		•	https://ntrs.nasa.gov/s	search.jsp?	R=19660004230 2020-03-16T21:29:22+00:00Z
a Nasa ∳			. . .		N S - L
		AERO	IVCO CORP OSPACE STRUCTUI ASHVILLE, TENNES	RES DIVIS	SION
	MODEL	M.A. 5503	R	EPORT .	R-1051
	CONTRACT NO.	NAS 8-11870	D	ATE	18 October 1965
			FINAL REPORT		
		OPTIMIZATI	on of saturn	IB AND	v
•		MOUNTING AND T	HERMAL CONDIT	IONING	PANELS
• •					
• • • • • • • • • • • • • • • • • • •	PREPARED BY	D. L. Manor		ROUP _	Research & Development Proj.
	CHECKED BY	J. W. Cathcart	,	PPROVE	D BY W. N. Ottenville
			GES8		
	N/66 175	NO. OF DIA	GRAMS <u>Appen</u>	dices /	<u>A, B</u> , C, D
	N 66-135	± 7	GPO	PRICE	\$
N 9 (ACCESS 2 V 0		(THRU)	CFST		E(S) \$
	D D PAGESI S G G T TMX OR AD NUMBERI	(CODE) (CATEGORY)			y (HC) <u>3.00</u> e (MF) <u>50</u>
-	ļ	-	ff 653		· · ·

ſ

|

.....

D. L. Manor	AVGO CORPORATION	1 8		
J. W. Cathcart	AEROSPACE STRUCTURES DIVISION NASHVILLE, TENNESSEE 37202	R-1051		
save 18 Oct. 1965	NAS 8-11870	wasel we. M.A. 5503		
	TABLE OF CONTENTS			
I. INTRODUC	TION			
II. OBJECTIV	E			
III. TASK				
IV. TASK EVE	NTS			
V. CONCLUSI	ONS			
ADDENIUTY	A - STATIC TEST DATA AND MARGIN OF SAFETY CA	I CILLATTICALS		
APPENDIA	FOR VARIOUS INSERT DESIGNS	LULATIONS		
ADDENUT	B - STRESS LEVEL CALCULATIONS FOR PANELS WIT	U DDODOCED		
	DESIGN CHANGES			
, ADDENDIN	C - TEST REPORT - VIBRATION AND SHOCK TEST (-		
	MOUNTING AND THERMAL CONDITIONING PANELS			
	LD - TEST REPORT - VIBRATION AND SHOCK TEST (
	OPTIMIZED DESIGN MOUNTING AND THERMAL CO			
	PANEL			
		· ·		
- · ·				
	· · · · · · · · · · · · · · · · · · ·			
	、			

/

1

D.	-	Manor
J.	W.	Cathcart

•••• 18 Oct. 1965

AEROSPACE STRUCTURES DIVISION NASHVILLE, TENNESSEE 37202

NAS 8-11870

, Page ND,	2	. 8	
	· R-1	051	
	<u>M.</u> A	. 5503	

FINAL REPORT

OPTIMIZATION OF SATURN IB AND V

MOUNTING AND THERMAL CONDITIONING PANELS

I. INTRODUCTION

This Final Report is submitted in response to the requirements of NASA Contract NAS 8-11870. It contains a description of the tasks and major milestones encountered in the program.

The Appendices of this report contain the results of both static and dynamic testing, along with stress analyses which utilize the test results. A drawing, 2-10086, defining the various panel configurations, has been made and is to be considered as part of this report, but will be transmitted under separate cover.

II. OBJECTIVE

The primary objective of this program was to investigate various weight reduction techniques for weight optimization of the Mounting and Thermal Conditioning Panel without a degradation in structural integrity. Following the investigation and study, hardware was to be fabricated and tested in order that a final optimized design could be formulated.

D. L. Manor	AVCO CORPORATION	 3	, 8
J. W. Cathcart	AEROSPACE STRUCTURES DIVISION NASHVILLE, TENNESSEE 37202	 R-10	51
18 Oct. 1965	NAS 8-11870	 M.A.	5503

III. TASK

- A. Investigate various methods of reducing the weight of the Saturn 1B and V Mounting and Thermal Conditioning Panel while maintaining its structural adequacy and integrity.
- B. Statically load a mounting and thermal conditioning panel of existing design, furnished by MSFC, with simulated equipment loads and measure deflections and strains. Combining the results of the static load test and dynamic tests previously conducted at MSFC, perform a comprehensive stress analysis to verify the proposed changes.
- C. Perform static pull tests on small specimens and analyze results to determine optimum insert design.
- D. Fabricate three full size, heat treated panels. Two panels to represent the two most feasible configurations as determined by the studies and preliminary tests; the configuration of the third panel based on the results of the tests performed on the first two panels.
- E. Perform vibration and shock tests on the three panels (Ref. C above). Following the vibration and shock tests, the panels shall be subjected to the proof pressure test outlined in SCD 20M42000.
- F. After completion of all tests, panels are to be delivered to MSFC.

IV. TASK EVENTS

Two panels reflecting the existing design were received from MSFC and one

D. L. Manor	AVCO CORPORATION	4 8	
J. W. Cathcart	AEROSPACE STRUCTURES DIVISION NASHVILLE, TENNESSEE 37202	****** **. R-1051	
18 Oct. 1965	NAS 8-11870	M.A. 5503	

was sent to Inland Testing Laboratories for shock testing. The other panel was retained at AVCO for use in static tests.

An investigation of possible insert designs resulted in a selection of six configurations to which test specimens were fabricated. The test specimen configurations are as follows:

A. Existing design

- B. Existing design with only broken cells filled with potting compound
- C. Optimized design of existing aluminum insert (See Fig. 4, Appendix A)
- D. Inverted optimized insert design placing KNL insert at top of mounting assembly (See Fig. 5, Appendix A)
- E. Replace entire insert assembly with Shur-Lok insert (See Fig. 6, Appendix A)
- F. KNL insert installed in brazement.

The test specimens of the various insert designs were tested by means of static pull tests. These test results are included in Appendix A. From the data gathered by static pull tests and margin of safety calculations, two insert designs were recommended for use in the full size panels to undergo shock and vibration testing. The two insert designs selected were the inverted optimized design and the Shur-Lok, as described in D. and E. above.

It was determined that panel weight could be reduced considerably by holding material thickness of panel components to a minimum and adding lightening holes in the spacer bars. From calculations based upon results of

D.	L.	Manor			
-		84			
J.	₩.	Cathe	cart		
-		•			
-	18	Oct.	1965		

CORPORATION AEROSPACE STRUCTURES DIVISION NASHVILLE, TENNESSEE 37202

NAS 8-11870

static and dynamic testing of panels which conform to existing design, it was determined that the following changes are feasible:

Reduce top skin thickness of braze assembly from .065-inch to .030-inch. A.

- Reduce width of braze assembly frame to .10-inch where possible. **B**.
- C. Place .375-inch dia. holes in braze assembly spacer bars on .50-inch centers.
- D. Reduce bottom skin thickness of braze assembly from .025-inch to .020inch.
- E. Eliminate 7075-T6 .020-inch top doubler skin from mounting panel assembly.

Calculations of expected stress levels in the thinner members are included in Appendix B.

According to original direction, three panels of optimized design configurations were to be fabricated simultaneously. One panel was to be built to each of two chosen designs and an additional panel to the design estimated to be the most feasible. However, at the program review, 4/1/65, the NASA representative requested that fabrication of the third panel be postponed until completion of dynamic testing of the first two panels. This eliminated a possible wrong choice and permitted a panel of a third, more conservative, design to be fabricated in the event that both panel designs failed dynamic testing.

At the 4/1/65 program review, it was agreed that the designs for the first two test panels should incorporate the inverted optimized insert and the

D. L. Manor	AVCO CORPORATION	PARE NO. 6 of 8
J. W. Cathcart	AEROSPACE STRUCTURES DIVISION NASHVILLE, TENNESSEE 37202	R-1051
LAVE 18 Oct. 1965	NAS 8-11870	M.A. 5503

Shur-Lok insert per AVCO's recommendations. In addition, it was agreed that both panels should be fabricated with the thinner face sheets and lightening holes as described previously. (See Dwg. 2-10086-1 & -3 for panel configurations.)

The two test panels also incorporated a new coolant fitting design which provides a method of adjusting pressure drop. The new coolant fitting design, however, is considered an improvement change and does not contribute to either structural integrity or weight reduction.

Dynamic testing of the panels was performed by Inland Testing Laboratories according to the procedures described in their Report No. 551177-B, which is included in this report as Appendix C. Panel 2-10086-1 with inverted optimized inserts successfully passed all phases of dynamic testing. Panel 2-10086-3 with Shur-Lok inserts passed shock testing, but experienced failure during vibration along the "Z" axis and testing was discontinued. The failure appeared as a crack in the brazement outer skin about 1/2-inch from an insert.

Both optimized panels exhibited a lower transmissibility during these tests than the previously tested, existing design. This resulted in maximum peak loads of approximately 50% less for the optimized panels.

During fabrication of the test panels, some difficulty was experienced in maintaining acceptable flatness on the brazement skin which mates to the mounting panel assembly. The problem was noted after heat treatment of the braze assembly and appeared as bulges in the skin opposite spacer bar

D.	-	Manor	
-	₩.	Cathc	art
DATE	1	8 Oct.	1965

AFOSPACE STRUCTURES DIVISION NASHVILLE, TENNESSEE 37202

NAS 8-11870

P482 N 8 .	7,	. 8
827847 w 8 .	R-10	51
MODEL NO.	M.A.	5503

lightening holes. This condition resulted from expansion of entrapped gas during heat treat. The deformation occurred in the common skin, since the top skin is considerably thicker.

It was jointly agreed that the third panel configuration should be identical to panel 2-10086-1 (inverted optimized inserts) with the exception of deleting lightening holes in the spacer bars. Deletion of the lightening holes solved the flatness problem.

The third panel (2-10086-5) was fabricated and shipped to Inland Testing Laboratories for dynamic testing. The panel was tested according to the procedures set forth in Inland's Test Report No. 551218 which is included in this report as Appendix D. The panel successfully passed all phases of dynamic testing. It was then returned to AVCO and subjected to proof pressure test per Specification Control Drawing 20M42000. No leakage or deformation resulted from the pressure test.

V. CONCLUSIONS

With the completion of testing of the final optimized panel design, the objective of this program has been successfully met. Without sacrificing structural adequacy of the Mounting and Thermal Conditioning Panel, the weight has been reduced approximately 24.5 per cent. This weight is believed to be the minimum attainable, consistent with structural requirements.

Ŋ.	L.	Mano	r
J.	W.	Cath	cart
	18	Oct.	1965

AVCO CORPORATION AEROSPACE STRUCTURES DIVISION NASHVILLE, TENNESSEE 37202 NAS 8-11870

8	••	8
R-10)51	
M. A.	55	503
	R-10	8 R-1051 M.A. 55

The inverted optimized insert design which was used in the final panel configuration represents a total weight reduction per panel of 1.176 pounds. An additional weight reduction of 5.564 pounds was accomplished by reducing material thickness of various panel components. This provides a total weight savings of 6.74 pounds per panel.

P.G.	McFarland
	•*

D. L. Manor

AVCO CORPORATION

AEROSPACE STRUCTURES DIVISION NASHVILLE, TENNESSEE 37202 ---- 10/4/05

NAS 8-11870

APPENDIX A

STATIC TEST DATA AND MARGIN OF SAFETY CALCULATIONS

FOR VARIOUS INSERT DESIGNS

P.G.	McFarland
D. L.	Manor
*******	e7

AVCO CORPORATION AEROSPACE STRUCTURES DIVISION

NASHVILLE, TENNESSEE 37202

F488 ND.		• 12
#EPONY 118.	Apper R-10	ndix A 51
	M.A.	5503

···· 10/4/65

NAS 8-11870

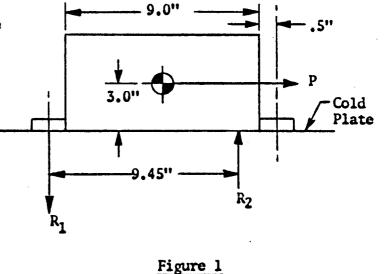
STRESS ANALYSIS

PROBLEM:

This analysis calculates the margins of safety (M.S.) for each of the equipment mounting insert designs.

MATERIALS:

6061-T4 to T6


 $F_{ty} = 33,000 \text{ psi}$ $F_{tu} = 40,000 \text{ psi}$ Endurance Limit = 12,000 psi $F_{bru} = 88,000 \text{ psi}$

APPLIED INSERT LOADS:

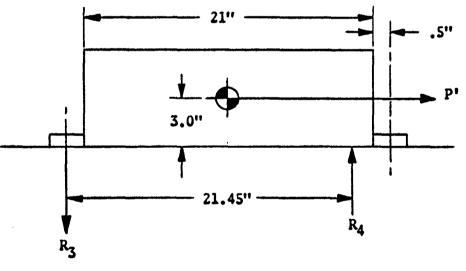
Orientation of axes may be obtained from Figure 3.

X-Axis

Assume R_2 reacts in the middle of a section 0.1 in. wide at the edge of the block.

P.G. McFarland	AVCO CORPORATION	P488 NG.	3 .,	12
D. L. Manor	AEROSPACE STRUCTURES DIVISION NASHVILLE, TENNESSEE 37202		Appendi: R-1051	хA
10/4/65	NAS 8-11970		M.A. 55	03

Based on one g in the x and y directions:


P = $1g \cdot 50$ lbs. = 50 lbs. $\sum M_{R_2} = R_1 \cdot 9.45'' = 50$ lbs. $\cdot 3''$ $\cdot R_1 = R_2 = 150/9.45 = 15.9$ lbs.

Since there are two inserts on each side of the equipment,

Load/Insert = $R_1/2$ = 15.9/2 = 7.95 lbs.

Y-Axis

Assume R_4 reacts in the same way as R_2 .

Balancing out the loads for the 1g output:

P' = 1g + 50 lbs. = 50 lbs. $\sum M_{R_4} = R_3 \cdot 21.45'' = 50$ lbs. $\cdot 3''$ $R_3 = R_4 = 150/21.45 = 6.99$ lbs. $\cdot \cdot Load/Insert = 6.99/2 = 3.495$ lbs.

P.G. McFarland D. L. Manor	AFOSPACE STRUCTURES DIVISION NASHVILLE, TENNESSEE 37202	Appendix A	
10/4/65	NAS 8-11870	Measel No. M.A. 5503	

	One g LOAD	ULTIMATE LOAD *	LIMIT LOAD**	MAXIMIM LOAD***
X-Direction Load/Insert	7.95 lbs.	179.5 lbs.	141.0 lbs.	801.0 lbs.
Y-Direction Load/Insert	3.495 lbs.	78.9 lbs.	62.0 lbs.	489.0 lbs.

• Ultimate Load = Applied Insert Load x 1.40 x g Level

****** Limit Load = Applied Insert Load x 1.10 x g Level

The g Level is obtained from the preliminary vibration test results in the $X \in Y$ directions.

g Level = <u>16.129</u> g This g level is the root-mean-square of accelerometer #3.

*** This load is based on the maximum g level obtained during the vibration tests; however, these loads are usually for only a very short period.

Maximum Load = Applied Insert Load x 1.40 x Maximum g Level

Max g; $X = 72 \ \xi \ Y = 100$

P.G. McFarland

AVCO CORPORATION

AEROSPACE STRUCTURES DIVISION NASHVILLE, TENNESSEE 37202 Appendix A R-1051

---- 10/4/65

D. L. Manor

NAS 8-11870

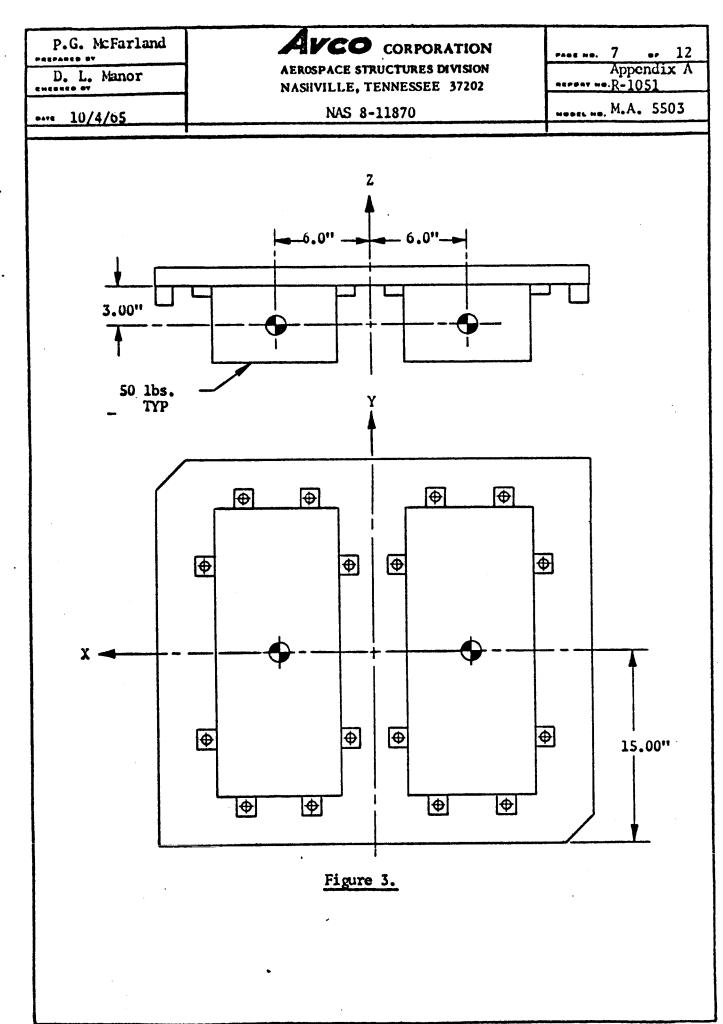
Menes H. M.A. 5503

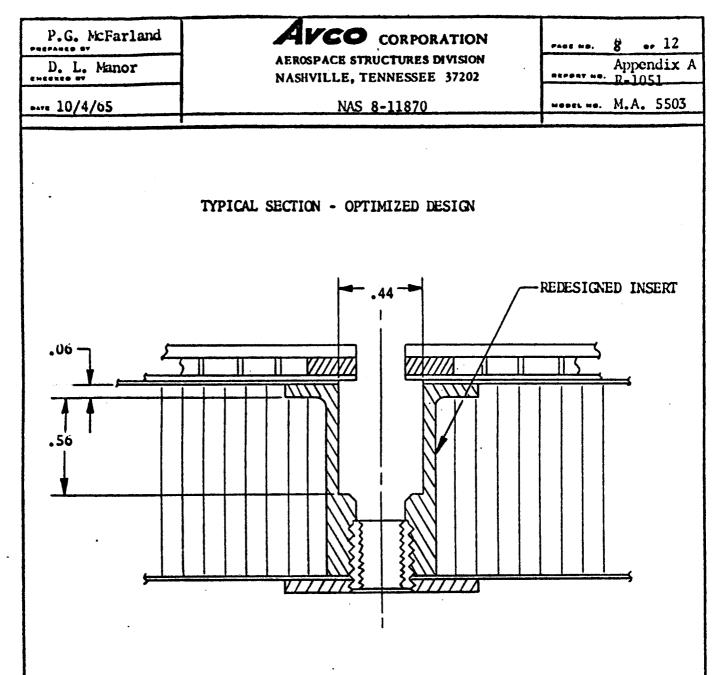
STATIC YIELD LOADS APPLIED TO INSERT TEST SPECIMENS

	CONFIGURATION		TENSILE (LBS)	SHEAR (LBS)
(1)	Existing Design		4400	4900
(-)			4330	5730
			3910	5730
			3890	5810
			4270	5840
·		AVERAGE	4160	5802
(2)	Existing Design with only		3740	5850
(-)	broken cells filled with		2900	5950
	potting compound		3390	5860
	beerer and a subserve		4020	5820
			3540	5820
		AVERAGE	3518	5860
(3)	Optimized Design of existing		3830	5800
(J)	insert		4290	5830
	T1341 f		4370	5920
			4410	5880
			.4005	5880
		AVERAGE	4181	5862
	Turne 3.0 Airian Transfer		4350	5640
(4)	Inverted Optimized Insert Design		4350	5670
			4280	5630
			4200	5680
			4370	2000
		AVERAGE	4245	4657
(5)	Shur-Lok Insert		2825	3920
			2955	3760
			2645	3220
			2690	3950
			2750	
		AVERAGE	2773	3713
(6)	Entire insert assembly removed		1715	4840
	with KNL insert installed in		1920	5260
	brazement		1620	4570
			1660	4270
				4100
		AVERAGE	1545 1692	4608

P.G. McFarland	Ave	CORPO	RATION	PAGE 10.	6 •• 12	
D. L. Manor	AEROSPACE STRUCTURES DIVISION			Appendix A		
ENESKED 67		LE, TENNESSEI	57202		N-TOST	
10/4/65		NAS 8-11870			M.A. 5503	
	ULTIMATE TENSION	TYPE OF	ALLOWABLE			
	TEST LOAD	FAILURE	LOAD*	M.S.**	M.S.***	
(1) Existing Design	4160 lbs.	Core Shear	1248 lbs.	Large	.558	
(2) Potting Compound in Broken Cells Only	3518 lbs.	Bond . Failure	1055 lbs.	Large	.317	
(3) Optimization of Existing Insert	4181 lbs.	Core Shear	1254 lbs.	Large	.565	
(4) Inverting Optimized Insert	4289 lbs.	Core Shear	1286 lbs.	Large	.605	
(5) Shur-Lok Insert	2773 lbs.	Local Core Crushing	832 lbs.	Large	.039	
(6) Insert Assembly Removed	1692 lbs.	Bond Failure	507 lbs.	1.82	367	

 Allowable Load is based on the endurance limit of 12,000 psi and is calculated from the following:.
 12,000 psi

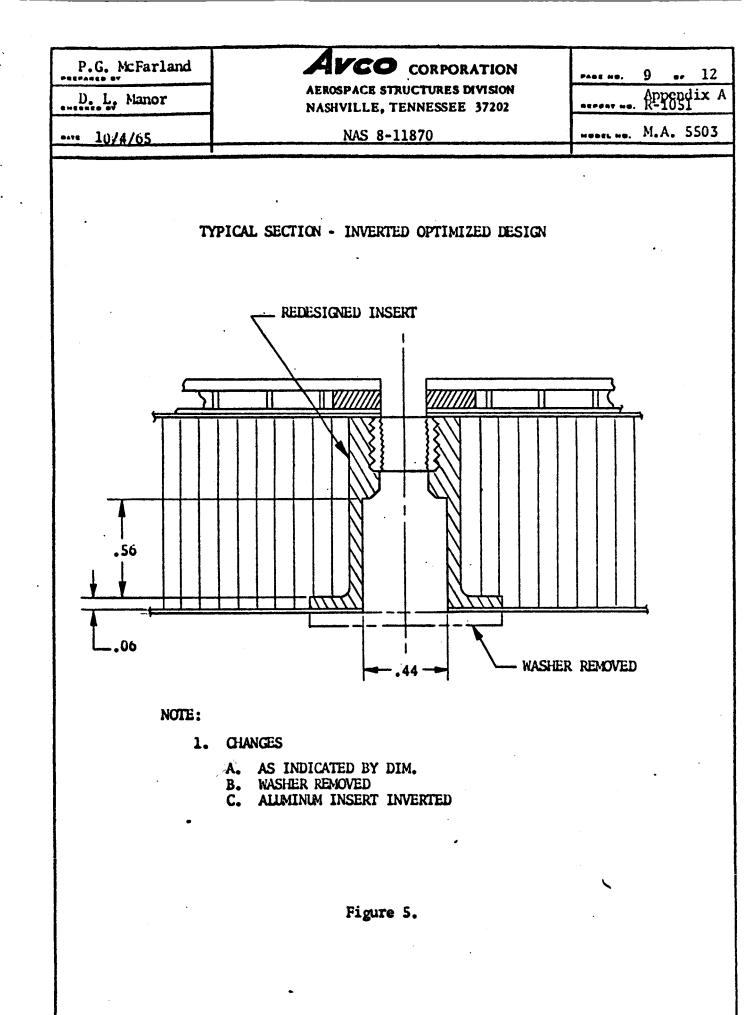

Allowable Load = Ult. Tension Test Load x 40,000 psi

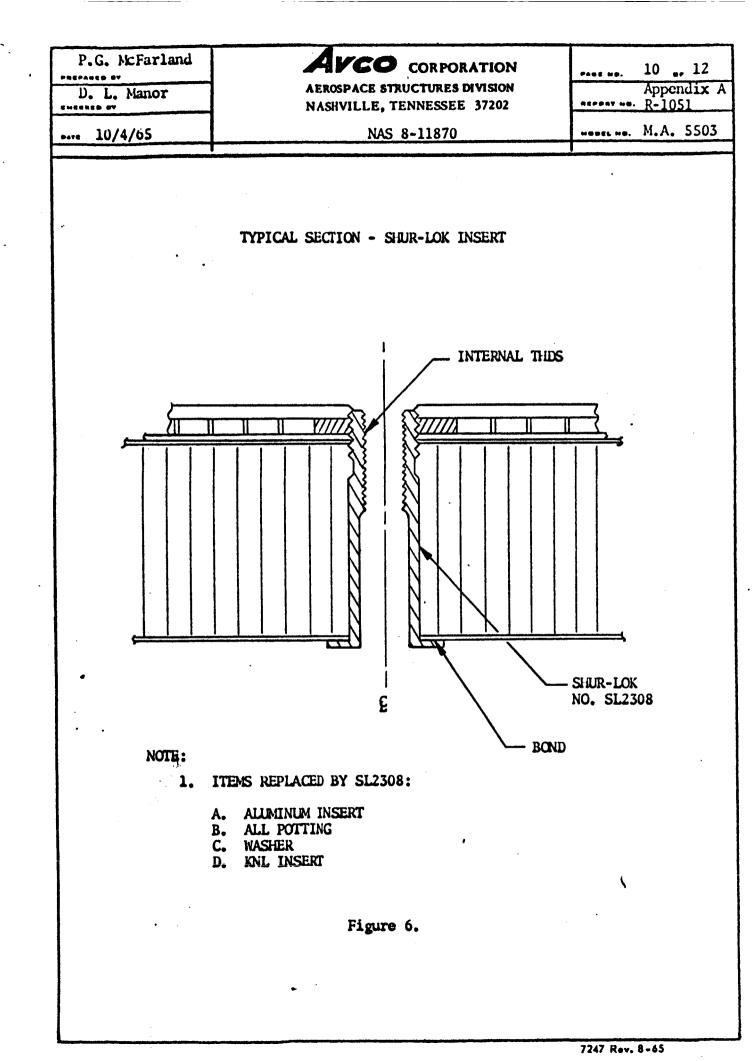

 ## M.S. = Allowable Load
 - 1.0

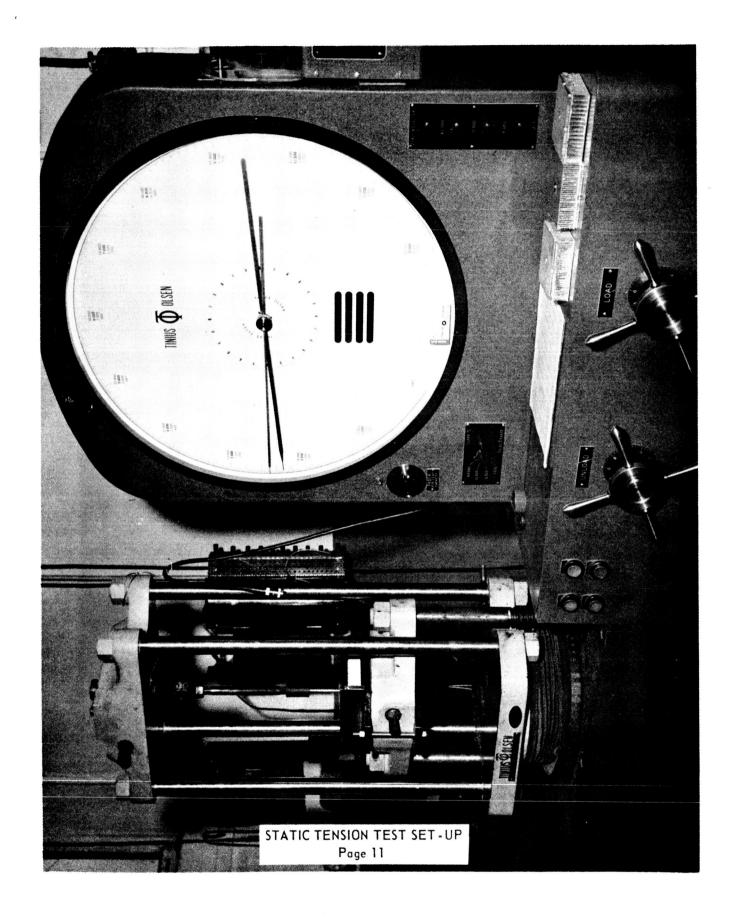
 Ultimate Load
 - 1.0

*** M.S. = Allowable Load - 1.0 Maximum Load

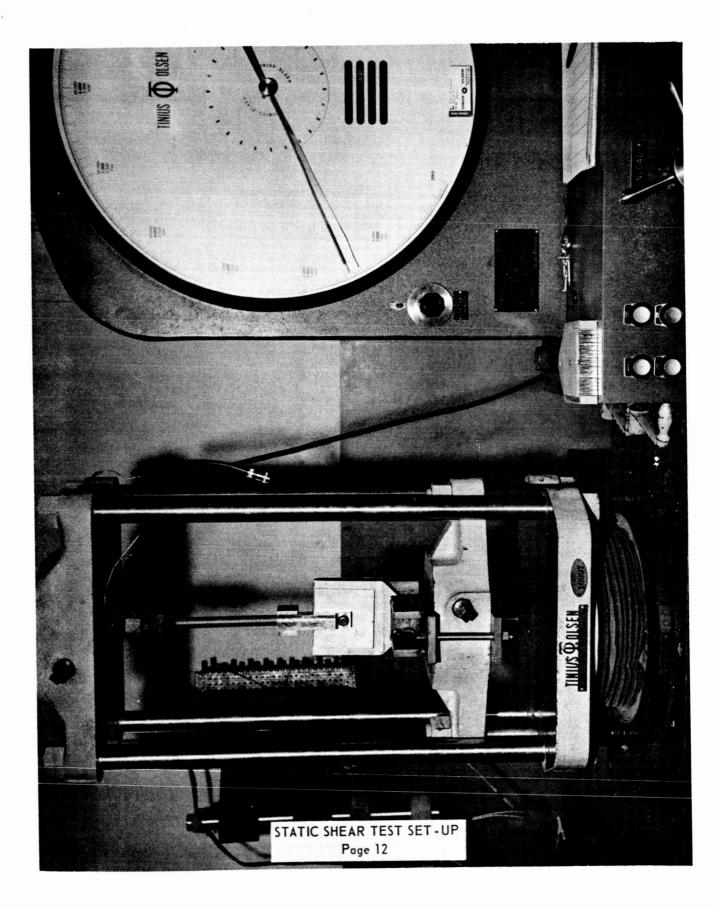
The Margin of Safety calculations indicate that designs (1) through (5) are structurally adequate, while design (6) is insufficient.




ALL CHANGES INDICATED BY DIMENSION.



J



7247 Rev. 8+65

.

P.G. McFarland	AVCO CORPORATION	**** us. 1 •* 8
D. L. Manor	AEROSPACE STRUCTURES DIVISION NASHVILLE, TENNESSEE 37202	Appendix B
10/4/65	NAS 8-11870	

APPENDIX B

STRESS LEVEL CALCULATIONS

FOR PANELS WITH PROPOSED DESIGN CHANGES

	McFarland		
D. L. Manor			
-	r		

AFROSPACE STRUCTURES DIVISION NASHVILLE, TENNESSEE 37202

	2 .	
******		ndix B 51
MODEL NO,	M.A.	5503

---- 10/4/65

NAS 8-11870

STRESS ANALYSIS

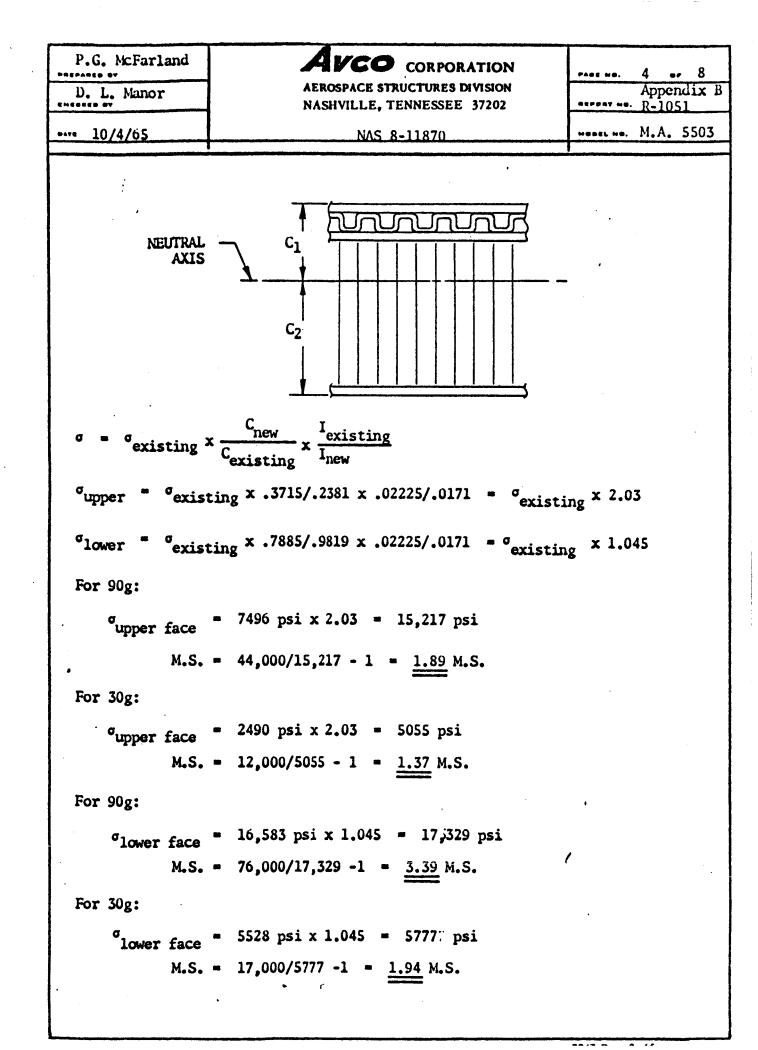
Stress levels in face plates based on static test data and dynamic test accelerations. For Static Test data, see page 8.

MATERIAL:

Upper Face - 6061-T4 to T6 $F_{tu} = 44,000 \text{ psi}$ $F_{ty} = 33,000 \text{ psi}$ Endurance Limit = 12,000 to 15,000 psi Lower Face - 7075-T6 $F_{tu} = 76,000 \text{ psi}$ $F_{ty} = 66,000 \text{ psi}$

Endurance Limit = 17,000 psi

Stress Level for Existing Configuration


 $\sigma_{face} = \frac{\sigma_{test}}{P_{test}} \times Box Wt. x g Level$

The g level was obtained from preliminary vibration test data involving a broad range of input frequencies. Two g levels were used from these test results, one being a peak output g and the other being an endurance limit g. The endurance limit g was the root-mean-square value of all the g levels.

... 30g is the endurance g limit

and 90g is the peak g limit felt for a short period.

P.G. McFarland D. L. Manor	AVCO CORPORATION AEROSPACE STRUCTURES DIVISION NASHVILLE, TENNESSEE 37202		Appendix B Appendix B
10/4/65	NAS 8-11870		MODEL NO. M.A. 5503
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
For 90g:			
^o upper face	$= 327/394 \times 100\% \times 90 = 7496$	psi	
For 30g:			
^d upper face	$= 327/394 \times 100\% \times 30 = 2490$	psi	
For 90g:			
^σ lower face	$= -726/394 \times 100# \times 90 = 16,53$	83 psi	•
For 30g:			
^σ lower face	$= -726/394 \times 100^{4} \times 30 = 5528$	psi	
For 30g(tension)	:		
^o lower face	$= 414/394 \times 100\# \times 30 = 3152$	psi	
	Stress Level for New Config	guration	
Proposed Changes	•		
1. Reduce t	op skin of the brazement from .0	65 to .030 ⁴ .	
2. Reduce b	ottom skin of the brazement from	.025 to .020	•
3. Remove t	op skin of the mounting assembly	•	
Existing Configu	ration (See page 5) New	Configuratio	n (See page 6)
I = .0222	5 in ⁴ /in	I = .0171	in ⁴ /in
$C_1 = .2381$	in.	C ₁ = .3715	in.
C ₂ = .9819	in.	C ₂ = .7885	in.
			•

P.G. McFar D. L. Man		AERO	SPACE STRUCT	ESSEE 37202	Appendix B Appendix B Appendix B Appendix B
•••• 10/4/65			NAS 8-11	870	M.A. 5503
	M.S. = 1 analysis in ble and will <u>Design:</u> <u>Determin</u> .065" -	17,000/3294 ndicates tha 1 not advers	ely affect	-	ntegrity.
Element	A/in.	Y	M = AY	AY ²	
1	.065	1.1875	.07719	.09166	
2	.025	1.0525	.02631	.02769	
. 3	.020	1.03	.0206	.02122	
4	.020	.01	.0002	.000002	
5	.02619	1.11	.02907	.03227	•
ΣA	15619	∑M •	.15337	.17284 =)	ζαγ ²

D	McFarland L. Manor D/4/65	AEROS	COR PACE STRUCTUR VILLE, TENNES NAS 8-11870	RES DIVISION SEE 37202		6 8 Appendix B R-1051 M.A. 5503
	$\overline{Y} = \frac{\sum M}{\sum A} = \frac{.153}{.156}$ $I = \sum (AY^2) + I_{c}$ $= .172841$ ENT OF INERTIA OPT $.030'' - \frac{1}{.020''} = \frac{1}{.020'''} = \frac{1}{.020'''} = \frac{1}{.020'''} = \frac{1}{.020'''} = \frac{1}{.020''''} =$, - ∑A(¥) ² .5059 - .02	Neg 225 in ⁴ /in.	glect (I _o) Te	erm) 090'' 	
		A/in	у	Лу	Ay ²	,
	TOP SKIN	.030	1.145	.0344	.0394	
	INTERMEDIATE SKI	.020	1.03	.0206	.0212	
	LOWER SKIN	.020	0.01	.0002	•	
	SPACER	.0262	1.085	.0284	.0308	
	Σ	.0962	-	.0836	.0914	
	$I = \sum Ay^2 + I_0$	- Aỹ ²		y = ΣA	y∕∑A	
	$I = .09140962 \times (.87)^2$			y = .0836/.0962		
	I = .09140726		\overline{y} = .87 inch			
	<u>I = .0188 in⁴/</u>	in		C = 1.	1687	
				<u>C = .2</u>	9 inch	

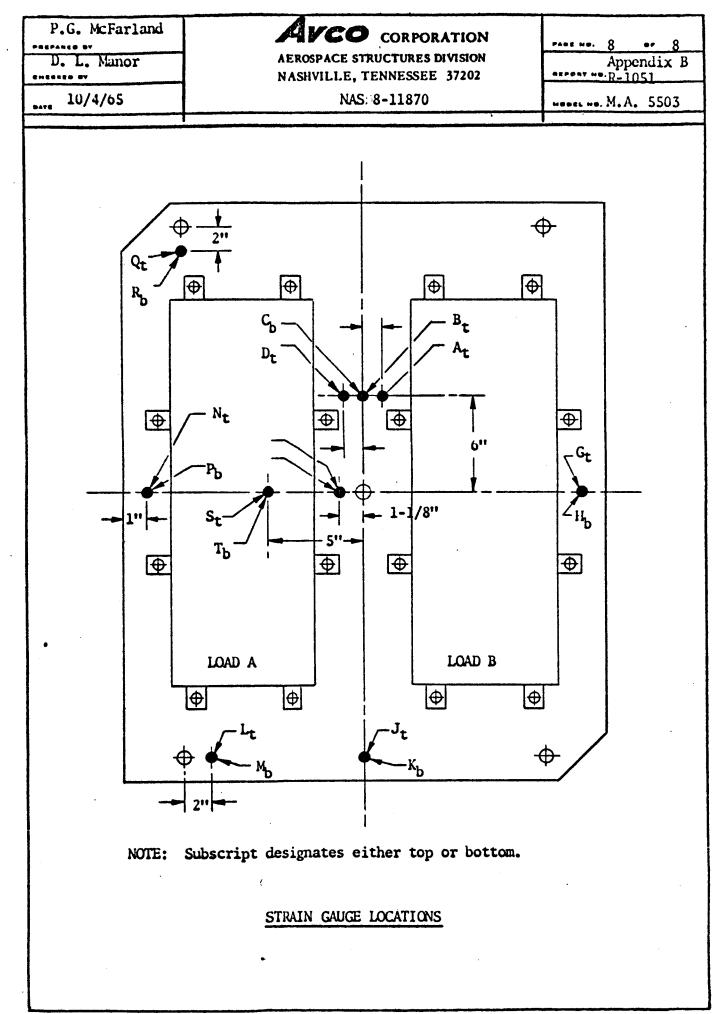
P.G. McFarland	AVCO CORPORATION
D. L. Manor	AEROSPACE STRUCTURES DIVISION

NASHVILLE, TENNESSEE 37202

PAGE NO.		•r 8		
Appendix B				
	M.A.	5503		

LATE 10/4/65

NAS: 8-11870


MOMENT OF INERTIA OPTIMIZED DESIGN (Spacer Bar Not Included)

	A/in.	У	Ay	Ay ²	
TOP SKIN	.030	1.145	.0344	.0394	
INTERMEDIATE SKIN	.020	1.03	.0206	.0212	
LOWER SKIN	.020	0.01	.0002	.000002	
Σ	.070	•	.0552	.0606	
$I = \sum Ay^2 + I_0 - \sum$	A(y) ²	· ·	<u>y</u> = ∑m/∑A		
I = .06060435	i i i i i i i i i i i i i i i i i i i		y = .0552/	.070	
$I = .0171 in^{4}/in.$			\overline{y} = .7885 in.		
			C = 1.16 -	.7885	
			C = .3715	in.	

STRESSES BASED ON STATIC TEST

Applied Load = 394 lbs. For load and strain gage location, See Figure 1.

STRESSES					AXIAL	LOAD
	σ _{max}	PSI	max	PSI	LBS/IN.	
GAGE	UPPER	LOWER	UPPER	LOWER	UPPER	LOWER
Α	45.8	-	1.5	-	2.9	
B-C	64.0	309	8.7	103	4.0	6.2
D	72.2	-	42	-	4.6	-
E-F	327	-726	73	97	20.6	-14.
G-H	-144	375	75	167	-9.1	7.
J-K	64	370	28	156	4.0	7.
L-M	176	-87	64	77	11.1	-1.
N-P	-60	349	21	189	-3.8	7.
Q-R	-251	414	160	261	-15.9	8.

AEROSPACE STRUCTURES DIVISION NASHVILLE, TENNESSEE 37202 NAS 8-11870	Appendix
NAS 8-11870	ueset us. M.A. 550
	• .
	• .
	APPENDIX C

OF OPTIMIZED MOUNTING AND THERMAL CONDITIONING PANELS

د

REPORT

TEST REPORT NO. 551177-B

on

Two (2) Mounting & Thermal Conditioning Panels, Dwg. No. 20M42088 Mod. 1, Serial No¹s. 1 & 3 for Aerospace Structures Div.

TECH-CENTER DIVISION

6401 Oakton St. Morton Grove, Illinois 60053 1482 Stanley Ave. Dayton, Ohio 45404

TEST REPORT NO. 551177-B

on

Two (2) Mounting & Thermal Conditioning Panels, Dwg. No. 20M42088 Mod. 1, Serial No's. 1 & 3 for

Aerospace Structures Div. AVCO CORPORATION

+11120 MOMORE

INLAND TESTING LABORATORIES

COOK ELECTRIC COMPANY TECH-CENTER DIVISION

6401 OAKTON STREET + MORTON GROVE, ILLINOIS 1482 STANLEY AVENUE + DAYTON, OHIO

 - NIAND	
A SORA	7
	ير

ITEST REPORT

6401 OAKTON STREET . MORTON GROVE, ILLINOIS

Report No. 551177-B

ADMINISTRATIVE DATA

AVCO Corporation Purchase Order No. 42856 Dated: February 16, 1965

L. <u>NAME & QUANTITY OF ITEMS TESTED:</u> Two (2) Mounting & Thermal Conditioning Panels, Dwg. No. 20M42088, Mod. 1, S/N's 1 and 3

- II. <u>PURPOSE OF TEST</u>: The purpose of this test was to determine the ability of the panel, when loaded, to withstand Vibration and Shock, applied as described in this report.
- III. MANUFACTURER: AVCO Corporation, Aero Structures Div., Nashville, Tenn.
- IV. SPECIFICATION: AVCO Corp. "Statement of Work"
- V. <u>DATE TEST COMPLETED</u>: May 28, 1965
- VI. <u>TEST CONDUCTED BY:</u> Inland Testing Labs., Tech-Center Division
- VIL, DISPOSITION OF TEST ITEMS: Returned to AVCO Corporation
- VIII. SIGNATURE:

Report prepared by:

Engineer Irving F Haza

The information and data contained in this report may not be released for publication or distribution for advertising purposes without the prior approval and written consent of the Cook Electric Company.

STATE OF ILLINOIS SS
T. J. Burns
is the result of complete and carefully conducted tests and is to the best of his knowledge true and correct in all respects.
SUBSCRIBED and sworn to before me this day of une
My commission expires February 20. 19.69 Notary Public in and for the County of Cook, State of Illinois

 - Intrano	
	$\overline{\mathcal{I}}_{\alpha}$

ITEST REPORT

6401 OAKTON STREET . MORTON GROVE, ILLINOIS

Report No. 551177-B

DESCRIPTION OF TEST:

VIBRATION

Requirements:

Each panel shall be subjected to a Vibration Test in accordance with AVCO Corporation "Statement of Work", Par. 1.

Test Procedure:

Two (2) Mounting and Thermal Conditioning Panels, Drawing No. 20M42088, Mod. 1, Serial No's. 1 and 3, were submitted by the Aerospace Structures Division of AVCO Corporation, for a Vibration Test in accordance with AVCO Corporation "Statement of Work", Par. 1. Each panel was individually subjected to a Vibration Test in the following manner.

The Mounting and Thermal Conditioning Panel was loaded with two (2) 50-pound ballast weights, distributed as shown in Figure L. The panel and load assembly were then attached to the test fixture, which in turn, was attached to the vibration machine. With the exhaust port of the panel capped, 50 psig distilled water pressure was applied for the duration of the test. During each axis of the vibration test, the panel was instrumented with accelerometers, as illustrated in Figure IL. The accelerometers were maintained in an atitude such that the sensitive axis of each accelerometer was perpendicular to the surface of the panel throughout all vibration testing. The applied vibration was measured by means of an accelerometer located on the test fixture, adjacent to the unit mounting.

Sinusoidal vibration was then applied over the frequency range of 5 to 2000 to 5 cps, at a scanning rate of one (1) octave per minute along each of the three major axes. The applied vibration was at the following levels:

Frequency Range (cps)	Double Amplitude (inch D. A.)	Acceleration (g's)
5-28	0.075	
28-155		3
155-240	0,0024	• •
240-2000		7

Page 1

F	
L	

6401 OAKTON STREET . MORTON GROVE, ILLINOIS Report No. 551177-B

ITEST REPORT

DESCRIPTION OF TEST:

VIBRATION (Cont'd.)

Test Procedure: (Cont'd.)

Throughout the vibration test frequency range, the output from each accelerometer was measured and the frequency and magnitude of each resonant point was noted and recorded.

Next, with the panel still pressurized and with the ballast weights still attached, the panel was subjected to five (5) minutes of random vibration applied consecutively along each of the three principal axes. The power spectral frequency distribution was as follows:

Spectral Density (g ² /Cps)
9 db. per octave increase
0,22
18 db, per octave roll off
0,05

Envelope Composite 6.9 g rms

Random equalization and spectrum analysis were performed with 80-channel, 25 cps bandwidth filters. All equalization was within 1 db. of Specification requirements.

Following each axis of vibration, the unit was visually examined for evidence of water leakage or damage.

Description of Test Apparatus:

Vibration Machine, M. B. Mfg. Co., Model C-50E, S/N 127 Random Vibration Console, M. B. Mfg. Co., Model T288, S/N 123644 Pressure Gage, Heise, 0-500 psig, 0.1%, Model H41214, S/N MIN100 Dynamonitor, Endevco, Model 2704, S/N HA42 Accelerometer, Endevco, Model 2213, S/N R-2344 Accelerometer, Endevco, Model 2213, S/N R-6284 Accelerometer, Endevco, Model 2213, S/N 5302 Accelerometer, Endevco, Model 2213, S/N 6613 Accelerometer, Endevco, Model 2213, S/N 2388

Page 2

 Antanie Antanie
A SORATORIES

]TEST REPORT

6401 OAKTON STREET • MORTON GROVE, ILLINOIS Report No. 551177-B

DESCRIPTION OF TEST:

VIBRATION (Cont'd.)

Test Results:

After completion of both sinusoidal and random vibration along the "Z" axis, Panel S/N 3 exhibited evidence of leakage at a location approximately one-half inch from an insert, at the upper right hand corner of the plate,4 inches from the top and 2 inches from the right edge. Leakage appeared only when vibration was applied. Volume of water accumulated was only sufficient to form one drop. Further testing of this unit was discontinued, in accordance with the instructions of the witnessing AVCO representative. A tabulation of the resonant frequencies existing in the "Z" axis appears as follows:

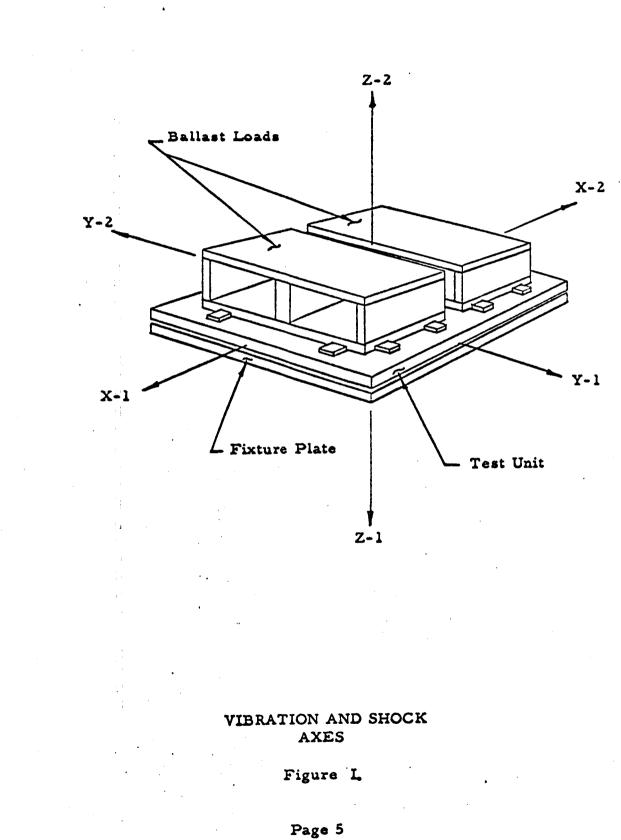
Resonant Frequency (Cps)	Input Acceleration Measured on Panel Accelerometer Position			
	1*	2	3	
77	3	6	6	6
110	3	18 '	13	30
140	3	19	27	50
800	7	11	13	24
1100	7	3.	19	3
1250	7	6. 5	11	19

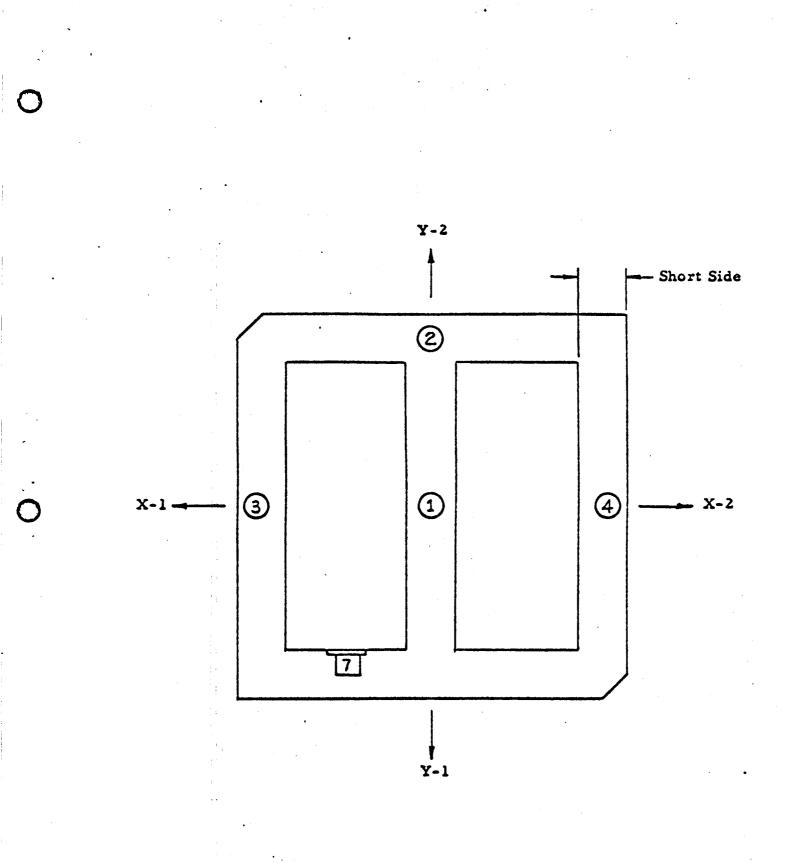
* Accelerometer No. 1 was measuring applied acceleration at unit mounting point.

After completion of both sinusoidal and random vibration along the "Z" axis, Panel S/N 1 was examined and a bulging condition was noted around one insert, on the back-side of the unit. The panel skin had pulled slightly away from the insert hole. No evidence of leakage was noted. Under the direction of the witnessing AVCO representative, vibration was continued along the remaining two axes. No further evidence of leakage or physical damage was noted. A tabulation of the resonant frequencies and accelerations existing on the panel appears as follows:

DESCRIPTION OF TEST:

VIBRATICN (Cont'd.)


Test Results: (Cont'd.)


S/N 1 Panel:

"Z" Axis

		Input Acceleration Measured on Panel (g'				
	Resonant Frequency	A	cceleromet	er Position	-	
	(Cps)	1*	2		4	
	90	3	2.5	5	6	
	135	3	3	12	21	
	140	3	5	11	27	
	170	3.8	30	18	65	
	850	7	3	5	85	
	1200	7	1.5	60	40	
"X" Axis						
	295	7	15	15	25	
	490	4	18	50	100	
	840	7	9	2,5	70	
	875	7	28	9.5	50	
	1200	7	15	35	70	
"Y" Axis						
	82	3	5	4	5 3	
	95	3	17	3	3	
	300	7	17	87	14	
	325	7	17	85	35	
	355	7	14	6.5	23	
	900	7	55	5	5	

*Accelerometer No. 1 was measuring applied acceleration at the unit mounting point.

ACCELEROMETER LOCATIONS

Figure II.

-	
	$ \rightarrow $

ITEST REPORT

6401 OAKTON STREET . MORTON GROVE, ILLINOIS

Report No. 551177-B

DESCRIPTION OF TEST:

SHOCK

Requirements:

Each panel shall be subjected to a Shock Test in accordance with AVCO Corporation, "Statement of Work", Par. 2.

Test Procedure:

Two (2) Mounting and Thermal Conditioning Panels, Drawing No. 20M42088, Mod. 1, Serial No's. 1 and 3, were submitted by the Aerospace Structures Division of AVCO Corporation, for a Shock Test in accordance with AVCO Corporation "Statement of Work", Par. 2. Each panel was individually subjected to a Shock Test in the following manner.

The Mounting and Thermal Conditioning Panel was loaded with two (2) 50-pound ballast weights, distributed as shown in Figure I. The panel and load assembly were then attached to a test fixture, which was in turn, attached to the carriage of a shock test machine. With the exhaust port of the panel capped, 50 psig distilled water pressure was applied for the duration of the test. During each shock, the panel was instrumented with accelerometers as illustrated in Figure II.

The panel was then subjected to a Shock Test consisting of three (3) shocks, in each direction, along each of the three (3) major axes, for a total of 18 shocks. The shock intensity was 20 (\pm 15%) g max., the pulse shape was half-sine wave with a duration of 10 \pm 2 milliseconds.

Description of Test Apparatus:

Shock Machine, ITL, Model SI-1027, S/N 123, designed and fabricated to Specification MIL-S-4456.

Pressure Gage, Heise, 0-500 psi, 0.1%, Model H41214, S/N M1N100 DynaMonitor, Endevco, Model 2704, S/N HA42

Accelerometer, Endevco, Model 2213, S/N R-2344 Accelerometer, Endevco, Model 2213, S/N R-6284 Accelerometer, Endevco, Model 2213, S/N 5302

Accelerometer, Endevco, Model 2213, S/N 6613

Oscillograph, CEC, Model 5-119, S/N 15125

	- Aniano
•	

ITEST REPORT

6401 OAKTON STREET . MORTON GROVE, ILLINOIS

Report No. 551177-B

DESCRIPTION OF TEST:

11

H

1.

11

SHOCK (Cont'd.)

Test Results:

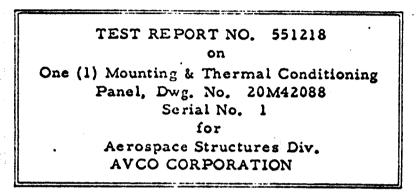
A visual examination of each panel after completion of the Shock Test revealed no evidence of damage. No loss of water pressure was noted.

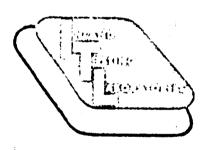
A tabulation of the accelerations measured by each accelerometer appears on Pages 9 and 10.

GENERAL DATA SHEET

TEST			SPEC	:: AVCO	PAR	: 2		TEST NO: 551177-B
Shc	DCK					<u> </u>		B DATE:
Apply 20 g's	1/2 Sine,	10 ± 2	Ms.					5/24/65
MATERIAL:	*****							TEMP: RH:
founting & Th	ermal Con	ditioning	Panel	.S/N 3	Dwg.	20M42	088 :	26°C 519
MANUFACTURER:								A. NO:
AVCO Corpo	oration, Ae:	rospace	Struct	ures D	iv.			
NSTRUMENTS:	1						1.	TESTED BY:
							F	<u>Schwab</u>
							1	AB SUP CHECH
	1					•	F	Loveless
								INGRG CHECK:
							<u> </u>	Hazard
	1.	M	easure	d Acc	elerati	on (g ^t	s)	
Accelero-	Drop				÷.,		-	
meter	E No.			Axi				-
Position	::: 	\mathbf{x}_1	X ₂	Y1	Y ₂	z_1	Z2	
1	1	12.5	12.5	12.5	10	15	12.5	
2	1	16.5	15	15	15	40*	_22_5	
3	1	18	16.5	15	15	40*	20	
4	1	17.5	17.5	17.5	17.5	40*	27,5	
			L					
1	2	12.5	12.5	12.5	10	15	12.5	
2	2	15	15	15	15	25	22.5	
3	2	17.5	16.5	15	15	27.5	22.5	
4	2	20	17.5	17.5	17.5	30	27.5	
	· · ·							
1	3	12.5	12.5	12.5	10	20	12.5	
2	3	17.5	15	15	15	30	22.5	
3	3	17.5	15	15	15	25	22.5	
4	: 3	20	17.5	17.5	17.5	27.5	30	
					, <i>.</i>			
•								1
					<u></u>			
* Measured	on 200 g/jr	n. scale	All (ther n	neasur	ements	s wer	e on a
50 g/in. s								
		1						
					. .			Ţ
		-						
			· · · · · · · · · · · · · · · · · · ·					1
	• •							······································
	i i	1		f		l		

GENERAL DATA SHEET


TEST	•		SPE		PAR			TEST NO:
Shock CONDITIONING:			A	vco		2		<u>551177</u> DATE:
Apply 20 g's,	1/2 Sine	10 + 2	Me					5/25/65
MATERIAL:	1/2 31110,		1412					
Mounting & The	ermal Con	ditioning	2 Pane	1.S/N	Dwg.	20M42		26°C 49
MANUFACTURER:				-,-,				M. NO:
AVCO Corpo	ration. Ae	rospace	Struc	tures I	Div.			
INSTRUMENTS:						· · · · · · · · · · · · · · · · · · ·		TESTED BY:
								Schwab
,							Γ	LAB SUP CHECK
						•		Loveless
							Г	ENGRG CHECK:
:	· · · · · · · · · · · · · · · · · · ·				<u></u>			Hazard
		M	2261170	d Acce	leratio	n lais	1	
Accelero-	Drop			Axi			• 8	
meter	No.			+				
Position		X1	<u>X2</u>	<u>Y</u> 1	Y ₂	<u>z</u> 1	_Z2	
1	1	12	10	10	10	12.5		
2	1	15	15	15	15	20	30	
3	1	16	15	15	15	25	22	5
4	1	17.5	15	15	17.5	25	20	
1	<u> </u>	12.5	_10	10	10	12.5	10	
2	2	15	15	15	15	20	30	
3	2	15	15	15	15	25	_30_	
4	2	17.5	15	15	17.5	27.5	20	
1	3	12,5	10	12.5	10	12.5	10	
2	3	15	15	15	15	20	25	
3	3	15	15	15	15	25	27,	5
4	3	17.5	15	17.5		27.5		
	· .			T				
				1				
				1		· · · · · · · · · · · · · · · · · · ·		
· · · · · · · · · · · · · · · · · · ·						· · · · · · · · · · · · · · · · · · ·		
	<u> </u>							
			<u> </u>	1		· · · · · · · · · · · · · · · · · · ·		
	·			1				
				1				
1				1	1			
	,			+	· .			
				+				
							<u>.</u>	-
				<u> </u>				
1:				L				


Inland Testing Laboratories	AVCO CORPORATION	PAGE NO
	AEROSPACE STRUCTURES DIVISION NASHVILLE, TENNESSEE 37202	Appendix D R-1051
• 8 Oct. 1965	NAS 8-11870	M.A. 5503

APPENDIX D

TEST REPORT - VIBRATION AND SHOCK TEST

OF FINAL OPTIMIZED DESIGN MOUNTING AND THERMAL CONDITIONING PANEL

INLAND TESTING LABORATORIES COOK ELECTRIC COMPANY TECH-CENTER DIVISION

6401 OAKTON STREET - MORTON GROVE, ILLINOIS 1482 STANLEY AVENUE - DAYTON, OHIO

ITEST REPORT

6401 OAKTON STREET . MORTON GROVE, ILLINOIS

ADMINISTRATIVE DATA

AVCO Corporation Purchase Order No. 42856, Amendment 02 Dated: August 12, 1965

Report No. 551218

- I. <u>NAME & QUANTITY OF ITEMS TESTED:</u> One (1) Mounting & Thermal Conditioning Panel, Dwg. No. 20M42088, Serial No.
- II. <u>PURPOSE OF TEST:</u> The purpose of this test was to determine the ability of the panel, when loaded, to withstand Vibration and Shock, applied as described in this report.
- III. <u>MANUFACTURER</u>: AVCO Corporation, Aero Structures Div., Nashville, Tenn.
- IV. SPECIFICATION: AVCO Corp. "Statement of Work", (Attachment "A")
- V. <u>DATE TEST COMPLETED</u>: August 25, 1965
- VI. <u>TEST CONDUCTED BY:</u> Inland Testing Labs., Tech-Center Division
- VIL DISPOSITION OF TEST ITEMS: Returned to AVCO Corporation
- VIIL SIGNATURE:

Report prepared by:

Project Engineer

The information and data contained in this report may not be released for publication or distribution for advertising purposes without the prior approval and written consent of the Cook Electric Company.

STATE OF ILLINOIS) 55 COUNTY OF COOK Irving F. Hazard being duly sworn deposes and says. That the information contained in this report of his go-27 e true and confect in all respects. is the result of complete and carefully conducted tests and is to the Ch. Engr. 15th 65 SUBSCRIBED and swarn to before me this day of My commission capites February 20th -69 . 19 for the County of Cook, State of Illinois

 A Minno	\searrow
	a

TEST REPORT

6401 OAKTON STREET • MORTON GROVE, ILLINOIS Report No. 551218

DESCRIPTION OF TEST:

VIBRATION

Requirements:

Each panel shall be subjected to a Vibration Test in accordance with AVCO Corporation "Statement of Work", Par. 1.

Test Procedure:

One (1) Mounting and Thermal Conditioning Panel, Drawing No. 20M42088, Serial No. 1, was submitted by the Aerospace Structures Division of AVCO Corporation, for a Vibration Test in accordance with AVCO Corporation "Statement of Work", Par. 1. The panel was subjected to a Vibration Test in the following manner.

The Mounting and Thermal Conditioning Panel was loaded with two (2) 50-pound ballast weights, distributed as shown in Figure I. The panel and load assembly were then attached to the test fixture, which in turn, was attached to the vibration machine. With the exhaust port of the panel capped, 50 psig distilled water pressure was applied for the duration of the test. During each axis of the vibration test, the panel was instrumented with accelerometers, as illustrated in Figure II. The accelerometers were maintained in an atitude such that the sensitive axis of each accelerometer was perpendicular to the surface of the panel throughout all vibration testing. The applied vibration was measured by means of an accelerometer located on the test fixture, adjacent to the unit mounting.

Sinusoidal vibration was then applied over the frequency range of 5 to 2000 to 5 cps, at a scanning rate of one (1) octave per minute along each of the three major axes. The applied vibration was at the following levels:

Frequency Range (cps)	Double Amplitude (inch D. A.)	Acceleration (g's)		
5-28	0.075	* *		
28-155		3		
ii 155-240	0.0024			
240-2000	• • • • • • • • • • • • • • • • • • •	7		

TEST REPORT

6401 OAKTON STREET . MORTON GROVE, ILLINOIS

Report No. 551218

DESCRIPTION OF TEST:

VIBRATION (Cont'd.)

Test Procedure: (Cont'd.)

Throughout the vibration test frequency range, the output from each accelerometer was measured and the frequency and magnitude of each resonant point was noted and recorded.

Next, with the panel still pressurized and with the ballast weights still attached, the panel was subjected to five (5) minutes of random vibration applied consecutively along each of the three principal axes. The power spectral frequency distribution was as follows:

Frequency Range (Cps)		Spectral Density (g ² /Cps)			
	20-200	9 db. per octave increase			
	200-700	0.22			
	700-900	18 db. per octave roll off			
•	900-2000	0.05			

Random equalization and spectrum analysis were performed with 80-channel, 25 cps bandwidth filters. All equalization was within 1 db. of Specification requirements.

Following each axis of vibration, the unit was visually examined for evidence of water leakage or damage.

Description of Test Apparatus:

Vibration Machine, M. B. Mfg. Co., Model C-50E, S/N 127 Random Vibration Console, M. B. Mfg. Co., Model T288, S/N 123644 Pressure Gage, Heise, 0-500 psig, 0.1%, Model H29098, S/N MIN701 Dynamonitor, Endevco, Model 2704, S/N HA42 Accelerometer, Endevco, Model 2213, S/N R-2344 Accelerometer, Endevco, Model 2213, S/N R-6284 Accelerometer, Endevco, Model 2213, S/N 5302 Accelerometer, Endevco, Model 2213, S/N 1605 Accelerometer, Endevco, Model 2213, S/N 1691

A LIAND	

6401 OAKTON STREET . MORTON GROVE, ILLINOIS Report No. 551218

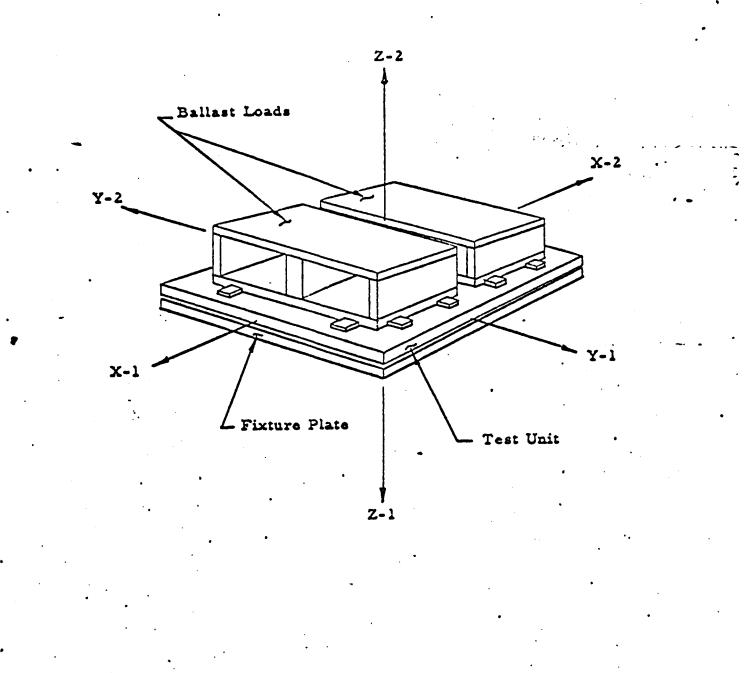
ITEST REPORT

DESCRIPTION OF TEST:

VIBRATION (Cont'd.)

Test Results:

Visual examination of the panel after each axis of vibration and after completion of the entire Vibration Test, revealed no evidence of visual damage or evidence of water leakage.

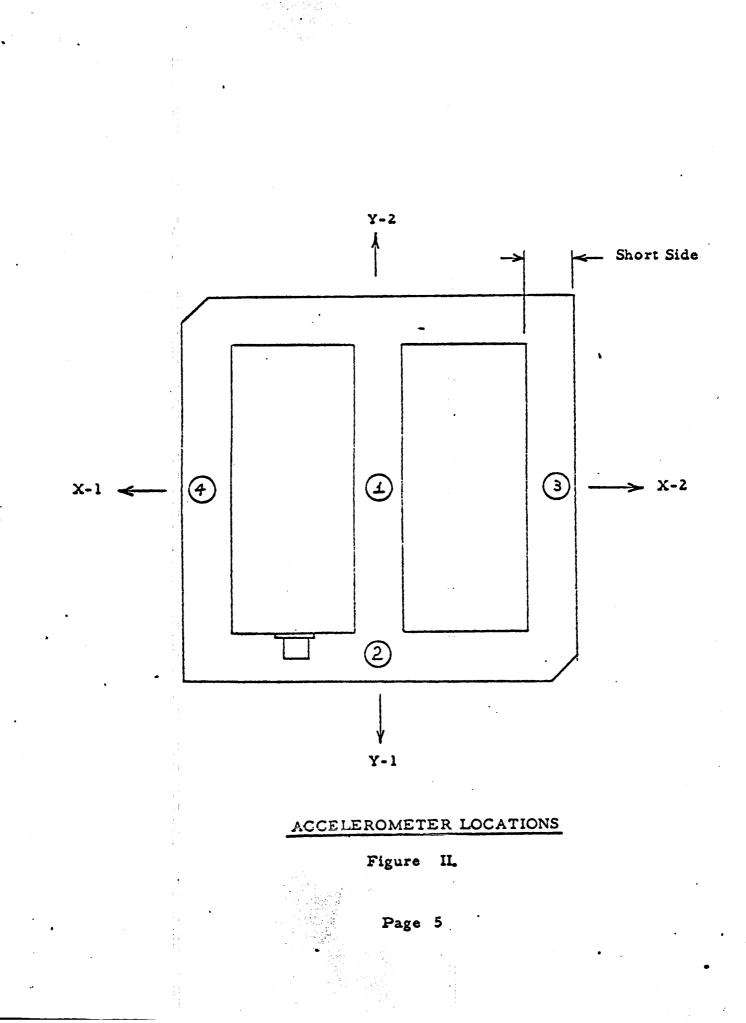

The resonant frequencies and accelerations recorded during the Vibration Test were as follows:

S/N 1 Panel:

"Z" Axis

Deserant Encourance	•	Input A	Acceleration Me		nel (g's)
Resonant Frequency (Cps)		1*	_2	3.	4
110		3	2.5	2.8	5
205	:	5.5	5, 5	8,5	5.2
930	, i	7	11	13	11.5
1025		7	20	25	18
1100 _		7	18	20	15 .
1400	· . ·	7	18	25	16
"X" Axis					
350		7	21	20	26
"Y" Axis					
300		7	29	25	30
500		7	30	28	32
900		7	26	20	27
1200		7	20	22	22
1500		7	21	25	· 22

*Accelerometer No. 1 was used to measure applied acceleration at the unit 1 mounting point. 1



. ...

3

VIBRATION AND SHOCK AXES

Figure L

A NIAND	
Histing .	

TEST REPORT

Report No. 551218

DESCRIPTION OF TEST:

SHOCK

Requirements:

Each panel shall be subjected to a Shock Test in accordance with AVCO Corporation, "Statement of Work", Par. 2.

Test Procedure:

One (1) Mounting and Thermal Conditioning Panel, Drawing No. 20M42088, Mod. 1, Serial No. 1, was submitted by the Aerospace Structures Division of AVCO Corporation, for a Shock Test in accordance with AVCO Corporation "Statement of Work", Par. 2. The panel was subjected to a Shock Test in the following manner.

The Mounting and Thermal Conditioning Panel was loaded with two (2) 50-pound ballast weights, distributed as shown in Figure I. The panel and load assembly were then attached to a test fixture, which was in turn, attached to the carriage of a shock test machine. With the exhaust port of the panel capped, 50 psig distilled water pressure was applied for the duration of the test. During each shock, the panel was instrumented with accelerometers as illustrated in Figure II.

The panel was then subjected to a Shock Test consisting of three (3) shocks, in each direction, along each of the three (3) major axes, for a total of 18 shocks. The shock intensity was 20 (\pm 15%) g max., the pulse shape was half-sine wave with a duration of 10 \pm 2 milliseconds.

Description of Test Apparatus:

Shock Machine, ITL, Model SI-1027, S/N 123, designed and fabricated to Specification MIL-S-4456.

Pressure Gage, Heise, 0-500 psi, 0.1%, Model H29098, S/N MIN701 Dynamonitor, Endevco, Model 2704, S/N HA42

Accelerometer, Endevco, Model 2213, S/N R-2344 Accelerometer, Endevco, Model 2213, S/N R-6284 Accelerometer, Endevco, Model 2213, S/N 5302 Accelerometer, Endevco, Model 2213, S/N 1605 Oscillograph, CEC, Model 5-119, S/N 15125

-	

:1

TEST REPORT

6401 OAKTON STREET . MORTON GROVE, ILLINOIS Report No. 551218

DESCRIPTION OF TEST:

11

二

SHOCK (Cont'd.)

Test Results:

A visual examination of each panel after completion of the Shock Test revealed no evidence of damage. No loss of water pressure was noted.

A tabulation of the accelerations measured by each accelerometer appears on Page 8.

1

GENERAL DATA SHEET

and the second	Shock SPEC:			AVCO	PAR: O 2			TEST NO: 551218
CONDITIONING: Apply 20 MATERIAL:		DATE: 8/23/65						
Mounting & T MANUFACTURER:	hermal Con	nditionir	g Pane	1,S/N	l, Dwg.	20M42	2088	темр: RH: 26°С 497
AVCO Corpo		rospace	Struct	ures I)iv,			M. NO:
		•	•					TESTED BY: F. Hall
			•				ļ	LAB SUP CHECK
			•					Loveless
		•						ENGRG CHECK:
	[T		· · · · · · · · · · · · · · · · · · ·	<u></u>	JAS
Accelero-	Drop	Me	a sured	1	eratio cis	n (g's)	
meter Position	No.	x ₁	x ₂	Y ₁	Y ₂	Z1	Z2	
l	1	23.7	20	23.3		22	22	
2	1	17	24	_23.3		22.3	_24	
3	1	23	20.7_		17.7		. 19	
4	·····	21.4	14.7	_22.3	14.3		_16.	7.
]	.2	_ 23.4	21.3	.21.7	20	20	_23.4	
2	2	18.3			18	20	_ 18.	
3	2	21.7	21.0_	21.3	18	25	18,	
4	2	19.4	14.7	18.4	12	15.7	_15,	3
1	3	21.6	21	22	20	21.6	21.	7
2	3	20	22	22		17.3	23.4	· · · · · · · · · · · · · · · · · · ·
3	33	20.7	20	23.3	18.7	4 1	18	
4	3	21.4	14.7_		17.7		18	
				ii dahari - sahidapar i a		Ļ		
						•		
		1						
	i							
	<u></u>							
					· .			
								-
						·		
	- 3 (<u> </u>				L		

29 DFr 65 | 3572

