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ABSTRACT

This paper extends the validity of exponential tolerance and confi-
dence limits, under certain restrictions, to the class of distribu-~
tions with monotone failure rate, In particular, the usual
exponential lower tolerance limit is shown to be conservative for
the increasing failure rate class of distributions in the range of
population coverages and confidence coefficients of practical in-
terest. Conservative confidence limits are also obtained on tail
probabilities and moments.



CONSERVATIVE TOLERANCE AND CONFIDENCE LIMITS

1. Introduction
A fundamental problem in statistical reliability theory and life testing
is to obtain lower tolerance limits as a function of sample data, say

X= (X1 v Xy 5 eeey X ). That is, if X denotes the time to failure of an

item with distribution F , then we seek a function L(X) such that

P{l1-F[L(X]>1-ql)}>1-a.

We call 1 - q the popula“ion coverage for the interval [L(X), =] and
l - o the confidence coefficient. Another important problem is to obtain

a function M(X) such that
P{l1-F(T)>MX) }>1i-a

for a specified time T > 0 . Related problems are those of obtaining con-
fidence limits on moments and percentiles.

Early papers in life testing (e.g. Epstein and Sobel (1953) ) derived
confidence limits assuming an exponential life distribution. Gocdman and
Madansky (1962) examine various criteria for goodness of tolerance intervals
and certain optimum properties of the usual exponential tolerance limits
are demonstrated. Recently, a great deal of effort has been devoted to ob-
taining various confidence limits for the Weibull distribution. Dubey (1262)
obtains asymptotic confidence limits on 1 - F(T) and the failure rate for
the class of Weibull distributions with non-decreasing failure rate. He

also studies the properties of various estimators for Weibull parameters



(Dubey (1963) )., Johne and Lieberman (1965) present a method for obtaining

eva~t lower confidence limits for 1 - F(T) when F is the Weibull distri-
cturion with both scale and shape parameters unknown. Unlike Dubey, they

d> not require that the Weibull distribution in question have a non-decreas-
ing failure rate, These confidence limits are obtained both for the censored
and non-censored cases and are asymptotically efficient., Hanson and Koop-
nans (1964) obtain upper tolerance limits for the class of distributions

with increasing hazard rate and lower tolerance limits for the class ~f dis-
tributions with PFZ density, f (i.e. log f(x) is concave where finirce).
However, they do not assume non-negative random variables.

Assuming that the sample data arises from a distribution with monotone
taiiure race (either non-decreasing or non-increasing and F(0) = 0 ) we
sbtain conservative confidence limits for most reliability parameters of
interest, These confidence limits are, in part, derived from the expornential
distribution. Since in many cases these are optimum confidence limits when
the rfatlure distribution is exponential (Goodman and Madansky (1962) ). they
are, in this sense, best possible for the class of distributions with mono-
rene failure rate. (See Barlow and Proschan (1965) Chapter 2 and Appendix
2 for a discussion of distributions with monotone failure rate and a test
for its wvalidity.) They also have the advantage that they are <onvenient
tc compute and are not based on a strong, non-verifiable, parametric assump-
+i~n. Since these confidence limits are derived in part from the expcnen-
tial distribution this paper, in a sense, represents a new justification for

rha use of exponential confidence limits in reliability theory.

let X, < X5 < .o _<_xr L e S0 denote an ordered sample from a life
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distribution F . We shall only allow the possibility of censorship on the
right. Our methods will be used to obtain confidence bounds for more gen-
eral types of censorship in another paper.

We say that a distribution F is IFR (DFR) if and only if
In [1 - F(x)] is concave where finite (convex on [O,»] ). If F with den-

sity f 1is IFR (DFR) then the failure rate f(t) is non-decreasing
1 - F(t)

(non-increasing) in t. Barlow and Proschan (1964) obtain inequalities for
expected values of statistics based on the exponential assumption when in
fact the true distribution has a monotone hazard rate.

IFR Results

Let 5 r
r,n = i Xi + (n-r) Xr
= r
and
=2r 1In(l-q) if xi-a(Zr) > =2n In(l-q)
2
X1—q (27)
Cl—u,q(r) =
X if xi_a(Zr) < =2n 1n(1l-q)
t\ n

where xi_a(Zr) is the (l-a)-th percentage point of a chi-square distri-

bution with 2r degrees of freedom.

THEOREM 1. If F is IFR, F(0 ) =0, cq-lup{x F(x) < q}

then
() P1-FC (D) bpal2l-alzl-a
i Cq Z-Cl-a,q(r) er,n }>1=-a.

-3
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Mathematically (1) and (2) are equivalent statements. When

xf_q(Zr) > =2n In(l - q) , the lower tolerance limit provided by (1) is

idertical with the exponential tolerance limit. Amazingly enough, the ex-
ponential lower tolerance limits provide conservative tolerance limits for

most cases of practical interest. For example, if 1 -a > 1 - e-l v ,633

and 1~ q > e-r/n ,» then the inequality xi_u(Zr) > =2n In(l - q) holds.

In the sense of being "most stable" (see Goodman and Madansky)1962) ) this
is the best lower tolerance limit for the exponential distribution and hence

a "sharp" conservative tolerance limit. If the full sample is known this

is "best" for r =n .

Let
(—2: 20f) a3 if x:(Zr) < -2 1a(l=g)
xi(ﬁr)
|
*
Cu.q(r) = .
/
2
(. r if xa(Zr) > =2 in(1l-q)-

THEOREM 2, If F is IFR, F(0) =0, ;q = sup { x'F(x) % 4 }
then

(3) [ F[C* 6 —
(3 P FLCa.q(t) er,n] >4 ) >)leg

4 Pl <C (r)o

}>1-0.
q 0yq =

in this case the exponential upper tolerance limits are valid when

xi(Zr) < =2 In(l - q) . Unfortunately this inequality does not hold for all



values of r (1 < r <n) in the range of population coverage values, q ,
of greatest practical interest. A table follows which gives the largest

values of r such that

xi(Zr) < =2 1n(l - q) .



Largest values of
the expoaential upper tolerance
limit is a conservative upper

Table 1

r such that

tolerance limit for the IFR class.

(i.e. xi(Zr) <=2 1n(1 - q) )

l1-a=.90 | 1-a=.95 I 1-a=.99

q ; |

r |L b 4 4
.70 T 3 [ 3 4
.75 3 | 3 5
.80 3 4 5
.85 4 4 6
.90 4 5 6
.95 5 | 6 8
.97 6 | 7 8
.98 6 7 9
.99 7 8 10
.999 10 11 14




The upper tolerance limit given in (3) is a significant improvement over
the tolerance limit given by Hanson and Koopmans (1964) for the IFR class.
However they do not restrict attention to non-negative random variables.

Also they do not obtain a lower tolerance limit for the IFR class.

THEOREM 3. If F is IFR, F(0) =0 and T > 0 is specified,

then

== . xi_u(Zr) :
(5) P l-F(T)lé(ger.n-T) exp [~ 5 & >1-a
r,n
where 1 if x>0
§(x) -
0 32 2 <0

Johns and Lieberman (1965) study the problem of obtaining lower confidence
limits on 1 - F(T) for the Weibull distribution. (5) is more convenient

than their result. However, if ﬁ-er = T our result is trivial. Iif
’

ﬁ-er = T , then it is identical with the exponential lower confidence
’

limit. In reliability applications where it is desired to establish high
reliability the mean, hopefully, will far exceed 7T and therefore it seems

quite likely that er = will also.

THEOREM 4, If F 4s IFR, F(0)) =0 and 6 =/ x dF(x) ,

then

>

4 7 LeSE & _Frics




xi(Zr) ]
1 - exp(- 2n )J &
(7) P 8 > 3 2r 8 >1=-a,
where
2
r if x, (2r) > 2
k =
A, T
2r
x§(2r) if xZ(Zr) <2,

Similar confidence limits can be obtained for higher order moments.
The upper confidence limit on 6 in (6) is the usual exponential con-

fidence limit when x§(2r) < 2 , Unfortunately this condition is not satis-

fied for values of r greater than 3 or 4 at the usual significance levels.
In acceptance sampling the following hypothesis testing problem is con-

sidered:

H : 6=20
o o

versus Hl e < 8

The rejection region for the exponential case is of the form:

2
3 90 xa(Zr)

Reject Ho % 4 er.n £ 7t .

If xi(Zr) < 2 , then by (6) this test is also a size o test for the IFR

case; i.e. 2
: 6, x,(2r)
P 0 < = FIFR; 6 > 60 <a.




DFR Results

As we might expect, if a useful exponential confidence limit exists
for a problem relative to IFR distributions, then nc useful exponential
confidence limit exists for the same problem relative to DFR distributions

and conversely.

THEOREM 5. If F is DFR, F(0°) =0 , Gq = SUP { x)F(x) <q} and

xi_a(Zr) < =2n In(l - q) , then

-2r In(1l - q) - :
(8) P l1-F > e > -gf2>)l~a
X1—q (27)

(9) P > =2rla(l -q) 8 = = =
q ors 2 r.n -
X1-q (27)

If xi_a(Zr) > =2n 1n(l - q) we can only make the trivial statement

P{ >0}>1"u0
Cq 2 2

For most cases of practical interest -- high confidence and high population

coverage —— (8) is not a useful result.

THEOREM 6. If F is DFR, F(0) =0 , cq = gup { x, F(x) <q} and

xi(lr) > =2 In(l - q) , then

xu(Zr)

(10) P ip[:k_;zﬂ_:_‘l). 8r,n]:-q}->-l-°

-9-



(11)

The upper ccnfidence limit is trivial when xi(Zt) <=2 1all ~q) .

£ o

=2r 1a(l -~ @) o

>l"(!.
r,n{ —

Table 2

Smallest values of r such that
the exponential upper tcolerance
limit is a conservative upper tol-
erance limit for the DFR class.

L xi(Zr) > =2 In(1 - q) )

1 -a= ,90 1 =a® ;%5 l-a= ,99
q

- 3 r

o .,..,,..__-.’nr
229 4 4 5
i3 4 5 6
RO 4 5 6
85 5 .. 5
90 5 6 7
«95 6 7 9
97 7 8 10
98 8 Y 10
.99 8 9 11
’l 349 i1 12 15

-} =




THEOREM 7. If F is DFR, F(0 ) =0 and T > 0 is specified, then

. -xi_a(Zr) T {
(12) P 1-KT) > 6T - rer’n) exp 5r ér 5 21-a

where 1 if x>0

§(x) =
0 8- 5 <38
as before.
THEOREM 8. If F is DFR, F(0°) =0 , of“ x dF(x) = 6 and

x§(2r) < 2n , then

~

2r er =
(13) P e e
X, (2r)

while if xi(Zr) > 2n , then

2
g * X, (27)
(14) P ez_ger’nexp = >1l-a.

(13) holds for significance levels of practical interest whem r = n .

3 Proofs o eorems in Section 2.

Let Y denote a random variable with distribution G . If X has a
continuous distribution F , note that Y = c'lr(x) has distribution C

we will repeatedly use the following lemma.

Lemma. If G'lr(x) is convex non-decreasing for x > 0 , G-IF(O) = 0

and Y, = G.lt(xi) , then

i

-“-



n n
5 7 3§13 8 xJ £ 1% & Yi]
i=1 (>) i=1

n
when ay >0 and 121 a, = 1 (a1 >3 o i $ s 3% 1.3 se0sl)s

The proof is obvious.

In what follows it will be convenient to let

G(x) =

Proof of Theorem l.
Since (1) and (2) are mathematically equivalent we need only prove (2).

By the lemma we have

Y, + (n - 2)Y X, + (n - )X

r r

¢ | 1 A— 'lezin L
i=1 i=1

since G.lF(x) is convex when F is IFR. Now choose kl—a so that

E = (n - r)Yr
& 3 — - - < kl-a =]-a
i=1

2
i.e. 1In(l - kl-a) - -XL_G(Zr{ Since F is IFR we know (Barlow and Proschan
2n

(1965), p. 27) that
(0 t <g
F(t;cq) ;b(t;cq) - ¢

t/t
- e * a4

where cq is the (unknown) gq-th quantile.

-'2-



Hence

r -
G . Yi + (n r)Yr

1 n

and

E Il B 183 = & 1 - a.

,8° g

[—
v

l1-a
Since b(t; cq) is non-increasing in cq we have

ad =
E 1 cq S BE= =3

r,n; kl-a)

where the inverse is taken with respect to cq .

Case 1. kl-u >2q (i.e. xi_a(Zt) > =2n In(l - q) ). From the follow-

ing figure

1+ ‘(/,f'

q 0\\---~._______’

0 +5 s 2
= n

we see that b(-t-r,- &)

. )
.0l Cq’ :-kl-a if and only if

-2r In(l - q) ©

xl_a(Zr)
Case 2. k,_ <q (i.e. x>_ (2r) <-2nln(l-gq) ). In this case
CEe 1¢) <k, itemdomiyift ¢t >&0
8 "rn’ q¢° = "l-a 2 B 5N

In either case we have

P{cq;c q(r)er }> 1l-a

1-0. ’n

-'3-



where 4
.Z_ri.liﬂ_".ﬂ). if xi_a(Zr) > =2n In(1l - q)
xl—a(Zt)
Craat®” ° {
% if xi_a(zr) _<_ -2n ln(l - q) ‘

Proof of Theorem 2. Again we need only prove statement (4). We use the

fcllowing inequality which follows from the IFR assumption and the lemma:

r r
Gl i Y, + (n - 1) = I = N i Eti=03 ],

i i

We ~hoose ka so that

r
== = i L+t )k } = 1-a

2
i.e. 1n(l - ka) = -xa(Zr) . From Barlow and Proschan (1965) p. 27 we have
2

the sharp bound
4 t/t

1«0 ° t <,
F(t; cq) < Be; cq) -{
1 t > L
3 K
Since 3B(t; cq) is decreasing in cq we have
¢ = 5
P iB(r e!.n; t,q) ARt " P{;q <B (r er.n; ka) >1~=a,
Case 1. ka > g (1.0, x:(Zr) > =2 In(l - q) ). From the following

~

3 Cq) :-ka if and only if cq <ré =

figure we see that B(r e, _



0 r 6 4

Case 2. ka <q (i.e. x;(2r) < =2 In(l - q) ). In this case

-2 in(l - g)

B(r er’n; cq) i1 if and only if s >
X, (21)

Cases 1 and 2 together establish statement (4)."

Proof of Theorem 3. Again we use the inequality

r r
i Yi + (n - 1r) Yr i xi + (n - 1) Xr/
$ n 2 £ n =
and choose k so that
1-a
r
z Yi +(n-1r) Y
'L 5 1 = = 3 = 1-g
- l=a
n
x_ (21)
1.0 Il - kl-a) = “l-g Let p = F(T) . We again use the
2n
sharp bound ‘f 0 et
F(t; p) 2 b(t; p) =
$ -t 37
=
Then
2 =
P { b 3 er’n, g =k __ f > l=-a.
Since b(t; p) 1is increasing in p , we have
s i1l 1 352 1-c
-~ nr’n. 1"'0 e

=T



T e e R R

§

(3) foliocws when we recall that b('i-et 3 P) =0 when T » ﬁ 6:

s o

Proof of Theorem 4., To show (6) use the sharp bound

i- e_t/e

F(t; 8) < B(t; 6) =
(Barlow and Proschan (1965), p. 27)
together with

- . < . 3)
-1 15 s Gt’n, 6) < B(r er,n’ 6)

o
-
el e LS ]

tc establish

P s s B 121

where 1in(l - ka) = -xi(Zr) as before.
2

1

Case 1. ka > =8 (1.e. xi(Zr) > 2). From the following figure

; 6) :_ka if and only if 9 < r Or .

we see that B(r é

1
B(r é : 8)
e e—.l s 3 &( r’n’
4— -
0 r 6 )



Case 2, ka <]-=- e.1 (i.e. xi(Zr) < 2). Also we see that

~

B(r er’n; 8) 2k, if and only if 6 < rzer,n . Hence the result.
X, (21)
To show (7). Use the sharp bound
0 t <6
F(t; 6) > b(t; 6) =
T e =
where w depends on t and satifies
t -wx
(16) / e dn = 8,
0
(see Barlow and Proschan (1965) p. 28),
together with
EY, +(a-1)Y
n-r
s : E o ) > b(Xo 8)

to assert
rA
Pib(n er.n, 8) =< kl-afz- l-a

2
where 1In(l - kl—a) = -xa(Zr) as before. lotice that w = w(8) 1is a
2n

function of 6 and is decreasing in 6 . Hence

P i 1 - exp [—w(e) Lo, _<_k1_af

-ln(1 - k, )
SPiw(6)< .£0;> l-a

r,n

=113



or

4 [-12 - %, )
P e > w 1 - l-a > 1 == "
n r

0

r ~
Since 0= 1~ exp[-w 0 erJ_J by (16) we have

7 b
w_l l-a l-e == g 2r er,n

% 8 x:(Zt)

which establishes (7).

We omit proofs of the DFR results since they are a straightforward

application of the same techniques applied to bounds on DFR distributions.
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