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_ MECHANICAL BEYAVICR OF POLYCRYSTALLINE NON-METALLICS

AT ELEVATED TEMPERA{URE

{SC-NGR-05-020-084)

Summary of Resezrch for the Period April 1, 1365 to Septembe. 30, 1965 -

The crecp beh;viaf'of polyctyst#lline alumipum oxide and sodium

chloride is éutrently,being studied. Alhpinum oxide, a material of

great technological interest, exhibits covalent bonding. It has few

~slip systems and little ductility even at high temperatures. 3odium

chloride exhipitg ionic bonding. It has éeﬁeral slip systems operating
at high‘fenperaturés,rresﬁiting in considerable ductility.

The éu;pége of this stu&y is to resolve exist;ng discrepancies
in thé literature conceréing the'cr;ép réte of a2luminum oxzide, te deter-
ming_thé relétivé tmpéttaﬁce of the different pe#siﬁle moces of creep
deformation in’ﬁon?metallics, and ﬁo inve;tigate the reasoﬁs underlyigg
thé’fac;ltha: creep in single crystal nov-metals is apparently GOntroiIed
by anion diffusien‘while in polyctystalline non-metals, creep~ié appar-
encly controlled by cation diffusion.

Work o daterhag been primar.ly concerned with che development
of facilities fo;rc;eep + stipng of aluminum oxide and»wi;h the prepara-

tien of samples of aluminua oxide and sodium chloride.

Creep Testirg of Aluminum Oxide

The design and construction o7 2 creep machine for testing cylin-

drical samples im compression at constant stress in controlled atuo-

spheres up to 1700°C is essentially complete (Figure 1). Special fea-
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tures include a conrtant stress lever arm and a high sensitivity exten=-
someter. Tﬁe deqién of the—iever arm is discussed in the Appendix. ‘A
fprﬂh;e using’silihac'éaxbide héatins rods has been designed and buile.

A The ‘extensometer (Fig. 2) uses sapphire rods’ to drive a miniature
:linear variabl& differeatxal transforuer (LVDI), Schaevitz Type Nunber
'IOOHS'LT range +o. L«O inck. The LVFT wili be connected to a Schaevitz
_ Model CAS 2500 carrier-anpgi 1er-demodulator system, which eperates at an
_ autput voltage of 2.5 vic and a ceil excitatxon frequenry of 2500 cps.
The resulting LwVDE sensitivity is about 7.5 millivolts per 0. 001 inch
displacenent or \8 7 millivoles per 1.0% strain of a 0.250 iuch’ sample.

, Ihe aliganent and.calxhtacian of the lead system. fumace and extenoometer;
: haveanet been cenpleted;i

Fifty samples of the Lucalox variety of aluminum oxide have been
prepared and are ready for testxng. The ends have been ground flat and -
pa:allelite»within 0.0601 inch. The density hag been determineu by mea-
7s¢ring the samplg weight andfcalcﬁlating-fhé sample voiume from length

and dianefer measurementg. The densitydrangé; frem 3.91 + 2.02 to .
-3.§8:j;0,02 géémslcubic centimeter. Using a theoretical dénsity of
_ 3.996 gr;ms/cﬁbic,centimeter, these.values correspond to 98.0 + 0.5 to
99.8 + 0.5 pefcgnt of theoretic;l dens.ty.

Correépondénce is»undefrway’with Speedway and LéningtoniL;bora-
tories to ob:aip other sauples of high purity aluminum oxide.

,Tﬁe intercgpt terhni gue ﬁilljﬁe ﬁsgd for duantitatively determin-
ing éraip size and ghape. A studyféf the statistics of this techrnigue

is under way. The evaluatien ef the zmount of intergranular aepération

_ in deformed samples will prubably require using the lineal analysis




technique.

The technique of differential density measurement(l) is under

consideration for following th2 dévelépment of intergranular voids. 1In

this technique the density of a stan&ard>is compared with that of a
samplefbéfore anc¢ after deformation. Altbough absclute dencity is not
determined, changes in density smaller than 0.01% can be detected,
Creep Testing of Sodium ChloriZe

Equipment forrcompressive creep testing of sodivm chloride in air
or in an imert atmosphefe is available and operaéive.

Single crystal s;mples ;f sodium chleride are being grown by the
Center for Materiale Research, Stanford University, and an extrusion
press has been made so that dense polycrystalline samples can be nade

by extruding single crystals.




APPENDIX
A Congtant Stress Lever Arm fo. Compression Creep Testing

1. Descripﬁien of Lever Arm
Lever arm devices for maintaining a constant stresé}ﬁhring ten-

(2, 3)

Sile\%reep'testingfhave been designed and used in many laborator-

iee,‘butronfy one such lever arm for use in compression creep tastiug
appears in the Iiteraaure(a). It is shown schematically xn Figure 3.
Ihe 10ad applied te the sample with thls lever continually increases as
the sampls deforms and the .ever def?ects. The increase in load main-
stains the stresg apptax1nate3y conctant asAthe sample cress-sectlonal
 “ares xnsreases. The preﬂision with which the stress is maintained con-
_ stant is s fﬁhctien af the interrelation between the sample length, 1,
the lever arm»length,'a, and she"lever angle, vy. Tﬁe lever am was de-
signed for ‘samples O, 375 1ach long and has a vexticai dimension, D, of
7,:47.33:1nches. ‘Stress is maintainec censtant within + 1.6% up to 23%
engineering strain.

While desxgning a similar 1evsr for use with samples 0.250 inch
long, it was reslizsd that a compact lever arm for use with samples of
any length could be made. The new,levsr armr(Figsre 4) bes a vertical
'diuension of 7.312 inches. It was designed for five diffe:ent sample
lengths, 0.125, 0.250, 0.375, 0.500 and 0.625 inches, with cwo levels
of stress precision (+ 1% up to 18% s;rain; + 2Z.up to 28% strain) for
: esck-ssﬁple length. These ten differeat conditisns correspond to ten

different lever angles.. The desired lever angle for a given test is

chosen by hanging the load from the appropriate notch in the top of the

A-1




lever arm. The steel insert in which the notches are cut is removable,
allowing another insert with notches cut for still different sample
lengths to be installed if desired. For complete flexibility, a notched
block covid be mounted on a micrometer screw at the top of the lever,
allowing easy selectign pf any desired lever angle.

A counterweight pre#ents the weight of the lever itself frou ap-
plying a force to the sample Ty causing the center of gravity to lie on
the axis of rotatien. A constant balancing;load can be added to counter-
balance the weight of the ram testing on the slever arm.

For reproducible force application, each test must start witﬁ the
lever arm in the hcrrizental position. This positiou can be determined
wit- a dial gage or LVDT activated by the 1ev;r arm.

The force app}ied to the sample can be determined by measuring
the lever arm deflection and calcdlaring the force. If a force trans-
ducer is used in the load system, it myst be quite stiff, for any deflec-
tion in the transducer will cause the lever to deflect and apply excess
force to the sample.

The advantages of constant stress lever arms are as itollows.

They apply a continuously corrected load to the sampie as opposed te

the discontinuous corrections achieved by periodicaily changing the loal
in a dead load system (Figure 5). This is an advantage because no arti-
ficial discontinuities are irntroduced into the test results. It is also
an advantage from a personal point of view, eliminating the need for
constant attendance of the creep machine during overnight tests.

Continuously corrected loads can also be applied to samples by

properly programmed servohydraulic or servoelectric testing machines,
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but the lever arm is a very much cheaper alternative.
I1. Derivation of Lever Arm Design

The appropriate lever angles were determined by setting the maxi-
mum deviation of the actual force from the desired force equal to 1 and
2 percent and solving for the lever angle for given sample lengths. The

. desired force on the sample is given by

Fa‘—l——l‘

-~
l.~-e o

where F_e equals the initial force and e equals the engineering strain

in the saﬁple. The force developed by the lever arm is given by

goSiny+0) .

sin vy o

where y equals the lever angle, and @ equals the lever deflection (Fig-

ure. 3).
4
g = _ 9
a a

where A{ equals the change in sample length during deformation, Le equals
the initial sample iength, and ._e_kequals the length qf the levar arm,

The follewing table lists values of the lever angle, vy, as a func-
tion of thefiamplg length, Lo’ dividedvby the lever arm length, a, for

+ 1% and + 2% deviatien.

v
ﬁg Y
a + 1% .
1 49531 4%,
2 9042 8%38' |
.3 4923 12050°_
4 18954" 16951"

5 ] zaeoﬂv . Z:EOQEQ




The length of the lever arm, a = 1.25 inches, was chosen such
that the maximum expected deflection, AL = 0.15 inch, causes less tﬁan
1% change in a. )

The vertical dimeqsion §f>the lever aim, D = 7.3125 inchesg, was
chosen tc give a 1:1 lever ratio for vy = 9042', corresponding to a
sawple length of 0.25C inch and a force deviation of % 1%.

;he determination of the above values of the lever zngle involved
mathematical approximations which are currently beiug rechecked. When
this is completed and vhen the lever aiw 1s actually put in use and

evaluated, a éamplete report on the dasign and the performarce of the

constant stress compression lever arm will be written.
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