipping a fluxed wire or other applicable specimen in a pot of molten solder. The dipped specimen is then cleaned and visually examined for solder coverage. Operator manual dipping was used, as opposed to machine dipping, in order to simulate more closely actual production conditions. One operator performed all dipping tests on all specimens. This was a deviation from MIL-STD-202C which calls out mechanical dipping. The temperature of the molten solder was maintained at $450^{\circ} \pm 10^{\circ}$ F. The composition of the solder was 63% tin - 37% lead. This was a deviation from MIL-STD-202C which calls out 60-40 solder. The fluxes used (see Paragraphs 2.2.1, 2.2.2, and 2.2.3 under the Materials section) for the solder dipping tests were mutually agreed upon between JPL and Hughes.

Following is a step-by-step procedure:

Step 1. Dip specimen in appropriate flux for 2-5 seconds.

- Step 2. Skim dross from top of molten solder and dip specimen in solder to a depth approximately one-half the specimen length. The immersion and emersion rates were approximately 1-2 inches per second and the dwell time in the solder bath was 5 ±1/2 seconds for all specimens.
- Step 3. Allow the specimen to cool in air and then remove flux residues by immersion in the applicable solvent followed by gentle wiping with a clean cloth.

11

 v_f

Figure 3. Ethylene oxide decontamination antechamber. (R105390)

Figure 4. Specimen (iv) types A, B, C, D, E, and F in ethylene oxide decontamination antechamber. (R105260)

- Step 4. Examine the specimen under 30x magnification to determine:
 - (a) That the specimen is 95-percent covered by a continuous new solder coating
 - (b) That pinholes or voids are not concentrated in one area and do not exceed 5-percent of the total area.

Figure 5 is a photograph showing the equipment used in the solderability tests.

All results of the specimen examinations were recorded on Raw Data Sheets in terms of percentage coverage of the specimen by a continuous new solder coating. All examinations of the before and after bake-out specimens were done by one operator and all examinations of the before and after heat sterilization and ETO decontamination specimens were done by one operator.

3.6 METALLOGRAPHIC EXAMINATION TEST PROCEDURES

In accordance with the Test Program Plan (Figures 1 and 2) and with the Statement of Work (Table II), two each of all specimens before and after bake-out, before and after heat sterilization, and before and after ethylene oxide decontamination (ETO) were metallographically examined. A total of 64 specimens were mounted and examined. Specimens A, B, C, D, E, F, and G per Figure 1 were all hot mounted in Precisionite. Specimens A, B, C, D, E, and F per Figure 2 were all cold mounted in Quickmount.

Thirty-two photomicrographs at 1000x magnification of typical specimens before and after bake-out, heat sterilization, and ETO decontamination were taken. In addition, four photomicrographs at 50x magnification were taken of a typical connector cup, typical bifurcated terminal, typical solid wire conductor, and typical stranded conductor specimen in the mounted condition.

All mounted specimens were examined in both the polished and etched conditions at magnifications from 500x to 1000x. Specimens were examined primarily for grain boundary diffusion of the plating

alloy in the parent metal as well as any interdiffusion of the surface plating. By comparing treated and untreated specimens at high magnification, any degrading effects of the thermal and/or sterilization treatments on the electroplated or solder coated surfaces of the specimens should be revealed.

Metallographic mounts of all specimens were prepared by multiple mounting so that the "before" and "after" specimens could be compared side-by-side without the necessity of switching mounts. Figure 6 illustrates the various multiple mounting methods employed. Figure 6A shows the mounting method used for specimens A, B, C, D, E, F, and G which were all solid wire conductors untreated and baked-out. Figure 6B shows the mounting method used for specimens A, B, C, D, E, and F which were conductors, connector cups, and bifurcated terminals untreated, heat sterilized, and ETO decontaminated. Specimens A and D were in one mount, B and C in another mount, and E and F in the third mount since these pairs were similar types of specimens.

Figure 6A. Mounting configuration for specimen types A, B, F, and G before and after bake-out.

Figure 6B. Mounting configuration for specimen types C and B before and after heat sterilization and ETO decontamination.

Figure 6. Mounting configurations for treated and untreated specimens.

4. RESULTS

4.1 SOLDERABILITY TEST RESULTS

Figure 7 is a photograph showing a typical example of each type of specimen before bake-out (on the left) and after bake-out (on the right). These specimens in Figure 7 have all been solder dipped. The solder dipped ends of the wires are towards the center of the photograph.

Table III is the Raw Data Sheet giving the test results for the solderability tests on the specimens before and after bake-out at 200°C for 168 hours in nitrogen.

Table IV presents the results of a statistical analysis of the data shown in Table III. The statistical analysis was done using the binomial distribution with an arc sine transformation of the percentage data. The gold plated Kovar C (ii) specimens showed a <u>slight</u> effect due to bake-out; however they still pass the requirements of MIL-STD-202C. The 95% confidence interval of the mean was 96.0% - 99.9%, the lower limit of which is greater than the 95% minimum solder coverage. The gold plated Dumet specimens F (ii) with the nickel undercoat <u>failed</u> to pass the solderability requirements of MIL-STD-202C after bake-out. In this case the 95% confidence interval of the mean was 92.3% - 97.4%. In other words we are 95% confident that the mean falls within this range. This same wire type, before bake-out, showed 100% solder coverage for all eight specimens examined.

Figure 8 is a photograph showing a typical example of each type of specimen as follows:

- a) Not solder dipped
- b) Solder dipped untreated
- c) Solder dipped after heat sterilization

d) Solder dipped - after ethylene oxide decontamination.

The solder dipped portions of the connector cups and bifurcated terminals point towards the right, while the solder dipped portions of the conductors point towards the center.

17

HUGHES AIRCRAFT CO.

	NALVEIS SC				REPORT NO		PAGE		
			7-9-65			الأحجيب المحجب فيستعمل الأحجي التقا		1	
	HECKED DY			specimi	ens before	and other b	ske-out.		
			ns refer to x	percentage cu	overage of 1	erd with ne	w solder,	1	
- 1	1) Numbers in columns refer to percentage coverage of lead with new solder. 2) 63/37 solder @ 450°F in Dee Helting Pot, Model 13. 5 second dip								
X									
Ì	3) 2 se	rond flux di	p Alpha 611	BY SIL EX	apt Elii	which was	hipna su.		
N		EXA	MINATIO	V AT	30 X M	AGNIFICAT	ON		
	SPECIMEN	BEFORE BAKE-OUT	AFILR BAKE-OUT		SPECIMEN NUMBER	BEFORE BAKE-OUT	AFTER BAKE-OUT		
ſ	A(1) - 1	~ 100 %	$\sim 100 \%$		D(ii) - 5	~100 70	$\sim 100 \ 7_{\odot}$		
8	2	łt	ti -		6	11	81	10	
Copper	3	žı	**		7	41	u	aleid Ploy	
v	<u>4</u>		11		8	66	23	5	
U eid	5	1+							
ā	<u>_</u>	84	11		E(ii) - 1	~10070	997		
	 ۲	**	Jr.		2	9370	11		
ŀ	8	tı	41		3	~10070	~ 100 %]:	
Ì	<u> </u>				4	Li .	11		
ł	B(ii) - 1	$\sim 1007_{0}$	99 70		5	61	81		
	2	"	$\sim 1007_{\odot}$	<u></u>	6	tı	۲		
	3	"		<u></u>	7	81	۰.	יך	
				<u> </u>	8		11		
	4 5	11			_				
	<u>_</u> 6	11	11	<u></u> .	F(ii) - 1	~10070	207.		
	ح	11	11	<u>_</u>	2	tı .	957		
	 ¥	11			3	11	957.		
					4	þ	247	٦,	
Í	c(ii) - 1	~ 100 70	~ 100%		5	61	937	7	
	2	+ (<u>()</u> /	1000 IA		6	μ	987		
	3	P	967.		<u>۲</u>	11	297.	Ī	
	4	P.	267		Ý	• •	947	ſ	
	 5	b	~100 %		1				
baleid	5	t,	28 7		G(ii) - 1	~ 100 70	99 70		
0107	7	bt	957.		2	41	~ 100.7		
2	۰ ۲	·····	25 k 9670		3	11	- 11		
	• <u>•</u> _	<u> </u>	10.10		4	h	9670		
	$D(i_{1}) - 1$	\sim 100 70	~10070		5	81	$\sim 100 \%$		
-	2	1	9970		6	1	n	-	
			$\sim 100 \%$		۲	4	11		
214	4		\sim 100 /b		8			-	

FOPH 703-C

•

.

19

4.5 K

	Type of Lead	Effect			
A (ii)	Gold plated Copper	None			
B (ii)	Gold plated Dumet	None			
C (ii)	Gold plated Kovar	Slight, passes*			
D (ii)	Gold plated Nickel	None			
E (ii)	Bare Nickel	None			
F (ii)	Gold plated Dumet (Nickel undercoat)	Fails*			
G (ii)	Gold plated Copper (Nickel undercoat)	None			
*Refers to the solderability specification which requires minimum of 95% coverage.					

Table IV. Bake-out effects on solderability.

Tables V and VI are Raw Data Sheets giving the test results for the solderability tests on the specimens outlined in (iii) and (iv) of the Statement of Work (Table II) and shown in Figure 8. Note that specimens A and C were especially good with 100% solder coverage throughout.

Table VII presents the results of a statistical analysis of the data shown in Tables V and VI. In only <u>one</u> case (solder coated bifurcated terminal) was there any significant decrease in solderability. The significance level was 0.001 indicating that there is only 1 chance in 1000 that the analysis is wrong. With this same specimen, the effect of ETO decontamination was not significant.

AFTER ETO, DECONTAMINATION HEAT Carl Same ₩ × * - 72 - 72 GOLD PLATED BIFURCATED TERMINAL SOLDER. COATED BIFURCATED TLANINAL BEFORE SOLDER COATED COPPER WIRE CONDUCTOR BENDIX CONNECTOR CUP STERILUA CIVILY CONNECTOR CUP Comments of the second The last AFTER ł STRANDED HEAT STERILIZATION PERDRE PEAT gi DIPPED 3 TON Y ų AF TER sine. J ينيم لي: در (a) (ĵ) (3) 2

after heat sterilization and ethylene oxide decontamination. (R105895) Solderability test specimens which have been solder dipped before and Figure 8.

HUGHES AIRCRAFT CO.

NALYSIS	ERABILITY		MODEL	REPORT NO.		PAGE
			- Table I.	Solderability heat sterilizat	test result	ts before
HECKED BY			- and alter	NEDI STERITIZAT	ion and EIO	0-COTI PTATA 1
by a Se	sec. dip in 21	ppropriate flux	. Flux remain	for 5 sec. Spe is 1 with trichlo ing done by D	roethone.	flured
	ELANINATION	AT BOX HAEN	FICATION			
SPECINEN NUMBER	NO TREATMEN T	AFTER HEAT STERILIZATION	AFTER ETO Décontamination			
A(iii)-1	~ 100 70	~ 100 %	~100%	Strended	conductor_	
2	61	n	μ			
3	6	11	þ			
4	n	11	h			ļ
5	64	•	4			<u> </u>
6_	•	n	•			
_۲	•	11	4			
8	P	L	n			_
			•			<u> </u>
B(iii)-1	9870	~ 10070	~100 70	Crold pla	ed CINCH co	meeter eup
2	~10070	987			<u>_</u>	
3	ч — — — — — — — — — — — — — — — — — — —	977.				
4	N	~1007.	N			
5	h	*	11			+
6	*	"	<u> </u>			-
7		957	•			+
8	W	~ 1007.				
c(iii)-1	~ 100 %	~ 100 7.	~1007.	Guld pla	HA BENDIX	convector eng
2	n	11	•		L	ļ
3	н	11	ч		L	
4	98	11	ų			
S	94	31	ų			
6		4	•		1	
	i i	st	81	<u></u>	ļ	
8	11	11	81		l	
			ł			

FORM 703-C

HUGHES AIRCRAFT CO.

~

3

NALYSIS	SOLDERABIL	5×	MODEL	REPORT NO	D	PAGE
		<u> </u>	5 Toble II.	Solderabilit	y test rewits n and ETO de	before and
HECKED BY						
		r	r			r
	<u>+</u>	ION AT JOX I	AFTER			
SPECIMEN	TREATMENT	HEAT STERILIZATION	ETO DECONTANINATION			
D(111) -1	~10070	- 100%	~1007	Salder	costed coppe	- wird
2	•	11	987			
. 3	tı.	9570	-100%			
4	987.	~100 %	•			
<u> </u>	~100 7.	40	<u>n</u>			
6	ч	•1	81	· ·		-
7_	987.	983	84			
8	~1007.	~ 10070	957			<u> </u>
E(111)-1	~1007.	6070	957	Solder	costed bifur	ated terminal
<u>}</u>	11	907.	92.7			
3	987	657	95%			
4_	9870	807	977			
5	977	907.	977.			
6	967.	957.	987			ļ
7	987.	707.	987.			ļ
<u> </u>	977	857	952		1	
E(111) - 1		~~~	~1007.	F 3.3	lated bifures	hed have a
-	~1007.	~ 100 7.	100 11	uneld 1	TATES BLOCK	ETRANA A
<u> </u>	99 70		u		1	
<u>.</u> 4	~100 7.	11	987			
5	· ·	R	9770			
6	11		~100 %			
7	977.	11	99 %			<u> </u>
8		N	~10076			
					L	
			1			

FORM 703-C

Elfects of thermal sterilization and ethylene oxide decontamination on the solderability of connector cups, bifurcated terminals, stranded wire, and solid wire. Table VII.

Part	Effect of Thermal Sterilization	Effect of Ethylene Oxide Decontamination
A. Stranded conductor	None	None
B. Gold plated Cinch cup	None	None
C. Gold plated Bendix cup	None	None
D. Solder coated copper wire	None	None
E. Solder coated bifurcated terminal	Significant drop	None
F. Gold plated bifurcated terminal	None	None

ر بر

4.2 METALLOGRAPHIC EXAMINATION TEST RESULTS

4.2.1 General

Figure 9 and Figure 10 are photomicrographs at 50X magnification showing a typical metallographically mounted specimen of:

Figure 9 (top) - Solid conductor Figure 9 (bottom) - Stranded conductor Figure 10 (top) - Connector cup Figure 10 (bottom) - Bifurcated terminal

These photomicrographs at low magnification (50X) were included to give a reader an idea of the mounting configuration used for each type of solderability specimen. The photomicrographs which follow (Figures 11 through 23) are all at much higher magnification (1000X) and show only a very small area of the mounted specimen.

4.2.2 Before and After Thermal Bake-Out

Figures 11 through 17 are photomicrographs at 1000X magnification of Specimens A, B, C, D, E, F, and G as outlined in Figure 1 and Table II. Each figure contains two photomicrographs. The top photomicrograph is of that particular specimen before thermal bakeout. The bottom photomicrograph is of a similar type specimen which has been thermally baked-out at 200° C for 168 hours in a nitrogen atmosphere. The different etchants used were selected to bring out the metallographic structure of that particular type of wire and electroplating. All of the specimens in Figures 11 through 17 are solid wire conductors.

Although Specimen F(ii), as shown in Figure 16, failed the solderability test per MIL-STD-202C, Method 208A (refer to Table IV), there was no evidence of any grain boundary diffusion of the nickel plating into the outer copper sheath or of any interdiffusion of the gold and nickel electroplated layers. <u>None</u> of the specimens which were metallographically mounted showed any signs of degradation which could be

Figure 9. Photomicrographs of a typical solid conductor (top picture) and a typical stranded conductor (bottom picture) as metallographically mounted. Magnification at 50X. Potassium dichromate etchant. The solid conductor (Neg. 02407) is a solder coated copper wire and the stranded conductor (Neg. 02409) consists of 19 strands of 36 AWG silver plated copper wire.

Figure 10. Photomicrographs of a typical connector cup (top picture) and typical bifurcated terminal (bottom picture) as metallographically mounted. Magnification at 50X. Potassium dichromate etchant. Connector cup (Neg. 02406) is the Bendix type and the bifurcated terminal (Neg. 02408) is the gold plated type.

Before Bake-Out (Neg. 02392)

After Bake-Out (Neg. 02393)

Figure 11. Photomicrographs at 1000X of Specimen A(ii) (gold plated copper wire) before and after thermal bake-out. Potassium dichromate etchant.

Before Bake-Out (Neg. 02394)

After Bake-Out (Neg. 02395)

Figure 12. Photomicrographs at 1000X of Specimen B(ii) (gold plated Dumet wire) before and after thermal bake-out. Aceticnitric etchant.

Bake-Out (Neg. 02396)

Figure 13. Photomicrographs at 1000X of Specimen C(ii) (gold plated Kovar wire) before and after thermal bake-out. Carapella etchant.

Before Bake-Out (Neg. 02398)

After Bake-Out (Neg. 02399)

Figure 14. Photomicrographs at 1000X of Specimen D(ii) (gold plated nickel wire) before and after thermal bake-out. Acetic-nitric etchant.

After Bake-Out (Neg. 02401)

Figure 15. Photomicrographs at 1000X of Specimen E(ii) (bare nickel wire) before and after thermal bake-out. Acetic-nitric etchant.

Before Bake-Out (Neg. 02402)

After Bake-Out (Neg. 02403)

Figure 16. Photomicrographs at 1000X of Specimen F(ii) (gold plated Dumet with nickel undercoat) before and after thermal bake-out. Acetic-nitric etchant.

Before Bake-Out (Neg. 02404)

After Bake-Out (Neg. 02405)

Figure 17. Photomicrographs at 1000X of Specimen G(ii) (gold plated copper wire with nickel undercoat) before and after thermal bake-out. Potassium dichromate etchant.

and after heat sterilization and ETO decontamination. Potassium dichromate Figure 18. Photomicrographs at 1000X of Specimen A(iii-iv) (stranded conductor) before Photomicrographs show only one or two of the silver plated copper etchant. strands.

Figure 19. Photomicrographs at 1000X of Specimen B(iii-iv) (brass, copper plated, gold plated Cinch connector cups) before and after heat sterilization and ETO decontamination. Potassium dichromate etchant.

Figure 20. Photomicrographs at 1000X of Specimen C(iii-iv) (brass, copper plated, silver plated, gold plated Bendix connector cup) before and after heat sterilization and ETO decontamination. Potassium dichromate etchant.

After ETO Decontamination

After Heat Sterilization (Neg. 02374)

No Treatment (Neg. 02368)

(Neg. 02380)

After ETO Decontamination (Neg. 02381)

After Heat Sterilization (Neg. 02375)

> No Treatment (Neg. 02369)

(Neg. 02382)

(Neg. 02370)

Photomicrographs at 1000X of Specimen E(iii-iv) (solder coated bifurcated terminal) before and after heat sterilization and ETO decontamination. Potassium dichromate etchant.

Figure 22.

After ETO Decontamination (Neg. 02383)

After Heat Sterilization (Neg. 02377)

No Treatment (Neg. 02371)

attributed to thermal bake-out. The nickel undercoat on Specimens F and G did not appear to enhance the solderability of the gold plated copper or gold plated Dumet wires. Since the effect was not observable metallographically, it is assumed that the nickel underplating formed a type of barrier layer hindering a wetting or alloying reaction between the tin in the solder and the copper basis metal. It has been reported 1 that nickel undercoats will form a duplex intermetallic compound layer with tin which, although assisting initial solderability of freshly plated coatings, can decrease solderability after storage if the thickness of the coating is not adequate. Nickel plating, by itself, is not very solderable (as compared to tin, solder, gold, copper, etc.). If the outer gold electroplate was porous, the nickel underneath would therefore inhibit optimum wetting. By similar reasoning it would then be expected that the gold plated copper wire (with the nickel undercoat) would also experience decreased solderability. However, such was not the case. Further testing of these questionable wire types would be necessary in order to obtain a full understanding of this phenomenon.

4.2.3 <u>Before and After Heat Sterilization and Ethylene Oxide</u> <u>Decontamination</u>

Figures 18 through 23 are photomicrographs at 1000X magnification of Specimens A, B, C, D, E, and F as outlined in Figure 1 and Table II. Each figure contains three photomicrographs of the same type of specimen which has been submitted to three different environments. The specimen in each left-hand photomicrograph has received no treatment. The specimen in each middle photomicrograph has undergone heat sterilization. The specimen in each right-hand photomicrograph has undergone ethylene oxide (ETO) decontamination. All

¹Thwaites, C.J. "The Solderability of Some Tin, Tin Alloy and Other Metallic Coatings," Trans. Inst. Met. Finishing, vol. 36, 203 (1959).

metallographic mounts were etched in potassium dichromate. The different specimens are as follows:

Figure 18- Stranded conductorsFigures 19 and 20- Connector cupsFigure 21- Copper wire solid conductorsFigures 22 and 23- Bifurcated terminals.

Only two of the specimens exhibited any apparent metallurgical change as a result of the exposures. Specimens B, C, D, and F showed no evidence of any grain boundary diffusion of the plating layer into the basis metal or any interdiffusion of the surface plating layers. Specimen C (Figure 20) shows a slight change in the metallic copper and silver plated layers, but this phenomenon was not observed on all heat sterilized specimens and did not appear to affect the solderability (refer to Table V). A noticeable change appears on the stranded conductor specimen (Figure 18 - middle picture) which has undergone heat sterilization. Although this might appear to be a grain boundary diffusion of the silver plating, it could also be caused by unequal etching or polishing of the mount and improper focusing. This effect was not as pronounced during examination of the actual mount. This change was not observable on all specimens and did <u>not</u> appear to affect the solderability (see Table V). During the soldering operation, the thin silver electroplate becomes soluble in the tin of the tin/lead solder alloy and may cause silver scavenging from the plated wire strands. For this reason it is common to use a solder alloy containing a small percentage of silver (i.e., 1.5% -2%) when soft soldering silver plated parts.

Specimen E (solder coated bifurcated terminal) was the other specimen showing what appears to be a marked difference in metallurgical structure after heat sterilization. Note that the middle photomicrograph in Figure 22 shows an intermediate layer between the brass basis metal of the bifurcated terminal and the outer solder coating. Metallographic examination showed this layer to be a thin gold electroplate approximately 0.000016 inch thick. This gold plated layer is not present on the left-hand or right-hand photomicrographs. Further checking

42

revealed that the vendor of the bifurcated terminals apparently shipped a mixed lot of terminals, some of which were solder coated directly over brass and some of which were solder coated over gold plated brass. This is proven by examining Figures 14, 20, and 22 in Attachment 3, Part II, of this final report. The gold plated intermediate layer is also shown in these photomicrographs of actual solder joints, while other photomicrographs of solder joints to solder coated bifurcated terminals do not exhibit the gold electroplate. This mixed lot of terminals could possibly account for some of the poor solderability results of this type of specimen (refer to Tables VI and VII). It should also be kept in mind that the solder coated bifurcated terminals were all coated with a layer of Sealbrite No. 230-10. Overheating of this protective coating during the heat sterilization cycle could possibly inhibit good solderability. The gold plated bifurcated terminals were not coated with Sealbrite, nor were the gold plated connector cups. Connector cups are not ordinarily protectively coated until after tinning.

It must therefore be stated that <u>none</u> of the specimens exhibited significant metallurgical degradation or diffusion characteristics which could definitely be attributed to either heat sterilization or ethylene oxide decontamination. The changes appearing in the photomicrographs could logically be assigned to other unrelated causes. The heat sterilization temperature (145°C) is about 70°F below the melting point of 63/37 tin/lead solder and the nitrogen atmosphere prevents the formation of any metallic oxides which would otherwise form in air. The ETO decontamination exposure had even less effect on the metallurgical structure than the heat sterilization exposure.

43

5. CONCLUSIONS

Table VIII presents a summary of the test results concerning the effects of thermal bake-out, heat sterilization, and ethylene oxide decontamination on the solderability of component leads. A more detailed discussion of the results is given in Sections 4.1 and 4.2 of this report, including raw data sheets, a statistical analysis of the solderability tests, and thirty-six photomicrographs.

Of the seven different types of solid wire conductors tested before and after thermal bake-out, only the gold plated Kovar wire and the gold plated Dumet wire (with the nickel undercoat) showed any decrease in solderability after thermal bake-out. Of these two wire types, the gold plated Dumet wire (with the nickel undercoat) would be the only one actually failing to meet the 95% minimum solder coverage required by MIL-STD-202C, Method 208A. Metallurgical examination at 1000X magnification of these seven types of solid wire conductors showed <u>no</u> signs of degradation, grain boundary diffusion, or interdiffusion of the electroplated layers which could be attributed to thermal bake-out.

Of the six types of specimens (i. e., stranded and solid conductors, connector cups, and bifurcated terminals) tested before and after heat sterilization and ETO decontamination, only the solder coated bifurcated terminal exhibited a significant drop in solderability as a result of thermal sterilization. A metallographic examination of the solder coated bifurcated terminals later revealed that certain of the specimens had a thin gold electroplate beneath the outer solder coating while others did not. These terminals also had a protective lacquer overcoating. It is felt that these two factors (not present on any of the other specimen types) could have contributed to some of the poor solderability results. Metallurgical examination of the six types of specimens (A, B, C, D, E, and F) in the lower half of Table VIII revealed that two of the specimen types showed a slight change in metallurgical structure after heat sterilization. However, these slight changes were not evidenced on all

Summary of test results.

Table VIII.

•

Metallurgical Examination ETO Decontamination None None None None None None ł ł ۱ ł 1 ł ł Solderability Test None None None None None None ۱ ł ł ł ł 1 ł Metallurgical Examination Slight** Slight** Effect of Different Exposures None None None None ł Heat Sterilization ł ł ł I ł ł. Solderability Test Significant drop None None None None None 1 1 ł ł ł ł ł Metallurgical Examination None None None None None None None ŧ 1 ł 1 ł 1 Thermal Bake-Out Solderability Test Slight, passes* Fails* None None Noule None None ł ł ł t t t Gold plated bifurcated terminal Brass, copper plated, silver plated, gold plated connector cup (Bendix) Gold plated copper wire with nickel undercoat Gold plated Dumet wire with nickel undercoat Brass, copper plated, gold plated connector cup(Cinch) Solder coated copper wire Solder coated bifurcated terminal Gold plated copper wire Gold placed Dumet wire Gold plated Kovar wire Gold plated nickel wire Stranded conductor Type of Specimen Bare nickel wire j Ē в. ġ ц. പ ۲. ۲ ö ÷ 'n ġ. ы Ś

**Structural change questionable; could be caused by other factors; and was not 100% repeatable. *Refers to solderability specification which requires minimum of 95% coverage.

24

specimens nor could they be attributed <u>definitely</u> to heat sterilization. Metallurgical examination of the ETO decontaminated specimens showed <u>no</u> signs of degradation, grain boundary diffusion, or interdiffusion of the electroplated layers which could be attributed to ETO exposure.

As a whole it can be concluded that thermal bake-out, heat sterilization, and ethylene oxide decontamination had <u>very little effect</u> on the solderability or metallurgical integrity of the specimens tested. Although a few specimen types did show certain effects due to either thermal bake-out or heat sterilization, these effects were minimal and could be attributed to either unrelated causes or to factors which could be corrected in production electronic systems.

ACKNOWLEDGMENTS

This investigator wishes to express his appreciation to the following people for their valuable assistance in the various phases of this part of the program:

Mr.	D.	Teter	for all dip soldering operations.
Mr.	N.	Ferguson	for all metallographic mounts and photomicrographs.
Mr.	R.	Rydelek	for conducting all thermal bake-out, heat sterilization, and ethylene oxide decontamination tests.

Strate Barrier Contraction and and the