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PREFACE
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10-74-740-124-08-06-11, PR 10-2487, "Nonlinear Dynamics of Thin Shell
Structures.” The research work upon which this report is based was accom-
plished at Midwest Research Institute with Mr. Howard Wolko as project
monitor.

This report covers work conducted from 15 Januvary 1965 to 14 October
1965.
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Mr. John Nelson and Miss Rosemary Moran for their assistance with the calcula-
tions.
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I. INTRODUCTION

In a previous work Merkes and Scott [;] constructed continued frac-
tion solutions to the first order Ricatti equation by using a sequence of
linear fractional transformations. Fair [é] utilized the T-method, see the
paper by ILuke [3], to develop main diagonal Padé approximations to the solu-
tion of the first order Ricatti equation with rational cocefficients. Rational
approximations are advantageous to study the behavior of the solutions in a
global sense., That is, they are useful for evaluation of functional values in
the complex plane including zeros and poles.

In this report we develop continued fraction (and hence rational)
approximations to the solution of a second order nonlinear eguation which in-
cludes as special cases the equations treated in [l] and [2] These approxima-
tions are obtained by using a sequence of linear transformations which leave
the differential equation invariant, see Davis [4:], and are presented in
Section II. For an application, in Section III, the algorithm is applied to
obtain approximations to Painlevé's first and second transcendents.

ITI. DEVELOEMENT OF THE RATIONAL APPROXIMATIONS

Consider the generalized second order Ricatti equation
\ 2
(AgtBoy)y" + (Co*Doy)y! - 2Bo(y')® + Eg + Foy + Goy® + Hoy® = 0,

y(0) = ) (1)

where the coefficients in (1) have Taylor's series expansions of the form

=] [0} [oa]
Ay = x2 % a Xk, B0=x2 2 bkxk, Co = X > ey xk
k=0 k=0 k=0

[os}

[ee] (2]
Dy =x 7 qxF ,Bo= 3 exF e #0,F =2 fixk £ 40,
k=0 =0 k=0
[} ©
Gy = X Z gkxk and H, = x Z hkxk . (2)
k=0 k=0
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We further assume that the solution of (1) has a power series expansion of the
form

@x

Y=o+ E: kak . (3)
k=1

Note that (2) and (3) together with (1) uniquely determine &, and By . We
also require that the coefficients in (3) have the property that

do Bl ....... Bp
Bl 52 ....... Bp+l
Ay = | ) ) £0,p=0,1,2... ,
Bp Bp+l BEP
and
Bl 82 ....... Bp+l |
B?_ 83 ....... BPTE
I‘2P+l = 1. .. £0,p=0,1,2... . (4)
Bor1  Poio Bopi1

Then (4) insures that y has a continued fraction expansion of the form

(5)



A transformation of the type

y = m(x) + n(x)y*
p(x) + q(x)y*

where m , n , p and q are polynomials in X may be necessary to bring the
differential equation intc the required form. Ve suppose that this has already
been done. See [43 for the results of applying transformations of this type

to (1). We give an example in Section III.

The even approximants of (5) are the main diagonal Padé approxima-
tions to y which have the following properties. Iet

n

2; xk
- pn,k

k=0

= (8)
“n = k
e qn,kx

be the nth order main diagonal Padé approxiration to y . If Qn 1is formally
divided into Pn , the resulting power series agrees with the power series

representation of y for the first (2n+l) terms. The polynomials P and
Qn, both satisfy the recurrence relation

+J
!

n = Ll + (o y*eon)x|Py_y - oy q00n oxPP 5

Po =y, Py = a(l+vasx) , Qo = 1 and Q) = 1+ (og+p)x . (7)

Thus, rational approximations to the solution of (1) are immediately forth-
coming if the values ¢71,%... can be computed. These values can be obtained
by utilizing a sequence of linear fractional transformations. Iet

-1
Y =¥ » ¥y = %(ltxyy) T ,n 20, (8)
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Repeated application of (8) to (1) and division by aux at each step yields

, 2
(Apey + Bua1¥ne)¥ne1 ¥ (Coen * Dnad¥ned)¥he1 = 2Bpey (Vhea)

2 3
*Epe1 T FreaV¥ner T Gpetvpel T HpeVpe1 =0 (9)

where Apyy = - Ay - opB,
Bhe1 = - X¥Ap

- ex-l(An + C(an.) - Cn - anDn ]

Cn+l

= x=1l{g-1 2
E .4 =X (0 *E, + F + Gy + ogH) (10)
Fooq = - x"HC, + D) + 3o5lE, + 2F, + a6
n+l x n nn ntn n nYn >
-1 o=l . s
Gn,}_l = 2}{ An - Cn + \Jdn )QEn "{Fn 9
and
-1.2
Hyep = 05%°B, , n=0,1,2,...
It is easily shown that
A 4q(0) = By, 1(0) = €, 1(0) = Dpyq1(0) = Gpyq(0) = Hp41(0) =0
En+y and Fpyy are defined at x =0 and
E.+1(0)
= = . _n+l =
yn+l(o) =X = m , n=20,1,2,... g (12)

Thus the values a3 appearing in (5) can be computed recursively.



Proof of the convergence of the approximants in (6) in the general
case seems elusive especially since the values of &, are not in general
known in closed form. However, in the smecial case of the first order Ricatti
equation, some convergence proofs are available, see [j] and [é]. Heuristically
one can imply convergence of the approximants in (6) by comparing the values of
the n'® and (n+1)St approximations. In practice this works very well, and in
the cases investigated the actual error of the nth approximant is the same
order of magnitude as the difference, y,47(x) - yu(x) .

I1I. EXAMPIES

We consider two examples which exhibit the utility of these approxi-
mations when used to approximate both the function and its poles.

Painlevé's first and second transcendents are defined by the differen-
tial equations

' - 6u® ~Ax =0, u0) =1, u'(0) =0, (12)
and
v' - 2vd - xv -p=0, v(0) =1, v'(0) =0 , (13)

respectively. In what follows, A = = 1.0 .

To cast (12) and (13) into the required form of (1), we set

w=1+3xT and v =1 + 1.5x°v in which case (12) and (13) become

3x°T" + 12xT' + (6 - 36x2)T - 54x4P - (6 + x) =0 , w(0) = 1 (14)

and

3%°F" + 10x¥ + (5 - 18x° - 6x3)F - 27x%2 - 13.5x5%°

- (5+4ax) =0, v(0) =1 . (15)



Now wu has a pole of the second order at x = 1.2067 and v has a simple
pole at x = 1.1577. This behavior manifests itself in Tables I and IT below
in which ug and Vg are the sixth order main Giagonal Padé approximations
to u and V obtained using the algorithm of Section II. We have

ug = 1+ 3x256 and vg = 1+ l.5x276 .

TABLE I TABLE II

X u(x) ug (x) X v(x) vg(x)
0.0 1.0000 1.0000 0.0 1.0000 1.0000
0.1 1.0305 1.0305 0.1 1.0152 1.0152
0.2 1.1264 1.1264 0.2 1.0626 1.0626
0.3 1.3015 1.3015 0.3 1.1464 1.1464
0.4 1.5831 1.5831 0.4 1.2742 1.2742
0.5 2.0228 2.0228 0.5 1.4592 1.4592
0.6 2.7212 2.7212 0.6 1.7254 1.7254
0.7 3.8909 3.8909 0.7 2.1184 2.1184
0.8 6.0383 6.0383 0.8 2.7369 2.7369
0.9 10.6226 10.6223 0.9 3.8344 3.8343
1.0 23.3936 23.3860 1.0 6.3110 6.3104
1.1 87.7732 87.3769

The values of u(x) and v(x) were taken from & paper by Simon [5] who used
(12) and (13) as examples in a study of a numerical integration technique for
the solution of initial value problems in ordinary differential equations.

The poles of siallest magnitude of ug and vg are 1.2058 t i.0134
and 1.1578, respectively, so that one would expect that the poles of u and
v could be computed to any desired degree of accuracy using higher order
approximations. Indeed this is the case when the approximations converge.
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