

NATIONAL BUREAU OF STANDARDS REPORT

NBS PROJECT

NBS REPORT

31502-40-3150420

May 20, 1965
8812
31502-40-3150400

A COMPILATION OF THE PROPERTY DIFFERENCES OF ORTHO AND PARA HYTROGEN OR MIXIURES OF ORTHO AND PARA HYDROGEN
by

J. G. Hust and R. B. Stewart

IMPORTANT NOTICE

KATIONAL BUREAU OF STANOARDS REPORTS are uSually preliminary or progress accounting documents intended for use within the Goverament. Before material in the reports is formally published it is subjected to additional evaluation and review. For this reason, the publication, reprinting, reprnduction, or cpen-literature listing of this Report, either in whole or in part, is not suthorized unless per nission is obtained in writing from the Office of the Director. National Bureau of Standards, Washington. D.C. 20234. Such permission is not needed, however. by the Govern.nent agency for which the Repi, has been specilically prepared if that agency wishes to reproduce anditional copies tor its own use.

CONTENTS
Page
ABSTRACT 1
1.0 ITHRODUCTION 1
2.0 FORMAT 3
3.0 DATA SHEETS 3

A COMPILATION OF THE PROPERTY DTFFERENCES OF ORTHO AND PARA HYDROGEN OR mIXTURES OF ORTHO AND PARA hYDROGEN*

J. G. Hust and R. B. Stewart
 13084

The experimental property differences of ortho and pars hydrogen and their mixtures as reported in the world literature for temperatures below $300^{\circ} \mathrm{K}$ are tabulated. Properties included are specific heat, velocity of sound, thermal conductivity, density, viscosity, vapor pressure, saturatec. liquid and saturated vapor densities, and latent heat of vapcrization. Pertinent comments regarding the experimental methods employed, the pressure and temperature range of the data, and the accuracy of the data are included when available.

1.0 INTRODUCTTION

This compilation presents the results of a literature search for ortho and para hydrogen property differences up to $300^{\circ} \mathrm{K}$. The literature file of the Documentation Unit of the Cryogenic Data Center was searched and approximately 900 references sontaining ortho ard para hydrogen data were obtained. These in turn were searched for additional documents containing experiuintal data. The objective was to obtain thermophysical property data wich could be used to determine the differences in these properties for any mixture of the ortho and pars modifications of hydrogen.

The hydrogen properties can be separated intc two groups; the finst, group of properties exhibits relatively large changes in value, while the second group of properties exhibits very small changes in value, with differences in ortho-pars composition. The properties with significant ortho-para dependency include specific heat and properties related to specific heat, such as velocity of sound, entropy, enthaipy, and thermal conductivity The properties which are almost independent of ortho-para concentrations inclure density and viscosity. Information is also included on the vapor pressures, densities of saturated liquid and saturated vapor, and on latent heat of vaporization for normal and para hydrcgen.

Property value differences due to ortho-para cumposition of hydrogen for specific heats, velocity of sound, entropy, enthalpy, and thertial conductiv'ty, from about 50° to $300^{\circ} \mathrm{K}$ are significantly larger than the experimental errors in their measurement. Therefore, data of various ortho-para mixtures, from different sources which may not have the same systematic experimental errors, may be compared in temperature ranges where these large differences occur, to ascertain the variation of the property as a function of ortho-para concentration. For this group of properties, selected data from the literature are listed from which these differences may be obtained.

Froperty value differences due to ortho-para composition for density and viscosity may be expected 1.0 be of the same order of magnitude as the systematic experimental errors in their measuremen.. Therefore, independent alternate sets of data for a given property of different ortho-para composition cannot generally be rearided as a sufficient measkre of property differinces due to ortho-para composition. For this reason, the dita sources referenced in this report for this group of property data have been limited to (1) ilrect, measure. ments of property differences due to ortho-para concentration (2) data sets of differing ortho-pars composition which have been measured in the same labcratory aci which may be regarded as having the sane sybtematic errors, and (3) data which are regarded as having a probable un srtainty wich is smaller than the dif!erences in the property values.

The equilibi'ium concentration of ortho and para hydrogen in the ideal gas state has been calculated by Woclley, Scott, and Brickwedde (1948), J. Res. Natl. Bur. Std. 41, 379-475. The effect of pressure on these equilibrium concentrations is considered to be negligible. These values are tabulated and illustrated graphically below. The NBS-1939 Temperature Scale was used in this table.

This report is a collection of independent data sneets on each of several properties for which information has been compiled. For eacn data sheet the following information is listed: Inta Sources, Comments, and Data. All references containing data pertinent to this report are ilisted under Data Sources. The Comments Section includes a general summary for each property and in addition, pertinent couments about each reference. The type of experimental apparatus, indicated accuracy of results and range of data are included whenever available. The original data as tabulated in the data sources are listed in the Data Section. If sufficient data are available they are also illustrated graphically.
3.0 DATA Sheets
Page
3.1 ZERO PRESSURE PROPERTIES (IDEAL GAS) 5
3.2 SPECIFIC HEAT 11
3.3 THERMAL CONDUCTIVITY 13
3.4 VISCOSITY DATA 17
3.5 VELOCITY OF SOUND 21
3.6 P-V-T and VIRIAL COEFFICTENT data 27
3.7 SATURATION DENSITIES 29
3.8 VAPOR PRESSURE 33
3.9 Latent heat of vaporization 39

BLANK PAGE

Data Sources:

Wcolley, H. W., Scott, R. B., and Brickwedde, F. G. (1948), Compilation of Thermal Properties of Eydrogen in its Various Isotopic and Ortho-Para Modifications, J. Res. Nat1. Bur. Std. 41, 379-475, RP-19j2.

Haar, L., Friedman, A. S., and Becke ${ }^{+}$t, C. W. (1961), Ideal Gas Thermodynamic Functions and Isotope Exchange Functions for Diatomic Hydrides, Feuterides, and Tritides, Natl. Bur. Std. Monograph No. 20,271 f.

Comments:

Bcth Woolley, et al. (1948) and Haar, et al. (1961) inave computed ideal gas thermal properties for normal and para hydrugen from $10^{\circ} \mathrm{K}$ to above $300^{\circ} \mathrm{K}$. The values of daar, et al. have been obtained with spectroscopic data as recent as Augist i958. The orthopara differences from these sources are tine same. Therefore, only the values of Haar, et al. are listed. Values for orthohydrogen are also included by Woolley. These additional tables are not given here, however. ortho-para differences are illustrated graphically.

Ideal gas properties for mixturec otiner than those talulated may be calculaied by the following equations. The specific heat and enthalpy of a given constant mixture of ortho and para hydrogen are obtained by,

$$
\begin{aligned}
& C_{P(\text { mix })}=X_{(p)} C_{P(p)}+X_{(0)} C_{P(0)} \\
& H_{(\text {mix })}=X_{(p)} H_{(p)}+X_{(0)} H_{(0)}
\end{aligned}
$$

where the subscripts (p) and (o) refer to para and ortho and X is the relative amoun of each component present. The entropy of a mixture, however, is also dependent upon the entropy of mixing as foliows:

$$
\left.S_{(m 1 x}\right)=X_{(p)} S_{(p!}+X_{(0)} S_{(0)}-R\left[X_{(0)} \ln X_{(0)}+X_{(p)} \ln X_{(p)}\right]
$$

(Note that $X_{(p)}=1-X_{(\sim)}$ for a mixture of urtho and para hydrogen.) Since orthuhydrogen properties are not tabulated here these equations are rewritten in terms of normal and para hydrogen properties as,

$$
\begin{aligned}
& c_{P(m i x)}=c_{F(p)}\left(x_{(p)}-\frac{x_{(0)}}{3}\right)+\frac{4}{3} x_{(o)} c_{P(n)} \\
& H_{(m i x)}=H_{(p)}\left(x_{(p)}-\frac{x_{(0)}}{3}\right)+\frac{4}{3} x_{(o)} H_{(n)}
\end{aligned}
$$

$$
S_{(\text {mix })}=S_{(p)}\left(x_{(p)}-x_{(1)}^{3}\right)+\frac{4}{3} x_{(o)}\left(S_{(n)}-50.562236\right)-R\left(x_{(0)} \ln x_{(o)}+x_{(p)} \ln x_{(p)}\right)
$$

Hear, et al. (1961)									
Zaro Fressure Properties									
$\begin{gathered} \text { Teanp. } \\ \text { 'X } \end{gathered}$	Specific Heat $9^{\circ} / R$			$\begin{gathered} \text { Bnthalpy } \\ \left(\mathrm{H}^{\circ}-\mathrm{E}_{\mathrm{o}}^{0}\right) / \mathrm{RT} \end{gathered}$			EntropyS^{0} / R		
	Hormal	Pars	Equillibritm	Normal	Pera	Equilibrium	Normal	Para	Equilibrium
10	2.50000	2.50000	2.50010	15.28092	2.50000	2.50001	6.45742	4.25717	4.25718
20	2.50600	2.50000	2.62977	2.89040	2.50000	2.51526	8.20027	5.99002	6.00707
30	2.50002	2.50006	3.43279	6.7 (r) 1	2.50000	2.66925	9.21393	7.00368	7.20317
40 30	2.50059	2.50238	4.3171 .5	5.69528	2.59019	2.98045	9.93317	7.72307	8.32294
30	2.504 .88	2.51943	4.56668	5.05666	2.50191	3.28362	10.49150	8.28283	9.32523
6	2.51768	2.57365	4.35857	4.63234	2.50868	3.48370	10.94922		
70 80	2.54678	2.68123	4.03311	4.33221	2.52498	3.58552	11.33938	9.15032	10.14337 10.79089
90	2.64041	2.84128 3.03790	3.74645 3.53296	4.11160	2.55403	3.62284	11.68214	9.51828	11.30997
100	2.71388	3.24810	3.53296 3.38559	3.94564 3.81909	2.59663 2.65125	3.62404 3.60707	11.99042 12.27274	9.86402	11.73819
110	2.78512	3.44947	3.28948	3.72183	2.11480	3.58223	12.53471	10.51421	12.10227 12.42009
120	2.85715	3.62491	3.23 .31	3.64678	2.78356	3.55519	12.78014	10.82202	$\begin{aligned} & 12.42009 \\ & 12.70359 \end{aligned}$
130 140	2.92697	-.76456	3.20084	3.58875	2.85390	3.52895	13.01161	11.11793	$\begin{aligned} & 12.70359 \\ & 12.96086 \end{aligned}$
140 150	2.99268	3.86528	3.19034	3.54385	2.92277	3.50504	13.23096	11.40084	13.19758
150	3.05332	3.92906	3.19402	3.50916	2.98792	3.48412	13.43953	11.66988	13.41775
160 270	3.10860	3.96082	3.20742	3.48242	3.04789	3.46637	13.63837	11.92464	13.62428
180 180	$3.1,160$ 3.20360	3.96715 3.95470	3.22716	3.46193	3.10188	3.45169	13.82836	12.16505	13.81929
190	3.20360 3.24394	3.95470 3.92931	3.25062 3.27586	3.44635 3.43465	3.14968 3.19143	3.43986 3.43056	14.01019 14.18450	12.39153	14.00440
200	3.27998	3.89600	3.30144	3.42604	3.22751	3.43056 3.42346	14.18450 14.35183	12.60472 12.80544	$\begin{aligned} & 14.18082 \\ & 14.34950 \end{aligned}$
210	$\therefore 31206$	3.85865	332637	3.41986	3.25847	3.41825	14.51265	12.99464	
220	3.34048	3.82013	3.34995	3.41562	3.28487	3.41461	14.66740	13.17325	14.51119 14.66648
230 240	3.36555	3.78243	$3 \cdot 37177$	3.41291	3.30732	3.41228	14.81645	13.34222	14.60648 14.81587
240 250	3.38754	3.74686	3.39161	3.41140	3.32637	3.41102	14.96015	13.50244	14.95980
250	3.40673	3.71419	3.40937	3.41084	3.34252	3.41060	15.09884	13.65472	15.09862
260 270	3.42339	3.68480	3.42510	3.42101	3.35624	3.41086	15.23279	13.79981	15.23265
270 280	3.43778 3.45016	3.65977 3.63605	3.43889 3.45086	3.41174 2.41290	3.36792 3.37789	3.41165	15.36226	13.93838	15.36218
-90	3.46074	3.61642	3.46120	2.41290 3.41437	3.37789 3.38644	3.41284 3.41434	15.48751 15.60877	14.07101	15.48745
300	3.46977	3.59962	3.47006	3.41607	3.38644 3.39382	3.41434 3.41605	15.60877 15.72626	14.19825 14.32057	$\begin{aligned} & 15.60874 \\ & 15.72624 \end{aligned}$

TEMPERATURE , •K

Data Sources: See Comments

Corments:

The differences in the specific heat of ortho and para hydrogen, at low pressure, can te obtained by determining the allowed rotational energy states for these two molecular modifications. With increasing temperature, these differences become appreciable at $50^{\circ} \mathrm{K}$, reach a maximum near $150^{\circ} \mathrm{K}$, and decrease again, with only insignificant differences remaining at ambient temperatures. These values are tabulated in the Zero Pressure Properties Section (3.1) of this report. The low pressure differences in specific heat due to ortho-para concentration are good approximations for the high pressure differences since there are only slight differences in P-V-T behavior of ortho and para hydrogen. Several sources of data are available in which the pressure dependent part of the specific heat has been calculated from P-V-T relations, but since the small difference in the ortho-para hydrogen P-V-T surfaces is uncertain, little significance can be attached to the differences in specific heats that have been so obtained. Although the accuracy of the data is not sufficient for any conclusive determination, the available experimental specific hests confirm the postulate that the specific heat differences due to ortho-para concentration are essentially independent of pressure.

Data Sources:
Farkas, A. (1935), Ortho-Para Hydrogen and Heavy Hydrogen, Cambridge University Press.
Ubbink. J. B. (1948), Thermel Conductivity of Gaseous Hydrogen and of Gaseous Deuterium, Physica 14, 165.

Powers, R. W., Mattox, R. W., andं Johnston, H. L. (1954), Thermal Conductivity of Condensed Gases. II. The Thermai Conductivities of Liquid Normal and of Liquid Parahydrogen from 15 to $27^{\circ} \mathrm{K}$, J. Am. Chem. Soc. 76, 5972-73.
Heinzinger, K. (1960), Die Wärmeleitfähigגeiten von Normal und Pars - Wasserstopf bei $20^{\circ} \mathrm{K}$. (The Heat Conductivity of Normal and Para Hydrogen at $20^{\circ} \mathrm{K}$), Z. Naturforsch. 15a, 1022.

Heinzinger, K., Klemm, A., and Waldmann, L. (1961), Die Wärmeleitfähigkeit von Gasformigen Para-Ortho Wasserstoffgemischen bei $20^{\circ} \mathrm{K}$. (The Thermal Conductivity of Gaseous Ortho-Para Hydrogen Mixtures at $20^{\circ} \mathrm{K}$), Z. Naturforsch. 16a, 1338-42.

Comments:

Rased upon the available experimental data it may be concluded that at liquid hydrogen temperatures the differences of thermal conductivity of ortho and pars hydrogen are small. The differences for liquid hydrogen are less than 2%, while the differences for gaseous hydrogen near $20^{\circ} \mathrm{K}$ art about 0.5%.

Because of the large differences in low pressure specific heats of ortho and para hydrogen at intermediate temperatures, it is apparent that the thermal conductivities must aiso differ appreciably. These differences have apparently never become the object of experi mental investigation. The ratio of the low pressure specipic heats has, bowever, been calculated by Farkas (1935). This data source still seems to be the best svailable. The ratio of para to normal thermal conductivity as tabulated here was calculated, as indicated by Farkas using zerc pressure specific heats by Haar, et al. (1961) [See Secticn 3.1\}.

$$
\frac{K_{p}}{K_{n}}=\frac{C_{V_{p}}+2.25 R}{C_{v n}+2.25 R}
$$

Ubbink (1948) measured the thermel conductivity of gaseous hydrogen at temperatures ranging from 14 to $273^{\circ} \mathrm{K}$. At $17^{\circ} \mathrm{K}$ he measured the thermal conductivities of para and normal hydrogen but sould not detect any differences.

Powers, et al. (1954) used a parallel plate cell to measure the thermal conductivity of 11quid normal and para hydrogen. Within their estimate of a probabli error of C , no differences between normal and para hydrogen were observed. These risilts were represented by Powers, et ai. by $K=(1.702+0.05573 \mathrm{~T}) 10^{-4} \mathrm{cal} /\left(\mathrm{cm} \mathrm{sec}{ }^{\circ} \mathrm{K}\right)$, with a rms deviation of 1.6%.

Heinzinger (1960) experimentally determined the thermal conductivity of gaseous parahydrogen to be $0.57 \pm 0.07 \%$ higher than normal hydrogen at $20^{\circ} \mathrm{K}$. A year later Heinzinger et al. (1961) reported mesaured values of thermal conductivity differences a a function of ortho-para hydrogen composition at $20^{\circ} \mathrm{K}$.

Powers, et al. (1954)			
LIq.aid Normal Hydrogen		Liquid Parahydrogen	
Temp. ${ }^{\circ} \mathrm{K}$	Thermal. Conductivity cal/(cm sec $\left.{ }^{\circ} \mathrm{K}\right)$	Temp. ${ }^{\circ} \mathrm{K}$	Thermal Conductivity $\mathrm{cal} /\left(\mathrm{cm} \sec ^{\circ} \mathrm{K}\right)$
$\begin{aligned} & 16.81 \\ & 16.84 \\ & 17.00 \\ & 18.16 \end{aligned}$	$\begin{aligned} & 2.62 \times 10^{-4} \\ & 2.69 \\ & 2.59 \\ & 2.70 \end{aligned}$	$\begin{aligned} & 16.83 \\ & 17.85 \\ & 18.97 \\ & 19.66 \end{aligned}$	$\begin{aligned} & 2.81 \times 10^{-4} \\ & 2.76 \\ & 2.81 \\ & 2.86 \end{aligned}$
$\begin{aligned} & 18.58 \\ & 19.08 \\ & 19.88 \\ & 21.46 \end{aligned}$	$\begin{aligned} & 2.68 \\ & 2.70 \\ & 2.83 \\ & 2.93 \end{aligned}$	$\begin{aligned} & 21.16 \\ & 21.69 \\ & 23.23 \end{aligned}$	$\begin{aligned} & 2.87 \\ & 2.84 \\ & 3.05 \end{aligned}$
$\begin{aligned} & 22.72 \\ & 22.79 \\ & 23.84 \\ & 24.29 \end{aligned}$	$\begin{aligned} & 2.94 \\ & 3.02 \\ & 3.02 \\ & 3.02 \end{aligned}$		

Heinzinger, et al. (1961)	
(Gas at $\left.T=20.5^{\circ} \mathrm{K}\right)$	
Percent Parahydrogen	$\left(\mathrm{K}-\mathrm{K}_{\mathrm{n}}\right) 100 / \mathrm{K}_{\mathrm{n}}$
100%	0.584%
86	0.540
70	0.404
61	0.363
53	0.315
50	0.250
47	0.203

BLANK PAGE

3.4 VISCOSITY DATA

Deta Sources:
Becker, E. W., and Stehl, C. (1952), Ein Zähigikeitsuntershled von Ortho- und ParaWasserstoff bei Tiefen Temperaturen. (Viscosity Difference between Ortho and Para Hydrogen at Low Temperatures), Z. Physik 133, 615-28.

Webeler, R., and Bedard, F. (1961), Viscosity Difference Measurements for Normal and Para Liquid Hydrogen Mixtures, 'Phys. Fluids 4 , $159-60$.

Diller, D. E. (1965), Measurements of the Viscosity of Parahydrogen, J. Chem. Phys. 42, 2089-2100.

Comments:

The viscosity diffecences of gaseous ot tho and para hycrogen determined by Becker and Stehl (i95) are small, spproaching 1% near the triple point. Liquid values, however, iiffer by larger amounts with differences of about 5% at saturation near the triple point. Diller (1965) fointe out that the liquid differences are nearly zero when compared at the same densities rather than the same temperature. The results of Becker and Stehl (1952) indicate the viscosity of gaseous pare hydrogen to be larger than gaseuus normal hydrogen; wille the results of Diller show the normal hydrogen vilues to be larger than the para hydrogen values in the lijuid region.

Beiker and Stehl (1952) meacured the difference in viscosity between various mixtures of ortho and para hydrogen with a capillary bridge arrangement.

Webeler and Bedard (1961) measured a quantity equal to the product of viscosity and density of liquid para and ortho hydrogen with a piezoslectric alpha quartz torsional oscillator. They found that the value of no for 69% orthohydrogen at temperatures from 13.8 to $14.5^{\circ} \mathrm{K}$ is about 4% larger than the corresponding values for 23% ortho hydrogen. The precision of the values of $\eta \rho$ is given as 0.2%.

Diller (1965) also used a torsic.al crystal method to make extensive measurements on para hydrogen. He included a few points for normal hydrogen aiong the saturated liquid ine. All of the data are ana'ytically represented with a mean deviation of 0.7%. An accuracy of $C .5 \%$ is claimed. The tables that follow inciuce Diller's saturution data only.

Becker and Stehl (1952)				
Gaseous Eydrogen$\left(\eta_{x}-\eta_{n}\right) 100 / \pi_{n}$				
T, ${ }^{\text {² }}$	Percent Para Hydrogen			
	99.8	62.2	50.2	42.7
90.1	0.126	0.075	0.055	0.039
77.3	0.139	0.089	0.065	0.049
63.2	0.175	0.110	0.079	0.058
20.3	0.561	0.323	0.231	0.162
15.0	0.712	0.376	0.258	0.182
$\eta_{x}=V$ accisity of ortho-para hydrogen mixture $\eta_{n}=$ Viscosity of normal hydrogen				

Diller (1965)			
Viscosity of saturated liquid (Micropolse)			
m, ${ }^{\circ} \mathrm{K}$	Normal	Para	Difference
14	264.3*	250.7	13.6
15	230.2	221.3	8.9
16	203.9	197.5	6.4
17	182.9	177.7	5.2
18	165.6	160.5	5.1
19	151.5	147.0	4.5
20	139.2	135.4	3.8
21	128.4	125.3	3.1
22	118.7	116.1	2.6
23	110.5	108.1	2.4
24	102.6	100.8	-. 8
25	95.7	93.5	2.2
26	89.0	87.2	1.8
This value has been corrected for a typographical error.			

TEMPERATURE, © K

3. VELOCITY OF SOUND

Data Sources:

Van Itterbeek, A., Van Dael, W., and Cops, A. (1961), Velocity of Ultrasonic Waves in Liquid Normal and Para Hydrogen (14-20 ${ }^{\circ}$) , Physica 27, 111-16.

Van Itterbeek, A., Van Dael, W., and Cops, A. (1963), The Velocity of Sound in Liquid Normal and Para Eyirogen as a Function of Pressure, Physica 29, 965-73.

Younglove, B. A. (1905), Ultrasonic Velocity in Filuid Parahydrogen, Manuscript submitted for publication.

Comments:

The velocity of sound of ilquid normal and para hydrogen has been accurately determined by both Van Itterbeek, et al. (1961, 1963) and Younglove (1965) below $20^{\circ} \mathrm{K}$. The agreement of these differences from these sources is excellent. The differences in the geseous states are not, however, well known. One may estimate these differences from the thermodynamic relationship, $C^{3}=\gamma(\partial P / \partial \rho)_{T}$ where $C \stackrel{y}{=}$ velocity of sound, $\gamma=C_{p} / C_{V}$, and P, T, and ρ are pressure, temperature and density, respectively. It is known from R V-T Eeasurements that the values of $(\partial P / \partial P)_{\text {f }}$ of normal and para cannot be much different. Thus in regions where the differences $\operatorname{In} C_{p} / C_{v}$ are large such as around $150^{\circ} \mathrm{K}$ one can estimate the percentage ilfference in velocity of sound as one half the percentage din'erence in the specific heat ritio of normal und para hydrogen.

Van Itiorbeek, et al. (1961) measured the velocity of sound in saturated liquid normal and para h,drogen at temperatures from 14 to $20.5^{\circ} \mathrm{K}$ using a variable length interferometer. Their fata incicate the velocity ois sound in normal hydrogen to be $8 \mathrm{~m} / \mathrm{sec}$ greater than in fira hydrogen at frequencies of 1,2 , and $5 \mathrm{mc} / \mathrm{sec}$. They estimate the meertainty at 0.2%

Van Itterbeek, et al. (1963) extended the above work to pressures of $240 \mathrm{~kg} / \mathrm{cm}^{2}$. The difference between normal and para hydrogen at low pressures is less than in the previcus article by the same authors.

Younglove (1965) made velocity of sound measurements on fluid para hydrogen with a puised scund technique. Measurements were made from 15 to $100^{\circ} \mathrm{K}$ and up to 350 atmospheres, and are claimed to be accurate to 0.05%.

Ven Itterbeek, et al. (1961)					
Valocity of Sound in Saturated Liquid Normal Elydrogen					
$0.996 \mathrm{me} / \mathrm{sec}$		$1.945 \mathrm{mc} / \mathrm{sec}$		$4.904 \mathrm{mc} / \mathrm{sec}$	
Teup. \qquad ${ }^{\circ} \mathrm{K}$	Velocity of Scund m/sec	Temp. ${ }^{7} K$	Velocity of Sound m/sec	Temp. ${ }^{\circ} \mathrm{x}$	Velocity of sound m/rec
20.37	1120.7	20.42	1119.2	20.44	1119.4
19.97	1131.7	20.10	1128.6	19.08	1156.8
19.67	1140.3	19.85	1136.0	18.42	117.6
19.37	1149.9	19.58	1142.6	18.04	1182.3
18.93	1159.7	19.32	1150.4	17.45	2194.5
18.61	1166.7	19.02	1157.4	17.04	1203.1
18.18	1176.9	18.70	1165.8	16.57	1214.7
17.72	1187.9	18.35	2173.9	15.98	1227.6
17.15	1200.5	17.95	1183.5	15.32	1240.2
16.61	121.5	17.52	2193.2	15.23	1241.2
16.04 15.15	1224.3	17.50	1203.9	14.59	1254.3
15.15 14.79	1242.8 1254.4	16.49 15.92	1214.9 1227.3	14.13	1252. 3
14.13	1263.5	15.44	1237.4		
		14.89	1247.8		
		14.52	1255.0		
			1262.6		
Velncity of Sound in Saturated Liquid Para-Hydroyan					
$0.987 \mathrm{mc} / \mathrm{sec}$		$1.937 \mathrm{mc} / \mathrm{sec}$		$4.869 \mathrm{mc} / \mathrm{sec}$	
Temp. ${ }^{6} \mathrm{~K}$	Velocity of Sound wiser	Temp. \qquad ${ }^{\circ}$	Velocity of Sound m/sec	Temp. * K	Velocity of Sound $\mathrm{m} / \mathrm{sec}$
20.36	U14.?	20.41	1120.9	20.40	1115.3
20.08	11225	19.91	1125.3	19.46	1137.9
19.77	1130.8	19.53	1134.8	18.92	1151.1
1955	1156.9	19.06	1145.2	18.24	2168.1
19.29	1144.4	18.62	1157.9	17.66	1182.1
18.67	1154.6	18.13	1168.9	16.99	1196.9
18.48 18.02	1164.1	17.53	1183.1	16.52	1204.3
18.02 17.52	1175.4 1186.3	16.91 16.38	1195.5 1208.7	15.08 15.33	1220.5
16.91	1200.1	15.76	1221.7	15.33 14.83	1230.1
16.20	1214.9	15.08	1234.3	14. 38	1249.2
15.29	1232.5	14.63	1243.2		
14.06	2255.9	14.17	1250.8		
		20.40	1111.8		
		19.76	1128.2		
		19.43	1138.7		
		19.00	1149.0		
		18.55	1159.0		
		17.96	1174.3		
		27.43	1198.5		
		16.93	1199.6		
		16.92	1208.5		
		15.59	1225.4		
		14.85	1240.4		
		14.06	1253.5		

Vai Itterbeek, et al. (1963)							
$\mathrm{T}=20.50^{\circ} \mathrm{K}$				Velocity of Sound in Liquid Hydrogen			
$\mathrm{n}-\mathrm{H}_{\mathrm{g}}$		$\mathrm{e}-\mathrm{H}_{8}$		$\mathrm{n}-\mathrm{H}_{8}$		e- H_{0}	
$\begin{gathered} P \\ \mathrm{~kg} / \mathrm{cm}^{2} \\ \hline \end{gathered}$	Velocity of Sound $\mathrm{m} / \mathrm{sec}$	$\begin{gathered} P \\ \mathrm{~kg} / \mathrm{cm}^{\mathrm{a}} \end{gathered}$	Velocity of Sound $\mathrm{m} / \mathrm{sec}$	$\begin{gathered} P \\ \mathrm{~kg} / \mathrm{cm}^{2} \end{gathered}$	Veloc:ty of Scund $\mathrm{m} / \mathrm{sec}$	$\begin{gathered} P \\ \mathrm{~kg} / \mathrm{cm}^{2} \end{gathered}$	Velocity of Sound m/sec
236.0	1742.1	240.0	1748.6	177.5	1647.4	188.5	1667.6
230.0	1732.7	229.0	1729.3	170.3	1633.3	183.5	1658.4
220.3 210.4	1715.4	221.0	1714.9	160.9	1615.6	175.0	1642.4
210.4	1697.3	211.5	1698.7	250.5	1594.0	170.0	1631.8
200.9	1679.9	202.3	1680.5	139.7	1571.4	161.0	1614.4
190.6 180.5	1660.7	192.5	1663.1	130.0	1549.6	151.0	1593.7
180.5 170.6	1641.6	181.j	1641.3	120.3	1528.0	140.5	1571.4
170.6 160.2	1622.0	1.11 .5	1622.5	110.0	1500.0	130.2	1549.6
160.2 150.6	1601.0	151.2	1001.1	100.3	1480.6	120.2	1526.1
141.2	1560.4	141.0	1578.5 1558.4	90.8	1456.4	109.5	1502.3
130.8	1537.1	131.5	1537.6	70.00	2400.6	100.7	1479.5
120.7	1513.0	121.5	1513.6	60.50	1327.5	80.5	1428.4
110.6	1489.4	109.7	1485.2	50.50	1341.3	71.50	1403.2
1.00.?	1465.3	100.7	1453.1	40.50	2309.5	61.00	1372.6
90.5	1438.5	91.0	1437.1	29.20	1270.2	51.25	1342.4
80.7	1411.6	79.0	1404.7	21.50	1241.1	42.90	1314.6
70.50	1382.1	68.75	1374.5	12.95	1206.3	34.20	1285.0
61.05	1353.6	50.00	1347.5	6.25	1177.3	25.10	1254.9
50.85	1320.7	50.40	2315.7	1.70	$115=.5$	18.10	1224.1
41.15	1287.2	40.50	1×21.5			10.30	1192.6
31.10	1250.0	30.75	1245.5			6.20	1173.2
23.00	1218.1	20.85	1205.4			2.05	1153.9
17.25	1193.4	12.05	1156.4				1151.3
11.20	1169.4	7.10	1142.3				
8.40	1152.6	2.75	1119.6				
4.95	1135.4	1.20	2111.5				
1.47	1117.5						
$\mathrm{T}=18.25^{\circ} \mathrm{K}$				$\mathrm{T}=15.74{ }^{\circ} \mathrm{K}$			
$\mathrm{n}-\mathrm{H}_{0}$		e- H_{2}		$\mathrm{n}-\mathrm{H}_{2}$		$e-\mathrm{H}_{2}$	
$\begin{gathered} P \\ \mathrm{~kg} / \mathrm{cm}^{2} \\ \hline \end{gathered}$	Velocity of Sound m / se :	$\begin{gathered} P \\ \mathrm{~kg} / \mathrm{cm}^{2} \end{gathered}$	Veiocity of Sound $\mathrm{m} / \mathrm{sec}$	$\mathrm{kg} / \mathrm{cm}^{2}$	Velocity of Sound $\mathrm{m} / \mathrm{sec}$	$\begin{gathered} ? \\ \mathrm{~kg} / \mathrm{cm}^{2} \\ \hline \end{gathered}$	Velocity of Sound $\mathrm{m} / \mathrm{sec}$
127.0	2575.3	145.4	1592.0	90.4	1486.5	85.0	1468.2
1355	1571.9	137.0	1571.9	88.7	1481.2	78.0	1450.9
128.5	15,5 151	129.0	1553.9	84.0	1405.15	63.90	1426.7
118.5	1536.1	118.5	15.21.1	74.80	1445.0	50.25	1403.2
108.0	1510.7	108.5	1507.7	55.40	1420.9	50.75	1375.8
97.3	11485.3	99.5	1485.8	55.40	1393.2	42.40	1347.6
87.2	1459.3	90.0	1452.8	45.90	1365.4	31.50	1316.3
87.0 78.7	1459.3	79.5	1436.5	37.00	1338.0	21.35	1282.3
76.7 69.30	1437.7	70.40	1410.7	25.85	1305.5	13.10	1252.6
60.95	1411.2 1387.4	50.50 50.50	1382.5	19.60	1280.5	2. 30	1234.4
50.55	$1357 . j$	50.50 40.70	1352.7 1321.0	13.50 6.80	1259.1 1233.8	2.50 1.60	211.7 1207.0
40.40	1325.1	30.50	1287.4	1.60	1212.9		
31.00	1294.4	20.45	1250.6				
22.20	1263.6	12.7)	1221.2				
15.00	1235.9	6.60	1195.3				
8.30	1208.5	2.10	1177.4				
2.39	1283.3	1.50	1173.1				

Van Itterbeek, et al. (1963) (cont.)							
Velocity of Sound in Liquid Hydrogen							
$7=16.09^{\circ} \mathrm{K}$				$\mathrm{T}=15.35{ }^{\circ} \mathrm{K}$			
$\mathrm{n}-\mathrm{H}_{2}$		e- H_{0}		u- $\mathrm{H}_{\text {e }}$		e- H_{0}	
$\begin{gathered} P \\ \mathrm{~kg} / \mathrm{cm}^{2} \end{gathered}$	Velocity of Sound $\mathrm{m} / \mathrm{sec}$	$\begin{gathered} P \\ \mathrm{~kg} / \mathrm{cm}^{2} \\ \hline \end{gathered}$	Velocity of Sound $\mathrm{m} / \mathrm{sec}$	$\begin{gathered} P \\ \mathrm{~kg} / \mathrm{cm}^{2} \end{gathered}$	Velority of Sound $\mathrm{m} / \mathrm{sec}$	$\begin{gathered} P \\ \mathrm{~kg} / \mathrm{cm}^{2} \end{gathered}$	Velocity of Sound $\mathrm{m} / \mathrm{sec}$
60.50	1416.5	65.40	1426.8	20.55	1308.9	38.50	1360.7
55.00	1402.4	60.50	1413.6	17.50	1298.6	36.20	1353.9
49.90	1387.7	55.45	1400.1	14.90	1290.0	32.15	1341.5
45.10	1373.7	50.30	1385.0	12.50	1282.2	28.05	1329.1
35.30	1344.5	40.60	1356.6	7.40	1263.0	21.40	1308.2
30.15	1328.4	35.60	1341.6	5.45	1256.8	17.30	1293.9
25.10	1312.6	30.60	1326.0	3.95	1251.1	15.05	1286.4
20.35 15.10	1296.2	25.35	1309.1	2.10	1244.6	12.00	1275.1
15.10 10.20	1278.4 1261.6	20.70 15.60	1292.8	1.40	1241.5	9.85	1268.7
10.20 5.95	1261.6 1245.3	15.60 10.60	1275.4			6.55	1256.7
2.05 2.05	1230.4	10.60 2.50 2.05	1257.2 1238.3 1224.8			$\begin{aligned} & 4.10 \\ & 1.70 \end{aligned}$	$\begin{aligned} & 1247.3 \\ & 1238.2 \end{aligned}$
$\mathrm{T}=15.14^{\circ} \mathrm{K}$							
$\mathrm{n}-\mathrm{H}_{0}$		$\mathrm{e}-\mathrm{H}_{\mathrm{n}}$					
$\begin{gathered} \mathbf{p} \\ \mathbf{k g} / \mathrm{cm}^{2} \end{gathered}$	Velocity of Sound $\mathrm{m} / \mathrm{sec}$	$\begin{gathered} P \\ \mathrm{~kg} / \mathrm{cm}^{2} \end{gathered}$	Velocity of Sound $\mathrm{m} / \mathrm{sec}$				
28.70	1338.9	29.70	1336.5				
26.70	1332.3	26.90	1327.7				
23.40	1322.7	23.10	1315.6				
20.15	1313.0	20.10	1305.6				
17.20	1302.2	17.00	12959				
14.00	1291.7	14.05	1235.0				
11.10	1281.3	11.25	1275.7				
8.50	1272.3	8.90	1267.2				
5.90	1263.2	6.15	1257.2				
3.30	1255.1	3.00	1246.0				
1.50	1247.1	0.25	1235.2				

Younglove (1965)				
Velocity of Sound in Saturated Liquid Eydrogen				
T, ${ }^{\text {'K }}$ K	Density, $\mathrm{g} / \mathrm{cm}^{3}$		Velcity of Sound, m/sec	
	Para	Normal	Para	Normal
14.5	0.07641		1241.9	
15	0.07599	0.07632	1232.6	1241.8
16	0.07510	0.07543	1212.8	1221.8
17	0.07417	0.07449	1191.7	1200.6
18	0.07319	0.07350	1169.0	1177.9
19	0.07216	0.07246	1144.6	1153.5
20	0.07108	0.07137	1118.5	1127.0
21	0.06992	0.07020	1090.3	1099.3
22	0.06870	0.06896	1060.0	1069.1
23	c. 06739	0.06764	1027.3	1036.5
24	0.06599	0.06622	992.0	1001.3
25	0.06447	0.06469	953.6	963.1
26	0.06282	0.06302	911.8	921.7
27	0.06100	0.06120	866.0	876.3
28	0.05897	0.05917	815.2	826.1
29	0.05665	0.05687	758.2	770.0
29.5	0.05536	0.05559	726.6	739.0
30	0.05394	0.05420	692.6	705.6
30.5	0.05236		655.3	
31	0.05058	0.05095	613.2	629.2
31.5	0.04849	0.04398	506.5	583.8
32	0.04592	0.04505	509.2	530.4
32.25	0.01433		470.5	
32.5		0.04353		490.2

Velocity of Sound in Liquid Parahydrogen							
$T=15.000{ }^{\circ} \mathrm{K}$		$\mathrm{T}=17.000^{\circ} \mathrm{K}$		$\mathrm{T}=19.000^{\circ} \mathrm{K}$		$T=20.500^{\circ} \mathrm{K}$	
P atm	Velocity of Scund $\mathrm{m} / \mathrm{sec}$	P atm	Velocity of Sound $\mathrm{m} / \mathrm{sec}$		Velocity of Sound m / sec	P atm	Velocity of Sound m/sec
34.52	1351.6	81.35	1458.3	174.39	1548.3	229.88	1739.8
22.01	1311.4	51.4	1375.3	135.57	1567.2	195.49	1676.7
8.81	1265.3	30.15	$130 \cdot 6$	99.56	1481.6	150.62	2385.5
		. 0.4	1215.8	73.97	1413.0	124.12	1525.3
				44.23	1321.1	91.73	1442.8
				40.72 22.94	1309.7 1243.4	63.51	1360.2

Data Sources:

Long, E. A., and Bruwn, O. L. I. (1937), A Comparison of the Data of State of Normal and Pars Hydrogen from the Bolling Point to $55^{\circ} \mathrm{K}, \mathrm{J}$. Am. Chem. Soc. 59, 1922-24.

Beenakker, J. J. M., Varekamp, F. H., and Knaap, H. F. P. (1960), The Second Virial Coefficient of Ortho and Para Hydrogen at Liquid Hydrngen Temperatures, Physica 26, 43-51.

Goodwin, R. D. (1961), Apparatus for Determination of Pressure-Density-Temperature Relations and Specific Heats of Hydrogen to 350 Atmospheres at Temperatures above $14^{\circ} \mathrm{K}, \mathrm{J}$. Res. Natl. Bur. Std. 65c, $231-43$.

Goodwin, R. D., Diller, D. E., Roder, H. M., and Weber, L. A. (1963), Pressure-DensityTemperature Relations of Fluid Para Hydrogen from 15 to $100^{\circ} \mathrm{K}$ at Pressures to 350 Atmospheres, J. Res. Natl. Bir. Std. 67a, 173-92.

Comments:

The difference in the P-V-T surfaces of ortho and para hydrogen are very small. Thus only measurements of high accuracy or direct difference measurements are useful to predict these differences. Most of the published experimental P-V-T daca have been omitted from this tabulation because the systematic errors appear to be at least as large as the ortho-para differences. These data will be examined in a continuation of this study of ortho-para hydrogen properties in an attempt to determine the actual differences, or at least to establisi an upper limit for the ortho-para differences. The fullowing extensive data sources have been omitted from this tabulation:
(1) Johnston, H. L., et al. (1953), Ohio State University, Cryugenics Laboratory Tech. Rept. No. TR 264-25.
(2) Johnston, H. L., et al. (1954), J. Am. Chem. Soc. ㄱ., 1432-86.
(3) Michels, A., et al. (1959), Physir:a 25, 25-42.

Long and Brown (1937) determined the second virial coefficients of normal and pars hydrogen with a constant volume gas thermometer from 20 to $56^{\circ} \mathrm{K}$. They concluded that there is no esscitial difference in the second virial coefficients of the two forms of nydrogen.

Beenakker, et al. (1960) measured the differenze bet ieen the second virial coefficients of normal and para hydrogen. They reported differ with a sensitivity of the order of 3×10^{-6} ambert. Their results indicate that the difference in second virial coefficient is a lincar function of composition.

Goodwin (1951) measured seven P-V-T state points of normal hydrogen as a check of his apparatus which was used for extensive reasureicents of parahydrogen deasity. The parahydrogen data included below for comparison were inearly interpolated from the values reported by Goodwin, et al. (1963). The parahydrogen data extend from 15 to $100^{\circ} \mathrm{K}$ and to pressures up to 350 stmospheres. These para and normal hydrogen P-V-T data are comparable because of their high precision, and the probability that any systematic errors in the two sets are essentially the same, since these measurements are made from the same apparatus and by the same experimenters. These data have a reported accuracy and precision of 0.1 and 0.02%, respectively. (The NBS-1955 Temperaiure Scale was used.)

Long and Brown (1937)			
Second Virial Coefficient, B, in Amagat Units as Defined by $\mathrm{PV}_{\mathrm{A}}=\mathrm{A}+\mathrm{B} / \mathrm{V}_{\mathrm{A}}$ where $\mathrm{V}_{\mathrm{A}}=\mathrm{V} / \mathrm{V}_{\mathrm{O}}$ and $\mathrm{V}_{\mathrm{O}}=\mathrm{V}$ lume at $0^{\circ} \mathrm{C}$ and 1 Atm			
T, ${ }^{\circ} \mathrm{K}$	Second Virial Coefficient		
	Normal	Para	Difference
20.87	-465 $\times 10^{-8}$	-473 $\times 10^{-6}$	-8 $\times 10^{-6}$
24.17	-434	-435	
27.65	-407	-407	0
32.43	-371	-377	-6
37.08	-339	-343	-4
41.49		-316	
41.64	-310	-315	-5
43.95		-301	
46.45	-282		
48.45		-265	
52.51		-235	
56.21		-216	

Beenakker, et al. (1960)	
Second Virial Coefficient, B, in Amagat Units as Defined by	
$\mathrm{PV}_{\mathrm{A}}=\mathrm{A}\left(1+\mathrm{B} / \mathrm{N}_{\mathrm{A}}\right)$	
$\mathrm{T},{ }^{\circ} \mathrm{K}$	Difference
	Para-Normal
20.5	64×10^{-6}
20.5	65
20.5	68
20.5	64
20.5	58
20.5	71
20.5	66
20.5	72
20.5	59
20.5	57
18.3	75
18.3	115
10.3	75

Preerure-Volune-Tempersture Data (NBS-1995 Temperature Scale)				
T, ${ }^{\text {² }}$	P, atm	Volume, $\mathrm{cm}^{3} /$ nole		
		Hormal	Para	Differmice
28	30.869	30.52	30.03	0.11
3	45.357	30.54	30.63	c. 09
32	49.738	30.56	90.04	0.08
-5	28.443	30.59	30.65	0.06
40	116.769	30.62	30.68	0.06
45	151.884	30.55	30.69	0.04
50	186.213	30.69	30.70	0.0\%

3.7 SATURATION DENEITIES

Data Sources:

Scott, R. B., and Brickwedde, F. G. (1937), The Moleclilar Volumes and Expansivities of Liquid Normal Hydrogen and Parahydrogen, J. Chem. Phys. 5, 736-44.
Goodwin, R. D., Diller, D. E., Roder, H. M., and Weber, L. A. (1961), The Densities of Saturated Liquid Hydrogen, Cryogenics ?, 81-83.

Knaap, H. F. P., Knoester, M., and Beenakker, J. J. M. (1961), The Volume Change on Mixing for Several Liquid Systems and the Difference in Molar Volume between the Ortho and Para Modifications of the Hydrogenic Molecules, Physica 27, 309-18.

Comments:

The saturation density differences in ortho ard para hydrogen are small (about 0.5\%), therefore only measurements of high accuracy or direct measurements of differences are reviewed here. Further analysis will be required to determine if their selection has been prudent.

The wfect on density of the change in vapor pressure between ortho and para hydrogen has been examined. The change in ilquid density corresponding to the observed difference in vapor pressure is less than 0.01% except within $2^{\circ} \mathrm{K}$ of critical temperature. Thus the differences in liquid saturation densities of ortho and para hydrogen are indicative of the differences in the P-V-T surfaces of ortho and para hydrogen near the saturated liquid line. However, the effect of the vapor pressure differences on the saturated vapor densities is as mach as 64 near the triple point and decreases to less than 18 at $30^{\circ} \mathrm{K}$. The differences in ortho-para saturstion densities are thus not indicative of the differences in ortho-para P-V-T surfaces near the satuiated vapor line.

Scott and Brickwedde (1937) measured the densities of saturated 1iquid normal and para bydrogen with a fused quartz dilatometer at temperatures from 14 to $20.4{ }^{\circ} \mathrm{K}$. The amount of hydrogen was determired from the pressure of the gas after expansion into a calibrated flask at a measured temperature. Their data is represented to within its precision by the equations

$$
\begin{aligned}
& \mathrm{V}\left(\mathrm{n}-\mathrm{H}_{2}\right) \mathrm{cm}^{3} / \text { mole }=24.747-0.08005 \mathrm{~T}+0.012716 \mathrm{~T}^{2} \\
& \mathrm{~V}\left(\mathrm{p}-\mathrm{H}_{2}\right) \mathrm{cm}^{3} / \text { mole }=24.902-0.0888 \mathrm{~T}+0.013104 \mathrm{~T}^{2} .
\end{aligned}
$$

They measured the vapor pressure and calculated temperature from a vapor pressure equation, therefore their temperatures are not tabulated here. These authors indicate a probable error of 0.03% in their experimental volumes.

Goodwin, et al. (1961) presents a comparison (using the NBS-1955 Temperature Scale) of the available saturated density data for liquid para and normal hydrogen. The normal hydragen data are taken from Scott and Brickwedde (19j7) and the parahydrogen data vese measured by Goodwin, et al. (196i). These density de'erminations were reported to have a precision of two parts in 10,000 and an accuracy of 10 parts in 10,000 .
Knaap, et al. (1961) determined the volume change on $m i x i n g$ of normal und para hydrogen for compositions ranging from 0.27 to 0.70 mole fraction normal hydrogen at $20.4^{\circ} \mathrm{K}$. The accuracy is claimed to be of the order of $5 \mathrm{~mm}^{3} /$ mole.

Scott and Brickwedde (1937)	
Saturated Liquid	al Hydrogen
Vapor Pressure man Hg 749.8 65.0 754.1 65.4 220.0 335.3 518.8 751.4 752.4 81.7 108.7 201.8 308.9 410.2 571.8 751.7 758.7 79.5 111.2 186.7 290.7 450.6 550.9 756.9	Volume cm^{3} /mole 28.395 26.179 28.386 26.207 27.000 27.383 27.870 28. 390 28.389 26.313 26.488 25.930 27.308 27.594 28.009 28.387 28.383 26.28 26.492 26.862 27.239 27.696 27.943 28.382
Saturated Liquid Parahydrogen	
Vapor Pressure um Hg 68.5 117.9 221.8 374.0 633.7 754.2 140.5 314.7 567.8 748.3	Volume cm^{3} /wole 20.330 $26.64=$ 27.121 27.625 2?.2'7 28.529 25.753 27.449 28.121 28.514

Goodwin, et al. (1951)			
Saturated Liquid (NBS-1955 Temperature Scale)			
T, ${ }^{\circ} \mathrm{K}$	Density (moles/liter)		
	Para	Normal	Difference
13.803	38.1998		
13.947		38.3038	
14	38.1191	38.2819	0.1628
15	37.6987	37.8609	0.1622
16	37.2386	37.4190	0.1604
17	36.7970	36.9546	0.1576
18	36.3119	36.4656	0.1537
19	35.8010	35.9498	0.1488
20	35.2615	35.4045	0.1430
20.268	35.1515		
20.380		35.1889	
21	34.6898	34.8263	0.1365
22	34.0821	34.2114	0.1293
23	33.432)	23.5549	0.1219
24	32.7363	32.8506	0.1143
25	31.9835	32.0908	0.1073
26	31.1635	31.2650	0.1015
27	30.2610	30.3590	0.0980
28	29.2534	29.3522	0.0988
29	28.1060	28.2131	0.1071
30	26.7588	26.3889	0.1301
31	25.0921	25.2776	0.1855
32	22.7821	23.1238	0.3417
32.984	15.2672		
33.180		19.0252	
33.180		14.9365	

Knaap, et al. (1961)	
Mole fraction of $\mathrm{n}-\mathrm{H}_{8}$	Volume change on mixing for mixtures of $\mathrm{n}-\mathrm{H}_{2}$ and $\mathrm{p}-\mathrm{H}_{2}$ at $20.4{ }^{\circ} \mathrm{K}$ $\mathrm{cm}^{3} / \mathrm{mole}$
0.27	0.017
0.28	0.014
0.44	0.016
0.50	0.018
0.70	0.010
0.70	0.011

M

TEMPERATURE, ${ }^{\circ} \mathrm{K}$

3.8 VAPOR PRESSURE

Data Sources:

Woolley, H. W., Scott, R. B., and Brickwedde, F. G. (1948), Compllation of Thermal Properties of Hydrogen in its Various Isotopic and Ortho-Para Modifications, J. Res. Nat1. Bur. Std. 41, 379-475, RP-1932.

White, D., Friedman, A. S., and Johnscon, H. L. (1950), The Vapor Pressure of Normal Hydrogen from the Boiling Point to the Critica!. Point, J. Am. Chem. Soc. 12, 2>?7-30.
Hoge, H. J., and Arnold, R. D. (1951), Vapor Pressures of Hydrogen, Deuteriun, and Hydrogen Deuteride and Iew-Point Pressures of their Mixtures, J. Res. Nati. Bur. Std. 47, 63-74.

Grilly, E. R. (1951), The Vapor Pressures of Hydrogen, Deuterium and Tritium up to Three Atmospheres, J. Am. Chem. So2. 73, 843-46.

Weber, L. A., Diller, D. E., Roder, B. M., and Goodwin, R. D. (1962), The Vapor Pressure of $20^{\circ} \mathrm{K}$ Equillibrium Hydrogen, Cryogenics $\underline{2}$, 236-38.
Barber, C. R., and Horsford, A. (2963), The Detarminaiton of the Bofling and Triple Points of Equilibrium Hydrogen and its Vapor Pressure-Temperature Relation, Brit J. Appl. Phys. 14, 920-23.

Van Itterbeek, A., Verbeke, O., Theewes, F., Staes, K., and De Boelpaep, J. (1964), The Difference in Vapor Pressure between Normal and Equilibrium Hydrogen. Vapor Pressure of Normal Hydrogen between $20^{\circ} \mathrm{K}$ and $32^{\circ} \mathrm{K}$, Physica 30, No. $6,1238-44$.

Ccments:

Vapor pressure data published prior to the research paper by Woolley, et al. (1948) were not considered in this report. The earlier values are assumed to be well represented by the results of Woolley, et al. Vapor pressure differences calculated from the equations presented by Woolley, et al. (1948) agree well ufth more recent data although the vapor pressures themselves above $20^{\circ} \mathrm{K}$ are not in good agreement with recent data. Hoge and Arnold (19,51) suggest that Brickwedde and Scott (unpublished data cited by Woolley, et al. 1948) actually measured these differences rather than the vapor pressures. The vapor pressure differences of Wooliey, et al. (1948) and the measured values of Van Itterbeek are illustrated graphically. To obtain best values of the differences in the vapor pressure of normal and para hydrogen, in a continuation of this study, the vapor pressure data from the other sources listed here will be corrected for temperature scale and interpolated. No attempt has been made to include isolated vapor pressure values such as normal boiling point and triple point determinations; only measurements over extended temperature ranges are included. The reader is cautioned that best values of vapor pressure are not indicated; the differences in ortho and para vapor pressures are of primary interest here.

Woolley, et al. (1948) examined the experimental vapor pressure dats and selented the unpublished data of Rriekwedde and Scott. The NBj-1939 Temperature Scale was used.
White, et ail. (1950) measured the vapor pressure of normal hydrogen frcm 21 to $33^{\circ} \mathrm{K}$. White, et al. indicated an accuracy of $0.02^{\circ} \mathrm{K}$, and 0.03 mm of Hg below 2.5 atmospheres and one part in 30,000 above 2.5 atmospheres. The temperature scale used 1 s not reported.
Hoge and Arnold (1951) measured the vapor pressure oi equilibrium ($20.4^{\circ} \mathrm{K}$) hydrogen at temperatures from $17^{\circ} \mathrm{K}$ to $33^{\circ} \mathrm{K}$. These cata are based on the NBS-1939 Low Temperature Scale (below $90^{\circ} \mathrm{K}$). They point out here that the results of Brickwedde and Scott, unpublished but cited in Woolley, et al. (1948), differ systemailcally from their resulte because of temperature scale differences. Most of the data of Brickwedde and Scott were taken before the NBS-1939 scale was established. It is also indicated that the Brickwedde and Scott data are based on equilibrium hydrugen tata and differences of vapor pressures of the various modifications of hydrogen.

Grilly (195.1) measured the vapor pressure of normal hydrogen from $14 \mathrm{t} \sim 24.5^{\circ} \mathrm{K}$. The data from 14 to $20^{\circ} K$ are well represented in the Brickvedde and scott equation but above $20^{\circ} \mathrm{K}$ a different equation was required. The NBS-1939 Temperature Scale was used. The : stimated average uncertainty is 0.1% in pressure or $0.004^{\circ} \mathrm{K}$ in temperature.

Weber, et al. (1962) measured the vapor pressure of $20^{\circ} \mathrm{K}$ equilibrium hydrogen ai temperatures from 20 to $33^{\circ} \mathrm{K}$. The NBS-1955 Temperature Scale was used. An uncertainty of ± 0.003 atm is indicated.

Barber and Horsford (1963) report vapor pressure values for equilibrium hydrogen for teaperatures from 13.8 to $20.2^{\circ} \mathrm{K}$. The NFL (National Physical Laboratory) Temperature Scale with an ice point of $273.15^{\circ} \mathrm{K}$ and an oxygen point of $90.177^{\circ} \mathrm{K}$ is used.

Van Itterbeek, et al. (1964) measured the difference in vapor pressure of normal and para hyirogen and the vapor pressure of normal hydrogen, simultaneously. The normal boiling points of normal and para hydrugen vere determined to 20.389 and $20.269^{\circ} \mathrm{K}$, reapectively. The results were raported as accurate to within $\pm 0.004 \mathrm{~kg} / \mathrm{cm}^{2}$. The vapor pressure differences of the Brickwedde and Scott equations are illustraked graphically by Van Itterbeek, et al. to $31^{\circ} \mathrm{K}$ and appear in good agrer,ment with these data.

Woolley, et al. (1948)			
(NBS-1939 Temperature Scme)			
T, ${ }^{\circ} \mathrm{K}$	Vapor Pressure (nm of Hg)		
	Normal	Pura	Difference
13.813		52.3	
13.957	54.0	57.4	3.4
14	54.4	53.6	4.4
15	95.0	100.4	5.4
16	153.3	161.2	7.9
17	235.2	245.2	11.2
18	345.9	300.6	14.7
19	490.8	310.1	19.3
20	075.7	700.3	24.0
20.273	733.9	760.0	25.1
20.390	700.0	786.8	25.8
21	906.4	937.0	30.6
22	1189.0	1226.5	37.0
23	1529.6	1574.9	45.3

Hoge and Arnold (1951)			
Vapor Pressure of $20.4{ }^{\circ} \mathrm{K}$ Equillibrium Hydrogen			
$\stackrel{T_{\text {emp }}}{{ }^{\circ}}$	Vapor Pressure	$\begin{gathered} \text { Temp. } \\ { }^{\circ} \mathrm{K} \\ \hline \end{gathered}$	Vapor Pressure uma Hg
17.8294	338.4	31.4021	7660.2
18.5812	442.1	16.9752	243.1
19.1245	530.7	15.8414	149.7
20.01 .1	707.7	22.2604	1308.4
20.4469	789.6	22.9058	1534.9
20.5178	813.7	25.0473	<488.5
16.9549	241.4	27.8744	4299.6
20.2648	757.1	29.9173	6080.2
20.5167	815.2	30.9020	7102.8
20.8655	900.7	31.8910	8255.1
21.2046	989.8	22.2800	1313.8
20.9513	922.1	22.5792	1416.1
21.3379	1026.8	28.8797	5121.5
23.6441	1827.1	$31.08<0$	7302.5
24.4501	2189.4	20.9534	922.5
24.9003	2414.1	21.1873	1127.2
25.5711	2773.5	25.8955	2960.3
26.1980	3142.6	32.8933	9566.2
26.7811	3517.5	32.8936	9564.4
27.4083	3952.7	32.8926	9559.3
28.3858	4705.7	32.5457	9219.5
29.3956 30.3776	5583.9	32.3853	3875.1
30.3776	6544.6	32.1392	8557.7

Srilly (1951)	
Vapor Pressure of Liquid Normal Hydrogen	
Temp.	Vapor Pressure ${ }^{\circ} \mathrm{K}$
19.560	587.8
20.092	694.7
21.323	346.6
22.047	1196.8
22.803	1445.7
23.416	1675.0
23.941	1897.4
24.445	2125.7
24.445	2125.7

Weber, et al. (1962)			
Vapor Pressure of Parahydrogen			
Temp. ${ }^{6} \mathrm{~K}$	Vapor Pressure atm.	Temp. ${ }^{\circ} \mathrm{K}$	Vapor Pressure atm.
20.268	1.0000	31.500	10.2539
22.000	1.6124	32.000	11.0502
23.000	2.0688	32.000	11.0516
25.000	3.2462	32.000	11.0522
26.000	3.9826	32.500	11.8988
27.000	4.8285	32.500	11.8976
28.000	5.7920	32.500	11.8989
29.000	6.8863	32.600	12.0749
30.000	8.1162	32.600	12.0742
30.000	8.1169	32.600	12.0751
30.000	8.1171	32.700	12.2526
30.500	8.7873	32.700	12.2520
30.500	8.7885	32.700	12.2536
3).500	$\bigcirc .7886$	32.800	12.4326
31.000	9.5023	32.800	12.4330
\$1.000	9.5029	32.800	12.4352
31.000	9.5005	32.000	12.6168
31.000	9.5003	32.900	12.6187
31.500	10.2523	32.900	12.6183
31.500	10.2535	33.000	12.8043

Barber and Horsford (1963)	
Equilibrium Hydrogen	
(NPL Temperature Scale)	
Temp.	Vapor Pressure
${ }^{\circ} \mathrm{K}$	mm Hg
20.2705	760.0
19.0503	519.527
18.4474	423.777
17.4286	291.293
15.2885	183.031
15.3485	119.379
15.0053	100.845
14.5236	78.618
13.9768	58.278
13.8157	52.948

Van Itterbeek, et al. (1964)		
(NPL Temperature Scale)		
T, ${ }^{\circ} \mathrm{K}$	Vapor Pressure, $\mathrm{kg} / \mathrm{cm}^{2}$	
	No.mal	Difference Pars-Normal
20.555		3.89×10^{-2}
20.560		3.89
21.023	1.236	4.30
21.298	1.331.	4.71
21, 007	1.452	4.72
21.835	1.546	4.86
22.069	1.635	5.30
22.242	1.715	5.40
$22.33 i$		5.35
22.772	1.965	5.85
23.085	2.117	6.30
23.537	2.355	6.67
24.690	3.051	7.84
24.929	3.221	8.45
25.209	3.418	8.73
26.025		10.03
26.323	4.280	10.29
26.721	4.624	11.00
26.791	4.704	10,60
27.072	4.940	11.54
27.256	5.121	11.98
27.479	5.343	11.91
27.540	5.382	12.40
27.964	5.829	12.71
27.964		12.92
27.970	5.837	12.99
28.201		+3.20
28.289	0.189	13.39
28.301	$6.18{ }^{6}$	15.47
28.464	6.366	13.71
28.888	0.842	14.83
23.888 29.178		14.38
29.207	7.295 7.223	14.98 15.39
29.238	7.264	25.03
29.500	7.586	15.52
27.771	7.232	16.0
29.979	8.236	1638
29.796	8.224	
30.137	8.452	16.80
30.172	8.470°	16.71
30.601	9.086	17.54
30.971	9.504	1. 26
31.119	9.81 .1	18.5
31.146	0.866	19.07
31.238	1).011	19.02
31.352	-0.172	19.23
31.720	10.758	20.52
32.276	11.679	22.05

3.9 LatEMT hbat of taporization

Dete Sources:

Hoolley, B. W., Scott, R. B., and Brickvedde, F. G. (1948), Compilation of Thernal Properties of Hydrogen in its Various Isotopic and Ortho-Para Modificaticn, J. Res. Mati. Bur. Std. 41, 379-475; RP-1932.

Goodvin, R. D., Diller, D. E., Roder, H. M., and Weber, L. A. (1961), The Densities of Saturated Liquid Eydrogen, Cryogenics 2, 81-83.

Roder, B. M., Diller, D. E., Weber, L. A., and Goodwin, R. D. (1963), The Orthobaric Densities of Parahydrogen, Derived Heata of Vaporization and Critical Constanta, Cryogealics 3, 16-22.

Gondwin, R. D., Diller, D. E., Roder, H. M., and Heber, L. A. (1964), Second and Third Virial Coefficients for Hydrogen, J. Res. Natl. Bur. Std. 68a, 121.

Stevart, R. B., and Roder, A. M. (1964), Chapter 11, Properties of Normal and Para Hydrogen, p. 379-404 in Technology and Uses ot Liquid Hydrogen, Pergamon Press, hev York.

Comente:

The values for the latent heat of vaporization of para mydrogen are from Roder, ot al. (1963).

The latent heat of vaporization of normal hydrogen was calculated from data complied by Stevart and Roder (1964) from the Clausius-Clapeyron equation. The origiaal data are as follows from the following sources. The saturated ilquid densities vere obtalace from Goodvin, et al. (1961). The saturated vapor densities were calculated by Stewart and Roder using the para hydrogen virial coefficients by Gooduln, et al. (2964) uoder the assumption that the virial coefficients of normal and para hydrogen differ only alightiy. The vapor pressure values and slopes were from the equation given by Woolley, et al.
(1948).

Stevart and Roder (1964)			
T, ${ }^{\circ} \mathrm{X}$	Latent Heat of Vaporization, cal/g mole		
	Normal	Para	Difierence
14	219.9	217.1	2.8
15	220.7	218.3	2.4
16	221.1	218.5	2.6
17	221.1	218.4	2.7
18	220.6	217.9	2.7
19	219.6	216.8	2.8
20	218.0	215.2	2.8
21	215.7	212.5	3.2
22	212.7	209.5	3.2
23	208.9	205.5	3.3
24	204.2	200.8	3.4
25	198.5	195.0	3.5
26	191.5	187.8	3.7
27	189.1	119.2	3.9
28	173.0	168.7	4.3
29	160.6	155.8	4.8
3	245.2	140.1	5.1
312	125.6	119.8	5.6
32		90.8	

