

IUNCTURE STRESS FIELDS IN mUlticellular shell structures

VOL. IV
Stresses and deformations of fixed-Edge SEGMENTAL SPHERICAL SHELLS

by
E. Y. W. TSUI
C. T. CHEN
P. STERN

MISSILES \& SPACESCMMANY
A GROUP DIVISION OF LOCKHEED AIRCRAFT CORPORATION SUNNYVALE, CALIFORNIA

SUMMARY

13836
This report presents a set of basic equations for thin elastic spherical shells and a digital program for the analysis of the static response of segmental spherical shells with fixed edges under the following loading conditions:

- Uniform pressure
- Linear thermal gradient through the thickness of shell

The problem is solved numerically by means of finite-difference technique, using a direct method of solving a large system of simultaneous equations. A numerical example showing the stresses and deformations of a spherical sector under uniform pressure is also presented. For completeness as a self-gontained report, much of the information presented in Vol. II is repeated here. Author

FOREWORD

This report is the result of a study on the numerical analysis of stresses and deformations of fixed-edge isotropic segmental spherical shells under uniform and hydrostatic pressures as well as linear thermal gradient across the thickness of the shell. Work on this study was performed by staff members of Lockheed Missiles \& Space Company in cooperation with the George C. Marshall Space Flight Center of the National Aeronautics and Space Administration under Contract NAS 8-11480. Contract technical representative was H . Coldwater.

This volume is the fourth of a nine-volume final report of studies conducted by the department of Solid Mechanics, Aerospace Sciences Laboratory, Lockheed Missiles \& Space Company. Project Manager was K. J. Forsberg; E. Y. W. Tsui was Technical Director for the work.

The nine volumes of the final report have the following titles:
Vol. I Numerical Methods of Solving Large Matrices
Vol. II Stresses and Deformations of Fixed-Edge Orthotropic Segmental Cylindrical Shells
Vol. III Stresses and Deformations of Fixed-Edge Segmental Conical Shells
Vol. IV Stresses and Deformations of Fixed-Edge Segmental Spherical Shells
Vol. V Influence Coefficients of Segmental Shells
Vol. VI Analysis of Multicellular Propellant Pressure Vessels by the Stiffness Method

Vol. VII Buckling Analysis of Segmental Orthotropic Cylinders Under Uniform Stress Distribution

Vol. VIII Buckling Analysis of Segmental Orthotropic Cylinders Under Nonuniform Stress Distribution
Vol. IX Summary of Results and Recommendations

CONTENTS

Section Page
FOREWORD iii
SUMMARY v
NOTATION ix
1 INTRODUCTION 1
2 FORMULATION OF THE PROBLEM 5
2.1 Analytical Formulation 5
2.2 Boundary Conditions 16
2.3 Stresses in Skin 23
3 NUMERICAL ANALYSIS 25
3.1 Approximation of Derivatives 26
3.2 Difference Equations 28
4 DIGITAL PROGRAM 36
4.1 General Description 36
4.2 Numerical Example 39
4.3 Listing of the Program 66

NOTATION

$\mathrm{a}_{\mathrm{i}}, \mathrm{b}_{\mathrm{i}}, \mathrm{c}_{\mathrm{i}}, \mathrm{A}, \mathrm{B}, \mathrm{C}, \kappa$	nondimensional parameters defined in text
$\mathrm{D}=\mathrm{E} \hat{h}^{3} / 12\left(1-\nu^{2}\right)$	flexural rigidity of shell
E	modulus of elasticity
F_{i}	boundary force at Station i
F^{f}	boundary forces of fixed-edge shell due to applied forces or thermal gradients
G	shear modulus
$\hat{\mathrm{h}}$	thickness of shell
$\overline{\mathrm{h}}, \overline{\mathrm{k}}$	mesh spacings in ϕ - and θ-coordinate directions
m, n	number of columns and rows of the mesh
i, j	dummy subscripts
$\mathrm{k}, \mathrm{k}_{\mathrm{ij}}$	stiffness influence coefficients
$\hat{M}_{(~)}, \hat{\mathrm{N}}_{()}$	moments and stress resultants
$\mathrm{p}_{(}$)	surface or body forces
$\hat{Q}_{(}$)	transverse shears
R	radius of curvature
T	change of temperature from a zero thermal stress condition
$\hat{\mathrm{u}}, \hat{\mathrm{v}}, \hat{\mathrm{w}}$	displacement components in directions ϕ, θ, and \hat{z}
$\phi, \theta, \hat{\mathbf{z}}$	shell coordinates

α
ζ, η
δ_{i}
$\left.\epsilon_{(~) ~}, \gamma_{(}\right)$
$\hat{\chi}_{(}$)
v
$\left.\omega_{(}\right)$
() , ϕ
()$_{i}^{j}$
Φ
coefficient of thermal expansion
orthogonal coordinates along boundaries of shell
boundary deformations (displacements or rotations) at Station i
direct and shear strains
changes of curvature or torsion of middle-surface
Poisson's ratio
rotations of the normal at the middle-surface
$\frac{\partial()}{\partial \phi}$
functions at a discrete point i, j where i, j implies the ϕ - and θ-directions respectively
rotation in the middle-surface around the normal

Additional notations and symbols are defined in the text.

Section 1

INTRODUCTION

As a result of an investigation of juncture stress fields peculiar to the multicellular pressure vessels (Fig. 1), a theory for the prediction of the membrane and bending stresses and the corresponding deformations for such shell structures was formulated.*

Fig. 1 Multicellular Shell Structure

[^0]Due to the fact that analytic solutions are still lacking, it was decided to solve the problem numerically by means of finite-difference technique. To ensure the feasibility of such a numerical solution, a direct method of solving large matrices with a high-speed digital computer was also developed.

According to thr previous work, if the stiffness or displacement method is used, the total forces and hence the corresponding stresses along the juncture of the shell segments (Fig. 2) may be expressed concisely in the following matrix form

$$
\begin{equation*}
\mathrm{F}=\mathrm{k} \delta+\mathrm{F}^{\mathrm{f}} \tag{1.1}
\end{equation*}
$$

where k is the stiffness matrix; δ, the deformations; and F^{f}, the fixed-end forces due to applied loads or thermal gradients. In view of this situation, it is logical to solve the problem systematically by the established general procedure of analysis already described.* This procedure may be stated briefly as follows:

1. Determination of the fixed-end forces, F^{f}, along the boundary as well as stresses and deformations in the interior of shell segments due to loads
2. Determination of the influence coefficients, k_{ij}, along the boundaries of shell segments, i.e., the induced forces at points i due to unit deformations $(\delta=1)$ at points j
3. Determination of the actual deformations, δ, along the shell boundaries; this requires the satisfaction of both compatibility and equilibrium conditions at the junctures of the structure

Once all the work involved in these three steps is completed, the total stresses and deformations in the specific discrete interior locations may be obtained.

[^1]

Fig. 2 Basic Shell Elements of Multicellular Structure

This volume presents results of the work involved in Step 1 only and covers the following items:

- Nondimensional formulation of the problem
- Detailed description of a workable digital program for the generation of solutions
- Example including tabulation of stresses and deformations of an isotropic spherical shell with fixed edges under uniform internal pressure

Section 2
FORMULATION OF THE PROBLEM

The necessary analytical expressions for a spherical shell have already been presented.* All the required equations are repeated in this report to make it a complete unit.

2.1 ANALYTICAL FORMULATION

The isotropic segmental spherical shell under consideration is of uniform thickness. It is bounded by a cylindrical panel, a segmental conical shell, and two radial plates as shown in Fig. 2. Only one half of the cell structure is shown in this figure because of the symmetry of the structure and the loading.

The geometry of the spherical segment is shown in Fig. 3. The orthogonal coordinates, ϕ and θ, can be oriented in a number of ways in the sphere so as to obtain a convenient description of the boundary curve. For example, in the orientation of Fig. 3 the intersection of the cylinder and sphere occurs at $\theta=0$. It should be noted, however, that these coordinates are not parallel to all the intersections with the sphere.

In the formulation which follows the dependent variables and geometry have been nondimensionalized by the radius of curvature, R , as follows:

$$
\begin{equation*}
\mathrm{u}=\frac{\hat{\mathrm{u}}}{\mathrm{R}} \tag{2.1a}
\end{equation*}
$$

[^2]\[

$$
\begin{align*}
& \mathrm{v}=\frac{\hat{\mathrm{v}}}{\mathrm{R}} \tag{2.1b}\\
& \mathrm{w}=\frac{\hat{\mathrm{z}}}{\mathrm{R}} \tag{2.1c}\\
& \mathrm{z}=\frac{\hat{\mathrm{z}}}{\mathrm{R}} \tag{2.1d}\\
& \mathrm{~h}=\frac{\hat{\mathrm{h}}}{\mathrm{R}} \tag{2.1e}
\end{align*}
$$
\]

Other nondimensional quantities will be defined as they are introduced. Note that the coordinates ϕ and θ have not been normalized.

Fig. 3 Geometry of Segmental Spherical Shell

2.1.1 Rotation-Displacement Relations

Positive displacements and rotations of the middle-surface are shown in Fig. 4 and are related by equations:

$$
\begin{align*}
& \omega_{\phi}=\mathrm{u}-\mathrm{w}, \phi \tag{2.2a}\\
& \omega_{\theta}=\mathrm{v}-\left(\frac{1}{\sin \phi}\right) \mathrm{w}, \theta \tag{2.2b}\\
& \Phi\left.=\frac{[\mathrm{v}, \phi}{}-(1 / \sin \phi) \mathrm{u}, \theta+\cot \phi \mathrm{v}\right] \tag{2.2c}\\
& 2
\end{align*}
$$

Fig. 4 Displacements and Rotations

2.1.2 Strain-Displacement Relations

The strains of the middle-surface are related to displacements by

$$
\begin{equation*}
\bar{\epsilon}_{\phi}=u_{, \phi}+\mathrm{w} \tag{2.3a}
\end{equation*}
$$

$$
\begin{gather*}
\bar{\epsilon}_{\theta}=\left(\frac{1}{\sin \phi}\right) \mathrm{v}_{, \theta}+\cot \phi \mathrm{u}+\mathrm{w} \tag{2.3b}\\
\bar{\gamma}_{\phi \theta}=\mathrm{v}_{, \phi}-\cot \phi \mathrm{v}+\left(\frac{1}{\sin \phi}\right) \mathrm{u}_{, \theta} \tag{2.3c}
\end{gather*}
$$

and the changes of curvature and torsion are

$$
\begin{align*}
& \chi_{\phi}=\left[\hat{\chi}_{\phi} \mathrm{R}\right]=\mathrm{u}, \phi-{ }^{\mathrm{w}}, \phi \phi \tag{2.4a}\\
& \left.\left.\chi_{\theta}=\left[\hat{\chi}_{\theta} \mathrm{R}\right]=\frac{[\mathrm{v}, \theta-(1 / \sin \phi) \mathrm{w}, \theta \theta+(\mathrm{u}-\mathrm{w}, \phi}{}\right) \cos \phi\right] \tag{2.4b}\\
& \sin \phi \tag{2.4c}\\
& \left.\chi_{\phi \theta}=\left[\hat{\chi}_{\phi \theta} \mathrm{R}\right]=\frac{[-\mathrm{w}, \phi \theta+\cot \phi \mathrm{w}, \theta+\mathrm{u}, \theta}{}+\sin \phi \mathrm{v}, \phi-\cos \phi \mathrm{v}\right] \\
& \sin \phi
\end{align*}
$$

The strains at a distance z from the middle-surface are

$$
\begin{align*}
\epsilon_{\phi} & =\bar{\epsilon}_{\phi}+z \chi_{\phi} \tag{2.5a}\\
\epsilon_{\theta} & =\bar{\epsilon}_{\theta}+z \chi_{\theta} \tag{2.5b}\\
\gamma_{\phi \theta} & =\bar{\gamma}_{\phi \theta}+2 z \chi_{\phi \theta} \tag{2.5c}
\end{align*}
$$

2.1.3 Constitutive Relations

Positive stress resultants are shown in Fig. 5. Nondimensional stress resultants are related to them and to strains by the following equations:

$$
\begin{equation*}
\mathrm{N}_{\phi}=\left[\frac{\hat{\mathrm{N}}_{\phi}\left(1-\nu^{2}\right)}{\mathrm{E} \hat{\mathrm{~h}}}\right]=\bar{\epsilon}_{\phi}+\nu \bar{\epsilon}_{\theta}+\mathrm{N}^{\mathrm{T}} \tag{2.6a}
\end{equation*}
$$

$$
\begin{align*}
& \mathrm{N}_{\theta}=\left[\frac{\hat{\mathrm{N}}_{\theta}\left(1-\nu^{2}\right)}{\mathrm{Eh}}\right]=\bar{\epsilon}_{\theta}+\nu \bar{\epsilon}_{\phi}+\mathrm{N}^{\mathrm{T}} \tag{2.6b}\\
& \mathbf{N}_{\theta \phi}=\mathbf{N}_{\phi \theta}=\left(\frac{\hat{\mathbf{N}}_{\phi \theta}}{\hat{\mathbf{h} G}}\right)=\bar{\gamma}_{\phi \theta}+2 \kappa \chi_{\phi \theta} \tag{2.6c}\\
& \mathrm{M}_{\phi}=\left(\frac{\hat{\mathrm{M}}_{\phi}^{\mathrm{R}}}{\mathrm{D}}\right)=x_{\phi}+\nu \chi_{\theta}+\mathrm{M}^{\mathrm{T}} \tag{2.6d}\\
& \mathrm{M}_{\theta}=\left(\frac{\hat{\mathrm{M}}_{\theta} \mathrm{R}}{\mathrm{D}}\right)=\chi_{\theta}+\nu \chi_{\phi}+\mathrm{M}^{\mathrm{T}} \tag{2.6e}\\
& \mathrm{M}_{\phi \theta}=\mathrm{M}_{\theta \phi}=\left[\frac{\hat{\mathrm{M}}_{\phi \theta} \mathrm{R}}{(1-\nu) \mathrm{D}}\right]=\chi_{\phi \theta} \tag{2.6f}\\
& Q_{\phi}=\left(\frac{\hat{\mathrm{Q}}_{\phi} \mathrm{R}^{2}}{\mathrm{D}}\right)=\chi_{\phi, \phi}+\nu \chi_{\theta, \phi}+(1-\nu) \cot \phi\left(\chi_{\phi}-\chi_{\theta}\right)+\left[\frac{(1-\nu)}{\sin \phi}\right] \chi_{\phi \theta, \phi}+\mathrm{M}_{, \phi}^{\mathrm{T}} \tag{2.6~g}\\
& \mathrm{Q}_{\theta}=\left(\frac{\hat{\mathrm{Q}}_{\theta} \mathrm{R}^{2}}{\mathrm{D}}\right)=x_{\theta, \theta}+\nu \chi_{\phi, \theta}+2(1-\nu) \cot \phi \chi_{\phi \theta}+(1-\nu) \chi_{\phi \theta, \phi}+\mathrm{M}_{, \theta}^{\mathrm{T}} \tag{2.6h}
\end{align*}
$$

Fig. 5 Stress Resultants, Moments, and Loads
where

$$
\begin{aligned}
& \mathrm{N}^{\mathrm{T}}=\left[\frac{\hat{\mathrm{N}}^{\mathrm{T}}\left(1-\nu^{2}\right)}{\mathrm{Eh}}\right]=-(1+\nu) \frac{1}{\hat{\mathrm{~h}}} \int_{-\mathrm{h} / 2}^{\mathrm{h} / 2} \alpha \mathrm{~T} \mathrm{dz} \\
& \mathrm{M}^{\mathrm{T}}=\left(\frac{\hat{\mathrm{M}}^{\mathrm{T}} \mathrm{R}}{\mathrm{D}}\right)=-12(1+\nu) \frac{1}{\hat{\mathrm{~h}}^{3}} \int_{-\mathrm{h} / 2}^{\mathrm{h} / 2} \alpha \mathrm{Tzdz}
\end{aligned}
$$

and \mathbf{T} is temperature change relative to a zero thermal stress condition; α, the coefficient of thermal expansion; and $\kappa=h^{2} / 12$.

2.1.4 Governing Differential Equations

The governing differential equations for a spherical shell in terms of displacement components u, v, and w are given by

$$
\begin{align*}
& +\mathrm{a}_{7} \mathrm{w}_{, \phi \phi \phi}+\mathrm{a}_{8}{ }^{\mathrm{w}}, \phi \theta \theta+\mathrm{a}_{9}{ }^{\mathrm{w}}, \phi \phi+\mathrm{a}_{10} \mathrm{w}, \theta \theta+\mathrm{a}_{11} \mathrm{w}{ }_{, \phi}=\mathrm{A} \tag{2.7a}\\
& \mathrm{~b}_{1} \mathrm{u}_{, \phi \theta}+\mathrm{b}_{2} \mathrm{u}_{, \theta}+\mathrm{b}_{3} \mathrm{v}, \phi \phi+\mathrm{b}_{4} \mathrm{v}, \theta \theta+\mathrm{b}_{5} \mathrm{v}, \phi+\mathrm{b}_{6} \mathrm{v} \\
& +\mathrm{b}_{7} \mathrm{w}, \phi \phi \theta+\mathrm{b}_{8}{ }^{\mathrm{w}}, \theta \theta \theta+\mathrm{b}_{9} \mathrm{w}, \phi \theta+\mathrm{b}_{10}{ }^{\mathrm{w}}, \theta=\mathrm{B} \tag{2.7b}\\
& \mathrm{c}_{1} \mathrm{u}_{, \phi \phi \phi}+\mathrm{c}_{2} \mathrm{u}_{, \phi \theta \theta}+\mathrm{c}_{3} \mathrm{u}_{, \phi \phi}+\mathrm{c}_{4} \mathrm{u}_{, \theta \theta}+\mathrm{c}_{5} \mathrm{u}_{, \phi}+\mathrm{c}_{6} \mathrm{u} \\
& +\mathrm{c}_{7} \mathrm{v}, \phi \phi \theta+\mathrm{c}_{8} \mathrm{v}, \theta \theta \theta+\mathrm{c}_{9} \mathrm{v}, \phi \theta+\mathrm{c}_{10} \mathrm{v}, \theta \\
& +\mathrm{c}_{11}{ }^{\mathrm{w}}{ }_{, \phi \phi \phi \phi}+\mathrm{c}_{12}{ }^{\mathrm{w}}, \phi \phi \theta \theta+\mathrm{c}_{13}{ }^{\mathrm{w}}, \theta \theta \theta \theta \\
& +\mathrm{c}_{14}{ }^{\mathrm{w}}, \phi \phi \phi+\mathrm{c}_{15}{ }^{\mathrm{w}}, \phi \theta \theta+\mathrm{c}_{16}{ }^{\mathrm{w}}, \phi \phi+\mathrm{c}_{17}{ }^{\mathrm{w}}, \theta \theta \\
& +\mathrm{c}_{18}{ }^{\mathrm{w}}, \phi+\mathrm{c}_{19} \mathrm{w}=\mathrm{C} \tag{2.7c}
\end{align*}
$$

where

$$
\begin{aligned}
& a_{1}=(1+\kappa) \sin \phi \\
& a_{2}=(1+4 \kappa) \frac{1-\nu}{2 \sin \phi} \\
& a_{3}=(1+\kappa) \cos \phi \\
& a_{4}=-\frac{\cos ^{2} \phi+\nu \sin ^{2} \phi}{\sin \varphi}(1+\kappa) \\
& a_{5}=\frac{1+\nu}{2}+(2-\nu) \kappa \\
& a_{6}=-\frac{\cot \phi}{2}[3-\nu+2 \kappa(3-2 \nu)] \\
& a_{7}=-\kappa \sin \phi \\
& a_{8}=-(2-\nu) \frac{\kappa}{\sin \phi} \\
& a_{9}=-\kappa \cos \phi \\
& a_{11}=(1+\nu) \sin \phi+\frac{\cos ^{2} \phi+\nu \sin ^{2} \phi}{\sin \phi}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{b}_{1}=\frac{1+\nu}{2}+(2-\nu) \kappa \\
& \mathrm{b}_{2}=\left[\frac{3-\nu}{2}+(3-2 \nu) \kappa\right] \cot \phi \\
& \mathrm{b}_{3}=\frac{1-\nu}{2}(1+4 \kappa) \sin \phi \\
& \mathrm{b}_{4}=\frac{1+\kappa}{\sin \phi} \\
& \mathrm{b}_{5}=\frac{1-\nu}{2}(1+4 \kappa) \cos \phi \\
& \mathrm{b}_{6}=\frac{1-\nu}{2}\left(\frac{\sin ^{2} \phi-\cos ^{2} \phi}{\sin \phi}\right)(1+4 \kappa) \\
& b_{7}=-(2-\nu)_{\kappa} \\
& \mathrm{b}_{8}=-\frac{\kappa}{\sin ^{2} \phi} \\
& \mathrm{~b}_{9}=-\kappa \cot \phi \\
& \mathrm{b}_{10}=(1+\nu)-2 \kappa(1-\nu) \\
& c_{1}=\sin \phi \\
& c_{2}=\frac{2-\nu}{\sin \phi} \\
& c_{3}=2 \cos \phi
\end{aligned}
$$

$$
\begin{aligned}
& c_{4}=\frac{\cos \phi}{\sin ^{2} \phi} \\
& c_{5}=-\left(\frac{1+\nu \sin ^{2} \phi}{\sin \phi}+\frac{1+\nu}{\kappa} \sin \phi\right) \\
& c_{6}=\left(1-\nu-\frac{1+\nu}{\kappa}+\frac{1}{\sin ^{2} \phi}\right) \cos \phi \\
& c_{7}=2-\nu \\
& c_{8}=\frac{1}{\sin ^{2} \phi} \\
& c_{9}=-\cot \phi \\
& c_{10}=\left[2(1-\nu)-\frac{1+\nu}{\kappa}+\frac{1}{\sin ^{2} \phi}\right] \\
& c_{11}=-\sin \phi \\
& c_{12}=-\frac{2}{\sin \phi} \\
& c_{13}=-\frac{1}{\sin ^{3} \phi} \\
& c_{14}=-2 \cos \phi \\
& c_{15}=2 \frac{\cos \phi}{\sin ^{2} \phi}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{c}_{16}=\frac{1+\nu \sin ^{2} \phi}{\sin \phi} \\
& \mathrm{c}_{17}=-\frac{4-(1+\nu) \sin ^{2} \phi}{\sin ^{3} \phi} \\
& \mathrm{c}_{18}=-\left(1-\nu+\frac{1}{\sin ^{2} \phi}\right) \cos \phi \\
& \mathrm{c}_{19}=-2 \frac{1+\nu}{\kappa} \sin \phi
\end{aligned}
$$

In general, the loading functions are

$$
\begin{align*}
& \mathrm{A}=-\sin \phi\left[\left(1-\nu^{2}\right) \frac{\mathrm{p}_{\phi} \mathrm{R}}{\mathrm{E} \hat{h}}+\mathrm{N}_{, \phi}^{\mathrm{T}}+\kappa \mathrm{M}_{, \phi}^{\mathrm{T}}\right] \tag{2.8a}\\
& \mathrm{B}=-\left[\left(1-\nu^{2}\right) \mathrm{p}_{\theta} \mathrm{R} \frac{\sin \phi}{\mathrm{E} \hat{\mathrm{~h}}}+\mathrm{N}_{, \theta}^{\mathrm{T}}+\kappa \mathrm{M}_{, \theta}^{\mathrm{T}}\right] \tag{2.8b}\\
& \mathrm{C}=-\sin \phi\left[\mathrm{R}^{3} \frac{\mathrm{p}_{\mathrm{z}}}{\mathrm{D}}-\frac{2 \mathrm{~N}^{\mathrm{T}}}{\kappa}+\mathrm{M}_{, \phi \phi}^{\mathrm{T}}+\cot \mathrm{M}_{, \phi}^{\mathrm{T}}+\left(\frac{1}{\sin ^{2} \phi}\right) \mathrm{M}^{\mathrm{T}}, \theta \theta\right] \tag{2.8c}
\end{align*}
$$

As mentioned in Sec. 4, the digital computer program which has been prepared has two options for loading. Specialization of the loading functions for each of these options follows:

- Uniform pressure

$$
\begin{aligned}
& A=B=0 \\
& C=-\sin \phi \frac{R^{2} p_{z}}{D}=-\sin \phi
\end{aligned}
$$

This will yield solutions normalized by $\mathrm{R}^{3} \mathrm{p}_{\mathrm{z}} / \mathrm{D}$. For a given pressure, modulus, and value of Poisson's ratio this quantity can be found. The values of the dimensional dependent variables, \hat{u}, \hat{v}, and \hat{w}, can be
computed from the nondimensional u, v, and w, obtained from the computer solution as

$$
\begin{aligned}
& \hat{u}=\left(\frac{R^{4} p_{z}}{D}\right) u \\
& \hat{v}=\left(\frac{R^{4} p_{z}}{D}\right) v \\
& \hat{w}=\left(\frac{R^{4} p_{z}}{D}\right) w
\end{aligned}
$$

- Linear thermal gradient through the thickness of the shell For this special case T is given by

$$
\mathrm{T}=\mathrm{T}_{1}+\mathrm{T}_{2} \mathrm{z}
$$

where

$$
\begin{aligned}
& \mathrm{T}_{1}=\frac{1}{2}\left(\mathrm{~T}_{\mathrm{e}}+\mathrm{T}_{\mathrm{i}}\right)-2 \mathrm{~T}_{\mathrm{o}} \\
& \mathrm{~T}_{2}=\frac{\left(\mathrm{T}_{\mathrm{e}}-\mathrm{T}_{\mathrm{i}}\right)}{\mathrm{h}}
\end{aligned}
$$

and

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{e}}=\text { temperature at external surface }\left(\mathrm{z}=\frac{\mathrm{h}}{2}\right) \\
& \mathrm{T}_{\mathrm{i}}=\text { temperature at internal surface }\left(\mathrm{z}=-\frac{\mathrm{h}}{2}\right) \\
& \mathrm{T}_{\mathrm{o}}=\text { reference temperature }
\end{aligned}
$$

Then in nondimensional form

$$
\begin{aligned}
\mathrm{N}^{\mathrm{T}} & =-(1+\nu) \alpha \mathrm{T}_{1} \\
\mathrm{M}^{\mathrm{T}} & =-(1+\nu) \alpha \mathrm{T}_{2}
\end{aligned}
$$

The loading functions in nondimensional form become

$$
\begin{aligned}
& \mathrm{A}=\mathrm{B}=0 \\
& \mathrm{C}=-2 \sin \varphi \frac{(1+\nu) \alpha \mathrm{T}_{1}}{\kappa}
\end{aligned}
$$

Dimensional displacements can be computed from the nondimensional solutions for u, v, and w through the relationships

$$
\begin{aligned}
& \hat{\mathrm{u}}=u \mathrm{R} \\
& \hat{\mathrm{v}}=\mathrm{vR} \\
& \hat{\mathrm{w}}=\mathrm{wR}
\end{aligned}
$$

2.2 BOUNDARY CONDITIONS

It was pointed out in Sec. 2.1 that the coordinates can be oriented so as to obtain a convenient description of the boundary curve. By such a description it is implied that the boundary is parallel or nearly parallel to coordinate lines. Two orientations of the orthogonal coordinates ϕ and θ are shown in Fig. 6. The coordinates in the two orientations are related to the rectangular coordinate system as follows:

Orientation 1
$x=R\left(\sin \phi \cos \phi_{2} \cos \theta-\cos \phi \sin \phi_{2}\right)$
$\mathrm{y}=\mathrm{R} \sin \phi \sin \theta$
$\mathrm{z}=\mathrm{R}\left(\cos \phi \cos \phi_{2}+\sin \phi \cos \theta \sin \phi_{2}\right)$

Orientation 1 (Side View)

Orientation 2 (Top View)

Fig. 6 Orientations of Coordinate ϕ

Orientation 2

$$
\begin{align*}
& x=R \sin \phi \cos \theta \tag{2.10a}\\
& y=-R \cos \phi \tag{2.10b}\\
& z=R \sin \phi \sin \theta \tag{2.10c}
\end{align*}
$$

To use these orientations, consider the sphere cut as shown in Fig. 6 by the plane OA which is parallel to plane $O_{1} B$. That part of the sphere which is between the cone and plane OA is described by Orientation 1; the remaining portion, by Orientation 2. Thus, the sphere is divided into two parts each of which has two boundaries parallel to the curvilinear coordinates. The boundary curve and boundary conditions of Orientation 1 are given as shown in Fig. 7.

Fig. 7 Boundary Curve and Forces for Orientation 1

The boundary forces along the edges of the shell are given by the equations:
along $\overline{\mathrm{ab}}$

$$
\begin{aligned}
\overline{\mathrm{N}}_{\eta} & =\mathrm{N}_{\phi \theta}+2 \kappa \mathrm{M}_{\phi \theta} \\
\overline{\mathrm{N}}_{\zeta} & =\mathrm{N}_{\phi} \\
\overline{\mathrm{Q}} & =-\left[\mathrm{Q}_{\phi}+\frac{(1-\nu)}{\sin \phi} \mathrm{M}_{\phi \theta, \theta}\right] \\
\overline{\mathrm{M}}_{\zeta} & =\mathrm{M}_{\phi}
\end{aligned}
$$

along $\overline{\mathrm{cd}}$

$$
\begin{aligned}
& \overline{\mathrm{N}}_{\eta}=\mathrm{N}_{\phi \theta}+2 \kappa \mathrm{M}_{\phi \theta} \\
& \overline{\mathrm{N}}_{\zeta}=\mathrm{N}_{\phi} \\
& \bar{Q}=\mathrm{Q}_{\phi}+\frac{(1-\nu)}{\sin \phi} \mathrm{M}_{\phi \theta, \theta} \\
& \overline{\mathrm{M}}_{\zeta}=\mathrm{M}_{\phi}
\end{aligned}
$$

along $\overline{\mathrm{bc}}$

Since the curve $\overline{\mathrm{bc}}$ is not parallel to a coordinate line the boundary forces are given by the general expressions:

$$
\begin{aligned}
& \hat{\overline{\mathrm{N}}}_{\eta}=\hat{\mathrm{N}}_{\eta}+\frac{1}{\mathrm{R}} \hat{\mathrm{M}}_{\zeta \eta} \\
& \hat{\overline{\mathrm{N}}}_{\zeta}=\hat{\mathrm{N}}_{\zeta}
\end{aligned}
$$

$$
\begin{aligned}
\hat{\overline{\mathrm{Q}}} & =\hat{\mathrm{Q}}_{3}+\frac{1}{\mathrm{~A}_{\eta}} \frac{\partial \hat{\mathrm{M}}_{\zeta \eta}}{\partial \eta} \\
\hat{\overline{\mathrm{M}}}_{\zeta} & =\hat{\mathrm{M}}_{\zeta}
\end{aligned}
$$

where

$$
\begin{aligned}
& \hat{\mathrm{N}}_{\zeta}=\cos ^{2} \lambda \hat{\mathrm{~N}}_{\theta}+\sin ^{2} \lambda \hat{\mathrm{~N}}_{\phi}+\sin 2 \lambda \hat{\mathrm{~N}}_{\phi \theta} \\
& \hat{\mathrm{N}}_{\eta}=\frac{1}{2} \sin 2 \lambda\left(\hat{\mathrm{~N}}_{\theta}-\hat{\mathrm{N}}_{\phi}\right)+\left(\sin ^{2} \lambda-\cos ^{2} \lambda\right) \hat{\mathrm{N}}_{\phi \theta} \\
& \hat{\mathrm{Q}}_{3}=\sin \lambda \hat{\mathrm{Q}}_{\phi}+\cos \lambda \hat{\mathrm{Q}}_{\theta} \\
& \hat{\mathrm{M}}_{\zeta}=\cos ^{2} \lambda \hat{\mathrm{M}}_{\theta}+\sin ^{2} \lambda \hat{\mathrm{M}}_{\phi}+\sin 2 \lambda \hat{\mathrm{M}}_{\phi \theta} \\
& \hat{\mathrm{M}}_{\zeta \eta}=\frac{1}{2} \sin 2 \lambda\left(\mathrm{M}_{\theta}-\mathrm{M}_{\phi}\right)+\left(\sin ^{2} \lambda-\cos ^{2} \lambda\right) \hat{\mathrm{M}}_{\phi \theta} .
\end{aligned}
$$

The direction cosine must be found from the following intersection relations:

$$
\cos \lambda= \pm \frac{1}{\left[f^{2} \sin ^{2} \phi+1\right]}
$$

where λ is the angle between the boundary curve and the ϕ-axis and

$$
\mathrm{f}=\frac{\tan \phi_{1}}{\sin ^{2} \phi}\left[\frac{-\left(\mathrm{R}_{1} / \mathrm{R}-1\right) \cos \phi+\sin \phi_{2}}{\cos \theta+\tan \phi_{1} \cos \phi_{2} \sin \theta}\right]
$$

The relation between θ and ϕ is found by the relation

$$
\sin \theta-\tan \phi_{1} \cos \phi_{2} \cos \theta=\frac{\tan \phi_{1}}{\sin \phi}\left[\left(\frac{\mathrm{R}}{\mathrm{R}}-1\right)-\sin \phi_{2} \cos \phi\right] .
$$

For the spherical segment to have fixed edges, the displacement components are all zero. Hence, the required boundary conditions are as follows:

$$
\begin{array}{ll}
\overline{\mathrm{ab}} & \mathrm{u} \equiv \mathrm{v} \equiv \mathrm{w} \equiv \frac{\partial \mathrm{w}}{\partial \phi} \equiv 0 \\
\overline{\mathrm{bc}} & \mathrm{u} \equiv \mathrm{v} \equiv \mathrm{w} \equiv \frac{\partial \mathrm{w}}{\partial \zeta} \equiv 0 \\
\overline{\mathrm{~cd}} & \mathrm{u} \equiv \mathrm{v} \equiv \mathrm{w} \equiv \frac{\partial \mathrm{w}}{\partial \phi} \equiv 0
\end{array}
$$

The boundary curve and boundary condition of Orientation 2 are given as shown in Fig. 8.

The boundary forces along the edges of the shell are given by the equations:
along $\overline{\mathrm{dc}}$

$$
\begin{aligned}
& \overline{\mathrm{N}}_{\eta}=-\mathrm{N}_{\theta \phi}-2 \kappa \mathrm{M}_{\phi \theta} \\
& \overline{\mathrm{N}}_{\zeta}=\mathrm{N}_{\theta} \\
& \overline{\mathrm{Q}}=\mathrm{Q}_{\theta}+(1-\nu) \mathrm{M}_{\phi \theta, \phi} \\
& \overline{\mathrm{M}}_{\zeta}=\mathrm{M}_{\theta}
\end{aligned}
$$

Fig. 8 Boundary Curve and Forces for Orientation 2
along $\overline{\mathrm{ef}}$

$$
\begin{aligned}
\overline{\mathrm{N}}_{\eta} & =-\mathrm{N}_{\theta \phi}-2 \kappa \mathrm{M}_{\phi \theta} \\
\overline{\mathrm{N}}_{\zeta} & =\mathrm{N}_{\theta} \\
\overline{\mathrm{Q}} & =-\left[\mathrm{Q}+(1-\nu) \mathrm{M}_{\phi \theta, \phi}\right] \\
\overline{\mathrm{M}}_{\zeta} & =\mathrm{M}_{\theta}
\end{aligned}
$$

along $\overline{\mathrm{ce}}$
The curve $\overline{c e}$ is not parallel to a coordinate lines as was the case for line $\overline{\mathrm{bc}}$ for Orientation 1. Thus, the boundary forces are given by the general expressions:

$$
\begin{aligned}
\hat{\overline{\mathrm{N}}}_{\eta} & =\hat{\mathrm{N}}_{\eta}+\frac{1}{\mathrm{R}} \hat{\mathrm{M}}_{\zeta \eta} \\
\hat{\overline{\mathrm{N}}}_{\zeta} & =\hat{\mathrm{N}}_{\zeta} \\
\hat{\overline{\mathrm{Q}}} & =\hat{\mathrm{Q}}_{3}+\frac{1}{\mathrm{~A}_{\eta}} \frac{\partial \hat{\mathrm{M}}_{\zeta \eta}}{\partial \eta} \\
\hat{\overline{\mathrm{M}}}_{\zeta} & =\hat{\mathrm{M}}_{\zeta}
\end{aligned}
$$

The quantities $\hat{\mathrm{N}}_{\eta}, \hat{\mathbf{N}}_{\zeta}, \hat{\mathrm{Q}}_{3}, \hat{\mathrm{M}}_{\zeta}, \hat{\mathbf{M}}_{\zeta \eta}$ can be found by the equations given for Orientation 1 , once $\cos \lambda$ is known. For the curve $\overline{c e}$, the relation between θ and ϕ is

$$
\cos \theta=-\frac{\left[\cos \phi+\tan \phi_{1}\left(\mathrm{R}_{1} / \mathrm{R}-1\right)\right]}{\sin \phi \tan \phi_{1}}
$$

The direction cosine is given by
$\cos \lambda$

$$
= \pm \frac{\left\{\tan ^{2} \phi_{1} \sin ^{2} \phi-\left[\cos \phi+\tan \phi_{1}\left(\mathrm{R}_{1} / \mathrm{R}-1\right)\right]^{2}\right\}^{1 / 2}}{\left\{\left[1+\tan \phi_{1}\left(\mathrm{R}_{1} / \mathrm{R}-1\right) \cos \phi\right]^{2}+\tan ^{2} \phi_{1} \sin ^{2} \phi-\left[\cos \phi+\tan \phi_{1}\left(\mathrm{R}_{1} / \mathrm{R}-1\right)\right]^{2}\right\}^{1 / 2}}
$$

For the spherical segment, $\overline{\mathrm{dcef}}$, the boundary conditions for a fixed edge are as follows:

$$
\begin{array}{ll}
\overline{\mathrm{dc}} & \mathrm{u} \equiv \mathrm{v} \equiv \mathrm{w} \equiv \frac{\partial \mathrm{w}}{\partial \theta} \equiv 0 \\
\overline{\mathrm{bc}} & \mathrm{u} \equiv \mathrm{v} \equiv \mathrm{w} \equiv \frac{\partial \mathrm{w}}{\partial \zeta} \equiv 0 \\
\overline{\mathrm{~cd}} & \mathrm{u} \equiv \mathrm{v} \equiv \mathrm{w} \equiv \frac{\partial \mathrm{w}}{\partial \theta} \equiv 0
\end{array}
$$

2.3 STRESS IN SKIN

Once the stress resultant and couples are known, the corresponding maximum and minimum stress of an isotropic shell can be computed by the relations:

$$
\begin{align*}
\sigma_{\phi} & =\frac{1}{\hat{\mathrm{~h}}} \hat{\mathrm{~N}}_{\phi} \pm \frac{6}{\hat{\mathrm{~h}}^{2}} \hat{\mathrm{M}}_{\phi} \tag{2.11a}\\
\sigma_{\theta} & =\frac{1}{\hat{\mathrm{~h}}} \hat{\mathrm{~N}}_{\theta} \pm \frac{6}{\hat{\mathrm{~h}}^{2}} \hat{\mathrm{M}}_{\theta} \tag{2.11b}
\end{align*}
$$

This development is based on the assumption of a linear stress variation through the thickness given by

$$
\sigma_{\mathrm{i}}=\bar{\sigma}_{\mathrm{i}}+\mathrm{z} \sigma_{\mathrm{i}}^{\mathrm{b}}
$$

where $\bar{\sigma}_{i}$ is a membrane stress and $\underset{i}{ } \sigma_{i}^{b}$ in the stress due to bending.

Section 3

NUMERICAL ANALYSIS

The finite-difference method is used to solve the governing equations of a spherical shell segment with fixed edges. The scheme in this numerical method is to replace the continuous problem of a continuous coordinate system by one defined at a finite. number of coordinate points. To accomplish this discretization, the continuous two dimensional (ϕ, θ) domain of the spherical shell is covered by a uniform rectangular net as shown in Fig. 9. Lattice points of this net which are within the domain $\underset{\sim}{\mathrm{D}}$

Fig. 9 Domain and Boundary of Spherical Shell Segment
are called mesh points, and lattice points on the boundary curve Γ are called boundary points. At these lattice points the dependent variables (u, v, w) of the governing differential equations are replaced by the discrete values of $u_{i}^{j}, v_{i}^{j}, w_{i}^{j}$. The subscript i of u_{i}^{j} denotes the row number and corresponds to the ϕ-coordinate while the superscript j denotes the column number and corresponds to the θ-coordinate. In general, the boundary curve does not coincide with the net as seen in Fig. 9. For the present numerical analysis, it is desirable to have the boundary curve coincide with the net so as to avoid computational complications. With the orthogonal coordinates ϕ, θ, it is not possible to have all the coordinate lines coincide exactly with the boundary. However, the coordinates can be orientated in such a manner that at least two boundary curves are parallel to coordinate lines. Two orientations are given in Sec. 2.2 which accomplish this objective. The domain shown in Fig. 9 corresponds to Orientation 1 which indicates the degree to which the actual boundary curve deviates from the rectangular net.

The difference equations which are a set of algebraic relations representing the governing equations and boundary conditions are formed by first approximating the derivatives at a given point by a function of the variable at neighboring points. These functions replace the derivatives of the governing equations. Thus, at each mesh point three algebraic equations can be written in terms of neighboring points. When the boundary conditions are accounted for in these equations the resulting set of simultaneous algebraic equations

$$
\underset{\sim}{\mathrm{AX}}=\underset{\sim}{\mathrm{B}}
$$

replaces the continuous problem. The solution of this set of algebraic equations can be accomplished by methods described in Vol. I.

3.1 APPROXIMATION OF DERIVATIVES

The derivatives of u, v, w are expressed in terms of their values at neighboring mesh points to transform the governing equations to difference form. These
derivatives are determined by a Taylor series approximation* for a rectangular net and are given by the following equations:

$$
\begin{align*}
\mathrm{f}_{, \phi} & =1 / 2 \overline{\mathrm{~h}}\left(\mathrm{f}_{1}^{\mathrm{o}}-\mathrm{f}_{-1}^{\mathrm{o}}\right) \tag{3.1a}\\
\mathrm{f}_{, \phi \phi} & =1 / \bar{h}^{2}\left(\mathrm{f}_{1}^{\mathrm{o}}-2 \mathrm{f}_{\mathrm{o}}^{\mathrm{o}}+\mathrm{f}_{-1}^{\mathrm{o}}\right) \tag{3.1b}\\
\mathrm{f}_{, \phi \phi \phi} & =1 / 2 \overline{\mathrm{~h}}^{3}\left(\mathrm{f}_{2}^{\mathrm{o}}-2 \mathrm{f}_{1}^{\mathrm{o}}+2 \mathrm{f}_{-1}^{\mathrm{o}}-\mathrm{f}_{-2}^{\mathrm{o}}\right) \tag{3.1c}\\
\mathrm{f}_{, \phi \phi \phi \phi} & =1 / \overline{\mathrm{h}}^{4}\left(\mathrm{f}_{2}^{\mathrm{o}}-4 \mathrm{f}_{1}^{\mathrm{o}}+6 \mathrm{f}_{\mathrm{o}}^{\mathrm{o}}-4 \mathrm{f}_{-1}^{\mathrm{o}}+\mathrm{f}_{-2}^{\mathrm{o}}\right) \tag{3.1~d}\\
\mathrm{f}_{, \theta} & =1 / 2 \overline{\mathrm{k}}\left(\mathrm{f}_{\mathrm{o}}^{1}-\mathrm{f}_{\mathrm{o}}^{-1}\right) \tag{3.1e}\\
\mathrm{f}_{, \theta \theta} & =1 / \overline{\mathrm{k}}^{2}\left(\mathrm{f}_{\mathrm{o}}^{1}-2 \mathrm{f}_{\mathrm{o}}^{\mathrm{o}}+\mathrm{f}_{\mathrm{o}}^{-1}\right) \tag{3.1f}\\
\mathrm{f}_{, \theta \theta \theta} & =1 / 2 \overline{\mathrm{k}}^{3}\left(\mathrm{f}_{\mathrm{o}}^{2}-2 \mathrm{f}_{\mathrm{o}}^{1}+2 \mathrm{f}_{\mathrm{o}}^{-1}-\mathrm{f}_{\mathrm{o}}^{-2}\right) \tag{3.1~g}\\
\mathrm{f}_{, \theta \theta \theta \theta} & =1 / \overline{\mathrm{k}}^{4}\left(\mathrm{f}_{\mathrm{o}}^{2}-4 \mathrm{f}_{\mathrm{o}}^{1}+6 \mathrm{f}_{\mathrm{o}}^{\mathrm{o}}-4 \mathrm{f}_{\mathrm{o}}^{-1}+\mathrm{f}_{\mathrm{o}}^{-2}\right) \tag{3.1h}\\
\mathrm{f}, \phi \phi \theta & =1 / 2 \bar{h}^{2} \overline{\mathrm{k}}\left(-2 \mathrm{f}_{\mathrm{o}}^{1}+2 \mathrm{f}_{\mathrm{o}}^{-1}+\mathrm{f}_{1}^{1}+\mathrm{f}_{-1}^{1}-\mathrm{f}_{1}^{-1}-\mathrm{f}_{-1}^{-1}\right) \tag{3.1i}
\end{align*}
$$

*"Investigation of Juncture Stress Fields in Multicellular Shell Structures," by E. Y. W. Tsui, F. A. Brogan, J. M. Massard, P. Stern, and C. E. Stuhlman, Technical Report M-03-63-1, Lockheed Missiles \& Space Company, Sunnyvale, Calif., Feb 1964 - NASA CR-61050.

$$
\begin{align*}
\mathrm{f}_{, \phi \theta \theta} & =1 / 2 \overline{\mathrm{~h}} \overline{\mathrm{k}}^{2}\left(-2 \mathrm{f}_{1}^{\mathrm{o}}+2 \mathrm{f}_{-1}^{\mathrm{o}}+\mathrm{f}_{1}^{1}+\mathrm{f}_{1}^{-1}-\mathrm{f}_{-1}^{1}-\mathrm{f}_{-1}^{-1}\right) \tag{3.1k}\\
\mathrm{f}_{, \phi \phi \theta \theta} & =1 / \bar{h}^{2} \mathrm{k}^{-2}\left(-2 \mathrm{f}_{1}^{\mathrm{o}}-2 \mathrm{f}_{-1}^{\mathrm{o}}-2 \mathrm{f}_{\mathrm{o}}^{1}-2 \mathrm{f}_{\mathrm{o}}^{-1}+\mathrm{f}_{1}^{1}+\mathrm{f}_{-1}^{1}+\mathrm{f}_{1}^{-1}+\mathrm{f}_{-1}^{-1}+4 \mathrm{f}_{\mathrm{o}}^{\mathrm{o}}\right) \tag{3.11}
\end{align*}
$$

Lower order approximations to be used as noted

$$
\begin{align*}
u_{, \phi \phi \phi} & =1 / \bar{h}^{3}\left(u_{2}^{o}-3 u_{1}^{o}+3 u_{o}^{o}-u_{-1}^{o}\right) \tag{3.1m}\\
u_{, \phi \phi \phi} & =1 / \bar{h}^{3}\left(u_{1}^{o}-3 u_{o}^{o}+3 u_{-1}^{o}-u_{-2}^{o}\right) \tag{3.1n}\\
v_{, \theta \theta \theta} & =1 / \bar{k}^{3}\left(v_{o}^{1}-3 v_{o}^{o}+3 v_{o}^{-1}-v_{o}^{-2}\right) \tag{3.10}
\end{align*}
$$

3.2 DIFFERENCE EQUATIONS

The formation of the difference equations is effected in a straightforward manner by substituting the appropriate expressions of Eqs. (3.1) into the governing equation [Eqs. (2.7)]. Only when the equations are written one row or column from the boundary, the low-order third derivatives of u with respect to ϕ [Eqs. (3.1m and n)] or the third derivative of v with respect to θ [Eq. (3.10)] are used to obtain a sufficient number of unknowns for the given number of equations. With these substitutions the three governing equations in difference form at a point 0,0 are as follows:

$$
\begin{align*}
& A_{1} u_{1}^{o}+A_{2} u_{-1}^{o}+A_{3}\left(u_{o}^{1}+u_{o}^{-1}\right)+A_{4} u_{o}^{o}+A_{5}\left(v_{1}^{1}-v_{1}^{-1}-v_{-1}^{1}+v_{-1}^{-1}\right) \\
& +A_{6}\left(v_{o}^{1}-v_{o}^{-1}\right)+A_{7}\left(w_{2}^{o}-w_{-2}^{o}\right)+A_{8} w_{1}^{o}+A_{9} w_{-1}^{o}+A_{10}\left(w_{o}^{1}+w_{o}^{-1}\right) \\
& +A_{11}\left(w_{1}^{1}+w_{1}^{-1}-w_{-1}^{1}-w_{-1}^{-1}\right)+A_{12} w_{o}^{o}=A_{o}^{o} \tag{3.2a}
\end{align*}
$$

$$
\begin{align*}
& B_{1}\left(u_{1}^{1}-u_{-1}^{1}-u_{1}^{-1}+u_{-1}^{-1}\right)+B_{2}\left(u_{o}^{1}-u_{o}^{-1}\right)+B_{3} v_{1}^{o}+B_{4} v_{-1}^{o}+B_{5}\left(v_{o}^{1}+v_{o}^{-1}\right) \\
& \quad+B_{6} v_{o}^{o}+B_{7}\left(w_{o}^{1}-w_{o}^{-1}\right)+B_{8}\left(w_{1}^{1}-w_{1}^{-1}\right)+B_{9}\left(w_{-1}^{1}-w_{-1}^{-1}\right)+B_{10}\left(w_{o}^{2}-w_{o}^{-2}\right)=B_{o}^{o} \tag{3.2b}
\end{align*}
$$

$$
\begin{align*}
& C_{1}\left(u_{2}^{o}-u_{-2}^{o}\right)+C_{2} u_{1}^{o}+C_{3} u_{-1}^{o}+C_{4}\left(-u_{o}^{1}-u_{o}^{-1}\right)+C_{5}\left(u_{1}^{1}-u_{-1}^{1}+u_{1}^{-1}-u_{-1}^{-1}\right) \\
& \quad+C_{6} u_{o}^{o}+C_{7}\left(v_{o}^{1}-v_{o}^{-1}\right)+C_{8}\left(v_{1}^{1}-v_{1}^{-1}\right)+C_{9}\left(v_{-1}^{1}-v_{-1}^{-1}\right)+C_{10}\left(v_{o}^{2}-v_{o}^{-2}\right) \\
& \quad+C_{11} w_{2}^{o}+C_{12} w_{-2}^{o}+C_{13}\left(w_{o}^{2}+w_{o}^{-2}\right)+C_{14} w_{1}^{o}+C_{15} w_{-1}^{o}+C_{16}\left(w_{o}^{1}+w_{o}^{-1}\right) \\
& \tag{3.2c}\\
& \quad+C_{17}\left(w_{1}^{1}+w_{1}^{-1}\right)+C_{18}\left(w_{-1}^{1}+w_{-1}^{-1}\right)+C_{19} w_{o}^{o}=C_{o}^{o}
\end{align*}
$$

where

$$
\begin{aligned}
& \mathrm{A}_{1}=\frac{\mathrm{a}_{1}}{\overline{\mathrm{~h}}^{2}}+\frac{\mathrm{a}_{3}}{2 \overline{\mathrm{~h}}} \\
& \mathrm{~A}_{2}=\frac{\mathrm{a}_{1}}{\overline{\mathrm{~h}}^{2}}-\frac{\mathrm{a}_{3}}{2 \overline{\mathrm{~h}}} \\
& \mathrm{~A}_{3}=\frac{\mathrm{a}_{2}}{\overline{\mathrm{k}}^{2}} \\
& \mathrm{~A}_{4}=\mathrm{a}_{4}-\left(\mathrm{A}_{1}+\mathrm{A}_{2}\right)-2 \mathrm{~A}_{3} \\
& \mathrm{~A}_{5}=\frac{\mathrm{a}_{5}}{4 \overline{\bar{h}} \overline{\overline{\mathrm{k}}}}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{A}_{6}=\frac{\mathrm{a}_{6}}{2 \overline{\mathrm{k}}} \\
& A_{7}=\frac{a_{7}}{2 \bar{h}^{-3}} \\
& A_{8}=-2 A_{7}-2 A_{11}+\frac{a_{9}}{\bar{h}^{2}}+\frac{a_{11}}{2 \overline{\mathrm{~h}}} \\
& \mathrm{~A}_{9}=2 \mathrm{~A}_{7}+2 \mathrm{~A}_{11}+\frac{\mathrm{a}_{9}}{\overline{\mathrm{~h}}^{2}}-\frac{\mathrm{a}}{11} 2 \overline{\mathrm{~h}}^{2} \\
& \mathrm{~A}_{10}=\frac{\mathrm{a}_{10}}{\overline{\mathrm{k}}^{2}} \\
& A_{11}=\frac{\mathrm{a}_{8}}{2 \overline{\mathrm{~h}}^{-2}} \\
& \mathrm{~A}_{12}=-\frac{2 \mathrm{a}_{9}}{\overline{\mathrm{~h}}^{2}}-2 \mathrm{~A}_{10} \\
& A_{0}^{0}=A \\
& \mathrm{~B}_{1}=\frac{\mathrm{b}_{1}}{4 \overline{\mathrm{~h}} \overline{\mathrm{k}}} \\
& \mathrm{~B}_{2}=\frac{\mathrm{b}_{2}}{2 \overline{\mathrm{k}}}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{B}_{3}=\frac{\mathrm{b}_{3}}{\overline{\mathrm{~h}}^{2}}+\frac{\mathrm{b}_{5}}{2 \overline{\mathrm{~h}}} \\
& \mathrm{~B}_{4}=\frac{\mathrm{b}_{3}}{\overline{\mathrm{~h}}^{2}}-\frac{\mathrm{b}_{5}}{2 \overline{\mathrm{~h}}} \\
& \mathrm{~B}_{5}=\frac{\mathrm{b}_{4}}{\overline{\mathrm{k}}^{2}} \\
& \mathrm{~B}_{6}=-\left(\mathrm{B}_{3}+\mathrm{B}_{4}\right)-2 \mathrm{~B}_{5}+\mathrm{b}_{6} \\
& \mathrm{~B}_{7}=\left(-\frac{\mathrm{b}_{7}}{2 \bar{h}^{2} \overline{\mathrm{k}}}+\frac{\mathrm{b}_{10}}{2 \overline{\mathrm{k}}}-\frac{\mathrm{b}_{8}}{\overline{\mathrm{k}}^{3}}\right) \\
& \mathrm{B}_{8}=\left(\frac{\mathrm{b}_{7}}{2 \bar{h}^{2} \overline{\mathrm{k}}}+\frac{\mathrm{b}_{9}}{4 \overline{\mathrm{~h} \overline{\mathrm{k}}})}\right. \\
& \mathrm{B}_{9}=\left(\frac{\mathrm{b}_{7}}{2 \bar{h}^{2 \bar{k}}}-\frac{\mathrm{b}_{9}}{4 \overline{\mathrm{~h}} \overline{\mathrm{k}}}\right) \\
& \mathrm{C}_{1}=\frac{\mathrm{c}_{1}}{2 \bar{h}^{3}} \\
& \mathrm{~B}_{0}^{0}=B_{10}=\frac{\mathrm{b}_{8}}{2 \overline{\mathrm{k}}^{3}} \\
&
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{C}_{2}=-2 \mathrm{C}_{1}-2 \mathrm{C}_{5}+\frac{\mathrm{c}_{3}}{\overline{\mathrm{~h}}^{2}}+\frac{\mathrm{c}_{5}}{2 \overline{\mathrm{~h}}} \\
& \mathrm{C}_{3}=\frac{\mathrm{c}_{1}}{\overline{\mathrm{~h}}^{3}}+\frac{\mathrm{c}_{2}}{\overline{\mathrm{~h}}^{2}}+\frac{\mathrm{c}_{3}}{\overline{\mathrm{~h}}^{2}}-\frac{\mathrm{c}_{5}}{2 \overline{\mathrm{~h}}} \\
& \mathrm{C}_{4}=\frac{\mathrm{c}_{4}}{\mathrm{k}^{2}} \\
& \mathrm{C}_{5}=\frac{\mathrm{c}_{2}}{2{\overline{\mathrm{~h}} \overline{\mathrm{k}}^{2}}^{2}} \\
& \mathrm{C}_{6}=-2 \frac{\mathrm{c}_{3}}{\overline{\mathrm{~h}}^{2}}-2 \frac{\mathrm{c}_{4}}{\overline{\mathrm{k}}^{2}}+\mathrm{c}_{6} \\
& \mathrm{C}_{7}=-\frac{\mathbf{c}_{7}}{\overline{\mathrm{~h}}^{2} \overline{\mathrm{k}}}-\frac{\mathrm{c}_{8}}{\overline{\mathrm{k}}^{3}}+\frac{\mathrm{c}_{10}}{2 \overline{\mathrm{k}}} \\
& \mathrm{C}_{8}=\frac{{ }^{\mathrm{c}} 7}{2 \overline{\mathrm{~h}}^{2} \overline{\mathrm{k}}}+\frac{{ }^{\mathrm{c}}{ }_{9}}{4 \overline{\mathrm{hk}}} \\
& \mathrm{C}_{9}=\frac{\mathrm{c}_{7}}{2 \overline{\mathrm{~h}}_{\overline{\mathrm{k}}}}-\frac{\mathrm{c}_{9}}{4 \overline{\mathrm{hk}}} \\
& \mathrm{C}_{10}=\frac{\mathrm{c}_{8}}{2 \overline{\mathrm{k}}^{3}} \\
& C_{11}=\frac{\mathrm{c}_{11}}{\overline{\mathrm{~h}}^{4}}+\frac{\mathrm{c}_{14}}{2 \overline{\mathrm{~h}}^{-3}}
\end{aligned}
$$

$$
\begin{aligned}
& C_{12}=\frac{c_{11}}{\bar{h}^{4}}-\frac{c_{14}}{2 \bar{h}^{3}} \\
& C_{13}=\frac{c_{13}}{\overline{\mathrm{k}}^{4}} \\
& C_{14}=-4 \frac{c_{11}}{\overline{\mathrm{~h}}^{4}}-2 \frac{c_{12}}{\overline{\mathrm{~h}}^{2} \overline{\mathrm{k}}^{2}}-\frac{\mathbf{c}_{14}}{\overline{\mathrm{~h}}^{3}}-\frac{\mathrm{c}_{15}}{\overline{\mathrm{~h}}^{-2}}+\frac{\mathrm{c}_{16}}{\overline{\mathrm{~h}}^{2}}+\frac{\mathrm{c}_{18}}{2 \overline{\mathrm{~h}}} \\
& \mathrm{C}_{15}=-4 \frac{\mathrm{c}_{11}}{\overline{\mathrm{~h}}^{4}}-2 \frac{\mathrm{c}_{12}}{\overline{\mathrm{~h}}^{2} \overline{\mathrm{k}}^{2}}+\frac{\mathrm{c}_{14}}{\overline{\mathrm{~h}}^{3}}+\frac{\mathrm{c}_{15}}{\overline{\mathrm{~h}}^{2}}+\frac{\mathrm{c}_{16}}{\overline{\mathrm{~h}}^{2}}-\frac{\mathrm{c}_{18}}{2 \overline{\mathrm{~h}}} \\
& \mathrm{C}_{16}=-2 \frac{\mathbf{c}_{12}}{\overline{\mathrm{~h}}^{2} \overline{\mathrm{k}}^{2}}-4 \frac{\mathbf{c}_{13}}{\overline{\mathrm{k}}^{4}}+\frac{\mathbf{c}_{17}}{\overline{\mathrm{k}}^{2}} \\
& \mathrm{C}_{17}=\frac{\mathrm{c}_{12}}{\overline{\mathrm{~h}}^{2} \overline{\mathrm{k}}^{2}}+\frac{\mathrm{c}_{15}}{2 \overline{\mathrm{~h}}^{-2}} \\
& \mathrm{C}_{18}=\frac{\mathrm{c} 12}{\overline{\mathrm{~h}}^{2} \overline{\mathrm{k}}^{2}}-\frac{\mathrm{c} 15}{2 \overline{\mathrm{~h}} \overline{\mathrm{k}}^{-2}} \\
& \mathrm{C}_{19}=6 \frac{\mathbf{c}_{11}}{\overline{\mathrm{~h}}^{4}}+4 \frac{\mathbf{c}_{12}}{\overline{\mathrm{~h}}^{2} \overline{\mathrm{k}}^{2}}+6 \frac{\mathrm{c}_{13}}{\overline{\mathrm{k}}^{4}}-2 \frac{\mathrm{c}_{16}}{\overline{\mathrm{~h}}^{2}}-2 \frac{\mathrm{c}_{17}}{\overline{\mathrm{k}}^{2}}+\mathrm{c}_{19} \\
& C_{o}^{O}=C
\end{aligned}
$$

The complete set of difference equations are obtained by writing these equations at each mesh point. Along lines of symmetry only two equations are necessary since one of the variables will be zero. After incorporation of fixed-edge boundary
conditions, a sufficient number of equations for unknowns yields a set of simultaneous algebraic equations which are written in matrix form as

$$
\underset{\sim}{A X}=\underset{\sim}{B}
$$

Unless care is exercised in ordering the equations and unknowns, the square matrix $\underset{\sim}{A}$ can be full. From the aspect of solving a large number of equations (Vol. I), the ordering is important. To establish an insight into the idea of the ordering employed, it is noticed from the difference expressions [Eqs. (3.1)] that the highest derivatives are in terms of at most two rows "above;" two rows "below;" two columns to the "left," and two columns to the "right" of a given mesh point. If all the equations for a given column were written and stored in submatrix form, the unknowns would involve two columns to the "right" and "left." Thus, any column would involve, at most, five submatrices. The matrix $\underset{\sim}{A}$ is accordingly partitioned in the manner shown below, where m is the number of columns in the finite-difference net.

$$
\underset{\sim}{A}=\left[\begin{array}{ll}
\mathrm{E}_{1} \mathrm{~F}_{1} \mathrm{G}_{1} \ldots & 0 \\
\mathrm{D}_{2} \mathrm{E}_{2} \mathrm{~F}_{2} \mathrm{G}_{2} & \\
\mathrm{C}_{3} \mathrm{D}_{3} \mathrm{E}_{3} \mathrm{~F}_{3} \mathrm{G}_{3} 0 & \\
\vdots & \\
& \\
& \mathrm{C}_{\mathrm{m}} \mathrm{D}_{\mathrm{m}} \mathrm{E}_{\mathrm{m}}
\end{array}\right]
$$

This matrix $\underset{\sim}{A}$ is obtained by writing Eqs. (3.1) in $\underset{\sim}{\mathrm{D}}$ and not on the boundary Γ. The boundary and symmetry conditions have been used to eliminate certain equations. Fixed-edge boundary conditions are well-suited for this formulation, since they do not require complex algebraic expressions. Specifically, if Eqs. (3.1) are written one column from the boundary, then the submatrix F_{m} is zero ($\mathrm{u}=\mathrm{v}=\mathrm{w}=0$)
and the submatrix G_{m} contains only w terms which are reflected into E_{m} due to the boundary condition. Along a symmetry line, all terms are either reflected with the same or opposite sign. This fact accounts for the missing C_{1} and D_{1} matrices. Similar alterations are made in each matrix to account for boundary and symmetry conditions.

Because of the boundary behavior of shells it is desirable to incorporate a means of decreasing the mesh spacing in order to reveal the boundary solution with greater detail and accuracy. A rather simple method called grading which does not destroy the form of matrix $\underset{\sim}{A}$ is incorporated in the numerical solution. An explanation of grading was given in Vol. II, Sec. 3.3.

Section 4

DIGITAL PROGRAM

4.1 GENERAL DESCRIPTION

The present program provides solutions for fixed-edge spherical shell segments under loads and changes of temperature. The method of solution consists basically in obtaining the displacement components u, v, and w at various discrete stations of the structure by finite-difference approximation (see Secs. 2 and 3). The corresponding strains and stresses may then be computed.

The program is designed to compute the fixed-edge forces due to intermediate loads or thermal graident. However, displacements, strains, and stresses in the loaded region are also evaluated simultaneously. The following program options are available:

- Finite-difference mesh
(a) Uniform spacing
(b) Graded spacing in the ϕ-direction
(c) Symmetry in the ϕ-direction
- Loading conditions
(a) Uniform normal pressure
(b) Linear temperature gradient through the skin thickness

There are no restrictions on the geometrical dimensions of panels. However, the accuracy with which the basic differential equations are approximated may vary for different configurations of the shell.

The finite-difference mesh network is specified completely by prescribing the number of rows and columns exclusive of the boundaries, together with the grading options which have been chosen. Rows in the finite-difference mesh are parallel to the
θ-direction, and columns are parallel to the ϕ-direction. The number of rows may vary from 4 to 24 and the number of columns from 4 to 80 . Thus, a maximum of 5760 unknowns can be solved. Greater accuracy near the boundaries can often be obtained by selective grading. By this means, it is possible to use a mesh spacing at the boundary as little as $1 / 32$ of that at the middle portion of the panel.

There are certain restrictions on the use of the grading option. When such an option is used, a separate input card is required to specify a mesh spacing exponent MM(J) for each row J. The finite-difference equations are written along Row J, then the mesh spacing $\mathrm{XH} / 2^{* *} \mathrm{MM}(\mathrm{J})$ is used. This distance must be the least of the two distances from Row J to the row above and the row below. XH is the basic input mesh spacing along the ϕ-direction. For any Row J. MM (J) and MM $(J+1)$ must not differ by more than 1. Also, three consecutive rows cannot have three distinct exponents. MM(J) may vary from 0 to 5 .

The description of symbols and input data are shown in Tables 1 and 2; Fig. 10 shows the flow diagram of this program.

Table 1

DESCRIPTION OF SYMBOLS

Symbol
RECORD
$\mathrm{I} \phi$ PT $1 \quad .0$
1
0
1

I ϕ PT3
$\mathrm{I} \phi \mathrm{PT} 4$

Description

Hollerith information describing problem
Uniform mesh spacing
Graded mesh spacing in ϕ-direction
Symmetry in the ϕ-direction
Row 1 is symmetry line
Row 2 is adjacent to boundary
Omit shell strains
Print shell strains
Uniform normal pressure
Linear temperature gradient through the skin thickness

Table 1 (cont ${ }^{\text {d }}$)

Symbol

$\mathrm{I} \phi \mathrm{PT} 5$
$\mathrm{R} \phi \mathrm{W}$
$\mathrm{C} \phi \mathrm{L}$
XH
XK
ZNU
THC
PH 1
FF

RH
TE
TI
T ϕ
ϕ C
$\operatorname{MM}(J), J=1, \operatorname{R} \phi W$

MM(31)
MM(32)
MM(33)
MM(34)
MM(35)
$\operatorname{CILBL}(1,1), I=1,6$
$\operatorname{CILBL}(I, 2), I=1,6$
CILBL(I, 3), $I=1,6$
$\operatorname{CILBL}(\mathrm{I}, 4), \mathrm{I}=1,6$

Description

1 Last case with plots
Number of rows in the finite-difference mesh
Number of columns in the finite-difference mesh
Basic distance between rows in the mesh
Basic distance between columns in the mesh
Poisson's ratio
Half angle of segment θ_{c}
Angle ϕ of upper boundary
Ratio of angle of ϕ of lower boundary to ϕ of upper boundary
Radius to thickness ratio, R / h
External temperature
Internal temperature
Ambient temperature for zero stress
Coefficient of thermal expansion
Grading mesh constants, mesh spacing used for difference equations on Row J is equal to XH/2. ${ }^{* *} \mathrm{MM}(\mathrm{J})$
Number of rows to be plotted
Four row numbers for which plot output is desired (u, v, w, $\mathrm{N}_{\phi}, \mathrm{M}_{\phi}, \mathrm{N}_{\theta}, \mathrm{M}_{\theta}$)

Curve labels appearing on the plot output to identify the rows selected CILBL(I, 1) corresponds to MM(32); etc.

Fig. 10 Flow Chart

Table 2
INPUT DATA SEQUENCE AND FORMAT

Card	FORTRAN Symbol	Format
1	RECORD	72 H
2	$\mathrm{I} \phi \mathrm{PT} 1, \mathrm{I} \phi$ PT $2, \mathrm{I} \phi$ PT3, I ϕ PT $4, \mathrm{I} \phi$ PT5	10 I 1
3	$\mathrm{R} \phi \mathrm{W}, \mathrm{C} \phi \mathrm{L}, \mathrm{XH}, \mathrm{XK}$	3 E 12.8
4	$\mathrm{ZNU}, \mathrm{THC}, \mathrm{PH} 1, \mathrm{FF}, \mathrm{RH}$	6 E 12.8
$5^{(\mathrm{a})}$	$\mathrm{MM}(\mathrm{J}), \mathrm{J}=1, \mathrm{R} \phi \mathrm{W}$	35 I 2
$6^{(\mathrm{b})}$	$\mathrm{TE}, \mathrm{TI}, \mathrm{T} \phi, \phi \mathrm{C}$	4 E 12.8
7	$\mathrm{MM}(\mathrm{J}), \mathrm{J}=31,35$	5 I 2
$8^{(\mathrm{c})}$	$\mathrm{CILBL}(\mathrm{I}, 1), \mathrm{I}=1,6$	6 A 6
$9^{(\mathrm{c})}$	$\mathrm{CILBL}(\mathrm{I}, 2), \mathrm{I}=1,6$	6 A 6
$10^{(\mathrm{c})}$	$\mathrm{CILBL}(\mathrm{I}, 3), \mathrm{I}=1,6$	6 A 6
$11^{(\mathrm{c})}$	$\mathrm{CILBL}(\mathrm{I}, 4), \mathrm{I}=1,6$	6 A 6

(a) Omitted unless I ϕ PT1 $=1$.
(b) Omitted unless I ϕ PT4 $=1$.
(c) Omitted if $\operatorname{MM}(31)=0$.

4. 2 NUMERICAL EXAMPLE

Analysis of the spherical shell segment shown in Fig. 11 will serve as an example to illustrate input data, format, and the type of information that can be obtained through use of the program described in this volume.

The example is for the loading option of uniform normal pressure ($p_{z}=$ constant). Grading is used in the ϕ-coordinate so as to obtain a reasonable solution with the present restrictions of the computer program (24 rows, 80 columns). The actual

$$
\begin{aligned}
\theta_{C}=T H C & =0.61 \text { RADHS } \\
\phi_{4}=P H I & =1.0297 \text { RAD.HS } \\
F F & =\frac{\pi}{2} / 9.0297=1.5708 \\
\frac{R}{h}=R H & =100
\end{aligned}
$$

Fig. 11 Segmented Spherical Shell
mesh spacing which yields a solution of desired accuracy must be obtained by exploratory runs using different number of rows and columns. Such runs were made with the given geometry. It was found that 17 rows and 30 columns were required to obtain satisfactory results in both displacements and stress resultants. More accurate results can be obtained by use of an even finer mesh spacing.

Values of input quantities for the 17 by 30 case are given in Table 3 and a listing of the corresponding input data cards is presented in Table 4. For convenience, the ϕ-coordinate corresponding to the row number follows:

Table 3
INPUT VALUES FOR THE EXAMPLE

Symbol	Value	Symbol	Value
$\mathrm{I} \phi$ PT1	1.0	MM(8)	0
$\mathrm{I} \phi \mathrm{PT} 2$	1.0	MM(9)	0
$\mathrm{I} \phi$ PT3	0	MM(10)	0
$\mathrm{I} \phi \mathrm{PT} 4$	0	MM(11)	1.0
$\mathrm{I} \phi$ PT5	1.0	MM(12)	1.0
R ϕ W	17.0	MM(13)	2.0
$\mathrm{C} \phi \mathrm{L}$	30.0	MM(14)	2.0
XH	0.067635	MM(15)	2.0
XK	0.02033	MM(16)	3.0
ZNU	0.3	MM(17)	3.0
THC	0.61	TE, TI, T $\phi, \phi \mathrm{C}$	Not required
PH 1	1. 0297	MM(31)	4.0
FF	1. 5255	MM(32)	5.0
RH	100.0	MM(33)	9.0
MM(1)	3.0	MM(34)	16.0
MM(2)	3.0	MM(35)	17.0
MM(3)	2.0	$\operatorname{CILBL}(\mathrm{I}, 1) \mathrm{I}=1,6$	$\mathrm{PHI}=1.503$, Row 5
MM (4)	2.0	$\operatorname{CILBL}(\mathrm{I}, 2) \mathrm{I}=1,6$	$\mathrm{PHI}=1.300$, Row 9
MM(5)	2.0	$\operatorname{CILBL}(\mathrm{I}, 3) \mathrm{I}=1,6$	$\mathrm{PHI}=1.038$, Row 16
MM(6)	1.0	$\operatorname{CILBL}(\mathrm{I}, 4) \mathrm{I}=1,6$	$\mathrm{PHI}=1.029$, Row 17
MM(7)	1.0		

Table 4
INPUT DATA IN REQUIRED FORMAT

$$
\begin{aligned}
\phi & =1.0297-\text { Row } 18 & \phi & =1.3679-\text { Row } 8 \\
\phi & =1.0381-\text { Row } 17 & \phi & =1.4355-\text { Row } 7 \\
\phi & =1.0466-\text { Row } 16 & \phi & =1.4693-\text { Row } 6 \\
\phi & =1.0635-\text { Row } 15 & \phi & =1.5031-\text { Row } 5 \\
\phi & =1.0804-\text { Row } 14 & \phi & =1.5200-\text { Row } 4 \\
\phi & =1.0973-\text { Row } 13 & \phi & =1.5369-\text { Row } 3 \\
\phi & =1.1311-\text { Row } 12 & \phi & =1.5539-\text { Row } 2 \\
\phi & =1.1650-\text { Row } 11 & \phi & =1.5623-\text { Row } 1 \\
\phi & =1.2326-\text { Row } 10 & \phi & =1.5703-\text { Row } 0 \\
\phi & =1.3002-\text { Row } 9 & &
\end{aligned}
$$

Results from the computer program are in the form of printed digital values and selected plots. Sample printed output given in Table 5 presents displacement components (u, v, w), stress resultants $\left(N_{\phi}, N_{\theta}, N_{\theta \phi}, N_{\phi \theta}, M_{\phi}, M_{\theta}, M_{\phi \theta}, Q_{\phi}, Q_{\theta}\right.$), and boundary stress resultants ($\mathrm{N}_{\mathrm{tan}}, \mathrm{N}_{\text {norm }}, \mathrm{Q}, \mathrm{M}$). (Note that these quantities are in nondimensional form as defined in Sec. 2.) Plotted output includes displacement components ($\mathrm{u}, \mathrm{v}, \mathrm{w}$) and stress resultants $\left(\mathrm{N}_{\phi}, \mathrm{N}_{\theta}, \mathrm{M}_{\phi}, \mathrm{M}_{\theta}\right.$) along Rows 1, 2, 10, and 16 and boundary stress resultants ($\mathrm{N}_{\text {tan }}, \mathrm{N}_{\text {norm }}, \mathrm{Q}, \mathrm{M}$) along the boundary curve. This plotted output is shown in Figs. 12a through o.

Table 5
EXAMPLE SPHERICAL SEGMENT UNDER UNIFORM NORMAL PRESSURE

SPHERE DISPLACEMENT COMPQNENTS (U,V,W)

COL	Row		U	v	W
19.	20		0.	0.	3.658652E-02
19,	19		-2.638945E-03	1.021954E-03	7.759879E-03
19,	18	BCUNDARY	0	0.	
19.	17		$2.602412 \mathrm{E}-03$	-9.899542E-04	7.759879E-03
19,	16		$5.086261 \mathrm{E}-03$	-1.945970E-O3	2.549251E-02
19,	15		$9.652772 \mathrm{E}-03$	-3.786246E-03	7.057005E-02
19.	14		1.323534E-02	-5.476061E-03	$1.238788 E-01$
19,	13		$1.572938 \mathrm{E}-02$	-7.016443E-03	1.787364E-01
19.	12		$1.853742 \mathrm{E}-02$	-9.803262E-03	2.864289E-01
19,	11		$1.769688 \mathrm{E-02}$	-1.200326E-02	3.637405E-01
19,	10		$1.115614 \mathrm{E}-02$	-1.531577E-02	4.653016E-01
19.	9		-1.421190E-04	-1.615930E-02	4.937291E-01
19,	8		-1.144092E-02	-1.475764E-02	$4.663140 \mathrm{E}-01$
19,	7		-1.792110E-02	-1.120068E-02	3.641097E-01
19,	6		-1.868753E-02	-8.99027TE-03	2,861686E-01
19.	5		-1.578401E-02	-6.338675E-03	1.780603E-01
19.	4		-1.324659E-02	-4.903025E-03	1.231290E-01
19.	3		-9.636059E-03	-3.359861E-03	6.997208E-02
19.	2		-5.067179E-03	-1.713557E-03	2.523418E-02
19.	1		-2.589518E-03	-8.672638E-04	7.664569E-03
19.	-0	BCUNDARY	0.	0.	0.
19.	-1		2.620010E-03	8.860647E-04	7.664569E-03
19.	-2		0.	0 .	3.608237E-02

SPHERE	STAESS RESULTANTS.				
ROW COL	NX	NTHETA	NXTHETA	NTHETAX	
7,	30	$1.0666 E-01$	$3.1256 E-01$	$1.8012 E-01$	$1.8012 E-01$
7,	31	$9.4004 E-02$	$3.1335 E-01$	$1.9175 E-01$	$1.9175 E-01$
8,	1	$4.1548 E-01$	$4.9208 E-01$	0.	0.
8,	2	$4.1553 E-01$	$4.9204 E-01$	$1.0850 E-03$	$1.0850 E-03$
8,	3	$4.1566 E-01$	$4.9192 E-01$	$2.1802 E-03$	$2.1802 E-03$
8,	4	$4.1588 E-01$	$4.9173 E-01$	$3.2953 E-03$	$3.2953 E-03$
8,	5	$4.1619 E-01$	$4.9145 E-01$	$4.4417 E-03$	$4.4417 E-03$
8,	6	$4.1662 E-01$	$4.9108 E-01$	$5.6343 E-03$	$5.6343 E-03$
8,	7	$4.1721 E-01$	$4.9062 E-01$	$6.8937 E-03$	$6.8937 E-03$
8,	8	$4.1799 E-01$	$4.9007 E-01$	$8.2481 E-03$	$8.2481 E-03$
8,	9	$4.1901 E-01$	$4.8942 E-01$	$9.7361 E-03$	$9.7361 E-03$
8,	10	$4.2033 E-01$	$4.8865 E-01$	$1.1409 E-02$	$1.1409 E-02$
8,	11	$4.2202 E-01$	$4.8777 E-01$	$1.3331 E-02$	$1.3331 E-02$
8,	12	$4.2413 E-01$	$4.8674 E-01$	$1.5584 E-02$	$1.5584 E-02$
8,	13	$4.2670 E-01$	$4.8555 E-01$	$1.8265 E-02$	$1.8265 E-02$
8,	14	$4.2975 E-01$	$4.8417 E-01$	$2.1481 E-02$	$2.1481 E-02$

Table 5 (cont'd)

15	1	4.8256E-01	2.5349E-02	2
16	4.3699E-01	4.8068E-01	2.9978E-02	2.9978E-02
17	4.4079E-01	$4.7845 \mathrm{E}-01$	3.5459E-02	3.5459E-02
B, 18	4.4419E-01	4.7582E-01	$4.1842 \mathrm{E}-02$	$1842 \mathrm{E}-02$
8, 19	$4.4655 \mathrm{E}-01$	4.7268E-01	$4.9109 \mathrm{E}-02$	02
8,20	4.4694E-01	4.6895E-01	5.7146E-02	5.7146E-02
21	4.4417E-01	.6452E-01	$6.5720 \mathrm{E}-02$	6.5720E-02
8, 22	4.3677E-01	4.5977E-01	$7.4460 \mathrm{E}-02$	7.4460E-02
8, 23	4.2304E-01	4.5309E-01	8.2873E-02	8.2873E-02
8. 24	4.0125E-01	4.4589E-01	$9.0384 \mathrm{E}-02$	9.0384E-02
8, 25	3.6991E-01	4.3757 E	9.6441E-02	9.6441E-02
8.26	3.2827E-01	$4.2804 \mathrm{E}-\mathrm{n}$	$1.0068 \mathrm{E}-0$	1.0068E-01
8,27	2.7705E-01	4.1721E-01	$1.0312 \mathrm{E}-01$	$1.0312 \mathrm{E}-01$
8.	2.1947E-01	4.0492	$1.0444 \mathrm{E}-01$	1.0444E-01
8, 29	1.t251E-01	$3.9095 \mathrm{E}-0$	1.0609E-01	1.0609E-01
	1.1856E-01	3.7494E-01	1.1031E-01	
31	1.1186E-01	3.7287E-01	1.1898E-01	$1.1898 \mathrm{E}-01$
9, 1	$4.0953 \mathrm{E}-01$	5.1282E-01	0.	
, 2	4.0958E-01	5.1279E-01	3.6104E-04	3.6104E-04
9. 3	4.0973E-01	5.1267E-01	7.2488E-04	7.2488E-04
9.4	4.0998E-01	5.1246E-01	$1.0946 \mathrm{E}-03$	$1.0946 \mathrm{E}-03$
9. 5	4.1034E-01	5.1217E-01	$1.4736 E-03$	$1.4736 E-03$
6	$4.1084 \mathrm{E}-01$	5.1179E-01	$1.8661 E-03$	1.8661E-03
	4.1152E-01	5.1131E-01	2.2768E-03	$2.2768 \mathrm{E}-03$
9, 8	$4.1242 \mathrm{E}-01$	5.1073E-01	2.7111E-03	2.7111E-03

SPHERE STAESS RESULTANTS.

$Q X$		QTHETA	
$3.9493 F$	01	$-3.2650 E$	03
$1.1332 E$	02	$-3.7978 E$	03
$4.8136 E$	01	$2.0322 E-05$	
$4.8305 E$	01	$6.7031 E-01$	
$4.8467 E$	01	$-5.3604 E-01$	
$4.8636 F$	01	$-1.6947 E$	00
$4.8820 E$	01	$-2.7939 E$	00
$4.9025 E$	01	$-3.7863 E$	00
$4.9254 E$	01	$-4.5651 E$	00
$4.9504 E$	01	$-4.9409 E$	00
$4.9767 E$	01	$-4.6206 E$	00
$5.0022 E$	01	$-3.1864 E$	00
$5.0236 E$	01	$-7.5807 E-02$	
$5.0357 E$	01	$5.4176 E$	00
$5.0313 E$	01	$1.4113 E$	01
$5.0000 E$	01	$2.6885 E$	01
$4.9288 E$	01	$4.4558 E$	01
$4.8016 E$	01	$6.7715 E$	01
$4.5998 E$	01	$9.6405 E$	01

Table 5 (cont'd)

		01	8.7797 E	00	-1.2557E-02	,	01	1.2975 E	02
8, 19	1.8270 E	01	1.1705 E	01	-5.5192E-01	2E	01	1.6538 E	02
8, 20	1.9365 E	01	1.5449 E	01	-1.2993E 00	3.3554 E	01	7E	2
21	2.0513 E	01	9955E	01	-2.2616E 00	2.6866	01	2.2244	02
22	2.1569 E	01	$2.4989 E$	01	-3.4135E 00	1.90	01	2.2506	82
8, 23	2.2308E	01	3.0042 E	01	-4.6830E 00	1.0435 E	01	068	02
24	2.2397E	01	3.4225 E	01	-5.9383E 00	1.9232 E	00	9.8242 E	1
8.25	$2.1385 E$	01	3.6142 E	01	-6.9821E 00	-5.2742F	00	-7.8293E	01
8, 26	1.8690 E	01	$3.3776 E$	01	$-7.5634 E 00$	-9.4875E	00	-3	2
27	1.3609 E	01	2.4408 E	01	-7.4186E 00	-8.8120E	00	-8.0323E	02
28	5.3436 E	00	4.6353	00	-6,3573E 00	$-1.5812 \mathrm{E}$	00	-1.4073E	03
8, 29	-6.9531E	00	-2.9455E	01	-4.4022E 00	1.2757E	01	-2.1924	03
8.30	-2.4093E	01	-8.1850E	01	$-1.9791 \mathrm{E} 00$	3.2301 E	01	$-3.1434 E$	03
31	-4.6744E	01	-1.5581E	02	-1.1898E-01	5.0972 E	01	-3.6314E	03
1	1.0706 E	01	2.7788E	00	0	4.7328 E	00	2.0	
9	1.0717 E	01	2.8047E	00	5.5560E-03	5.0009 E	00	7.05	
9, 3	1.0724 E	01	2.7964 E	00	$1.1408 \mathrm{E}-02$	5.2746 E	00	-6.7898	
9	1.0729 E	01	$2.7549 E$	00	1.8096E-02	5.5704 E	00	-1.9872E	0
9	1.0732 E	01	2.6814 E	00	2.6100E-02	5.9019 E	00	$-3.1939 E$	0
	1.0734 E	01	2.5774 E	00	3.5800E-02	6.2796E	00	-4,2344E	00
9, 7	1.0739 E	01	2.4462 E	00	4.7404E-02	6.7091 E	00	-4.9696E	00
9 , 8	1.	01	2.	no	6.	7.	00	-5.1727E	

boundafy stress resultants.

18	1	0.	3.1654E-01	-8.3278E	03	-1.9934E	
18	2	-2.8194E-03	$3.1655 \mathrm{E}-01$	-8.3267E	03	-1.9937E	02
18	3	-5.t834E-03	3.1656E-01	-8.3274	03	-1	0
8	4	-8.6365F-03	. $1658 \mathrm{E}-01$	8.3296	0	1.9956	22
18	5	-1.1726E-02	.1661E-01	-8.3332E	03	-1.9972	02
8	6	-1.5005E-02	3.1666E-01	-8.3385E	03	-1.9995	02
8	7	$-1.8534 E-02$	3.1671E-01	-8.3457	03	O25	
18	8	-2.2385E-02	.1677E-01	-8.3555	03	-2.0065	
8	9	-2.6642E-02	3.1684E-01	-8.3686E	03	-2.0116	0
18	10	-3.1405E-02	3.1691E-01	-8.3861E	03	-2.0183	
	1	-3.6790E-02	169	8.4092	03	-2.026	
8 ,	12	-4.2930E-02	3.1699E-01	-8,4394E	03	2.037	
8.	13	-4.9972E-02	3.1694E-01	-8,4785E	03	2.0504	
	14	-5.9073E-02	3.1676E-01	-8.5283	03	2.0660	
8	15	-6.7390E-02	3.1638E-01	-8.5906E	03	2.0843 E	
	16	-7.9067E-02	3.1568E-01	-8.6666	03	104	
	17	-9.0212E-02			03	69E	
	18		3.1269F-n1			$-2.1489 \mathrm{E}$	

Table 5 (cont'd)

01	-8.9730t	03	-2.1682E	02
0607E-01	-9.0883E	03	-2.1812E	02
.0064E-01	-9.1941E	03	-2.1823E	02
2.9327E-01	-9.2718E	03	-2.1646E	02
$2.8354 \mathrm{E}-01$	-9.2945E	03	-2.1188	02
.7100E-01	-9.2247E	03	-2.0338	02
2.5518E-01	-9.0124E	03	-1.8972E	02
2.3562E-01	-8.5922E	03	-1.6964E	02
.1185E-01	-7.8802E	03	-1.4214	02
.8329E-01	-6.7676E	03	-1.n6	02
$1.4896 \mathrm{E}-01$	-5.1084	03	-6.5787E	01
$1.0458 \mathrm{E}-01$	-2.7357E	03	-2.4507E	01
0 .	-3.7534F	00	-0	
0.				
6.6763E-02	-1.8459E	02	-5.6682E	00
0408E-01	-5.8460E	02	-1.7943E	1
5E-01	-1.5130E	03	-4.7199E	01
$1.9392 \mathrm{E}-01$	-2.2564E	03	-7.4360E	01
2.2494E-01	$-2.7428 E$	03	-9.5980E	1
8463E-01	-3.4037E	03	$-1.3038 \mathrm{E}$	02
2177E-01	-3.5660E	03	$-1.4594 E$	2
3.7727E-01	-3.4916E	03	$-1.5588 \mathrm{E}$	2
3.8796E-01	-3.4799E	03	$-1.5683 \mathrm{E}$	2
3.7287E	-3.6314E	03	-1.5581E	02
3.1335E-01	-3.7978E	03	-1.4424E	2
2.7501E-01	-3.6301E	03	-1.2743E	2
2.1514E-01	-2.8917E	03	-9.1868E	01
1.8463E-01	-2.3600E	03	-7.0433E	01
1.4857E-01	-1.5637E	03	-4.4102E	01
$9.7046 \mathrm{E}-02$	-5.9817E	02	-1.6483E	01
$6.1051 E-02$	-1.9192E	02	-5.1964E	
0.			0	
-0.	-3.3510E	00	-0.	
1.0769E-01	-2.1392E	02	-3.0291E	01
1.5369E-01	-2.1461E	03	-7.5918E	01
$1.8900 \mathrm{E}-01$	-4.1497E	03	-1.1849E	02
2.1778E-01	-5.8101E	03	-1.5281F	02
2.4103F-01	-7.0648E	03	-1.78?2E	02
2.5964E-01	-7.9498E	03	$-1.9574 E$	02
2.742.7E-01	-8.5311E	03	-2.0689E	02
2.8556E-O1	-8.8790t	03	-2.1324E	02
2.9408E-01	-9.0566E	03	-2.1614E	
00	-9.1109	03	-2.1673E	

Table 5 (concl'd)

0,	20	$1.1887 E-01$	$3.0491 E-01$	$-9.1010 E$	03	-2.1585 E	02	
0,	19	$1.0370 \mathrm{E}-01$	$3.0810 \mathrm{E}-01$	-9.0399 E	03	-2.1416 E	02	
0,	18	$9.0002 \mathrm{E}-02$	$3.1028 \mathrm{E}-01$	-8.9560 E	03	-2.1208 E	02	
0,	17	$7.7856 \mathrm{E}-02$	$3.1173 \mathrm{E}-01$	-8.8641 E	03	-2.0992 E	02	
0,	16	$6.7221 \mathrm{E}-02$	$3.1266 \mathrm{E}-01$	-8.7739 E	03	-2.0787 E	02	
0,	15	$5.7985 \mathrm{E}-02$	$3.1324 \mathrm{E}-01$	-8.6910 E	03	-2.0602 E	02	
0,	14	$4.9999 \mathrm{E}-02$	$3.1360 \mathrm{E}-01$	-8.6181 E	03	-2.0441 E	02	
0,	13	$4.3097 \mathrm{E}-02$	$3.1380 \mathrm{E}-01$	-8.5561 E	03	-2.0306 E	02	
0,	12	$3.7116 \mathrm{E}-02$	$3.1393 \mathrm{E}-01$	-8.5046 E	03	-2.0194 E	02	
0,	11	$3.1904 \mathrm{E}-02$	$3.1400 \mathrm{E}-01$	-8.4627 E	$03-2.0104 \mathrm{E}$	02		
0,	10	$2.7324 \mathrm{E}-02$	$3.1406 \mathrm{E}-01$	-8.4292 E	03	-2.0032 E	02	
0,	9	$2.3258 \mathrm{E}-02$	$3.1410 \mathrm{E}-01$	-8.4025 E	03	-1.9975 E	02	
0,	8	$1.9604 \mathrm{E}-02$	$3.1414 \mathrm{E}-01$	-8.3816 E	03	-1.9931 E	02	
0,	7	$1.6279 \mathrm{E}-02$	$3.1418 \mathrm{E}-01$	-8.3652 E	03	-1.9896 E	02	
0,	6	$1.3213 \mathrm{E}-02$	$3.1422 \mathrm{E}-01$	-8.3524 E	03	-1.9869 E	02	
0,	5	$1.0347 \mathrm{E}-02$	$3.1425 \mathrm{E}-01$	-8.3425 E	03	-1.9849 E	02	
0,	4	$7.6330 \mathrm{E}-03$	$3.1428 \mathrm{E}-01$	-8.3350 E	03	-1.9833 E	02	
0,	3	$5.0287 \mathrm{E}-03$	$3.1430 \mathrm{E}-01$	-8.3293 E	03	-1.9823 E	02	
0,	2	$2.4962 \mathrm{E}-03$	$3.1431 \mathrm{E}-01$	-8.3251 E	03	-1.9816 E	02	
0,	1	-0.		$3.1431 \mathrm{E}-01$	-8.3224 E	03	-1.9813 E	02

Fig. 12 Output Plot for the Example: Spherical Segment Under Uniform Normal Pressure

- PHI = 1.503 , ROW 5
© PHI $=1.038$, ROW 16
x PHI $=1.300$, ROW 9
Y PHI $=1.029$, ROW 17

b-Sphere Displacement Components

EXAMPLE SPHERICAL SEGMENT UNDER UNIFORM NORHAL PRESSURE

- PHI = 1.503, ROW 5
\times PHI $=1.300$, ROW 9

0 PHI $=1.038$, ROW 16
Y PHI $=1.029$, ROW 17

d - Sphere Stress Resultants

- CURVE $1=$ UPPER BOUNDARY

X CURVE 2 = LOWER BOUNDARY

h-Boundary Stress Resultants

j - Boundary Stress Resultants

k-Boundary Stress Resultants

l-Boundary Stress Resultants

- RIGHT BOUNDARY

m - Boundary Stress Resultants

EXAMPLE SPMERICAL SEGMENT UNDER UNIFORM NORMAL PRESSURE

- CURVE $1=$ UPPER BOUNDARY
x CURVE $2=$ LOWER BOUNDARY

- ABFA
015

o - Boundary Stress Resultants

4.3 LISTING OF THE PROGRAM

The complete program is given in Table 6.

OOOOOOCOC COOOOOOCOOOCOOOOOOCOOOOOOOOOOO

C DECOMPOSITION COMPLETED • BEGIN BACKWARD SWEEP.
DECOMPOSITION COMPLETED • BEGIN BACKWARD SWEEP.
450 CALL WTAPE (XZTP, ZI, NI, 1$)$ CALL BACK (XZTP) CALL BACK (XNTP) $N_{4}=(N C O L+3) *(N R O W+6) * 3$ CALL ZERO (TND,N4) If (I-NCOL) 45),454,454 DO $453 \mathrm{~J}=1$, NDIM x×1(J) $=x \times(J)$

$$
\begin{array}{ll}
B A C K & (X Z T P) \\
B A C K & (X Z T P)
\end{array}
$$

IF (IOPT2) $145,145,140$
(

$$
\begin{aligned}
& \text { CALL BACK }(X Z T P) \\
& \text { IF }(I-N C O L+1) 456,457,462 \\
& \text { CALL R; } 1 P E(X N T P, Y L, N S Q, 0) \\
& \text { CALL MATM(YK, XX, T1, N1, NDIM, } 1) \\
& \text { CALL ADDM }(Z 1, T 1, Z 1,-N D I M) \\
& \text { IF }(I-N C O+1) 458,462,462 \\
& \text { CALL RiAPE }(X N T P, Y L, N S Q, 1) \\
& \text { IF }(I-1) 4591,4591,459 \\
& \text { CALL BACK }(X N T P) \\
& \text { CALL RACK }(X N T P) \\
& \text { CALL MATM }(Y L, X X 1, T 1, N 1, N D I M, 1) \\
& \text { CALL ADDM }(Z 1, T 1, Z 1,-N D I M) \\
& \text { IF (I-2) } 463,461,462 \\
& \text { NI=NSM } \\
& \text { CALL RTAPE (XMTP, YK, NSQ, }
\end{aligned}
$$

COOOOOOOOOOCOCOCOCOOCOCOOOOOOOOOOOOCOOO

COCOOCCOOCOCOCOOOOCOCOOOOOCOOOOOOOCOOOO

 cocooccooccocccooocoocococcoooccooooccoo

$M=0$
$M=0$
GO TO 80
END
FORTRAN
FIINCTION CFZ($J, ~ A A)$ GO
END
FO
FI
COMMON IOPT 1, IOPT2, IOPT3, IOPT4, IOPT5, IOPT6, IOPT7, IOPT8

COMMON NDIM, NROW, NCOL,
DIMENSION MM(40), AA(1) $11=J * N C F+1$ $J I=J * N C F+1$
$C F Z=A A(J I)$

RETURN
END
FORTRAN

OOOCCCCOOCOOOOCOOCOCOCOOOOOOOOCCOOOOOOO

 c

$$
\vec{G}
$$

 coocchrrrrar-r-rNNNNNNNNNNmmmmmmmmmmvt寸

221 INDX $=\mathrm{INDX}+3 * \mathrm{NCOL}+3$
GO
IN
IF
IF
IND
RET
FA!
FOR

$$
\begin{aligned}
& \text { INDX = INDX }+1 \\
& \text { RETURN } \\
& \text { FAI } \\
& \text { FORTRAN } \\
& \text { SURROUTINF MTX (X, I, M) IOOT3. TOPTA. IOPT5. IOPTG. IOPTT. IOPTB }
\end{aligned}
$$

$$
\begin{aligned}
& \text { SURROUTINF MTX (X, I, M) } \\
& \text { COMMON IOPTI, IOPT2, IOPT3, IOPT4, IOPT5, IOPT6, IOPT7, IOPT8 } \\
& \text { COMMON NCF } \\
& \text { COMMON NDIM, NROW, NCOL,MM, I } 1, K M 1, K M 2, K P 1, K P 2, M F L A G, X M, X L D ~ \\
& \text { COMMON ISW1, I SW2, I SWI3 } \\
& \text { DIMENSION MM(35) }
\end{aligned}
$$

OCOOOOOOOOOOOCCOOOOOCOOOOGOCOOOOOCOCOCG

101

OOOOOGCCOCGOGOCCCCGCGCOOOCOCGOCOCOOOOOOO

 ara

COOOOOOOO응응 NN~NNNNNNmmmm

$T X-2 \cdot * D D * A M X T$
YK RIGHT BOUNDARY
$C \quad 70$

OOCOOOOCOOCCOOCOOOOOOOOOOOCOOOOOOOCOOOO
 00

小のかの

OOOCOCCGOCGOCOOOOCCCCOOCOOOOCOCOCCOCOCO

 a a a a a a a o a a a a a a a a

 NNNZ品

$$
\begin{aligned}
& \stackrel{\rightharpoonup}{u} \\
& \underset{I}{\sim} \\
& v_{i}
\end{aligned}
$$

$\stackrel{+}{x}$

$\stackrel{\times}{<}$
$\stackrel{v}{u}$
$\stackrel{\rightharpoonup}{\sigma}$

よたu゙も
$\begin{array}{llll}u & \sim & v & v \\ N & u & u & u \\ 0 & u & u \\ a & a & a & a\end{array}$

$\nabla \times \sigma$

リコンコと

$$
\begin{aligned}
& \text { sud } \\
& \text { scin } \\
& \text { dLom } \\
& \text { jul } \\
& \text { UI } O 1
\end{aligned}
$$

$\times \because, \times L 0$

COMMON ZNI, THC, PHI, FF, RH, DD, XH, XK
COMMNN TFTA
COMMON TE, TI, TO, OC, TC, TD, DDLD
COMMAN RECORD
T $2(89), X X(89), X X 1(89), 7(89), Z 1(89), 22(89)$

8
8
8

WRITE TAPEKTAPE, ARSC(I) CONT INIJE

$$
\begin{aligned}
& \because ? T T: T \wedge D K \\
& I T=T T+N R ?
\end{aligned}
$$

$$
I F(L-L 3) 620,620,650
$$

5
$\begin{array}{ll}C & C \\ r & 6\end{array}$
$K 1=K+3$

RFCORN
$9 \forall 7 A N \cdot O N J N \cdot S L A N \cdot \wedge y D N \cdot I D N$
$\frac{2}{0}$
STRSS

 $\mathfrak{N v N m m \kappa m m m m m m m m m m n m m m m m m m m m m m m r n m m m m m m m m ~}$

OOCOCOOOOOOOCOOCOOOOOOOCOCOCOOOOOOOCOOCC

$P 1$

110

I

$$
\begin{aligned}
& \text { UP }, 2 \\
& * *, 1
\end{aligned}
$$

$* *, 2$
AXT, 1,1
UP, 2,1

$$
\begin{aligned}
& * *, 1 \\
& * *, 2
\end{aligned}
$$

$$
\begin{aligned}
& * * 2 \\
& 3,4
\end{aligned}
$$

$$
\begin{array}{r}
\text { HdVy9 Nヨ^I9 } \\
5=
\end{array}
$$

$$
\begin{array}{rr}
\operatorname{stn} \wedge n j & \\
& \exists d \forall 1
\end{array}
$$

$$
\begin{aligned}
& \text { AGIV } \\
& 2 A P H
\end{aligned}
$$

255151606060
$=0$
NFLAG
 DIMENSION $X(200), Y(200,4), \operatorname{ABLBL}(6), O R D L E L(6), \operatorname{GPHLBL}(9), \operatorname{RFCORD}(12) S$

[^0]: *"Investigation of Juncture Stress Fields in Multicellular Shell Structures," by E. Y. W. Tsui, F. A. Brogan, J. M. Massard, P. Stern, and C. E. Stuhlman, Technical Report M-03-63-1, Lockheed Missiles \& Space Company, Sunnyvale, Calif., Feb 1964 - NASA CR-61050.

[^1]: *"Investigation of Juncture Stress Fields in Multicellular Shell Structures," by E. Y. W. Tsui, F. A. Brogan, J. M. Massard, P. Stern, and C. E. Stuhlman, Technical Report M-03-63-1, Lockheed Missiles \& Space Company, Sunnyvale, Calif. Feb 1964 - NASA CR-61050.

[^2]: *"Investigation of Juncture Stress Fields in Multicellular Shell Structures," by E Y. W. Tsui, F. A. Brogan, J. M. Massard, P. Stern, and C. E. Stuhlman, Technical Report M-03-63-1, Lockheed Missiles \& Space Company, Sunnyvale, Calif., Feb 1964 - NASA CR-61050.

