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CHAPTR i I

SN7AODUCfION

0

On May 13, 1963 through May 15, y963 a seminar on pilot-

vehicle system identif cation problems was held at the NASA
P

Ames Research Center. The seminar focused on the comparison of

methods for determining human pilot dynamic response character-

istics. The paradigm of mult:"ple linear regression analysis
E	

was used as the basis for comparison of the analysis techniques.

The meeting etas . arranged by Mr. Melvin A. Sadoff of the

Ames Research Center. I was responsible for the technical

content of the seminar and gave most of the lectures. These
were based in larga. part on work done under Contracts NASw-185

and ?;Asw-668 which were monitored by Mr. Sadoff with the support

of Mr. Robert Wo Taylor of the Electronics and Control Program

Office. of O.ART, NASA Headquarters. Mr. D. T. McRuer of

Systems Technology.lnc., Dr. George A. Bekey of Space Technology

Laboratory # and Mr. James Adams of the NASA Langley Research

Center contributed greatly to the meeting by discussing the

analysis techniques that they have been using for measurement

of human pilot dynamics and presenting the results they have

obtained using these techniques. Appendix A contains the out-

line of the seminar.

r
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The seminar was attended by personnel from three NASA

Research Centers - Ames, Langley, and Flight Research --

., NASA Headquarters, Air Force Systems Division, Systems Tech-

nology Inc., Space Technology laboratory, RIAS, and ACF,,	 A

list of attendees is given in Appendix Bo

During the seminar I promised to write up my notes.on the

material discussed and distribute them to the attendeeso 	 This

took longer than.expected, but the task finally was completed

in December 1963.	 The work required to put this material in
final form was supported by the Air Force under Contract No.

AF33(657)-8224 and will be reported in a forthcoming Air Force

Report ASD-TDR-63-618, "Further Studies of Multiple Regression

Analysis of Human Pilot Dynamic Response: 	 A Comparison of

Analysis Techniques and Evaluation of Time-Varying Measurements."

The second chapter of that report, "A Comparison of Techniques

'
for Determining Inman Pilot Describing Functions with Stochastic

yInputs, tt is an elaboration of the NASA Seminar material..	 That

chapter is reproduced as the second chapter of this seminar

report and should serve as the written notes for the seminar.

The seminar meetings were informal. The discussion was

lively and helped to clarify many 'issues concerning the identi-

fication of human pilot characteri3tics. The format and organi-

zat'..on of the seminar should be useful as a prototype for other

similar meetings, particularly those devoted to intensive dis-

cussions of a specific topic by people actively working on prob-

lems being discussed.
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CHAPTER 11

A COMPARISON OF TECHNIQUES FOR DETERMNYNG
HUMAN PILOT DESCRIBING FUNCTIONS WIT-1i

STOCHASTIC I NPU'IS

1. INTRODUCTION
In recent years a variety of techiJ ques have been developed

for the identification of the dynamic characteristics of linear
systems and for the determination of describing functions for

non-linear and time-varying systems when the Input signal to

these systems is a grandam process. Anu)ng the techniques that
have been applied to identification of human pi lat dynamic

response characteristics the most important have been cross-core
relation analysis (ref's. 4„5), cross-power density spectra.
analysis (refs, 6-8). differential equation coefficient methods
(refs.  9-11) ,t and orthogonali zed exponential fune ti on analysis

(refs. 1-3).	 ..-	 ...

As we shall show in this, chaptor ,% all of these analysis

techniques can be considered to be special caseti of or approx-

imations to multiple linear re13ression analysis" ref.	 13)

A study of regression an&17, ,i1.s and 1i particular of the statis-

tical properties of the measurements obtained from such analysis
is central to the understanding of and to the comparison of
these techniqueso

In the next Section we review briefly the principal ideas
of regression analysiso We give without proof some of the
results obtained in Appendix B relating to the statistical
properties of regression measurements that are .important for
compariuon of the techniques. Yn Section III we describe the
different analysis techniques. In Section IV the methods are

f V.,
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compared with respect to accuracy and precision. In Section V

a method for obtaining the coefficients of the differential

equation for a system from regression coefficients is described.
Finally, we discuss the problem of using only signals c1rculating

within the feedback loop to determine the open-loop describing
function of the human operator.

[I. MULTIPLE LINEAR REGRESSION ANALYSIS
a. Regression Equations

Multiple linear regression analysis is a procedure for
finding the best linear relation between a dependent variable y

and a set of independent variables z	 ^ JO
 The zz can be interpreted

as the coordinates or . bases of a vector space, and the dependent
variable y as a vector in that space. In this context y is
represented as the vector sum of the basis vectors, the contribu-
tion of each component vector being just the projection of y on
that basis vector.

A convenient paradigm for discussing the application of
regression, analysis to system identification is shown in Fig. 1.
An unknown system Is to be approximated by linear filter with
weighting function w(t-t l ) to whose output is added a remnant
signal n(tj. This is the usual describing function method of
representing dynamic systems (ref. 14). We will consider only
the case in which the system Input x(t) is a random signal. In
this case the remnant will, in general, also be a random signal.
The identification problem is to determine the weighting
function W(t-t').

The input-output relation of the unknown system expressed
In terms of the convolution integral is

t
^r(t)	 j w(t-t l ) x(t') dt' + n(t)	 (2.1)

-C*

r^
L

is

+six
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where y(t) is the output including the noise. The weighting

function w(t-t') is to be determined.from measurements made on
the input x(t) and the response y(t). The noise n(t) cannot be
measured directly.

A model for the system is constructed from a set of K
filters connected In parallel as shown in Fig. 1. The system
input x(t) is fed to each of these filters and the filter out-
puts zi (t) are weighted by coefficients b  and summed to form
the output of the model z(t).

K	 K	 t
Z(t)	 ^Xl b J z^(t)	 ^2l b^ f^ C5 (t-t') x(t') dt' (2.2)

where ^^(t-t') is the weighting function of ^ filter.

Several different criteria can be used to determine the
coefficients b,. We will consider only the case in which the bJ
are determined so that the mean-square difference between. the
system output y(t) and 'the model output z(t) is a minimum. The
mean-square difference is determined by averaging the square of

the difference between y(t) and z(t) over a period of T seconds
duration. Doing this we obtain

D2 	f D2(t) dt	 fT[y- E b z )``t	 (2.3)T p	 T p	 j:l j j

where D(t) is the difference y(t)-z(t) and the bar indicates that
the average with respect to time is to be taken. The values of
the coefficients that.minimize the error can be found by taking
the derivatives of Eq. (2.3) with respect to each of the b  and

.9 g



setting the results equal to zero. Doing this, a set of K

equations is obtained.

zl zl b  + zlz2 b 2 + . p p • O + zIzK b  a zly

z2l b1 + z2z2 b2 + 004.00 + z2 K b 
	 2y

	

n	 •	 O	 O

•	 p	 e

(2.4)

	

O p	 O	 O	 O

	

O	 •	 O	 O

	

U	 •	 O	 O

zel
 b  + zKz2 b2 + . o • • . + ZeK bK 	 zKY

.4here Z 3 is the sample covariance of z i and z  for the period
1'. In matrix notation the set of equationa required to specify
all K -oefficients is

	Lb	 y
	

(2.5)

whem L is the K x K covariance matrix whose elements 
Iij are

ziz^; b is the,coeffici.ent vector with K elements b j ; Z is the
vector with K elements ziy.

In general, the model will not account for all of the out-
put of the system. The part not accounted for, which is called
the residual e(t), is the difference between the system output
y(t) and the model output z(t) obtained when the b 3 that satisfy
Eq. (205) are used in the model of Fig. 1., By.carrying out the
squaring operation on the right side of Eq. (203) and substitut-

ing Z from Eq,, (2p5) in the result, we obtain for the mean-square
r,	 residual

if	 9



a ^^

Ke2	
y2	 Z bJ	 (2.6)

If the moO is well chosen the relation

w(t-t')	 &	 E b	 (t°t')	 (2.7)^M1

will give a good approximation to the system weighting function
w(t-°t' jo r'hus, by knowing the O.,(t-t') and the b^, an approxi-
mation to w t-t(	 )	 can be obtained,

Eq. (2a5) provides the best linear relation in a mean-square
error. sense between airstem output y(t) ani! the filter cut: ui s
z.(t)o The coefficients b  are coefficients of regression of
y t) on the 

i 
( t ), (refs.  12, 13). They def ine a vector in a K-

dimen^9ional vector space wi-iose basis vectors are the z  (t). The
coefficients b  are projections of the vector representing y(t)
onto the basis vectors.

Ba acted Values. of Regression Coefficients
Alt=hough our objective is to obta yn an accurate representa-

tion for the system weighting f anction. the identification
procedure yields the least mean-square error approximation to
the nr^stemout„ tput, We should not be surprised to find that unless
special precautions are taken in the selection of the basis
vectors zi (t) or of the basis functions 01 (t) a good representa-
tion for system output may not yield a good representation for
system weighting function. If a good choice of 0 1 (t) or zJ (t)
is made, a few zJ (t) wil'1 be required.to represent the system
output with a high degree of accuracy. If, on the other :hand,
they are not' weld: 'chosen, a large number may b e required to
achieve a good representation

4
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To see the Idad of errors that are likely to occur because

the method approximates system output, assume that in the model
of Fig. l a set of K filters chosen from a complete orthonormal

set is used. In this ease, the weighting function of the system
w(t-t') can be approximated with vanishirSly small mean-square
error by an infinite number of filters chosen from this set.
Tans ,

w

w(t-t')	 w^ ^( t`t s )	 (2.8)

and

CO

At)	 SW	
JE 

w^a^(t) + n(t)	 (2.9)

where wi is the weight applied to the J filter.

Equations (2.8) and (2.9) are series representations for
system weighting function and system output when an infinite

number of orthonormal filters is used to represent the system.
When a finite number is u4ad, the weight applied to each (the
coefficients . b ) will not, in general, equal the w  in Eqs.
(2.8) and (2.93. The values of the coefficients that will be
obtained can be found by using Eq. (2a9) to expand the sample
covariAn^es that appear on the right side of Eq. (2.5) (note
that in Eq. (2:5) Z is a vector whose components are ziy.)

Vnen. Eq.. (,,?. g) is substituted for Z in the covariances
iy of Eq. (2.5), the following matrix equation is obtained

11



(ref. 1)

Lb	 Lw+LF+1 wK+l+n
	 (2.10)

where w is the vector whose elements are the first K coefficients

w
i 
of Eq. (2a 9;; wK+l Is the vector whose elements are the co-

efficients w1 for 'K; LK+1 is the matrix with sample covariances
ziz^ for i4K and J :P-K; n is the vector whose elements are zin for
i<K

The solution of Eq. (2010) is

a	 w+ L-1 L.{+,I K+l + L-1 n	 (2011)

or

jl	 M w+g+ h
	

2. 12)

where Z, and h are defined by the second and third ;terms of Eq.
(2011)o

Thus each regression coefficient b  is shown to be the sum
of three components.- The first component ..s the corresponding

weight w  that would result from using an infini te. sur of oruho-
normal functions to represent w(t-t') as In Eq. (208). The
second component g is a bias caused by approximating the system
with a finite number of orthonormal. filters. The third compon-
en t, . j results from the noise n(t) o

By taking the expected values of both sides of Eq. (2012)
we obtain a relation for the expected values of the regression
eoe2ficients which we designate 13 

J"
Since the noise is

uncorrelated with the filter outputs 9 the expected value of h

12
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will be zero and

w+^	 (2. 13)

f

where P is the vector whose.components are 0 i 
and .X is obtained

from g in Fqs. (2.11) and (2.12) by replacing the sample co-
variances in L

-1 I 
+l by their expected values. Thus we find

that ui'Ll.ess the measurement is performed in a way that makes
zero, the estimates of the regression coefficients, the b,, will
be biased in the sense that the expected value 0

j 
will not be

equal to the true value wh o The bias arises because we have

used only a finite number of basis functions to represent the
system characteristics and because we have found a least mean-
square error approximation to.the system output rather than to
the system weighting function.

The bias can be reduced or eliminated two way,. One method

is to choose the basis functions so that the first K of them
match the system weighting function w(t) exactly. This will result
In wK,^,l being identically zero, thus making ,1Y zero and yielding a
ff that will be equal to the true value w. The second method is to

,select filter outputs z^(t) that are orthogonal. If this is done
^K+1' the expected value of L +l s will be zeros making 7 zero and
yieldfmg an unbiased	 Orthogonalization of filter outputs can
be achieved either by selecting a filter set whose outputs will be

orthogonal for all input signals (such as very narrow bandpassed
filters with non-overlapping pass bands), or by tailoring the in-.
put signal to the filters so that orthogonal outputs are obtained.
This last condition is obtained if the input is.white noise and
the filters have orthogonal weighting functions. If the input is
not white noise, it frequently can be prefiltered before it is fed

to the set of filters and thereby "whitened" so that the effective
input signal to these filters will be approximately white noise.

. W



Actually,, one need not go so far as to choose a. basis set
that can approximate the system characteristics exactly, or topP	 Y	 Y^
force the filter outputs to be orthogonal. It is not difficult

to obtain an approximation to the system characteristics that
is a very good one in the sense that a fe y: filters will approxi-
mate the system behavior with very small error. in s9zch a
case, the elements of 

wK+3. 
will be small, thereby making the

bias small and giving a good approximation to the system weight-
ing function,

Co Statistical Proverties of Regression Coefficients
If the input x(t), the output y(t) and the residual e(t)

have a normal distribution with zero mean, the regression co-
efficients obtained from a particular samnlo of the input signal
will b,,- normally distributed with an expected value P g-J.ven by
Fq o (2.13) and a variance that can be shotinY (ref.  1) to be

1

2
a2	 - E--bJis	

N sju
(2.14)

where QE is the variance of the residual, N is the number , of
independent samples of the residual obtained from the T-second

long .simple used to compute b J O As such it is the number of
degrees of freedom of the residual. sou is the .sample variance
of the part of the output of the ^ filter that is independent

thof the other filter outputs. '1/s u is the J-12 diagonal term of
L_l and can be cciiiputed from La The variance cbj's 	 depends upon
that particular value of a2ju obtained in a measurement.

To find the expected variance for all values of s 
ju 

we take
the expected value of °2 o By taking advantage of the fact
that the distribution of s u is proportion to X2 (see Appendi•.

14



D) we obta^ n

02
ab 	 2 	 __.. M.____

NQ ju M-(K+i)
(2.15)

where -"2ju
is the variance of the

filter that is uncorrelated with

the number of degrees of freedom
related with the other filter ou-

long sample, and K is the number

part of the output; of the A
the other filter outputs, M is
in the part of z^ W uncor-
^puts obtained in the T-second

of filters used in the model.

In any measurement . it is desirable to have as stable a set
of measures as possible. This can be achieved by making the

ratioabj/is as small as possible. A small "sigma-to-mean'
ratio can be obtained by using a small number of filters that

approximates the system well so that . each 13J will tend to be large
thereby tending to make abj/Pi small. The abi can be made small
by (1) choosing the filters so that they acca:int for almost all
of y(t) that is correlated with the input thereby making a2 small,
(2) making N large, which cean be accomplished by raking the sample
length T large (if this is possible"I (3) choosing filters whose
outputs are uncorrelated so :;hat a2ju is large, or (4) choosing
the filter outputs to have as large a bandwidth as possible,
"hereby making M large. Using a smal l . number of filters will
also help reduce %j by making K small. This . will help keep the
term M/fM-(K+i)) in Eq. ( 2.15) Close to unity.

In addition to the relative variability of the coefficients,
one must also be concerned with the possibility that the b  will
be biased. A bias will occur when vin Eq. (2.13) is not zero.

*As shown in Appeddix B. N is approx imately 2'WT where W Is the
effective bandwidth of the residual in cycles per second.y 

15



If the b  are biased, then the representation of the system
characteristics will be in error. For spectral and orthonorrrial

exponential function analysis, the bias can be made small by

choosing filters that represent w(t-t') with very small error

or by making the filter outputs orthogonal over the interval T.

This will not be true in the case of one of the differential

equation coefficient methods in which a bias due to the remnant

noise cannot be removed.

III. DESCRIPTION OF ANALYSIS TECHNIQUES
In this section four common methods for measuring system

dynamics are discussed from the viewpoint of multiple regression.

analysis. The four methods are cross -correlation analysis,

cross-spectral analysis, orthogona.lized exponential function

analysis, and differential equation coefficient methods.

A.	 Cross-Correlation Analvsis

The basic relation for cross-correlation analysis of a

system is

T
RXy(T)	 f	 w(T-ts) R (t') dt'

_^

T>o	 ( 2. 16 )
rx+

w(t t ) RXX(T-t') dt'

where 
RXy 

and RXX are, respectively, the cross-correlation

function of system input and output and the autocorrelation of

system input (ref. 4). Equation ( 2.16) is obtained from Eq.
(2.1) by correlating both sides of the equation with x(t)o The 	 }

remnant noise n(t) does not appear in Eq. ( 2.16) because it is

uncorrelated with the input x(t).

16



The integral in Eq. ( 2.16) can be approximated by a summa-
Lion.

00

RX. (n4r) a	 E w (J nT) Rxx [ (n • J) hT) ar	 n'o
j=0

00
x(t-nA-r) y ( t )	 E	 w(JAT) x[t- (n-J)6T]x[t] AT	 (2.17)

jWO

00
E	 w( JA-r) x(t-nAT)x(t- j ,^T) Ar

j mo

where AT ib the increment in 'r used in the computation of the
corre _

, 
.ation functions. The relations between input and output

implied by Eq. (2.17) may be represented by the multiple
regression paradigm as shown in Fig. 2 ( ref. 15). The filters
used to represent the system have impulse repsonses that are pure
time delays whose outputs are the same as the input except for

the delay in time of n&r seconds. The impulse response of these
filters is a delta - function 6(t-n&r).. a unit impulse at tmn&r.
The coefficients b j are equal to w( j&r) Ar as is apparent from_	 Eq. (2°17)•

w

	

	 In terms of the filter outputs shown in Fig. 2 the regress-
ion equations, Eq. (2.4), can be written

zozo b +	 zoz11 b 1 + .000. + Z®KK bK W y

zlo   b +	 z 1z I b +	 z K bK no 1

° (2.1$)

0000-..r.^ ....^.,...- ^..r,....	 ..+.,...zeo bo + zel b1 + 0 0 0 0 • +	 zKyK bK	 zKy

or

L b 3C (2.19)

17
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T

where Imo. , b . and. ,y are defined in a manner corresponding to that
used in Eq. ( 2.5)0

Each row of Eq. (2.18) is equivalent to Eq. (2.17) for a
particular value of n. Except for the special case of a white

noise input, the filter outputs zJ (t) wi.11 not, in general, be
mutually orthogonal. Therefore, the complete set of equations
of Eq. ( 2.18) must be solved for the coefficient b J . When this
Is done a representation for the sys tem weighting function is
obtained

w(t)	 i	 E b 5 (t-jAT)	 ( 2.20)J,N

where 5(t-J Ar), the impulse response of the Jth filter is a unit
impulse occurring at t=nlrr.

Be Cross 30_ ec tral„rADR3:Ls is
The basic relation for cross-spectral analysis of system

characteristics is

S(w)
W(w)	 W	 -_-	 ( 2.21)

w	 SXX (m)

where W(w) is the transfer function of the system being measured
and Sxy(co) and Sxx(cu) are, respectively, the cross-power density
spectrum of Input and output and the power density spectrum of
the input. Egration (2.21) s obtained by taking the Fourier
transform. of Eq. ( 2.16) (ref. 4) .

1. Conv_entio^nal S2ectrai Analysis
We can use the variation of the paradigm of multiple re-

gression analysis in Fig. 3 to represent the relation betwen

w ^_
19
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the signals at frequency wi implied by Eq. (2.21). 0RJ (w) and
"J:j M are the transfer functions of two narrow bandpass filters
with center frequency co q , The amplitude characteristics of the
filters are identical. The phase characteristics are also
identical except that the phase 0ij (w) is advanced 90 degrees
relative to dRi (cu) .

20
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z j bij
Z1JyRJ

where	 is used to represent z^. and

2	

zI

1", 21

Note that the system output y(t) is filtered by 0Rj (W) o
The regression coefficients 

bRj 
and bIi of Fig. 3 are determined

so that this filtered output y,j t) is approximated with least
mean-square error, The regression equations obta ined for the
configuration of Fig. 3 are

zRi bRj	 + zRjzlj bxj	ZRJyRJ

2
ZIP  R bR^ +Zl^ bI^ 

 	 IJyRJ

( 2.22)

since the relative phase shift between the two filters is
90 dec;r^es, the two off-diagonal terms z R^zl^ and zIjzRj in
Eq. (2,22) will be approximately zero if the sample length T is
sufficiently long. Also, since the two filters have identical
amplitude response.z2will be equal to z2 	 if all these condi-
tions are true, Eq. (2022) reduces to

2zi bRi M ZRJyRJ
(co 23)

2

By shifting the filters in frequency and performing the same
filtering operations on input and output at . a number of frequenciesA
several sets of equations of the . form of Eq. (2023) will be
obtained, one for each frequency. The combined equations will

^	 fit.

1



be

Z1 b R1.  2;RlyR1

z1 b11 Z11yRI

Z2 bR2 ZR2yR2

ZK bRK ZRKyRK
M2
ZK b:[K znEYRK

I?

f 2.24)

We now shoe- that if the 0Rpw) and 0,,(w) are very narrow
bandpass filters with sharp cut-off, the bRj and bi, will be
approximately equal to the real and imaginary parts of the system
describing function W(w). Take one equation from the set of

Eq. (2.24) and write the averages in terms of the appropriate
integrals. Assume that the sample length T is large and that the
analysis filters have non-overlapping passbands,

b	 lim l jT Z2 dt	 lim 
_1

jT z y dt	 (2. 25)
a 4, CO T o	 T^ T o Rs R

A similar expression can be written for blj.

We note that

lira ^ fT z dt	 R^^ (0) 	:, j^ S^ (CO) dw
T a «^	 o	 -^ j

and f; 2.26)

T
lim T f ZRjyRj dt 	 RZ	 (0)

T	 o	 RJ y RJ

Y °°2rRe [ SZ y (uy) ] dw
f 00
	

RJ RJ

22



where Rji (0) and R
zRJyRJ 

(0) are the autocorrelation function of

zRJ (t) and the cross-correlation function of zR (t) and yRJ(t),

^3
respectively, for Tv-0. S (w) and Re[S z fi JyR J (w ] are the power

density spectrum and the real part of the cross-power density

spec trum corresponding to these correlation functions. Equation
(2o2E) may be used to rewrite Eq. (2.25) as

t
1	 l

bRJ	 '.! f	 SJJ (w) dw	 21 f Re (S(w) ] c3w	 (2.27)
- __RJy RJ

However,

S J J (w)	 a I `DRJ ( w) 1 2 S=(w)

and	 (2 a 28 )

S
7-RJ yRJ 

(w) w j(DRJ(W12  Sxy(w)

where Sxx(c5) and S"CY(w) are the power density and cross-power
density spectra of the signal x(t) and the signals x(t) and y(t),

respectively.

T..r. terms of these two spectra Eq o (2.27) can be Ur rrit ,.en

cc	 ORSbHj . l^ I R^ (wJ2 s,^(w)	 2r -00 RS (wJ 2 Re[S,.(w)]dw (2029)

Solving for bR^

f

cc

 I0R (CO ) 2 Re (S (0)) ] dw
XY

bRj 	
2f ORS (cu) S" (w) dw

-CO
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2

Similarly,

fW 10R (w)i 2 Im[S (w)] dw
XY

b 	 (2030)

^V 10 R (w) 
12 

S^(w) 
&0

where Im [SXy(w) ] is the imagi .nary part of S.,Y(w)

If O)Rj (w) is a very narrow bandpass filter and SXX and SX,
are relatively constant in the passba.nd, and equal to S XX(Wd and
Sxy((u j) P

Re[S ((D )j

SXX(W J)
(231)

Im[S ( a).,) I

SXX (wJ )

Thus, for the case of long sample :lengths or orthogonal

outputs and very narrow.bandpass filters, it is clear that the
approximate equations FA, ( 2.24) yield coefficients equal to the
real and imaginary parts of the system transfer function,,, If

these conditions are. not satisfiedg the more complete Eck. (2022)
will have to be used.

2, A Direct R	 ssio Meth d of S ec xa,1 Analysis
Consider next the yorm of spectral analysis illustrated

in Fig, 4. A set of K pairs of narrow bandpa.ss filters,

I

I



0RJ(w) and 0,,(w), of the same type as used in Fig. 3 0 are
^.

connected in parallel, excited by the input siunal x(t), and

used to approximate the entire system output y(t)a ln,terms of
this set of filters, the regression equations of Eq. (2,A)

become

z92zRl bRl + zPazil b 1 + . 0 a 0 0 + z
RIzRX bRK + zR122K blK ZRZy

bRI + b 1 + + Zll?RK bRK + byK ^ ZZly*11zR1 z11z11 zIlz:LK

0 0 0 0 0 (2032)
0 U A O

o a a .
0 0 o t

zMrR bRI ZRKZIl b11 + o a o 0 0 +z^tKzRK bRK + ZRKZIR b lK °` ZRKy

bPa 
-14 bll e	 o a o + zIKZRK bRK ` b1K zlKyZIKZRI zlKZYI Z:EeIK

or

Lb = y	 (2.33)

where L, b and y are defined in a manner similar to that used for
Eq. (205)

TI,e model. of Fig. 4 indicates that for the direct regression
method of spect.=.gal analysis the system weighting function is
represented by a weighted stun of filters.

K
w (t-tv )	 Z [bRJ IR J (t-t t ) + bI j Oli ( t-t ° )1

JR21

(2034)and

K
W(w)	 F 

[bRJ "RJ(CO) + blj ¢lj(w)1j W1
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The approximations of Eq. ( 2. 34) are valid whether or  of

the filter outputs are orthogonal. Howaver, If they are orthog-
onal Eq. ( 2.32) can be simplified greatly.

First assume that the filter outputs are mutually orthog-
onal over the sample length T. The non-diagonal terins.of Eq.
( 2.32) will.be zero and the following reduced set of equations
is obtained.

Zin bRl °` Z^y

	

ZI1 b13. 	 Zlly

	

ZR2 bR2 	 ZR2y

(2.35)

	

ZRK bRK	 Z y

2	 ---

	

ZIK bIK  	 ZIKy

For filters having orthogonal outputs it is not necesaary to

connect the entire set of 2K filters in parallel and excite them
simultaneously. The measurement could be made one filter at a

time.

It should be noted that tLe coefficients bH j and bi j are
not easily interpreted as the real and imaginary components of
the system describing function as was the case for the conven-

	

Y	
tional.s ectra.l analysis. Rather9 the series^ 	 p	 ys	 expressions of
Eq. (2.34) which involve these coefficients as well as the
analynis filter characteristics must be used to represent the

a

system describing function.
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3. Suectra_r 1Anal,Ysis UsiM Sinusoidal GoMR2nents of
If the input signal x(t) is composed of the sum of K sinu-

solds.as is frequently the case in studies of human pilot dynamics
(refs. 7, 16, and 17) it is not necessary.to filter this signal
by a set of bandpa.ss filters as in Fig. 4. Each component of

the signal can be taken directly and used as one of the zRJ(t)

signals. By shifting the phase of each of,these signals by 40
degrees the zij (t) signals can be obtained. Since each of the
zRj (t) signals is gust a sinusoid, its mean square will be the
Dower of that sinusoidal component of the input. Thus, for long
sample lengths To

zR^	 zip2	 Sxx(w )
	

(2.35)

Similarly, the product of z R,(t) and y(t) will be the real
part of the cross -power spectrum of x(t) and y ( t) at frequency

wj . That is,

ZRj	 'e(Sxy(wJ)]

and
	

(2037)

zI	 Im[sxy(wJ)I

Substituting Eqs. (2.36) and (2.37) in Eq. (2.35) we obtain

r

4

[S (cu ) ^

bRj	

Re
_. (SXY .),].  M Re [ W(w^ )=(w j )

b	
?m[s 	 ^ 

W Im mcu )I^	
sxx (CO j )

(2038)
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Thus the coefficients 
bRj 

and bIj determined using this
method are the real anal imaginary components of the system

describing function,

For short sample lengthL the sinusoidal	 -on*s of the

input may not be mutually orthogonal. In this case the complete

set of equations of Eq. (2032) must be used to find the b R4 and

bIJ O These coefficients will still be the real and imaginary

parts of the system describing function as indicated in Eq.

(2038).

C. Orthogonalized Exponential Function Analysis

The third Method that we shall discuss is based directly

upc.r the multiple regression analysis but employs a special set

of orthogonalized exponential filters in the model or representa-

tiin for the system in Fig ` 10

It is noted that all lumped parameter systems have weight-

ing functions that are the sutra of damped exponential functions.

Therefore, it seems reasonable that an efficient way of repre-

senting Such systems is to use functions that are also damped

exponentialso If such functions are used it should be possib3e

to approx1mate such systems to within a specified error with

relatively small number of functions.

Kautz and ?Huggins ( ref's . 18 and 19) have suggested a set
of exponential functions that are orthonormal and that are easy
to construct. These are a natural set to use for representa-

tion of systems whose impulse responses are also damped expo®

nentials. These functions have transfer :functions of the forth

29
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-,r- -2s

01 (s)	 _	
1

28(s^s )02(s)	 ------2 --- s	 (2-39)
( s s 2) (s 81)

(sue)2s n1 (sue)
(S-sk) j=1 (,-S j)

where the poles s^ are negatived

If one usos such a set of.filters in the model of Fig. 1 the
entire covariance matrix of Eq. (2.5) is computed and solved for

the regression coefficients bj . In such a case the system weight-

ing function can be approximated by the weighted sun of. the
weighting functions of each of the filters as in Eq. (207);

K
w(t"t')	 &	 ^X1 b^ ^(t~t')	 (207)

This method of representing system dynamics is similar to

4	 the spectral analysis technique shown in Fig, 4 except that
orthogonalized exponential filters are used instead of narrow

' x	 bandpass filters, The use of orthogonalized exponential filters
permits representation of system characteristics with fewer
filters than with narrow bandpass filters because exponential
Filters can be mace to resemble more closely the dynamics of the
system being measured (ref, 1),
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D. Differential Equation, Coeffic ent, Methodsun^^.0 u.^rrrr^^rrrrr .—.r+•r • rrr^r.s^.-.+r..^.+r^^w.^s

Differential equation coefficient methods lead.directly to
estimates of the coefficients of the differential equation for
the system being measured. A, differential equation for the sys-
tem to be measured is assumed. In general, this will be of the
form

a,1 +
^^^^ 

+ an ^ n^ + .... + alb°_ + y e
dt	 dt	 dt

2.44)
Mx +
	 +a	 +.... rc dx+axcm	 m m	 1	 0dt	 dt	 dt

where y 1 (t) is the output of the linear filter before the addi-
tion of the remilart noise see RLg. 1),p N and M. determine the
order of the equation and are chosen in advanced The coefficients
an and cm are to be determined. Any one of the coeff:,clents may
be chosen in advance. For convenience we assume a -, to Le unity,

We simplify notat:i on by letting
N	 N	 d aA(p)y'	 .:	 E a py , 	E a

nwo 
n	

in 	
n dt

and	 ( 2.41)

C(P)x	 M c mx	 E c
m=o	 moo m dtm

where pmd/dt,
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i	 In these terms Eq. (2.4o) becomes

A(P)yI	 C(p)x
	

(2.42)

We would like to be able to represent the Input-output
relations of Eq. (2.42) by the multiple regression paradigm of
Fig. 1. Uhfortunately, this is not possible since the signal

y "'t) is not available to us.

Two methods have been used to circumvent the problem caused

by the unavailability of y°(t). The first, which is called the

equation error method, is illustrated in Fig. 5, The output
y(t) is taken as an approximation to y°(t) and the coefficients
of the equation

A(P)y	 W	 C(p)x	 (2043)

are found using multiple regression techniques, The second

method, which is called the output error method, is illastrrated
In Fig, 6, A linear filter with transfer function

M Wr ^(P )	
C

^ p (2.44)

is,,,,simulated. The coefficients of the numerator and denominator
are found using iterative techniquos or the method of steepest

descent, (refs. 11 and 22.) Linear regression methods cannot

be used except in the special case when A(p) is known in advance
of measurement

l o Equation Error Method
P^	 O 6 K

Equation ( 2 .43) is represented in terms of the multipl e

regression paradigm of Fig, 1 by a set of diff, erentiators oper-
ating on both input and output, as shown in Fig, 5. The

33
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coefficients 
A
and cm are to be chosen to minimize the mean

square difference between the weighted sum of y(t) and its

derivatives, and the weighted sum of x(t) and its derivatives.

This difference is called the equation error and represents the

difference between the left and right sides of Eq. (2.43). Since

the coefficient of y(t), ao, was assumed to be unity, minimiza-

tion of the equation error is equivalent to minimization of the

mean-square difference between y(t) and the weighted sum of the

outputs of all the differentiators that operate on x(t) and y(t).

34
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The regression equations for the configuration of Fig. 5
are

a (PnY)(P Y) + E c (Pm x)(A Y) ° Y(P Y)n,•1 n	
mMo m

	

E	 (Pn^) (P2Y) + E c (c 2

	

n	 m P )(P Y) Y(A Y)n=l	 mWo
•	 o	 0
•	 •	 o
•	 o

•	 •	 o

E a (PnY)(PNY) + E c (Pmx)(P y)	 ( 
N

n=1	 Y P Y)

	

n	 moo m

' E Aan(Pny)(x ) + E c (PmX)(X) w y X
nml	 m„o m

N AM
E a (Pny) (P x) + E A (Pmx)(P x	 X)

	

n=l n	 mMo m
	 ) Y(P

• 0
•	 •	 o
•	 o	 0

•

E a (PnY)(P X) + E	 (Pmx)(ANx) Y(P X
nwi	 m	 '

	

n	
moo

where an and cm are estimates of an and cm in Eq. (2.4o)•

In matrix notation this becomes

A + ^ c

	

-LY 	 = Yy
..may a + Lx c = yx

(2045)

(2.46)

or more generally

Lb = y	 (2047)
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where T
j

 is the covariance matrix of-the derivatives of y and
Lx the covariance matrix of x and its derivatives. Lxy Is the
covariance matrix of x and its derivatives and those of y.
Lxy is the transpose of LL	 a and c are vectors with elements
^n and cm 'V zy is the vector of covariances of y and its derivatives,
and yx is the vector of covariances of y with x and its derivatives.

S_%ice

y(t)	 w y 1 (t) + n(t)	 (2.48)

Equation ( 2. 46) can be written in te^w_-11 of y ( t ) and n(t).

-- Ly ^{-Ln -y' n -y t n ) $ -^- Lxy -^.-

L

^cn ) 	y ' -j- - t n-^ ' y .^.-n-n

-[Lt ,+Lt ^ a + L e	 ^ ^ g +n	
(2.49)

--xy -xn	 --x	 x --

where L, n is the covariance matrix of the noise &rivatives, .L„y n
is the covariance matrix of the derivatives of y' tend n.o z'n is
the vector covariance of y ; and noise derivatives, it y , is the
vector covariance of n and derivatives of y', nn is the vector
covariance of n and it•• derivatives, and nx is the vector co-
variance of n and x and its derivatives. The othar quantities
are defined either as before. or else with y' serving instead of
YO

The remnant noise n(t) is uncorrelated with y 1 (t) or x(t),
so for simplicity we might assume that all terms involving co-
variances of the noise or its derivatives with y i kt) and x(t)

B



t

or their derivatives to be zero. Doing this we obtain

-(L „y I + ,L ] a + L__1W t c n^ A y Y + nn
(2.50)

^' a	 +Lac a	 x

When the remnant noise is zero the regression equations
.red:ice to a form that gives correct (unw ased) estimates of the
coefficient of the differential	 Eq. (2.40), if the

assumed differential equation is of the same order as the actual
equation. Under such conditions Eq. (2050) becomes

A	 A
-^f a + 

^1 
C ""e _,Y'y s

(2051)
-	 ' a + Lac c	 ^ Z' x

If the remnant noise is not zero the estimates of an and em.
obtained from Eqs. (2049) or (2.50) will be biased and nut equal
to their correct values. Surber (ref. 21) points out that this

bias will be small if the ratio of noise power to signal power
(power in y'(t)) is less than 1 to 4 per cent and a sufficiently
long sample is used in the computation, renditions not f°:-equently
encountered in analysis of human operator dynamics.

There are a number of ways in which the coefficients of
Eq. (2. 43) can be determined, but all metho ds give equivalent
results insofar as their long sample length performance is con-

cerned. D1'rect solution of the matrix Eq. (2046) will give the
least mean-square error solutiono Other methods such as those
based on the method of steepE t descent (ref. ).1), or iteration s
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cannot do better than direct solution of Eq. (2,,113) . The diffi-
culty encountered in building differentiators leads to some
modification in the error criteria and in the form of the equa-
tions that are solved. However, the procedure that we have

described will indeed yield the least mean-square error approx-

imation to system output for the interval T and no other method
can do better. Thus we see that the equation error meth od for

E`	 finding the coefficients of the differential equation for a

system is a direct application of multiple regress:ior analysis

20 Output Error Method

The second differential equation metho d ,, the output error
method, is illustrated in Fig. 6. A linear filtor with weighting
function m( t-t n ) is used as a mod el for the sty stem to be identi-
fied. It operates on the .input al.gnal x (t ! and produces the
ioesponse z(t) o The parameters of trots ny-,del are variabXe and
are adjusted so that the filter output z(t) matches the system

output y( t) with least mean-square error.., The model character-
istics .an be represented by a differential equation of tt forn

of Eq. (2,40). The coefficients of this equation are thv param-
eters to be adjusted,, When a good match is obtained between

the outputs,, the coefficients of the' dif..er. ential equation for the
model are estimates of the coeffic -ients of the differenti al
equation representption for the unknown system.

There are several algorithms that one can use to adjust the
model parameters (refs.  X10., 11 8 21.., 22,9 23). We will not d^. s -.y
cuss in detail, any of these methods, but will concentrate on the

y	 properties of the estimates of the coefficients of Eq. 	 .40)
t	 that are obtained from the technique illustrated in Pig. 6. Two

properties of these estimates are of interest: their expected
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values and their variability. Consider first the expected values

of the estimates of the coefficients obtained from the method.

As the first step in our investigation of the properties of

estimates of differential equation coefficients, we assume a
structure for the model in Fig. 6, that is we must specify the
order of the differential equation representation for the system.
Next, note that the model operates only on the input x(t)„ which
is assumed to be uncorrelated with th.: remnant noise n(t). There-
fore thos output of the model will a7.so be uncorrelated with the
noise. Since the noise is uncorrelated with the model input and
output, it does not affect the expected values of the estimmtes

of the differential equation coefficients, and the noise may,
for the present, be taken to be zero. With the noise zero direct

observation of y e (t),.the system output prior to the addition of

the noisE,is possible. If the structure of the model is

sufficiently similar to that of the system, the model output

z(t) will be very nearly equal to y 9 (t) and the differential

e cation representing the model,

N a pnz = E C pMX	
(2.52)

nu 
n	

mMo m

r

may be replaced by

Z a p 9	 Z c e
x

nmo n	 MWO m (2053)

Equation ( 2.52) -is of the same form as Eq. (2.40)  which

represents the system. N and M are the assumed orders of the

derivatives of z(t) and x(t) in the model. The coefficients of

Eq. (2052), An and Im, are estimates of the coefficients of
Eq. (2.4o), an and cm. Equation.(2453) is obtained by substitut-

ing; y9 (t) for z(t) in Eq. (2.52). It will represent the model

L
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J

;J

Cdr

^K

accurately if 2(t) is very nearly equal to yf(t).

Equation (2.53) is in a form suitable for solution by the ^
equation error method discussed above. The coefficients a n and cm
are solutions to the regression equations of Eq. (2.51). In the
notation of Eq. (2.5), Eq. (2.51) may be written

L b M Z'	 (2.54)

where L is the combined co,.ariance matrix which is partitioned in
Eq. (2.51) into Ly, LXy , Lxy and Lxo b is the vector of coeffi-
cients ^n and cm, and fir' is the covariance vector found by combin-
ing y' y , and y'x.

Following the methods used to derive Eq. (2.10), the right
side of Eq. (2.54) may be written in terms of the true coefficients
by substituting for y 1 (t) in the vector X' the expression

E cm 	 - E an 	 (2.55)
moo m	 n=l n

Doing this

L	 L w + r'KK-t-1 wK-1	 ( 2 -56)

or

b rlw + L	 LK+l wK+l (2. S7 )

where w is the vector of coefficients an and cm from Eq. (2040)
LK+1 is the covariance matrix of the derivatives of.y(t) and

x( t) that appear in the equation for the system, Eq.	 (2. 0), but
not in the model, E	 (2-52),,  andEq.wK,,,1 are the coefficients of the

ti system that are not represented in the model.	 The notation in
Eqs. ( 2 .56) and (2.57) is the saze as that used in Eq. (2.11)
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The expected values of the estimates o' the coefficients

13j are obtained by replacing the covariances in Eq. (2057) by

their expected values,

+7
	

(2658)

where A is the vector whose components are 1 31 and 7 is obtained
from the second term on the right of Eq. (2057) by replacing the

eovariances by their expected values., T is a bias term that is

caused by not using a model whose stricture is the same as the system,

Now consider the variability of the estimates an and .'

Assume that by some means the expected values of these estimates

have been found. We designate these expected values a no and ems,

respectively. If we no longer assume the remnant n(t) to be

zero, and if these values of coefficients are used in the model

as initial conditions for a series of measurements of system co-

efficients, the estimates obtained will fluctuate about their

original expected values. The fluctuation is caused by the

remnant noise n(t),

To a first approximation the output of the model can be

written
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Z(t)	 & z® (t) + n Da.l + aZ-- Lea,
	aal	 a^2

alo	 ago	 (2.5^) )

+ -^.° 1 ba.N + ( ^co + ^^^ - ac 1 + ... + -
 

;
'z - deM

AN J 	 ('400acl	 ?cM

allo	 coo	 clo	 cNo

or

I
X(t) a z (t) + E h & + E tA do

°	 nil as	
n	 moo lr	 MM.)

 %no	 m cmo

there zo(t) is the model output when the expected values of thf^
estimates of the :oefficients are used, and ba n and Lem are
increments in the model coefficients caused by the noise. They
are to be determined. The partial derivative az/a n and z/a m
^m called pammQter influence coefficients and are evaluated at
ano and smo"

Equation (2.59) is in a form suitable for representation in
;Y terms of the . multiple regression paradigm. Such a representation

is in Fig. 7. The par;*metsr influence coefficients, az/a n and
az/a , can be obtained by a linear operation on the signals in
t14a computer simulation of the. model. (refs. 10, 13, 21, 22).
The linear operators are Gal.....GcM. '':heir outputs, the param-
eter influence coefficients, ars weighted by the increments in
the parameters.* Da n and Cyan, and summed with :;® (t) to form the
model output z(t).
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The parameter increments that minimize the mean-square
difference between y(t) and z(t) are found from a set of regression
equations which, in this case are

n--1 Ad. ,a 	 n
M=O ^c r al m

9	 O a

0
p
D

0
O
p

0

O
•
O
O

O
•
O

O
O
O

^
n•1

—^—
aan

Z as	 +
aaN	 n IMAO

> Z

7.0m

a
^aN

ac m c:T-z
c^ (2. 60 )^aN

E - ^? da	 +ri E =^-- z
be m Y -zO

.

r.-C aan c^ 
0

moo ^cm r` 0 a O

o

o

A
O
0
•

O
O
0
•

•
0

0
p

0
n

N z)z

 Ca
z Gin M

^C_
?7 8em _ _,,(Y ^O)

2
n=1 n >

M m G M M

In matrix notation this becomes

,Dada + c)a- c-c m 
Az,^a

(20 61)
t

!4ac)c-'—'a + kc:A so Az-c,

where Lka is the covariance matrix of parameter influence coeffic-
ients ofan, al,c is the covariance matrix of parameter influence
coefficients )f a l and cm, kc is the covariance matrix of param-
eter influence coefficients of amp -A4a :.s the covariance vector
of Az (AzWY-zo ) and the ^-Z/aan and Az-)c is the covariance vector

of Az and the c z/^Cmo ba and & are vectors of the coefficient



0

1
Increments ba, and bem. If, indeed, zo (t) w y s (t), Az will be

equal.to the remnant noise n(t) and the terms on the right side
of Eq. (2;

z/^an

61)Acan be replaced n-^a and, ,n,)c o covariance vec . ors of
n(t) and 	 and 6z,n , respectively.

For simplicity we write

kb, db ffi Az
	

(2062)

where kb is the combined covariance matrix of parameter influence
coefficients, th is the combined coefficient increment vectors and

is the combined covariance vector of 
A4a 

and „ z^c in Eq., (2.61)

Since Ab j is the variation of b i about.1ts expected value,
its variance will be the variance bf b J" Equation (2.14) and
Eq. (2.15) can be applied directly to determine the variance.
From Eq. (2.14) we obtain

a2
2	 e

2^

and

2
a2 	 6	 ..__. Mbi	 Na2	 Nf-(Rti)

(2063)

there %,,, is the variance of b j for a particular simple of
input signal and saju is the sample variance of the part of the
^'^ parameter influence coeff .,'W * t:its. that is uncorrelated with the
other. parameter influence aQ^w.^^°^:.,r 4^^rr.^ ;,^ and a^^u is its expected

value,

The filters whose outputs are the parameter influence co-
efficients are closely related to the differential equation for

L"



the model, Eq. (20 52) (refs. 10, 11 9 21 ,9 22). When the partial
derivative of Eq. (2052) with respect J;o 0 J or c J is taken, we
ob ta:!n

E a pn 11r.	 - pi 
nawo n )aj

and
	 ( 20 64)

_N apn^?.	 p^X

rimo n a c^ q1

ants ^z/Ai and .) z/^)c J can

differential equation :.s
identical to homogeneous
the model) by -p iz or

Thus the ..:arameter influence coefficii
be obtained by driving a filter whose
the left side of Eqa (2.52) (which is
part of the differential equation for

pJx, respectively.

Equations (2. 61) and ( 2.59) provide a basis for an algorithm
for adjusting the coefficients of the model.. The parameter ii-iflu-
ence coefficients are obtained .using filters whose differential
equations are of the :^<)rm of Eq. (2. 64) . The regression equation,
Eqo . (2e 61) , is salved for the increments in coefficients Lan and
demo The model coefficients are changed by an amount proportional
to these increments and the process is repeated either with the
same sample of input and system output signals or with a.succeed-
ing sample until s±lble values of 

1n 
and cm are obtained.

Alternatively, one can make use of the fact that the cc>sffi-
cients are to be adjusted so that the mean-- square difference
y(t) --:: (t) is minimizedo This differe nce is

T
D2	 an	 f [Y_z) 

2 
dt	 [s-z ] 2	 (2.65)

0
r
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2	 AThe partial derivative of D with respect to a coefficient a 
i 

is

^,D2	
I 

T	 2

	

r	 A [Y-Z dt
0 U 

i

T C) z

	

r	 2[y-zl 7V- dt	 (2.66)

	

T - 0	
, 
a 
i

2 D ^&-
Z^A
a

A similar expression is obtained for 	 If we make the rate of
change of	 proportional to Dc*)zP`a,j the coefficients will
converge along lines of steepest descent to their expected values.
Thus

A
^a
71	 77-91

t	 41
(2,67)

This method is	 Implemented on an analog --omputer by
Amultiplying the paxame tt.*er influance coefficie-, it h/*c^a 
i 

(th, out-

puts of the filter G ts) in Fig . 7) by the error fy(t)-z(t)),a,j
averaging the product over an interval T and using the result to

Aestablish the rate of change of a,, (refs. 10,, 22). Feeding
DhAl j to an integrator that drives a servomultiplier on whose
shaft is a potentiometer representing a will establish the

A
appropriate rate of change of a 0

F	 ; ,
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IV. COMPARISON OF ANALYSIS TECHNIQUES
The accuracy of th e estimates of the system's characteris-

tics and the variability of th+ estimates are the.- two factors
weconsider in a comparative evaluation of the analys{.s techniques
Two lirli zing conditions of measurement are of interest: (1) the
long sample situation for which, in Effect, the signal sample
length available is unlimited; and (2) the short sample situation.

A. Cons Sample Measurementsr^.r..^r.ww rw.r^r.r.^r

If the available sample length T is virtually unlimitedp the
variability of the measured regression coefficients a2bj  can be
made aF small as desired. We need be concerned only with the bias
In the expected values of the coefficients given in a general form
by Eq. (2-13).

(2013)

where Ts the bias term is

~lAK+l wK-^-1	 (2.68)

and K+ .are the expected values of the covariance matrices
L and r,y. It will be remembered that wK+l is the vector whose
elements are the coefficients of the complete representation for

the system weighting function w(t-t' ), (Eq. A2.8}}, that are not
among the K coefficients used in the model for the systein (Eq.
(2-7)). aK+l is the covariance matrix whose elements 7N ii are
the expected covariances of the K outputs of the filters included
in the model with the outputs of the filters not included in the

model (ZK, >K) . If the first K coefficients provide an exact
representation of the system weighting function,. or if the co-
variances of the filter outputs in AK+1 are zero (the outputs
are orthogonal) ,v the bias will be zero.

1

_mq.;
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to Cross-Correlation Analysis

In Fig. 2 we gee that the model is composed of a set of

time delays whose outputs are identical to the input except for

the shift in time. From results in Appendix B, Eq. (B.14), we

know that samples of the input signal x(t) will be approximately

independent (covariance zero) when they are separated in time by

1/2Wx seconds, where Wx is the effective bandwidth of the signal

In cycles per second. Therefore, the covariance of any two
filter outputs will be approximately zero when

AT	 at 1/2WX	 (2.69)

If the model is constructed by selecting the first 
X 

equally

spaced time delays (delay increment Lr) from an infi ate set of

such time delays, and if AT w 1/2W., the omission of the (K-1)at

and all higher delays of the same set from the model will not
bias the estimates of the first K coefficients. Even if the
Input bandwidth is not sufficiently large to give unbiased

estimates, it should be noted that the covariance of the outputs

of the (K+l) st and that of the Kth delay will generally be larger

than tho covariances of the (K+1) 8! and other outputs in the
Z 4model whose separation in time is greaten o Conseq ie n ly, the

bias introduced by omitting the (K+1)9t delay will affect the

Kth coefficient more than the other coefficients In this wayy

the effects of truncating the representation of the system at

the Kth delay tend to be localized to higher terms of the

representation.

However, to represent the system weighting function exactly

requires an infinite number of delays whose separation in time

is infinitesimal The bias introduced by than omission of these

delays, which lif: between those used on the model, will be zero
only wnen "white" noise or impulse inputs are used. Otherwise,

I
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the measured coefficients will be biased by their omission to
the extent that the expected values of b  will be a weighted
average of the system weighting function w"t-t') over an
Interval of time. 1f &rmwl/2Wx , the bias of each coeffici snt
will be determined principal?y by w(t-t s ) in a region br
seconds long centered about the delay time 'r appropriate to
that coefficient,

To obtain a reasonably accurate representation for system
weighting function par::icularly when a ioEi knowledge of the
system is not too good, requires a Model, composed of approx-
imately ten delays extending from zero to some maximum time,

is related to the effective bandwidth of the system
anda convenient value for tnax may be obtained from the relation

Tuiax M 1/2Ww	y 2. 70)

where W. is the effective bandwidth of the system. 'Using, this
result and Eq o (2.69) we obtain W  "• 1OWw . a Thus to obtain
relatively unbiased estimates of the coefficients and still have
reasonable resolution in the representation for the system,
input bandwidth should be about tern times the system bandwidth.
If some biasing of the higher order coefficients is tolerable,,
this input bandaidth equiremen", may be relaxed to the extent
that a ra*6io of input bandwidth to system bandwidth of 2,5 to
5.0 may be acceptable.

20 Cross-Spectral Analysis
For lor_; sample lengths all three variations of the spectral

analysis method can be made to give unbiased estimates of system
transfer function with very little difficulty. For the conven-
tional and the regression spectral analysis methods, Figs. 3 and
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4. respectively, the bandpass filters must be designed so that

their outputs are orthogonal. To hake the filter outputs orthog-

onal for arbitrary input signals requires that the skirts of the
filters be very steep and adjacent filters be non-overlapping.
12his can usually be accomplished approximately. For the sinu-
soidal spectral analysis method the sinusoidal components of the

s	 input signal willbe orthogonal automatically.

When the orthogonality conditions are satisfied the bias

y in Eq,, (2013) will be zero. Moreover, the covariance matrix

L will be diagonal and the reduced sets of equations, Egs 4 (2,24)
and (2035), will be equivalent to the complete set of regression
equations as in Eq. (2032)

3. 4rthogonali zed I-.Xponenti al Func on Analysis
In the application of orthogonalized exponential `unction

analysis to to sa le measurements the regression coefficientsY	 long mp	 ^'
will be biased if the filter outputs are not orthogonal and if

w	 in Eq. (2011) is not zero. The bias can be made zero for^^l
all inputs by choosing a model that can match the system weighting

function exactly. Except in unusal circumstances thii is

difficult to doe Another method of reducing the bias is to pre-

filter the input or to tailor the analysis filters to a particu-
lar input so that the filter outputs are approximately orthogonal.

Usually, it is not necessary to take these precautions. It is
of difficult o dn	 i	 ult t design thethe analysis filters so that they match

the system weighting function with very small error and still
obtain filter outputs that are reasonably close to being orthog
ona-l0 In such a case,, the bias error will be small-,

4. Differential ̂EEuatio^ lath-, Method
With the equation error method, Fig. 5, there are two

sources of bias: 11) the convent :anal bias, represented by_I in



Eq. (2.23), caused when the model does not snatch w(t-L°) exactly
and the filter outputs are not orthogonal, and (2) the remnant

noise which introduces another bias in measured coefficients as

shown in Eq. (2,50)

To reduce the bias Y a judicious choice of model must be
made. The filter outputs in general will not be orthogonal and
the only way to make 'Y zero is to insure that y. 1 in Eq. (2011)

is zero. This vector can be made zero by including '.n the model

A13. of the terms of the differential equation whose coefficients
are not zero in the system, This means that the assumed form for
the system must be at least of as high an order both in the

numerator and denominator of its transfer function as the system
being measured. If it is not, the measured coefficients will not

be the correct coefficients of the differential equation of the

system,

However, the bias resulting from the remnant noise in Eq,,

(2.50) cannot be removed when there is remnant noise present,

except in a few special circumstances. For human dynamics
measurecients the remnant way re an appreciable fraction of the
system output. Hence, measurements made using this technique in

the presence of such remnant or output noise will lead to

Incorrect or biased values for the coefficients of the differen-

tial equation. This would appear to be a very serious disad-

vantage of this method.
t-lF

Ali

The output error method does not suffer from bias caused by

remnant noise. The only bias results from an inappropriate

choice of model. Equation (2.58) can be used to compute the
bias for any particular measurement problem. However, if the
sample length is very long there is little reason for not making



t

the model of sufficient order so that any terms omitted will be
small and the bias unimportant

B • short m-1etL e..

We consider the type of short sample measurement in which a
long sample of input signal x(t) is fed to the model and the
coefficients of the model are adjusted to achieve a good match
for short samples of these signals of the model output z(t)
and the system output. Thus at the beginning of each Segment
the model will have.initial conditions approximately equal to
those of the system.

rf , the sample length T is short, both bias and variability.
must be considered in the evaluation of the analysis technique3.
The discussion of bias for the long sample case applies also to
the short sample case, so the discussion here will be limited to
the question of variability.

Equation (2.15) for the expected variance of v2provides
the basis for the discussion of variability

02
e2 _ E2 ^__M_^._

NCr M- ( K+I)
(2015)

In addition to the expected variancec
2
 another measure of

variability useful for compering systems is the relative vari-
ability Qbj/"j.

If tWo measurement techniques are matched in the sense that
they both approximate the system output with the same residual
errozs , one may still be preferred to the other because the co-
efficients obtained using it have smaller variability, This
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may result fnr several reasons. The analysis filter outputs
may be . more nearly orthogonal for one method making a2 inju
Eq. ( 2.15) larger thereby reducing abj . The number of degrees of
freedom in the analysis filter outputs, M, obtained.from a
sample T-seconds long may be larger with one method. If measure-
ments are being attempted with very short samples so that M is
of the same order as (K+Y) g the term [M/M- (K+I) ] in Eq. ( 2,,15 )
will hare a strong influence on the variance aibj. In such 4 case,
increasing in M may lead to a considerable reduction in abj. In
the same way if one measurement technique requires a smaller
number of analysis filters, all other factors being kept equal,
ab2^ wil l be smaller because [M/M-(K+1)] will be small. This

r effect is particularly important for very short samples.
a

The use of a small number of filters will also . have an
important effect on the relative variability crbj/0j. When the
model approximates the system closely

	

^T	 E 
P

2 g f Fw( t)] 2 dt	 (2.71)Jsl `^	 O

	

,	 Equation ( 2.71) is a generalization of Itr:3eval's theorem for
the equivalence of the :integral over frequency of the power
density spectrum of a signal and the integral over time of the
square of that signal (ref. 4) . Because the sum of the squares
of the regression coefficients is approximately equal to the
integral square of the system weighting function and therefore
is independent of the number of filters K, reducing the K on the
average will make the coefficients 0^ larger, . This in turn will
tend to reduce the relative variabilit;; `rb j/P j.

t

1b
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Making s l=tements that will be true in general about the

relative advantages of the analysis techniques for short sample
measurements is difficult beeausn the results obtained with each
technique depend greatly upon the nature of the measurement situ-
ation, that is, upon that characteristic of the system being
tw.,asured, the input signal, and the extent to which the analysis
filters chosen for the measurement match the sys tart. character-
istics. Pbr any specific measurement situation, Eq. (2.15)
together with the regression equations given in Section III can
be used to estimate the variability of the regression coeffic-
ient and hence serve as a.basis for selecting the most appro-
priate analysis technique.

In the following discussion we comider each of the analysis
techniques and point out some of the major .factors that must be
considered in applying these techniques to short sample measure-
ments. Scme cor parisons are made for typ:! cal measurement sit-ia-
tions.

1. Cross-22Ve,,,L1a„'^^oi'^.Ana.l^ia.

Equations (2.18) or (2.19) are the basic relations for the
cross-correlation analysis technique which is illustrated in
Mg, 2. Assuming QE and N are maintained constant for all
analysis techniques, the variance %, in Eq. (2.15) will be
determined by the number of filters K, by a^u { the uncorrelated
part of the output of each filter), and by the number of degrees
of freedom of each filter output M.

To obtain reasonably complete definition of the system
weighting functions typically, about ten pclnts or ordinates of
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the weighting function should be obtained. This means that
about ten filters (time delays) will be required in the model
for the system, and that A will equal 10.

Determination of M and ogu is more complicated. If the
effective input bandwidth WX is large compared to 1/&r (Ar is
the delay increment), the filter outputs will be orthogonal and
Awill be. equal to QX, the input variance. M wi1_. be approxi-
mtely 2WxT. Reasonable values of cvb, will be obtained for M
equal to twenty (twice K) or for T = 10/Wx . For values of 14
smaller than 20 the term (MM-(K+3)] in Eq. (2.15) will dominate
tha behavior ofa2 and lead to large variance.

?or the case in which the input bandwidth is smaller- than
1/4r, a not unusual. circumstance, the filter outputs will not be
orthogonal and arks as well as M will tend to be reduced thus
making 

ci, 
larger. In this case both A and cTju can be predicted

r	 from the autocorrelation function of the input.
cox

ww 2.	 Cros s S,p^.ctral holysis
For short samples, the outputs. of narrow bandpass filters

will nut, in general, be orthogonal.	 Those spectral analysis
techniques 3bhat assume such orthogonality will give estimates of
the regression coefficients that have e xaCcessive variability,

Ti
The reduced set of regression equations obtained by dropping the
off--diagonal terms from the covariance matrix such as . Eqs o ( 2.23)

"Q
and (2.24) for conventional spectral analysis, and Eq. (2, 35) for
the direct regression, and for the sinusoidal components methods
of spectral analysis are not appropriate for the short sample 	 a°'
case.	 The complete equations such as Eqs . (2.22) and (2.32) 
should be used.

i
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When the conventional spectral analysis method is used
with :Sq. (2.22) 0 the residual variance a . and the number of
degrees of freedom N in Eq. ( 2.15) for ab relate to the output
of the narrow bandpass filter operating on y(t). When Eq. (2.32)
is used for the regression or sinusoidal components methods,
c'2 and N relating to the entire output y(t) should be used in the
computation of obj from Eq. (2.15).  However, if the spectrum
of the residual is fairly flat, the ratio a /N will be approxi-
mately the same in both cases.

For the conventional and regression methods when the filters
are orthogoml, the expected covariance of any two filter out-

thputs will be zero and c u will equal the variance of the ^
filter output. The number of degrees of freedom of the filter
output M Is determined by the effective bandwidth of the filter
Wh o From Appendix B

M M 2WiT	 ( 2.72)

Approximately ten pair of bandpass filters typically ^vuald
by used.in the model. Half of these may be assumed to lie in
the frequency region below the system bandwidth. Thus, the
analysis filter bandwidth is likely to be at least one--fifth the
system bandwidth.

The situation is much the same for the sinusoidal compon-
ents method. The expected variance %j given by Eq (2015) was
derived from v2 s in Eq. (2.14) by taking the expected value of
1/sju which was assumed to be distributed as 1/x 2. For sinu-
soidal signals 1/82ju will not have thi s distribution and we might
think that Eq. (2.15) would not apply. However,, Eq. (2015)
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provides a useful approximation to arbi. Consider the following

variation of the sinusoidal components method. The sinusoids

are added together to form the input signal x(t) which is then
fed to a bank of very sharp out-off narrow bandpass filters. If

the center frequencies of the Filters are set to the frequencies

of the input components and the filter bandwidths are less than

the spacing between compo.ac: 11ts, the original sinusoids can be

extracted from the composite signal x(t). Since this process is

equivalent to that performed on the input signal by the filters
employed in the regreE-lion method of spectral analysis, the

relation for 
cb, 

For that method should hold at least approxi-

mately for the sinusoidal components methok' . Thus

a2

	

2	 E	 M

	

S	 Na2 M- ( x+1

2	 (2-73)

.
(Y.e	 2GW
NQ 2,W- (K+1,

where the spacing between components AW is used to compute the

degrees of freedom M.

The number of components used in the sinusoidsl method and

their spacing is likely to be the same as for the direct regress-

ion method, that. is, about five components are likely to spat: the

system bandwidth. Thus dW will equal about one--fifth the system

bandwidth:

If the complete set of regression equations is used for each

of the three spectral analysis methods, the estimates of the

regression coefficients will have ap proximately the same expected.

I I
I I
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variance in all three cases. The number of filters used with
these methods is likely to be larger than the number used in
the cross-correlation method (twenty compared to ten), but the
filter outputs w111 be uncorrelated. Thus, a2ju will be larger
for the spectral analysis methods than for cross-correlation
method. The number of degrees of freedom M for the spectral
analysis methods will be less than for the cross-correlation
method, where M was determined principally by the input bandwidth.
For the spectral methods M is determined by the filter bandwidths
which are likely to be a fraction of the input bandwidth,

3. Orthogonalized Mcponential Function Analysis
If the poles ofthe orthogonalized exponential functions,,

Eq. (2,39). are chosen so that they lie close to or bracket tha
poles of the weighting function that is being measured, only a few
filters .*111 be required to approximate w(t-t l ) with small. error,

( See Appendix A.) Typically, four or five filters will be suffi-
cient to approximate w(t-t 4 ) with a mean-square error of well
und+erone per. cent (ref. 2) . Because the number of filters K is
small the coeffiel .ents 13j will tend to be large and fewer degrees
of freedom M are required to keep [ 	 (K+1 )1 in Eq. (2115)
approximately unity,

Since the poles of the analysis filters are chosen to be in
the neighborhood of the poles of the system,, the bandwidths of
the analysis filters will be of the same order of magnitude as
the system. For this reason M will be larger than for the
spectral analysis method (where narrow bandwidth filters are used)
and probably smaller than for the cross-correlation method (where
M is determined principally by the input signal).

^' [I I



On the other hand, the outputs of the orthonormal exponential

filters will not be orthogonal unless the Input bandwidth is much
larger than the filter outputs. For inrn^; bandwidths of the same

order as the system a2ju  will generally be lower than for the
spectral method (for which filters were designed to give orthog-

onal outputs for all inputs) and larger than the cross-correlation
method ( for which the filter outputs are highly correlated unless
the input bandwidth is very much greater t2:^n the system°s).

R

1
Thus the orthogonalized exponential method is something of

a compromise between the cross-correlation and cross-spectral
methods. It is better than the correlation method insofar as

a2ju is concerned and better than the spectral method vr1th respect:
to M. On the other hand, it is worse than the correlation method
With respect to M and worse than the spectral method with respect
to a^u.

In one respect, the orthogonalized exponential method is
superior to either of these other two methods. The number of K

filters required to represent the system accurately generally will
be smaller, (by a factor of two to four) f o:c- the car, ti.ogonalized
exponential method than for either of the other two methods. The
reason is that the Freighting functions of these filters resemole
typical system weighting functions, A small K leads to a value

of [WM-(K+1) ] ii1 Eq. (2.35) that is close r to unity and, to
larger values of 

A, 
(because of Eq.(2,71)). As a result e2

will tend to be smaller and, most important, the relative vari>

abll.l y dbj/f'j will be very much smallev for the orthogonalized
exponential method.
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4. Differential Rquation Coefficient liethoda
If the equation error differential equation caeff'ioient

mthod is to be applied to shoot saWle meaeuwments, it is
essential that the computation of the coefficients of the differ-

a
	 ential eqtzation be aocoWlisrhed by the matrix method of Eq ^ (2.45 )

or by m thods equivalent. Real-time parameter tracking techniques
(refs. 9 and lo) require too much time to reach t-1ti9 correct co-
efficient values and in effect this type of adjustment procedure
wastes in mation about the coefficients contained in the
eigoals. 2bese methods =' be used with good success if the same
sample of data is fed repetitively to the parameter tracking
devise and the coefficients adjusted on the basis of repeated
analysis of the sane data. Snob a method at best wr:4_11 do an well
as (but not better than) the "trix methods discussed here. The
aroma diffloulty exists with the output error method, Rear-time
parameter tracking (ref. 10) U wasteful of information, and the
saw data , thould be analysW repetitively until the asymptotic
valtiea of the eoeff1clonts wv obtatined. Matrix methods are not
available for the output error method.

The variance of or,;, of the coefficients obtained with the
equation error Method le given by 1q. (2.15). The variance
obtained with the output error method is given by Eq. (2.63).
The differential equation representation for system characteris-
tics is A fairly efficient representation in the some that the
number of oneffIcients required to reprea -nt the system is equal
to than noumber of terms in its differential equation and can be
amide as 80011 ass permitted by the equation. Romvesr, the
correlation amsngst the filter outputs will be large. For the
equation crag method the output of the j th differentiation will
be orthogonal to the outpilts of the (j+i) ct and (j-►1) t differ-
entlatore, but tt win not be Orthogonal to the outputs of the
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(J+2)nd and (J-2) nd differentiators. Moreover, the derivatives
of the input x(t) and those of the output y(t) will be corre-
lated because of the relation between these quantities imposes by
the system equation itself, Eq. (2.4o). As a result; a2ju , the
part of the jeh filter output that is uncorrelated with all the
others,, will tend to be small.

For the output
An can be seen from
parameter influence
transfer functions'
the model output or
correlated because

the filters, .

error method, a2ju  will also terd to be small
Eq. (2.64) the filters used to extract the
coefficients ((Igo n) all have the same

but are excited by di fferent derivatives of
system input. The filter outputs will be
of the correlation among the signals driving

For the equation error method, the number of de,gvees of free-
dom. M in the outputs of the differentiators operating on the in-

put .x(t) will be at least as large as the number of degrees of

	

.	 freedom in x(t) and will, therefore, be determined by the input

	

r	 bandwidth. For the outputs of the differentiators operating on

y(t), M will be determined larger- by the system bandwidth unless

the bandwidth of x(t) is much less than that of the system.

For the output error metho%-: M will be Oetermined by the
system ba +tidth or the input bandwidth., whichever is smallero
The f'il'ters in Fig. 7 have transfer functions equal to the

denominator of the transfer function of the model„ which should
resemble closely the denominator of the system transfer function.

The differential equation methods have many of the same
advantages as the orthonormal e, :ponentlal funct.f on methods., M
is likely to be greater than for the spectral methods and probably
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less than for the cross-correlation method. aju is likely to 'be
less than that obtained with the spectral methods# but greater
than that with the cross-correlation method.

Finally, since system characteristics can be represented by
only a few filters, 13 will tend to be large and the relative
variability will be lower.than with either the spe-tral or the
crass-correlation methods.

V. mTzmInw THE COEFFICIENTS OF THE SYSTEM DIFFERENTIAL
EQUATION FROM THE ORMNORMAL EXPONENTIAL FUNCTION ANALYSIS
METHOD
One of the principal objectives of a system identification

procedure is to obtain. an analytic expression for the transfer
function of the system.. We now show how the coefficients of an
assumed differential equation representation for the system can
be computed from the regression coefficients obtained from the
orthonormal exponential, function analysis method.

The expected values of the
when an orthonormal set of func,
unknown system Are

Co
f W(t) 

0j 
(t)dt

0

regression coefficients; obtained
bioi&z is used to represent the

m
f c+^ wcs ) 	 c-s)	 (2 74)
e-300	 2,J

where w(t) is the system impulse response and 0 (t) the impulse
thresponse of the X"—. filter used to represent w(t) ^.n the regress-

ion paradigm at Fig. 1. The bar indicates that the complex
conJugate is to be tak.:n.
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If the 01 (t) are orthogonalized exponential functions, they
will have transfer functions of the f. onm

l	 (s-s1)
{2o39a

^ - k - M1 (s±^)

(s-sly) ,^1 (s-s^ )

where the s^ are negative real.

Substituting 0 (s) into Eq. (2.'T4) and integrating over the
right he ^.f -plane we obtain

W(-sly

2s W(-s) (s— ^+ 1) + W(-s ) (
2	 2	

2 
(s2-s].)	

l	
(sl sp)

k-1
k	 H (si+8i)

S	 E W( -s
(s -S )

	

i4j	
<

-ti

It should be noted that the P are func tiom. v£ the true
transfer function of the system at^svA -s,j -s 06.0-s   (the a are1k
the poles of the basis functions) . Taus, whereas

K
W(s)	 =l 1^ 0 (s)
	

(2076)
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Is an approximation to W(s), the P i are functions of the true
or exact W(s). That is

K
W(-8 k) 	 1 13J (DJ (-sk)
	

(2-77)

We can take advantage of this .result to find the coefficients
of the differential equation for W(s). To do this we must assume
a form for the differential equation such as

N dtW	 1 dt	 M dtM	 1 dt

(2078)

The Laplace transform of this equation is

(a N sN + .o.o. also-l) Y9 (s) _ (cMsM	 1+ oo.oa c s+c0 ) X(s)	 (2e79)

and the assumed system transfer function is

A	 Y' (s)	 (U 
Ms', 

+ ^ o . o . cls+90 )
4(e)	 M	 '-' .

Y(a)	 N + 00000 aIs+l)

where (s) is the estimate of the system transfer function and
,W and cM are the estimates of the coefficients.

By leAting s= -s l , -s 20009'sk a set of simultaneous equations
Involving W( -s^) and 13J can he written which when solved will give



M	 m

z cm(-sl )
MORoN

an(-sl)n
n=o

01 
.^ ^ W(-8l )

the coefficients an and cmo These equations are

0k

M A	 m 
k-

k	 E cm(-s^0	 n (s +s i )

E a (_s ) n	 n (s -s )
nmo n	 imul	 i

i4j

7
	 (2.810

Estimates of A  are the b  determined by multiple regression

analysis. These estimates are substituted in the set of equations,

Eq. (2,81) and the equations are solved For the an and c m. At the

frequencies -s Is -s ,..0"s EqQ (2.81) will provide the most
accurate estimates 1n and #m since at these frequencies W(s) is

most accurately determined,

VI, A COMPARISON BETWEEN OPEN AND CLOSED-LOOP NEASURMNTS OF

DYNANI C SYSTEMS

A, Introduction
Consider the manual control system whose block diagram is in

Fig. 8. The system input i(t), error a(t), pilot's.output (;(t),
and system output o(t) can be observed and recorded. The remnant

nc (t) and the linear part of the pilot's output c 1 (t) ca^inot be

obtained directly, The pilot's describing function Y p (s) is to

be determined,
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Figure 8 Block Diagram of Typical Manual Control System
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It would seem from examination of Fig. 8 that the describing
function Y(s) could be determined either by determining the
response of the pilot to the input forcing function i(t),  or by
determining his response to the error signal e(t),, If the :input
signal is a random process, and one chore to use the first method,

Y(w) could be computed from the following relation

Sic (CO)

Yp^^)	 Sie(cu)
	 (2082)

where Sic (cu) is the cross-power density spectrum of Input and
pilot fl s output and Sie ((D) is the cross-power density spectrum of

input and error (ref . 14). In effect ,, Ergo (2.82) defines Y (to)
to be the transfer function relating the part of the pilot Q a out-
put that is correlated with the input to the part of the error
that is correlated with the input.

The second method of computation is based on finding the

operatir,n that the system performs on the error in order s to
produce the output. One is tempted to assume that the describing

function Yp(w) * ovta .ned from the following relation

See(M)
pY "')	

-ee+XwT (2.83)

^r
is equal. to Yp(w) obtained from Eq. (2.82) o In Eq, (2.83)
See (cu)is the cross power densit y spectrum between the en or and
the pilot fl s output and See(cu) is the power density spectrum of

the error. As Graham and McRuer (ref. 14) point out, Eq. (2.83)
will not in general give the same result for Y(q) as does Eq.
(2082)0
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E. Comparison of the Wo Describing Functions
The difference between Yp (co)^and Yp (co)* is made apparent by

writing the SeC (w) in terms of the input and remnant power density

spectra. From the relations inherent in the block diagram of
Fig. 8, we see that

See (w)	 Sec Q (w) + Scn((L')

(2.84'
Yp (w) See(w) + Sen

c
 (cu)

•

where SeC g(w) is the cross-power spectrum between error and the
linear part of the pilot 9 s output. Note that the cross-power

density spectrum of the error and the pilot o s remnant Sen (w). is
not zero since part of the error is caused by the rei^mant,

Substituting Eq. (2.84) for Sec (m) in Eq. (2.83), we obtain

r

Sen (w)
Yp (w) +^	 •^ Yp (CO) +	 ....

See((0)
(2.85)

Thus it 1 , clear that unless Sen (w) is zero Yp((z)*/vp(w)
aid a measurement of Y  (w)* made usiQ e(t) as the input will
not give the same result as a measurement made using i(t),

'en (co) may be expanded in terms of the input and remnant
noise bye notingthat

E(w) 1 w _	
NC

(w)Yc(w)	 (2086)

3.+Y. Yc (CO)	 1+YpYc (to)

69

..a



where IM and Nc (w) are the Fourier transform of the input and
the pilot's remnant,

Using this rely tl.on the may write

Sin 
c 

(CO)	 Sn 
c nc (03) Yc ( -CO)

an 	 (2087)

I+YpYc (-cu)	 l+YpYc (--)

where the bar indicates the complex conjugate. Since the input
and remnant are uncorrelated S in (Osvo and

C

YC (^) SnC n (^')
C

Seric 
W 

M - 1+Y (-w)	
(20 88)

p
Y
 c..

SWbstitute Eq. ( 2.88) into Eq, ( 2.85)

Yc ('-m) Sn cn (u^)
c

Yp (w) #	 Yp (CO) -

[ 11+1Y7yc (-W) I See (w)

[ 1+YpYc Y2 Sri n (w)c c
Yp M

Yc f1+YpYc '
.
	See(w)

(20$9)

Note that the spectrum of the part of the error that is not
linearly correlated with the input, Sn n ( CO ) is

II
e e

2

I Y. 1 Sn n

S  
n. 2	 ( 2090)

e e	 j I+YCYp I
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Using this result in Eq. (2.89), we obtain

11+YpYc(w)1 Sn n (w)
Y^^ (w) * ^ Yp (CO)  _	 _.^e e	 ( 2.91)

Yc(w)	 See(w)

The ratio Sn n (w)/See (w ) in the -fraction of the error power
w'	 ?.t fregt?ency w tate '! is not linearly correlated with the input.

If o2 (w) is used to denote the fraction of the error power that

a	 is linearly correlated with the input,

Y (^)	 Y (^) y [ 1+YoXc (w)l [l -pe(w)]	
(.^ 9 )*	 .,....^_... 	 c	 2

A	 A	 J.(w)

pe(m) 
y 

(c)) - [ 1-pe(a )) l -- 1--
Yc(w)

From Eq. (2.92j"we see that YpM* at each frequency w is
equal to Y  M attenuated minus a factor. In systems where

tracking performance is very goad, so that the lix'.4ear part of the
system output follows the input very closely, a large part of the

error may result from remnant noise and pQ(w) may be small. In
such a case, the difference between Yp(cu) * and 

Y 
(w) will be

large.

If the remnant is zero pe(w) will be unity and Y M* will
equal Yp (w). In multiple regression analysis the residual plays

the same role as •;he remnant noise insofar as its effects on the
measured coefficients are concerned. Thus, if the model accounts
for all of the system output, a perfect measurement will be made
when the feedback error signal is used as the Input to the models

t
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If the controlled element dynamics are unity, Yc's)rjl^

Snene (w)

See(w)

Sn n tw )

1-P 2(w)(w) (2093)Sii (w)+Sn n (w)c c

Si1(0))

Sii (w) +Sn 
c nc 

(CO)

Sn n (W)
c cYp(w) 

Si i ^, w^ +S^ n (^'^
c c

and

Yp(w)*
	

M 1 2.94)

If the input signal is zero and the only forcing function
input to the system is the noise n c (t), P 2 (w) will be zero and
from Eq. (2.92)

Yp Yc(w)

Thus, without an input signal the only transfer relationship
that cine can measure	 ju is the reciprocal of she feedback path,, As
Graham and McRuer k ref 14) point out, if nc (t) is not additive
noise, but represents the results of neon-linearities in the
pilot's characteristics, indeed Yp(w) must be equal to -,:1/Yc(w)
if there is to be a circulating signal in the hoop. Such a cir-
culating signal is an example of a limsit cycle oscillation. On
the other hand, if nc (t) is additive noise that cannot be isolated
or; ,measureds then Yp (w) need not be equal tc ^1,0` c (r^} for there
to be circulatirk% signals and Yp (w) * will not be a correct
estimate of the human operator e s describing function,
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One fined point, the use of regression analysis techrO.ques
In which a model composed oi' physically realizable fl.Itexs

operates on the pilot's input or the system's input to match the

pilot's output leads to estimates of the describing functions

that will be ,,^,)hysically realizable. We have not introduced this
constraint on the nature of the describing functions in the
development above. In some circumstances imposing the realiz-

ability constraint will change the results obtained,

Co Application to Human Operator Measurements

In 171g. 9 are shown Bode plots of human operator open-loop

dynamic response characteristics that were obtained in three ways:

1. Conventional spectral analysis of closed-loop

yielding an estimate of Y'p(w)

2. Orthonormal exponential analysis of closed-loop

yielding an estimate of Yp(0).

3. Orthonormal-exporiential analysis of open-loop
yielding an estimate of Yp (w) *.

These data were obtained in a simple compensatory manual
control system in which Yc (s) w-41 and the input was an approxima-
tion to white noise passed through one RC low-pass filter with

3db frequency at 1.5 radians/ec. The poles of the orthogonal-

ized exponential filters used in the analysis are shoran in the
figure. No-be that the open-loop amplitude ratio measurements

Yp(w) e are 2 - 3db below the results obtained from analysis of
closed-loop characteristics Yp(a). Phis result is In agreement

with the previous development of the point that remnant will
serve to attenuate the measured system characteristics.
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D. Sue as
We have analysed the kinds of errors that result From making

direct open loop measurements of system elements, The magnitude
of the error depends directly upon the extent to which the input
to an element contains aomponents that cannot be accounted for by
a linear operation upon the input signal to that element. If a
compenant is a perfect linear operator, there is no difficulty in
making direct open-loop measurements of its tharacteristlesa The
Input signal need not be Isolated and recorded, nor need It
appear in the place normally 6tasigned to the input Forcing
function, Any kind of input or random disturbance occurring out-
aide of the limits of the coWnent being measured will suffice
to excite the system so that measurements can be made. If a
a	 As either non-linear, or has noise added to its output
so that not all of its response can be accounted for by a linear
operation upon its input, then an open-loop measurem yent is likely
to be in error, The more nearly linear a device, Ithe more
accurate will be the estimate of Yp(co) obtained from open-loop
neasurement¢, when dealing with non-linear or time-varyit
devices, or devices having relatively high noise components in
their output, one should exercise caution in interpreting the
results of open-loop measurements,

VII, CONCLUSIONS

In this chapter we have shown how the paradigm of multiple
regression analysis in Fig, 1 serves as a basis for comparing all
of the commonly used techn:Lques for identifying human pilot
dynamic response characteristics: cross-correlation analysis,
cross-spectral analysis, orthogonalized exponential analysis and
differential equation coefficient methods, Expressions for the
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expected values and the variances of the measures obtained

using these techniques have been derived

Although the characteristics of the measurement situation
have to be specified in detail in order to make accurate compari-
sons of the methods, a number of generalizations can be made.

For the long sample case all me :rods except the equation error
differential equation coefficient method will yield equivalent

results if the model for the system is sufficiently complete.
If the model is not able to match the system weighting function

with high accuracy and if the outputs of the filters are not
orthogonal, the measurements will be biased. It is not difficult,

to design the measurement procedure so that the bias wi`dl be small.
The equation error differential equation method will give biased
estimates of the coefficients if the pilot 's output cc:.*,tains
remnant noise. This bias cannot be removed except in a few
special cases and therefore this method should be avoided.

For the short, sample case all of the methods can be used
provided the complete set of regression equations are used to

find the regression coefficients. The normal. procedure followed
`	 in spectral analysis of assuming that the off-diagonal covariances
'	 are zero will lead to estimates of the regression coefficients

that will have excessively large variance	 spp' .',^-)ximate
methods shaald not be used for short sample measu y: v :nts .
Similarly, differential equation methods in which the coefficients
are adjusted by a parameter tracking technique operating con-
tinuously upon the signals lead 111";* estimates having excessive

f

	

	 variancQ,, To apply differential equation methods to short samples
the same sample of signals should be fed to the model repeti-

tively until the coefficients have reached their asymptotic

values, The orthogona]lized exponential and differential equation
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methods require fewer coefficients to represent typical systems
and ;therefore 'tend to give estimates having smaller variances
and smaller relative vvAabi lity than the cross-correlation and
cross-spectral methods.

Once the regression coefficients have been determined from

the orthogonalized exponential ana"'ysis method, the coefficients
of an assumed differential equation . for the system can be deter-
mined by solving a set of equations.

When direct open-loop measurements of human pilot describ-

ing function are to be made using the error signal as the input
to the model, the d(-^zs ^ibing function obtained will, in general,
be different from that obtained from closed -loop measurements
(after transformation of the closed -loop transfer function to its
equivalent open-loop) In which the syster a input is used as the
input to the model.. The difference increases as p e(w), the
fraction of the error power that is correlated with the input,
decreases. Care should be exercised in interpreting results of
open-loop measurements when p e(co) is much less than unity.

T
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APPENDIX A

NASA SEMNAR

PILOT--VEMCLE IDIMI-KCATION PRO13LEMS

PRELIMINARY COURSE OUTLINE

SESSION I
INTRODUCTION
A. Statement of the human operator identification

problem
Bo Review of fundamentals and notation

as Fourier and Laplace transforms
b. Systems representations: differential

equations weighting functions, convolution,)
transfer functions

ca Harmonic Analysis: correlation functions and
and power spectra

d.	 Simple statistical distributions.

SESSION II
Multiple Regression Analysis of Time-Invariant D` namr is
Systems
A. Orthogonal functions: the importance of damped

exponentials
Bo Basic measurement technique
Co Representation of correlation functions
Do Selection of inters
E,, Examples - Human Operator
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.SESSION III

Regression Aimlysis of Time-Vax-ying 35'yrtems :

A. Statistical properties of regression co-efficients
B, Estimation of degrees of freedom
C, Effect of initial. condition
D, Examples - Haman Operator

SESSIONS IV and V

Comparison with Other Measurement Techniques
A. Spectral analysis
B^ Parameter tracking

1) Oo Bekey

2) Jo Adams
C. Direct open ^ ersus clo ed-loop measurements
D. Finding co-efficients of differentia. equations

SESSI0N DTI

Applications to H-0 Measurement and Signal Analysis
A. McRuer: Problems encountered in human pilot

measurements: training,, stability 9 linearity
B. a'un=ry
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y	 APPENDIX B

List of Attendees for Seminar on
System Identification Problems

NASA

Ames Research Center:

E. Ca Stewart
S. C. Hx alm

Ms Da White
W. E. McNeill

F

	

	 Co T. Snyder
A. Co Marcy

Me Sadoff
To E. Wempe

r	 J. D. Stewart
k

	

	
J. C. Howard
R. M. Patton

Bo Yo Creer
Co Ho Lardy

NASA Headquarbers:

It. W. TaylorM

Flight Research Centex

L. Taylor
E. C. Holleman

9

LanEI Z Research Center.

Jo Adams
R. Saucerx

Systems Technology, Inc.:

D. T. McRuer
R. Magdalen
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Space Technology La o ratorl ose

0. Bekey
Ho Meissinger

Aeronautical System Division 	 i! ght Control Laborato ,

R. Jo Wasicko

Martin (Research Institute for Advanced Studies^d

F. Muckler
R. Oberasayer

Bolt Beranek and Newman Inc

J I. Rlkind

ACF

W. Stokes

n
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