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ABSTRACT l CZ-S;(J \

Hypersonic, chemically relaxing inviscid flow of air past a cir-
cular cylinder has been calculated using Dorodnitsyn's method of
integral relations, Considered are the effects of non-equilibrium
oxygen dissociation on the distribution of the flow variables in
the subsonic and supersonic region of the shock layer. Also investi-
gated is the influence of oxygen dissociation in the free stream on
the shock detachment distance and the flow field in general.

Particular emphasis has been placed on the investigation of the
flow along the stagnation streamline, which indicates the existence
of an equilibrium region in front of the body., 1Its size depends
strongly on the density, on the body size, and on the magnitude of
the reaction rate constants. The numerical integration of the equations
for the flow around the body does not readily yield the shock detach-
ment distance on the stagnation streamline., An iteration procedure
has to be used until a stagnation shock detachment distance is found
such that the derivatives of all variables are continuous across the
sonic line,

The results show that the shock wave, at fixed free stream com-
position, moves closer to the body with increasing free stream Mach
number, that is with larger oxygen dissociation behind the shock,
However, increasing oxygen dissociation in the free stream, at other-

wise fixed free stream conditions, pushes the shock wave away from

[

the body.
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NOMENCLATURE
Oxygen mole fraction in undissociated air, defined in
eq. (2.1)
Number of oxygen atoms per unit mass of gas
Dissociation energy [ J/kmol]
Characteristic temperature of dissociation [OK]
Total internal energy LJ/kg)
Specific internal energy LJ/kgl
Mole fraction of ith species
Source function
Enthalpy [ J3/kg]
Concentration equilibrium constant [particles/m3]
Dissociation rate constant [m3/partic1e - sec)
Recombination rate constant [m6/partic1e2 + sec]
Molecular weight of undissociated gas
Colliding Body (ith species)
Avogadro's number [kmol_lj
Unit normal vector
Number density of ith species (undissociated gas)
Number density of ith species (dissociated gas)
Oxygen
Pressure [N/mzj
Velocity vector
Gas constant of undissociated gas [J/kg °K]
Universal gas constant [J/kmol ©K ]

Radial coordinate



™
]

A/rb

3
[

= r/rb

Surface DnZ]
Temperature [OK]
Time [sec ]

Velocity components in circumferential and radial direction,
respectively [m/sec]

Volume [m3]

Net rate of production of oxygen atoms per unit volume of gas
Compressibility factor

Degree of oxygen dissociation

Shock detachment distance

Shock detachment distance (dimensionless)

Radial coordinate (dimensionless)

Circumferential coordinate

Vibrational temperature of ith species [OK]

Mass density [kg/m3]

Shock wave angle

Subscripts
Free stream
Body surface
Colliding body
Nitrogen
Normal component
Atomic oxygen
Molecular oxygen
Stagnation point
Tangential component, also total conditions

Behind shock wave



INTRODUCT ION

The importance of blunted shapes in the hypersonic flight of a
vehicle re-entering the atmosphere from outer space has led to many
investigations of hypersonic flows with detached shock waves, using
both inverse and direct methods. 1In the‘inverse method the flow field
around the body is determined by specifying a certain shock shape, and
the associated body shape follows from the calculation, This method
has the advantage that the problems associated with the specification
of boundary conditions along an unknown shock wave are avoided,
Although it has been successfully applied, for example by Hall (Ref. 1),
even for real gas, the method is extremely tedious if the flow field
around a given body shape has to be determined,.

In 1959 Dorodnitsyn (Ref. 2) has described a method of integral
relations for the solution of two-dimensional boundary value problems,
This method is also applicable to problems with free boundaries and
has first been applied by Belotserkovskii (Ref. 3) to the calculation
of supersonic flow of a perfect gas past a circular cylinder. Also
using a perfect gas, this basic work has been extended by various other
authors (Ref, 4, 5, 6) for other body shapes.

The assumption of a perfect gas is customary for flight speeds
where the kinetic energy of the flow does not appreciably excite inter-
nal degrees of freedom of the particles composing the gas, At hyper-
sonic velocities as they are encountered during re-entry, a considerable

fraction of the free stream kinetic energy is transformed into thermal



energy behind the bow shock, causing excited molecular vibration, dis-
sociation, and even ionization. In modern high speed flow facilities
designed to simulate such flight conditions, this highly excited

state is already reached in the nozzle supply chamber, causing frozen
dissociation in the nozzle test section (Ref, 7, 9). It is the coupling
of these so-called real gas effects, as described above, with the usual
flow processes that is responsible for the difficulties encountered

in the flow field calculations of vehicles flying at hypersonic speeds,

Up to the present time, only a limited number of investigators
have obtained results for real gas flows in connection with the inte-
gral method, The first results where presented by Shih, Baron, e.a.
(Ref. 8), for hypersonic non-equilibrium flow of air past a sphere,
Simultaneously, Yalamanchili and Hermann (Ref, 7, 9) investigated non-
equilibrium flow of air past a circular cylinder. It must be mentioned
here that results from this investigation, also published in Ref. 9,
were found to be incorrect due to an error in the computer program.
However, the equations are correct as published., Later Belotserkovskii,
e.a. (Ref. 10), used the integral method to calculate equilibrium flow
of air past spheres and ellipsoids,

In the present paper, new results are given for non-equilibrium
hypersonic flow of air past a circular cylinder, Also treated is, for
the first time to the authors' knowledge, the case of dissociation in
the free stream, Such conditions are encountered, either in the atmo-
sphere at high altitudes, or in the nozzle of heated flow facilities

where appreciable frozen dissociation may occur.



GAS MODEL AND THERMODYNAMIC EQUATIONS

2.1 Gas Model

The simplified air model used in this investigation consists of
oxygen atoms, oxygen molecules and nitrogen molecules only. 1In other
words, the range of application is such that only oxygen may dissoci-
ate., The formation of nitric oxide is neglected. While the oxygen
content was very closely approximated, the remaining gases in atmos-
pheric air, mainly argon and carbon dioxide, were added to the nit~
rogen fraction of our gas model., Specifically, the mole fraction of

oxygen in undissociated air was chosen as

n
b = ——S%H—— = 0.21 (2.1)
%2 7 ™w2

where n, denote the number of particles of the ith species per unit
volume of the gas,

This air model has been introduced by Hermann (Ref, 11), and it
has been shown to be a reasonable approximation to real air in the
appropriate range of temperatures and pressures (Ref, 12, 13)., It
permits us to gain an insight in the distinct features of non-

equilibrium flow phenomena with a minimum of computational effort,

2.2 Thermal Equation of State

The degree of oxygen dissociation, @ , is defined as the ratio
of the mass of oxygen in dissociated form to the total mass of oxygen
in the mixture. Assuming that the individual species of the mixture

obey the perfect gas law, the pressure of the mixture is the sum of



its partial pressures, or

<
P = Zpi = L piRiT (2.2)

i
With the above definition and assumption, the thermal equation of

state for the mixture can be derived as.

p = PRZT (2.3)
where

Z=1+ba (2.4)

2.3 Internal Energy and Enthalpy

The internal energy of the gas mixture is the weighted sum of
the internal energies of each species due to the various modes of
excitation (translation, rotation, vibration) and the dissociation

energy of the dissociating component,

< fo
= ) + —

E & fiei 7 Do (2.5)
where the fi denote the mole fractions, and D02 is the dissociation
energy.

The enthalpy of the mixture is defined as
h =E +% (2.6)

After determining the mole fractions, an explicit expression for the
internal energy of the mixture can be obtained from statistical
thermodynamics. Then, substituting (2.5) and (2.3) into (2.6), the

enthalpy may be written as



bo a
- ' é _7_ _ 02 - N2 :l
h R [bCLDOZ'i' 2 baT + ) T+ (1 a) 5 T T + (1 b) 5 IT 7T
02 -1 e N2 -1

2.7)
where R 1is the gas constant of undissociated air, ei the charac-
teristic temperature of vibration, and Déz a characteristic tempera-
ture of dissociation. From the form of eq. (2.7), it should be noted

that the molecular vibrations are assumed to be in equilibrium with

the translations and rotations.

2,4 Rate Equation

In general, a large number of collisions among the particles afe
required to equilibrate dissociation (and other modes of excitation)
with the local translational temperature, This means that a finite
amount of time is needed for the gas to achieve thermodynamic equilib-
rium., The depaftufe from equilibrium of a flowing gas is characterized
by the magnitude of this relaxation time relative to some translational
time needed by the particles to move over a certain distance. It is
the purpose of this subsection to present the necessary equations that
will enable us to account for such non-equilibrium effects in our
calculations,

Since only oxygen dissociation is considered in this amalysis,
only one chemical rate equation is needed. For steady flow, let w
be the net number of oxygen atoms generated per unit volume and unit

time and ﬁb the number of free oxygen atoms per unit volume of the



fluid, For an arbitrary volume V, the net number of oxygen atoms
generated per second must then be equal to the flux of free oxygen
atoms across its boundary S, that is
f wdv = I ﬁoa‘ + ndS (2.8)
v S
where 3 is the velocity and T a unit normal, Applying the diver-
gence theorem to the right hand side, eq. (2.8) may be written as
J lw -9 @dlav=0 (2.9)
v

Since the considered volume was arbitrary, we must have
V@ = (2.10)

Defining now C as the number of oxygen atoms (in either molecular

or atomic form) per unit mass of the gas,

C =~ (2.11)

we can express the number of free oxygen atoms per unit volume of the

gas as

n. = Cu .
nO P (2.12)

Substituting the above into eq. (2.10) and using the over-all continuity
equation, which states that

V. (pq) =0 (2.13)
the rate equation becomes simply

q - va=— (2.14)



The net rate of oxygen atoms generated per unit volume of the fluid is

dEO dﬁ0
v E.E_d)iss * e de” zec (2.1

The equations for the reactions that may occur in the considered air
model are of the form

s 1

0, + M, 20 + M, (2.16)
i i

WT lnf‘

o)

,1
where Mi symbolizes a particle of the ith species acting as colliding
body necessary to either dissociate the molecule or recombine some
atoms, and where kd,i and kr,‘ are the rate constants for the
specific reaction, It is obvious then that eq., (2.16) represents a
set of three different reactions, since Mi may be an oxygen atom ér
molecule, or a nitrogen molecule,

In order to simplify the calculations we shall now consider Mi
to represent any particle of our gas mixture, the composition of which
is given by the sum of the concentrations of the actual species, De-

noting by Eﬁ the number of particles per unit volume that may act as

a colliding body, we have for our air model

oy =Ty + Ry + Ay (2.17)
From the law of mass action, it is known that the rate of change of
concentration is proportional to the product of the concentrations,
raised to the power of the stoichiometric coefficients, In the pro-
cess of dissociation an oxygen molecule must collide with some other

particle having enough energy to break up the oxygen molecule. For



the recombination of two atoms, a triple collision is necessary, the
third body carrying away the energy that the two separate atoms must

release to form a stable diatomic molecule. Hence, according to (2.15),

- = =2
W = kg, - kAT (2.18)
where kd and kr are the temperature dependent reaction rate

"constants'" for dissociation and recombination respectively, For
local thermodynamic equilibrium, the net rate of oxygen atoms gener-

ated vanishes; i,e., w = 0; hence,

kg T
T -5 = Kc (2.19)
r 02

where Kc is the concentration equilibrium constant for the considered
reaction, Assuming now that the above relation is also valid when the
flow is out of chemical equilibrium, the rate equation can finally be
written as

q e+« Va=F (2.20)

where
CZPZZk

2
d [1 - o _a ]
F=— 260 K_ (2.21)

In eq. (2.21) Kc is a function of temperature only; it is also
obtained from statistical thermodynamics.

In order to evaluate the rate equation we still need expressions
for the dissociation rate constant,

A comprehensive review of recent work carried out in the field of
reaction rates was given by Wray (Ref, 14). His values for the various

colliding bodies will be used in the present investigation.



As a consequence of the simplification that was introduced pre-
viously, it was necessary in eq. (2.18) to assume a single rate con-
stant each for dissociation and recombination. In order to account
for the influence of the catalyzing species, at least in a simplified
fashion, it is therefore propoéed to use as a dissociation rate con~

stant, a population averaged expression of the form
kd =Zfikd,i (2.‘22)
i

where the fi are the mole fractions and where the kd i denote the
b4

dissociation rate constants (for oxygen) with the ith species acting

as catalyst (see eq. 2.16), The resulting dissociation rate constant

can then be expressed as

Doz
8 D._ 1.5 ——%=
K, - 2.5 + 10 02 y'" . R'T (5 4 75 4 410) (2.23)
N,Z R

In this form the dissociation rate ''constant" is seen to be a function

of temperature and composition.
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FLOW PAST A CIRCULAR CYLINDER

3.1 Basic Equations

Neglecting viscosity, heat conduction and radiation, the basic
equations for steady, adiabatic flow are the following:

Conservation of mass:

V:(pq) =0 (3.1)
Conservation of momentum:
2 . . 1
V() H T x) xq 5V =0 (3.2)

Conservation of energy:

2
q - V(h+3-) =0
or

2
h + %— = ht = const. (3.3)

The above equations are the usual equations of motion, and they do
not depend on any particular gas model. In order to solve these equa-
tions for the unknowns, they must be supplemented by a thermal equation
of state and an expression for the enthalpy, which do depend on the
particular gas model and were derived in the previous section as given
in eq. (2.3) and (2.7).

If the gas under consideration is reacting, additional equations
for the conservation of species (rate equations) must be added to the
system, For our simplified air model, we have only one rate equation,

namely,

—

q - vVa = F (3.4)

where F 1is the source function, given by eq. (2.21).
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For the calculations that we have in mind, a polar coordinate system,
referred to the center line of the cylinder, is the most suitable one
(See Fig, 1.). The transformation of the equations from the vectorial
form to polar coordinates is standard, and the result is as follows:

Conservation of mass:
3 d
Y (pu) +-§; (pvr) =0 (3.5)

8 -momentum:

u-g-g-+vr'g—:'+uv+%%‘g=0 (3.6)
r-momentum:
2 om + D - erad =0 G
Rate equation:
u %% + vr g%'— Fr = 0 (3.8)

The conservation of mass and the r-momentum equation are given in
divergence form, which is required for the application of the integral

method.

3.2 Boundary Conditions

The condition for flow tangency on the body surface is given by

v, =0 (3.9)

The conditions behind the shock are obtained from the conservation of
mass, momentum and energy across the shock:

Conservation of mass:

plunl = psuns (3.10)
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Conservation of momentum:

U1 T Ys (3.11)
u2 + =p u2 + (3.12
P1%1 TP s'ns © Pg -12)
Conservation of energy:
2 2
Un1 Yns
h1 + - = hs +—-2—— (3.13)

where p and h are given by the equation of state, eq. (2.3), and

the enthalpy equation, eq. (2.7), respectively.

3.2.1 Frozen Shock Conditions

For the present non-equilibrium flow calculations, it will be
assumed that the composition of the air does not change across the
shock; i.e., Z1 = ZS. Using this assumption and equations (2.3),
(3.10), (3.12) and (3.13), one obtains easily

2
u RZ. T e ‘u -
Y Y 11 2 -2 i ml _ :
Ty = RZ) L+— ) V Yy " 2(hg - hy) RZ, 1 2 (hg = 1)

Un1
(3.14)

For any given free stream conditions (i.e, Tl’ al’ unl), the tempera-
ture behind the shock, Ts’ can now be obtained from eq. (3.14) and

eq. (2.7) by solving these equations numerically. Using the continuity
equation, eq. (3.10), and the energy equation, eq. (3.13), the density

ratio across the shock is obtained as

p u :
5—‘5 = nl (3.15)

N -
1 \/unl 2(h - b))
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Knowing the temperature and the density behind the shock, the static

pressure ratio across the shock becomes

pS pS TS ( 6)
S .-8._8 3.1
Pp P T

which completes the calculations of the static conditions behind the
shock, It may be mentioned that in Ref. 15 numerical results of the

above calculations are given for a wide range of free stream conditions.

3.2,2 Geometric Relations

For the calculations ahead, the velocity behind the shock must
be given in the present coordinate system. From Fig, 1, one obtains

ug T o-ou cos(0 + 6) + u sin(o + 0) (3.17)

v

S sin(o + 8) - u, cos(0 + 6) (3.18)

where the velocity components as referred to the locally oblique shock

are given by

u =Y, = u cos o (3.19)
Py
w oSy ( E; ) sin© (3.20)

Fig. 1 also indicates that the relation between the shock wave

coordinates and the shock wave angle 0 1is given by

dA

T+ cot (0 + B) (3.21)

where O and A are functions of 0,
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3.3 Application of the One-Strip Integral Method

The method of integral relations, proposed by A. A, Dorodnitsyn
(Ref. 2), and first applied by Belotserkovskii (Ref, 3), is already
well known. Its application to the calculations of hypersonic flow
past blunt bodies was also explained in Ref, 9 and will not be repeated
here. In contrast to the description given in Ref, 9, a slight modi-
fication of the method, previously used in Ref, 8 and 13, has also
been applied in the present calculatioms,

Due to the boundary condition, eq. (3.9), it can be seen that
the O-momentum equation and the rate equation may be used in their
exact forms., Hence, only two equations of the set, namely the con-
servation of mass and the r-momentum equation, are approximated by
assuming a linear variation of certain integrands across the shock
layer, thus permitting an integration of the equations in the dir-
ection of the radial coordinate, which in turn results in two ordi-
nary differential equations with the tangential coordinate as
independent variable., The integrands, for which a linear variation
across the shock layer must be assumed, are

pu
9 (3.22)
puv, and (p + pu”)
Applying the above described linearization to the continuity and the
r-momentum equation, and making use of the fact that the body contour
is a streamline (eq. (3.9)), the complete set of governing equatioms

for the flow past a circular cylinder can now be written as follows:
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Coﬁtinuity:
. EEE . dpb ‘o dus .\ dps }
b db Uy T s d Y @@

1 + €

0 -momentum:
dub dp
b
%% a8t =0
r-momentum:

2 + €

d 2
b (psusvs) = € (pb - ps) + pbub + psus

-1 : < [psusvS cot (o +0) + 2psv§ j
Rate:
d
% E;h = FpTp
Energy:
ui uf
CN + hb = ht =5 + h1 = const.
State:
Pp = PpR%T,

5 [(pbub - psus) cot (0 +6) - ZDSVSJ

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

In the above equations, use has already been made of eq. (3.21), in

order to eliminate the derivative of A. Eq. (3.21) through (3.28)

constitute a system of seven equations for the seven unknowns, which

are u., P, 12 Tb’ % » € = A/rb, and 0, For the actual numerical inte-

gration, it is convenient to eliminate the derivatives of uy and Py

This reduces the system to the set of the following four differenﬁial

equations:
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Conservation of mass:

dp dTb de

b =
(ub -RZLT) 5~ PRZ, 35 T PoRT, 3 ot W de (P u))

il 1
» — L(p u - psus) COF (c +8) - 2p$vs_j (3.29)
8-momentum:
dp oh - dT . oh - do,
RZ,T, dg teyl Rz Rz, =« 5Eh ) | 'E% + o | RTb = ( %TE') i —E% =
b Oy % Tp
(3.30)

plus the r-momentum and the rate equation as given in eq. (3.25) and
(3.26). Once P> Tb’ Gb, and O are determined from eq. (3.25),
(3.26), (3.29), and (3.30), the energy equation and the equation of

state are used to calculate u and Py s respectively.

b

3.4 Stagnation Streamline Conditions

Before the numerical integration of the system of equatiomns for
the flow around the circular cylinder can be started, the stagnation
point parameters, serving as initial values, must be determined. For
this purpose, the governing equations are specialized for the stag-
nation streamline, where 6 = 0 and uy, = u = 0. From eq. (3.5)

through (3.8), one obtains, respectively,

Continuity:

d Su -
i (pvr) + 0 (53 g=0 =0 (3.31)

6 -momentum:

slg
[}
(e

(3.32)
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r-momentum:

3 T
r ) +ov v () [=0 (3.33)
dr 8 0=
=0
Rate:
da
Vi F=20 . (3.34)
Energy:
V2
—5 +h = ht = const. (3.35)

Together with the equation of state, eq. (3.31) and eq. (3.33) through
(3.35) constitute a system of five equations for the five unknowns

(p, P, T, 0, and v) along the stagnation streamline. After some alge-
bra, and after eliminating the derivatives of v and p, the following

set of first order ordinary differential equations is obtained:

do F
S=1 (3.36)
[ du E r _ (o 2,
ar _ PVt (35 dop - TPF (RTb — (55 0y (L - p/evT) | (3.37)
dr r dh 2. .
rpVL_Rz—(a_T)a(l'P/pV )|
QE_D_I(Q_Q E . oh ar _ v ' _,.(é}l) —!1 (3.38)
T oty P (s dadw TV 56 20=0_ | .

Once a, T, and p are determined from the above equations, u and p
are obtained from the energy equation and from the equation of state,
respectively,

Equations (3.36) through (3.38) still contain the unknown gradient
of u in © direction, which for fixed 6 1is a function of the
radial coordinate r only. In order to determine this gradient,
use is made of the linear approximation for pu, which was previously

needed in order to derive eq. (3.23). The first order polynomial
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approximation for pu 1is, in general,

r-rb
Pu = (pu) + [(pu)S - (pu)b]  — (3.39)

Differentiating the above expression with respect to 0, and special-
izing the resulting equation for the stagnation streamline (6 = 0, u =
Yy =u = 0), one obtains

du du

du n-1 b n-1 s
P(s) =0p.(1 - )( ) +p ( ) ( ) (3.40
3 )_" P < @ ) st e, a6 ) )

where 1N = r/rb is the nondimensionalized radial coordinate r,
having the range 1 <n< 1+ €°. Eq. (3.40) contains three gradients
which can be determined as follows:

Specializing the approximate continuity equation, eq. (3.23), for
0 = 0, one can solve for

2 + €o p

du
b 1 do
p(—p) == ——pv_-pPpu (=—=-1D(=F) (3.41)
b' db 8=0 €° s s s 1 Py do 0=0

Differentiating eq. (3.17) with respect to 0, and then specializing

for 6 = 0, one obtains

du pl
(55) =ul=-D(g) —v (3.42)
6=0 s B=0

|

D

Finally, solving the approximate r-momentum equation, eq. (3.25), for
the gradient of O, and then specializing the result for the stagna-

tion streamline, one arrives at

2
~ (2 + 60)(1)b - PS) - (2 + eo)psvs (3.43)
- vuce(p, -p) :
slo'l s

do
(=)
d6 8=0
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Substituting now the last three expressions into eq. (3.40), it can

be shown that

2
( du - 2p v (L+e)(N-1) + (p -p )2+ eo)[eo - 2(m - 1))
[L¢] 6=0 2
- -pvseo
(3.44)

The above is seen to be a function of the radial coordinate T, the
conditions behind the shock, the stagnation point pressure Py and
the stagnation point shock detachment distance 60. Hence, the system
(3.36) through (3.38), together with the energy equation, the equation
of state, and eq. (3.44), can now be solved for an assumed stagnation
point pressure, for which a first guess is obtained from a constant
density calculation (Ref, 16), Also assuming a value for €°, the

system is then integrated and iterated on Py > until the assumed

value of P, agrees with the value resulting from the integration,

3.5 Numerical Techniques

For both the integration along the stagnation streamline and the
integration along the body surface, a fixed step Runge-Kutta technique
of fourth-order accuracy was used. A thousand steps were chosen for the
stagnation streamline; for the integration around the body, the step
size was fixed at 0.002 radians, corresponding to roughly 0.1 degrees.
All calculations were performed on a UNIVAC 1107 high speed digital
computer,

Having determined the stagnation point conditions as describéd in

section 3.4, the integration around the body is started with an assumed
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shock detachmen; distance €°. The equations for the body surface
variables are strongly dependent on this value, and smooth transitions
of all variables from the subsonic to the supersonic flow regime are
only obtained for a correctly chosen 80. Depending on the case,

between ten and fifteen iterations were needed to determine €0 to

four significant figures. Near the point where the surface velocity
reaches the local speed of sound, the‘equations have a singularity;

and the behavior of the solution becoﬁes badly nonlinear. For the

case of frozen and equilibrium flow, the singularity occurs at the

sonic point; however, this is not true for non-equilibrium flow (Ref. 8).
Previous investigators (Ref. 3, 8, 10) have reported that the singularity
is of the saddle-point type. In the present formulation of the proBlem,
this was not apparent; and more research in this direction seems to

be necessary,

Once a smooth distribution of all variables in the entire subsonic
region was obtained, all dependent variables were extrapolated into the
supersonic region by using a second order polynomial curve fit, The
integration was then resumed and could, in most cases, be carried out

up to the shoulder of the body, in some cases even farther.
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DISCUSSION OF RESULTS

4,1 Stagnation Streamline

Numerical results have been obtained for a number of cases, only
a few of which can be discussed here. For chemical non-equilibrium
flow, the degree of dissociation and the temperature are particularly
interesting parameters, Fig. 2 and 3 show the distribution of «
and T, respectively, along the stagnation streamline behind the bow
shock for a flight speed of 4300 m/sec at an altitude of 30 km., It
can be seen that, depending on the size of the body, quite different
regimes of non-equilibrium flow are encountered. For relatively large
bodies, the local chemical relaxation time is short compared to a
characteristic flow time which causes the flow to reach the state of
thermodynamic equilibrium close behind the shock, On the other hand,
for very small bodies, the relaxation time becomes large if compared
to a characteristic flow time, In this case, the flow remains essen-
tially frozen and equilibrates only near the stagnation point, where
the velocity approaches zero and the relaxation time is again small
compared to the local residence time of a flow particle, It was found
that, under all circumstances, the flow always reaches thermodynamic
equilibrium at the stagnation point.

In both figures the present results from the integral method are
compared with data calculated by Conti (Ref., 17), who used an invérse
method and also different reaction rate constants. The air model was

the same as ours,



22

4,2 Flow Around Circular Cylinder

It is already well known from perfect gas calculations that with
increasing free stream Mach numbers the bow shock moves closer to the
body. It is seen from Fig, 4 and 5 that in chemical non-equilibrium
flow this trend is retained. Both figures also indicate clearly that
dissociation of the free stream, keeping all other free stream para-
meters unchanged, causes the bow shock to move away from the body.
One reason for this effect is that, for a dissociated free stream,
the density behind the shock is lower than for corresponding conditions
without free stream dissociation (Ref, 15). The effect is seen to
increase with decreasing free stream Mach number, Fig. 4 also shows
that the shock shape deviates considerably from a concentric circle,
even where the velocity in the shock layer is still subsonic,

From Fig, 5 it is observed that the present calculations yield
a stagnation shock detachment distance which is much smaller, even
for an undissociated free stream, than the values obtained from per-
fect gas calculations (Ref, 3, 6). Responsible for this effect is
our assumption of vibrational equilibrium throughout the flow field.
It is shown that, for a free stream Mach number of Ml = 3, where
the bow shock does not yet cause appreciable molecular vibration in
the shock layer, the present calculation predicts a value which is
very close to the known perfect gas result, Again, it is gratifying
to see that for the high Mach number range (M1 = 14.2) our results

agree closely with those of Conti (Ref., 17), which were obtained by

an entirely different approach.
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The velocity distribution along the surface of the cylinder, as
evident from Fig. 6, is almost linear up to the sonic point, A distinct
effect of free stream dissociation can be seen.

The degree of oxygen dissociation along the non-catalytic body
surface is presented in Fig. 7. Especially for the high Mach number
cases, it is seen that the recombination process dominates in the sub-
sonic regime as the flow expands around the body. The degree of dis-
sociation decreases slowly until, in the supersonic regime, the local
residence time of a particle becomes so small compared to the relaxation
time that the flow freezes, With lower free stream Mach numbers, this
effect becomes less pronounced until, for the lowest case shown, no
change in composition at all is observed., For a better understanding,
however, the non-equilibrium results should be compared to those for
equilibrium flow and frozen flow, which are not available at the present
time,

Finally, Fig. 8 and 9 show the temperature and the pressure dis-
tribution along the surface of the cylinder for selected free stream
Mach numbers with and without dissociation of the free stream, As
expected, free stream dissociation has a strong effect on the tempera-
ture but practically no effect on the pressure, Therefore, pressure

distributions are presented only for zero free stream dissociation,
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4.3 Concluding Remarks

Hypersonic non-equilibrium flow of air past a circular cylinder
was investigated,using Dorodnitsyn's method of integral relations.Air
was represented by a simplified model consisting of a three component
reacting gas.

Results were presented for a wide range of free stream Mach numbers.
The investigation included an anélysis of the flow along the stagnation
streamline.It was shown in particular that the size of the body has
a decisive influence on the distribution of temperature and degree
of dissociation along the stagnation streamline,

The solution for the flow along the surface of the circular
cylinder was extended far into the supersonic regime up to the shoulder
of the body.It was found that dissociation of the free stream , as it
may occur either in the atmosphere at high altitudes, or in the nozzle
of heated flow facilities, has a strong effect on the shock detachment
distance , as well as on the distribution of velocity, dissociationm,
density , and temperature along the body surface. The body surface
pressure was shown to be in close agreement with the Modified Newtonian

Theory , and hardly influenced at all by free stream dissociation,
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FIG. 1 COORDINATE SYSTEM AND SHOCK WAVE GEOMETRY ON
CIRCULAR CYLINDER
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