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GEOMETRICAL INTERPRETATION AND GRAPHICAL SOLUTION
TO MINIMUM ENERGY DISCRETE-DATA CONTROL

by

A. M., Revington and J. C. Hung

SUMMARY I 3 | {58

Compact and simple design equations have been previously obtained
for the minimal energy design of a linear PAM regulator by working not
in the state space, but in a new space, the '"canonical space." The
input sequence is split into two sections and the minimal energy con-
dition is a simple relation between the two parts of the input. The
relation is used here to give a direct method of finding what states
can be taken to the origin, using the linearly designed input sequence,
without violating a saturation constraint. For second order systems
the technique is particularly useful in that a simple graphical tech-

nique is possible. An example demonstrates the method.
T ’ aul

INTRODUCTION

For a number of years the Z-transform was the only technique
available to engineers to handle discrete regulators. This technique
has many disadvantages when applied to the regulator problem, but it
has the advantage that it is closely related to the familiar Laplace
transform, and the root-locus and frequency domain methods can still be
used. The introduction of state variable techniques has considerably
clarified the analysis and design of both discrete and continuous systems,
but unfortunately a knowledge of transform methods is not much help in
understanding the state variable techniquesl. However, using only

elementary matrix algebra, remarkably compact results and a simple



design procedure have been obtained for the pulse amplitude modulated

(PAM) regulator2’3.

It is well known ’

that for an n-th order linear PAM plant
regulation can be achieved in, at most, n sampling periods. If the
number of sampling periods used is increased beyond n then in general
there are many possible input sequences that will regulate the plant.
The problem of which sequence to choose and how to obtain it has
received much attention; the usual approach is to make the system
minimize some cost function while performing the primary task of regu-

lation. We choose the cost function E given by

N
E=T Z u? (k). (1)
k=1

T is the sampling period, N the number of sampling periods used for
regulation and u(k) is the input over the k-th sampling period. This
cost function has several advantages. The system is intrinsically un-
likely to saturate; it can be shown for stable systems that if N is
large enough the linear design equations give an input sequence that
enables the plant to operate in its linear region. The sequence is
easy to calculate and is unique. Finally, the minimization of E gives
a good approximation to the minimum fuel problem where the cost function
is

N .

T Z |luqo)]
k=1
While the use of the linear design equations gives an input

sequence which, because of the nature of the cost function E, is
least likely to saturate the plant we would certainly like to know
just when we can take advantage of the simplicity of the linear design
equations. In other words for what set of initial states does a linear
design give an input sequence satisfying a given saturation constraint
M, that is Iu(k)| £ M, k=1, 2, ... B? Furthermore, suppose N sam-

pling periods are not sufficient to allow a linear design then can we



increase N and, if so by how much, so that the linearly designed sequence

satisfies the saturation constraint?

In the next section the development of the linear design equations,
using the "canonical vector space," is summarized. Then the set MN is
defined and generated via an intermediate set LN. If the initial state

is in MN the linear design equations can be used.

MATHEMATICAL DEVELOPMENT

To keep the development as simple as possible we shall consider
only a single input time-invariant plant. In discrete form the dynamics
of such an n-th order system are described by the vector difference

equation6,
x(ktl) = G(T)x(k) + h(T)u(k) (2)

where x(k), an n-vector, is the state of the plant at the k-th sampling
instant, G(T) is the n x n transition matrix and h(T) is the nxl driving

matrix.

Linear Design Equations

R - 5
The disturbed state or initial condition x(0) can be represented

by
N -
£0) = ) 5w 3)
k=1
where I, is the k-th "canonical vector' given by
r, = -G(-kT)h(T) (4)

The regulator problem is to take x(0) to the reference x(N) = 0 in
N > n sampling periods while minimizing E. The solution to the problem
is considerably simplified if, instead of working with the n-dimensional

state space X, we work in an n-dimensional 'canonical space'" C. The




basis vectors for points in C are the canonical vectors r r

r
1, _2’ --.._n.-
Then corresponding to x in X we have ¢ in C. The nonsingular linear

transformation taking ¢ in C to x in X is R, where

R = [El’ I, ""En] 4 (5)

-1 . . . A
R ~ takes x in X to ¢ in C. Furthermore, the input sequence is divided
into two sections; thus

t

a {u(l), u(2), ...u(n)} (6)

B1:

(]

u(nt+l), u(n+2), ...u(N% s

where t denotes the transpose of a matrix. Then Eq. (3) reduces to

Te)

= a + Hb (7)

where H, an nxN-n matrix, has as its columns the remaining N-n canonical

vectors expressed in C: Eq. 1 is now

E =T[gt_a_+p_tg]. (8)

The condition that must be satisfied for regulation with minimum E

is easily found to be2

b=H a (9)

Eq. (7) and Eq. (9) give immediately the optimal input sequence 30 and
(o]

b as
o t -1
a = [I + HH ] c (10)
Eo _ Ht io (11)
. o .,
where I is the n x n unit matrix. Finally the least energy E is

given by (letting T = 1)

E =c a (12)

my
The Precblem

f Saturation

Q

Normalizing the input sequence so that the saturation constraint

takes the form



=

lu(k)l £ 1, k=1, 2, (13)

We have
Iail & v i=l, 2, ...n,

(14)
lbjl & 1 j=1, 2, ...N-nm,

where a, and bj are the components of a and b.
Kalman5 and others have considered the set l—k of all states x

in X that can be taken to the origin in N sampling periods or less,

subject to input saturation,

- |

N

N
X = Z S ¥ |ozi ' <1, i=1, 2,...N| (15)
i=1

N
Read"r; is the set of all states x, where x is given by x = }Z:a.r,

i'i
i=1
and lail <1 ,1i=1, 2, ...N." The o, are scalars.
In the canonical space C, r; becomes
= (e |e = a+m; 2]« 1 |bj‘< 1 (16)

Figures 1(a) and 1(b) below illustrate r; in X and C respectively

for a second order system.



Cz

Fig. 1(a) Fig. 1(b)

On the boundary of r;

regulation in N sampling periods6. In other words there is only one

there is a unique control sequence for

, ...r_ to h
2 Iy reac

way to linearly combine the canonical vectors ., r
an initial state on the boundary of r;. For an initial state inside
[; there are an infinite number of ways to represent the initial
state. From these we have chosen that unique combination that mini-
mizes the energy E. To find out just when the linear design can be
applied (giving a non-saturating control sequence Iu(k)lg 1, k=1, 2,
...N) we define the set MN.
Definition. The set of initial states that can be taken to the origin

in exactly N sampling periods with minimal energy EC = c'a and

satisfying the saturation constraint is called MN.

Thus in the canonical space,

(U ,
In general MN is a proper subset of r;. This is because of the extra
condition b = Htg that is added to r; to give MN' To be able to

N

M, = (c ' c = a+Hb, b= Htg; Iailg 1, 'bj‘ <1 |(16)

6



discuss MN we need the term 'free minimal energy input sequence."

Definition. The vectors go and ho, calculated from Eq. 10 and Eq. 11
giving the minimal energy E® = Etgé , constitute the '"free minimal
energy input sequence," uo(k), k=1, 2, ...N, i.e., the amplitude

is not constrained.

In this sequence we may well have |u°(kﬂ > 1 for some value
of k. By definition therefore the set MN contains only those initial
states whose free optimum input sequences satisfy the saturation
constraint. States in r; but not in MN have free minimal energy input
sequences that violate the saturation constraint, so that if the input
sequence is constrained by saturation, the energy needed for regulation
is greater than E°. The problem of finding this constrained ‘input
sequence, one or more members of the input sequence need to be forced

back to the saturation limit, is not directly considered here.

THE GENERATION OF MN

From Eq. 10 and Eq. 11 there are N equations of the form

n

EE: Qe = ud) . 3=l 2, LN (17)
i=1

where the c, are the n components of the initial state ¢ and the aji

are scalars. We could then set u(j) 2> 4+ 1 and u(j) £ -1 to

obtain 2N n-dimensional half spaces in C-space. The convex set formed

by the intersection of these half spaces would then be MN' This method

is quite correct but fails to give a clear picture of what is happening.

The set MN can be found quite simply via consideration of the inter-

mediate set LN which will be developed in the following paragraphs.

Consider Eq. 9, which can be rewritten as

p° = hga , j=1, 2, ... N-n, (18)



where h. is the j-th column vector of H and b? is the jth component

of Eo, j=1, 2, ....N-n. The vectors hj are the canonical vectors
£n+j expressed in C-space (El is shown in Fig. 1b.). So that
h, = R 'x (19)
=] =nt+j -’

Eq. 18 represents N-n n-dimensional hyperplanes, normal to
Ej in C-space. It should be noted that the vector go does not cor-
respond to the initial state ¢ = 30 (unless N=n) even though the
coordinates of a point ¢ in C are usually considered to be the components
of some initial state c¢. The coordinates of C-space are considered to
have a dual meaning for the generation of MN; they can represent the

components of an initial state ¢ or the components of the input vector

(o} . . .
a . To demonstrate this consider a second order system (n=2) with El

as shown in Fig. 2. Consider the straight line hi 39 = bl' For b1 =0

the line passes through the origin, ncrmal to 21. For b1 > 0 it moves
parallel to itself in the direction of + El and for b1<: 0 in the

direction -hl. When \bl\ = 1 the pérpendicular distance from the
line to the origin is 1/ "hlu ”h1“ is the Euclidean norm or
the length of El' These properties hold for Ej in general, but are

most useful when n = 2 so that hyperplanes are straight lines.

i) (]

o

%

Fig. 2



The admissible (non-saturating) set of a? and ag lie in or on

o
the square shown in Fig. 3. For !b?’ & 1 the a must also lie in the

space between or on the lines,

[0
tl_bl"h

o p . o
so that any a  that is to satisfy |ai

(o]
’

[+Y]

&1 and !b?|.g 1 must lie in

the cross-hatched region, which we call L3.

t
1

b| ’//' I

N b

N

r o 1/
B \\\\\\§§§;> T B
%
-1
Fig. 3
When N = 4 we consider also b; . The set of admissible 30 now

must be the intersection of L3 and the space between the lines
o_,t o
fl_bz_hzé

This is shown in Fig. 4 and is called L4’




Fig. 4
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For the general case the set LN is defined.

Definition. The set LN is defined as the intersection of the 2n half-

spaces a2 § 1, az > - 1 and the 2(N-n) half-spaces hg 30 <1,

t . . . . .
ngf)wJU i=1,2, ...n, =1, 2, ..,N-n in the n-space with Cartesian
coordinates ai, ag, .,ag .

Clearly LN is convex and LN+1 is a subset of LN. The reason for
defining LN is twofold,

(a) We only need to calculate go, if we have L to know if the

N,
free minimal energy input sequence exceeds the saturation constraint.

In other words if go is in LN then ¢ is in MN.

(b) We can generate MN directly from LN without inverting any

matrices.

Generation of MN from LN

There is clearly a one to one correspondence between points
30 in LN and initial states ¢ in MN' In particular, if 20 is on the
boundary of LN then ¢ is on the boundary of MN. Thus by moving along

the boundary of L. we trace out the boundary of MN' We have

N
c = 30 + Hbo
o o o o
=a + b1 h1 + b2 EZ + ..... + bN—n hN-n (20)

Consider the point A at a vertex of L, in Fig. 5. Adding hl alone

3

to this 20 gives a vertex of M,, A', defined by the intersection of

the lines b? =1, ag 3
state, on the boundary of M3 with él = 0 and az = -1. (We added nothing

to g? at B.) Other points on M

3!

= 1. Similarly B in L, gives B', an initial

3 can be obtained just as easily.

We note that in Fig. 5 the axes are now labelled ¢y and €y the

coordinates of the initial state. Thus for example the lines b1 =+ 1
are now the bounding lines of M3 (see Fig. 3). Strictly speaking,
while generating L3 we should label the axes a? and ao; but while

generating and using M3 we should use ¢y and Cy-

11
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The set M3 has been obtained by using only a set square and dividers.
Points A through H in L3 correspond to points A' through H' in M3.
In general MN can be found in exactly the same way from the set
L_. For n > 2 simple graphical techniques are no longer possible. For
stable systems “hi" > llhi-l“ , i=1, 2, .... N, so that, for N
sufficiently large, any initial state can be taken to the origin with

a non-saturating free optimum input sequence.

We have shown how to generate MN from LN. Geometrical properties
of LN give the geometrical properties of MN. The vertices of LN cor-
respond to the vertices of M and the bounding faces of L

N
to the bounding faces of MN.

N correspond

An example is now given for a second order system, which will

demonstrate several particular uses of LN'

EXAMPLE

2 .
Consider the pure inertial plant 1/s”. With a sampling period
of T secs the vector difference for this system is

- ~-

xl(k+1) 1 T xl(k)
= + u(k) (21)
xz(k+l) 0 1 sz(k)_

Nl

—

| E—

where xl(k) is the output (position) at the k-th sampling instant
and xz(k) is the time derivative of the output (velocity) at the
k-th sampling instant. We soon find

r, = T2 (1-2k)

L k=1, 2, .... (22)

13



and then

-T -3 .2
2 2T
R =
T T
giving
-P
h = =1, 2, ... N-n.
-p P
p+l

For this plant, the canonical vectors in C are independent of the
sampling period.

The lines h' a° = b° are shown for b° = 0, +1, -1, p = 1, 2, 3 in
=p p p

Fig. 6. For b = + 1 these lines intersect a_ = + 1 at a> = + 1;
Por” o p-1 1 B 2 B
they intersect a; = + 1 at a, = + Pl -
b

Fig. 6

14
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L3 is bound by a? = +1 and bi = +l. 1In general Lp+2 is bounded by
a? = +1 and b; = +1. Then we know that Mp+2 has only 4 vertices and
o

is bounded by the lines a;

the first and last inputs are within the saturation limit then all the

= +1 and b; = +1. Thus if N = p+2, and if

other inputs are also with the saturation limit.

M3 and M4 are shown in Fig. 7. Clearly M3 is not a subset of

M4, even though M4 covers a large portion of r; that M3 did not.

Comparing the areas of M3 and [;, M4 and r;' we see that a large

and rl are included in M, and M, .

proportion of initial states in 3 4

3
This will remain true as p is increased.

The lines of Eq. 17 can be found from L by finding two

points on the lines az = +1, i=l, 2, ...n, or E§2= +1, j =1, 2,
N-2. These lines all intersect at the vertex of f; given by
N
X = }Z: . but it is evident that only the first and last, a? and
i=1

b;_z pass into r;. Then we have the following results for this plant.

1. A sufficient condition for x to be in (; is that ai and
o
bN-2 be non-saturating (since x is in MN).

2. A necessary condition for x to be in r; is that none of

the inputs ao, b?, j =1, 2, ... N-3 saturate.
2 i J

2°
1
example Fig. 7.

£ o . ,
N.B. I and bN_2 saturate we may still have x in r%, see for

These properties of MN’ even though for a particularly simple
plant, do illustrate how the set LN(MN) can be useful in attempting

to solve the saturation problem in this indirect way.

15






CONCLUSIONS

The simple and compact design equations previously obtained for
the minimal energy linear PAM regulator have been reviewed. It was
shown that if the input sequence is split into two components these two
components are related by a linear transformation. Using this property,
a method has been presented to find those states, MN’ in r; that can
be taken to the origin using only the linear design equations. While
the geometrical concepts and properties of this method are true in
general, for second order systems the technique can be used to find

these states graphically.
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