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ABSTRACT

This paper extends the validity of exponential tolerance and confi-
dence limits, under certain restrict^.ons, to the class of distribu-

'	 tions with monotone failure rate. In particular, the usual
-►	 exponential lower tolerance limit is shown to be conservative for

the increasing failure rate class of distributions in the range of
•	 population coverages and confidence coefficients of practical in-

terest. Conservative confidence limits are also obtained on tail
probabilities and moments.
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CONSERVATIVE TOLERANCE AND CONFIDEr3CE LIMITS

1. Introduction

A fundamental proi^lem in statistical reliability theory and life testing

is to obtain lower tolerance limits as a function of sample data, say

X = (Xl , X1	... , Xn ) . That is, if X c^.enotes the time to failure of an

item with distribution F , then we seek a function L(X) such that

P { 1 - F[L(X) ] > 1 -^ q } > 1 - a

We call 1 - q the popula'^ion coverage for the interval [L(X), ^] and

1 - a the confidence coefficient. Another important problem is t^^ obtain

a function M(X) such that

for a specified time T ? 0	 Rg.lated problems are those of obtaining con-

f.idence limits on moments and percentiles.

Early papers in life testing (e.g. Epstein and Sobel (1953) ) derived

confidence limits assuming an exponential life distribution. Goc3man and

rtadansky (1962) examine various criteria for goor^ness of tolerance intervals

and certain optimum properties of the usual exponential tolerance limits

are demonstrated. Recently, a great deal of effort has been devoted to ob-

taining various confidence limiLS for the Weibull distribution. Dubey (19b^)

obtains asymptotic confidence limits on 1 - F(T) and the failure rate for

the class of Weibull distributions with non-decreasing failure rate. He

also studies the properties of various estimators far Weibull parameters



;. D^fb^^ {1963) ), Johns and Lieberman ( 1965) present a method for obtaining

e^:a^:r lower confidence limits for 1 - F(T) when F is the Weibull dts*.Ti-

^ut:^n with hoth scale and shape parameters unknown. Unlike Dubey, they

d^ n,^t requf.re that the Weibull distribution in question have a non-de^^reas-

ing failure Lase, These confidence limits are obtained both for the ^•ensored

and non-renso:ed cases and are asymptotically officient. Hanson and K.o^^p-

Hans i 1961 obtai.r^ apFer tolerance limits .f_or the class of dis+_-ibutioris

^k^^,t:k: increasing hazard rate and lower tolerance limits for the clas-? •^`^ 3is-

tt^b :^tions with PF2 density, f (i.e. log f(x) is concave where finite ► .

H:,aeY•e:, they do not assume non -negative random variables.

Assuming that the sample data arises from a distribution with mon^^r_one

^.^i.it:ze tare (either non-decreasing or non-increasing and F ( 0-) = 0 ) we

ob±3fn .o^aservative confidence limits for most reliability parameters of

interest. These confidence limits are, in part, derived from the Expor_enti3l

dxa:Yibuti^n. Since in many cases these are optimum confidence limits when

the ia il^:re distribution is exponential (Goodman and Mad3nsky (1962) ), Lf.eY

arF:, in this sense, best possible for the class of distributions with ^nonn-

~cne r.ailure rate. (See Barlow and Proschan (1965) Chapter 2 and Apaend^.x

Z f or 3 discussion of distributions with monotone failure rate and a ?.e3t

c::r i!s •ralidity.) They also have the advantage that they are :onvenient

t^ ^.^:,mpu':e and are not based on a strong, non-verifiable, parameCr:.:. ass^^mp-

rl^-^, Sin :P these confidence limits are derive3 in part from the expcnen-

tial distribution this paper, in a sense, represents a new ^ustiff.:^atl.on fe!-

rte ^:-e •if expc .̂ nential confidence limits in reliability theoxv.

_ S=:►na^ary and Discussion of Results .
---^•—

:,eC Xl ^ X2 < ... < Xr < ... < Xn denote an ordered sample f r^^m a 1 if A
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distribution F	 We shall only allow the possibility of censorship on the

right. fur methods will be used to obtain confidence bounds for more gen.-

eral types of censorship in another paper.

We say that a distribution F is IFR (DFR) if and only if

In [1 - F(x)] is concave where finite (convex on [U,^] ). If F with den-

sity	 f is IFR (DFR) then the failure rate	 f(t)	 is non-decreasing
1 - F(t)

(non-increasing) in t. Barlow and Proschan (1964) obtain inequalities for

expected values of statistics based on the exponential assumption when in

f^.ct the true distribution has a monotone hazard rate.

IFR Results

Let r

8r 
n	

E Xi + (n-r) Xr

'	 1
r

and

C1-a, q (r)

-2r ln(1-q) _

Xl-a(2r)

r

n

if X1-a(2r) > -2n ln(1-q)

if X1
-a(2r) < 

-2n ln(1-q)

where X1-a(2r) is the (1-a)-th percentage point of a chi-square distri-

bution with 2r degrees of freedom.

THb_ 1. If F is IFR, F(0 ) 0 , ^ q = sup { x F(x) < q }

then

(1) P { 1 - F[C 1_a,q (r) 
er,n] > 1 - q } > 1 - a

(2) P { ^q > Cl-a,q(r) 6
r ^ n } > 1 - a .

-3-



^tathAmaLically (1) and (2) are equivalent statements. When

^i-a	 - q)	 the lower tolerance limit provided by (1) is

identical with the exponential tolerance limit. Amazingly enough, the ex-

ponential lower tolerance limits provide conservative tolerance limits for

most cases of practical interes*_. For example, if 1 - a > 1 - e -1 ti .633

znd 1 -• q > e-ran
	

then the inequality Xl-a(2r) > -2n ln(1 - q) holds.

Tn t!:e sense of being "trost stable" (see Goodman and riadansky)1°u2) ) thi.3

is th= best lower tolerance limit for the exponential distribution and hence

a. "sharp" conservative tolerance limit. If the full sample is known this

is "best" for r = t^

Let

-2r ln(_	 if Xa(2rj ^ --2 ^n(1-q)

Xa(^rj

Ca,q(r)	
_

1

r	 if Xa(2r) ? -2 ln(1-q)•

'THEOREM 2.	 If F is IFR, F(0 ) = 0 , ^ = sup { xIF(x) ^ q }
q

Lhen
A

X31	 P { FiCa^ q (r) 9 r ^ n ] ' q } '_ 1 - a

(4)	 P { ^q ^ Ca.q (r) 8 r ^ n } > 1 - a .

in this case the exponential upper tolerance limits are valid when

Xa^2r) _ - 2 ln(1 - q)	 Unfortunately this inequality does not hold for all

- 4 -



values of r (1 < r < n) in the range of population coverage values f q ,

of greatest practical interest. A table follows which gives the largest

values of r such that
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3
	

4

3
	

5

4
	

5

	.70
	

3

	.75
	

3

	. 80
	

3

	

, 85
	

4

	

.90
	

4

	.95
	

5

	

.97
	

6

	

.98
	

6

	

.99
	

7

	.999
	

10

Table 1

Lamest values of x such that
the exponential upper tolerance
limit is a conservative upper
tolerance limit for the IFR class.

1--a= .90
	

1-a	 .95
	

1-a= .99

9
r	 r	 r

- 6 -
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The upper tolerance limit given in (3) is a significant improvement over

the tolerance limit given by Hanson and ►Zoopmans ( 1964) for the IFR class.

However they do not re^3trict attention to no*^-negative random variables.

Also they do not obtain a lower tolerance limit for the IFR class.

TH_ EOREM 3.	 If F is IFR, F(0 )	 0 and T > 0 is specified,

then	 2_ X	 (2r) T

(5)	 P	 1 - F (T) > d (n 8r n - T) exp - 
12r 8	

1 - a

	

'	 r,n

where (1	 if x>0

	d(x)	 _

U	 if x<0

Johns and Lieberman ( 1965) study the problem of obtaining lower conriden^:e

limits on 1 - F (T) for the Weibull distribution. ( Sj is more convenient

A

than their result. However, if 
n 

8r n < T our result is trivial. if

n e
rn > T , then it is identical with the exponential lower confiden;:e

limit. In reliability applications where it is desired to es*ablish high

reliability the mean, hopefully, will far exceed 1 and therefore it seems
A

quite likely that @r 
n 

will also.

THEOREM 4.	 If F is IFR, F (U )	 0 and 8 =^^ x dF(x) ,

then

— a,r r,n —

-7-



^7)

Xa(2r)
1 - exp (- -- )

P	 e>	 2
Xa(2r)

A

2re	 >1-a,
r,n —

whet e

if Xa(2r) > 2

if Xa(2r) < 2 .

r

k=
a,r

2r

xa(2r)

Similar confidpiice limits can be obtained for higher order moments.

The upper confidence limit on a in (^) is the usual exponential con-

	

fidence limit when Xa(2r) ^ 2	 Unfortunately this condition is not satis-

fiEd for values of r greater than 3 or 4 at the usual significance levels.

In acceptance sampling the following hypothesis testing problem is coti-

sidered:

H	 e	 60	 0

	

versus	 Hl	 6 < eo

The rejection region for the exponential case is of the form:

.,	 8o xa(2r)
Reject Ho if	 ern ^	 2r	 '

If Xa(2r) < 2 , ther. by (6) this test is also a size a test for the IFR

case; i.e.	 ,^

8 X`(2r)

	

P	 8	 <	 o a	
I F IFR ; 8> e	 < a.

r,n —	 2r	 o —

_ g _



DFR Results

As we might expect, if a useful exponential confidence limit exists

for a problem relative to IFR distributions, then no useful exponential

confidence limit exists for the same problem relative to DFR distributions

and conversely.

THEOREM 5.	 If F is DFR, F(0 ) = 0 , ^ q 	sup { x 'F(x) < q } and

Xi-a (2r) < -2n ln(1 - q) , then

-2r ln(1 - q)
(8) P	 1-F	 2	 Arn	 > 1 -q	 > 1-a

Xl
-a(2r)	

•

(9) P	 ^ _	 _
q	 X1-a(2r)	

r,n

If Xi-a (2r) > -2n ln(1 - q) we can only make the trivial statement

q _

For most cases of practical interest -- high confidence and high population

coverage -- (8) is not a useful result.

THEOREM 6.	 If F is DFR, F(0 ) = 0 , ^ q 	sup { x) F(x) < q } and

Xa(?.r) > -2 ln(1 - q) , then

(10) P	
F =2r ln(1 - q) 

6	 > q
	 > 1 - a

X2 ( ^ r)	 r,n	 —

a

-9-



^	 ,

1.)	 P	 ;; ^ =2-^--1- ^1-q^ e	 ^	 1-a.
q —	 X^(2r)	 r>ni

'^'he ^apl; er c.cnfidenc2 limit is trivial when Xa(2t) < -2 ln(I - q) .

Table 2

Smallest values of r such that
the exponential upper tolerance
limit is a conservative ^lpper tol-
erance limit for the DFR class.

i0 -



THEOREM 7.	 If F is DFR, F(0 ) = 0 and T > 0 is specified, then

-X2 (2r) T
(12) P	 1 - F(T) > 8(T - r6r 

n) 
exp	 12r 8	 J	 = 1 - ^''	 r,n	 ^

where	 1	 if x > 0

c(x) _

	

l0	 ff x<0

as before.

THEORF,M 8.	 If F is DFR, F(0 )	 0 ,	 l^ x 3F(x}	 8 an3
0

xa(2r) < 2n , then

(13) p	
6 > 2r 8r^n > 

1 - a

_ Xa(2r) J _

while if x2 (2r) > 2n	 then
a	 —

(14^	 P	 A? n e r n eXp	 1	 2n	
? 1- a.

(13) holds for significance levels of practical interest when r = n

'?.	 Proofs ^f Theore±^s in Section 2.

Le*_ Y denote a random variable with distribution G	 If X has a

continuous distribution F , note that Y = G-1F(X) has distribution G

k'e will repeatedly use the following lemma.

Lemma.	 If G-1F(x) is convex non-decreasing for x ^ 0 , G -1F(0^► _= 0

and Y i	 G 1F(Xi) , then

_ ^^



n
C	 E a i Yi

i=1

n
(15)	 F	 E a X^	 <

	

i=1 i i	 (^)

n
when a > 0 and E a	 1

i	 i=1 i
(ai > 1 or a i 	0	 i	 1,2,...,n).

The proof is obvious.

In what follows it will be convenient to let

Z - e
-x	

x > 0

G(x) _

0	 x < 0 .

Proof of Theorem

Since (1) and (2) are mathematically equivalent we need only prove (2).

By ttie lemma we have

r Yi + (n - r)Yr	
r Xi + (Il - 

r) Xr 
^

G	 £	 > F	 E

i-1	 n	 i=1	 n

since G 1F(x) is convex when F is IFR. Now choose kl-a so that

r Yi + (n - r)Yr
p	 ^	 E	

n	
< k l-a	 1- a

1^1

2

i.e. ln(1 - k l-a) _ - X1-a^2r^ Since F is IFR we know (Barlow and Proschan
2n

(1965), p. 27) that

0	 t < ^
q

t/^

1 - (1-q)	 q	 t > ^q

where ^ q is the (unknown) q-th quantile.

_ 12 _



1

Hence

r Y + (n - r)Y
G	 E	 i	 r

	

L 1 	 n

A	 A

F( n ^ r ^ n ^ ^ q ) ? b( n e r ^ n ^ ^q)

and

A

P { b ( n e
r n' ^ ) ` kl-a } > 1 - a.

^	 q

Since b(t; ^ q ) is non-increasing in ^q we ha^•e

-1 rp { ^q > b (n ern ; kl-a ) } > 1 - a

where the inverse is taken with respect to ^ q .

Case 1.	
kl-a > q	 (i'e' X

1-a (2r) > -Zn ln(1 - q) ). From the follow-

ing figure

b( 
n 

k r ^ n ; ^q)

q	 -----

	

0	
--- -	 a	

^n r,n	 q
A

we see that b(n 
er,n' ^q' { kl

-a if and only if

A

-2r ln(1 q e r,n .

q	 X1-a(2r)

	Case 2.	 kl-a < q	 (i.e• X1-a(2r) `— -2n ln(1 - q) ). In this case

A	 A

b( n e r,n' 'q) 
^ kl-a if and only if ^ q > n er,n

In either case we have

P { ^ q ? 
C1-a^ 

q (r) 6 r.r. } ' 1 - a

_ 13 _



w!:ere	
-2r ln(1 - q)

Xl-a(2r)

^l-a,q(r)

r
n

if X1-a (
^r) > -2n ln(1 - q)

if X1-a ( 2r) = -2n ln(1 - q)

Pt.o:zf of The.^rem 2 .	 Again we need only prove statement (4) . We use the

following inequality which follows from the IFR assumption and the lemma:

r	 r
G[ i Y i + (n - r) Yr ] < F[ i Xi + (n - r) Xr ] .

tde Mhoose k	 so that
a

r
P { G [ E Y i + (n - r) Y r j > ka }	 1 - a

1

i. e. ln ( 1 - k) = Xa(2r)	 From Barlow and Proschan ( 1965) p. 27 we hate
a	 2

r::Q sharp bound
t/^

1 - (1-q)	 q	 t < ^_ q

1	 t > ^q ,

Sin^^e 3(t; ^ q) is decreasing in ^q we have

r	 A	 _1	 A
P	 B(z 5^ ^ n ; t, q) > ka	 P ;q < B (r 6 r ^ n ; ka }	 > 1 - a

Gash, 1.	 ka > q	 (i.e. Xa(2r) > -2 ln(1 - q) ) . From the following

A

fig^iTe we see that B(r 6 r ^ n ; ^ q )	 ka if and only if ^ q < r er,n .

14'
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..:-	 -	 ^..^,^
`vim T._ ^^ ^:_	 _.

1 ^"

A

--_

	

OI	 r '^	 c-
r,n	 q

tease 1.	 ka < q	 (i.e.	 Xa(2r) < -2 ln(1 - q) ). In this ease

-2r ln(i - Q)
B(r @r n ; ^ ) > ka	 if and only if ^q ^	

2	
_

	

^	 q	 X (2r)
a

Cases 1 and 2 together establish statement (4),^I

Proof of Theorem 3. 	 Again we use the inequality

r	 r
i Yi + (n - r) Yr	

1 X

i + (n - r) Xr

t,	 —	 ^	 F
n	 —	 n

and choose kl-a so that

P	 G	 1	 < k l-a ;	
- :^

--	 n	 _.	 J

2
i.e.	 ln(1 - kl-a ) = X1-a (2r)	 Let p = F(T)	 k'e again use the

2n

sharp bound

	

	
0	 t T

F(t ; p) ^ b(t; p) _

Then

P ^ b( n 
er n' P) `— 

kl-a ^ ' 1 - a .

Since b(t; p) is increasing in p 	 we have

w

P	 1-F(T) > 1-b	 (n 8r n' kla)	 > 1-^,

- 15 -



l - E^

(:) tol?cws when we re^ail that b( n 8	 ; p) = 0 wlien T' > r 6	 ^r,n	 n r,:^ '

6

Proof' of Theorem 4. 1'o show (b) use the sharp bound

i - e-tj 
6	

z

1	 z	 8

;Pa.• lc;w and Proschan f 1965?, p. 27)

*_o3ethex with

t
G ( ^ Yi + (n - r) Yr ) < F(r d r n ; 8} < B(r ©^ n ; 61

1.	 ^	 -,

#.c estar fish

A

P { B(r ^r n ; 8) > ka } s 1 - ^

w^-^exe ► a(I - k^j	 -xa(2r)	 as before.

2

Gale 1^	 1:^ > 1 -- e -1	 (i.e.	 Xa(2r) > l}.

we see chat B(r 8 r n ; 9) > ica if and only if

Flom the following figure

.,
a	 r 

6r,n

^ --

— 16 —

^. -_ r,__ a



Case 2.	 ka < 1 - e-1	 (i.e. Xa(2r) < 2). Also we see that

B(r 6 r n ; 8) > ka if and only if 6 < 
r 

6 r,n	 Hence the result.

Xa(2r)

To show (7). Use the sharp bound

o	 t ^ e

I1 - e-wt
	 t >

where w dep:nds on t and ratifies

(16)	 jt a-wx dx = 8 ,
0

(see Barlow and Proschan (1965) p. 28),

together with

r
E Yi + (n - r) Yr
1	 r	 r "

G	
n	

F( n 8r ^ n ; 6) > b( n 6 r ^ n ; 8)

to assert
A

P	 b(n 
er 

n' 8) < kl-a	 > 1 - a

where ln(1 - k	 )	 Xa(2r)	 as before. 1lotice that w = w(8) is a
1-a	

2n

function of 8 and is decreasing in 8	 Hence

A

P	 ' - exp -w(6) n 6r ^ ` kl-u

	

-ln(1-k	 )
—	 r	 J —

n ar,n

- ^7 -



or
r	 - ln(1 - k, )

p ^ a > w -1	 ^-a	 ,	 -1 	 a .
r 6
n r,n

^ r
Since 8	 1 ^ eX^'! -w n e rLC^	 by (16) we have

w

-ln(1 - kl- a)
-1

w	 -. A	 --

n er,n

-Xa(2r)
1 - exp	

2n	 2r ^r.n

Xa(2r)

which establishes (7).

We omit proofs of the DFR results since they are a straightforward

application of the same techniques applied to bounds on DFR distributions.

_ ^ ^ _.
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