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ABSTRACT
18567

When ionograms are sampled to provide input data for a true height-
electron density reduction program, errors,which are dependent on the sam-
pling accuracy and on the quality of the ionograms, are introduced. The errors,
introduced in the sampled values, are transformed by the reduction program
to give errors in the estimation of the layer shape.

The relationship between the errors in the virtual height profile and
in the resulting true height profile has been examined by consideration of a
parabolic layer model. This allows the layer shapeto be characterized by
three basic parameters: a layer thickness, a maximum layer density and a
height at which this maximum occurs.

Relationships between the distribution of the sampling points with
respect to one another and to the layer maximum critical frequency are
examined . Conclusions are drawn about the effect of incomplete ionograms
in the region of the layer maximum on the estimate of hsz. A suggested

distribution of sampling points is given for fitting a parabola to the layer

maximum for the estimate of hmF 9 and "SCAT". M



I. INTRODUCTION

A. General Statement of the Problem

Estimates of the maximum electron density, the height at which this
maximum occurs and the curvature in the electron ‘demsity-height profile at:;
the region of the pea.k ére of lconsiderablﬁe impo‘rtance- to the studly' of the
physics of the F region of the ionospher'e .
| Rishbeth and Barron (1960), Nisbet (1963), Tornatore (1964) and ottiers
have shown that the electrpn density in the region. of tﬁe peak is pf;)i)ortional
to the ratio of the produ(‘:t;ion» coefficient to the recombination coefficient éf
" the ions, and that the height of the rnaximﬁm electron density is rélate‘d ™
the rgtio of the diffusion qoefﬁcient to the recqmbination coefficient of the
ions. ﬂnder equilibrium conditions . 'ﬁle curvature of the proﬁle in the reg{oﬁ
of the peak was shown by Dungey '(1.9.56), Stubbe (1964). and others t& be re-
lated to the temperature of the neutral atmosphere. ~

‘.The'bldest and most widely used method for measuring the distribu-
tion of electrons in the ionosphere is by meaps of an ionosonde.  While the
ionospheric electron dis'cribution;i can now be ‘measur'ed by othér methods",such
- as direct rocl;et and satellite probes, rocket propagation methods, and incohe-
rém;. sc;atter'éoundingS5 these methods can only be used at isolated #imes o;
loéatibns, and they are relatively new,£hus data from them is not pfeéeri_tly '
available for an entire solar cyc¢le. Ionosonde records are available from
locations éll over the world for several solar cycles and are thus of conside~

rable interest. This paper is concerned only with ionosonde measurements.
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Ionosonde measuremeﬁté gdnsist of ground-based vertical incidence
scundinés made by transmitting vertically upwards pulses of radio waves
whose léarrier frequency‘is slowly varied, and recording the time delay
of the pulses returned from the ionosphere as a function of the logarithm
of the carrier frequency. The time delay is recorded as a "virtual height",
which is the height from which the pulses would have been reflected if they
had trayeled at the free space velocity for the same time interval. This
record of virtual height versus the logarithm of the carrier frequency, is
known as an ionogram.

When ionograms are sampled to provide input data for a true height+
electron density reduction program, errors are introduced dependent on the
accuracy of the samples, the number of samples, the distribution of the
samples, and the general quality of the ionograms. These errors, intro-
duced in the sampled values, are transformed by the reduction program
to give errors in the estimate of the shape of the true height-electron
del;slty profile. It is of interest to study’hoiv these errors in the ionogram
are related to errors in the profile for the case neglecting the effects of
the magnetic field. Evéﬁ though the magnetic field causes great changes
in an jonogram,as compared to an ionogram from the same electron
distribution with no magnetic field, the mapping of the ordinary and extra-
- ordinary rays with a magnetic field is similar to the mapping of the rays
‘with no magnetic field. Since the errors in virtual height are transformed

into errors in true height in a similar manner in either case, the case
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where the magnetic field is neglected is studied, for the expressions in this
case are analytic and simf)!ér to use.

Past efforts to reduce these errors have consisted mainly of ifi- . :
creases in the number of samples taken, usually along equal frequency incre-
ments; and in the refinement of the reduction technique. Kelso (1952), Budden
(1955), Jackson (1956), Thomas (1959), Titheridge (1961), Doupnik (1963),
B;:own (1964) and Doupnik and Schmerling (1965) give some excellent examples
of the refinements of the reduction technique. Some work has also been done
to improve the quality of the ionograms (Barry and Fenwick, 1965). Little,
however, has been done to find an optimum distribution of the sample points
at the region of the peak.

| In present practice, ionograms are usually plotted on a logarithmic
frequeﬁcy SQale, and since the frequency at which reflection occurs is propor-
‘tional to the square root of the electron density at the height of reflection,
the top 20% of the true height-electron density profile corresponds to only

|
the top 5% of the ionogram. This distortion of the scale occurs in a very

- important region of the ionogram-the region where the virtual height is

changing most rapidly and where the errors are greatest. Figure 1. illus-
trates this distortion. The- three pémts on the true height profile correspond
respectiveiy to the three points on the ionogram.

In the lower regions of an ionogram, the slope of the virtual height
profile is increasing at a nearly constant rate. It is shown in Appe;l;iix A,

that under these conditions it is sufficient to sample the ionogram at equal
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frequency intervals.

- In the region of the peak, however, thé virtual height and all its
derivatives rapidly approach infinity . It is thus apparent that the consid-
ations affecting the choice of sampling poiats when reducing ionogfams _
to electron density profiles are very different in this region from those
relevant to the lower regions of the %onogram . The main topic of this pééer
‘is - the study of the effect of the choi‘ce of sampling points uﬁon the errors
produced in the reduction of ionograms,; with the object of minimizing

~ these errors by a judicious choice of sampling frequencies.

B. Sourées of Error

The pulses sent out by an ionosonde have a duration of the order of
50 microseconds, corrgsponding to a virtual height resolution of about
15 kilometers. Ti\e pulse width will be increased slightly by the narrow
bandwith of the receivers and the average height of the interval will be
modulated by small random.ﬂuctuations of recorder gating time, irreg- -
ularities in the resolution of the film oﬁ which the ionogramé are recorded,
the noise at the receiver input, and irregularities in the ionosphere ciose
to the peak. Thus, the ionogram will consist of a virtual height "band"
modulated by "noise" . |

When an ionogram is s;fnr;ied and one value of virtual height is
chosen from this noisy bahd, erroes result which are generally independent

of sampling frequency. |
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When the pulses used in obtaining ionograms are represented by a
Fourier integral, it is found that they contain a spectrum of different
frequency components in the vicinity of the carrier frequency. Since
the slope of the virtual height profile is high in the region of the peak,
the lower frequency components of the pulse will be reflected from a
substantially lower virtual height than the higher frequency components.
Rydbeck (1942) shows that the pulse shape is modified to that of its own
Fresnel diffraction pattern, and the pulse is dispersed over a larger
virtual height interval than would have been otherwise expected. Budden
(1961) has  shown that attenuation in the atmdéphere is proportional
to the difference between the virtual beigixt and the phase height. The
phase height at a given frequency is the mean value of virtual height
up to that frequency, and the virtual height is an increasing function which
rapidly approaches infinity at the region of the peak. Thus, the absorption
also approaches infinity in the region of the peak.

This combination of absorption and dispersion usually causes some
of the upper portion of the ionogram to be lost. Estimates of the peak
of the ionogram must then be made from information derived entirely from
the lower regions. It is of interest to determine what type and what
magnitude errors result when this occurs, and how such errors are to

be minimized.
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II. RELATION BETWEEN ERRORS IN VIRTUAL
HEIGHT AND TRUE HEIGHT

In the case of a monotonic electron density versus height profile, for

the simple case neglecting the effects of the magnetic field, the relation

between the true and virtual heights is given, according to Appleton (1930)

and de Groot (1930), by the transform pair, in normalized copxdinates:

Hp
H (F) = F f dH (2.1)
. Vg _ g2
N
Fy .
H(N) = 2+ ([ H _(F)dF (2.2)
W
F - F
where "
N = F (2.3)
H_ = HwhereF = F (2.4)

R N
The terms are defined in Appendix B.

If# is assumed to be in error such that

H'=X + YH (ZF)
€ (2.5)

where X represents an error in the zero height marker, Y represents an

error in vertical scaling and Z represents an error in horizontal scaling,

and X, Y, Z are independent of F; then we find the corresponding value of

H€ from equation (2.2)




F

N 1
X

H€=_;2r__f J+YH (XF) dF (2.6)

0] 2 2

Fy - F

F F

= __g_f,N X dF , 2 fNYH(XF)dF (2.7)
ki i ﬁ l
() JFZ . gl o ‘/F

Solving the first integral of equation ( 1.7 ) and multiplying the

numerator and denominator of the second integral by Z yields:

' ZFN 1
) 2 HY(ZF) d (ZF)
H, = X + 2y f (2.8)

o) Vo2 2.2
z -
FN Z°F

Except for the dummy variable and the limits, the integral in

(1.8) is seen to be the same as in ( 1.2 ); therefore

H =X +Y He(ZZN) (2.9)

Thus comparing (2.5 )to (2.9) it seems apparent that an
error in the zero height marker and vertical scale of an ionogram trans-
form into identical errors in the true height profile. An error in ,

1
horizontal scaling changes to an identical error in the scaling of F =N 2.
Since these errors transform linearly from one profile to the other,

in order to minimize the errors in the electron density profile it is

sufficient to minimize the errors in the ionogram samples, provided the




reduction program is perfect
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III. APPLICATION OF SAMPLING THEORY
TO THE MINIMIZATION OF ERRORS

A. General Theory

In order to reduce the errors appearing in the electron density -
height profile, it'is necessary to reduce them at the source.. There are but
two sources of error — the errors may be introduced by the ionogram reduc-
tion program, or they may be found on the sampled values taken from the
ionogram for the reduction program. Much work has been done recently by
Titheridge (1961), Doupnik (1963), Brown (1964), Grebowsky (1965) and many
others, to improve the ionogram reduction techniques to the point where the
errors due to reduction are very small. For the purpose of this paper the
reduction technique is assumed to be perfect so that all errors are assumed
to come from errors in the ionogram samples.

Present reduction techniques, such as these of Thomas (1959),
Titheridge (1961) and Doupnik (1963) do not use the full ionogram curve, but
break the curve up into M sample points. These M points are then reduced,
either one by one or in groups, to give points in the true height profile, which
are then joined together by some assumed relation between these points. The
shape of the electron density profile, and of the ionogram, is therefore
assumed to be completely determined by a curve which contains only n inde-
pendent parameters, where the value of n depends on the reduction technique,
but is never more than M. Let the virtual height on an ionogram be express-

ible by a function H (F), where H (F) is a curve with n independent para-
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meters. This curve has the value Hi at frequency Fi . When the jonogram
is sampled at the frequency 'Fi, an error is introduced and the sampled

value is glven by
H = H, + € (3.1)

where. € is the error introduced at frequency Fi'

The lonogram reduction technique takes M of these H . , where

xi
4= 1,23, 4......M, and fits them fnto a curve H'E, which is derived
from HffF,) by adjusting the # parameters of H'(F). This adjustment ;na& be 7
vepresented by multiplying the kth parameter of EH:'(F ).“_by (1l+ 8y ), where
k = 1,2, 3,4...,..n

© If a least square error curve fitting technique is used, the ay are

adjusted to minimize the function.

L2
EEZ[ (F,a)-Hi:‘ | (3.2)
' i=al ‘
This is done by setting 7 = Qfor allak and solvingthe n
resulting simultaneous equations in l;k » € and F to give the values for
thea.kasafunctionofe andF i=1213, 4...}...M.

~ .

The ak represent the deviation of H frorn the actual 1onogram,
H (F); thus they can be represented as error terms, giving the errors
‘in the n parameters of H (F). For H c to be close to H (F), all the ak must

be made sinall.
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This may be done by choosing the sampling frequencies so that the

(gt.k)2 will be minimized.

Oak

Ay TH
k OF,

Therefore, = 0 (3.3) foralla andforallF, .

k

This unfortunately gives nxM equations in M unknowns. Clearly
all these equations do not in general have a simultaneous solution, therefore,
all 8 can not be minimized by the saftre set of sampling frequencies. In

general, only one of the g, 's can be minimized in this way.

k

B. The nk Function

Since all the a, can not be minimized simultaneously, a function

k

must be chosen to relate the &y according to their importance. This function

must be such that as all a, approach zero, the function approaches zero. One

k
such function may be

. M ,
. o 2
Pla) 5 X c, 2 (3.4)
k=1l
Where the Ck weight the akz according to their importance in the

final electron density profile. The function P(ak) tnay be minimized by

setting.

¢ P.(ak)
6 F

= 0 (3.5)
1

and solving the resulting M equations for the Fi'
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C. Eliminating the €

The ak, and therefore the Fi’ are functions of ei. Since the ei
are unknown error values, the solutions for the Fi will contain unknown
values and thus Fi can not be found directly.

The €, can, however, be represented statistically by their

variances ug(ei), which may be given as

2 2 2
U(ei)-— Gi L : (3.6)

2 . .
where ¢ represents the general estimated variance of the error terms,
2 .
and G ; gives the frequency dependence of oz(ei), as determined by an exam-
ination of the sources of error.
. . . 2
With the new representation for €, a ls replaced by o (ak),

k

the variance in ak, which has the form

oz(ak) - QF, Giz) 0'2‘} (3.7)

A function P(}czak) may be formed corresponding to the P(ak) of

equation (3.4). Then if 9
6P (o ak)

T =0 (3.8)

is solved for the F i the :Fi are found to be independent of oze and, since

Gzi is a known function of Fi’ the Fi may be determined exactly.

D. Linear Function Case

[

The minimization problem can be simplified, if it is possible to
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represent the difference between Hl€ and H1 (F) as a Iinear function
n
1 1 Z
H - H = b, B, 3.9
€ (F) i (3.9
j=1
where bj is some function of a such that as bj approaches zero, ap
approaches zero also.  Equation ( 3.2 ) can then be written as
2
n
E E .
Z [(,2 bj Bj)1 +€il] (3.10)
- 1=l
i=1
Since E is to be minimized by adjusting the bj ,
M n
‘5E=2Z[(z b B ). + € B, = 0 (3.11)
6b. k k’i i il
] =1 <=l

This is a syst‘em of n simultaneous linear equations which has
solutions of the form

N (ei, Fi)

LN
b D)

(3.12)

Here the denominator is independent of ¢ i and is common to all

b i therefore all the b, can be decreased simultaneously by maximizing

j

D (Fi) , if the N, do not change much with the F

j i

Under these conditions the minima of bj lie somewhere near the

maximum of D (F i)’ and the solution to the equation 6D (Fi)

5 F. =0
1

(3.13)
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gives the sampling frequencies.

E. Conclusions

A geﬁei*al method of approach for m;nimizmg the errors in an
-ionoéfam was outlined, since it is not practical to study all possible
variations of iondgram sampling schemes in v.;etail. It is of mté;fgst to apply
this method of approach to a particular type of p1_'ofile in order tro“s.tudy the :
means for minimizing the errors éppearing in that prqﬁ_le. Tl:ne profile
which is studied hereis a monofonically .increasing funct;on gxpressible

by three parameters.
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Y. THREE PARAMBTER MODEL STUDIES

A._Genesdl Budy

- In some reglons of the ipnogram, such as the region which correr
sponds to the peak of the electron density profile, the ionograms may be
represented by a monotonically increasing function which ¢an be completeﬂir
specified by three parameters. In such a region the virtual height may be

written as

f f

h = h -t 4+t T S(T-—-) (4.1)
c c

where § 1is a futetion which goes monotonically from zero to infinity as £
goes from zero to fc' The three variable parameters are hm , t and fc.
The value of the virtual height read from the ionogram by the

experimenter will be in .error, and can be expressed as

h = h.. b (4.2)

where the exror ¢ is expressed as a fraction of h THe read values,

h , are fitted by a wirtual height curve in which the three parameters

have heen varied

‘ (4.3)
Y _ (Q+g)f o (L),
he (1+a) hm (1+ B8)t + (1+8)t fc S[ f ‘]

c

Here @, § and y represent the fractioig] changes in h - tandf

respectively.
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Equations (4.1), (4.2) and ( 4.3 ) can be normalized te:

L}

H

1- T + TF S(F)

(4.4)
H = H' + (4.5)
LY
H™* = (1+:a) - (1+ B)T + (1+8)(1+ V)TFS[(1+ Y)F](‘l--é)
A square difference function corresponding to equation ( 3.2 ) can
be formed
M ' ' \ 2
E=?<H.-H'., (3.2)
L. €l ri

Substituting (4.4 ), (4.5 )and (4.6)in (3.2 ) gives

E = E (a —,'B,T) +(1 +8) (1 4+ v) TFi‘ S[(l +v) Fi] - TFiS(Fi)—ei]
iwl '
(4.7)
This equation may be simplified by substituting
R, & T F 8 (F) (4.8)
. TF, \
and A E g { S<(l+'y)F#: - S(Fi)-] (49)

into the equation.
Ai is asgymed tq be independent of v. This is true to a first order

approximation if y I8 very small, since
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: ds
Lim _ i
y —~0 Ai = TFiZ dFi (4.10)
which is independent of v.
Substituting (4.8 )and (4.9 )in (4.7 )

M ‘ 2
E = y -[(a— AT)+(B+ v+ Bv)Ri“?'Y(l +v)(1+B)Ai-€i]

i=l

(4.11)

This can be lirearized by substituting
n=a- BT; A= B+vy+ By; w= v(l+M(1+p) (4.12)

These meet the criterion mentioned in Chapter III, that asn, A and u
approach gero; @, 8 and y must approach zero also. Equation ( 4. 11)

then becomes
M 2

= | | - 1
B Z[n+7\Ri+ WA, .‘Ei] (4.13)
im]

The least square difference formulation requires that E be

minimized. Then

5E 6 E 5 E
= = - i = = .14
51 5N g 0 (4.14)

These are three simultaneous equations:

M ,
12 g {m AR+ uAij*e.] = 0 (4.15)

i
=1
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which becomes
, M M '
n M+ lfRi*r MF Ai-z €, =0 (4.16)
M B
68 .
1/2 —3%- ® Z {n+7tRi+ kA fei]Ri = 0 . (4.17)
: 1=1 o
whichbecpmes
M M M M
P ) B M) R e ) RA D R =0 (4s)
=1 .

i=1 | i=1 i=1 i=

M

6B A _ f a1

1/2 —3'—5-!" .- z [11 + XRi + “Ai - €1J _Ai =0 (4.19)
i=1 ,

which becomes

M | M M M

o 2 T

ZAi ¥ "Z R, A + u}: Al Z €A =0 (4.20)
i=1]1 i=1 i=1

These equations ( 4 16 ), (4.18 ) and ( 4.20 ) are linear equations in
m, Aapd M, and their solutions are therefore of the form:
N N N
A
n=-§— 7t=-—-]3—- M="BE— (4.21)
where the denominator is common to all three error terms. Therefore, all

three epyor terms can be decreased by increasing D.
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Dz is the determinant of the coefficients of the error terms; singe

the solutions ( 4.23"« ) actually are of the form:

N D
n & ~t—0 (4.22)
D
Then |
M M M M M
| T2 2
ZZ liz AIZ RiAi + ME‘ A1 | Ri'
isl (=l 1=} sl =1
M 2 M . M 2
M (Z R A } ? <§ Ri> § E“i Q“t)
i=1 i=l =1 i=] i=1

(4.23)

It is shown in Appendix C that this equation reduces to:

| M oM M- ) .
p? - 1/2[2 Z Z <A1'Ak> (Ri'Re!>

izl kmlewl

1‘Ak> (Ri‘Rk)]

wherei # k # e (4.24)

2

j=1 k=l

Equation ( 4.24 ) may be further reduced to give:




21,

M M-l M-2

T T T [ (A (rm)(aa),

i=3 k=2 e=1

- 2 .
(Ri - Rk) } (4.25)

where i > k > e

Comparing equations ( 4.4 ) and (4.8 ) gives the relation

R, - R, = H - H (4.26)

Substituting this in { 4.25 ) yields

M M-1 M-=2

SRR CEARCERCA)!

(4.27)

This is the equation which is to be maximized by adjusting the Fi .
If the numerators of equation ( 4 .21‘) can be shown to remain nearly constant
as the sampling frequencies are varied, then, the error functionsn, A and u
will have a minimum very close to the place where D2 has a maximum, and the
above values of Fi' are the optimum sampling frequencies.

The behavior of the functions in this section are hard to visualize in
the general case . In order to see if the numerators remain approximat;ly

1]

constant and how the optimum sampling frequencies depend on H and A, some
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elementary cases were studied.

B. Three Point Case, the Numerators

The simplest solution to the sampling problerﬁ occurs in the degenerate
case where there aré only three sample points. The fufiction H'€ in this case
goes through all three‘ of these poi;xts, and the square difference function has a
minimum value of zero.

For the theory of section IV A. to be applicable, the numerators of
equation ( 4.21 ) must remain nearly constant as the frequency of the center
point is varied. These numerators can be found by solving equations ( 4.16),

(4.18), (4.20); for the three point case they are:

Ny = ¢ (Aa‘A2> - ‘z(Aa‘A1> + e3("2"6‘1>

(4.28)

N, =":'"‘v‘1<Ha'H2> + €2<H3—H1> - €3<H2'H1>

(4.29)

_ _ t _ 1] . 1_ [ ~ '_ 1t
N, =~ ¢ <A3H2 H3‘°‘2> + €2("‘3H «~Hy A1> %(AzHl H2A1>
(4.30) |

These are functions of €, and since ei are unknowns, can hot be

i

calculated directly. The €, can, however, be given in terms of their variances

a?e , gince o

i el represents the probable range of €, - Then, adding the vari-
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ances by the laws of statistics, and denoting the variance of N as FI‘Z

’

the equations become

2 2 o
ﬁ'zn - [(As— A2> + (AB—A1> + (A2~A1> ]‘02
(4.31)
2 2 2
ﬁ’zﬂ = [ (H'a —.-H'2> +<H'3-;H'l> +<H'2~ H > } o,
(4.32)

~-2 _ \2'/-‘,\': .;'\2‘]‘?2

W [ ()« (rgiromn, (o a2,
(4.33)

if the error is assumed to be independent of frequency.

To see how the variances of the numerators vary with F_, equation

2

(4.31 ) is examined as a typical case. Equation ( 4.31 ) is minimum when:

6 Nzh 6A2
1/f2—2- 5 (2A,-A,-A, ) —= = 0 (4.34)
. i 2 3 1 6F
OF ‘ 2
2
6A
i is not zero, since A is a monotonically increasing function
2

of F. Then the first term on the right hand side must be zero, and the value

of A2 at minimum is :

A3+A

AZm = 2 (4.35)
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Substituting this intp equation ( 4.31 ) gives

Nimin = % < A3 - A1 )026 | »(4.36)
The maximum value of Ni occurs at the endpoints, where F2 = I’*‘1 or
F2 = F3, and where

Nimax = 2 ( Ay - Al) 026 (4.37)

The ratio of the minimum to the maximum values of _Ni is only three to

four, thus the numerator of A remains nearly constant, and A has a minimum

2 .
very close to where D” has a maximum.

Since the equations for Ni and Nﬁ are identical except for the

2
In the same manner N': can also be shown to vary only slightly with F

=2 . . - . .
variable, Nu is also expected to remain nearly constant as F_ is varied.
9"
Thus all the numerators remain nearly constant as the center frequency
is varied between F_. and F_ ; and in order to minimize the error terms

1 3

it is sufficient to maximize the denominator of these terms.

C. Three Point Case, the Denominator

The denominator of the error terms for the three point case is :

o - [f\ hy ) gy ) - (A -4y (i - 1) )]2

which can also be written as




5

n

. _ : ' ‘ | . L 92
D? =[(A“’2—Al)< Hs—Hl)—<A3—-Al)< HZ—HII)]
(4.39)

A and H are both monotonic functions of F, and it is assumed

that A does not equal H , and that F3> F2 >”F1' D2 is a function of

( H3 - Hl ) and (A3 - Al ) , both of which increase monotonically with

( FS» - Fl ) ; therefoxe the larger ( F3 ~-F 1 ) becomes, the larger will

be D2. Therefore, in order to decrease the size of the error terms, F 3

should he as large, and F. as small as is practical.

1
Equation ( 4.38 ) shows that D2 = (0 when FZ = 1"‘1 and when
F2 = F3. As F2 goes from Fl to F3, D2 must either remain zero

throughout the interval or have at least one maximum in the interval.

D2 is zero throughout the interval only in the trivial case where H = 0
or A = 0 . In the general case there must then be a maximum of D2 for

some valye of F,.. This maximum is given by the relation:

2
o | 2D (H'-H' 9‘52—<A - A oty =0 (4.40)
6F 3 1/ 6F 3 1 /6F - :
2 2 2
Int the non-trivial case, in order to maximize D2, F2 must satisfy the
relation:
6A9 _ (Aq-A1) ©SHy _
+F 0 (4.41)

o (Hg-H;) oF,

This is recognized as the well known law of the mean of calculus when it

is written as:
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6Ay _ (A3 -A])
(oH,  (Hy—H)

The value of F

(4.42)

9 found as the solution to this equation is the optimum value

for the center sampling frequency.
| The equations which have been developed determine the optimum
vgl_ues for the sampling frequencies in the case where thér_e are only fhree
sqinples taken. If'the sampling is done on these frequenétes, the errors
introduced into the final electron density profile in the region of the peak

will be minimized.

D., Solutions for M > 3

The first non-degenerate solution occurs when there are four
sample points — when M = 4. Since there are mofe samplé points than
variable pérameters in the matching curve, the curve does not genérally
go through all of the sample points and a true "least square error" éituaﬂon
is established. "

The denominator of the error terms is shown in equation (4.26 ),

and in the four point case is given by:

P [ ag g () - (g -y (-5, )]
l a- 4, )(my-1)-( 4, ‘\x“’HZ)Z
RN ,1)-< ()
*KA4'A3)(H3’H ( Az)(‘H;'H's)jz

(4.43)
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This equation has four terms of the type found in the three sample point case.

In general, if there are M sample points and the H curve has n independent
9 _
variable parameters, the equation for D has

M
n'(M-n)"

(4.44)

such terms.

For the three parameter curve n = 3, and this function has the
progressive values of 1, 4, 10, 20, 35, 56, 84, and 120 as M goes from 3
to 10. The solutions for the optimum sampling frequencies become increas-
ingly difficult to find as the number of sampling points is increased.

The denominator of the error terms for the four point case is
maximized in the same way as it was for the three point case. Using the
same argument that was used for the three point case, it can be shown that

F . should be made as large, and F

4 as small,as is practical. The optimum

1

values of F2 and F3 are found by setting

@) | 0@ _ (4.45)

To simplify the notation somewhat, the terms of D2. in equation
( 4.43 ) are written as the sum of J12, where ];2 indicates the term which

is independent of Fi' Equation ( 4.43 ) may then be written as :

D° = IS+ 1+ 1+ (4.46)
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Then equations { 4.48 ) become:

2 ' - o oH |

sp> N JRION 2

1/2 oF,  ° [(As ‘A1>3‘4f<"‘4'A1)13+<H4 thz]wz
5A.

_[(Hg,'-ﬂl')'u +(u4'—Hl')j‘s";(ug—ﬂl'ﬁz} ”i =0 (4.47)

. 8 H
1/2 55 {(Az"A1>J4"’(A4"A1>Jz+<A4‘A2>Jl]‘?§§"
3

- K“z' - ”1'>J4 +<H4’ v H1'> I2 +<H4' -1, ] '”765% =0 (448)

These are twg simultanequs equationg which are soluble for F_ and FS' The

2
three solutigps to these pquations are:
(a.) Fg=F,  Jy=13=0 Jy=1,

(c.) anFl ]'awj,'4=0 J‘z'ﬂjl

The independent center sampling pointcorresponds in each case to
the centey sampling point for the three sample solutiops, and it can therefore
be found by use of equation ( 4.42 ).

The value of the denominator of the error terms is the same for all

three solutions, gnd to find which of the three solutions gives the smallest
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values for the error terms n, Aand u4; the numerators-of tﬁese terms must
be examined. |

The numerators of the error terms, under the conditions given in
( 4.49),~ -become the same as the numerators for the three point case,
except the error for the double point is given as ——63-;—-59 . If the errors are
independent of frequency, the variance of the error for the double point is
halved. An examination of equations ( 4.31 ), (1‘1.32 ), and (.4.33 ) shows
that the numerators will be the smallest if the term to be halved is the middle
term of each equation, since the middle term is the largest in each case.
The ratio of the maximum of the numerator to the minimum then becomes
3to 2.

The middle term corresponds to the center sampling point, thus the

condition for the optimum sampling point distribution corresponds to having |
as small as practical, and having F,_, = F_ be the same

2 3

frequency as the center frequency of the thtee point case.

F 4 o8 large and F 1
If there are more than four sampling points, the equations corres-
ponding to' equations ( 4,45 ), (4.47 )and (4 .48 ) will still have solutions
of the form of equation ( 4.49 ). Thus, for any number of sample points, the
optimum distribution of thaese points is for them to coincide with the three
optimum sampling frequencies found for the three point case.
It is not useful to také several samples at the same frequency
unless all these samples are independent. One ionogram will not yield two

independent samples at the sampling frequency, thus nothing will be gainéd
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by s#mpling twice at this frequency. This difficulty can be overcome by
taking botht samples near the optimum frequency, one on either side, but.
keeping these samples far enough apart for them to be independent of one
another. In the limit where there are many sample points, clusters of samples
can be taken around each optimum sampling frequency keeping the samples far
enough apart that the errors of each are independent of the errors of all the

others.
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V. MODEL STUDIES OF THE PEAK REGION

A. Model of the Peak’ Reéion .

In order £o 111u'stréte the techniciues'of Chapter 1V, a sim?le model
is adopted to represent the electyon density profile at the region vof the peak.
Sinice the purpose of the model is_to' m'erely',illustrate the techniqués, the
model mu>st necessarily be kei)t :s'imp'le. Omn the other hand, the model must
have all of the characteristics of the-profile that it represents, ofherwise
the results obtained from the médel stﬁdies are meaningless. A good model |
of the electron density, profile at‘the regivohlof the peak can be derived by

forming a Taylor series approximation of the curve at the peak.

2 2, R
SRR I g i S (£ g S
(5.1)
: dH . , .
At the peak aN = 0. In the region close to the peak AH = (1-H) is
small, thus all texrms in (l—H)\n can be negiected for n greater than two .
This leaves the approximation
") 2
N= 1+ “EH) ¢4 (5.2)
' N dN
d%H 2 ~
The term is, for simplicity, written as -~ —5— . The

an’ | T2

approximation for N then becomes

. _ 3 1-H
N—17< T> (5.3)
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which is the equation for a parabola. The electron density versus height pro-
file can therefore be represented by a parabola at the region sufficiently close
to the peak.
The virtual height profile', if the magnetic field is neglected, is

found by substituting equation ( 5.3 ) into equations (2.1 )and (2.3),

giving
H
'~ R
' 5.4
H(F) = F f df (5.4)
o VoY
Substituting
1-H 2 2
< = 1 - = 5
\Y T , @ 1 - F and VR ¢ (5.5)
into equation ( 5.4 ) yields
' 'R v
H(F)al—T—'FT[ _—
1 Yvie g

. ¢
=1~T<.-PTlog€ (V-.}V2_¢2\/:l
1

which gives

H(F) = 1 =T+ FT arc tarh F (5.6)
This equation corresponds ta equation ( 4.4 ) of chapter V. when

S(F) = arctanh F (5.7)
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Then R of equation ( 4.7 ) becomes
R = TF arctanh F (5.8)

B. Calculation of A

The quantity A is important because it appears in the final equations
giving the value of the optimum sampling frequencies.

A. is define& by equation (4.8 )and (5.7 ) as
|

TF

Y

A = [S(1+y~)F—S(F)]

TF
7

‘\[aemh(lw- -F)-arctanhF} (5.9) .

Making the substitution

® X arctanh F

(5.10)
© + A® E arctanh (F + y F)
in equation ( 5.9 ) yields
azgIE . a6 (5.11)
Y
From equation ( 5.10 )
F = tanh ©

tanh © + tanh A ©
1 +tanh ©tanh A ©

F +yF = tanh (6+ AO)

F + tanh A ©
1l +F tanh A 6

L
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Solving this yields:

v F

tanh A © —
I-(1+Y)F

2

(5.12)

This ts expanded in a Taylor series about A © = 0 to give

tanh A ©6 = A6 -

If yis small, A® must be small and tanh A © equals approx-

imately A6 . Then

AO = 'YF X = 2[1+.—____.
1-(l+y)F" 1 -F

and if vyis much smaller than (1 - F2),

2

. (\73?\;1”]

"1 -F ~

(5.14)

(5.15)

This result agrees with equation (4.9 ). The optimum distri-

bution of the sampling frequencies can now be calculated.

C. Optimum Sampling Frequencies

The optimum sampling frequencies can be calculated by substi-

tuting

dA_ _ 2TF dH
(1-F%?

dF

F
—_ = T[arctanF+A 21

" A
1~-F

(5.16)
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into equation ( 4.40 ) or (4.41 ) to give

) 1-8)° : (Hy-H)
1~ e = _—
(1-F) [1+ ; arctanhFZJ 2 TRy (5.17)
F 3 M
This may be written as
R, - r R,-R
(1<_F2)[1+ 2 2[ 31 (5.18)
2’ A, Ag- A 3

and can be solved for F2 by use of an iterative technique,

D. The Three Point Case
In order to' get numerical results it is necessary to examine the
factors controlling the choice of sampling points. In general, F1 should be

as small and F2‘as large as possible. The parabolic approximation for the
region of the peak of the electron density. profile is valid only near the peak,
say for N greater than .81. ._Th_e correqunding region on the ionogram is
the region where F is greéter than. .90. On the other end of the scale, some
of the top of the ion‘ogram' is usually lostndue to dispersion and absorption of
the ionoso.nde signal; say the ionogram above F = .98 is lost. Under these
conditions ‘.F1 = .90 and F, = 98. ._ |

) ;I'he ;'azlues for the quantities _1\3;12 , I—\I—AZ " .I:I—uz , and D2 can thénbe _
calculated for various values of F2 by use of equations (4.29 ), ( 4.30 )

(4.31) ahd (4.37 ). Figure 2 shows the variation of those quantities with

F2 when T = 1. The numerators of the error terms are seen to vary only by
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. . .. . 100
the ratio 4 : 3 from maximum to minimum. The value of 2 , however,
D

has a minimum at F_ = .96 and approaches infinity as F2 approaches F1 or
P

2

F 3" Since these curves are plotted on a logarithmic scale, the variance of

an error term can be found by adding the curve of 10:;) to the curve of the
. : D

corresponding numerator.

The same quantities are shown again . on figure 3, except that the

top of the ionogram is assumed to be at F3 = .99. The numerators are
- 1 © 1000
again nearly constant. The minimum of —2— (plotted here as — ) is

sharper than it was when F3 was .98. The optimum value of F2' = .974,

when I:“1 = ,90 and F3 = .99,

The curves shown on figure 2 and figure 3 give the variances of the
modified error termsn, A and p. ‘The variances of the errors in the three
parameters of the virtual height curve are found by use of equations ( 4.13 ),

(4 28), (4.29), (4.30 ) and (4.38), to give the approximate relations:

a 2n + T (A - p)
Y € u ‘ ' (5.19)
B & A - K

where a, vy and 8 are such that

he max = (l+a) hmax -
n, max = (1+-y)2 n, max (5.20)
t =.(1+8)t

€
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The statistical errors in h max, n max and t can be found by con-
verting ¢, v.and B into variances.

Figure 4 shows how the errors in the ionogram depend on F,_, when

2’
F3 = .99. In this figure these errors are expressed directly in terms of the
ratio of the variances of the errors in the three parameters of the ionogram

to the variance of the errors in the ionogram samples.

The notation of figure 4 is found from equation (3.20') to be

2 2. 0'2=02;02=1/402

T B’ H a N (5.21)

A comparison between figure 3 and figure 4 clearly shows that the
dominant factor in determining the optimum sampling frequencies is the de-
nominator of the error terms. The minima of -the errors of the three para-

1 .
meters do not coincide exactly, but if the sampling is done where —5 s

minimum the deviation of the errors of the parameters from minimum is

negligible .

E. Loss of the Peak

If the peak of the ionogram is lost so that the position of the peak
must be estimated from data which is taken at the lower regions, the errors
in the parameters of the peak region are expected to increase. Figure 5 shows
the errors produced in the ionogram when the peak is lost. The lower sampling
point is kept constant, since below that point the approximations which were

made for the peak region are not expected to be valid. The center sampling
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point was in each case taken at its optimum frequency. The graph clearly
shows that the errors increase rapidly as the peak is lost - a8 FS is forced
to decrease. This stresses the fact that the top sample point must be as high

as possible if a good estinmte of the parameters of the peak region is to be

made .
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VIi . CONCLUSIONS

" 1t was found that the errors in virfuall height on an ionégQ-am
transforin quite linearly into e&rors in the trﬁe Héight profile. Théfefbre,
etford in t\i;xe Zexo heighf rria;.fker ‘and errors 1n the vertical scale oﬁ a;l;"iono -

o gran:‘l are transformed inito 1dentlca1 érrbrsin true height;s derived from this
Yonogram .
The distribution" of sample points was found to be very important in
_‘the minimization of ionogram errors in the region of the peak. The common
ethod of sampling at equal frequency intervals produced results which wére
far from optimum. Figure 6 shows the errors produced in a typical ionogrém
by four sampling scliemes - sampling at equal frequency inteﬁ;als, at equal
distances along the virtual height 'cui"ve, at equal virtualwheight inter;éls, and
at the optimum sam;il‘inétfreQuencies . In order.to make good estimates of the
" height of the maximun'i"el'ectron'dens'i‘ty‘ or the curvatlitre at: the region of the
- peak, it was foﬁﬁd necessary to have a idigh density of samﬁling points cio;e
* to the critical frequency.

When ionograms‘bao not extelidl éo'the critical frequency, léfge errors
¢an'be introduced in the estimates of the heiéht of the maximum electx;;n
density and the curvature of the true .height profile in the ré giotn: of that
maximum. This is partici;lary importaﬁt because indicatic;ns ;fe' lhat this
occurs at some stations quite regularly at cerfain times of day. Syéte-

b

Wdtic errors can thus be introduced in the estimates of the parameters in the
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region of the peak.

The examples preseated here are extremely simpliﬁed; Itis
hoped that an extension of this method to. more practical applications will,
enable a technique te be developed for the inclusion of a2 program to calcu-
Iate realistic errer estimates for the peak parameters into the practical

true beight reduction programs.
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APPENDIX A,

SAMPLING A FUNCTION WITH CONSTANTLY INCREASING SLOPE

If the slope of the virtual height profile is increasing at a constant

rate, then
2 1
0 ? = 2c, (A1)
6F
Successive integrations of this yields
6 H
3T = C1 + ZCZF (A.2)
H = € # CF + CF (A.3)
‘ - o 1 2 ’

i}bmﬁarmg this with equations (4.4 ) and ( 4.10 ) gives
Sf) = C, + CF (A.4)
and

A = C.F (A.5)

differentiation of this gives

6 A
E = ZCZF (A.6)
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Equation ( 4.42 ) may be rewritten as

! '

) = 8H,

3" A) 6 A

,(HS - H

(A.7)
(A 9

substituting equations ( A.2 ) (A.3), (A.3)and (A.6)into (A,7)gives

1

H, -H C, (F 2

2
3 "t G EgmEPHCES -F) ! .
. S 2 2 *
. .53 A, C, (Fy" - F,") C, (F, +F))
(‘A.8)
aHz ] Cp.+ 2C,F, _ C, .
BA, 2 _C?z F, 2C,F,
(A.9)
§lmce equation ( A.8) equals. equation ( A .9)
2F, = (Fy +F) (A.10)
. on
(Fg -F)) = (F, --F)) (A.11)

Thus, if the slope of the virtual height profile is increasing at a

. constant rate, optimum sampling is done at equal frequency intervals.



A =
ak =
D =
E =
f =
C
F =
FN =
h =
m :
h =
H =
H =
. 'HR' =
H =
r
H =
€
H =
€
i o=
M =
g =

—

_f
=77
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APPENDIX B.

- LIST OF SYMBOLS

T F
Y

— [S‘[(l+'y)F] - S(F)']'

. th . . .
error in the k- parameter of the virtual height equation.
denominator of the error terms
square difference function

critical frequency

normalized frequency
c

| ‘normalized plasma frequency of ionosphere

rheight of peak of electron density profile
virtual height

h
m

h _ nhormalized virtual height

B normalized trye height

m

normalized height of reflection

value of H read from ionogram.
erroneous value of true height

erroneous value of virtual height

subscript denoting the value of a function at a peint where F = Fi'

total number of sample points

]
total number of variable parameters in H (F) curve.
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n_ = maximum electron dessity

! . .
N = —— neormalized electron density.
m

= numerator of the jrh error term

= variance of NJ' .

R F S
= TF 5@

functiony giving the frequency dependent part of H .

wn
4

t = thickness parameter giving curvature in the region of the peak.

t . s '

T = +— normalized thickness parameter.
m ' :

a & term giving the erroy inh

B = term glying the errorint

€ = normalized error in the ionogram

g = variance of ¢

=2
il

i inn
term giving the error inn

(a~BT)

"

A =(ﬁ+v+m}

b= y¥(l+y)(l+8)
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APPENDIX C
DERIVATION OF EQUATIONS (4.24 ) AND (4.25)

The determinant of the coefficients of the error terms is given

by equatlon (4.23)as:

. .

Z Z Z RoA + Z ERiZ - M(? RiAi?
i= 1=1 : | - i=1 i=1

Z <Z > Z (iﬂ Ai>2 | (4.23)

#=1. i=1 i=1
Each of the products of ﬂie"summations can be converted into
summations -of products by separating each product into its component

s

parts. f i #k # e, then B

M .M M |
Z'Ri EAizRA ‘RA +ZZ RA(RAk+RkAk+RkA)

i=1" =1 i=1 , i=1 k=1
MMM ~ L
+22X RiRkAkAe . (c.1)
i=1 k=1%=1 :
M M M M M | _
a2 2 2.2 2 2
Z'Ai\ZRi -ZAi R, +E§Ai R, (C.2)
i=1 i=1 i=1 i=1 k=1 ‘
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(ZRA) ZRA+§ZRAR (C..B)

‘Fl i=1 k"
ZA3<ZR ZAR*'EXA R, (2R +R)
1#1 =t 5 " i=1 i=1 k=1 1

¥ ZEZ A B R, (C.4).
i=lk=lesl .. L o
g, M M | M. M
1% 2 (N 4 - % 3‘) y
i i) LA R A (24 + Ak )
Wl i=1 i=1- ielkel
ST e e
i=1 k==_1 e=1 - _

qu}gt;iqag (C. 1 -_)';through (C 5 ) are substituted info equation (4.23 )to

give, a.f;tuer_jth,g terms »a/re collected :,

o M M

p? = (M-2) Zz AR (AR -RA)
1-1 k=1 .

(0,6)

¢ MMM

ZXZAR(ZRA—-RA—RA)

i=1 k=le=1

By a procedure similar to the one used above, the right side of

-equation (4.24) is separated to give
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M M M
2 2 2 2
X (A ~ A) (Ri—Rk)-—»..f(M- 1)2 A" R
i=1 k=1 ‘ i=1
M M (C.7)
* 422“‘ (A R ~ AR - AR - A Ry)
i=1l k=1
MMM M
YY) (a0 (R R maM-M-2)) a7R?
i=1 k=1e=1 ‘ | 1=1
M M
+2<M—z),zz R (24 R - A R) (C.8)
i=1 k=1
MM M
+ 2 ZZZAiRk(ZRiAe—AiRe- R A, )
_i=lk=1e=1

When equations ( C.7 ) and ( C.8 ) are substituted into equation
( 4.24 ) and the terms are collected, the result is identical to equation (C.6).
Since equation (C.6 ) ~was showi to be equal tm*Dz,m equation (@.23)

and to the . right side of equation ( 4.24 ), it then follows that

MM M M M
1 2
T2 Z Z 7 Ry
1=1k=1e=1 i= k=

This is equation ( 4.24 ), and the identity between equations
(4.23 ) and (4.24) . is established.

If the assumption is made that i >k > e, then equation (4.24)
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can be written as
) ) e - AR - R (R - R - (R - R
e=

2. 2 2 2
+ A= A TR R+ (R - R - (R =R

+ (A - Ae)2 [ (R, - Re)2 +@® - Rk)2 - (R, -Re)z]}

(C.9),

(Ai - Ae ) and (Ri - Re ) can be written as
(A= K )= (A~ ADF(A - A) (C.10)
(& - R) =(’§1-Rk)+(Rk—Ré) (C.11)

Substituting equations ( C.10)and (C.1l ) into equation (C.9 ), and

collecting the terms yields equation (4.25):

-1M-2

MM
=ZZZ{(A - AR R - (A~ A)(R - R}

Thé identity 'Between equations (4.23), ( 4.24 ) and (4.25) is established.



