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The problem of low energy 

ABSTRACT 

atomic scattering of electrons by multi-electron 

atoms i s  formulated i n  the adiabatic exchange approximation. The effects of  target 

d:stortion by the electric field o f  the incident charged particle are determined by 

computing a polarization potential t o  be included in the total scattering interaction. 

The polarization potential i s  obtained through a polarized orbital calculation on 

atomic systems described by Hartree- Fock type wave functions. Application i s  made 

to N a  and Li where electron exchange i s  included in the reduction of  the scattering 

equation, and the phase shi f ts and total elastic scattering cross sections are obtained 

through the solution of a set of integrodifferential equations. 

noted explicit ly by solving the scattering equations neglecting electron exchange 

and comparing the computed cross sections. The total elastic scattering cross sections 

for Li  and N a  agree well with recent measurements over the entire experimental 

range, and are significantly better than any previously published results. 

, 

Exchange effects are 
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1 .  INTRODUCTION 

The theoretical treatment of atomic collision processes has received a great 

deal of  attention by many investigators for the last thirty or more years. One can 

find a vast amount of literature devoted to almost any phase of  the problem. Yet 

adequate solutions to almost al l  but the very simplest atomic collision phenomena 

have yet to be realized. In this paper we w i l l  concern outselves with electron- 

atom collision processes, and more particularly we w i l l  consider only the case of 

electrons of  low incident energy on single unbound atoms or ions. 

The atomic scattering o f  electrons presents a very complex problem even 

in the very simplest systems, the least complicated being that of electron-hydrogen 

atom scattering. Even in  this case, however, complete solutions have not as yet 

been obtained. The Hamiltonian for this system i s  essentially the same as that for 

the helium atom which has, of course, never been solved exactly. Scattering by 

heavier atoms yields far more complicated Hamiltonians than that of the hydrogen 

system and, of  necessity, presents even inore formidable problems in  seeking any- 

thing approximating an exact solution. It can be said, then, that at the present 

stage of development in-atomic scattering problems, exact solutions are nonexistent, 

and progress toward an agreement o f  theory and experiment l ies i n  finding the proper 

approximations which yield accurate resu Its, and thus more insight into the scattering 

processes. 

- 

For low energy electrons incident on an atomic system, there are two major 

effects which complicate the problem. These are 1) the exchange interactions 

between the incident electron and the atomic electrons, and 2) the distortion of  

the atomic systems by the electric f ield o f  the incident charged particle. For 

certain atomic collision problems both these effects are more pronounced than 

usual. In the case of the alkali atoms this i s  particularly true since the valence 

electron i s  very loosely bound. Earlier calculations for the alkalis 

the extreme sensitivity of the calculated cross sections to the accuracy o f  the 

1-3 
have shown 
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polarization potential in the total scattering interaction and the exchange effects. 

In this paper the problem of low energy elastic scattering o f  electrons by alkali- 

type atoms i s  treated with application to atomic lithium and sodium in the energy 

range from .003 to 25.0 eV. The effects of exchange and target distortion have 

been calculated here through the use of  the adiabatic exchange approximation 

wherein the target atom i s  distorted by the static field of  the incoming electron. 

The polarization potential i s  calculated by a method of  polarized orbitals similar 
6 

to that used by Temkin4I5 and Callaway, and electron exchange between the 

incident and the valence electron i s  included through explicit use of  the adiabatic 

exchange approximation which leads to a set of integrodifferential equations for the 

free electron wave functions. 

3 

3-5 

I I .  THE POLARIZATION POTENTIAL 

In this section the distortion of  an atomic system by a slow incident electron 

and the resulting polarization potential i s  developed from the application of first 

order perturbation theory to Hartree-Fock electron orbitals. We note than analo- 

gous perturbation calculations on Hartree and Hartree-Fock systems have been 

carried out heretofore in order to determine atomic dipole polarizabilities (Sternheimer ); 

core polarization due to valence electrons i n  alkali atoms (Callaway ); and the 

polarization potential for electron scattering (Temkin ). 

7 

6 

4 

We consider the first order perturbation by a free electron of an atomic 

system whose unperturbed Hartree-Fock (H. F.) self  consistent f ie ld  wave functions 

have been determined. Under the influence of the perturbation the H.F. one electron 

orbitals and the H. F. energy depend on the coordinates of  the free electron. The 

perturbed orbitals JI. of the H. F. determinant for the atomic system then satisfy 

the following equation (in Rydberg units) which depends on the free electron 

coordinate r 

I 

4,6 
f '  
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where 

and 

+ + +  
In these equations r 

the free electron. In order to simplify the above equations for the perturbed H. F. 

orbitals we write $.(rl, I rf) in the form 

are the coordinates of  bound electrons and r f i s  that of 1’ ‘2 

+ +  

where @.(;) i s  the unperturbed H. F. orbital which satisfies I 1  

with 

+ 2 2  -P 

V(rl) = -22 + Jf 1QiG)( - d r2 
‘1 i ‘12 

and 

Our obiective i s  to determine the first order perturbations X. I of the single electron 

orbitals Jr. of the Hartree-Fock determinant for the bound atomic system. In this 
I 
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L 

calculation the t e k  2/rlf i s  treated as a Perturbation on the atomic system and the 

perturbations X. are determined from first order perturbation theory. 4,617 The integro- 

differential equations for the first order perturbation Xi(rl, r$ of  the H. F. orbitals 

may be determined from equation (1). These have been written down explicitly by 

Callaway, but are too complicated to solve in any reasonable time. However, 

i f  a l l  the perturbed Coulomb and exchange integrals are dropped from the equations 

for the first order perturbation o f  the H. F. orbitals, the resulting differential equations 
6 

are more tractable. The effect o f  omitting these integrals i s  discussed by Callaway 

and i s  shown to be reasonably small, 

+ +  I 

6 

The presence of  the unpertuhed exchange integrals A(rl) which are retained 

i n  the equations for the perturbed Hartree-Fock orbitals s t i l l  leave the equations i n  

a very complicated form. However, these terms can be replaced very conveniently 

and with reasonable accuracy by an average exchange potential by the method 

given by Slater. 

equation (7) i s  replaced by the function 

8 
In the simplest form of Slater's method, the exchange term of  

The summation i n  this expression i s  carried over a l l  occupied orbitals of both spins. 

With this substitution and with the omission of the perturbation terms i n  the Coulomb 

and exchange integrals, the resulting equation for the perturbation Xi o f  a H. F. 

orbital becomes: 

(9) 

In this equation we expand the perturbation term 2/r 

terms on the right side, by the multipole expansion 

which appears i n  the two I f  



2 

2 3 
2 2  2rf 2rf 2 

‘If ‘1 r1 2rl 

- = -  +-case +- (3cos 8-  1) + 

2 
2  COS 8 -  1) + 2rl 2r 1 - -- - 2  +-case+ 

2rf 
3 ‘If ‘f rf 2 

where 8 i s  the angle between r and rfe Substituting (10) into the two terms in the 

brackets on the right o f  (9) we note that a l l  but the spherically symmetric term in the 

integral w i l l  vanish, Dropping the quadrupole and higher order terms the bracket 

expression then becomes 

1 

where r 

o f  r the f i rs t  and second terms in this expression w i l l  cancel each other leaving 1 
only the dipole term - cos 0. Also noting that for smaller values of  r the 

spherically symmetric term of  the potential w i l l  be small as compared to the Coulomb 

term, we make the dipole approximation and retain only the dipole term in  the 

bracketed expression. 

i s  the lesser and r the greater of r1 , rf. We note that for large values < > 

2r< 
r>2 1 

To obtain the first order perturbation of  each of the atomic electron orbitals 

#. we thus have the following pair o f  differential equations to solve: 
I 

2 [-v1 + V(r 

2 [-v1 + V(r 



These equations musf be solved in the "inner" region where r f 1  < r and in the 

"outer" region where rf > r, and the solutions matched at the boundary r f  = rl. 

With the solutions for the perturbations Xi of the Hartree-Fock orbitals 
6f9  

the dipole polarization potential i s  then determined from the expression 

where the sum extends over a l l  occupied orbitals m.. 
I 

The reduction of equations (11) into radial equations and (12) into integrals 

over radial coordinates i s  accomplished easily by expansion of the functions @. I 

and xi in the form 

and 

With these substitutions the differential equations (9) separate into the radial equations 

2rl 

dr 1 '1 r f  

I 2 

[% - pl(1+1) 2 - V(rl) +AS(',) t E P ~ U  nF?t' ( r l f  rf) - - 7 f' np (r r f  > r l  (15,) 

m-m 
which must be solved and matched at the boundary r, = rf. The constants Cn ~ 

in equation (14) are determined from the Clebsch-Gordon coefficients which occur 
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from the angular integrals,, These are tabulated by Sternheimer and are zero unless 

,f = 1: 1, where only the upper sign holds br,4 =O. With the solutions to  (15) the 

polarization potential becomes 

where 

The constants K and on the number o f  electrons 

in an n.l shell and have been given by Stemheimer. In the limit as r +a the f 
polarization potential calculated here should approach -a/r , where a i s  the dipole 

polarizability, thus providing a convenient check on the accuracy o f  the solutions V . 
P 

are numbers which depend on 
n p t  

4 

111.  THE SCATTERING EQUATION 

As mentioned in  Section I, both target distortion and electron exchange are 

extremely important in electron scattering by the alkali atoms and must be dealt with 

accordingly i n  the scattering equation. O n  the other hand, i f  one wishes to obtain 

cross sections over a fairly wide energy range as i n  the present investigation, the 

scattering equation must be written in a reasonably tractable form, since many partial 

waves are required i n  the calculation. In order to achieve these objectives the 

scattering equation i s  written as essentially a two electron equation for the free 

electron and the single valence electron i n  the field of the perturbed core orbitals 

with exchange between the incident and valence electrons included explicitly. 

Exchange with core electrons i s  accounted for implicit ly through the exchange term 

A (r) of  equation (7) and core polarization i s  included directly through V (r) which 

i s  the polarization potential of the core electrons. The Schroedinger equation may 

then be written i n  the form 

S Pc 
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-+ 
where r 

are given by equations (6) and (8). V 

electron calculated by the method o f  Section II. 

and 7’ are position vectors for the two electrons, and the terms V(r), A (r) 
1 2 S 

(r) i s  the polarization potential for the core 
Pc 

With this scattering equation the adiabatic exchange model i s  again uti l ized 

r ) for the free and the bound electron. In this 
+ +  

to express the wave function Y (r 1‘ 2 
approximation Y i s  written in the form 

where 1r 
perturbed ground state function which i s  perturbed adiabatically by the free electron 

whose wave function i s  F, and the pertwhation term i s  2/r 

i s  the ground state wave function for the valence electron, $I i s  the 
0 

12’ 
The plus sign in (16) refers to the symmetric (singlet) state of  the two electrons, 

and the minus sign to the antisymmetric (triplet) state. In the adiabatic exchange 

approximation adopted here the symmetry of the wave function Y i s  partially destroyed 

since the unperturbed bound state function $ 

rather than the first order perturbed function $I. The omission of  the first order 

perturbed term in the exchange wave function means that the function f(rl, r2) i s  

not completely antisymmetric except in the limit of  large r where the perturbation 

becomes zero. This approximation i s  consistent with the perturbation calculation 

o f  H.F. functions in Section II and should have an equally small effect on the 
3,lO 

accuracy of the scattering equation. 

appears in the second term o f  (18) 
0 

- + +  

2 

The perturbed ground state function $I i s  written, as i n  Section II, in 

the form 

and the perturbation X i s  determined from equation (9 )0  
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Equation (18), with $ written as in (19), may be substituted into equation 

(17) in order to obtain an equation for the free electron function F. With this sub- 

stitution, equation (17) may be multiplied on the left by $*r) and the result 

integrated over r 

equation becomes 

0 1  + 
With the use of equations (5), (9) and (12) the Schroedinger 1 '  

2 
= 2 d f l  $:G) !k,2 - E - - ) F G )  $o($) 

O '12 

where the upper and lower signs refer to the singlet and triplet states respectively. 

Here the term k = E - E 

the ground state energy o f  the bound electron. V (r ) i s  defined as 

2 
i s  the kinetic energy o f  the free electron and E 

0 2  

i s  
0 0 0 

which i s  the screened Hartree-Fock potential for the neutral atom. The term 

V 

i s  given by 

(r ) i s  the polarization potential due to the perturbed valence electron and 
Pv 2 

which is, i n  the dipole approximation, just that of  equation (12) where x i s  to 

be determined from equation (1 1). Thus the sum of the two terms Vp + Vpv ' IS 
C 

the polarization potential for the core plus the valence electron and i s  just the 

polarization potential of  equation (12) for the complete atom. This w i l l  be 

denoted by V . 
P 

By the use of a partial wave expansion of  the free electron wave function 

F(r) equation (20) can be reduced to a radial equation for each partial wave f . 
Thus we write 
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With this expansion, the equation for the partial wave f becomes 

where u = r - l  JI 
C 0 

L o  
r 

-r ‘J 

0 

i the radial part of  

0 

he normalized ground c.Jte wave func.ion 

for the .valence electron. 

The integrodifferential equation (20) may be solved in  a non-iterative fashion 
11 

by a procedure used by Marriott, 

as was used i n  the present work. 

or in an iterative self-consistent calculation 

I f  electron exchange i s  completely ignored between the bound and free 

electrons, the scattering equation (22) reduces to a homogeneous equation where 

the right side i s  identically zero. Solutions to both sets of equations were obtained 

in  order to determine the effect of exchange on the calculated cross sections. 

IV. APPLICATION TO Li AND N a  

A. Calculated Polarization Potential 

In the calculation of  the polarization potential, the unperturbed wave 

functions for the atomic system were taken as the Hartree-Fock-Slater (H. F.S.) 

wave functions obtained from a slightly modified program originally written by 

Herman and Skillmann.12 The output of the program furnished the functions 
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0 V(r), AS(r), e l  and P (r) i n  equations (15), which could then be solved for the 

pertuhations U 

value of  r equations (15) were integrated by the Numerov process for inhomo- 

geneous equations as described by Hartree, over the same r mesh as that of the 1 
H. F.S. program which furnished the unperturbed functions. The integration in the 

inner region was started by noting, as did Sternheimer,' that for r - 0 the inhomo- 1 
geneous term on the right side of (11) is negligible as compared to the potential terms 

13 
on the left. The solution may thus be started by a series expansion 

and continued by numerical integration, With this procedure there i s  an arbitrary 

constant i n  the starting values, this being the value of  (U 

inhomogeneous set of equations (1 l), this parameter i n  the starting conditions must 

be determined in  order to satisfy the boundary conditions; that the solutions to  (1 1 ) a 
and (1 lb) and their derivatives match at r = r and that the solution be exponentially 

decreasing at infinity. The value of  (Unj+i/r )o was varied automatically i n  the 

coded program unti l  two values were found which enclosed the correct one. The 

choice wos then narrowed by successive solutions unti l an accuracy of  five to six 

significant figures i n  the starting value was achieved. The calculations were performed 

on a Univac 1107 computer at the University o f  Alabama Research Institute. 

nt  
I o f  a given orbital whose radial function i s  P For a given 

nj+$ nJ* 

13 f 

near the origin 

&l 
,/r )o. For the 

n PL 

!.+l 

In the present calculation the total polarization potential was taken to be 

that contributed by electrons in the two outermost shells of  the alkali atom. For 

Li both the core and valence electrons are in s-states. In  Sternheimer's notation 

these undergo s + p perturbations and the radial equations must be solved for the 

. In the case o f  Na  the 2s and 3s electrons l,*l and u2,0-1 perturbation U 

experience s + p  excitations similar to Li. However, for the 2p electrons, two 

modes of  excitation 2p + d and 2p + s are possible and the perturbation U 2,1+2 
are required. and u2,1+0 

The solutions to  the pair of differential equations (1 1 )  for the perturbations 

((r, r ) exhibit a behavior very similar to the simpler solutions obtained by 
uni+t f 



-12- 

Sternheimer. Thus'the nodes of the radial function U ' correspond i n  number 

to the orbital next higher in energy than nlt  having 1 angular momentum. Also 

the contributions ns + p and np -+ s are opposite i n  sign as found i n  Sternheimer's 

calculations and tend to cancel each other i n  their contribution to  V 

heimer supports this behavior w i th  a reasonable physical and mathematical argument .) 

The solutions to equations (1  1 )  are of course more complicated than those of  Stern- 

f heimer since his equations correspond to those only i n  the asymptotic region of r 

where only one of equations ( 1  1 )  holds. As the free electron moves in  toward the 

nucleus, the pair o f  equations must be solved for each value of  r In the actual 

solution the equations were solved over a 441 point mesh on r and for 110 values 1 
of rf. As one would expect from physical arguments, the amplitude and to some 

extent the shape of the perturbation U 
n l 4  f 

position r of the free electron. The perturbation i s  small for large r 

r r where r i s  the position of the largest maximum of the unperturbed function, 
f o f  0 

and small again for r 

radial function P 

of r are shown. 

n t+L 

(Stern- 
P' 

f' 

((r, r ) of an n l  orbital depends on the 

largest when f f' 

0. This i s  clearly shown in Fig. 1 where the unperturbed f 
(r, r ) for three values 3 , b l  f (r) for sodium and the perturbation U 3s 

f 
We have so far considered the core polarization as being due only to the 

electric field of the incident electron. However, since the valence electron i s  

strongly polarized bythe field o f  the incident particle, there i s  an induced field 

acting on the core due to the polarized valence electron orbital. l 4  This f ield 

tends to induce a moment of  opposite sign in the core orbitals, thus decreasing 

the effective polarization of the core. An estimate of the size of this effect can 

be obtained by calculating the electric field at the nucleus AE (0) due to the 
va I 

perturbation of the valence electron wave functions, The z-component 

field i s  given by 
14 

of this 



c 

-- 1 3- 

I I 

I 

I 
L, 

cn 
L L  
.- 

I 

0 
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2 
where p i s  the electron density induced by the field -e/r ind f 
at z = r For the valence electron in an s-state this becomes f' 

of  the charge -e 

'f (ao) 

AE (0, r s  va1,z 

00 
-2 

AE val,z (0, rf) = e 3  S 'no(') u n , b l  (r, rf) r dr. 
0 

.211 .597 3.017 6.075- 

.0169 .0372 .0949 .050 1 
i 

(24) 

I f  the valence electron were completely external, the total field acting on a core 

electron would be the sum of that due to  the free electron and that given by the 

induced field of  Eq. (24). However, since the valence electron penetrates the 

core the effective field due to the valence electron i s  reduced fran this value. 

But more important for our purposes i s  the fact that i n  the scattering problem the 

perturbing electron also penetrates the atomic system. Thus the induced field 

(Eq. (24)) i s  a function o f  r 

comes appreciable for small values o f  r it i s  necessary to calculate the induced 

field of the valence electron for several values of  r i n  order to estimate the size 

o f  this effect on the core polarization as compared to the direct field o f  the pene- 

trating electron. This has been done by evaluating Eq. (24) for several values of  

and since the core polarization potential only be- f' 

f' 

f 

The results for N a  are shown in Table 1. 'f' 

TABLE 1.  Electric Field at the Nucleus due to 
Perturbed Valence Electron of N a  as 
a function of  rf. 

We note that the induced field of the valence electron first increases as 

r decreases from infinity, reaches a maximum for r - r (see Fig. 1) and then 

decreases rapidly for smaller values of  r approaching zero at r = 0. This can 

easily be seen from Fig. 1 where the amplitude of  the perturbation o f  the valence 

electron i s  seen to f i r s t  increase and then decrease as r gets smaller. 

f f o  

f' f 

f 
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In order to estimate the effect o f  this interaction on the calculated polari- 

zation potential, we show separately in Fig. 2 the polarization potential from the 

valence electron and from the core electrons as calculated from Eq. (16). Then 

note that for values of  r greater than -20 where the induced field of  the valence 

electron i s  appreciable, the polarization potential due to the core electrons whether 

due to the direct terms from the incident particle or from the induced field of  the 

valence electron i s  essentially negligible as compared to the large valence electron 

contribution. Furthermore, for small values of r where the core polarization potential 

becomes appreciable, the induced field due to the valence electron becomes small 

as compared to the perturbing field o f  tho incident electron (down by a factor o f  

six from i t s  maximum (Table I))and thus can reasonably be neglected i n  the calculation 

o f  Vp i s  important. Thus i n  the present 

treatmeni the core and valence contributions to V are calculated independently 

and added (Fig. 2), neglecting the induced effects o f  one upon the other. The 

core contribution i s  almost entirely due io the 2p-d excitation, since the 2p+s and 

2s+p contributions cancelled each other almost exactly. 

0 

f 

since this i s  the only region where Vp 
C, C 

P 

As a check on the accuracy of the calculations one can compare the 

asymptotic value of the calculated dipole polarization potential with the value 

which one knows should result, namely V (r ) for r +a where u i s  the 

dipole polarizability whose value i s  available from experiment. Thus, in Table I I  

we give the calculated value of a from the present calculation which i s  obtained 

from the equation a = V (r) r at r = 25ao. The results are converted to A 
14 

in II and compared with experimental values15 and with other calculations. 

The agreement with experiment i s  very good. 

4 
a/r 

P f  

4 0 3  
f f  P 

TABLE 11.  Dipole Polarizabilities From Asymptotic 
Value o f  Vp in Present Calculation and 
From Experiment. 15 1 3  

Li N a  

Present 22.2 23.9 

r i L z T  20-23 20-25 I 
~~~ -~ 

24.9 22.9 I a I Sternheimer 

(a) Ref. 14 
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B o  Solutions to the -Scattering Equation 

The solutions of the scattering equation (22) for a l l  partial waves f having 4 
j - < 7 were obtained by an iterative self consistent method of solution. In this tech- 

nique the integration was started by expanding f i n  a power series near the origin 

and continued by Numerov's method. 

for the integrals on the right side of (22) were obtained by first solving (22) with 

the right side set equal to zero (no-exchange approximation), The resulting wave 

functions were then used in  the integrals for the next iteration. 

a 13 
In addition, the required starting values 

Having started the iteration the entire integrodifferential equation was iterated 

through a self consistent field procedure. 

were compared at some large value of r (r = 30, at which point the integrands vanish 

to a good approximation because of the bound orbitals) with the value from the pre- 

ceding iisration. I f  the value of  the integrals from one iteration differed by more 

than O,l% from that o f  the preceding solution, then the process was repeated unti l 

this criterion was satisfied. 

For this, the integrals on the right side 

For values of  I > 7 it was found that the exchange terms o f  Eq, (22) were 

completely negligible, therefore the solutions fA were found by simply solving the 

homogeneous equation obtained by setting the right side of (22) equal to zero, 
+ 

The phase shi f ts  S1 and 6- were obtained directly from the solutions to 

Eq, (22) by integrating the equation out to a distance which was large enough that 
2 -4 

a l l  terms i n  the differential equation were negligible as compared to k (< 10 ). 

The phase shifts were obtained by comparison with the spherical Bessel functions. 

The distance at which this criterion i s  satisfied depends, of course, on the value 

of  k . For the smallest values of k this distance was chosen as large as 500a and 

for the highest values of k i t  was as small as 35a The proper multiple of T to be 

added to the phase was obtained directly by a node count on the solutions f and 

on the corresponding Bessel functions j 
additional number of nodes in the function f 

1 

2 
0 

0 

f 
The result was available directly from the 

1- 
A 0  
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For comparative putposes, the first few phase shi f ts for N a  are shown in  

Fig. 3 with exchange included and in Fig, 4 with exchange neglected i n  the 

scattering equation. The effect of exchange i s  evident i n  the plot o f  the phase 

shifts. However, in the calculations of the total cross sections the effect i s  much 

more pronounced. 

The values of  the phase shifts for singlet and triplet scattering are listed 

in Tables A-I and A-ll of Appendix I for several energies. In Table A-Ill are 

the phase shifts for higher values of  t where the triplet and singlet partial waves 

were indistinguishable. Finally, in Tables A-IV and A-V are listed the phase 

shifts for Li and N a  with exchange effects ignored completely, 
16 

V. TOTAL ELASTIC SCATTERING CROSS SECTIONS 
+ With the phase shifts &A and S i  determined, the total elastic scattering 

2 
cross section for the singlet or triplet case may be determined (in units of  ~a ) 

from the expression 
0 

where the (+) refers to 

The total cross section 

the singlet and the (-) to the triplet states of the system. 

i s  then 

3 -  
a +  - u .  1 

4 4 
u = -  

I f  electron exchange i s  neglected the total cross section i s  given by Eq. 

where the h ' s  are those obtained from the homogeneous equation analogous to 

Eq. (22). 
4 

In Figs, 5 and 6 the total elastic scattering cross sections for Li and N a  
17 

are shown compared to the experimental results of  Perel, Englander and Bederson 

and of  Brode. l8 (The results are plotted as a function of i n  order to show 
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the low energy values more clearly.) The agreement with experimental values over 

the range o f  the experiments i s  quite good. In particular we note the double reso- 

nance exhibited by the total cross section, one at about 1/4 volt and another smaller 

peak at about 1.5 volts which corresponds exactly in energy to the experimental peak 

in this region. Unfortunately, no experimental cross sections are available for N a  

and Li in the very low energy region as i n  the case o f  Cs, thus the second peak i n  

the calculated cross section cannot be checked against experiment at present. The 

calculated cross sections are about 515% higher than the experimental values of  

Perel, et al. , however, their results were normalized to those o f  Brode at 2 eV, 

thus the absolute values o f  the experimental curve may be i n  error by this amount, 

particularly since Brode 

Also shown on Fig. 5 are some recent theoretical cross sections for Li obtained 

by Bauer and Browne19 and byvinkalns, Karule and Obedkov.20 The results of  Bauer 

and Browne were obtained by  adjusting a variable parameter in an approximate ex- 

pression for the polarization and exchange potential. The results of  Vikalns, et al., 

were obtained using a polarization potential obtained from coupling with the first 

excited p state (2p) by perturbation theory. The results of  the present calculations 

are in much better agreement with experiment than any o f  the prior calculations. 

We note i n  Fig. 5 and 6 that in the present results for both Li and N a  the 

calculated cross sections decrease to relatively smal I values at very low energies. 

The values at zero energy were determined by calculating the scattering lengths 

18 
states that his values below 4 eV are uncertain to 2 15%. 

f 21 A- for singlet and triplet states from the modified effective range theory expansion 

+ + + 
tan u- = -A-k - (710/3) k2 - (4aA-/3) k2 In (1.23&) + ..- 

0 

+ 
where A- i s  the scattering length, The values of  A were obtained from the phase 

shifts at k = J.00025 (RY) and are shown i n  Table VI. 
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TABLE Ill. Scattering Lengths for Li and N a  

L i  

A+ A- 

7,554 2.088 

N a  

- 
A+ A 

6.51 1 1.634 

It i s  worthwhile to compare the scattering lengths of  Table Ill with those calculated 

for electron-hydrogen scattering by various methods. In the case of  hydrogen the 

singlet scattering length i s  A = 6 a  and the triplet A- = 2 a  (Resenberg, Spruch 

and O'Malley give upper bounds of  6.23a and 1.91 a respectively for A and 

A-; other calculations agree well  with these results, 

Table Ill that both the singlet and triplet scattering lengths of Li and N a  are very 

l i t t le different from those of  hydrogen. This i s  significant for two reasons. First, 

though the alkali atoms are much more complicated than hydrogen, they retain 

hydrogen-like characteristics and polarization and exchange effects are similarly 

important as in the hydrogen atom. Second, and perhaps more important for com- 

parison purposes, i s  the fact that the negative ions of Li  and N a  are estimated to 

have approximately the same binding energy as that of  the hydrogen atom (roughly 

.7- .8 eV). Thus, heuristically one would predict that the singlet and triplet 

scattering lengths for these alkalis should resemble those for hydrogen, which i s  

true in the present calculation. 

+ 
+ 0 0 22 

0 23 
) We note from the results of  

0 

24 

The present results for zero energy differ quite drastically from those o f  
20 

other calculations for alkali atoms. The results of  Vinkalns, Karule, and Obedkov 
+ 

for Li are A 

are A = 9 and A- = -12. Both these results are very much different from those for 

hydrogen and from the present results, being exactly opposite i n  relative magnitude 

and yielding much larger values of u for E = 0. The present results also differ greatly 

from those for Cs by Crown and Russek,26 A + =  -20 and A- = 360a which yield 

= -4.8 and A- = -10.4 and those of Salmona and S e a t ~ n ~ ~  for N a  
+ 

0 
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very large cross sections at zero energy. Though no experimental data i s  available 

for comparison at very low energies, the present results seem more reasonable from 

the above argument. Also the results at higher energies are much better i n  the 

present calculation than in any of  the previous alkali atom calculations, which 

lends some support to the present low energy results. 

Finally i n  Figures 7 and 8 are plotted the total elastic scattering cross 

sections for L i  and N a  neglecting electron exchange. The results are compared 

with those having exchange included, thus exhibiting the effect of  the Pauli prin- 

ciple on the calculated cross sections. The results at low energy are, as expected, 

strongly effected by exchange effects. This i s  especially true for N a  where the 

figure shows that the results differ by an order of  magnitude. Thus one can con- 

clude that computed electron scattering cross sections for the alkalis are completely 

unreliable at energies below one volt i n  the no-exchange approximation, a fact 

which has earlier been demonstrated i n  the case o f  Cs. 3 

VI. CONCLUSIONS 

From the results obtained in the present calculations it seems that the 

method of  polarized orbitals and the adiabatic exchange approximation i s  capable 

of describing low energy electron scattering from more complicated atomic systems, 

these being represented by H. F. type wave functions. In the calculation of the 

polarization potential for the alkali atoms, the approximation used in  earlier cal- 

c u l a t i o n ~ , ~ ' ~ ' ' ~  that only the outer region of the perturbation equations be included, 

seems to be inadequate. Since the valence electron i s  very weakly bound, the wave 

function o f  the valence orbital has an appreciable amplitude over a rather large dis- 

tance, and the inclusion of the inner and outer regions i n  the equations for the per- 

turbed radial functions gives a strong dependence of  the amplitude and the shape of  

the perturbation U on the free electron position. With the strong dependence 

of  the scattering cross sections on the shape of  the polarization potential in the 

region near the atomic radius, this behavior should not be ignored in  the calculation 

o f V .  
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There are two points which should be mentioned in comparing the present 

interaction potential for electron-alkali atom scattering with other calculations 

on the same problem. The first, which was pointed out by Temkin,4 i s  that the 

perturbed orbitals x. contain, at least partially, the effects of  both the continuum 

and configuration interaction. The perturbed wave function contains terms of  

higher angular asymmetry than the original function and corresponds roughly to a 

pertuhation of some closely lying configuration. Furthermore, the radial dependence, 

which arrives from the solution of an inhomogeneour set o f  equations, reflects the 

effects of a l l  higher states even of the states o f  the c o n t i n ~ u m . ~  The methods 

employed in  other calculations for the alkalis include the contributions from only 

a limited number of  higher states to the polarization potential, usually only one 

excited states. This has been shown to be adequate or at most two or three 

for very large r where the results may be compared to that yielded by the dipole 

p o l a r i ~ c r b i l i t y , ~ ~  but for values of r comparable to the atomic radius where the 

pertuhaticn i s  considerably stronger this approximation may be inadmissible. 

I 

5,23 

24,25 

f 

f 

Another significant difference in this comparison i s  the treatment of  the 

core electrons. 

cluded , at least approximately; core polarization bydrect calculation and exchange 

i n  the core through the use of  the Slater exchange approximation for the exchange 

potential in Eq. (17). Sample calculations for N a  neglecting these effects indicate 

that both contributions are important for some values of  E. The method of  Bauer and 

Brown yields a convenient approximation to both effects, though adiustable para- 

meters are involved in  the calculation. Their calculated cross sections for Li  are 

well below experimental values in the region just below the first excitation threshold. 

Here, both the effects o f  core polarization and exchange are in- 

26 

In the present treatment the Slater approximation for the exchange terms in 

the Hartree-Fock equations was utilized in calculating the bound state as well as 

the free wave functions, There are, of course, more accurate wave functions 

available for Li and Na, but the magnitdde of the problem begins to be unmanagable 
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in the complete H. F. perturbation calculation. The H. F.S. wave functions are, 

in fact, very close approximations to the H.F. solutions and since exchange polari- 

zation terms are neglected in the polarization potential calculations, it seems that 

l i t t le would be gained by using more exact H. F. ground state wave functions in the 

equations derived here. In fact, the present investigation indicates that a useful 

criterion for a "good" set o f  bound state wave functions in a low energy scattering 

problem where the polarization potential is so important i s  that set which gives a 

good value of  the polarizability in the polarization potential calculation. 

H. F.S. wave functions used here satisfy this requirement very well. 

The 
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APPENDIX 

Tables of phase shifts for Li and N a  
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TAB LE A- I V 

Phase Shifts for Lithium (No exchange) 

Energy 6O 6l 62 63 64 65 ' 6  67 
.0005 3r-.142 2 r m  
.00075 

I .0010 

.0015 

.0020 

.0025 

.0030 

.0040 

.0050 
0060 

0075 
.010 
.020 

.030 
050 

.065 

.075 

.085 
0 100 

.115 

.125 

.150 

,250 
.350 
.400 

.450 

,500 
.550 

.650 

,750 
1 a00 

1.50 

2 .oo 

3H- .182 
3r- .217 

3n- ,279 
3H- .331 
31 - .379 
3r - .422 
3r - .500 
3r - .569 
3r- .631 

3 ~ -  .741 
3 ~ -  .836 
3~-1.197 
3r- 1.452 
2r+ 1.313 

2H+ 1.098 
 TI + .976 
2r+ .867 
2a + .720 
2r+ .590 

2r+ .511 

2H+ -335 
2H- .179 
2r - .530 
2r- .673 

2r- ,798 
2r - .913 
2r- 1.014 
2r- 1.193 

2r- 1.347 
r+ 1.490 

r+ 1.062 

r+ .768 

2 ~ -  .014 

2r- ,024 
2r- .048 
2r - .073 
2r- .loo 
2 ~ -  ,127 

2r- .180 
2r- .231 
2H- .279 

2H- .346 
2H - .447 
2r- ,750 
2r - .963 
2r- 1.231 
  TI- 1.397 
2r- 1.480 
  TI- 1.575 
r+ 1.487 

TI+ 1.388 
r+ 1.328 
r+1.193 

A +  .805 
r+ .544 
A +  .441 

A +  .350 

r+ .269 
r+. 197 

A +  .072 

TI - .033 
II- .237 

H- .506 

r- .685 

n +.001 

u +.003 
t +.004 

r +.007 

H +.010 
r +.012 
T +.015 

r +.019 
r +.024 

r +.029 

A +.036 
TI +.048 

TI + . O B  

TI +. 120 
TI +. 142 
TI +. 133 
TI +.I20 
TI +.lo3 
TI +.075 

r +.044 
A +.022 

TI- .031 
TI- .228 

TI- ,383 
R -  .451 

TI - .512 
TI - .569 
'II - ,620 
r -  

TI- 

T '  

r- 

A '  

71 1 

78 9 
950 

,173 

.001 

.002 

.003 
004 

.005 

.007 

.008 

.010 

,013 
.019 
.049 
.loo 
.276 

.467 

.602 
776 

.983 
1.185 

1.300 
TI- 1.501 

TI- 1.368 
TI- 1.257 
TI- 1.244 

TI- 1.240 
TI- 1.243 
TI - 1.245 
TI- 1.263 

TI- 1.289 
TI- 1.358 

TI- 1.491 

.32 1.561 

.004 

,005 

.006 

.008 

.016 

.027 

.064 

.110 

.130 

.167 

.217 

.285 

.327 

.422 

.790 

.033 

.118 

.184 

.237 

.271 

.325 

.357 

.393 

.380 

.336 

.008 

.012 

.025 

.040 

.047 

060 
.081 

., 105 
0 121 

.162 

.354 

.519 

.593 

.660 

.718 

.764 

.845 

.910 
1.010 

1.095 
1 . 1 1 1  

.008 

.013 

.019 

.022 

.027 

.036 

.047 

.054 

.073 

.174 

.276 

.330 

.379 

.421 

.462 

.533 

.593 

.711 

.839 

.897 

.008 

.011 

.013 

.015 

.019 

.024 

.029 

.038 

.095 

.156 

.190 

.224 

.257 

.284 

.340 

.390 

.496 

.636 

.715 
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Phase Shifts (contd.) and Cross Sections for Lithium 

Energy 68 69 610 '1 1 '12 613 '14 '15 (a;) 
0005 504.4 
.00075 

.0010 

.0015 

0 0020 
0025 

e 0030 

.0040 

.0050 

.0060 

0075 
.010 

.020 

e 030 
.050 

.a5 
075 
.085 
0 100 
.115 
.125 
,, 150 

.250 
350 
.400 
450 
500 

e 550 
650 

750 

1 .oo 
1.50 

2 -00 

., 007 

0 008 

009 
.011 

.014 

.017 

.021 

.054 
091 
.114 
.136 

.159 

.182 
0 220 

.261 

0 349 
0 477 

.562 

.009 

.011 

.013 

032 

056 
.071 

.087 

.lo3 

.117 

0 147 

. I 7 7  

.247 

362 

.444 

035 
.045 

.056 

.066 

784 

.098 

0 122 

.176 

-273 

0 348 

559.7 
607.5 
693 e 0 

770.9 

842.3 

873.9 

1030.3 
1131.1 
214.1 
310.6 
41 1.5 

456.9 
289.0 
1071 ., 1 

1033.3 

1031.6 
1089.7 
1106.6 

1103.7 
1077.6 
969.1 

755.3 
684.4 
662.8 
648.7 

633.7 
617.1 

,, 067 590.5 
.085 .061 043 569.0 
.128 .092 .069 .051 .038 519.1 
.210 .160 .122 .096 .073 440.7 
.278 .219 .172 .140 .110 382.0 
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TABLE A-V 

Phase Shif ts for Sodium (No exchange) 

‘1 &2 &3 &4 &S 
.00075 

.0010 

.0015 

.0020 

.0025 

.0030 

.0040 

.0050 

.0060 

.0075 

.0100 

.0200 

.0300 

.0500 

.0650 

.0750 

.0850 

.loo0 

.1150 

.1250 

.1500 

.2500 

.3500 

.4000 

4 .4500 

.5000 

.5500 

.6500 

,7500 

.. 

1 .ooo 
1 SO0 

471-. 178 

471- .212 

4~ - .273 

4~ - .327 

4% - .375 

4r-  .418 

4H - .497 

4H - .566 

4 ~ -  .629 

4lr- .714 

4n - .837 

4H - 1.20 

4n- 1.47 

3n +1.29 

3n +1.07 

3r + .942 

3r +.830 

38 +. 679 

31T + .544 

31r +.463 

3lr +.281 

3n - .250 

3r -  .615 
3s - .763 

3n- .894 

3r-  1.01 

3a- 1.12 

3r -  1.31 

3n- 1.47 

2r+1.34 

2lr + .880 

3r-  .295 

3r - ,333 

3a- .397 

3r-  .451 

31 - .499 

3R - .542 

38- .617 

3A- .682 

3a - .741 

3n- .819 

3r-  .929 

3n - 1.25 

3r-  1.47 

2n +1.44 

2r  +1.26 

2lr + l .  16 

2r  +1.07 

2lr +. 954 

2lr +.846 

2r +.781 

2a +. 637 

2r+.211 

2 r -  .081 

21r - .200 

2 ~ r  - .305 

21r - .399 

2 n -  .484 

2n - .634 

2a - .762 

2r-1.02 

2r-1.38 

TI +.002 

TI +.003 .0003 

r +.006 .001 

TI +.009 .002 

r +.013 .003 

IT +.016 .004 ,001 

r +.023 .006 ,002 

lr +.029 .008 .003 

TI +.035 .011 .004 

IT +.045 .014 .006 

TI +.062 .014 .006 

n +. 133 .057 .018 ,009 

n +. 189 .123 .031 ,014 

n +,228 .357 .075 .028 

TI +.225 .616 ,124 .043 

TI +.213 ,810 .162 ,057 

a +. 197 1.01 .205 .072 

TI +. 166 1.23 .275 .097 

TI +. 134 1.43 .349 .126 

r +. 112 1.53 .401 .147 

IT +.056 1.56 ,514 .202 

1~-.135 n-1.26 .917 .422 

TI- .278 IT- 1.21 1.15 .609 
lr-.337 r-1.20 1.23 .682 

TI- .387 TI- 1.21 1.28 .750 

IT- .433 TI- 1.22 1.32 .808 

1~-.474 IT-1.22 1.35 .852 

TI- .543 IT- 1.25 1.38 .932 

TI- .599 TI- 1.28 1.41 .986 

1~-.702 IT-1.35 1.42 1.07 

IT- .817 IT-1.47 1.38 1.12 

‘6 &7 ‘8 ‘9 

.008 

.014 

.020 

.025 

.031 

.042 

.054 

.064 

,090 

.208 

.330 

.388 

.442 

.486 

.531 

.603 

.668 

.775 

.889 

.008 

.012 .008 

.014 ,009 

.017 ,010 

,021 .013 .009 

.027 .016 .010 

.031 .018 .011 

.045 ,025 .015 

.115 ,064 ,037 

.190 . 1 1 1  ,070 

.225 .139 ,085 

.264 .162 ,104 

.301 .188 .123 

.331 .215 .139 

.396 .260 .177 

.448 .306 .209 

.556 .396 .287 

.691 .530 .408 
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Phase Shifts (contd.) and Cross Sections for Sodium 

.00075 

.0010 

.0015 

.0020 

.0025 

0030 
.0040 

.0050 

.0060 

.0075 

.0100 

.0200 

0300 

e 0500 
.0650 
.0750 
.0850 
.loo0 

,1150 

.1250 

.1500 

.2500 

.3500 

.4000 

.4500 

.5000 

.5500 

.6500 

,7500 

1 .ooo 
1.500 

Energy '10 - '1 1 ?2 '13 '14 '15 '16 (ad-) 

4770.0 
4594.1 
4375.6 
4235.2 

4127.7 
4036.5 
3877.5 

3734.4 

3601.6 
3417.2 
3139.1 
2313.9 

.044 

.054 

.067 

.080 

.094 

.118 ,080 

.146 .lo1 .072 .052 

.206 .152 .110 .081 .062 .044 

,313 .243 .188 ,145 .114 .086 .070 

780.6 
267.2 
206.7 
234.7 
256 2 
1200.6 

1 1  13.0 

1047.5 

914.8 
753.4 

724.8 
712.9 
704.3 
693.0 

679.5 
657 3 

635.0 

575.3 

481.8 
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