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ABSTRACT 

This report  descr ibes  a numerical procedure for solving a two- 

dimensional, unsteady flow problem. The fluid is in a tank, has a f r e e  

surface,  a periodic source (to be terminated) on the side of the tank, and 

is subject to a near ze ro  gravitational field. 

incompressible and i r rotat ional  so tha t  the problem reduces to a boundary 

The flow is assumed to  be 

value problem governed by the Laplace equation. 
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LIST OF SYMBOLS 

H 

h0 

T 

t 

U 

UO 

V 

W 

X 

Y 

A 

rl 

e 

Mesh size,  f t  

Depth of slot ,  f t  

Fraction of mesh  s ize  

Effective gravity, f t / s ec2  

Liquid height in static equilibrium, f t  

Average liquid height under static equilibrium condition, ft 

Surface tension, lbf/ft 

Time, sec  

x-component velocity, f t /  sec 

Source velocity, f t /  sec  

y-component velocity, f t /  sec 

Width of the tank, ft 

x-coordinate 

y-coordinate 

Diff e r enc e 

Perturbation of liquid height, ft 

Contact angle, degree 

Density, s1ug/ft3 

Velocity potential, f t 2 /  sec  

Re laxation factor 
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LIST O F  SYMBOLS (Continued) 

Superscripts 

k Number of iterations 

S Point on the f r ee  surface 

Subscripts 

i Index for x-coordinate 

j Index for y-coordinate 

n Index for t-coordinate 
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. 
INTRODUCTION 

The study of dynamic behavior of liquids in greatly reduced 

gravitational fields has  become a subject of intense in te res t  in  recent 

years  a s  space technology has progressed. 

of the oscil latory motion of fuel in  a large rocket propellant tank can 

help the designer to prevent its being in resonance with the motion of 

the vehicle or  of its control system, thus avoiding such undesirable 

effects a s  dynamic instability. 

face is important to  the engine res ta r t  operation af ter  a prolonged 

coasting period, a s  the liquid and vapor tend to mix together when the 

gravity force is almost  absent. Other applications can be found in the 

life support system, fuel ce l l  system, e t c . ,  in a space vehicle. 

Knowledge of the frequency 

The behavior of the liquid-vapor inter-  

The present  study is concerned with the dynamic behavior of 

the f r ee  surface,  and the flow field in general ,  of liquid hydrogen in 

the propellant tank of the S-IVB rocket stage during flight after the 

main fuel supply has  been cut off. A water hammer  effect is created 

by such a sudden cutoff operation and becomes the periodic source of 

the tank. 

reduced to a magnitude of about l o m 5  g and surface tension can no 

longer be neglected when considering the behavior of the f r ee  surface.  

For  such a problem one is  required to solve the ful l  Navier-Stokes 

equations in two dimensions with a moving boundary, the so-called 

Stefan's problem. Aside from the additional complications ar is ing 

f r o m  the presence of a moving boundary, the analytical o r  numerical  

solutions of Navier-Stokes equations present  tremendous difficulties. 

Most of the attempts in the past  have failed in the obtaining of a numerical  

solution to the ful l  Navier-Stokes equations. 

with simple boundary conditions has limited success  been achieved. 

During this stage of flight the gravitational field has been 

Only in  a few problems 

Therefore ,  in order  to obtain a 

problem, some simplifications 

more pract ical  solution in the present  

must be made. 
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be neg 

dition 

The f i r s t  simplification is to assume that the viscous effects can 

ected and that the flow i s  irrotational. 

s used with the continuity equation to  obtain Laplace 's  equation in 

Satterlee and Reynolds' have found that 

The i r rotat ional i ty  con- 

t e r m s  of the velocity potential. 

in the case  of a c i rcu lar  cylindrical  tank the inviscid analysis  gives a 

na tura l  frequency of oscil lation only a few percent  lower than actual. 

The assumption of potential flow i s  therefore  useful  and pract ical ,  and 

the re  is no reason  to  believe that it cannot be  applied to  the two-dimensional 

case .  

Next, the concept of s m a l l  perturbations is introduced, i. e . ,  i t  is 

assumed that the f r e e  su r face  can  be expressed  as the s u m  of the static 

equilibrium sur face  and a s m a l l  perturbation. 

simplifying the f r e e  surface conditions and fixing the mesh  points on the 

f r e e  sur face  when finite-difference techniques a r e  employed. Also, fluid 

proper t ies ,  including the density and surface tension, a r e  considered 

c ons tant . 

This has the aclvzctage c?f 

Even with such simplifications, an analytical  solution of the 

present  problem i s  not i n  sight and numerical  solutions must  be attempted. 

The following chapter outlines the procedure for  the solution of this prob- 

lem by finite - difference methods. 
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NUMERICAL ANALYSIS 

dH d2H 3 -  - a? - -  dx dx2 - 
ax 

PROBLEM DESCRIPTIONS 

The assumption of an  incompressible,  potential flow leads to  the 

following boundary value problem. 

= o  (1 )  , 

Governing. Differential Eauation 

a+a = o  in the region R 
a x 2  a y 2  

Boundarv Conditions 

On Solid W a i i  

3 = o  n normal to the wall an 

At the Source 

3 = uo(t) ax 
Dynamic Surface Condition 

Kinematic Surface Condition 
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Contact Angle Condition (No Hysteresis)  

Initial Conditions 

utx, y, 0 )  = 0 

The equations for the surface conditions a r e  derived in  Refer- 

ence 2 .  

the source velocity uo(t) is a periodic function. 

The fluid is assumed to be ir, stztic equilibrium initially, and 

FINITE-DIFFERENCE METHOD 

The continuous derivatives 

in the differential equations above 

a r e  replaced by discrete  finite 

differences as follows: 

N W  - 

W - 

s w  - 

't- 
hS 

1 
I 

4 

NE - 

E - 

SE - 



F o r  equal m e s h  s izes ,  the truncation e r r o r s  in  each of these 

formulas  would be O(h2) a s  h+O, as compared to  O(h) for  different mesh  

s i zes .  This shows the g rea t  advantage of using equally spaced nets.  

A network of m e s h  points is laid over the flow field as shown in  

F igure  1. 

e r r o r s ,  s torage capacity, running t ime of the computer ,  and programming 

ease .  The mesh  s ize  must  be chosen such that both the width of the tank 

and the depth of the slot  (h, - h l )  a r e  integral  multiples of the mesh  s ize .  

Ordinar i ly  this i s  impossible without making the mesh  s ize  intolerably 

sma l l ;  however, with slight adjustment of e i ther  o r  both of W and d, the 

m e s h  s ize  may be chosen with relative ease.  

should a l so  be adjusted, if necessary,  to meet  cer ta in  programming 

requirements .  

without appreciably affecting the flow charac te r i s t ics .  

then the same throughout most  of the flow field. 

su r f ace  mesh  points a r e  selected a t  the intersect ions of the static equi- 

l ib r ium surface and the ver t ica l  l ines,  therefore  the mesh  s izes  a r e  

different.  

Choice of mesh  s ize  a depends on considerations of truncation 

The position of the slot  

F o r  all pract ical  purposes these adjustments can be made 

The mesh  s ize  is 

Adjacent to  the f r ee  

5 
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At each of the regular  interior mesh  points the Laplace equation 

is replaced by  a finite-difference equation using the five point formula.  

1 ( 3 )  +i, j , n t  1 = 4 (+i- 1, j , nt  1 t- +i, j - 1, n+ 1 + +it 1, j nt 1 ' +i, j t  1, n+ 1 
1 

F o r  mesh  points on the solid wall  the Neumann boundary condition 

a+/ an = 0 can be satisfied by locating dummy points outside the wall  at the 

images  of the points immediately inside the wall, so  that 

On the left wall, 

1 
9 1, j ,  n t  1 = 4 (2  $2, j n t  1 + + 1, j -  1, n t  1 + + 1, jt 1, n t  1) 

On the right wall, 

1 - -  
+I, j ,  n t  1 - 4 ( 2  +I- 1, j ,  n t  1 +I, j -  1, n t  1 + +I, j t  1, n t  1) 

On the bottom of the tank, 

1 
) +i, 1 ,  n t  1 - 4 ( 2  +i, 2 n t  1 + +i - I, 1 nt 1 + +it 1,1, n t  1 

- -  

At the two co rne r s ,  

At the source ,  since ?k = u0(t) ,  ax 

(4)  

( 5 )  
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On the f r ee  sur face ,  

dH d2H 3 T -  - 
dx dx2 - 

5/2 

L 

avs 
+ vi, j ,  n + (F)~, j ,  q i , n  

S S 
where velocities on the surface U i ,  j ,  

procedure to  be descr ibed later.  (Actually they a r e  velocities a t  points 

with coordinates corresponding to  the s ta t ic  equilibrium sur face .  ) For 

and vi, j, can  be obtained b y  a 

avs (x)~, j ,  a backward difference is used. 

S S 
- vi, j ,  n - vi, j ,  n-i - 

(%)i, j ,  n A t 1  
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a r e  obtained by modifying the appropriate 
d2H and - dH The t e r m s  - 

dx dx2 
equations of Reference 3. They a r e  

1 
2 
- 

1 
- 1  dH - = f  

t 2 c o s 8  - - W 
dx H - H o  

W 

where 

Ho = H when x = W/2 

Bo = p g WZ/T = Bond number. 

is 
dH depends on the value of x. F o r  x > W / 2 ,  - dH 

The sign for  - 
dx dx 

positive; - is negative for x < W / 2 .  
dH 
dx 

t 2 cos e - - 
W W - -  - d 2H 

3 

t 2 c o s e - -  - 
2 

dx2 

L 

where 

W 
ho = $ lo H dx . 

Also,  
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S 
Thus, +i ,  j ,  n t  1 can be calculated by Equation 10. 

t e r m s  of a Taylor s e r i e s  expansion, 

Using the first two 

1 S 
’i, J- 1, n 

t AY 2 
Vi ,  j ,  n t 2  

where 

(F) can  be  calculated s imilar ly .  

CALCULATION OF FLOW FIELD 

In a typical ca se  there  a r e  at l eas t  severa l  hundred mesh  points 

in the flow field and there  a r e  an equal number of equations to  be solved 

simultaneously at any time level. Since the resulting matrix is spa r se ,  

the bes t  way to solve these equations is by an i terative method. 

i terat ive scheme to be used is the successive over-relaxation method 

o r  the extrapolated Liebmann method when applied to Laplace’s equation, 

which has the fo rm 

The 

k t l  - -  w k  k t l  t + i , j t i , n t l t ~ i , j - i , n t i ) - ( w - l ) + i , j , n t l  k k t l  k 
+i ,  j , nt 1 - 4 (+it 1, j ,  n t  1 t +i- 1, j ,  n t  1 
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The relaxation factor,  w,  lies somewhere between 1 and 2 .  The 

optimum value of w,  which gives the highest convergence rate ,  is given 

by Young's4 formula 

where A is the spec t ra l  radius of the Gauss-Seidel method. 

of Laplace's  equation and for  a rectangle with s ides  Ra and Sa, where a 

F o r  the case  

is the mesh  s ize  and R and S 

1 A = -  
4 

a r e  integers. X is given by 

(cos g Tr t cos q 
s -  

Since the configuration under consideration is not rectangular,  it 

is suggested that one use either a rectangle which contains the given 

region o r  one which has approximately the same a r e a  and proportions. 

These formulas  have been found to ag ree  ve ry  well with the resu l t s  of 

tes t  runs,  re fe r red  to la te r ,  for  which the liquid surface was assumed 

to  be flat. 

The successive over-relaxation method has been proven to be 

superior  over the Gauss-Siedel method in t e r m s  of convergence ra te .  

This is so when applied to the five point formula,  provided that the 

ordering of the points is properly chosen. Experience shows that by 

i terating column wise f rom left to right with a r rows  pointing upward 

in each column, the highest convergence ra te  can be obtained. 

It should be pointed out, however, that in obtaining mesh  points 

immediately below the f r ee  surface,  i t  is usually undesirable to apply 

the modified five-point formula since the mesh  s ize  ra t ios  in such cases  

m a y  be s o  large that the iterations may  converge very  slowly and some- 

t imes  may even diverge. 

formula is the so-called "interpolation of degree one": 

A different method is needed. The following 

11 
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.', o r  (xi ,  j - a ,  y i , j )  is a point outside the surface.  If one of them is such a 

point, the value of + at the surface point intersected by the horizontal 

line y = ( j - 1 )  a i s  obtained through linear interpolation of the two nearest  

surface points. 

of (3) ax i ,  j ,  n t i  

I 
I 
I 

This new surface point is then used for  the calculation 

. For  example, as shown below, it is intended to find uc. 

S 
+i, j t  1, 

+i, j ,  n t  
S 

+ i , j - i , n t i t  + i , j t i , n t I  
(12) 

- 
+i, j ,  n t l  - l t f  

+i, j -  1, n t  1 E 
The truncation e r r o r s  in such interpolations a r e  O(aL), compared 

with O(a)  in the modified five-point formula and O(a2) in  the five-point 

formula.  This shows the advantage in using the interpolation formula. 

Note a l so  that Equation 1 2  is of positive type with diagonal dominance, 

which is excellent for  numerical  solutions. 

After the velocity potentials, + I s ,  have been calculated for 

every  mesh point on the new time level, the velocities will be computed. 

The following procedure is to be  followed: 

vi, j ,  n t  1 = (F) Y i, j , n t l  

To find (*) , it is necessary to  tes t  whether ( X i ,  j t a, yi,  j )  
ax i ,  j , n + l  

12 



Point L, with coordinates (xc - a, yc) ,  is located outside the surface.  

Thus,  

L dl' J' 
'S -/A. . t 1 , n t i  

E 

I 

I 

Then 

Also , 

F o r  velocities on the f ree  surface,  apply a Taylor s e r i e s  

expansion to f i r s t  degree 



1 A Y l +  Ay2 A Yz2 
ui, j - l , n t l  A y l  ( A y l  t ui, j-2, n t l  

- S 
j ,  n i l  - 

Similarly, 

CALCULATION PROCEDURES 

Before proceeding to  calculations fo r  points on a new t ime level, 

the t ime increment must  be selected. 

on the stability and convergence requirements,  and is  mostly determined 

by  experience. Surface conditions a r e  then obtained by Equations 10 and 

11, and values of 4 in  the flow field a r e  approximated by extrapolations 

through the corresponding points on the two previous t ime levels. 

the i teration process  s ta r t s .  Firs t ,  values of 4 for points immediately 

below the f ree  surface a r e  obtained by Equation 12. Next, mesh  points 

a r e  revised column wise f rom left to right, with the direction in each 

column pointing upward, according to  Equations 3 through 9. 

procedures a r e  ca r r i ed  out alternatively until the maximum e r r o r  in 4 

at any point drops below the previously se t  tolerance,  usually around l o e 6 ,  

and i teration is terminated. Velocities a r e  then computed, thus com- 

pleting the calculations of the flow field on a new time level. 

increment is again selected, and the whole procedure is repeated. 

The value of the increment depends 

Then 

These two 

A new t ime 

14 



CONCLUSIONS 

Several  tes t  runs have been made to  determine the validity of 

Young's formula for predicting the value of the optimum relaxation factor.  

Assuming a flat surface with constant 4 a c r o s s  the width of the tank, the 

flow field is laid with 44 X 38 mesh points. The best  value for  o was found 

to be around 1.94 which agrees  well with the value of 1. 92 given by Young's 

formula.  With the value of 1 .94 f o r  w ,  it took approximately 200 i terations 

to converge to  

ations for  subsequent t ime levels with the same t ime increment.  

in for the first t ime increment and only a few i t e r -  

Running t ime on the UNIVAC 1107 computer was l e s s  than 0. 5 sec  

per  sweep, which is tolerable since on the average it does not require  

many sweeps for convergence. 

As was shown previously, an explicit finite-difference scheme 

was employed to solve the differential equations for the f r ee  surface.  

This could cause instability i f  time increments  were not properly chosen. 

With the presence of the mixed derivative and nonlinear t e r m s ,  there  is 

no known theoretical  method to obtain the stability c r i t e r i a  for such a 

difference scheme. 

numerical  experiments.  Since central  t ime differences were  used, i t  is 

conceivable that the difference scheme may always be unstable no mat te r  

how sma l l  the t ime increment is, a s  i n  the study performed by 

Richardson8. 

o r  DuFort and Frankel  difference scheme would have to be used. It i s  

unknown, however, what effects the mixed derivative and nonlinear t e r m s  

will  have on these difference schemes. 

The stability c r i t e r i a  a r e  to be determined only by 

If this should happen, either a forward t ime difference 

I 
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