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ABSTRACT 

Hypersonic, chemically r e l ax ing  i n v i s c i d  flow of a i r  pas t  a c i r -  

c u l a r  cy l inde r  has  been ca l cu la t ed  us ing  Dorodnitsyn's method of 

i n t e g r a l  r e l a t i o n s .  

oxygen d i s s o c i a t i o n  on t h e  d i s t r i b u t i o n  of t h e  flow v a r i a b l e s  i n  

t h e  subsonic and supersonic  region of the  shock l aye r .  A l s o  i n v e s t i -  

gated i s  t h e  inf luence  of oxygen d i s s o c i a t i o n  i n  t h e  f r e e  stream on 

t h e  shock detachment d is tance  and t h e  flow f i e l d  i n  genera l .  

Considered are t h e  e f f e c t s  of non-equilibrium 

P a r t i c u l a r  emphasis has been placed on t h e  i n v e s t i g a t i o n  of t h e  

flow along the  s t agna t ion  s t reamline,  which i n d i c a t e s  t h e  ex i s t ence  

of an equi l ibr ium region i n  f r o n t  of t h e  body. I t s  s i z e  depends 

s t rong ly  on t h e  dens i ty ,  on t h e  body s i z e ,  and on t h e  magnitude of 

t h e  r eac t ion  r a t e  cons tan ts .  The numerical  i n t e g r a t i o n  of t h e  equat ions  

f o r  t h e  flow around t h e  body does not  r e a d i l y  y i e l d  the  shock detach- 

ment d i s t ance  on t h e  s tagnat ion  s t reamline.  An i t e r a t i o n  procedure 

has  t o  be used u n t i l  a s tagnat ion  shock detachment d i s t a n c e  i s  found 

such t h a t  t h e  d e r i v a t i v e s  of a l l  v a r i a b l e s  a r e  continuous across  t h e  

sonic  l ine .  

The r e s u l t s  show t h a t  t he  shock wave, a t  f i xed  f r e e  stream com- 

p o s i t i o n ,  moves c l o s e r  t o  t h e  body with increas ing  f r e e  s t ream Mach 

number, t h a t  i s  with l a r g e r  oxygen d i s s o c i a t i o n  behind t h e  shock. 

However, increas ing  oxygen d i s s o c i a t i o n  i n  t h e  f r e e  stream, a t  o ther -  
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INTRODUCTION 

The importance of blunted shapes i n  t h e  hypersonic f l i g h t  of a 

v e h i c l e  r e -en te r ing  t h e  atmosphere from o u t e r  space h a s  l e d  t o  many 

i n v e s t i g a t i o n s  of hypersonic flows with detached shock waves, us ing  

both inverse  and d i r e c t  methods. I n  t h e  inve r se  method t h e  flow f i e l d  

around t h e  body i s  determined by spec i fy ing  a c e r t a i n  shock shape, and 

t h e  a s soc ia t ed  body shape follows from t h e  c a l c u l a t i o n .  This method 

has  t h e  advantage t h a t  the  problems a s soc ia t ed  with t h e  s p e c i f i c a t i o n  

of boundary condi t ions  along an unknown shock wave a r e  avoided. 

Although it  has  been successfu l ly  appl ied ,  f o r  example by Hal l  (Ref. l) ,  

even f o r  r e a l  gas ,  t h e  method i s  extremely ted ious  i f  t he  flow f i e l d  

around a given body shape has t o  be determined. 

I n  1959 Dorodnitsyn ( R e f .  2) has  descr ibed  a method of i n t e g r a l  

r e l a t i o n s  f o r  t h e  so lu t ion  of two-dimensional boundary va lue  problems. 

This method i s  a l s o  appl icable  t o  problems with f r e e  boundaries and 

has  f i r s t  been appl ied  by Belotserkovski i  (Ref. 3) t o  t h e  c a l c u l a t i o n  

of supersonic  flow of a per fec t  gas  pas t  a c i r c u l a r  cy l inde r .  

using a p e r f e c t  gas ,  t h i s  basic  work has  been extended by va r ious  o t h e r  

au thors  (Ref. 4 ,  5 ,  6) f o r  o ther  body shapes. 

Also 

The assumption of a pe r fec t  gas i s  customary f o r  f l i g h t  speeds 

where t h e  k i n e t i c  energy of t he  flow does not  appreciably e x c i t e  i n t e r -  

n a l  degrees of freedom of the p a r t i c l e s  composing t h e  gas .  

sonic  v e l o c i t i e s  a s  they a r e  encountered during re -en t ry ,  a cons iderable  

f r a c t i o n  of t h e  f r e e  stream k i n e t i c  energy i s  transformed i n t o  thermal 

A t  hyper- 
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energy behind the  bow shock, causing exc i t ed  molecular v i b r a t i o n ,  d i s -  

soc i a t ion ,  and even ion iza t ion .  I n  modern h igh  speed flow f a c i l i t i e s  

designed t o  s imulate  such f l i g h t  condi t ions ,  t h i s  h ighly  exc i t ed  

s t a t e  i s  a l ready  reached i n  the nozz le  supply chamber, causing f rozen  

d i s s o c i a t i o n  i n  t h e  nozz le  t e s t  s ec t ion  (Ref. 7, 9).  It i s  the  coupl ing 

of t h e s e  so-ca l led  r e a l  gas e f f e c t s ,  a s  descr ibed  above, with t h e  usua l  

flow processes  t h a t  i s  responsible  f o r  t h e  d i f f i c u l t i e s  encountered 

i n  the  flow f i e l d  ca l cu la t ions  of v e h i c l e s  f l y i n g  a t  hypersonic speeds. 

Up t o  t h e  present  t i m e ,  only a l i m i t e d  number of i n v e s t i g a t o r s  

have obtained r e s u l t s  f o r  r e a l  gas flows i n  connection with t h e  i n t e -  

g r a l  method. The f i r s t  results where presented  by Shih,  Baron, e.a. 

(Ref. 8 ) ,  f o r  hypersonic non-equilibrium flow of a i r  pas t  a sphere.  

Simultaneously,  Yalamanchili and Hermann ( R e f .  7 ,  9) i nves t iga t ed  non- 

equi l ibr ium flow of a i r  pas t  a c i r c u l a r  cy l inde r .  

h e r e  t h a t  r e s u l t s  from t h i s  i n v e s t i g a t i o n ,  a l s o  published i n  Ref. 9 ,  

were found t o  be i n c o r r e c t  due t o  an e r r o r  i n  t h e  computer program. 

However, t he  equat ions a r e  co r rec t  a s  publ ished.  La ter  Belo tserkovski i ,  

e.a. (Ref. l o ) ,  used the  i n t e g r a l  method t o  c a l c u l a t e  equi l ibr ium flow 

of a i r  p a s t  spheres  and e l l i p s o i d s .  

It must be mentioned 

I n  t h e  present  paper,  new r e s u l t s  are given f o r  non-equilibrium 

hypersonic  flow of  a i r  pas t  a c i r c u l a r  cy l inde r .  Also t r e a t e d  i s ,  f o r  

t h e  f i r s t  t i m e  t o  t h e  authors '  knowledge, t h e  case  of d i s s o c i a t i o n  i n  

t h e  f r e e  stream. Such condi t ions a r e  encountered, e i t h e r  i n  t h e  atmo- 

sphere a t  h igh  a l t i t u d e s ,  o r  i n  t h e  nozzle  of heated flow f a c i l i t i e s  

where apprec iab le  f rozen d i s soc ia t ion  may occur.  
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GAS MODEL AND THERMODYNAMIC EQUATIONS 

2.1 Gas Model 

The s impl i f i ed  a i r  model used i n  t h i s  i n v e s t i g a t i o n  c o n s i s t s  of 

oxygen atoms, oxygen molecules and n i t rogen  molecules only.  I n  o the r  

words, t h e  range of appl ica t ion  i s  such t h a t  only oxygen may d i s soc i -  

a t e .  The formation of n i t r i c  oxide i s  neglected.  While t h e  oxygen 

content  was very c l o s e l y  approximated, t h e  remaining gases  i n  atmos- 

pher ic  a i r ,  mainly argon and carbon d ioxide ,  were added t o  t h e  n i t -  

rogen f r a c t i o n  of our  gas model. S p e c i f i c a l l y ,  t h e  mole f r a c t i o n  of 

oxygen i n  undissoc ia ted  a i r  was chosen a s  

= 0.21 n02 
n + n  b =  

02 N2 

where n denote  t h e  number of p a r t i c l e s  of t h e  i t h  spec ies  per  u n i t  i 

volume of t h e  gas. 

This a i r  model has  been introduced by Hermann (Ref. ll), and i t  

has  been shown t o  be a reasonable approximation t o  r e a l  a i r  i n  t h e  

appropr i a t e  range of temperatures and p res su res  (Ref. 1 2 ,  1 3 ) .  It 

permits  us t o  gain an in s igh t  i n  the  d i s t i n c t  f e a t u r e s  of non- 

equi l ibr ium flow phenomena with a minimum of computational e f f o r t .  

2.2 Thermal Equation of S t a t e  

The degree of oxygen d i s soc ia t ion ,  a , i s  def ined  a s  t h e  r a t i o  

of t h e  mass of oxygen i n  d i s soc ia t ed  form t o  t h e  t o t a l  mass of oxygen 

i n  t h e  mixture.  Assuming tha t  t he  ind iv idua l  spec ies  of t h e  mixture 

obey t h e  p e r f e c t  gas law, the pressure  of t h e  mixture i s  t h e  sum of 
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i t s  p a r t i a l  p ressures ,  o r  

P F 

With t h e  above d e f i n i t i o n  and assumption, t h e  thermal equat ion of 

s t a t e  f o r  t h e  mixture can be der ived a s  

where 

p = pRZT 

Z = l + b U  

2 . 3  I n t e r n a l  Energy and Enthalpy 

The i n t e r n a l  energy of  the gas mixture  i s  t h e  weighted sum of 

t h e  i n t e r n a l  energ ies  of each spec ie s  due t o  t h e  var ious  modes of 

e x c i t a t i o n  ( t r a n s l a t i o n ,  r o t a t i o n ,  v i b r a t i o n )  and t h e  d i s s o c i a t i o n  

energy of t h e  d i s s o c i a t i n g  component , 

E = T ),  f . e .  4-2 f O  DO2 
-8- 1 1  
1 

( 2 . 5 )  

where t h e  f i  denote t h e  m o l e  f r ac t ions ,  and D O 2  i s  the  d i s s o c i a t i o n  

energy. 

The enthalpy of t h e  mixture i s  def ined as 

h = E + l  P ( 2 . 6 )  

Afte r  determining t h e  mole f r a c t i o n s ,  an e x p l i c i t  expression f o r  t h e  

i n t e r n a l  energy of t h e  mixture can  be obtained from s t a t i s t i c a l  

thermodynamics. Then, s u b s t i t u t i n g  ( 2 . 5 )  and ( 2 . 3 )  i n t o  ( 2 . 6 ) ,  t h e  

enthalpy may be w r i t t e n  as 
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-1 - b) 

-1 e -1 

where R i s  t h e  gas constant  of undissoc ia ted  a i r ,  8 t h e  charac-  

t e r i s t i c  temperature of v ib ra t ion ,  and 

t u r e  of d i s s o c i a t i o n .  From t h e  form of eq. (2.7), i t  should be noted 

i 

a c h a r a c t e r i s t i c  tempera- D;2 

t h a t  t h e  molecular v ib ra t ions  a r e  assumed t o  be i n  equi l ibr ium with 

t h e  t r a n s l a t i o n s  and ro t a t ions .  

2.4 Rate Equation 

I n  genera l ,  a l a r g e  number of c o l l i s i o n s  among t h e  p a r t i c l e s  a r e  

requi red  t o  e q u i l i b r a t e  d i s soc ia t ion  (and o the r  modes of e x c i t a t i o n )  

with t h e  l o c a l  t r a n s l a t i o n a l  temperature ,  This means t h a t  a f i n i t e  

amount of t i m e  i s  needed f o r  t h e  gas  t o  achieve thermodynamic equ i l ib -  

rium. The depar ture  from equi l ibr ium of a flowing gas i s  cha rac t e r i zed  

by t h e  magnitude of t h i s  re laxa t ion  time r e l a t i v e  t o  some t r a n s l a t i o n a l  

t i m e  needed by the  p a r t i c l e s  t o  move over a c e r t a i n  d is tance .  It i s  

t h e  purpose of t h i s  subsection t o  present  t he  necessary equat ions t h a t  

w i l l  enable  us  t o  account for  such non-equi l ibr ium e f f e c t s  i n  our 

c a l c u l a t i o n s .  

Since only oxygen d i s soc ia t ion  i s  considered i n  t h i s  a n a l y s i s ,  

only one chemical r a t e  equation i s  needed. For s teady flow, l e t  w 

be t h e  net  number of oxygen atoms generated pe r  u n i t  volume and u n i t  

t i m e  and ii t h e  number of f r e e  oxygen atoms pe r  u n i t  volume of t h e  
0 
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f l u i d .  For an a r b i t r a r y  volume V,  t he  n e t  number of oxygen atoms 

generated p e r  second must then be equal  t o  t h e  f l u x  of f r e e  oxygen 

atoms across  i t s  boundary S, t h a t  i s  

v S 
4 -t 

where q i s  t h e  v e l o c i t y  and n a u n i t  normal. Applying t h e  d iver -  

gence theorem t o  t h e  r i g h t  hand s i d e ,  eq.  (2 .8 )  may be  w r i t t e n  a s  

[w - V - (ii$)]dV = 0 

v 
Since the  considered volume was a r b i t r a r y ,  w e  must have 

Defining now C a s  t h e  number of oxygen atoms ( in  e i t h e r  molecular 

o r  atomic form) per u n i t  mass of t h e  gas ,  

2bNA 
c = -  

M (2 .11 )  

w e  can express  t h e  number of f r e e  oxygen atoms p e r  u n i t  volume of t h e  

(2.12) 

S u b s t i t u t i n g  t h e  above i n t o  eq. (2.10) and us ing  t h e  o v e r - a l l  con t inu i ty  

equat ion,  which s t a t e s  t h a t  

v ' ( p i )  = 0 

t h e  r a t e  equat ion becomes simply 

--t W q .  v u = -  
CP 

(2 .13)  

(2 .14)  
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The net ra te  of oxygen atoms generated per unit volume of t h e  f l u i d  is  

(2.15) 

The equat ions f o r  t h e  reac t ions  t h a t  may occur i n  t h e  considered a i r  

model are of t h e  form 

d . i  k 

O2 + Mi 20 + M i 
r , i  k 

(2.16) 

where Mi 

body necessary t o  e i t h e r  d i s s o c i a t e  t h e  molecule o r  recombine some 

symbolizes a p a r t i c l e  of t h e  i t h  spec ie s  ac t ing  a s  c o l l i d i n g  

atoms, and where kd,i and k a r e  t h e  r a t e  cons tan ts  f o r  t h e  

s p e c i f i c  r eac t ion .  It i s  obvious then t h a t  eq. (2.16) r ep resen t s  a 
r , i  

may be an oxygen atom o r  Mi set of t h r e e  d i f f e r e n t  r eac t ions ,  s i n c e  

molecule,  o r  a n i t rogen  molecule. 

I n  o rde r  t o  s impl i fy  the c a l c u l a t i o n s  we s h a l l  now cons ider  Mi 

t o  represent  any p a r t i c l e  of ou r  gas  mixture ,  t h e  composition of which 

i s  given by t h e  sum of t h e  concent ra t ions  of t h e  a c t u a l  spec ies .  De-  

no t ing  by % 
a c o l l i d i n g  body, we have for  our  a i r  model 

t h e  number of p a r t i c l e s  per  u n i t  volume t h a t  may a c t  a s  

- 
"M = ?io + 'ii02 + 5 2  (2.17) 

From t h e  l a w  of mass ac t ion ,  i t  i s  known t h a t  t h e  ra te  of change of 

concent ra t ion  i s  proport ional  t o  t h e  product of t h e  concent ra t ions ,  

r a i s e d  t o  t h e  power of t h e  s to ich iometr ic  c o e f f i c i e n t s .  I n  t h e  pro- 

c e s s  of d i s s o c i a t i o n  an oxygen molecule must c o l l i d e  with some o the r  

p a r t i c l e  having enough energy t o  break  up t h e  oxygen molecule. For 
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t h e  recombination of two atoms, a t r i p l e  c o l l i s i o n  i s  necessary,  t h e  

t h i r d  body ca r ry ing  away the energy that t h e  two sepa ra t e  atoms must 

releaseto form a s t a b l e  diatomic molecule. Hence, according t o  (2.15), 

(2.18) w = kdEo2-7f - krnO$ -2, 

where kd and k a r e  the  temperature dependent r e a c t i o n  r a t e  

"constants" f o r  d i s soc ia t ion  and recombination r e spec t ive ly .  For 

l o c a l  thermodynamic equi l ibr ium, t h e  n e t  r a t e  of oxygen atoms gener- 

a t ed  vanishes;  i .e.,  w = 0; hence,  

r 

(2.19) 

i s  t h e  concentrat ion equi l ibr ium cons tan t  f o r  t h e  considered 
KC 

where 

reactiorL Assuming now t h a t  t h e  above r e l a t i o n  i s  a l s o  v a l i d  when t h e  

flow i s  out  of chemical equi l ibr ium, t h e  ra te  equat ion can f i n a l l y  be 

w r i t t e n  a s  
4 

q V U = F  

where 

(2.20) 

(2.21) 

I n  eq. (2.21)  

obtained from s t a t i s t i c a l  thermodynamics. 

Kc i s  a funct ion of temperature only;  it i s  a l s o  

I n  o rde r  t o  eva lua te  t h e  r a t e  equat ion w e  s t i l l  need express ions  

f o r  t he  d i s s o c i a t i o n  r a t e  cons tan t .  

A comprehensive review of recent  work c a r r i e d  out i n  t h e  f i e l d  of 

r e a c t i o n  rates w a s  given by Wray (Ref .  14). H i s  va lues  f o r  t h e  va r ious  

c o l l i d i n g  bodies  w i l l  be  used i n  the  present  i nves t iga t ion .  
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As a consequence of t h e  s impl i f i ca t fon  t h a t  was fntroduced pre- 

v ious ly ,  i t  was necessary i n  eq. (2.18) t o  assume a s i n g l e  r a t e  con- 

s t a n t  each f o r  d i s s o c i a t i o n  and recombination. I n  order  t o  account 

f o r  t h e  inf luence  of t h e  ca ta lyz ing  spec ie s ,  a t  least i n  a s impl i f i ed  

fashion,  i t  i s  the re fo re  proposed t o  use as a d i s s o c i a t i o n  r a t e  con- 

s t a n t , a  populat ion averaged expression of t h e  form 

7 

kd = I?A f i k d , i  
i 

(2.22) 

a r e  the  mole f r a c t i o n s  and where t h e  k denote t h e  
d , i  where t h e  f i  

d i s s o c i a t i o n  r a t e  cons tan ts  ( f o r  oxygen) with the  i t h  spec ie s  a c t i n g  

a s  c a t a l y s t  ( see  eq. 2.16). The r e s u l t i n g  d i s s o c i a t i o n  r a t e  cons tan t  

can then be expressed as 

n 

( 2 . 2 3 )  

I n  t h i s  form the  d i s soc ia t ion  r a t e  "constant" i s  seen t o  be a func t ion  

of temperature and composition. 

t 
I 
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FLOW PAST A CIRCULAR CYLJNDER 

3.1 Basic Equations 

Neglecting v i s c o s i t y ,  heat conduction and r a d i a t i o n ,  t h e  b a s i c  

equat ions f o r  s teady ,  ad iaba t ic  flow a r e  t h e  following: 

Cons erv a t  ion  o f mas s : 

v * (6) = 0 

Conservation of momentum: 

1 4 
2 

v ( % )  + (V x q) x ;+; v p = 0 

( 3 . 1 )  

(3.2) 

Conservation of energy: 

2 
4 

q - V ( h + > ) = O  

o r  
2 

h ++ = ht  = cons t .  ( 3 . 3 )  

The above equat ions  a r e  the  usual equat ions of motion, and they do 

not  depend on any p a r t i c u l a r  gas model. I n  o rde r  t o  so lve  these  equa- 

t i o n s  f o r  t h e  unknowns, they must be supplemented by a thermal equat ion 

of s t a t e  and an expression f o r  t he  enthalpy,  which do depend on t h e  

p a r t i c u l a r  gas model and were der ived i n  t h e  previous sec t ion  a s  given 

i n  eq. ( 2 . 3 )  and ( 2 . 7 ) .  

If t h e  gas under considerat ion i s  r e a c t i n g ,  add i t iona l  equat ions 

f o r  t h e  conservat ion of species  ( r a t e  equat ions)  must be added t o  t h e  

system. For our s impl i f i ed  a i r  model, w e  have only one r a t e  equat ion,  

namely , 
4 

q * V a = F  ( 3 . 4 )  

where F i s  t h e  source funct ion,  given by eq. (2.21).  
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For t h e  c a l c u l a t i o n s  t h a t  w e  have in mind, a po la r  coord ina te  system, 

r e f e r r e d  t o  t h e  c e n t e r  l i n e  of t h e  cy l inde r ,  i s  t h e  most s u i t a b l e  one 

(See Fig.  1.). The t ransformation of t h e  equat ions  from t h e  v e c t o r i a l  

form t o  po la r  coord ina tes  i s  standard,  and t h e  r e s u l t  i s  a s  follows: 

Conservation of mass: 

9-momentum: 

a, + v r  - + uv + L h  = o a, 
a, P a9 

r -moment um: 

R a t e  equat ion:  

aa aa u 3 + v r  a - Fr  = 0 r 

(3.5) 

( 3 . 6 )  

(3 .8)  

The conservat ion of mass and t h e  r-momentum equat ion a r e  given i n  

divergence form, which i s  required f o r  t h e  a p p l i c a t i o n  of t h e  i n t e g r a l  

method. 

3 . 2  Boundary Conditions 

The condi t ion  f o r  flow tangency on the  body su r face  i s  given by 

Vb = 0 (3 .9 )  

The condi t ions  behind t h e  shock a r e  obtained from t h e  conservat ion of 

mass, momentum and energy across  t h e  shock: 

Conservation of mass: 

- 
'1"nl - 'suns (3.10) 
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Conservation of momentum: 

u = u  tl t s  

2 2 - 
Plunl  + '1 - "suns + Ps 

Conservation of energy: 
rl .-I 
L L 

U U n l  n s  
h l + T =  hs +2 

(3.11) 

(3.12) 

(3.13) 

where p and h a r e  given by t h e  equat ion of s t a t e ,  eq. (2 .3) ,  and 

t h e  enthalpy equat ion,  eq. (2 .7 ) ,  r e spec t ive ly .  

3.2.1 Frozen Shock Conditions 

For t h e  present  non-equilibrium flow c a l c u l a t i o n s ,  i t  w i l l  be  

assumed t h a t  t h e  composition of t he  a i r  does not  change across  the  

shock; i . e . ,  Z1 = Zs.  Using t h i s  assumption and equat ions  (2.3) ,  

(3.10),  (3.12) and ( 3 . 1 3 ) ,  one ob ta ins  e a s i l y  

(3.14) 

For any given f r e e  s t ream condi t ions ( i . e ,  Tl, U 1' u n l  ) ,  t h e  tempera- 

t u r e  behind t h e  shock, Ts, can now be obtained from eq. (3.14) and 

eq. (2.7)  by so lv ing  t h e s e  equat ions numerical ly .  Using the  con t inu i ty  

equat ion ,  eq. (3.10),and the energy equat ion ,  eq. (3 .13) ,  t h e  dens i ty  

r a t i o  ac ross  t h e  shock i s  obtained a s  

(3.15) 
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Knowing t h e  temperature and t h e  dens i ty  behind t h e  shock, t h e  s t a t i c  

p re s su re  r a t i o  ac ross  the  shock becomes 

(3.16) 

which completes the  ca l cu la t ions  of t h e  s t a t i c  condi t ions  behind t h e  

shock. It may be mentioned t h a t  i n  Ref. 15 numerical  r e s u l t s  of t h e  

above c a l c u l a t i o n s  a r e  given f o r  a wide range of f r e e  stream condi t ions .  

3 . 2 . 2  Geometric Rela t ions  

For t h e  ca l cu la t ions  ahead, t h e  v e l o c i t y  behind t h e  shock must 

be given i n  t h e  present  coordinate  system. From Fig.  1, one ob ta ins  

u = -  u cos(a + 0 )  + u s i n ( u  + 0)  (3.17) 

v = - u s in (o  + 0)  - u  COS(^ + 8 )  (3.18) 

S n s  t s  

S n s  t s  

where t h e  v e l o c i t y  components a s  r e f e r r e d  t o  t h e  l o c a l l y  obl ique  shock 

a r e  given by 

u = u = u1 cos  a t s  t l  

pl uns = u1 ( p ) s i n  B 
S 

(3.19) 

(3.20) 

Fig.  1 a l s o  ind ica tes  t h a t  t h e  r e l a t i o n  between t h e  shock wave 

coord ina tes  and t h e  shock wave angle  0 i s  given by 

(3.21) 

where 0 and D a r e  funct ions of 8 .  
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3 . 3  Applicat ion of t h e  One-Strip I n t e g r a l  Method 

The method of i n t e g r a l  r e l a t i o n s ,  proposed by A. A. Dorodnitsyn 

(Ref. 2 ) ,  and f i r s t  appl ied by Belo tserkovski i  (Ref. 3 ) ,  i s  a l ready  

w e l l  known. I t s  a p p l i c a t i o n  t o  t h e  c a l c u l a t i o n s  of hypersonic flow 

p a s t  b lun t  bodies  was a l s o  explained in 'Re f .  9 and w i l l  no t  be repeated 

here .  I n  c o n t r a s t  t o  t h e  desc r ip t ion  given i n  Ref. 9 ,  a s l i g h t  modi- 

f i c a t i o n  of t h e  method, previously used i n  Ref. 8 and 13,  has  a l s o  

been appl ied  i n  t h e  present  ca l cu la t ions .  

Due t o  t h e  boundary condi t ion,  eq. ( 3 . 9 ) ,  it can be seen t h a t  

t h e  0-momentum equat ion and t h e  r a t e  equat ion may be used i n  t h e i r  

exact  forms. Hence, only two equat ions of t h e  se t ,  namely t h e  con- 

se rva t ion  of mass and t h e  r-momentum equat ion ,  a r e  approximated by 

assuming a l i n e a r  v a r i a t i o n  of c e r t a i n  in tegrands  ac ross  t h e  shock 

l a y e r ,  thus  permi t t ing  an in t eg ra t ion  of t h e  equat ions i n  t h e  d i r -  

ec t ion  of t h e  r a d i a l  coordinate ,  which i n  t u r n  r e s u l t s  i n  two o rd i -  

nary d i f f e r e n t i a l  equat ions with t h e  t a n g e n t i a l  coord ina te  a s  

independent v a r i a b l e .  The integrands,  f o r  which a l i n e a r  v a r i a t i o n  

across  t h e  shock l a y e r  m u s t  be  assumed, a r e  

Pu 

2 
Puv, and (p + Pu ) 

(3 .22 )  

Applying t h e  above descr ibed l i n e a r i z a t i o n  t o  t h e  con t inu i ty  and t h e  

r-momentum equat ion ,  and making use  of t h e  f a c t  t h a t  t h e  body contour 

i s  a s t reaml ine  (eq. ( 3 . 9 ) ) ,  t h e  complete set of governing equat ions 

f o r  t h e  flow p a s t  a c i r c u l a r  cy l inde r  can now be w r i t t e n  a s  follows: 
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Continuity: 

Rate: 

Energy: 

- 
2 1  rp  cot (o  + e )  + 2psvs l + €  -- 

E: L S S S  

d% 
"b = Fbrb 

(3.23) 

(3.24) 

(3.25) 

(3.26) 

2 
1 

(3.27) 
U 

2 
b U 
- + hb = ht = - + hl = const. 2 2 

(3.28) 

In the above equations, use has already been made of eq. (3.21), in 

order to eliminate the derivative of A .  Eq. (3.21) through (3.28) 

constitute a system of seven equations for the seven unknowns, which 

are 

gration, it is convenient to eliminate the derivatives of u,, and 'b 

Ub7 PbP Pb9 Tb7 %7 E = A/rb, and 0 .  For the actual numerical inte- 

This reduces the system to the set of the following four differential 

equations: 
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Conservation of mass : 

1 
- p u )  c o t  ( a + 9 )  - 2 p v  1 s si 

(1 + - - ,.('hub s s 6 

0-momentum: 

(3 .29 )  

(3.30) 

p lus  t h e  r-momentum and t h e  r a t e  equat ion a s  given i n  eq. (3 .25 )  and 

( 3 . 2 6 ) .  Once pb, Tb, U,, and CJ a r e  determined from eq. ( 3 . 2 5 ) ,  

( 3 . 2 6 ) ,  ( 3 . 2 9 ) ,  and (3 .30 ) ,  the energy equat ion and t h e  equat ion of 

s t a t e  a r e  used t o  c a l c u l a t e  u and pb, r e spec t ive ly .  b 

3 . 4  Stagnat ion  Streamline Conditions 

Before t h e  numerical i n t eg ra t ion  of t he  system of equat ions f o r  

t h e  flow around t h e  c i r c u l a r  cy l inde r  can be s t a r t e d ,  t h e  s t agna t ion  

poin t  parameters,  se rv ing  a s  i n i t i a l  va lues ,  must be determined. For 

t h i s  purpose, t h e  governing equations a r e  spec ia l i zed  f o r  t h e  s t ag -  

na t ion  s t reaml ine ,  where 9 = 0 and ub = u = 0. From eq. ( 3 . 5 )  

through ( 3 . 8 ) ,  one o b t a i n s ,  r e spec t ive ly ,  

Cont inui ty:  

S 

(3 .31 )  

(3 .32 )  

8 -moment um : 
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r-momentum: 

Rate: 

Energy : 

d 2 au ’ r - (p + pv ) + pv [v  + ( - 1 = o ae g=o d r  ( 3 . 3 3 )  

da  
v - -  F = O  ( 3 . 3 4 )  d r  

2 

2 
V - + h =  h t  = cons t .  ( 3 . 3 5 )  

Together with t h e  equat ion of s t a t e ,  eq. ( 3 . 3 1 )  and eq. ( 3 . 3 3 )  through 

( 3 . 3 5 )  c o n s t i t u t e  a sys t em of f i v e  equat ions f o r  t he  f i v e  unknowns 

(p,  P ,  T, a, and v) along t h e  s tagnat ion  s t reaml ine .  Af te r  some alge-  

b ra ,  and a f t e r  e l imina t ing  the d e r i v a t i v e s  of v and p,  t he  following 

s e t  of f i r s t  o rder  ord inary  d i f f e r e n t i a l  equat ions i s  obtained:  

da  F 
d r  v 
- = -  ( 3 . 3 6 )  

Once a, T, and p a r e  determined from t h e  above equat ions,  u and p 

are obtained from t h e  energy equation and from t h e  equat ion of s t a t e ,  

r e spec t ive ly  . 
Equations ( 3 . 3 6 )  through ( 3 . 3 8 )  s t i l l  con ta in  t h e  unknown g rad ien t  

of  u i n  8 d i r e c t i o n ,  which f o r  f ixed  8 i s  a func t ion  of t he  

r a d i a l  coord ina te  r only. In o rde r  t o  determine t h i s  g rad ien t ,  

u se  i s  made of t he  l i n e a r  approximation f o r  pu, which was previously 

needed i n  order  t o  de r ive  eq.  ( 3 . 2 3 ) .  The f i r s t  o rder  polynomial 
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approximation for pu is, in general, 

( 3 . 3 9 )  

Differentiating the above expression with respect to 8, and special- 

izing the resulting equation for the stagnation streamline (8 = 0, u = 

u,, = u = 0), one obtains 
S 

where rl = r/rb is the nondimensionalized radial coordinate r, 

having the range 1 5  q( 1 + 6 . Eq. ( 3 . 4 0 )  contains three gradients 

which can be determined as follows: 

0 

Specializing the approximate continuity equation, eq. ( 3 . 2 3 ) ,  for 

8 = 0 ,  one can solve for 

0 
2 + €  

dub = -  
p,( 27 ) 6 

0 e=o 

Differentiating eq. ( 3 . 1 7 )  

for 8 = 0, one obtains 

do de 1 p1 
PSVS - P u ( - - 

s 1 Ps e =o 
( 3 . 4 1 )  

with respect to 8, and then specializing 

( 3 . 4 2 )  

Finally, solving the approximate r-momentum equation, eq. ( 3 . 2 5 ) ,  for 

the gradient of 0 ,  and then specializing the result for the stagna- 

tion streamline, one arrives at 

( 3 . 4 3 )  
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S u b s t i t u t i n g  now t h e  l a s t  three  express ions  i n t o  eq. ( 3 . 4 0 ) ,  it can 

be  shown t h a t  

The above i s  seen t o  be a funct ion of t h e  r a d i a l  coord ina te  rl, t h e  

and condi t ions  behind t h e  shock, the s t agna t ion  poin t  p re s su re  

t h e  s t agna t ion  poin t  shock detachment d i s t ance  Eo. Hence, t h e  system 

(3.36) through (3.38), together  with t h e  energy equat ion,  t he  equat ion 

'b ' 

of s t a t e ,  and eq. (3.44), can now be solved f o r  an assumed s t agna t ion  

po in t  pressure ,  f o r  which a f i rs t  guess i s  obtained from a cons tan t  

t h e  dens i ty  c a l c u l a t i o n  (Ref. 16). Also assuming a va lue  f o r  E 

system i s  then in t eg ra t ed  and i t e r a t e d  on 

va lue  of pb 

0' 

pb, u n t i l  t h e  assumed 

agrees  with the va lue  r e s u l t i n g  from t h e  i n t e g r a t i o n .  

3.5  Numerical Techniques 

For both the  i n t e g r a t i o n  along t h e  s tagnat ion  s t reaml ine  and t h e  

i n t e g r a t i o n  along t h e  body surface,a  f ixed  s t e p  Runge-Kutta technique 

of fourth-order  accuracy was used. A thousand s t e p s  were chosen f o r  t h e  

s tagnat ion  s t reaml ine ;  f o r  the i n t e g r a t i o n  around t h e  body, t h e  s t e p  

s i z e  was f ixed  a t  0.002 radians,  corresponding t o  roughly 0.1 degrees.  

All c a l c u l a t i o n s  were performed on a UNIVAC 1107 high speed d i g i t a l  

computer . 
Having determined t h e  s tagnat ion poin t  condi t ions  a s  descr ibed i n  

s e c t i o n  3.4, t h e  i n t e g r a t i o n  around t h e  body i s  s t a r t e d  with an assumed 
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shock detachment d i s t ance  € The equat ions  f o r  t h e  body s u r f a c e  

v a r i a b l e s  are s t rong ly  dependent on t h i s  va lue ,  and smooth t r a n s i t i o n s  

of a l l  v a r i a b l e s  from t h e  subsonic t o  t h e  supersonic  flow regime are 

only obtained f o r  a co r rec t ly  chosen 6 Depending on t h e  case ,  

between t e n  and f i f t e e n  i t e r a t i o n s  were.needed t o  determine 8 t o  

four  s i g n i f i c a n t  f i gu res .  Near t h e  poin t  where t h e  su r face  v e l o c i t y  

reaches t h e  l o c a l  speed of sound, t h e  equat ions  have a s i n g u l a r i t y ;  

and t h e  behavior of t h e  so lu t ion  becomes badly nonl inear .  For t h e  

case  of f rozen and equi l ibr ium flow, t h e  s i n g u l a r i t y  occurs  a t  t h e  

sonic  po in t ;  however, t h i s  i s  no t  t r u e  f o r  non-equilibrium flow (Ref. 8). 

Previous i n v e s t i g a t o r s  (Ref. 3 ,  8, 10) have repor ted  t h a t  t h e  s i n g u l a r i t y  

i s  of t h e  saddle-point  type.  I n  t h e  present  formulat ion of t h e  problem, 

t h i s  was no t  apparent ;  and more research  i n  t h i s  d i r e c t i o n  seems t o  

be necessary.  

0 .  

0' 

0 

Once a smooth d i s t r i b u t i o n  of a l l  v a r i a b l e s  i n  the  e n t i r e  subsonic 

reg ion  was obtained,  a l l  dependent v a r i a b l e s  were ex t r apo la t ed  i n t o  t h e  

supersonic  region by using a second order  polynomial curve f i t .  The 

i n t e g r a t i o n  was then resumed and could,  i n  most ca ses ,  be c a r r i e d  out  

up t o  t h e  shoulder  o f  t h e  body, i n  some cases  even f a r t h e r .  
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DISCUSSION OF RESULTS 

4.1 Stagnation Streamline 

Numerical results have been obtained for a number of cases, only 

a few of which can be discussed here. For chemical non-equilibrium 

flow, the degree of dissociation and the temperature are particularly 

interesting parameters. Fig. 2 and 3 show the distribution of a 

and T, respectively, along the stagnation streamline behind the bow 

shock for a flight speed of 4300 m/sec at an altitude of 30 km. It 

can be seen that, depending on the size of the body, quite different 

regimes of non-equilibrium flow are encountered. For relatively large 

bodies, the local chemical relaxation time is short compared to a . 

characteristic flow time which causes the flow to reach the state of 

thermodynamic equilibrium close behind the shock. On the other hand, 

for very small bodies, the relaxation time becomes large if compared 

to a characteristic flow time, In this case, the flow remains essen- 

tially frozen and equilibrates only near the stagnation point, where 

the velocity approaches zero and the relaxation time is again small 

compared to the local residence time of a flow particle. It was found 

that, under all circumstances, the flow always reaches thermodynamic 

equilibrium at the stagnation point. 

In both figures the present results from the integral method are 

compared with data calculated by Conti (Ref. 17), who used an inverse 

method and also different reaction rate constants. The air model was 

the same as ours. 
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4.2 Flow Around C i r c u l a r  Cylinder 

It i s  a l ready  w e l l  known from p e r f e c t  gas  c a l c u l a t i o n s  t h a t  with 

increas ing  f r e e  s t ream Mach numbers the  bow shock moves c l o s e r  t o  t h e  

body. It i s  seen from Fig.  4 and 5 t h a t  i n  chemical non-equilibrium 

flow t h i s  t rend  i s  r e t a ined .  Both f i g u r e s  a l s o  i n d i c a t e  c l e a r l y  t h a t  

d i s s o c i a t i o n  of t h e  f r e e  stream, keeping a l l  o t h e r  f r e e  s t ream para- 

meters unchanged, causes  t h e  bow shock t o  move away from t h e  body. 

One reason f o r  t h i s  e f f e c t  i s  t h a t ,  f o r  a d i s s o c i a t e d  f r e e  stream, 

t h e  dens i ty  behind t h e  shock i s  lower than f o r  corresponding condi t ions  

without f r e e  stream d i s soc ia t ion  ( R e f .  15).  The e f f e c t  i s  seen t o  

inc rease  with decreasing f r e e  stream Mach number. Fig.  4 a l s o  shows 

t h a t  t h e  shock shape dev ia t e s  considerably from a concent r ic  circle, '  

even where the  v e l o c i t y  i n  the  shock l a y e r  i s  s t i l l  subsonic.  

From Fig.  5 i t  i s  observed t h a t  t h e  present  c a l c u l a t i o n s  y i e l d  

a s tagnat ion  shock detachment d is tance  which i s  much smal le r ,  even 

f o r  an undissoc ia ted  free stream, than t h e  va lues  obtained from per- 

f e c t  gas c a l c u l a t i o n s  (Ref. 3,  6 ) .  Responsible f o r  t h i s  e f f e c t  i s  

ou r  assumption of v i b r a t i o n a l  equi l ibr ium throughout t h e  flow f i e l d .  

It i s  shown t h a t ,  f o r  a f r e e  stream Mach number of M = 3 ,  where 

t h e  bow shock does not  y e t  cause apprec iab le  molecular v i b r a t i o n  i n  

t h e  shock l aye r ,  t h e  present  ca l cu la t ion  p r e d i c t s  a va lue  which i s  

ve ry  c l o s e  t o  the  known perfec t  gas r e s u l t .  Again, it is  g r a t i f y i n g  

t o  see  t h a t  f o r  t h e  high Mach number range (5 = 14.2) our  r e s u l t s  

agree  c l o s e l y  with those of  Conti (Ref. 17), which were obtained by 

an e n t i r e l y  d i f f e r e n t  approach. 

1 
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The velocify distribution along the surface of the cylinder, as 

evident from Fig. 6, is almost linear up to the sonic point. A distinct 

effect of free stream dissociation can be seen. 

The degree of oxygen dissociation along the non-catalytic body 

surface is presented in Fig. 7. Especially for the high Mach number 

cases, it is seen that the recombination process dominates in the sub- 

sonic regime as the flow expands around the body. The degree of dis- 

sociation decreases slowly until, in the supersonic regime, the local 

residence time of a particle becomes so small compared to the relaxation 

time that the flow freezes. With lower free stream Mach numbers, this 

effect becomes less pronounced until, for the lowest case shown, no 

change in composition at all is observed. For a better understanding, 

however, the non-equilibrium results should be compared to those for 

equilibrium flow and frozen flow, which are not available at the present 

time . 
Finally, Fig. 8 and 9 show the temperature and the pressure dis- 

tribution along the surface of the cylinder for selected free stream 

Mach numbers with and without dissociation of the free stream. As 

expected, free stream dissociation has a strong effect on the tempera- 

ture but practically no effect on the pressure. Therefore, pressure 

distributions are presented only for zero free stream dissociation. 
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4 . 3  Concluding Remarks 

Hypersonic non-equilibrium flow of air past a circular cylinder 

was investigated,using Dorodnitsyn's method of integral relations.Air 

was represented by a simplified model consisting of a three component 

reacting gas. 

Results were presented for a wide range of free stream Mach numbers. 

The investigation included an analysis of the flow along the stagnation 

streamline.It was shown in particular that the size of the body has 

a decisive influence on the distribution of temperature and degree 

of dissociation along the stagnation stream1 ine . 
The solution for the flow along the surface of the circular 

cylinder was extended far into the supersonic regime up to the shoulder 

of the body.It was found that dissociation of the free stream , as it 

may occur either in the atmosphere at high altitudes, or in the nozzle 

of heated flow facilities, has a strong effect on the shock detachment 

distance , as well as on the distribution of velocity, dissociation, 

density , and temperature along the body surface. The body surface 

pressure was shown to be in close agreement with the Modified Newtonian 

Theory , and hardly influenced at all by free stream dissociation. 
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/ 

FIG. 1 COORDINATE SYSTEM AND SHOCK WAVE GEOMETRY ON 
CIRCULAR CYLINDER 
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