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TABIE OF SYMBOLS
cross sectional area of stiffener, in? when used with a sub-
script. Also used as an arbitrary constant in Appendix C.
area of flange, in2
area of stiffener, in2
one half panel width, in
arbitrary constant used in Appendix C
distance between stiffeners, in

distance from centroid of flange to centroid of areas of re-
maining stiffeners, in

distance from centroid of flange to centroid of substitute-
single stringer, in

constant

. . .oa
differential operator denoting =

base of natural logarithms
Young’s modulus

end load used in Appendix B
modulus of rigidity

unit matrix

dimensionless parameter used in stress function solution,
tx
ke = (14 7?)

dimensionless parameter used in stress function solution,
= ty
k.y = (1 + T)

parameter used in minimum potential energy equations, Appendix
B X = Gt
' ~ DEA
s
length of panel

coefficient matrix used in differential equation solution, Ap-
pendix A



ke

in minimum potential energy solution,

A
t

X

in stress function solution

)
b

number of stringers in half panel or when used as a subscript it
represents the number of the stiffener or panel under considera-

tion

origin of cartesian coordinate system
applied axial load, pounds

uniform stress of infinity, psi

average normal stress in direction Ox’ psi
average normal stress in direction Oy,.psi

shear flow, 1b/in
circumferential distance

thickness of sheet material

area of reinforcing material added in direction O

of sheet

x’

per unit width

area of reinforcing material added in direction Oy’ per unit width

of sheet

end load, stress function solution, pounds
load at infinity, pounds

strain energy

variable used in stress function solution
angle of rotation, stringer-sheet solution
shearing strain

normal strain

N
0.04712

roots to transcendental equation, stress function solution and

stringer sheet solution



parameter used in differential equation solution
Poisson'®s ratio

ratio of circumference of circle to diameter, approximately
3.1416

normal stress
shearing stress
stress function

variable used in minimum potential energy solution



CHAPTER 1

STATEMENT OF THE PROBLEM

Shear lag is the term commonly used to describe the influence that
shearing deformations have on the stress distribution in sheet-stringer
types of construction [2]]; Experimental evidence has shown that the
stress distribution in sheet-stringer structures subjected to bending
cannot be adequately predicted by the elementary flexure theory. The
difference between the stress distribution predicted by elementary
flexure theory and the experimentally determined distribution is due
in part to the fact that the theoretical assumption that plane sections
remain plane after bending is not satisfied in sheet-stringer structures.
If plane sections remained plane after bending, the sheet between string-
ers would have to have infinite shearing rigidity, i.e., no shearing
strains, Since the thin sheet between stiffeners actually has very
little shear stiffness and the sheet suffers large shearing deformations
under load, the assumption of infinité shearing rigidity is not satis-
fied in this type of structure. As a result of these shear deformations,
the stresses in the stringers are less than the predicted stresses.
Since the stringer stresses lag behind predicted values, the effect has
been described as shear lag.

Thus, the problem of the stress analyst is the determination of the
stress distribution in box beams taking into consideration shearing
strains, In a hollow, rectangular box beam under pure bending, the sur-
face under compression behaves as a flat, stiffened panel subjected to
an axial compressive load. in this thesis a flat stiffened panel under

axial load has been investigated.

lNumbers in brackets refer to references listed in the bibliography.-
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Survey of Previous Work

Although many investigators have obtained solutions to the shear
lag problem, all of their solutions appear to have shortcomings. Because
of the simplifying assumptions made, some of the less rigorous solutions
are valid only for certain special cases, while some of the more mathe-
matically rigorous solutions are quite cumbersome to apply.

One of the first investigators in the United States to give much
attention to the problem was Younger in 1930 [30]. He presented formu-
las for the efficiency of a box beam with walls of uniform thickness,
which may be considered as the limiting case of a large number of very
small stringers. His analysis is limited by the assumption of a con-
stant cross section.

Many investigators attempted to solve the problem by first deriving
the differential equations of equilibrium of either the stringers or the
sheet material and then solving the equations for the stresses by one of
several methods., Winny [29], one of the early British investigators,
obtained a Fourier series solution to the differential equations of
equilibrium of the stresses in the skin between the spars of a stressed
skin wing. Kuhn T20] proposed a numerical integration type solution
for the differential equations. Goodey {13] solved the differential
equations of equilibrium of the stringer forces using the minimum poten-
tial energy theory and the calculus of variations,

In 1946 Goodey {13] published a comprehensive series of articles
each concerned with éome aspect of the problem of shear lag, or stress
diffusion, as it is known to the British., His method of approach
required thé determination of a stress function for the particular system

under consideration. The stress functions he obtained led to expressions



for the stresses which are difficult to use; however, his expressions
based on the minimum potential energy theory, mentioned earlier, are
very easy to apply.

Borsari and Yu [ 3] conducted theoretical and experimental investi-
gations of the distribution of strains in a plywood sheet-stringer com-
bination used as the chord member of a box beam acted upon by bending
loads. The theoretical solution was obtained with the help of the prin-
ciple of minimum potential energy and certain simplifying assumptions,
Strain measurements were made on a built-up box beam by means of elec-
trical resistance strain gages. A satisfactory agreement between the
theoretical and experimental strains was reported.

Fine [10] developed a stress function for the spanwise stress in
the flat surface of a box beam under uniformly distributed transverse
load. He compared the stresses obtained from this solution with those
predicted by the stringer-sheet solution. The two solutions were in
good agreement,

Paul Kuhn [19] proposed a solution based upon the use of a substi-
tute single stringer in place of the actual stringers. It was necessary
to use a successive approximation method for locating the substitute
single stringer. In view of the approximate nature of the solution,
Kuhn considered the successive approximations an unwarranted complication,
For this reason he developed an empirical one-step method to locate the
substitute single stringer [20]. For the empirical determination of the
location of the substitute single stringer, shear strain measurements
alongside the flanges of three panels of constant section and two panels
of variable section were used. Two panels with tapered flanges and a

small number of stringers were also investigated. An empirical factor
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was chosen based upon the comparison of these tests with theoretical
strains predicted by the substitute stringer method, The resulting
solution permitted the analysis of multistringer panels with very little
computational effort. Results of this type of analysis were good and
the method found wide acceptance in industry.

Akao [1] proposed a stress analysis of a rib-stiffened plate based
upon the use of groups of orthogonal statically indeterminate force
functions.. These eigenfunction groups are presented as finite differ-
ence equations.

Several investigators have made experimental studies of shear lag.
White and Antz [28] reported an investigation made of the stress distri-
bution in thin reinforced panels. Test specimens were constructed of
Alclad aluminum sheet reinforced with extruded bulb angles. Results
were compared with strains predicted by theory based on the differential
equations of equilibrium of the axial forces in the stiffeners. Agree-
ment between experiment and theory indicated the method was well founded.

Lovett and Rodee [21] conducted an experimental investigation of
two beams composed of i—sections connected by a stiffened sheet sub-
Jected to a uniform bending moment., The result of the investigation was
the determination of an effective shear modulus for the sheet in the
sheet-stringer combination. It was found that the modulus decreases
rapidly under light loadings from the elastic value to some other value
depending upon the sheet thickness. The thick sheet gave higher values
of effective shear modulus than the thin sheet,

Chiarito [51] reported the results of tests made on two aluminum
alloy box beams with corrugated covers, Angles formed from sheet were

used for corner flanges in one beam while extruded angleswere usaed fbbh:the



corner flanges in the other beam, Electric strain gages were used to
measure strains in each beam, The experimental results compared favor-
ably with theoretical results obtained by the substitute-single-stringer
theory.

Chiarito [ 6] also reported the results of an experimental investi-
gation of two box beams loaded to destruction in an effort to verify the
shear lag theory at stresses beyond the yield point. An open box beam
made of 24S-T aluminum alloy and steel bulkheads was used for the tests.
The theoretical and experimental stresses were in good agreement.

Peterson [24]' reported the results of tests which were made on a
beam having more camber than is likely to be found in an actual wing in
order to determine whether the substitute- single-stringer theory might
be applied over the entire practical range of camber. Results indicated
that the elementary theory overestimates the maximum stress and the sub-
stitute-single-stringer theory underestimates it.

In addition to the purely theoretical and experimental solutions
already mentioned, some effort has been directed towards an analog type
solution. Newton [23] in 1945 and Ross [27] in 1947 proposed a solu-
tion based upon the analogy between the distribution of stresses in flat
stiffened panels and the distribution of electric current in a ladder
type resistance network, The application of this method is limited be-
cause the panel must be divided into a finite number of bays having
constant stresses. Results of this method were reported to have good
agreement with experimental data.

Goland [ 12 ] established an analogy between the stress flow in flat

stringer-sheet panels and the plane potential flow in an incompressible

fluid, The author did not give numerical examples or experimental veri-

fication of the method.
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The use of a mechanical analogy was proposed by Kuhn [ 16 ]. Here,
again, the division of the panel into a finite number of bays limits the
method,

In the investigation of the bending vibrations of box beams, it is
first necessary to determine the shape of the deformed beam due to a
static loading. If the effect of shearing deformations are ignored and
the elementary theory is used to predict the mode shapes, the predicted
natural frequencies can bevgreatly in error from the actual frequencies.
Davenport and Kruszewski [8] found that by using the substitute-single-
stringer method in calculating the static stresses and deformations of
the beam, the resulting calculated natural frequencies and mode shapes

were in much better agreement with experiment.

Purpose and Scope

The objectives of this study were: (1) to consider several of the
existing analytical solutions to the shear lag problem, (2) to apply
these solutions to a panel with particular properties and loading condi-
tions, (3) to solve for the stress distribution in the panel, and (4)
to compare the results of the various theories with experimental data
for the same panel with the main obJective being the determination of
the best method of shear lag analysis,

The following theoretical solutions are treated in the appendices:

Appendix A - Differential equation solution.

Appendix B - Minimum potential energy equations,

Appendix C - Stress function solution,

Appendix D - Substitute-single-stringer method,

Appendix E - Minimum energy solution using matrix methods.



CHAPTER II

COMPARISON OF ANALYTICAL SOLUTIONS WITH EXPERIMENTAL DATA

The experimental data used in this paper was acquired as part of
the performance of National Aeronautics and Space Administration con-
tract No. NAS8-11155 administered by the Bureau of Engineering Research
of the University of Alabama under the technical supervision of the
George C, Marshall Space Flight Center, Panels B and C referred to in
this paper correspond to test panels B and C of the research project
referred to above, Details of the experimental précedure, data reduc-
tion, and construction of the test panels may be found in Progress

Report No. 4 of this contract.

Differential Equation Solution

The differential equations of equilibrium of the normal stresses
in the stringers of a stringer-sheet combination are derived in Appen-
dix A of this paper, and one method of solving these equations is pre-
sented as a numerical example, The solutions are presented as a linear
combination of exponential functions. Results of this solution are
compared with experimental data in Figures 3 and 4 for panels B and C,
respectively, Examination of Figures 3 and 4 reveals the following in-
formation:

1. The theoretical curves and the experimental values for the
normal stresses in the stringers indicate the same type stress
distribution within the panel. For the loaded stringer, both
methods indicate a stress equal to P/A at the loaded end with

the value decreasing exponentially as the distance from the



loaded end increases. For the stringer adjacent to the loaded
stringer, theory and experiment both indicate normal stresses
which increase from zero at the loaded end to a maximum stress
then slowly decrease as the distance from the loaded end increases,
For the remaining two stringers, theory prediets stresses which
increase from zero at the loaded end to some higher value then
decrease slowly as the distance from the loaded end increases.
The experimental values increase from zero at the loaded end, but
do not reach some maximum value then decrease as did fhe theoret-
ically predicted stresses,

2, Agreement between theory and experiment is poor except at the
loaded end, The theoretically predicted stresses for stringers
1, 2, and 3 are non-conservative, For stringer 4 of panel C the
predicted stresses are conservative up to a point about 7 inches
from the loaded end then they, too, become non-conservative., 1In
panel B the predicted stresses in stringer 4 are conservative up
to a point about 15 inches from the loaded end.

3, Overall agreement between theory and experiment is better for

panel B than for panel C.

Minimum Potential Ehergz Equatiohs

Goodey's analysis [11] of the diffusion of end load into a panel
having (2N-1) stringers 1s presented in Appendix B. His final equations
have the form of a finite sum of terms involving trigonometric and expo-
nential functions. An analysis of the diffusion of a 2000 pound end load
in panels B and C was made using these equations. Results of this analysis
are presented in Figures 5 and 6 along with experimental data for compari-

son, Examination of Figures 5 and 6 reveal the following information:



1. Both experimental and theoretical results indicate that, at some
distance from the loaded end, the end load is uniformly distri-
buted among the stringers.

2, For the loaded stringer, the agreement between theory and experi-
ment is good with the best agreement at the loaded end. For panel
B, the agreement between theoretically and experimentally pre~
dicted stresses is poor except at the loaded end. Agreement
between theory and experiment for the unloaded stringers in
panel C is fair.

3. Theoretically predicted stresses are conservative,

The Substitute Single Stringer Method

The method for analyzing multistringer panels using a substitute
stringer is presented in Appendix D, Results of this method applied to
panels B and C having a 2000 pound end load are presented in Figures 10
and 11 with experimental data; Due to the nature of the solution, stresses
in the unloaded stringers cannot be predicted{ however, it can be seen
from the curves that the stresses in the substitute stringer are quite
close to the stresses in the stringer adjacent to the loaded stringef.
Agreement between predicted stresses and experimental stresses in the

loaded stringer is also good.

An outline of the analysis of panels B and C utilizing matrix methods
based upon the Maxwell-Mohr method is presented in Appendix E, A detailed
analysis of this type would be practically impossible without the aid of
a digital computer. The Univac 1107, located at the University of Alabama

Research Institute, Huntsville, Alabama, was used. Results of these



10
analyses are presented in Figures 12 and 13 with experimental data, This
anglysis was performed as part of the National Aeronautics and Space Ad-
ministration contract previously mentioned, not by the author.

For panel B, the agreement between theory and experiment is fair,
better agreement existing in stringer 4 than in the others. The theory
is conservative throughout most of the panel. Better overall agreement
between theory and experiment exist in the case of pamel C, but in this
case stringer 4 does not exhibit as good agreement as in panel B, Also,

theoretical stresses in stringer 4 were on the non-conservative side,

Stress Function Solution

A stress function for a panel reinforced at the lpaded end perpendi-
cular to the stringer is presented in Appendix C. Although panel C does
not have a reinforced end, a comparison is made between the analytical
solution and experimental data in Figure 7, Agreement between theory and
experiment is not, and was not expected to be, good., The method is pre-
sented because it represents another approach to the problem, although
for a slightly different configuration,

The stringer-sheet theory is also given in Appendix C. This repre-
sents one of the easier theories to apply{ however, it can only be applied
to the loaded stringer as a quick investigation of the equation will reveal,
This analysis was applied to the loaded stringers of panels B and C and
the results plotted in Figures 8 and 9 with experimental data. Investi-
gation of the two curves indicates good agreement between theory and ex-
periment, the theoretical solution being slightly non-conservative in one

region and slightly conservative in another,



CHAPTER 1III

CONCLUSIONS

As was stated in Chapter I, the main objective of this study was the
comparison of several existing theories of shear lag analysis with experi-
mental data. The conclusions reported in this chapter are based on the
comparison of the theoretically predicted normal stresses in the stringers
with the experimentally determined normal stresses., The conclusions would
probably be different if. normal and shearing stresses in the sheet had
been included in the analyses and comparisons; The comparisons, reported
in Chapter II, led to the conclusion that the best method of analysis con-
sists of a combination of the methods studied rather than any one method
by itself, Based on the comparisons reported, the following methods of
analysis are suggested:

Based on Accuracy

1. If it is only desired to predict the stresses in the loaded
stringer, either the stringer-sheet theory or the substitute-
single--stringer theory should be used, The agreement between
theory and experiment is about the same for both methods.

2; If it is desired to predict the state of stress in the 1loaded
stringer and approximate the stresses in the adjacent stringers,
the substitute~-single-stringer method is preferable.

3. If it is desired to predict the stresses in each stringer of the
panel, the analysis based on the solution of the differential
equations of equilibrium of the normal stresses using minimum
potential energy considerations is preferable. The stringer-
sheet theory or substitute-single-stringer theory could be used
at the same time to predict the stresses in the loaded stringer.

11
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Based on Time Required to Perform Analysis

If it is desired to perform a quick analysis, the substitute-
single-stringer method is suggested.
If it is desired to obtain a more complete picture of the stress
distribution in the panel than the substitute-single-stringer
method allows, use of the minimum potential energy equations is
suggested.
The other methods of analysis discussed in the preceeding chapter
take much more time to perform than either of the two above and
could not be used to perform a quick analysis,

Based on the Type of Structure to Which the
Solution is Applicable

Since the experimental data used for purposes of comparison was
obtained from simple structures, i.e., ones having constant skin
thickness and equally spaced stiffeners having the same constant
area, a great deal cannot be said about the applicability of the
various methods to other structures, It would seem probable,
based on the form of equations involved, that the matrix method
solution presented in Appendix E would apply to more configura-

tions than would any of the other methods.

Recommendations

Time did not permit a study of all the methods of solution mentioned

in Chapter I. Among the methods which have been omitted might be a better

method than any reported in this paper. The research reported herein

should be continued using the following analytical methods or analogies

for comparison:



1. Akao's finite difference equations,
- 2. Fine's stress function solution,
3. Goland's hydrodynamic analogy,
L, Ross and Newton's electrical analogy,
5. Kuhn's mechanical analog.
The research should be further continued to include the analysis of
panels having
1. unequally spaced stiffeners,

2, stiffeners with different areas,

3. variable skin thickness,
L, stiffeners which have areas varying along the length of the panel,
5. skin which varies along the length of the panel,

6. combinations of the above.
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APPENDIX A

DIFFERENTIAL EQUATION SOLUTION

Figure Al represents one-half of a longitudinally stiffened panel,
symmetric about the center line, subjected to an axial compressive
load on the outer stringer. From Figure Al-b, a free-body diagram of
the outer stringer and adjacent sheet, assuming the stringers carry
only normal stresses and the sheet carries only shearing stresses,

summing forces in the vertical direction,

(cr1 + dal)A1 - 'tltdx - °1A =0,
or
do
1 t -
F!? - A—]—: 1'1 =0, Al

From Al-c, a free-body diagram of stringer 2,

T tdx + (cr2 -t-dch)A2 -0,A, - T, tdx =0,

1 272 2
or
do
2 t _
E——T(Tz-":l)—o. A2

From Al-d, a free-body diagram of stringer 3,

Ttdx+(o'3+dcr3)A3-cA - T, tdx = 0,

2 33 3
or
do
3 t
E- WA T L A3
In general,
do
n_ t _
-&;-E(‘V =% =0,

or

27
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Figure Al--Longitudinally stiffened pauel subjected to axial load.

Figure A2--Section of sheet used in determining shear strain.

28
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dx A n n-l) * AL

dan:iﬁ_.h A5
dx2 An dx dx

If we assume tany =y ; then from Figure A2 the shear strain at
station x is given by

X .

The incrememt of shear strain is

(o, - 0,)
dy = _I_EE_Z_ dx, A7

The increment of shear stresses is

1.6

& " bE (o) -0, A8

or, in general,

dtn G
T “BE n " el A9

Substituting Equation A9 into Equation A5,

dzo r
n = ;t.. _G_. (o— ) —G_ (0’ )
2 E|5E ‘" %+’ "5 E In-1 " %7
dx n n n
Assuming bn = constant = b,
2 —~
do
n_ Gt
2 TBAE (%% T %1 %1 | Ao
x n

Numerical Example

The value of An is determined from the dimensions of the left hand
Y

stringer shown in Figure 2. Thus,



30
An = (0,.556)(1.0) = 0,556.
This value is used throughout although the actual areas of the other
stringers differ by a small amount, The value of b is givenby the dis-
tance between the centroid of the left hand stringer and the adjacent
stringer. Thus,

- 0.536 +2.273 + 0.556

b 7 7

= 2,829,

The mechanical properties of the material are

G 13.9)(106) psi,

E = (10.5)(10%) psi.

Substituting properties of panel C.ihto Equation Al0 for stringer

1, 2, 3, and 4 yields

2
0
dop (3.9)010%)¢0.1)
RSO TG G 3 20'1 - 0-2 _o/-g
dx (2.829)(0.556)(10.5)C10")
dzcl
—=— = 0.047120, - 0.023560 All
7 1 2
dx
d2°2
> = 0.02356[202 - o, - 01]
dx
= 0047120, - 0.023560, - 0.023560; Al2
d203
—s = 0.02356[2a3 =0, - c2]
dx .
= 0.047120, - 0.023560, - 0.023560, Al3
dzcu
5 = o.ozassIzoh - o5 - a3] .

Since the panel has 7 stringers and is symmetric about the center

line,



31

05 = 04 by symmetry.

5
dzo',+
—5 = 0.047120u - 0.0471203 . Al4
dx
Writing Equations All, A12, Al3 and Al4 in matrix notation
o .04712 -,02356 0 0 o
2 |9 -.02356 .04712 -,02356 0 9,
D = Al5
o, 0 -.02356 04712 -,02356 Oy
cuj 0 0 -.04712 .0#712J oy
2
where D2 denotes iLf .

dx

The characteristic equation is obtained from the matrix

0.04712 -~ 3 -0.,02356 0 0
-0.02356  0.04712 -3 -0.02356 0

0 ~-0.02356 0.04712 - -0.02356

0 0 ~0.,04712  0,04712 -

setting its determinant equal to zero

1-%  -172 0 0
12 1-% 172 0
=0
0 12 1-¥% 12
0 0 -1 1-¢%
= A
vhere ¢ = G777 -

Expanding the determinant
v w3 s w2 C v 400125 = o, Al6

The roots to Equation Al6 are

¥, = 0.6103445



52 = 0,0761025
g3 = 1,9135555
gu = 1,3999975
so that
M S 0.02875943
Ay = 0.00358594
A3 = 0.09016673
Ay = 0.06596788

The solution to Equation Al5 is

o 5
) - [e-\/ﬁx kZI
03 - - k3g
Lo“- _kuj
. . i . VM x
where M is the coefficient matrix of Equation Al5, The term e
most easily determined from the relation
VMx -1 X VA2 x VA3 x Ay x
e = e z; + e z, + e z, + e z),
where the z's are given by
(x3 - )\1)()\3 - )\2)()\3 - )\,4)23 = (M - 7~1D(M - )\21)(M - )\,41)

where I is the unit matrix.

Performing the calculations indicated in Equations ' Al19-A22,
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Al7

is

Als8

Al9

A20

A21

A22



-
0.43689435
0.31665946
-0.17716203

{;0.45472678

0.06816075
0.13602883
0.17771962

0.19236764

0.06863274
-0.13604887
0.18572910

-0.20329288

[ 0.42631324
-0.31663507

-0.18628016

0.46565096

At x.= 0,

e“vﬁac =1,

0.31665946
0.25973232
-0.13806731

-0.35432402

0,13602883
0.24588038
0.32839648

0.35543923

-0.13604887
0.25436184
-0.33934175

0.37145820

-0,31663507
0.24003309
0.14901589

-0.37256030

So that equation Al7 becomes

- -y p—

Also at x = 0,

1

0

o o0 O
1 0 0
0 1 O
0 0 1

-0.17716203
-0,13806731
0.08257029

0.17859217

0.17771962
0.32839648
0.42360001

0.46442530

0.18572910
-0,33934175
0.44009096

~0.47539065

-0.18628016
0.14901589
0.05375296

-0.16761910

-0.22736339 |
~0.17716203
0.08929606

0.25973235J

0.09618382
0.17771962
0.23221266

0.24588037

-0.10164644
0.18572910
-0.23769531

0.25436184
-

0.23282548
-0.18628016

-0.08380958

0.24003311
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A23

A24

A25

A26

A27



Q
"

9

Therefore

x
n

kel
n

-E 2 1800 34

o3 =0y = 0.

, from Equation A27
1800

0

0

0.

The solution of Equation Al5 is thus

+

e—0.2568u213x

9
6 ’ -
2f _ | ;0-16958605x
93
[ Oy,
4 o-0-059882718x 0.13602883
0.17771962
0.19236764
[
0706863274
4 ¢-0.30027775 -0.13604887
0.18572910

t0.20329288

0.42631324
-0.31663507
-0,18628016

0.46565096

.

[ 0.43689435 0.31665946

-0.17716203 -0,13806731

0.24588038
0.32839648

0.35543923

-0.13604887
0.25436184
-0.33934175

-0037145820

-0.31663507
0.24003309
0.14901589

~-0.37256030

0.06816075 0.13602883 0.17771962

0.32839648
0.42360001

0.46442530

0.18572910
-0.33934175
0.44009096

-0.47539065

-0.18628016
0.14901589
0,05375296

-0.16761910

~0.17716203 -0.22736339 |
0.31665946 0.25973232 -0.13806731 -0.17716203
0.08257029 0.08929606

:0.45472678 -0.35432402 0.17859217 0.25973235J

.0.,09618382
0.17771962

0.23221266

0.24588037

~0.10164644
0.18572910
~0.23769531

0.25436184

0.23282548
-0.18628016
~0.08380958

0.24003311




or

o, = [ 0.43689435¢~0-16958605x

+ 0.06863274¢0-30027775x

o, = [0.31665046¢ 0 16938605x

+ 0.13604887e0+30027775x

o, = 1-0.17716203e~0-169°8605x

0, = [-0.45472678¢™0-16998605x

- 0.20329288¢~0-30027775%

The stresses obtained from the

4 with experimental data,

+ 0,06816075e

+ 0.13602883e

35
-0.059882718x

+ 0.42631324¢ 0:29684213x 1 000

-0.059882718x

+ 0.31663507¢~0-29684213x 7 144

-0.,059882718x

+

0.17771962e

0.18628016¢0+27684213x 7 ;g4

+ 0-19236764e-0‘059882718x

-0.2568#213x] 1800

+

0.46565096e

above solution is plotted in Figure



APPENDIX B

MINIMUM POTENTIAL ENERGY EQUATIONS

Goodey [13] presented an analysis of the diffusion of an end

load into a panel with (2N-1) stringers. In this solution, the

stringers are treated as discrete members separated by panels of skin

which transmit only shear stresses.

The panel considered is shown in Figure Bl where the notation

used is also given,

Following is an outline of the analysis:

1.

5.

Considering elements of the stringers and longerons, differ-
ential equations of equilibrium of the forces were obtained.
Equations from step 1 were integrated from x to o.

The differential equation for the total strain energy, U,
for half the complete panel was derived,

Conditions of minimum strain energy were then obtained by
applying the method of the calculus of variations to the in-
tegral for U, resulting in N independent equations. These
equations were then substituted into the results of step 2

yielding a set of second order differential equations.

A solution was assumed for the equations in step 4.

6. Through the use of boundary conditions, various trigonometric

7.

identities, and algebraic manipulations, the constants of

integration were evaluated,
The final solutions were presented as follows:

36
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LONGERON AREA = A END LOADS
(N+m-$)To Fo
- —_ > mT,
PANEL SHEAR q F
NOS. STRESSES l ' .7
el o
2 L P Fa
- To
n Qn Fn
> T,
N-1 An-1 Fu-1 l
N * T
q F
- N L +* To z
> To
SKIN *> To
THICKNESS »
=t o T°
\ "
- — -1 - mTo
(N+m- *)To
AREA OF ONE STRINGER = As
AL
m= —A—;
q,15x
m——
U e WGP . S o BSNY3
F, — Fat gx OX Fo — Fo+ g O
Q,...th qltsx

ELEMENT OF o™

ELEMENT OF LONGERON

STRINGER OR EDGE MEMBER
q,t8x
Fo =} Fat S5k
9, t3x
_ ELEMENT OF
N™ STRINGER
FIGURE BI NOTATION USED IN MINIMUM POTENTIAL

ENERGY SOLUTION.
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r= i ]
1 [COS(ZN(Pr)Sin(ZN’I)‘Pf ] o-2kx(sin®r)
B2
m -4
sinp_ [N + 2 ,
1+4m(m-1)sin
r=1 (m-1) ¢
Fn
T =l+(@N+2M-1) -
[e0]
- [cos(2N(p deos2(N-n)g: .].e,'sz(,_Sln(_Dr)
r r
B3
m -+
N + 2 5
1+4m(m-1)sin”¢
r
r=1

A 1/2
L _] Gt _ _r _
where m A—S , k —[B——EAS:I . q)r = >N r =1 to N.

For the special case when m = 1 the above equations reduced

to

F =N .

T_g =1+ 2 Zcoszwr ¢ Zkxsin®p B4
o r=1

F =i .

'rfE =1+ 2 cos¢ cos(2N+1)o_ ¢ 2kxsindr B5
o

Numerical Example

Consider panel C as shown in Figure 2, It is assumed that the
stiffener areas are the same and that b = 2.84 = constant, t = 0,1 =
constant, This panel is, according to Goodey's nomenclature, a 5

stringer, 2 longeron panel, Thus

1}
[9;]

2N-1

N

i
w



Since the areas of the stiffemers are assumed to be equal, the

ratio of longeron area to stringer area is

so equations B4 and B5 can be used. Remembering

¢ = 2;1:1 = —r7£ radians,

so that
o S, ~2kxsindy
T_oo =1+ 2 Zcoscpre

r=
=1 42 (cosztple_ZkXSlwl . coschze_kxsm(pz

+ coszcr>3e_2kxsm@3) . B6
Substituting the value of 9. into Equation B6,
Fo -0.86836kx -1.563kkx
T = 1 + 2(0.811945e ° + 0,388939e "°
00
+ o.ou9461e"1°97”89kx). B7
Using Eq, B5 for stringer 1,
Fy \ 2xksi
_ ~-2xksing,
7 = 1+ 2 Zco&prcosS(pre .
o0
r=1
Substituting the value of (pr,
Fyo -0.86836kx ~1.5634kx
T = 1 + 2(Q.199576e ~° - 0.561796e ~° .
m a
_ 0.438925e—1.94978kx) . B8

Using Eq. B5 for stringer 2

Fy fif 2kxsi
- ’ ~2kxsingy
T = 1+ 2 cosq:rcosScpre .

r=1

39
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Substituting the value of ?.,

F
Tg =1+ 2(-Q\.561589e'°'86836kx - 0.138874e 19034k
w ) N
+ 0.200652e*1'9“”78kx) . B9
Likewise for stringer 3
F
= =1 2(-0.90082e'°'86836kx + 0.62365¢ 1 +o034kX
00
. 0.22268e’1'9”978kx) ) B10

Equations B7, B8, B9, and B10 apply to any 7 stringer panel with
m =1 and b and t constant., Thus they can be used for the analysis of
panel B as well as C, the only difference being in the value of Kk,

Numerical evaluation of the above equations was performed at in-
crements of x = 1 inch from x = 0 to x = 24, To expedite these calcu-
lations, a digital computer program was written for the Univac Solid
State 80 which is on the University of Alabama's main campus., The
machine language used was Bama-Bell IT which is a floating point mathe-
2

matical interpretative system for the USS 80,

The program used follows:

200 1556901000
201 1506901000
202 0600000000
203 0800000005
204 1201100109
205 64004000060
206 3400109300

2Gray, William J.: Bama-Bell II, Floating Point Mathematical
Interpretative Systew for USS 80 System., University of Alabama Computer
Center,



207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

222

F

=

T
0o

3103300301
R601301301
3106301301
3104300302
R601302302
3107302302
3105300303
R601303303
3108303303
1301302302
1302303303
3102303401
1101401401
3401100401
1241400401
1101400400
7000023206
7000003202
1260000000
R403000000

200

=1 + 2(Cle

Note:

-0.86836kx

the z's must be a double punch nine over
eight,

Writing the equations to be evaluated in the general form

c

 -1.5634kx . -1.97489kx
2e + C3e ’

the following shows the necessary data locations for use of the above

given program:

100

T
0

(in floating point)

41



101
I 102
103
104
105
106
107
108

109

T
o]

kK =

5010000000

5020000000

4986836000

5015634000

5019497806

(negative)
(negative)
(negative)
(in floating point)
(in floating point)
(in floating point)

(in floating point)

The print out, in floating point, is of the form:

f(x)
f(xl)

f(xz)

5124000000 £(24)

= (0. 5557)33(0 5630)52C0 5618570 5613 - ~09-86

(3.93¢10%)¢0.1)

For panel C having a 1000 1load on each longeron,

2000

1/2

(10.5)¢10%)¢2.84)¢0.555)

= 0.15355,

42

Equations B7, B8, B9 and B10 are shown plotted in Figure 6 along

with experimental data for comparison.



APPENDIX C

STRESS FUNCTION SOLUTION

Goodey [13] presented a stress function type solution for the

analysis of a plane sheet reinforced in two directions at right angles.

This analysis was as follows:

Referring to Figure Cl, the following equations were obtained for

the stiffeners,

E. = = (ox - poy)
1
€, = F (cry - ucx)

- __E - Txy
= 2(1"'“) = Bxy -

G

Defining the average normal stress as

Psheet * Pstiffener

’
Asheet + Astiffener

the average stress in direction Ox is

to, + t (o - pcy) o
t + tx X

and the average stress in direction Oy

to + ty(oc._ - po
y y(y ux)_

T T Ty = Py .
Defining
tx
k =1 +-—=—, tk_ =1t + tx
X t X
and

t
K =1+Ty' thy =t +ty.

43

is

C1

c2

Cc3

c4

C5

Cé

c7



!
booe . " 44

a0
+ =d
% T &Y
T + amxx 4 Area of stiffeners
xy 3y = t_ per unit width
‘*__* ] ao of sheet
o ‘ X
X O+ =—= dgx
— X ox
av
o T o+ =L gx

y Xy ox

ELEMENT OF SHEET

X

Area of stiffeners = t per
unit width of sheet.
1 . R} .
\n T 3 Section of sheet and
gtiffeners normal to
10):4
o

Section of sheet and stiffeners
normal to OY

Figure Cl-- Diagram of plain sheet reinforced in two directions at
right angles-

Tangent at P

Figure C2--View of cross-section looking along OZ in positive
direction of Z.
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Substituting Equations C6 and C7 into Equations C4 and C5, yields,

after some manipulation,

_ 1
P =0, - ucy(l - E—) C8
X
P =0 - po(l -
y y Hoy ky ’

Distributing the area of the stiffeners in the x direction uni-

formly over the sheet results in the free-body diagrams of Figure C2

. A
€ 1?‘ - ']r t

1
tdx{t‘ ! X -1y]
xy “a—

,\.+ Y /L
(tvby 43> 20,
ave
(t+t_)ady(c + ————  dx
D o
(t+tx)dy o, 5 - X X, ve ¥
ave M
.L e
- —
tv_ dx
Xy
Figure C2 - Free-body showing forces in x direction
acting on element of sheet and strirger
Summation of forces in the x direction yields
aGxé\ve a"7xy
Y -
(t + t )—57 +tay = 0, C10
Substituting Equation C4 into Equation C10 for o results in
ave
3 amxy
5% ot *"(-"x - _ucry-)tx + t-sT = 0. Cl1
From Equation C4,
3 amxy 3 amxy
5] 9 - =
5x Oxt * OpOpt, + T Tap Bty +otyt

am
t—s—— 3—(P k t) C12



L6

so that
avxy 3
3y ¢ é;(“’xkx) =0
or
arxy an
_aT + kx.gz. = 0. Cl3
Similarly, the area of the stiffeners in the y direction may be
distributed and forces summed in the y direction., The following equa-

tion results

oL 4 oP
XY o,k

= vy = 0. Cl4

Equations C13 and Cl4 are satisfied if we express the stresses in

terms of a stress function &, where

2
_ 978
Txy = - a—;a—y Cl5
2A
P = T%' a_?zi Cl16
x X ay
. 2
P = T<L 9_% ) c17
y y dx

Substituting Equation C8 into Equation Cl, Equation C9 into Equa-

tion C2, and rewriting Equation C3 yields

Ee =P - P - C18
x x vk
b 4
Ee_ =P - P &
y y x k
y
Ee = 2(1 + T . c20
xy = 2Ty

Now, using the relations,



€x T 3%
dv
8 -
y
- 9v , 9du
xy Ox  OJy
P =_1_.a_§.
b'e kxayz
1 9%
e ]
YK 5y
3%
xy 30y

2 2
au_].a@ _&_18@
E5§-E_—2"kk——’

x 9y x yox

2
oy . oul _ 9%
E(§§ *3;) =20 W5y

Differentiating Equation C21 twice with respect to y,

3 1 3l b

3 3 3P
By s - B -
3y x 3y x'y 9x 0y

Differentiating Equation C22 twice with respect to x,

3 als 2"
By = 1 - g 7
39 x v 3x'  Fx¥y ayRx

u7

C21

c22

c23

Cc24

C25

Adding Equations C24 and C25 then substituting Equation C23 yields

4 4 3
1 379 1 3% 1 909
..’_._4_-1.2]_4.“_(1_ ) +o— =0 .
Y dx ' ¥y 3x23y2 ky ayi

C26

.y s . 4
If kx = ky = 1, this equation reduces to the familiar equationV & = 0

for a plane un-reinforced sheet.
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Assume a solution of Equation C26 of the form

é = (Acoshal)\y + Bcoshaz)\y) simyx Cc27
where ay and a, satisfy the equation
In
a 1 2 1
k_ - ZE + [J,(]. - E—k-)] a + TC— =0 ’ Cc28
x xy y
or
a 2 a 2 2
1 2 1\ 4 1 1 .
T, % et E*““ e TEw, %
x x Xy Xy xy

and A and B are constants.

The stresses are now given by the equations

) 2 . .

—Txy =y " A cos)\x(Aalsmhal)\y + BazslnhaZXy) s C30
-32@“—'2'7\ Au_2cosha Ay + Ba,cosha, ) c31

kxPx-;}? = A sin\x a, osaly a, AY) s

a2® 2
kP = -—= = -)\"simx | Acosha.\y + Bcosha,\y]}. C32
yvy 2 1 2

dx

In order to satisfy the condition Py = 0 when y = £ a, it is neces-

sary that
Acosh al)\a + Bcoshaz)\a =0
or
A - - B = k(\) . c33
coshaZXa cosha17:a

Substitution into Equations C27, C30, C31, and C32 yields

& = k(\) l:(coshcczka)(cosh alky) - (coshal)\a)(cosh az)\y)] sin)x, C34

2 . . .
"Txy =% k(W [(alcosh az)\a)(smh alxy)— (cczcosh al)\a)(smh ccz)\y)]éggh)\x,
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) 2 2 .
kxPx =\ k()\)[(c,l coshuz)\a)(coshql)\y) - (azzcosha.l)\a)(coshaz)\y)]SLn’}\x,
’ C36
kyPy = - 2k()\)[(cosha27\a)(cosha1)\y) - (cosho,l)\a)(coshc,zky)]sin)\x .
C37

The end load in the skin from y = 0 to y = a is given by

a
j; kaxtdy = )\tk()\)[(alcoshaz)\a)(sinhal)\a) - (azcoshal)\a)(sinhaz)\a)]sin)\x,
Cc38

and the end load in one flange is given by

2
k(\)
(A_P ) = A_F_._._.

2 2 .
FPxly=a * " [:(a1 - a, )(coshal)\a)(coshazka)]suﬂ\x. C39

x
If 2T0 is the total end load, integration with respect to \ from

0 to oo yields

o)
2T
o . .
- :,[‘ )\tk()\)‘:(alcosha2Xa)(51nha1Xa) -~ (azcosha.l)\a)(smhaz)\a)
2 - a22)(cosha1Xa)(cosha27\a):] sinAxd\ . C40

1f To is constant, it may be represented by the integral

S0

2T sinix
2 ax. cu1
T 0 A

Since the two integrals must be the same,

2T a
k()\) = ° 1
Ttx al);a(coshaz)\a)(sinhal)\a) - az)\a(coshal)\a)(sinhaz)\a)
+ m)\zaz(cr,l2 - a22)(cosha1)\a)(cosha2)\a) C42
Ay
where m = Therefore
ak t

X
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5 - 2Toa (coshaZXa)(coshQIXy)-— (coshalxa)(coshaz)\y) sinm\xdx
t o [a,\a(cosha,ha)(sinha ra) - aZXa(coshaIXa)(sinhaZXa)'
+ m)\zalz(u,l2 - a22)(cosha17\a)(cosha2>\a) ’
C43

Letting © = \a, Equation C43 may be simplified in appearance becoming

pme

a.8 a,8
2Toa j‘m cosh—laz co sh—-2-—
® == o cosha_O cosha e ’
L 1 2Vy
;L s:t.ng’—c ds
% @

cau

L a tanha 9 - a2tanha 6 + m(a 2 _ a22)6

Evaluation of this integral was accomplished using the theory of resi-

dues. The result obtained was

c(motleny Sazeny Onx
a _ co a e-T
_ Toa (y2_32) cosalen : cosazel_1 :
® = -2 R I 77 72 clU5
t 2a2(1+m) 9 a. “sec“a. B -a.“sec’a,6 mla, -a, )
1 1'n 2 2 N~ 1 2
where the coefficients eﬁ are roots of the equation
t 6 t e+(a2-a2)9—0 cu6
@ tana.6 - a,tana, m(a, 9 = .

The stresses are now obtained from Equation C45 by differentiation.
Letting T0 = poakxt(1+m) where Py is the uniform stress at x = oo, the

stresses are

0’19 y . a29ny 8
a s:.n——— (1.2811’1 . _9npx
a% coSa. e ~ “cosa,.f
"ny = 5?(5—- = 2P k (1+m)§ 2°n - ’

2 2 2
sec a 9 n=%o sec2a26n+m(a1 -a, )
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2 %8,Y 2 %98,y
a, cos a,“cos ~Opx
2 1 a 2 a -
1 3°% coso._0 " Tcosa. b €
P =g —3°¢ P0 + 2P0(1+m) - 1'n 27n s
* x dy a 2secza 6 -a 2secza o +m(a 2aa 2)
1 1'n 2 2°n 12
cus
a9y .9y
cos 1o cos 1 n _Onx
a_ _ a e T
> oL 32@ ) ?Pokx(1+m) z _cosa,1 n coso.2 n .
y k.2 T T %, 22 o 232 Z__ 2
y dx y @y sec alen a, sec a29n+m(a1 a, )
cu9

Numerical Example

Applying the analysis to panel C shown in Figure 2 with a 1000
compressive load acting on each of the outer flanges, for the given di-

mensions,

2000
o  2(0.5557)+2(0.5632)+2(0.5618)+0.5612+2(0,099)(2.84)+(0.1014)(2.846)

+(0.99)(2.845)

= 355,4 1b.

2(€0.5557)+2(0,5632)+2(0.5618)+0,5612

fx * 2(2.804+2 ,80+2 ,845) = 0.19701 .
tx 0.19791
k=1 +4== =1+ 252 =2.9701
k =1,
y
= = 0,3366
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“12 1 1 2
o= = 1+3(1-0.3366) * [|1+3(1-0.3366)| - 0.3366
X

2,2956,

n

a, =nf2.2956(2.9701) = 2.611

2

i) 1 1 2
—k- = 1 + 3(1—0.3366) - E. + 3(1—0.3366ﬂ - 0.3366 = 0.1466.
x .

a, =,\/6.1466(2.9701) = 0,6599,

eh are given by the roots to the equation

2.611tan2,6116 - 0.6599tan0,6599% + m(6.81816 -~ 0.43542)6 = 0,

where

or

2,611tan2,.6119 -~ 0,6599tan0.65999 + 1.44766 = 0. C50

A digital computer program written in Bama Bell for the Univac So-
1id State 80 computer at the University of Alabama was used to determine
the roots to this equation,

It should be noted that the discontinuities existing in Equation
C50 can be avoided by rewriting it as

2.61181h2.6116c630.6599@ - 0.6599s5in0,.65996co0s2,6116

+ 1,44650c082.6110c0s0 65996 = 0, C51

The computer program used in solving for the roots to Equation C51 is as

follows:
193 1556901000
194 1506901000

195 1202193223



196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221

222

0600000000
0800000005
1201100106
5001100400
3101400401
3102400402
R602401403
R603401404
R602402405
R603402406
3101406407
3407403407
3102405408
3406408408
3103400409
3409404409
3409406409
2407408410
1410409410
3410104411
9411105218
R400598000
5001410104
5001400500
1400100400
5001250620

5001251626
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223

250

251

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

R400200000

7000010600

7000010600

5001104299

5001400300

1500300501

3106501501

3101501503

3102501503

R602502504

R603502505

R602503506

R603503507

3101507508

3508504508

3102506509

3509505509

3103501510

3510505510

3510507510

2508509511

1510511510

3510299511

9511105624

5001501300

7000010600

5001501509
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622

623

624

625

626

627

628

629

ZZZ

1241509510
R400218000
5001501500
5001510299
7000010600
5001501509
1241509510
R400218000

193

Clcosczesinc

If we write Equation C51 in the general form

6 - Czcosclesincze + 036cosclecoscze =0,

55

C52

the data used in the computer program and their locations are as fol-

lows:

100

101

102

103

104

105

106

4850000000

5010000000

0000000000

4950000000

6

(in floating point)
(in floating point)

(in floating point)

The print out format is as follows:

£(0) .

The magnitude of £(8) is an indication of the accuracy of the computa-

tion; the nearer it is to zero, the more accurate is the root.

desired number of roots hawve been found.

tion was stopped after the first 12 roots were found,

lows:

The above program does not have a stop order and will run until the
In this example, the computa-

They were as fol-
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9 £(8)
0.9999756 0.40652682
2,1499756 0.38730410
2,3500245 0.59294616
3.1715868 0.00000013
4,3577845 0.00000570
5.5404765 0.00000300
6.6999760 0.27386818
7.1000245 0.38465892
7.9000245 0.01819730
9.0980275 0.00001230

10.295401 0.00002060
11.500111 0.00009496

The above roots to the transcendental equation were used in Equa-
tion C48 for the evaluation of the stringer stresses in the x direction.
Evaluation of Equation C48 was carried out from x = 0 to x = 24 at incre-
ments of x = 1. A digital computer program was also written to perform

these calculations, It was as follows:

204 1556901000
205 1506901000
206 0600000000
207 0800000005
208 1201098123
209 6700701000
210 3103111400

2111 3112400401
212 R603401401

213 3104401402



2141
215
216
217
218
2191
220
221
2221
223
224
225
226
227
228
229
230
231
232
233
234
236
237
238
240
241

242

3112105403
R603403403
4402403402
4401403401
3106111404
3112404405
R603405405
3107405406
3112108407
R603407407
4406407406
4405407405
3403403403
4099403403
3104403403
3407407407
L099407407
3107407407
2403407403
1403109403
R400236000
2402406402
4402403402
R400240000
Z082241001
5001402599

Z100011211
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243
800
801
8021
803
244
245
246
2471
2491
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265

266

ZzZZ22

R400800000
2092239499
2092241599
3112098415
R400244000
44315110415
R601415415
4099415415
R400249000
3600415417
1417701701
Z100011802
3700102700
3701101701
1100701700
R400256000
5001098698
5001111699
1241698700
1099098098
6700701000
7000024802
1110111111
6098098000
7000001209
1260000000

R403000000

204
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Equation C48 is shown plotted in Figure 7 along with experimental

data for comparison,

Stringer Sheet Solution

Consider Fig. C3 which shows a reinforced cylindrical shell.
Take axes Ox, Oy, 0, as shown in Fig. C3, 0, being parallel to the axis
of the cylinder and O any convenient point of its cross section,

Let w

displacement in direction 0,

s distance along the circumference, measured from some
fixed point on the circumference.

u,v = displacements of the point O parallel to Ox gnd Oy
respectively,

B = angle of rotation of the cross section about O.

Refering to Fig. C3 the displacement of the point P parallel to

the tangent at P is
Bh + ucosd + vsind . C53

The shear strain is

dw 9 i .
e, =55 * 57 Bh+ ucos® + veind C54
_9%w 0 dx dy
“5s t5z BM YUt Vas
- v + ﬁiﬁ + EE 95 + EX-EZ = 291tH>TSZ
" 3s dz dz'ds " dz ds = E
Also, the longitudinal strain
P
ow z
€22 "3z T E ° €53

P, being the average longitudinal stress in skin and stiffeners, as
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defined in the first part of this appendix. Summing forces on an ele-

ment of the shell in direction 0,,

arzs BPZ
oz T 70 €6
where
tZ
k, =1+ —. C57

Substituting Eq. C54 and C55 into Eq. C56,

2 2 2 2
3 3 :
ds dz ‘ds ds
where
2

km = 2(1 + p)kz . 59

For a flat panel, the right hand side of Eq. C58 is zero since the

substitutions
S =x
y =0
h=0

can be made,

Assuming the fundamental solution

w = Al (coshrks)(cos\z) - 1], C60

the normal stress is

ow .
Pz = E 55 = - EAlcoshiks(sinhz) . C61

The end load in the skin is given by

f a k_tEA
o kthzds = - k (sinh)\ka)(sin\z) C62

Also, the strain in the flange is equal to the strain in the skin
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at z = a, Therefore the end load in one flange is

—AFEAXcoshkka(sinXZ) = - makztEAXCostha(sian) Ccé63

where AF = makzt. ceéel

Integrating from O to o with respect to M to obtain the complete

solution,

k_tE
z

oo}
T0 = - e/‘ A(sinh)\ka + m\kacoshi\ka)sim\zd\. C65
o)

Putting A\ka = 8, the equation becomes

k tE % 0z
T, = _:2.;_ ] A(9) (smhe + mcoshe) sing— &0 . C66

If‘Tg«is constant, it may be expressed by the integral

2T
_ o . Dz do
T, fo sin 32 =2 . c67

Equation C66 and C67 are identical, and therefore true for all values

of z if

2T kza
o)

AC®) = - %_tE (sinkd + m0cosR®) ° ces

Hence the required solution, using Eq, C53 is given by

o)
w =f A(cosh)ykscosiz - 1) dx
o

00
2T 1 - cosh 22 cosgE ao
- o) a ka C69
TtkztE 0 B(sinh® + mbBcoshb)

When evaluated using complex integration, the final result is

0.8 - enZ‘

T k 1 - cos—— e ~RH
) a

cosb
w o= z + 2 n
kztE ka(l+m)

2
en(1 + mecos en)
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where the Sn's are the roots to the equation
tanen + men = 0,

Now the normal stress is

6. s _O6px
cosO- "cos—g—'e'E%*

P =P |1+ 2(1 + m) E L c70
z 0 ) 2
1 + mcos en

The above Eq. has been written as a function of x to agree with the

other solutions in this paper.

Numerical Example

Applying the stringer-sheet analysis to panel B shown in Figure 1
with a 1000 compressive load acting on each of the outer flanges, for
the given dimensions

2000
o 0.282 + 0,285 + 0,275 + 0,282 + 0,282 + 0,285 + 0,282 + 0.1(2.61)6

= 565.13.

¢ o 0.282+40.28540,275+0,28240,28240,28540.282 _ o lococ
x 6C2.61)

kK =k =1+ =2,2508,
X z t

AF — 0.282'

a = 8.69.
2

k™ = 2(1 + p,)kz

= 201 + %)(2.2598) = 6.026133

k = 2,455
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A 0.282 _
m = et T 985(Z 2508)(0.) - O-1H36.

eh are the roots to

tanb_ + mb6 =0 ,
n n

or, rewriting

sind + 0,143606 cosB_ = 0, C71
n n n

The computer program used in the determination of the roots to Eq.
C51, with some changes, was used in the determination of the roots to
the above transcendental equation. Instruction cards 200 through 214

and 602 through 616 were replaced by the following cards:

200 R602400401

201 R603400402
202 3161400403
203 3402403402
204 1401402410
205 R602501502
602 R602501502
603 R603501503
604 3101501504
605 3504503503
606 1502250510
607 R400617000

If we write Equation C71 in the general form

sind ] =
0t Clencos n =0 C72

the data used in the computer program and their locations are as follows:



100

101

102

103

104

105

106

4850000000

C. (in floating point)

1
5010000000

5010000000
5010000000
0000000000

4950000000

64

The first 12 roots of Equation C71 were found to be

2,6075298

5.3973575

8.3402930
11,365641
14,433643
17.525235
12.630902
23,745538
26,.866203
29,991100
33.119075

36.249355

£(6)

-0.00000006
-0.00000068
-0,00000053
0.00000314
-0.,00000176
0.00000531
~-0,00000340
0.00000264
-0.,00000151
0.00000269
~-0,00000353

0.00000697

The above roots to the transcendental equation were used in Equa-

tion C70 for the evaluation of the stringer stresses in the x direction.

Evaluation of Equation C70 was carried out from x

0 to x = 24 at incre-

ments of x = 1, A digital computer program was written to perform these

calculations, It was as follows:

193

1556901000



194

195

196

197

198

199

200

2011

202

203

204

205

206

207

208

209

2101

211

212

213

2141

215

216

217

218

219

220

1506901000
1202193226
R400197000
0600000000
0800000005
1201099116
6700702000
R603105400
3400400400
3103400401
1101401401
4400401401
7082207001
5001401599
Z010011201
Z092207599
2105099410
4410104410
R601410410
4101410410
3500410415
1415702702
Z100011210
3702102702
1101702702
3702100702

5001099701

65



221 1241701702

222 1101099099
223 6700702000
224 7000023210
225 1260000000

226 R403000000

zZZ22Z 193

Equation C70 is shown plotted in Figure 8 along with experi-

mental data for comparison.



APPENDIX D

THE SUBSTITUTE SINGLE STRINGER METHOD

In this appendix, the substitute-single-stringer method presented

by Kuhn and Chiarito in Reference 19 will be applied to panel C.

The analysis of a multistringer panel by the substitute single

stringer method requires the following steps:

1. The properties of the substitute panel are established as follows:

A-

The substitute single stringer is first located at the centroid
of the internal forces in the stringers, Although the sheet is
assumed to carry only shear stresses, an effective width. of
sheet is considered to be acting with the sheet. The distance
from the outer flange to the centroid of the stringer areas

is bc'

The area of the flange in the substitute panel is equal to the
area of the flange in the actual panel. The area of the substi-
tute stringer is equal to the sum of the areas of the stringers
in the actual panel plus the effective area of sheet acting
with them.

The substitute stringer is then located according to the em-~

pirical relation

0.35
bs —[0.65 + n2 ]bc

where n is the number of stringers in the half panel.

2, The substitute panel is analyzed as follows:

<

From Fig. D1-b

AFO'F + Ttdx - (O’F + dch)AF =0

67



(GF + ch)AF

Ttdx

(b) (c)
oFAF

%ﬁ r\‘\\\r
+ [ ™

(o

p + dop)Ap

Ttdx

(d)
L'L

I
4
le—1b __]
(e)

'Figure D1--Three stringer panel with symmetrical axial load.
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Also,

SO

From Fig. Dl-e, the shear strain at station x is given by

AFdGF =Ttdx .
AL(ci + ch) -
ALdGL = vtdx
AFdoF =Ttdx =

= X
Y *%'9%F " %L

ALc

_AL

)

1 + Ttdx

daL .

The increment of shear strain is

(cF - oL)

dy = bE

dx .

The increment of shear stress is

G

& = Gdy = o

(

O

Differentiating Eq. D2,

2

- GL)dx .

dr G
—2- = 'b—E(ch - dG'L) .
dx

Substituting Eq. D1 into Eq. D3,

or

where

d2'r=_(_;_ Tt
ol PE|Ap
2

LTt
AL

0
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Assuming a solution to Eq. D4 of the form

application of the boundary condition T = 0 at x

0= Cle + Cze .
.« . C1 = -02 ,
so
c = Cl(ekx - -kx)'

Differentiating Eq. D7

dac
dx

= Clk(ekx + e_kx)

Equating equations D2 and D8,

Cl - Gccixh crLikx
bEk(e + e )
Application of the boundary condition op = P/'AF
yields
G(P/AF)
‘1 * bEK(e " + e7¥ly

Substituting Eq. D10 into Eq. D7,

c = GP sinh kx
bEAFk coshkL °
Defining
AT=AF+AL

bEAFAL '

70

Dé

0 yields

D7

D9

D10

D11

D13
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Now, from Eq. D11,

c = GPk sinhkx _ GPk sinh kx
- - ’
bEAFI:Z cosh kL - ( GtAT )cosh kL
F bEAFAL
c = PkAL sinhkx D14
tA;, coshkL .

Substituting Eq, D14 into Eq. DI

PkA .
t L sinhkx
do_ = —=wdx = dx . - D15
F AF AFAT cosh kL
Integrating,
PA
o = L coshkx +C. . D16

F AE’AT cosh kL 3

Since Op = P/AF at x = L ,

P
AF AFAT 3"

SRS 25 PR ) D N v e ' O 5 e e s N
3 AF AT AF AT AF AT AT
D17
Now
o = PAL. cosh kx + 3_:1 + f_I_,. cosh kx R D18
F AE‘AT cosh kL AT : AF cosh kL AT
Also from Eq. D1
_ t _ Pk sinhkx
dGL——erx—-rmdx. D19
L T
Integrating,
_ P coshkx
°L % " K GosRRL * Cu - p20
Since oo = 0 at x = L,

L
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P
C = oew—
4 AT
. _ P cosh kx
& "L-A;[l ‘m] p21

Equations D14, D18, and D21 determine the stress distribution in
the substitute stringer. Taking the origin at the tip, the change in
coordinates can be expressed as

x =L -x, . D22

Now the approximation

sinh kx sinh k(L-xl) g;nh kL cosh kx1 cosh kL sinh kx1

Cosh kL coshkL = cosh KL - Cosh KL,

= tanh kL cosh kxl = %(ekxhe'kxl-ekx%e_kxl) = e k%1 D23

may be made, since tanhkL-—1 for large values of kL.
Dropping the subsecript on the x and considering the tip as the

origin, Equations D14, D18, and D21 may now be written

PKA
T = tAL e-kx’ D24
T
op = ﬁi 1+ = e X , D25
T F
o = 3?—(1 - eTkxy D26
T

Numerical Example

For panel C, the location of the centroid of the internal forces
is (using an effective width equal to one half the distance between

stringers)

1

A R rE GRS EWI [¢2.5575+4.265+7.11)(€2.275)(0.1)

b

+2.84(0,564)(1)+5.69(1)+8.1075¢0.280)(1) ] ,
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b = 3,740,
c

The areas of the substitute stringer and the flange are

AL 0.7917 + 0,7908 + 0,3938 = 1,9763 in2.

A 0.565 in2.

F

The location of the substitute stringer is

b, = (0.65 + 0.35/22)(3.740) = 2.75825 in.

Now substituting the above into the appropriate formulas

10%0.1) [’ 1 1 ]
= . + —21 | = 0.17503 .
(10,5105 2, 75825)L 07060  1-9763
2
Ap = Ay + A =0.565 + 1,9763 = 2.5413 in’.
PKA
e o L -kx _ 10000.17503)(1.9763) -0.17503x
EIf 0.1(2.5413)
= 1,361.15¢ 0-17303%
o B |yl -ex|_ 1000 |, 1.9763 -0.17503x
F ~ A A T 7.5413 0.565
F
= 393.5 + 1,376, 4e 0-17903%
: [ _ -kx] 1000 __-0.17503x
LK Lo =53 (1 - )

393.5(1 - e—0.17503x

)o
The above equations are shown plotted in Figure 11 with experimen-

tal data for comparison,
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APPENDIX E

MINIMUM ENERGY SOLUTION USING MATRIX METHODS

Dividing panel C into bays with generalized forces as shown in
Figure El, results in a statically indeterminate system which may be
solved by matrix methods, The type of stress distribution assumed as
well as the number of bays used determine the accuracy of the method.
For this analysis it was assumed that the stiffeners transmit only
normal stresses and the sheet material transmits only shearing stresses.
It was further assumed that the panel and loading are symmetrical.

The notation used is the same as used by Bruhn [al

For the analysis the following matrix operations are required:

[gri][maij]l-gjn]
[gri][aij][gjs]

a —f1 the inverse of [a ]
rs rs-

-t

1. Evaluate [a ]
rn

1]

2, Evaluate [a ]
rs |
3. Evaluate {

4, Evaluate |G a "][a J
rm | | “rs rn

5, Evaluate _Gim = gim] + [gi£][crm]

6, Evaluate q]._n-l LG]._m:”:Pum:l

u

7. As a check the matrix

[en] = (o[ e}
rn ri[|7ij|] Jn
may be evaluated. If all matrix operations have been exact, each element

of [Arn should be zero, Due to rounding errors some of the elements may

not be zero, but they should be small compared with corresponding elements

of Ei ]
rn

.
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A Fortran IV program was written to perform the above matrix opera-
tions and the computation for panels B and C was performed by the Univac
1107 at the University of Alabama Research Institute located in Huntsville,
Alabama.
Results of these analyses are shown compared with experimental data

in Figures 12 and 13.



FIGURE EI

P 2 3 P4
b, b, b, ——
i
10 19 28
L, 37 45 53
L
2 I 20 29
L, 38 a6 54 L
b
TP 12 21 30 b
Ly 39 a7 55 b
. S
r 13 22 31
Lo 40 48 56
1
5 14 23 32
Ly 4 49 57
6 15 24 33
Ly 42 50 58
1
7 16 28 34
Ly 43 5! 59
1
8 17 26 35
L, a4 52 60
J 9 18 27 36
¢
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