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CHAPTER I
INTRODUCTION

On May 13, 1963 through May 15, 1963 a seminar on pilot-~
vehlcle system identiffcation problems was held at the NASA
Ames Research Center. The seminar focused on the cocmparison of
methods for determining human pllot dynamic response character-
istics. The paradigm of multiple linear regression analysis
was used as the basis for comparison of the analysls technlques.

The meeting was arranged by Mr. Melvin A, Sadoff of the
Ames Research Center. I was responsible for the technilcal
ccntent of the seminar and gave most of the lectures. These
were based in larg> part on work done under Contracts NASw-185
and KaSw-668 which were monitored by Mr. Sadoff with the support
of Mr, Robert W, Taylor of the Electronics and Control Program
Office of OART, NASA Headquarters. Mr. D. T. McRuer of
Systems Technology Inc., Dr. George A. Bekey of Space Technolecgy

Laboratory, and Mr., James Adams of the NASA Langley Research

Center contrihuted greatly to the meeting by discussing the
analysis technigques that they have been using for measurement
of human pilot dynamics and presenting the r2sults they have
obtained using these techniques. Appendix A contains the out-
lire of the seminar,
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The seminar was attended by pe:rsonnel from three NASA
Research Centers - Ames, Langley, and Flight Research --
NASA Headquarters, Alr Force Systems Division, Systems Tech-
nology Inc., Space Technology Laboratory, RIAS, and ACF, A
1list of attendees is given 1in Appendix B.

During the seminar I promised to write up my notes. on the
material discussed and distribute them to the attendees. This
took longer than expected, but the task finally was completed
in December 1963. The work required to put this material in
final form was supported by the Alr Force under Contract No.
AF33(657)-8224 and will be reported in a forthcoming Air Force
Report ASD-TDR-63-618, "Further Studlies of Multiple Regression
Analysis of Human Pilot Dynamic Response: A Comparison of .
Analysis Techniques and Evaluation of Time-Varying Measurements."
The second chapter of that report, "A Comparison of Techniques
for Determining Human Pillot Describing Functions with Stochastle
Inputs,”" is an elaboration of the NASA Seminar material. That
chapter 1s reproduced as the second chapter of thils seminar
report and should serve as the written notes for the seminar.

The semlnar meetings were informal. The discussion was
lively and helped to clarify many issues concerning the identi-
flcation of human pllot characteriatics. The format and organi-
zatlon of the seminar should be useful as a proctotype for other
simlilar meetings, particularly those devoted to intensive dis-
cussions of a specific toplc by people actively working on prob-
lems belng discussed.
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CHAPTER IX

A COMPARISON CF TECHNIQUES FCR DETERMINY NG
HUMAN PILOT DESCRIBING FUNCYYONS WITH
STOCHASTIC XNPUTS

I, INTRODUCTION

In recent years a varlety of technlgues have been developed
for the identiflcation of the dynamic characteristics of ilnear
systems and for the determinatlion of describing functions for
non-linear and time-varylng systems when the input signal to
these systems is a random process. Among the techniques that
have been applied to identificaticn of human pilicot dynamie
response characteristics the most important have been cross-cor-
relation analysis (re®s. 4,5}, cross-power density spectral
analyeis (refs, 6-8).differential equation coefficient methods
(refs. 9-11), and orthugonallized exponential function analysis
(refs. 1-3). -

As we shall show in this chapter, all of these analysis
techniques can be considered to be speclal cases of Oor approx-
imations to multiple linear regression analysis {ref., 12, 13}.

A study of regression analysis and 12 particular of the statis-
tical properties of the measurements obtalned from such analysis
1s central to the understanding of and to the comparison of
these techntques.

In the next section we review briefly the principal ideas
of regreasion analysls., We give without proof some of the
results obtained in Appendix B relating tc the statistical
properties of regression measurements that are important for
comparison of the techniques., In Section IXYI we describe the
different analysis techniques, In Section XV the methods are
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compared with respect to accuracy and precision. In Section V
a method for obtaining the coefficients of the differential
equation for a system from regression coefficients 1s described.
Finally, we dlscuss the problem of using only signals circulating
within the feedback loop to determine the open-locp describing
function of the human operator.

{I. MULTIPLE LINEAR REGRESSION ANALYSIS
i, Regression Equations

Multiple linear regression analysis is a prncedure for
finding the best linear reiation between a dependent variable y
and a set of independent variables zJo The'zJ can be interpreted
as the coordinates or bases of a vector space, and the dependent
variable y as a vector in that space, In this context y is
represented as the vector sum of the basis vectors, the contribu-
tion of each component vector belng Jjust the projection of y on
that baslis vector.

A convenient paradigm for discussing the application of
regression analysis to system identification is shown in Fig. 1.
An unknown system 1g to be approximated by linear filter with
weighting function w(t-t') to whose output is added a remmant
signal n(t). This is the usual deseribing function method of
representing dynamic systems (ref. 14). We will consider only
the case in which the system input x(t) is a random signal. In
this case the remnant will, in general, also be a random signal.
The identification problem 1s to determine the weighting
function wit-t'). '

The input-output relation of the unknown system expressed
in terms of the convolution integral is .

y(t) = ft w(t-t') x(t*) at* + n(t) (2;1)
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where y(t) is the output including the noise. The weighting
function w(t-t') is to be determined from measurements made on
the input x(t) and the response y(t). The noise n(t) cannot be
measured directly.

A model for the cystem 1s constructed from a set of K
filters conmnected in parallel as shown in Fig. 1. The system
input x{t) is fed to each of these filters and the filter out-
puts zJ(t) are weighted by coefficients by and summed to form
the output of the model z(t).

K K t :
z2{t) = 2 b,z (t) = = b, [ é,(t-t') x(t') at' (2.2)
J=1 J “J J=1 J —en J

where ¢J(t~t') is the weighting function of JEQ filter.

Several different crilterla can be used to determine the
coefficients bJ. We will consider only the case in which the bJ
are determined so that the mean-square difference between the
system output y(t) and the model output z(t) is a minimum. The
mean-square difference is determined by averaging the square of
the difference between y(t) and z(t) over 2 pericd of T seconds
duration. Douing this we obtain

— T T K . '

D® = E[ D(t)at = & [ [y-3 b, zd}& o (2.3)
(o} o) Jm=1

where D(t) 1s the difference y(t)-z(t) and the bar indicates that

the average wlith respect to time ls to be taken. The values of

the coefficlients that minimlize the error can be found by taking

the deraivatives of Eq. (2.3) with respect to each of the b, and
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setting the results equal to zero. Doing thizs, a set of K
equations 1s obtained.

zl 1 b1 + 2122 b2+ hooeco Z42g bK = 2,¥

2221 bl + 2222 b2+ ceseo ZyZy bK = z2y

(2.4)

szl bl + ZKZQ by cceee * ZpZp by = 2Zpy

where zin is the sample covariance of zy and z 3 fer the period
7. In matrix notation the set of equations required to specify
all K coefficlents 1s

Lbh = y | (2.5)

where L is the K x K covariance matrix whose elements E 13 are
ziz J’ b is the coefficient vector with K elements b 35 X is the
vector with K elements ziy.

In general, the model will not account for all of the out-
put of the system. The part not accounted for, which is called
the residual €(t), 1s the difference between the system output
y{t) and the model output z(t) obtained when the by that satisfy
Eq. (2.5) are used in the model of Fig. 1l.. By.carrying out the
squaring operation on the right side of Eq. (2.3) and substitut-
ing y from Eq. (2.5) in the result, we obtain for the mean-square
residual
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€ = y° - z.y (2.6)
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If the mod ~ 1s well chosen the relation

wit-t!) =& J(t~t') (2;7)

b
g1 73

wlll glve 2 good approximation to the system weighting function
w(t-t*). Thus, by knowing the ¢.{t-t') and the by, an approxi-
mation to w{t-t') can be obtained.

EQ. (2.5) provides the best linear relation in a mean-gquare
error. sense between system output y{t) and the filter outruis
z.(t)° The coefficlents b, are coefficlents of regression of
yit) on the zj(t) (refs. 12, 13). They define a vector in a K-
dimensional vector space whose basis vectors are the zJ(t)° The
coeffizlents b, are projections of the vector representing y(t)
onto the basis vectors.

B. Expected Veplues of Regression Coefficients

Altvhough our obJjective 18 to obtaZn an accurate representa-~
tion for the gystem weighting function, the identification
procedure yields the least mean-square error approximation to
the gystem output. We should not be surprised to find that unless
Special precavtions are talken in the selection of the basis
vectors zJ(t) or of the basis functions ¢J(t) a good representa-
tlon for system output may not yield a good representation for
system weighting function. If a good choice of ¢ (t) or =z, (t)
1s made; a few z (t) will be required. to represent the system
output with a hwgh degree of accuracy. If, on the other hand,
they are not wéll ‘chosen, a 1afge number may be requilred to
achleve a good representation.

10
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To see the klnd of errors that are likely to occur because
the method approximates system output, assume that in the model
of Fig. 1 a sét of K filters chosen from a complete orthoncrmal
set is used. In thils case, the welghting function of the system
w(t-t') can be approximated with vanishinzly small mean-square
error by an Infinite number of fllters chosen from this set.
s,

wit-t') = ; wJ¢J(t~t') (2;8)
J=l :
and
y{t) ~  Z wyz,(t) + n(t) (2.9)
3=l

where wy 1s the welght applied to the £ r1iter,

Equations (2.8) and (2.9) are series representations for
system welghting function and system output when an infinite .
number of orthonormal filters 1s used to represent the system.
When a finite number is ured, the weight applied to each (the
coefficients.b,) will not, in general, equal the Wy in Eqs.
(2.8) and ( 2.9§. The values of the coefficients that will be
obtained can be found by using Eq. (2.9) to expand the sample
covariances that appear on the right side of Eq. (2.5) (noctc
that in Eq. (2,5) ¥ is a vector whose components are z,y.)

Wnen Eq.. (2.9) 1s substituted for y in the covariances
2,y of Eq. (2.5), the following matrix equation is obtained

11



(ref; 1)

Lb = LW+ Ly We,+n {2.10)

— a——y

where w is the vector whese elements are the first K coeffilclents
Wy of Eq. (2.9); My.q is the vector whose elements are the co-

Sffigients w‘j for j>K;|LK*1 1s the matrix wlth sample coyzzignces
Z424 for 1K and j>K; n 1s the vector whose elements are z4n for

12X,

The solution of Bq., (2.10) is

. -1 ~1 .

2 = W+ L "T‘T(+1EK+1 +L " n {2.11)
or

3] = Ww+g+h {2.,12)

where g and h are defined by the second and third terms of Eq.
(2.11).

Thus each regression coefficient bJ 1s shown to be the sum
of three components. The first component is the corresponding
welght wJ that would result from using an infinite. sum of ortho-
normal functions to represent w{t-t') as in Eq. (2.8). The
second component gj 1s a blas caused by approximating the system
with a finite number of orthonormal filters. The third compon-
ent 4, results from the noise n(t).

By taking the expected values of both sides of Eq. {(2.12)
we ohbtaln a relation for the expected values of the regression
coelficients which we designate By. Since the nolse is
uncorrelated with the filter outputs; the expected value of h

12
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will be zero and
[¢] - Wty (2.13)

where B is the vector whose. components are BJ and Y is obtained
from g in Eqs. (2.1]) and (2.12) by replacing the sample co-
variances 1n.Lfl Ly,q DY thelr expected values, Thus we find
that wiless the measurement is performed In a way that makes Y
zero, the estimates of the regresslion coefficlents, the bJ, will
be blased iIn the sense that the expected value ﬁd wlll not be
equal to the true value wJo The blas arises because we have
used only a finite numher of basis functions to represent the
system characteristlcs and because we have found a least mean-
square error approximation to. the system output rather than to
the system welghting function.

The blas can be reduced or eliminated two ways. One method
is to choose the bagis functions so that the first K of them
match the system weighting function w(t) exactly. This will result
in W beilng identically zero, thus makling 7Y zero and ylelding a
B that will be equal to the true value w. The second method 1is to

_select filter outputs zd(t) that are orthogonal. If this is done

AK}I’ the expected value °f-LK+1’ will be zero, making Y zero and
yielding an unblased f. Orthogonalization of filter outputs can
be achieved elther by selecting a filter set whose outputs wlll be
orthogonal for all input signals {such as very narrow bandpassed
filters with non-overlapping pass bands), or by tailoring the in-
put signal to the filters so that orthogonal outputs are obtained.
This last condition is obtained if the input is. white noise and
the filters bhave orthogonal weighting functions. If the input is
not white nolse, 1t frequently can be prefiltered before it is fed
to the set of filters and thereby "whitened" so that the effective
input signal to these filters will be approximately white noise.

13



Actually, one need not go so far as to choose a basils set
that can approximate the system characteristics exactly;, or to
force the filter outputs to be orthogonal. It is not difficult
to obtain an approximation to the system characteristics that
1s a very good one in the sense that a few fllters will approxi-
mate the system behavlcr with very small error. In such a
case, the elements of E%}I will be small, thereby making the
blas small and giving a good approximation to the system weight-

iIng functilon.

C. Statistical Properties of Regression Coeiflcients
If the input x(t), the output y(t) ard the residual e{t)

have a normal distribution with zero mean, the regression co-~
efficients obtained from a particular samnle of the input signsl
will bc normally distributed with an expected value B given by
Fqg. (2.13) and a variance that can be shown {(ref. 1) to be

o

cb i 2
S

J N sJu

(2;1u)

where 0§ 1s the varlance of the residual, N 1s the number of
independent samples of the residuval obtalined from the T-second

long sample used to compute bJo As sugh 1t 1is the number of
degrees of freedom of the residual, sJu is the sample variance
of the part of the output of the JEQ filter that 1s independent
of the other filter outputs. 1/s§u is the jzn diagonal term of
,L'l and can be ccaputed from L. The variance ngls depends upon

that particular value of B?u obtained 1n a measurement.

To find the expected variance for all values of S?u we take
the expected value of °§J| o By taking advan*age of the fact

that the distribution of s 1s proportion to x2 (see Appendi-~.

ik
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52 |
ogj - — M (2.15)
moju M-(X+1)
2 th

where 3Ju 1s the variance of the part of the output of the =
filter that 1is uncorrelated with the other fllter outputs, M 1s
the number of degrees of freedom in the part of zj(t) uncor-
related with the other filter outputs obtained in the T-second
long sample, and K 1s the number of filters used in the model.

In any measurement. it ls desirable to have as stable a set
of measures as posslible. Thls can be achleved by making the
ratio obJ/BJ as small as possible. A small "sigma-to-mean"
ratio can be obtained by using a smali number of fllters that
approximates the system well so that each BJ wlll tend to be large
thereby tending to make °bJ/BJ small. The Op4 can be made small
by (1) choosing the filters so that they account for almost all
of y(t) that is correlated with the input thereby making og small,
{2) makdng N large, which can be accomplished by malkdng the sample
length T large (if this 1s possible}¥ (3) choosing filters whose
outputs are uncorrelated so _-hat oiu is large, or (4) choosing
the filter outputs to have as large a bandwidth as possible,
*hereby making M large. Using a small number of filters will
also help reduce o§ by making K small. Thls will help keep the
term M/{M-(K+1)] in Eq. (2.15) close to unity.

In addition to the relative variability of the coefficients,
one must also be concerned with the possibility that the bJ will
be biased. A bias will occur when ¥ in Eq. (2.13) is not zero.

#As shown in Appeddix B, N 1s approximately 2WT where W ls the
effective bandwidth of the residual in cycles per second.

15
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If the bJ are blased, then the representation of the system
characteristics will be in error., For spectral and orthonormal
exponentlal functlion analysls, the bias can be made small by
choosing filters that represent w(t-t') with very small error
or by making the fillter outputs orthogonal over the 1lnterval T.
This will not be true in the case of one of the differential
equation ccefficient methods in which a bias due to the remnant
noise cannot be removed.

III. DESCRIPTION CF ANALYSIS TECHNIQUES |

In this sectlon four commen methods for measuring system
dynamlcs are discussed from the viewpolnt of multiple regression
analysis. The four methods are cross-correlatlion analysis,
cross-gpectral analysis, orthogonalized exponentlal function
analysis, and differential equation coefficient methods.

A. Cross-Correlation Analysis
The basic relation for cross-correlatlion analysis of a

system 1s

Rey(™) = [ wlr-¢) R (6') at’

T>0 (2.16)

= (f) w(tt) R_ (7-t') at!

where R and Rxx are, respectlvely, the cross-correlation
function of system input and output and the autocorrelation of
system input (ref. 4). Equation { 2.16) is obtalned from Eq.
(2.1) by correlating both sides of the equation with x(t). The
remnant noise n(t) does not appear in Eq. (2.16) because it 1is
uncorrelated with the input x(t).

16
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The integral in Eq. (2.16) can be approximated by a summa-
tion.

ny(nﬂv) & Jgo w( JAT) RXX[(an)AT] ar n>o

x(t-nar) y(t) & Jg w(jnr) x[t-(n-3)arix[t] Ar (2.17)
=0

& ; w(jar) x{t-nAT)x(t-jAT) Ar
J=o0

where Ar is the dncrement In T used in the computation of the
correlation functions. The relations between input and output
implied by Eq. (2.17) may be represented by the multiple
regression paradigm as shown in Fig. 2 (ref. 15). The filters
used to represent the system have impulse repsonses that are pure
time delays whose outputs are the same as the input except for
the delay 1n time of nAr seconds. The impulse response of these
filters i1s a delta function 5(t-ni&r), a unit impulse at t~nar.
The coefficiants bJ are equal to w(JjAr)Ar as 1s apparent from

Eq. (2.17).

In terms of the filter outputs shown in Fig. 2 the regress-
lon equations; Eg. (2.4), can be written

2524 bo + 2,%q b1 + ccece 202K bK - 2.y
leo bo + 2121 bl + TEEX N + ZJ_ZK bK Lod Zl
3 ° . @ (20 18)
ZgBo Vg * ZgZy Dy F eeees * ZpZp Dy = '§E§
or
Lb = y {2.19)

17
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Figure 2 Cross Correiation Analysis
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where L, b and y are defined in a manner corresponding to that
used in Eq. (2.5).

Each row of Eq. (2.18) 1s equivalen* to Eq. (2.17) for a
particular value of n. Except for the speclal case of a white
noise input, the filter outputs zJ(t) will not, in general, be
matually orthogonal. Therefore, the compleie set of equations
of Eq. (2.18) must be solved for the coefficient bJ. When this
1s done a representation for the sys tem weighting function 1is
obtalned

w(t) & ng 6(t-Jor) (2.20)
J=0

where 5{(t-j4&r), the impulse response of the Jﬁb-filter 1s a2 unit

impulse occurring at tsmar.

B. Cross~Spectral Analvsis

The basic relation for cross-spectral analysis of system
characteristics 1is

Ww) = M | (2.21)

o ()

where W(w) is the transfer function of the system being measured
and Sxy(m) and S (w) are, respectively, the cross-power density
spectrum of input and ocutput and the power density spectrum of
the input. Egration (2.21) .s obtained by taking the Fourier
transform of Eq. (2.16) (ref. 4).

1. Conventional Spectral Analysis |
We can use the variation of the paradigm of multiple re-

gression analysis in Fig. 3 to represent the relation betwen

19
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the signals at frequency v, implied by Eq. (2.21). ¢m(w) and
Or J(w) are the transfer functions of two narrow vandpass filters
with center frequency w,. The amplitude characteristics of the
filters are identical. The phase characteristics are also
identical except that the phase & J(a.a) is advanced 90 degrees
relative to °RJ(‘”)°
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Figure 3 Conventional Spectral Analysis
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Note that the system output y(t) is filtered by @Rj(w)o
The regression coeffilcients bRJ and bj:‘j of Filg. 3 are determined
so that this filtered cutput ij(t) is approximeted with least
mean-square error, The regression equatlons obtained for the
configuration of Fig. 3 are

= S _
zRJ bRJ + ZRJZIJ bIJ r2 ZRJij

—g (2.22)
Zrs%Ry PRy T g Pry T Z1p¥mg

cince the relatlve phase shift between the two filters is
90 degrces, the two off-diagonal terms EEBZIJ and E;;E;; in
Eq. (2.22) will be approximately zero if the sample length T 1is
sufficiently long. _Also, since the two filters have identical
amplitude response.zsj.will be equal to zijc If all) these condi-
tions are true, Eq. (2.22) reduces to

) [
zJ bRJ ZRJyRJ .
{z.23)
;5 b = Ze Voa
J "1 IJ'R]
3 R N -2
where zJ 1s used to represent zﬁj and ZIJ.

By shifiving the filters in frequency and performing the same
flltering operatians on input and output at.a mmber of frequenciles,
several sets of equations of the. form of Eq. {2.23) will be
obtained, one for each frequency. The comblned equations will

2l
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bandpass fllters with sharp cut-off, the b

N N N
h)h)l HF\)' Hh)l
o'

2

- 2g bpy

2
Zx brg

2TV RK

f2,24) -

We now show that if the ¢ J(m) and &y J(m) are very narrow

and bIJ will be

approximately equal to the real and imaginary parts of the system

describing function W{w).

Take one equatlon from the set of

Eq. (2.24) and write the averages in terms of the appropriate
integrals.
analysis filters have non-overlappling passbands.

and

1
szdt

lim X fT at
= m = V4
T T o _RIVRY

-

A simllar expression can be written for bmo

We note that
2
1im & 25 dt =
T”'wT J
1
1lim = Zroi¥ns At
T_,,m'r RJRJ

1 [ ]
RJJ(O) - 5 {w SJJ(w) dw

Assume that the sample length T 1s large and that the

(2,25)

£2,26)



where R J(O) and R, o (0) are the autocorrelation function of
RJ“RJ
ZRJ(t) and the cross-correlation function of zp g(t) and yRJ(t),

respectively, for T«O. J(w) and Re[S (w)] are the power

Znay
RJVRJ
density spectrum and the real part of the cross-power density
specirum corresponding to these correlation functions. Equation
(2.26) may be used to rewrite Eq. (2.25) as

\ 1 ra ' 1 A~
bRJ - { s“(m) o = 5= {” Re[SZRJyRJ((D)] de (2.27)
However,

S5,(0) = 19g;(@)l? 5 (w)
and (2;28)

szRJYRJ(w) ; |¢RJ(‘”12 Sxy(®@)

where Sxx(w) and Sxy(w) are the power density and cross-power
density spectra of the signal x{t) and the signals x{t) and y(t),
respectively.

Ir terms of these twe spectra Eq. (2.27) ecan be writ:en

bay 21r I (cu)!2 S (@) do = ‘é‘;; chRJ(ij Re[S, () Jdw (2.29)

P

g
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gy

Solving for bRJ

ce

I 19y (@) | Rels, (o)) do

-
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T |egylell syfe) as
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Similarly,;

I 18gy(@)|2 Tnls, (@)] @ -

I 19500012 5 (@) @

bIJ

" where Im[Sxy(w)] is the imag'nary part of S_W(w)o

Ir ®Rj(m) is a very narrow bandpass filter and S, and S
are relatively constant in the passtand, and equal to Sxx(wJ) and

Sxy(m,j)’
Re[S (wj)]
bRy Sxf(lgj) = Re[W(mj)] |
(2.31)
Im[S
- i LTI
Sxx(wJ)

Thus, for the case of long sample lengths or orthogonal
outputs and very narrow pandpass filters, 1t is clear that the
aprioximate equations Bg. (R.24) yleld coefficients equal to the
real and imaginary parts of the system transfer function, If
these conditions are. not satisfied, the more complete Eq. (2.22)
wlll have to be used.

2, A Direct Repression Method of Spectral Analysis

Conslder next the form of spectral anzalysis illustrated
in Fig. 4. A set of K pairs of narrow bandpass filters,

25




QRJ(m) and ¢x3(w), of the same type as used in Fig. 3, are
connected in parallel, excited by the input sirnal x(t), and
used to approximate the entire system output y(t). In, terms of
this set of filters, the regression equations of Eq. (2.14)
become

281%R1 le + Zm1 211 bIl H* eo0ao0o + Zp1 2R PRK o ZR1 21K bIK = ZgY

RK * %11%iK Pik = Z11Y
(2.32)
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-} (] c o

©
°
[+]
o

@ L] -1 <

©
[]
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A———

Zrrk?R1 Pr1 ¥ ZrxZ11 P11 F occccc * ZppZrk Prr * ZRZTR Pk ¢ ZRRY

Zrg%r1 PRy * Z1x%r1 P11t ccecc * ZykZrk Prx t ZTR%TK Pk ¢ IRV
or
Lb = 3y {2,33)

where L, b &nd y are defined in 2 manner similar to that used for
Eg. (2.5).

The model of Fig. U4 indicates that for the direct regression
i method of spectral analysis the system weighting function is
represented by a welghted sum of filters.,

X
w(t-t1) & le [bry dry(t-t*) + byy o74{e-t")]
and . (2.34)
- K
| W(w) & 2 [bpy Opsl@) + bpy Op4(w))

3=l

Pwm e pess
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The approximations of Eq. (2.34) are valid whether or - ot
the fllter outputs are orthogonal. How2ver, 1f they are orthog-
onal Eq. (2.32) can be simplifiled greatly.

First assume that the filter outputs are mutually orthog-
onal over the sample length T. The non-diagonal terms of Eq.
(2.32) will be zero and the following reduced set of equations
is obtained.

-
2@ Pm1 =~ ZmaY
-
277 Pry = ¥
z.2 b . Zo.y
R2 PR2 Rr2Y |
: : {2.35)
A 2 b z
RK P"RK = 2RgY

n———

2
2y P1x  * Zry

For fllters having orthogonal outputs 1t 1s not necessary to
connect the entire set of 2K filters in parallel and exclte them
similtaneously. The meastrement could be made one filter at a
time.

It should be noted that tle coefficlents ij and bIJ are
not easily interpreted as the real and imaglinary components of
the system describing function as was the case for the conven-
tional spectral analysis. Rather, the serles expressions of
Eq. (2.34) which involve these coefficlents as well as the
analyzls filter characteristics must be used to represent the
systen describing function.
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3. Spectral Analysls Using Sinusoidal Components of Input
If the input signal x(t) is composed of the sum of K sinu-

solds. as 1s frequently the case in studlies of human pllot dynamics
(refs. 7, 16, and 17) it is not necessary. to fillter this signal
by & set of bandpass filters as in Fig. 4. Each component of

the signal can be taken directly and used as one of the zRJ(t)
signals. By shifting the phase of each of these signals by 90
degrees the z; (t) signals can be obtained. Since each of the
zRJ(t) signals 1s Just a sinusoid, its mean square will be the
power of that sinusoidal component of the input. Thus, for long
sample lengths T,

22 = Sgle) (2.35)

Similarly, the preduct of zRJ(t) and y(t) will be the real
part of the cross-power spectrum of x(t) and y(t) at frequency
mjo That is,

ZRJy b Re[sxy(mj)]

and (2.37)

zIJy o Im[SJQ"(wJ)]

Substituting Eqs. {2.36) and (2.37) in Eq. (2.35) we obtain

S
b ) Re[ﬁg(mi)] _ Re[w(mj)]
Sxx(wJ) |
{2.38)
ImiS
by = 8,0yl InfW(w,)]
sxx(w,j)
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This the coefficlerncs bRJ and bIJ determined ucing this
method are the real and imaginary components of the system
describing function.

For short sample lengths the sinusoldal com....2nts of the
input may not be mutually orthogonal. In this case the complete
get of equations of Eq. (2.32) must be used to find the ij and
bIJ“ These coefficients will still be the real and imaglnary
parts of the system describing function as indlicated in Eq.
(2.38). :

C. Orthogonalized Exponential Function Analysis

The third method that we shall discuss is based directly
upcr the multiple regression analysis but employs a special set
of orthognnalized exponential fllters in the model or representa-~
tion for the system in Fig. 1.

It 12 noted that all lumped parameter systems have welght-
ing functions that are the sum of damped exponential functions.
Therefore, 1t seems reascnable that an efficlent way of repre-
senting such systems 1s to use functions that are also damped
exponentlials., If such functions are used, 1t should be possible
tuv approximate such systems to within a speclified error with o
relatively small number of functions,

Kautz and Huggins {refs., 18 and 19) have suggested a set
of exponential functione that are orthonormal and that are casy
to construct. These are a natural set to use for representa-
tion of systems whose impulse responses are also damped expo-
nentials. These functions have transfer functions of the form




e I

Py

)

¢, (s) - T

¢2(s) ) '¢~?Eg_ (s+§ll
(s-8,) (s-s,)
J-Esk k;l (s+sz)

(B'Sk) i=1 (B'SJ)

(2;39)

@k(s) =

where the poles sJ are negative.

If one usecs such a set of. filters in the model of Fig. 1 the
entire covariance matrix of Eq. (2.5) 1s computed and solved for
the regression coerficlents bJ. In such a case the system weight-
ing function can be approximated by the weighted sum of. the
welghting functions of each of the filters as in Eq. (2.7)s

w(t-t?) & f\:(bj%(t-t') (2;75
J=1

This method of representing system dynamics is similar to
the spectral analysis technuique shown in Fig. 4 except that
orthogonalized exponential filters are used instead of narrow
bandpass filters. The use of orthogonalized exponential filters
permlts representation of system characteristics with fewer
filters than with narrow bandpass filters because exponential
fillters can be mace to resemble more closely the dynamics of the
system being measured (ref. 1).
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D. Differentisl Equation Coefficlent Methods
Differential equation coefficient methods lead directly to

estimates of the coefficlents of the differential equation for
the system being measured. A differential equation for the sys-~
tem to be measured is assumed. In general, this will be of the
form

N P Y ‘....
a4 o va XLy e 9y
at’ at dt |
(2.40)
M e e e P
d'x a™x ax
+ e0ov o +0 ——— e . cocee + C —""5‘0 X
M m geM lg ©

where yt'{t) 1s the output of the linear filter before the addi-
tion of the remnant noise \gee Fig. 1), N and M determine the
order of the equation and are chosen in advance. The coefficients
a_ and c¢_ are to be determined. Any one of the coeff.cients may

n m
be chosen in advance. For convenleiice we assume a to Le unity.

We simplify notation by letting

N N :
AMply' = 2 aply' = = an-gﬂxg
ne=o n=0 dat

and (2.21)
M M m
Clp)x = = ep™ = 5 o 4
M=o o meo M at™

where p=d/dt.
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In these terms Eq. {2.40) becomes

A{p)y? - c(p)x (2,42)

We would like to be able to represent the input-output
relations of Eq. (2.42) by the multiple regression paradigm of
Flg. 1. Unfortunately, this 1s not possible since the signal
y'{%) 1s not avallable to us.

Two methods have been uged to clircumvent the problem caused
by the vunavailability of y'(t). The first, which is called the
equation error method, is illustrated in Fig. 5. The output
y(t) 1s taken as an approximation to y'{t) and the coefficilents
of the equation

A{p)y " c(p)x (2,43)

are found using multiple regression technlques, The second
method, which 1s called the output error method, 1s illastrated
in Fig. 6. A linear filter with transfer function

ci
M{p) - Té%% (2.44)

is _simulated. The coefficlents of the numerator and denominator

~“are found using iterative techniquocs or the method of steepest

descent. (refs. 11 and 22.} Linear regression methods cannct
be used except in the spzclal case when A{p) 18 known in advance
of measurement.

io Equation Error Method

Equation {2.43) is represented in terms of the multiple
regression paradigm of Fig. 1 by a set of differentiators oper-
ating on both input and output, as shown in Fig. 5. The
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coefficlents gn and Gm are to be chosen to minimize the mean-
square difference between the weighted sum of y(t) and its
derivatives, and the weighted sum of x{t) and its derivatives.
This difference is called the equation error and represents the
difference between the left and right sides of Eq. (2.43). Since
the coefficient of y{t), a , was assumed to be unity, minimiza-
tion of the equation error is equivalent to minimization of the
mean-square difference between y(t) and the weighted sum of the

outputs of all the differentiators that operate on x(t) and y(%).
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The regression equations for the configuration of Fig. 5

are

N M
-3 8 (e"y)(py) + 3
n=1 m=o0

N ‘ M
-2 8 (0"7)(p%y) + =
n=l m=0

Nm=]

n=1

N e —————
-3 8 (p"y) (x)

N M
A i
-2 8 (") (p'y) + =

m=o

M
+ 3
m=0

N M
-2 8, (p")(p x) + =
nsl M=o

nw=l

A A
where a_ and cm

n

m=0

o

8. (e™)(p ¥) = y(p y)
e, (p™x) (p%y) = y(p%)
(™) (V) = y(py)
8. (™) (x) =y x
8,(p™)(p x) = y(p x)
= y{p"x)

N , —— M A
-2 2 (")) + = & (p™)(p)

are estimates of a_ and cm

n

In matrix notation this becomes

A
-L_ a
Lya + Ly
~t A
=2y &+ L,

or more generally

Lb

=

o>

o>

X

- Y
- X
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in Eq. (2.40).

(2.45)

{2.46)

{(2.47)
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wl'xer-e‘;f._,,.V is the covarlance matrix of the derivatives of y and

Lk the covariance matrix of x and its derivatives. _Qxy is the
covariance matrix of x and its derivatives and those of vy.

_I_,;y is the transpose of ;’.,_x_y. ?a_,_ and {_c\:_ are vectors wlth elements
‘Qn and‘am, X& i1s the vector of covarlances of y and its derivatives,
and X, is the vector of covariances of y wlth x and i1ts derivatives.

S2ace
y(t) = y'(t) + n(t) (2.48)

Fquation (2.46) can be written in ter.c of y!{t) and n(t).

-IL_,+L +L +Lt 1 3_ + [ +L ] f‘q o x'y,+x' +n 40

=y! =n =y'n =y'n n==yt'=n
t t A A (2«1‘9)
"Ly eti] 2+ L c = y' o,

where'Ln is the covarlance matrix of the noise dcvivatives,‘gy,n
i1s the covariance matrix of the derlvatives of y' #nd n, x}n is
the vector covarlance of y! and noise derivatives, Qy, is the
vector covariance of n and derivatives of y!, n, 1s the vector
covariance of n and 1t. derivatives, and;ggc is the vector co-
variance of n and x and its derlvatives. The other quantities

are defined either as before or else with y® serving lnstead of
Vo

The remnant noise n{t) 1s uncorrelated with y*{t) or x{t),
80 for simpllcity we might assume that all terms involving co-
variances of the noise or its derivatives with y'{t) and x{t)
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or their derivatives to be zero. Doing this we obtaln

A A e
L, +tLla+Lo g =Xy, to,
t A A (2.50)
-Lw!i +-I-‘.x£ “‘X'x

When the remnant noise 1s zero the regression equations
reduce to & form that gives correct (unblased) estimates of the
coefficient of the differential equ:ticn, Eq. (2.40), if the
assumed differential equation 1s of the same order as the actual
equation. Under such conditions Eq. (2.50) becomes

A A
-Lyl 9.-. + -I—'gql -9- = -—x'y!
e A R {(2.51)
Ly &+ Ly = X,

If the remnant nolse is not zero the estimates of a, and C
obtained from Eqs. (2.49) or (2.50) will be biased and not equal
to their correct values. Surber (ref. 21) points out that this
blas will be small if the ratio of noise power to signal power
(power in y'(t)) 1is less than 1 to & per cent and a sufficlently
long sample is used in the computation, conditicns not f requently

encountered in analysis of human operator dynamlcs.

There are a number of ways in which the coefficlents of
Eq. (2.43) can be determined, but all methods give equivalent
results insofar as thelr long sample length performance is con-
cerned. Direct solution of the matrix Eq. (2.46) will give the
least mean-square error solution. Other methods such as those
based cn the method of steepe.t descent {ref. 11), or iteration,
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cannot do better than direct solution of Eq. (2.,43). The diffi-
culty encountered in building differentliators leads to some
modification in the error criteria and in the form of the equa-
tions that are solved. However,; the proceduire that we have
described will indeed yleld the least mean-square error approx-
imation to system output for the interval T and no other method
can do better., Thus, we see that the equation error method for
finding the coefficients of the differential equation for a
system 1s a direct application of multiple regressior analysis.

2, Output Error Method

The second differential equation method, the output evror
method, is illustrated in Fig. 6. A linear filtcr with welghting
tunction m{t-t') is used as a model for the sysiem to be identi-
fied, It operates on the input signal x(t' and produces the
reaponse z{t). The parameters of this m:del are variable and
are adjusted so that the fliter cutput z(t) matches the system
output y{t) with least mean-square error. The model character-
istics -an be reyresented by a differential equation of t- form
of Bg. (2.40). The coefficlents of this eguation are the param-
eters to be adjusted. When a good match is obtained between
tr.e outputs, the coefficients of the diflerential equation for the
‘ model are estimates of the cocefflicients of the differential
F equation representetion for the unknown systen,

E
'lf
|
|
]
I

£ There are several algorithms that one can ase to adjust the
: model parameters (refs. 10, 11, 21, 22, 23). We will not dis-
cuas in detall any of these methods; dbut will concentrate on the
ok properties of the estimates of the ccefficients of Eq. {2.40)

- that are obtained from the technigue illustrated in Fig. 6, Two
properties of these estimates are of interest: thelr expected

38
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values and thelr variabllity. Consider first the expected values
of the estimates of the coefflcilents obtalned from the method.

As the flrst step 1In our investigatlion of the properties of
estimates of differential equation coefficlentz, we assume a
structure for the model in Fig. 6, that 1s we must specify the
order of the differential equation representation for the system.
Next, note that the model operates only on the input x(t), which
is assumed to be uncorrelated with th: remnant noise n(t). There-
fore the output of the model will a’so be uncorrelated with the
noise, Since the noise 1s uncorrelated with the model input and
output, it does not affect the expected values of the estimates
of the differential equation coefficients, and the noise may,
for the present, be taken to be zero. With the noise zero direct
observation of y!(t),. the system output prior to the addition of
the nolse; 1s possible. If the structure of the model is
sufficlently similar to that of the system, the model output
z{t) will be very nearly equal to y'(t) and the differential
eovetion representing the model,

N M :
2 an PPz = = %m pox {2.52)
n=o Mme=0
may be replaced by
N M -
P ﬁn Py! = = Qm p™x (2.53)
n=o n1=0

Bquation (2.52) is of the same form as Eq. (2.40) which
represents the system. N and M are the assumed corders of the
derivatives of z(t) and x(t) in the model. The coefficients of
Eq. (2.52), 2 and 8 , are estimates of the coefficlents of
Eq. (2.40), a, and c_. Equation. (2.53) is obtained by substitut-
ing y*(t) for z(t) in Eq. (2.52). It will represent the model
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accurately if z(t) 1s very nearly equal to y'(t).

Equation (2.53) 1s in a form suitable for solution by the
equation error method discussed above. The coefficlents Qn and /c\m
are solutions tc the regression equations of Eq. (2.51). In the
notation of Eq. (2.5), Eq. (2.51) may be written

Lb = ¥ (2.54)

where L 1s the combined coariance matrix which 1is partitioned in
Eq. (2. 51) into Ly L, 1’ and L. b is the vector of coeffi-

Xy
clents 3 and cm' and .X is the covariance vector found by combin-

irlg x'y' and x.x

Following the methods used to derive Eq. (2.10), the right
side of Eq. (2.54) may be written in terms of the true coefficients
by substituting for y'(t) in the vector y' the expression

M N '
y'(t) = = ¢ px- = a py (2.55)
m=0 n=]
Doing this
.1.:‘. h - ..V!. I'K.g.l WK.H_ , (20 56)
or
D om ML L Mo (2.57)

where w is the vector of coefficients a, and ¢ from Eq. (2.40)
-I-'K-!-l 1s the covariance matrix of the derivatives of. y(t) and

x(t) that appear in the equation for the system, Eq. (2.40), but
not in the model, Eq. (2.52), and wy,, are the coefficients of the
system that are not represented in the model. The notation in

Eqs. (2.56) and (2.57) 18 the same as that used in Eq. (2.11)
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The expected values of the estimates ol the coefficients
BJ are obtained by replacing the covariances in Eq. (2.57) by
their expected values.

E = .l_! % 1 ((2058)

where B 18 the vector whose components are P, and Y 1s obtained

from the second term on the right of Eq, (2.57) by replacing the
covariances by their expected values. 7Y is a blas term that is
caused by not using a medel whose structure is the same a3 the system,

Now consider the variability of the estimates B, ana & .
Assume that by some means the expected values of these estimates
have been found. We designate these expected values 20 and ¢
respectively. If we no longer assume the remnant n(t) to be
zero, and if these values of coafficients are used in the model
as initial conditions for a serles of measurements of system co-
efficlents, the estimates obtained will fluctuate about their
original expected values. The fluctuation 1s caused by the
remnant noise n(t).

mo?

To a first approximation the output of the model can be
written
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where Z, (t) is the model output when the expected values of the
estimates of the coefficients are used, and Aa and Ac are
increments in the model coefficients caused by the noise° They
are to be determined. The partial derivative dz/38 and 2z/38_
gre called parameier influence coefficlents and are evaluated at

ano and cmp

Equation (2.59) is in a form suitable for representation in
terms of the. multiple regression paradigm. Such a representation
is in Fig. 7. The parameter influence coefficients, Bz/th and
az/aé;, can be obtained by a linear operation on the signals in
the computer simulation of the.model. (refs. 10, 1i, 21, 22).

The linear operators are G lo..ochmo Thelr outputs, the param-
eter influence coefficients, ar2 weighted by the increments in
the parameters, 4, and Ac , and summed with : (t) to form the
model output z(t).
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The parameter increments that minimize the mean-square
difference between y(t) and z(t) are found from a set of regression
equations which, in thls case are

N P M
z oz dz g oz
AT A n A A m V267 A
n=l aan cal m=0 Pcm (al : ral
N 3 N M ~ :
z <z "z 0z . o2
):..1 Sé_ -———aa ba + z - '57\—- & = (J’"ZO) 'é"/'i'" {2.60)
n n N m=o de cay ay
N - M S
2z 23z 2z 2z >z
ri‘z, R B oy ¥ mio TS o = oz, ag
¢ n (o] m o , o
N N M -
Z_ 1% cz_ oz oz
nil A A e, F mio A te = (y-z) .y
“n "M “m M M
In matrix notation this becomes
Ipgfa + Ingoole = fzyy |
(2.61)

t
Radctd + Ly = L2y

where‘_a 1s the covarliance matrix of parame®er influence coeffic~
ients of Qn’ ~6a‘~ 1s the covariance matrix of parameter Influence
coefflcients of d, and Am, -%c is the covariance matrix of param-

n

eter influence coefflcients of ém Azy, 18 the covariance vector
of Az (Azuy-z ) and the z/BQ and 4Azy, 1s the covariance vector

of Az und the rz/éc o Ag_and Ac are vectors of the coefficilent

Ly




increments fa_ and Ac . If, indeed, z (t) = y'(t), 4z will be
equal. to the remnant noise n(t) and the terme on the right side

of Eq. (2.51) can be replaced‘gaa and ny.e covariance vectors of
n(t) and Bz/Ba and az/ac respectively.

For simplicity we write
Ly, & = Az (2.62)

where‘L%b 1s the combined covariance matrix of parameter influence
coefficlents, &b is the combined coefficient increment vector. and
% 4z 1s the combined covariance vector of AZ,, and Az, in Eq. (2.61)

Since AbJ is the variation of bJ about 1ts expected value,
its variance will be the variance bf b'jo Equation (2.14) and

Eq. (2.15) can be applied directly to determine the variance.
From Eq. {2.1%) we obtain

b RaST

2
o
2 €
o i
'} bdls ng,ju
and (2.63)
4 2
§ U2 & O¢ M
* bJ NoZ, M-(E+l)
dju
ghere G&Jns is thezvariance of bJ Por & particular sanple of

input signal and saju 18 the sample varilance of the part of the
T—— parameter Influence coefficieint that i1s uncorrelated wilth the

other. parameter influence co=li'icients and ngu is 1%s expzeted
value,

! The fllters whoBe outputs are the parameter influence co-
officlents are closely relatea to the differential equation for

=




the model, Eq. (2.52) (refs. 10, 11, 21, 22), When the partial
derivativc of Eq. (2.52) with respect io QJ or 93 is taken, we
obtalin

N N
s A0 = - ol
n=o BaJ
and {2.64)
N
s A

anpn-gg- = pr
I1=0 383
Thus tne . arameter influence coefficients az/BQJ and_az/3§J can
be obtained by deriving a fllter mhose differential equation is
the left side of Eq. (2.52) {which is identical to homozeneous
part of the differential equation for the model) by -sz or

prg respectiveliy.

Equations (2.51) and (2.59) provide a basis for an algorithm
for adjusting the coefficlents of the model. The parameter influ-
ence coeffleclents are obtained using rilters whose differentlal
equations are of the form of Eq. (2.64). The regression equation,
Eq.. {2.61), 15 solved for the incremen:s in coefficilents da, and
Acmo The model coefficienis are changed by an amount proportional
to these increments and the process is repeated elther with the
same sample of input and system output signals or with a. succeed-

ing sample until stable values of Qn and‘@m are obtained.

Alternatively, one can make use of the fact that the coaffi-
clents are to be adjusted so that the mean-square difference
y(t)-2(t) 1 minimized, This difference is

- - .
P° = [ ly-z1® at = [y-z1° (2.65)

0
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The partlal derivative of D? with respect to a coefficient aJ is

2p2 1 T3 2
g - = f ————— [y"Z] dt
A T A
BaJ o BaJ

T ,

--%7 eoly-z] S at (2.66)
o BaJ
an

A similar expression is obtained for‘@jo If we make the rate of
change of‘@.J proportional to Dbz/?QJ, the coefficients will
converge along lines of steepest descent to their expected values.
Thus

A
da :
—d = k0D ____5'z\ (2.67)
o éad

This method 1s ~asl’y implemented on an analog c~omputer by
multiplylng the parameter influence coefficie.t 3z/4 (the out-
puts of the filter Gaj{s) in Fig. 7) vy the error [y(t)-z{t)],
averaging the product over an igferval T and using the result to
establish the rate of change of age (refs. 10, 22). Feeding
Déz/BQJ to an integrator that drives a servomultlplier on whose
shaft 1s a2 potentiometer representing QJ will establish the
appropriate rate of change of QJO
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IV. COMPARISON OF ANALYSIS TECHNIQUES

The accuracy of th. estimates of the system's characteris-~
tices and the variabllity of th ~stimates are the two factors
weconsider in a comparative evaluation of the analysis techniques.
Two limfiing conditions of measurement are orf Interest: (1) the
long sample situation for which, in ei’fect, the signal sample
length availlable is unlimited; and (2) the short sample situation.

A, Jong Sample Measurements

If the available sample length T is virtually unlimited, the
variabllity of the measured regression coefificients cgj can be
made as small as deslred. We need be concerned only with the bias

in the expected values of the coefficlents given in a general form
by Eq. (2.13).

B = WY {2.13)

where ¥, the bilas term 1s

y = 27t a

21 g (2.68)

A and.LK*I.are the expected values of the covariance matrices

L and-—ﬁ#l' It will be remembered that wy,, 1s the vector whose
elements are the coefflclents of the complete representation for
the syrtem welghting function w(t-t'), (Eq. 72.8)), that are not
among the K coefficients used in the model for the system (Eg.
(2.7)). 2g,q 13 the covariance matrix whose elements Ayq are

the expected covarlances of the K outputs of the fllters included
in the model with the outputs of the filters not included in the
model (1<K, 3>K). If the first K coeffilcients providec an exact
representation of the system welghting function, or if the co-~

variances of the filter outputs in Ay, are zero (the outputs

~ are orthogonal), the bias will be zero.
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1. Cross~Correlation Analysis

In Fig. 2 we see that the model is composed of a set of
time delays whose outputs are ldentical to the lnput except for
the shift in time. From results in Appendix B, Eq. (B.1l4), we
know that samples of the inputi signal x{t) will be approximately
independent {covariance zero) when they are separated in time by
1/'2wx seconds, where W, 1s the effective bandwidth of the signal
in cycles per second., Therefore, the covariance of any two
filter outputs will be approximately zero when

ar = L/2W | {2.69)

If the model is constructed by selecting the first K equally
spaced time delays (delay increment A4T) from an infinite set of
such time delays, and 1f AT = 1/2W_, the omission of the (ks«1)2E

_and all higher delays of the same set from the model w1ll not

bias the estima*es of the first K coefficients. Even if the
input bandwidth is not sufficientliy large to give unbiased
estimates, it should be noted that the covariance of the outputs
of the (K+1)5% and that of the K2 delay wlll generally be larger
than thc covarliances of the (K%l)gg-and other outputs in the
model whose separation in time is greater. Consequentiy, the
bias introduced by omitting the {K+1)3£ delay will affect the

Kﬁg coefficlent more than the other coefficients., In this way
the effects of truncating the representation of the system at

the Kﬁb-delay tend to be localized to higher terms of the

representation.

However, to represent the system welpzhting function exactly
requlires an infinite number of delays whose separation in time
18 infinitesimal. The bias introduced by the omission of these
delays, which li¢ between those used on the model, will be zero
only when "white" noise or impulse inputs are used. Otherwise,

49



frenins d

s Lk

=
[

et

the measured coefficients wi’l be blased by their omlssion to
the extent that the expected values of bi will be a welghted
average of the system welghting function wit-t!}) over an
interval of time. If Arwl/2W_, the blas of each coefficient
will be determined principally by w{t-t!} in a reglon &r
seconds long centered about the delay time T appropriate to
that coefficient. '

To obtaln a reasonably accurate representaticn for system
welghting function particularly when a prlori knowledge of the
system 1s not too good, reguires a model composed of approx-
imately ten delays extending from zero to some maxlmum time,

7ﬁmx‘ ﬁmax 18 related to the effective bandwidth of the system
and a convenient value for T may be obktalned from the relation
T a8 4
1/2w, {2.70)

where Ww is the effective bandwidth of the system. Using this
result and Eq. (2.69) we obtain W, # 1OW _. Thus to obtain
relatively unblased estimates of the coeflfliclents and still have
reasonable resoluticn in the representation for the system,
input bandwidth should be aboutten times the system bandwilidth.
If some blasing of the higher order coefficients js tolerable,
this input bandwldth requiremen’. may be relaxed to the extent
that a ravio of input bandwidth to system bandwidth of 2.5 to
5.0 may be acceptable,

2, Cross-Spectral Analysls

For lor sample lengths all three variations of the spectrsl
analysis method can be made to give unblased estimates of systen
transfer function with very little difficulty. For the conven-
tional and the regression spectral analysis methods, Figs. 3 and
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4, respectively, the bandpass filters must be designed so that
thelir outputs are orthogonal, To make the filter outputs orthog-
onal for arbitrary input signals requires that the skirts of the
filters be very steep and adjacent filters be non-overlapping.
‘hiscan uysually be accomplished approximately. For the sinu-
soldal spectral analysis method the sinusolidal components of the
input signal willbe orthogonal automatically.

When the orthogonality conditions are satisfied the bias
¥ in Ba. (2.13) will be zero. Moreover, the covariance matptx
L will be diagonal and the reduced sets of equations, Eqs. {2.24)
and (2.35), will be equivalent to the complete set of regression
equations as in Eq. (2.32).

3. Orthogonalized Ixponential Function Analysls

In the application of orthogonalized exponentlial function
analysis to long sample measurementsthe regression coefficients
will be blased 1f the filter outputs are not orthogonal and if
We.; 1n Eq. (2.11) 1s not zer», The bias can be made zero for

all inputs by choosling a model that can match the systiem weighting

function exactly. Except 1n unusal circumstances this is
difficult to do. Another method of reducing the blas s to pre-
filter the input or to tallor the analysis filters to a particu-

lar input so that the filter outputs are approximately orthogonal,

Usually, it is not necessary to take these precautions. It is
not difficult to designh the analysis filters so that they match
the system weighting function with very small error and stiil
obtain filter outputs that are reasonably close to being orthog-
onal., In such a case, the blias error will be small.

L, Differential Equation Simulatieny Method
With the equation error method, Fig. 5, there are two
sources of biasz: /1) the convent:.nal bias, represented by v in
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Eq. (2.13), caused when the model does not match w{t-t') exactly

- and the filter outputs are not orthogonal, and (2) the remnant
noise which introduces another bias in measured coefficlents as
shown in Eq. (2.50).

To reduce the bias Y a judicilous choice of model must be
made. The filter outputs in general will not be orthogonal and
the only way to make Y zero is to insure that We.q in Eq. (2.11)
is zero. This vector can be made zero by including ‘n the model
all of the terms of the dlfferential equation whose coefflcients
are not zero in the system., This means that the assumed form for
the system must be at least of as high an order both in the
nmmerator and denominator of its transfer function as the system
being measured., If 1t 1s not; the measured coefficients will not
be the correct coefficients of the differential equation of the

i system.

f¥ However, the bias resulting from the remnant ncise in Eq.

-+ {2.50) cannot be removed when there is remnant noise present,
except in a few speclal circumstances. For human dynamics
measurenents the remnant may te an appreciable fraction of the
system output. Hence, measurements made using this technique in
the presence of such remnant or output nocice wilill lead to
incorrect or blased values for the coefficients of the differen-
tial equation. This would appear to be a very serious disad-
vantage of this method.

The output error method does not suflfer from blas caused by
remnant noise. The only bias results from an lnappropriate
choice of model, Equation (2.58) can be used to compute the
bilas for any particular measurement problem, However, i1f the
sample length is very long there 1is little reason for not making

e it
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the model of suffilcient order so that any terms omitted will be
small and the bias unimportant.

B. Shor M ents

We consider the type of short sample measurement in which a
long sample of input signal x(t) is fed to the model and the
coefficlents of the model are adjusted to achleve a good match
for short samples of these signals of the model output z(t)
and the system output. Thus at the beginning of each aegment
the model wlll have. initial conditions approximately ecual to
those of the system.

If the sample length T is short, both bilas and variability.
must be considered in the evaluation of the analysis technlques.
The discussion of blas for the long sample case applies also to
the short sample case, so the discussion here will be limlced to
the quection of variability.

Equation (2.15) for the expected variance of “SJ vrovides
the basis for the discussion of variability

2
"2 = oe
b4

" .
(2.15)

2

NaJu M-(XK+1)

In addition to the expected variarice O§J another measure of

variabllity useful for comparing systems is the relative vari-
abllity abJ/BJ.

If two measurement techniques are matched in the sense that
they both approximate the system output with the same residual
error, one may stlll be preferred to the other because the co-
efficients obtained using it have smaller variability. This
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may result for several reasons. The analysis filter outputs

| may be.more nearly orthogonal for one method making 02 in

Ju
Eq. (2.15) larger thereby reducing 053‘ The number of degrees of

freedom in the analysis filter outputs, M, obtained. from a

sample T-seconds long may be larger with one method. If measure-
ments are being attempted with very short samples so that M is

of the same rder as (K+l), the term [M/M-(XK+1)] in Eq. (2.15)
will have & strong influence on the variance og . In such a case,
increasing in M may lead to a considerable reduction in cﬁdo In
the same way if one measurement technique requires a smaller
number of analysis filters, all other factors being kept equal,
a§J will be smaller because [M/M-(XK+1l)] will be small. .This

effect is particularly important for very short samples.

The use of a small number of filters will also. have an
important effect on the relative variability abJ/BJo When the
model approximates the system closely

K o, . 2 '
) 53 & [ Tw(t)]€ at (2.71)
J=l o

Equation (2.71) is a generalization of Parseval's theorem for
the equivalence of the integral over frequency of the power
density spectrum of a signal and the integral over time of the
square of that signal (ref. 4). Because the sum of the squares
of the regiression coefficlents is approximately equal to the
integral square of the system welghting function and therefore
is independent of the number of filters K, reducing the K on the
average wlll make the coefficients B, larger. .This in turn will
tend to reduce the relative variability u.bJ/BJo
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Making statements that will be true in general about the
relative advantages of the analysis techniques for short sample
measurements 1s difficult because the results obtuined with each
technique depend greatly upon the nature of the measurement situ-
ation, that 1s, upon that characteristic of the system being
measured, the input signal, and the extent to which the analysis
filters chosen for the measurement match the system. character~
istics. For any specific measurement situation, Eq. (2.15)
together with the regression equations given in Section III can
be used to estimate the variabllity of the regression coeffic-
ient and hence serve as a.basis for selecting the most appro-
priate analysis technique.

In the following discussion we consider each of the analysis
techniques and point out some of the major factors that must be
considered in applying these techniques to short sample measure-~
ments. Scae corparisons are made for typlcal measurement situa-
tions.

1. Cross~Correlation Analysis

Equations (2.18) or (2.19) are the basic relations for the
cross~correlation analysis technique which is illustrated in
Fig. 2. Assuming ci and N are maintained constant for all
analysis techniques, the variance as in Eq. (2.15) will be
determined by the number of filters K, by “?u ( the uncorrelated
part of the output of each filter), and by the number of degrees

of freedom of each fllter output M.

To obtain reasonabiy complete definiticn of the system
welghting function, typically, about ten pclnts cr ordinates of
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the welghting function should be obtained. This means that
about ten filters (time delays) will be required in the model
for the system, and that K will equal 10.

Vetermination of M and “?u i1s more complicated. If the
effective input bandwidth W, is large ccmpared to 1/ (&r is
the delay increment), the filter outputs will be orthcgonal and
°§u will be. equal to Gi, the input variance. M will. be approxi-
mately awgr. Reasonable values of a§J wilil be obdalned for M
equal to twenty (twice K) or for T = 10/Wk. For values of M
smaller than 20 the term [M/M-(K+1)] in Eg. (2.15) will dominate

the behavior of GSJ and lead to large variance.

rfor the case in which the input bandwidth is smaller than
1/4r, a not wnusual circumstance, the filter outputs will not be
orthogonal and “?u a8 well as M willl tend to be reducad thus

making st larger. In this case both M and “?u can be predicted

from the autocorrelation function of the input.

2. Cross-~Spectral Analysis
For short samples, the outputs. of narrow bandpass fllters

will not, in general, be orthogonal. Those spectral analysis
techniques hat assume such orthogonality will give estimates of
the regression coefficlients that have excesslve variability.

The reduced set of regression equations obtalined by dropping the
off-dlagonal terms from the covariance matrix such as.Eqs. (2.23)
and (2.2%) for conventional spectral analysis, and Eq. (2.35) for
the direct regression, and for the sinusoidal components methods

of spectral analysis are not appropriate for the short sample

case. The complete equations such as Eqs. (2.22) and (2.32)
should be used.
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When the conventional spectral analysls method is used
with Zq. (2.22), the residual veriance 02 and the rumber of
degrees of freedom N in Eq. (2.15) for GSJ relate to the output
of the narrow bandpass filter operating on y(t). When Eq. (2.32)
is used for the regresaion or sinusoidal components methods,

dg and N relating to the entire output y(t) should be used in the

computation of cgj from Eq. (2.15). waever, if the spectrum
of the residual is falrly flat, the ratio o /N will be approxi-

mately the same in hoth cases.

For the conventlonal and regression methods when the fllters
are orthogonal, the expected covariance of any two fllter out-
puts will be zero and 03 will equal the variance of the F&
filter output. The number of degrees of freedom of the filter
output M is Jdetermined by the effectlve bandwidth of the filter
w&. From Appendix B

M = ZWT (2.72)

Approximately ten pair of bandpass filters typlcally wouald
be used in the model. Half of these may be assumed to lie in
the frequency region below the system bandwidth. Thus, the
analysis fllter bandwidth is likely to be at least one~fifth the
system bandwildth.

The situation is much the same for the sinusoidal compon-
ents method. The expected variance c§ given by Eg. (2.15) was
derived from “gjus in Eq. (2.14) by taking the expected vaiue of
1/s< 8%, Which was assumed to be distributed as l[x . For sinu-
soidal signals l/sJ will not have this distribution and we might

think that Eq. {2.15) would not apply. However, Eq. (2.15)
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provides a useful approximation to 0230 Consider the following
variation of the sinusolidal components method. The sinusoilds
are added together to form the input signal x{t) which is then
fed to a bank of very sharp cut-off narrow bandpass filters. If
the center frequencles of the filters are set to the frequencies
of the input components and the filter bandwidths are less than
the spacing between compo..cits, the original sinusoids can be
extrocted from the composite signal x(t). Since this process 1is
equivalent to that pe: formed on the input signal by the filters
employed in the regre:c ilon method of spectral analysis, the
relation for aﬁd for that method should hold at least approxi-

mately for the simisoidal components metho.’. Thus

B
as A 32 M
J No§ M- (K1) .
| (2.73)
. 02 ‘
& €__ 2% .
ng 2AWD-(K+1)

where the spacing between components AW is used to compuie the
degrees of freedor: M,

The number of components used in the sinusoidal method and

their spacing 1s likely to be the same as for the direct regress-
ion method, that.is, about five components are likely to span the

system bandwidth. Thus AW will equal about one~fifth the system
bandwidth.

If the complete set of regression equations is used for each

of the three spectral analysis methods, the estimates of the

regression coefficlents will have approximately the same expected
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variance in all three cases. The number of filters used with
these methods 1s likely ¢to be larger than the number used in

the cross-correlation method (twenty compared to ten), but the
f1lter outputs wll be uncorrelated. Thus, o?u will be larger
for the spectral analysis methods than for cross-correlation
method., The mumber of degrees of fizedom M for the spectral
analysis methods will be less than for the cross-correlation
method, where M was determined principally by the input bandwidth.
For the spectral methods M is determined by the filter bandwidths
which are llkely to be a friaction of the liaput bandwidth.

3. Orthogonalized Exponential Function Analysis

If the poles of the orthogonalized exponential functions,
Eq. (2.39), are chosen so that they lie close to or bracket ths
poles of the weighting function that is being measured, only a few
filters will be required to approximate w{t-t') with small error.
(See Appendix A.) Typically, four or five filters will be suffi-
clent to approximate w{t-t') with a mean-square error of well
underone per cent (ref. 2). Because the number of filters K is
small the coefficients B, will tend to be large and fewer degrees
of freedom M are required to keep [M/M-(K#1)] in Eq. (2115)
approximately unity.

Since the poles of the anulysls filters are chosen to be in
the neighborhood of the poles of the system, the bandwidths of
the analysis filters will be of the same order of magnitude as
the system. For this reason M will be larger than for the
spectral analysis method (where narrow bandwidth filters are used)
and probably smaller than for the cross-correlation method {where
M i3 determined principally by the input signal).
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On the other hand, the vutputs of the orthonormal exponential
filters willl not be orthogonal unless the input bandwldth is much
larger than the filter outputs. For inrm¢ bandwidths of the same
order as the system °§u will generally be lower than for the
spectral method (for which filters were designed to give crthog-
onal outputs for all inputs) and larger than the cross-correlation
method (for which the fllter outputs are highly correlated unless
the input bandwidth is very much greater than the system’s).

Thus the orthogonalized exponential methcd is something dr
a compromlse between the cross-correlation and cross-spectral
metheds. It 1s better than the correlation methced insofar as
°§u is concerned apd better than the spectral method with respect
to M. On the other hand, it is worse than the correlation method
with respect to M and worse than the spectral method with respect

2
to odu

In one respect, the orthogonalized exponential method 1s
superior to either of these other two methods., The number of K
filters required to represent the system accurately generally will
be smaller, (by a factor of two to four) for the orthLogonalized
exponential method than ror either of the other two methods. The
reason is that the weighting functions of these fllters resemble
typical system weighting functions. A small K leads to a value
of [M/M-(K+1)] 1u Eq. {(2.15) that is closer to unity and to
larger values of B, (because of Eq.(2.71)). As a result c§J
will tend to be smaller and, mnst important, the relative vari-
abllity GbJ/BJ will be very much smallet- for the orthogonalized
exponential method,
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4, Differential Equation Coefficient Methods

If the equation exrmror differential equation coefricient
method 1s to be applied to sho~t sample measurements, it is
essential that the computatior of the coeff'icients of the differ-
ential equation be accomplished by the matrix method of Eq. {2.45)
or by methods aquivaient. Real-time parameter tracking techniques
(refa. 9 and 10) require too much time to reach %+i»s correct co-
efficient values and in effect this type of adjustment procedure
wastes information about the coefficients contained in the
cignale., These methods may be used with good success 1f the same
sample of data is fed repetitively to the parameter tracking
devize and the coefficients adjusted on the basis of repeated
analysis of the same data, Such a method at best will do as well
as {but not botter than) the w.itrix methods discussed here. The
snme difficulty exists with thes output error method. Real-time
parametar tracking (ref. 10) is wasteful of information, and the
same data should be analyzel repetitively until the asymptotic
valves of the coefficients are obtained, Matrix methods are not
available for the output error method.

™he varience of 0.2

" of the coefficients obtained with the
equation ervor method is given by Eq. (2.15). The variance
obtainsd with the output error method is given by Eq. (2.63).
The differential equation representation for system characteris-
tics 1s a fairly efficient representation in the sense that the
mmber of coefficients required to repres._at the system is equal
to the mmber of terms in its differential equation and can be
nade as small a2 permitted by the equation, Howsaver, the
correlertion amongst the filter outputs will be large. For the
equation erxor method the output of the I differentiation will
be orthogonal to the outpits cf the (s+1)=L ama (3-1)2% airren-
entiators, dut Lt will not dbe orthogonai to the outputs of the
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(J+2)Bg»and (J-a)ﬂg-differentiators. Moreover, the derivatives
of the input x{t) and those of the output y{t) will be corre-
lated because of the relation between these quantitlies imposea by
the system squation itself, Eq. (2.40). As a result G?u’ the
part of the JEE filtexr output that 1s uncorrelated with all the
others. will tend to be small.

For the output error method, 05 will also tend %o be small,
Ar can be seen from Eq. (2.64) the filters used to extract the
parameter influence coefficlents (®lg. 7) all have the same.
transfer functions but are exclted by dlfferent derivatives of
the model output or system input. The filter outputs will be
correldated because of the correlation among the signals driving
the filters, .

For the equation error method, the number of degreces of free-~
dom. M in the outputs of the differentiators operating on the in-
put x{t) will be at least as large as the number of degrees of
freedom in x(t) and will, thererfore, be determined by the input
bandwldth. For the outputs of the dilfferentliators operating on
y(t), M will be determined largely by the system bandwidth unless
the bandwidth of x{t) is much less than that of the system.

For the output erro» method M will be determined by the
system bamdwldth or the linput bandwidth, whicheVer 1is smaller,
The filcers in Fig. 7 have transfer functions =2qual to the
denominator of the transfer function of the model, which should

resemble closely the denomlnator of the system transfer function.

The differentlial equation methods have many of the same
advantages as the orthonormal exponential function methods. M
is likely to be greater than for the spectral methods and probably
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less than for the cross-correlaéion method. a?u is likely to be

less than that obtained with the spectral methods, but greater
than that with the cross~correlation method.

Finally, since system characteristics can be represented by
cnly a few filters, P will tend to be large and the relative
variabllity will be lower. than with either the speztral or the
cross-correlation methods,

v. DETERMINING THE COEFFICIENTS OF THE SYSTEM DIFFERENTIAL
EQUATICN FROM THE ORTHONORMAL EXPONENTIAL FUNCTION ANALYSIS
METHOD |
One of the principal objectives of a sysftiem identification

procedure is to obtain.an antlytic expression for the transfer

function of the system. We now show how the coefficients of an
assumed differentlal equation representation for the system can
be computed from the regression coefficients obtalned from the
orthonormal exponential function analysis method.

The expected values of the regression coeffilcilents obtained
vhen an orthonormal set of functions is used to represent the
unknown system are

= ot Jo

By = J wlt) o (t)at = J

W(s) .(-s) L. (2.74)
o o= J 2T)
where w(t) is the system impulse response and ¢J(t) the impulse
reaponse of the JEQ.filter used to represent w(t) in the regress~
ion paradigm at Fig. 1. .The bar indicates that the complex
conjugate 1s to be takan.

63



I ]
By

S I

i
3

,_
PRt

.
3 gy

pacet it

If the ¢J(t) are orthogonalized exponentlal functions, they
will have transfer functlons of the form

¢~2sl
4)1(8) "= -
(8'51) .
: (2.39)
vV~og. .
¢k(s) i} 28, kn} (s+sl)

where the 8J are negative real.

Substituting ¢J(s) into Eq. (2.74) and integrating over the
right hall-plane we obtain

ﬁl = v ""-31 W( ”81}

B, = v=35, |W(-s,) e LI W(-5,) --(351-)-;]

i 8,5-87) (s,-8,
" n (sj+s )
B = V/~2s, | = |W(-s,) izl
K el TR o
2 - 901
- 14) g

It should be noted that the B“ are functions. of ths true
transfer functlion of the system at gw "By “Bpeceo~8y {the 3, are
the poles of the tasis functions). Thus, whereas

B |
Ws) & = BJ ¢J(s) (2.76)
J=1

&4 T~
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ie an approximation to W(s), the 33 are functions of the true
or exact W(s). That is

X .
w(-sk) - 353 BJ ¢J(-sk) (2.77)

Ve can take advantage of this result to find the coefficients
of the differential eguation for W(s). To do this we must assume
a form for the differential equation such as

A N ..... A ,\ M .....
aNg_%:"" ®0000 +g1 m"f Y' -cmg—'}r’%"‘ 0006000 "'el'g'.'x.""éx
dt dt dt dt o
(2.78)

The Iaplace transform of this equation is

..........

A N A A M
(aNp + coece 898+1) Y'(8) = (cys” + oouos

8,848,) X(s) (2.79)

and the assumed system transfer function is

.....

f\ Y' (8) (aMSM < o000 818’540) ) o
VI(B) = ey A . (2:;80)

where W(s) is the estimate of the system transfer function and
gm.and QM are the estimates of the coefficients.

By 1ekt1ng Bm =845 “Bpoeco=8) @ set of simultanecus equations
involving W(-sJ) and BJ can be written which when solved will give
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the coeffliclents % and 3 » These equatlions are

n m
M
pX cm(~sl)m
By = V-28; W(-sy) = V28, ‘m:;o
Z a- ('Sl)n
n=o
) (2.81)
. M5 m Xt ]
k z cm("SJ) I (8J+si)
Bk - 1/"28k b m;q'pr ;ﬁ
J=1 3 /a\, {-s )n I (s '81) :
L neo 73T g

1] -

bmeand

Estimates of 53 are the bJ determined by multiple regression
analysis. Thesé estimates are substituted in the set of equations,

(2.81) and the equations are solved for the Qn and 3 . At the
frequencies -s,, seoo-8, Eq. (2.81) will provide the most
accurate estimates and since at these frequencies W(s) 1s

most accurately dete:r'minedo

¥
e

. VI. A COMPARISON BETWEEN OPEN AND CLOSED-LOOP MEASUREMENTS OF

_ DYNAMIC SYSTEMS
A, Introduction
3y . Consider the manual control system whose block dlagram 1s In
Fig, 8. The system input i(t), error e(t), pilot!s.output ¢(t),
and system output o(t) can be observed and recorded. The remnant
nc(t) and the linear part of the pilot's output c'(t) caimot be
obtained directly. The pilot's describing function Yb(s) is to
be determined.

prENS )
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HUMAN PILOT '
n(t) !
C !
7y +
c'(t) c(t)
Yo (s) > e e AT

Figure 8 Block Diagram of Typical Manual Control System
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It would seem from examinatlion of Fig. 8 that the describing
function Yb(s) could be determined either by determining the
response of the pllot to the input forecing function i{t), or by
determining his response to the error signal e(t). If the input

signal 1s a random process, and one choce to use the first method,

Yb(m) could be computed from the followlng relation

Sicgw)

Yb(w) = (2082)

Sie(w)

where Sic(w) is the cross-power density spectrum of input and
pilot®s output and Sie(m) i1s the cross-power denslty spectrum of
input and error (ref, 14}, 1In effect, Eq. {2.82) defines ﬁp@n)
to be the transfer function relating the part of the pllot?s out-
put thut 1s correlated with the Input to the part of the error
that is correlated with the input,

The second method of computation 1s based on finding the
operati~n that the system performs on the error In order to
produce the output, One is tempted to assume that the deseribing
function Yp(m)* obtalned from the following relation

S, (w)
. ec’
L) = 5 ay (2.83)

is equal to Yb{m) obtained from Eq. (2.82). In Eqg. (2.83)
Sec(aﬁ 18 the cross-power density spectrum between the error and
the pilot?s output and See(m) is the power density spectrum of
the error. As Graham and McRuer (ref. 14) point out, Eq. {2.83)

will not in general give the same result forxr Ybéw) as does Eq.
(2.82),
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B. Comparison of the Two Describing Functlons

The difference between ¥ (w) and Y (w)* is made apparent by
writing the S, (a)) in tewms of' the 1nput and remnant power demnsity
spectra. F‘rom the relations inherent in the block dlagram of
Flz. 8, we see that

Se(®) = S0 (®) + 5, (@)
(2.84)

- Yp((b) See(t.b) + Senc(w)

where secﬂ(w) is the cross-power spectrum between error and the
linear part of the pilot!s output., Note that the cross-power
density spectrum of the error and the pilot’s remmant S, (w)s is
not zero since part of the error is caused by the remantc

substituting Eq. (2.84) for S_ (o) in Eq. (2.83), we obtain

Sen, () (2.85)

———

Yp(w)* .- Yp((l)) + See(m)

Thus 1t 1° clear that unless S, (m) is zers Y (w) “,42 {w)
asd a measurement of Y (Q)"’ made using e(t) as the input wii'l
not give the same result as a measurement made using 1{t).

en (w) may be expanded in terms of the input and remnant
noise by noting that

I{w) _ N, (@)Y, {0) | {2.86)

E(w)
1+Y Y (w) 14Y Y, {w)
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where I(w) and Né(w) are the Fourier %cansforms of the input and
the piloti's remnant,

Using this relatiion we may write

S:lnc (w) sncnc (o) -ic (~w)

San (0) = — - - (2.87)
¢ +Y Y (-0) i+Y.Y (~o)
1 Ppe pcC

where the bar 1nq1cates the complex conjugate. Since the input
and remnant are uncorrelated Sin (w)=0 and

Y (~-w) Sh n

(w)
ce

s, (o) = - 2,88
en, @) 14T Y () ‘ ( )

Substitute Eq. (2.88) into Eq. (2.85)

Y, (-w) Sncnc( )

Yp(w)* - Yp(a)) - —— _
[H‘Ych(-m)] Seeﬁm)

(2;89)
(1+7¥ ) [ (% s, (o)

( ce
= Yp(w) -
'1-!- ’ See(a))

Note that the spectrum of the part of the error that is not

linearly correlated with the input., S, n (0), 18
) i ' ee ,
% S ~
S €. (2.90)
ngn, vy | 2
| 2+ e p!
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Using this result in Eq. (2.89), we obtain

[4Y Y (0)] S, , (o)

. e e
Y(w)* = Y (o) - e (2.91)
P p
Yé(w) See(w)
The ratio S, (w)/S (m) i3 the-fraction of the error power

at frequenoy )] thﬁteﬂe not linearly correlated with the input.
If o (w) is used to denote the fraction of the error power that

is linearlv correlated with the input,

¢

[1+Y ¥, (0)] [1- p3(w)]
Yp(a))* - Yp(w) - *c(“’) (2.92)

= (o) ¥ () - [2- Pe(w)] (m)

From Eq. (2.92) we see that Y (w)* at each frequer.cy o is
equal to Y’(m) attemiated minus a factor. In systems where
tracking performance is very good, so that the lirear part of the
system output follows the lnput very closely, a large part of the
error may result from remnant noice and pz(w) may be small. 1In
such a case, the difference between Yb(m)* and Yb(m} will be

large.

'If the remnant 1s zero pe(w) will be unity and Y (w)%* will
equal Y‘(m) In multiple regression analysis the residual plays
the same role as the remnant nolse Insofar as lts effects on the
measured coefficlents are concerned. Thus, 1f the model accounts
for all of the system output, a perfect measurement will be made
when the feedback error signal ls= used as the input to the model,
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3£ the controlled element dynamics are unity, chs)mly

2 snene(w) Snc%c{w) ,
1"pe(a~)) ] s (w) L2 S (w)\%ds (w‘) (2093)
ee i1 n_n
cle
and
S, 4 {w) S ()
i1 n.n p
GO e B - ey
w)+ w Sy o W) 48 o)
11 n.n, 118 n N,

If the input signal is zero and the only forcing function
ingut to the system is the noise nc{t)$ pg(w) will be zero and
from Eq. (2.92)

1 :{'20 95)
(') “ - -~ % =

Thus, without &n input signal the only transfer reiationship
that cne can measure 18 the reciprocal of the feedback path. as
Graham and McRuer {ref'. 14) point out, if nc(t) is not additive
nolse, but represents the results of nen-linearities in the
pillotts characteristics, indeed Yp(m) must be equal to wl/YQQw)
if there 18 to be a circulating signal in the loop. Suech a ¢ir-
culating'signal is an example of a limit cycle oscillation. On
the other hand, if nc(t) 1s additive noise that cannot be isoclated
or. 'measured, then Yb(w) need not be equal to -l/Yc(w) for there
to be circulating signals and Yb(w)* will not be a correct
estimate of the human operator's describivg function,
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One final point, {he use of regression anulysis techniques
in which a mbhdel composed ol physically reullizable filters
operates on the pilot's input or the system’s input to match the
pilot!s output leads to estimates of the descrlibing functions
that will be physically realizable. We have not lntroduced this
constraint on the nature of the descrlibing functions in the
development above. In some circumstances impcsing the realiz-
&bllity constraint will change the results obtained,

C. Application to Human Operator Measurements
In FPlg. 9 are shown Bode plots of human operator open-loop

dynamic response characteristics that were obtalned in three ways:

1. Conventional spectral analysis of cliosed-loop
yielding an estimate of Yp(w).,

2. Orthonormal exponential analysls of closed-loop
yielding an estimate of Yp(m)°

3. Orthonormal exponentlial analysis of open-loop
yielding an estimate of yp(a))#°

_ These data were obtained in a simple compensatory manual
control system in which Yé(s)nl and the input was an approxima-
tion to white nolse passed through one RC low-pass filter with

 3db frequency at 1.5 radians/sec. The poles of the orthogonal-

1zed exponentlal filters used in the analysis are shown in the
figure. DNote that the open-loop amplitude ratio measurements
YPOD)* are 2 - 3db below the results obtalned from analysis of
closed-loop characteristics Ybﬂm). This result is ir agreement
with the previous development of the point that remnant will
serve to attenuate the measured system characteristics.
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D. Summary

We have analysed the kinds of errors that result from making
direct open-loop measurements of system elements, The magnitude
of the error depends directly upon the extent to vhich the input
to an element contains compononts that cannot dbe accounted for by
a linear operation upon the imput signal to that element. If a
comperent is a perfect linear operator, there is no difficulty in
making direct open-loop measureunents of its clharacteristics. The
input signal need not be isolsated and recorded, nor need it
appear in the place normally assigned to the input forcing
function., Any kind of input or random disturbance occurring out-
side of the limits of the component being measured will suffice
to exgite the system so that measurements can be made, If a
component s either non-linear, or has noise added to 1ts output
so that not all of its response can be accounted for by a linear
opération upon its input, then an open-loop measurement is ilikely
to be in error., The more neerly linear a device, the more
accurate will be %the estimate of Yb(aﬁ obtained from open-loop
measuremaents, When dealing with non-linear or time-varying
devices, or devices having relatively high noise components in
their output, one should exercise caution in interpreting the
results of open-loop measurements. '

VII. CONCLUSIONS

in this chapter we have shown how the paradigm of multiple
regression analysis in Pig. 1 serves as a basis for comparing all
of the commecnly used techniques for identifying human pllot
dynamic response characteristics: cross-correlation analysis,

- eross-spectral analysis, orthogonalized exponential analysis and

differential equation coefficient methods, Expressions for the



expected values and the variances of the measures obtained
using these techniques have beamn derived.

Although the characteristics of the measurement situation
have to be specified in detail in order to make accurate compari-~
sons o the methods, a number of generalizations can be made,

For the long sample case all methods except the equation error
differential equation coefficlent method will yleld equivalent
results if the model for the system is sufficlently complete.

If the model 1s not able to match the system welghting function
with high accuracy and if the outputs of the flilters are not
orthogonal, the measurements will be blased, It is not difficult
to design the measurement procedure so that the bias wliil be small,
The equation error differential equation method will glve blased
estimates of the coefficlients 1f the pilotl!s cutput cu.talns
remnant noise, This bilas cannot be removed except in a few
speclal cases and therefore this method should be avolded,

For the short sample case all of the methods can be uded
provided the complete set of regression equations are used to
find the regression coefflclents. The normal procedure followed
in spectral analysis of assuming that the off-dlagonal covariances

"are zero will lead to estimates of the regression coefficients

that will have excessively large variance. There appiuximate
metheds should not be used for short sample measw. duemts,
Similarly, differential equation methnds in which the coefficients
are adjusted by a parameter tracking technique operating con-
f£imiocusly upon the signals lead *a estimates having excessive
varianc2, To apply differential equation methods to short samples
the same sample of signals should be fed to the model repeti-
tively until the coefficients have reached their asymptotic
values. The orthogonalized exponential and differential equation
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methods requlre fewer coefficlents to represent typilcal systems
and Therefore tend to give estimates having smaller varlances
and smaller relative vsrilabillty than the cross-~correlation and
cross~spectral methods.

Once the regression coefflclents have been determined from
the orthogonalized exponential analysis method, the coefficients
of an assumed differentlial equation. for the syatem can be deter-
mined by solving a set of equations.

then direct open-loop measurements of human pllot describ-
ing funection are to he made using the error signal as the input
to the model, the describing functlon obtalned willl, in general,
be different from that obtalned from closed-loop measurements
(after transformation of the closed-loop transfer function to its
equivalent open-loop) ir which the system input is used as the
input to the model. The difference increases as po(®), the
fraction of the error power that 1s correlated wlth the input;
decreases. Care should be exerclsed in interpreting results of
open-loop measurements when pgﬁn) is much less than unity.
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NASA SEMINAR

PILOT-VEHICLE IDENTIFICATION PROBLEMS

PRELIMINARY COURSE OUTLINE

"’ INTRODUCTION
A, Statement of the human operator identlificatlion
problem
B. Review of fundamentals and notatlion
a. Fourler and Laplace transforms
238 System representations: differential
equations, welighting functlions, convelution,
transfer functlons.
Co Harmonic Anaiysis: correlation functions and
and power spectra
; d, Simple statistical distributions.

R o 1

SESSION II
% Multiple Regression Analysls of Time-Invariant Dy namic
N Systems
gﬁ | A, Orthogonal functlons: the importance of danmped
[

exponentials,
B. Basic measurement technique
C. Representation of correlation functions
{: D, Selection of ililters
4 E., Examples - Human Operator
i

TR,
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SESSION III

Regression Analysis of Time-Vaiylng Sy~tems:

A.

Q

o

B
c
D

<

Statistical properties of regression cc-efficients
Estimation of degrees of freadom

Effect of initial condltion

Examples - Human Operator

SESSIONS IV and ¥

Comparison with Othe: Measurement Technlques

A,
B’i

C.
D,

SESSION VI

Spectral analysls

Parameter tracking

1) G. Bekey

2) J. Adams

Direct open versus closed-loop measurements
Finding co-efficients of differential equations

Applications to H-O Measurement and Signal Analysis

A,

B,

McRuer: Problems encountered in human pilot

measurements: training, stabllity, linearity

Summary
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APPENDIX B

List of Attendees for Seminar on
System Identification Problems

Ames Research Center:

E. C. Stewart
S, C. Brown

M. D. White
W. E. McNelll
C. T. Snyder
A. C., Marcy

M. Sadoff

T. E. Wempe
J. D. Stewart
J. C. Howard
R. M. Patton

B, Y. Creexr
G. H. Hardy

NASA Headquarters:
R, W. Taylor

Flight Re_search Centex:

L. Taylor
E. C. Holleman

Iangley Research Center:

J. Adams
R. Saucer

Systems Technology, Inc,:

D. T. McRuer
R. Magdaleno
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Space Technology ILaboratorless

G. Bekey
H. Melssinger

Aeronautical Systewm Division {Flight Control Laboratory}:

R. J. Waslicko
Martin (Research Institute for Advanced Studies):

F. Muckler
R. Obermayer

Bolt Beranek and Newman Inoc:

J. I. Elkind

ACF
W. Stokes
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