RATIONAL APPROXIMATIONS TO THE SOLUTION OF THE SECOND ORDER RICATTI EQUATION

N66 13169

TECHNICAL REPORT

15 January - 14 October 1965
Task Order NASr-63(07)
NASA Hq. R\&D 80X0108(64)
MRI Project 2760-P
\qquad
CFSTI PRICE(S) \$

Microfiche (MF)

For
H653 July 65

Office of Grants and Research Contracts
Code SC
National Aeronautics and Space Administration
Washington, D. C. 20546

MIDWEST RESEARCH INSTITUTE
by

Wyman Fair
Yudell Luke

TECHNICAL REPORT
15 January - 14 October 1965

Tasl: Order NASr-63(07)
NASA Hq. R\&D 80X0108(64)

MRI Froject 2760-P

For

Office of Grants and Research Contracts Code SC
National Aeronautics and Space Administration
Washington, D. C. 20546

MRI
MIDWEST RESEARCH INSTITUTE 425 VOLKER BOULEVARD/KANSAS CITY, MISSOURI 64110/AC 816 LO 1-O202

This report covers research initiated by Headquarters, National Aeronautics and Space Administration on Contract NASA Hq. R\&D 80X0108(64), 10-74-740-124-08-06-11, PR 10-2487, "Nonlinear Dynamics of Thin Shell Structures." The research work upon which this report is based was accomplished at Midwest Research Institute with Mr. Howard Wolko as project monitor.

This report covers work conducted from 15 January 1965 to 14 October 1965.

The authors take this opportunity to thank Mrs. Geraldine Combs, Mr. John Nelson and Miss Rosemary Moran for their assistance with the calculalions.

Approved for:

MIDWEST RESEARCH INSTITUTE

Sheldon L. Levy, Director Mathematics and Physics Division

[^0]
TABLE OF CONTENTS

Page No.
I. Introduction 1
II. Development of the Rational Approximations 1
III. Examples 5
References 7

I. INTRODUCTION

In a previous work Merkes and Scott [I] constructed continued fraction solutions to the first order Ricatti equation by using a sequence of linear fractional transformations. Fair [2] utilized the τ-method, see the paper by Iuke [3], to develop main diagonal Padé approximations to the solution of the first order Ricatti equation with rational coefficients. Rational approximations are advantageous to study the behavior of the solutions in a global sense. That is, they are useful for evaluation of functional values in the complex plane including zeros and poles.

In this report we develop continued fraction (and hence rational) approximations to the solution of a second order nonlinear equation which includes as special cases the equations treated in $[1]$ and $[2]$. These approximations are obtained by using a sequence of linear transformations which leave the dirferential equation invariant, see Davis [1], and are presented in Section II. For an application, in Section III, the algorithm is applied to obtain approximations to Painleve's first and second transcendents.

II. DEVELOFMENT OF THE RATIONAL APPROXIMATIONS

Consider the generalized second order Ricatti equation

$$
\begin{align*}
& \left(A_{o}+B_{O} y\right) y^{\prime \prime}+\left(C_{o}+D_{o} y\right) y^{\prime}-2 B_{o}\left(y^{\prime}\right)^{2}+E_{o}+F_{o} y+G_{O} y^{2}+H_{o} y^{3}=0 \\
& \quad y(0)=\alpha_{0} \tag{1}
\end{align*}
$$

where the coefficients in (1) have Taylor's series expansions of the form

$$
\begin{align*}
& A_{0}=x^{2} \sum_{k=0}^{\infty} a_{k} x^{k}, B_{0}=x^{2} \sum_{k=0}^{\infty} b_{k} x^{k}, C_{o}=x \sum_{k=0}^{\infty} c_{k^{\prime}} x^{k}, \\
& D_{0}=x \sum_{k=0}^{\infty} d_{k} x^{k}, E_{0}=\sum_{k=0}^{\infty} e_{k} x^{k} e_{o} \neq 0, F_{o}=\sum_{k=0}^{\infty} f_{k} x^{k} f_{o} \neq 0, \\
& G_{0}=x \sum_{k=0}^{\infty} g_{k} x^{k} \text { and } H_{0}=x \sum_{k=0}^{\infty} h_{k} x^{k} . \tag{2}
\end{align*}
$$

We further assume that the solution of (I) has a power series expansion of the form

$$
\begin{equation*}
\mathrm{y}=\alpha_{0}+\sum_{\mathrm{k}=1}^{\infty} \beta_{\mathrm{k}^{x^{k}}} \tag{3}
\end{equation*}
$$

Note that (2) and (3) together with (1) uniquely determine α_{0} and β_{1}. We also require that the coefficients in (3) have the property that

$$
\Delta_{p}=\left|\begin{array}{llll}
\alpha_{0} & \beta_{1} \ldots \ldots \ldots \beta_{p} \\
\beta_{1} & \beta_{2} \ldots \ldots \ldots \beta_{p+1} \\
\cdot & \cdot & \cdot & \\
\cdot & \cdot & \cdot & \\
\cdot & \cdot & \cdot \\
\cdot & \dot{\beta}_{p+1} & \cdot & \beta_{2 p}
\end{array}\right| \neq 0, p=0,1,2 \ldots
$$

and

$$
\Gamma_{2 p+1}=\left|\begin{array}{lll}
\beta_{1} & \beta_{2} \ldots \ldots . \beta_{p+1} \tag{4}\\
\beta_{2} & \beta_{3} \ldots \ldots . & \beta_{p+2} \\
\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot \\
\cdot \beta_{p+1} & \dot{\beta}_{p+2} & \\
\hline & \beta_{2 p+1}
\end{array}\right| \neq 0, p=0,1,2 \ldots
$$

Then (4) insures that y has a continued fraction expansion of the form

$$
\mathrm{y}=\frac{\alpha_{0}}{1+\frac{\alpha_{1} \mathrm{x}}{1+\frac{\alpha_{2} \mathrm{x}}{1+\ldots}}}
$$

.

A transformation of the type

$$
y=\frac{m(x)+n(x) y^{*}}{p(x)+q(x) y^{*}}
$$

where m, n, p and q are polynomials in x may be necessary to bring the differential equation into the required form. We suppose that this has already been done. See [4] for the results of applying transformations of this type to (1). We give an example in Section III.

The even approximants of (5) are the main diagonal Pade approximations to y which have the following properties. Iet

$$
\begin{equation*}
y_{n}=\frac{P_{n}}{Q_{n}}=\frac{\sum_{k=0}^{n} p_{n, k^{x^{k}}}}{\sum_{k=0}^{n} q_{n, k} x^{k}} \tag{6}
\end{equation*}
$$

be the $n^{\text {th }}$ order main diagonal Fade approximation to y. If Q_{n} is formally divided into P_{n}, the resulting power series agrees with the power series representation of y for the first $(2 n+1)$ terms. The polynomials P_{n} and Q_{n} both satisfy the recurrence relation

$$
\begin{align*}
& P_{n}=\left[1+\left(\alpha_{2 n-1}+\alpha_{2 n}\right) x\right] P_{n-1}-\alpha_{2 n-1} \alpha_{2 n-2} x^{2} P_{n-2} \\
& P_{0}=\alpha_{0}, P_{1}=\alpha_{0}\left(1+\alpha_{2} x\right), Q_{0}=1 \text { and } Q_{1}=1+\left(\alpha_{1}+\alpha_{2}\right) x \tag{7}
\end{align*}
$$

Thus, rational approximations to the solution of (1) are immediately forthcoming if the values $\alpha_{1}, \alpha_{2} \ldots$ can be computed. These values can be obtained by utilizing a sequence of linear fractional transformations. Let

$$
\begin{equation*}
y=y_{0}, y_{n}=\alpha_{n}\left(1+x y_{n+1}\right)^{-1}, n \geq 0 \tag{8}
\end{equation*}
$$

Repeated application of (8) to (1) and division by $\alpha_{n} x$ at each step yields

$$
\begin{align*}
& \left(A_{n+1}+B_{n+1} y_{n+1}\right) y_{n+1}^{\prime \prime}+\left(C_{n+1}+D_{n+1} y_{n+1}\right) y_{n+1}^{\prime}-2 B_{n+1}\left(y_{n+1}^{\prime}\right)^{2} \\
& \quad+E_{n+1}+F_{n+1} y_{n+1}+G_{n+1} y_{n+1}^{2}+H_{n+1} y_{n+1}^{3}=0, \tag{9}
\end{align*}
$$

where

$$
\begin{align*}
& A_{n+1}=-A_{n}-\alpha_{n} B_{n}, \\
& B_{n+1}=-x A_{n}, \\
& C_{n+1}=-2 x^{-1}\left(A_{n}+\alpha_{n} B_{n}\right)-C_{n}-\alpha_{n} D_{n}, \\
& D_{n+1}=2 A_{n}-x C_{n}, \\
& E_{n+1}=x^{-1}\left(\alpha_{n}^{-1} E_{n}+F_{n}+\alpha_{n} G_{n}+\alpha_{n}^{2} H_{n}\right), \tag{10}\\
& F_{n+1}=-x^{-1}\left(C_{n}+\alpha_{n} D_{n}\right)+3 \alpha_{n}^{-1} E_{n}+2 F_{n}+\alpha_{n} G_{n}, \\
& G_{n+1}=2 x^{-1} A_{n}-C_{n}+3 \alpha_{n}^{-1} x E_{n}+x F_{n},
\end{align*}
$$

and

$$
\mathrm{H}_{\mathrm{n}+1}=\alpha_{\mathrm{n}}^{-1} \mathrm{x}^{2} \mathrm{E}_{\mathrm{n}}, \quad \mathrm{n}=0,1,2, \ldots
$$

It is easily shown that

$$
A_{n+1}(0)=B_{n+1}(0)=C_{n+1}(0)=D_{n+1}(0)=G_{n+1}(0)=H_{n+1}(0)=0
$$

E_{n+1} and F_{n+1} are defined at $x=0$ and

$$
\begin{equation*}
y_{n+1}(0)=\alpha_{n+1}=-\frac{E_{n+1}(0)}{F_{n+1}(0)}, \quad n=0,1,2, \ldots \tag{11}
\end{equation*}
$$

Thus the values α_{k} appearing in (5) can be computed recursively.

Proof of the convergence of the approxinants in (6) in the general case seems elusive especially since the values of α_{k} are not in general know in closed form. However, in the special case of the first order Ricatti equation, some convergence proofs are available, see [1] and [2]. Heuristically one can imply convergence of the approximants in (6) by comparing the values of the $n^{\text {th }}$ and $(n+1)^{\text {st }}$ approximations. In practice this works very well, and in the cases investigated the actual error of the nth approximant is the same order of magnitude as the difference, $y_{n+1}(x)-y_{n}(x)$.

III. EXAMPIES

We consider two examples which exhibit the utility of these approximations when used to approximate both the function and its poles.

Painleve's first and second transcendents are defined by the differential equations

$$
\begin{equation*}
u^{\prime \prime}-6 u^{2}-\lambda x=0, u(0)=1, u^{\prime}(0)=0, \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
v^{\prime \prime}-2 v^{3}-x v-\mu=0, v(0)=1, v^{\prime}(0)=0 \tag{13}
\end{equation*}
$$

respectively. In what follows, $\lambda=u=1.0$.
To cast (12) and (13) into the required form of (1), we set $u=1+3 x^{2} \bar{u}$ and $v=1+1.5 x^{2} \bar{v}$ in which case (12) and (13) become

$$
\begin{equation*}
3 x^{2} \bar{u}^{\prime \prime}+12 x \bar{u}^{\prime}+\left(6-36 x^{2}\right) \bar{u}-54 x^{4} \bar{u}^{2}-(6+x)=0, \bar{u}(0)=1 \tag{14}
\end{equation*}
$$

and

$$
\begin{align*}
& 3 x^{2} \bar{v}^{\prime \prime}+10 x \bar{v}^{\prime}+\left(5-18 x^{2}-6 x^{3}\right) \bar{v}-27 x^{4} \bar{v}^{2}-13.5 x^{6} \bar{v}^{3} \\
& -(5+4 x)=0, \bar{v}(0)=1 . \tag{15}
\end{align*}
$$

- Now u has a pole of the second order at $x=1.2067$ and v has a simple pole at $x=1.1577$. This behavior manifests itself in Tables I and II below in which \bar{u}_{6} and \bar{v}_{6} are the sixth order main diagonal Fade approximations to \bar{u} and \bar{v} obtained using the algorithm of Section II. We have

$$
u_{6}=1+3 x^{2} \bar{u}_{6} \text { and } v_{6}=1+1.5 x^{2} \bar{v}_{6} .
$$

TABLE I

x	$u(x)$	$u_{6}(x)$	x	$v(x)$	$\mathrm{v}_{6}(\mathrm{x})$
0.0	1.0000	1.0000	0.0	1.0000	1.0000
0.1	1.0305	1.0305	0.1	1.0152	1.0152
0.2	1.1264	1.1264	0.2	1.0626	1.0626
0.3	1.3015	1.3015	0.3	1.1464	1.1464
0.4	1.5831	1.5831	0.4	1.2742	1.2742
0.5	2.0228	2.0228	0.5	1.4592	1.4592
0.6	2.7212	2.7212	0.6	1.7254	1.7254
0.7	3.8909	3.8909	0.7	2.1184	2.1184
0.8	6.0383	6.0383	0.8	2.7369	2.7369
0.9	10.6226	10.6223	0.9	3.8344	3.8343
1.0	23.3936	23.3860	1.0	6.3110	6.3104
1.1	87.7732	87.3769			

The values of $u(x)$ and $v(x)$ were taken from a paper by Simon [5] who used (12) and (13) as examples in a study of a numerical integration technique for the solution of initial value problems in ordinary differential equations.

The poles of smallest magnitude of u_{6} and v_{6} are $1.2058 \pm i .0134$ and 1.1578 , respectively, so that one would expect that the poles or u and v could be computed to any desired degree of accuracy using higher order approximations. Indeed this is the case when the approximations converge.

REFERENCES

1. Merkes, E. P., and Scott, W. T., "Continued Fraction Solutions of the Ricatti Equation," J. Math. Anal. Appl., 4, 309-327 (1962).
2. Fair, W., "Pade Approximations to the Solution of the Ricatti Equation," Math. Comp., v. 18, No. 88, 627-634 (1964).
3. Luke, Y. L., "The Fade Table and the τ-Method," J. Math. and Phys., v. 37, 110-127 (1958).
4. Davis, H. T., Introduction to Nonlinear Differential and Integral Equations, Dover, New York, Ch. 8 (1962).
5. Simon, W. E., "Numerical Technique for Solution and Error Estimate for the Initial Value Problem," Math. Comp., v. 18, No. 91, 387-393 (1965).

[^0]: 25 October
 1965

