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ABSTRACT
[424/

This report describes a thermodynamic analysis and FORTRAN IV
program for calculating the time dependent internal atmospheric temper-
ature within a body which is close to the lunar surface. The body may be
of any shape and thermally insulated. The analysis and programs have
the capacity to include heat releases inside the body, selective emissivities
on the outer surface of the body, any orientation and position on the lunar

surface and up to five different temperature-dependent thermal insulations

disposed around the body surface. H;,JA/&J
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LIST OF SYMBOLS

Area of a triangle
Convenient computational grouping of terms
Area of MOLAB outer surface

Area of moon within the view of a MOLAB
triangle

Semi-empirical constant which assesses the
effect of the inclination of a triangle on its heat

transfer coefficient

Colongitude of the sun at 00. 00 GMT in
selenocentric coordinates

Specific heat at constant pressure of MOLAB
interior atmosphere

Thermal capacity of the interior of the MOLAB
Emissive power of the lunar surface
Emissivity (or absorptivity) of a triangle
undergoing the following thermal radiations,
respectively: at the temperature of the tri-
angle; at solar temperatures; at lunar surface
temperatures

Absolute temperature

Shape factor for, respectively: 6A; to lunar
surface and lunar surface to 8A,

Mean solar heat flux on lunar surface
Lunar gravitational acceleration

Heat transfer coefficient from triangle to
MOLAB interior atmosphere

Thermal conductivity of insulation

Thermal conductivity of MOLAB interior atmos-
phere
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Nu

-

—j

Ra
N

x’

y’

N <

Thickness of triangle insulation
Mean length of the triangles
Direction cosine in "x" direction
Direction cosine in "y' direction
Number of triangles defining MOLAB
Nusselt number

Rayleigh number

Convenient computational parameters
Direction cosine in ''z' direction
Number of points defining the MOLAB
Rate of heat flow

Reflectivity of the lunar surface to solar
radiation

Convenient computational parameter

Time

Cartesian coordinates

Convenient computational constant
Selenocentric latitude
Coefficient of cubical expansion

Angle between triangle outward normal and
solar direction

Angle between MOLAB fixed 'x'" axis and
selenographic east
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)N Selenocentric longitude

) Viscosity

p Density

o Stefan-Boltzmann constant

T Period of lunar cycle

V] Inclination of triangle normal to vertical
SUBSCRIPTS

Those symbols having a single subscript are identified by the following code.

2 Refers to solar directions in lunar surface
fixed coordinates (see Figures 4 and 6)

g Refers to MOLAB interior atmosphere

gross Refers to total rate of energy acceptance by
MOL.AB interior atmosphere

n Refers to triangle outward normal directions
in MOLAB fixed coordinates (see Figure 5)

s Refers to solar directions in MOLAB fixed
coordinates

Those symbols having three subscripts are identified by the following code.

lst Subscript. Identification Symbol

0 Identify by major symbol

1 Refers to MOLAB outer surface conditions

2 7 Refers to conditions at center of insulation

3 Refers to MOLAB inner surface conditions

4 Refers to MOLAB interior atmosphere conditions
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2nd Subscript.

(o}

3rd Subscript.

Refers to heat flux through one triangular area
Refers to random heat releases inside MOLAB

Refers to heat fluxes summed over every tri-
angle

Refers to heat fluxes per unit triangle area

Triangle number
Independent of tri

1ano
1 - ialiiyg

Refers to any triangle, '"i'"

Time number
Independent of time
Instant of MOLAB release on lunar surface

Refers to any time, 'j"
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INTRODUCTION

It has been proposed to send a manned mobile lunar laboratory
to the moon in advance of the eventual astronauts. This vehicle, usually
called the MOLAB, is to wait for a period of up to six months before the
astronauts arrive. While waiting on the moon, most of the systems on
the MOLAB will be tested from earth and a number of scientific experi-
ments will be conducted. One of the criteria of the effectiveness of the
instruments which will perform these tests is whether their ambient
temperature (i. e., the cab interior temperature) falls within certain
prescribed limits. Consequently, a thermodynamic analysis of the
MOLAB and its environment before it is launched is of the utmost im-

portance.

This report is an account of a simplified thermodynamic analysis
of an arbitrarily shaped MOLAB. The main dependent variable was chosen
to be the MOLAB cabin atmospheric temperature and a method of calcu-
lating this as a function of time is presented. The analysis was kept
simple for brevity in calculation. Consequently, the simplifications are
cardinal points in the analysis and are discussed in a section by them-

selves, namely, "Reduction of the Problem''.



ANALYSIS

Reduction of the Problem

The equations which define the heat fluxes are much too compli-
cated for an exact theoretical analysis; consequently, the analysis was

oriented towards an approximate numerical solution.

The problem is amenable to splitting into the following three

sections:
1. Determination of the outside wall temperature.

2. Determination of the heat fluxes through the insulations and
integration of these around the surface to determine the net

heat flux into the cab interior.

3. Integration, with respect to time, of the net heat flux into
the cab to determine the time dependence of the cab atmospheric

temperature.

For exactness, all three sections need to be solved simultaneously.
However, it is possible to make an accurate calculation of the outside wall
temperature independently of sections 2 and 3. This possibility arises
because, for practically all circumstances, the heat flux per unit area
conducted from the outer skin through the high quality thermal insulation
is very small compared with the other heat fluxes flowing into the unit
area, e.g., those due to solar and lunar radiation. Consequently, omit-
ting the heat leak through the insulation has a negligible effect on an outer
surface heat balance. While discussing the outer surface, it is convenient

at this point to discuss some further simplifications in which it is involved.

A number of considerations suggested neglecting the conduction of
heat around the surface. This conduction around the surface varies con-
siderably in magnitude depending, as it does, upon the local temperature

gradients and the thermal resistance of the metals.




The net effect it has upon the temperature distribution is to smooth
it out and tend to make all temperatures equal. However, over large
sections of the MOLAB, particularly near noon and during the lunar night,
many of the temperature gradients are small and consequently surface
conduction may be neglected. Thus, for many conditions, it is sufficiently
accurate to calculate the surface temperature as if it were adiabatic with
respect to conduction. This allows an enormous reduction in computation

labors.

The heat fluxes which fall upon a surface element of the MOLAB
come from mainly three sources: the sun, the lunar surface, and from
other parts of the MOLAB. There are also an infinite number of reflec-
tions. However, the magnitude of these reflections rapidly falls away and
there is only one of any consequence, this being from sun to lunar surface
to MOLAB. Thus, the remainder may be neglected. Furthermore, for
practically all of the surface, any surface element cannot see any other
part of the vehicle and if it does, it does so at a small angle; thus, radiation
from other parts of the MOLAB was also neglected. If this radiation were
required to be taken into account, then some definite shape of the body
would have to be specified; hence, the heat radiations incident on any
surface element which are utilized are: direct solar, direct lunar, and
solar reflected from the lunar surface. At this point it is appropriate to
mention that the lunar surface radiation and reflected solar radiation from
the lunar surface are assumed to be coming from an infinite isothermal
flat plane, obeying Lambert's cosine law, within the view of the element.
The justifications for this are as follows. Every effort will be made to
land the MOLAB in a mare. Thus, the surface will be reasonably level.
Furthermore, even at the highest point on a MOLAB, for distances greater
than about 400 yards, the greatest radiation intensity in the direction of
the MOLAB will only be of the order of 1% of the normal radiation intensity
at this point, and thus lunar surface curvature, and indeed temperature

variation, may be neglected.



A further approximation was included when assessing the radiant
heat fluxes incident upon any element. This was that the effect of the
MOLAB's shadow upon the lunar surface was neglected. This was again

enforced by the lack of having a prescribed shape for the vehicle,

Representing the shape of the surface of the vehicle was accomplished
by allowing up to 32 points to be used to describe it. These 32 points, each
having a point number ascribed to it, form 60 triangles and each triangle was
described by the three apex numbers, taken in any counterclockwise order
when viewed from the outside; mean emissivity of the MOLAB outer sur-
face at its own temperature; mean absorptivity of MOLAB outer surface to
lunar surface temperatures; mean absorptivity of MOLAB outer surface to

solar radiation; thermal conductivity number (explained below); thickness of

insulation between MOLAB outer surface and vehicle interior.

The thermal conductivity number, mentioned in the above list,
refers to a method of coding the insulations. The insulations are allowed
to belong to up to five categories, thermal conductivities of which may be
functions of the linear average temperature of the particular insulation.
The thermal conductivity number refers to the insulation backing this

particular triangle.

The equation which defines the temperature distribution through
the insulation was also rigorously simplified. A fundamental assumption
was that the temperature distribution was always linear with distance
through the insulation. This is clearly never true but because of the large
period of the lunar cycle for many circumstances it is sufficiently accurate.

The accuracy becomes less as the thermal diffusivity decreases.

The transport of the heat into the cab interior is predominantly
one of natural convection; radiation being negligible because the temper-
ature variation throughout the cab is small. However, no data exists for

the calculation of natural convection with the boundary conditions pertaining




in the problem. Consequently, it was decided to use the flat-plate relation-
ships and amend them somewhat in an effort to make them coincide with the

realities of the problem.

Inherent in most free convection analyses is a reliance upon the
Rayleigh Number, Ra, which is

352
L gg Y CpgAF

"

kg kg .
This dimensionless variable is first utilized to determine which regime
of heat transfer is taking place and secondly in evaluating the magnitude of
the Nusselt Number. However, the temperature difference, AF, is usually
a dependent variable and some sort of iterative process must be utilized to

solve the problem.

Preliminary calculations indicated that most of the heat transport
would occur under laminar flow conditions; thus it was decided to stand-

ardize for all triangles on the laminar flow relationships.

Flat-plate analysis suggests that laminar flow heat transport is

correlated by a formula of the form

1

Npy = constant X NRa’z .

Expanding the dimensionless terms, Npj, and NR,, and transposing this

equation gives

h=1L

Al

The boundary conditions of the MOLAB triangles have no easily
defined distance, L, from the leading edge. To overcome this discrepancy,
an attempt was made to utilize a ''mean' length. Fortunately, because the
fourth root of the length is utilized, the heat transfer coefficient is rela-

tively insensitive to variations in ""L''. Thus, using a length of 0. 79 ft



allows a maximum error of only 25% over a range of actual lengths from

0.25 it to 2. O ft.

The ""constant'' in the expression for the Nusselt Number depends
upon the inclination of the triangle and usually upon whether it is heated
or cooled. Data for natural convection upon plates which are inclined
other than at 90° or 0° to the vertical are meager; also much of it is
difficult to apply in a systematic manner. Consequently, the values of
the constant at inclinations of 90° or 0° to the vertical were used to
linearly interpolate the values for other inclinations. With the above
assumptions and a knowledge of the instantaneous interior cab temper-
ature, it is thus possible to compute the rate of heat flow through a
triangle. The complication of this latter calculation is reduced if those
gaseous properties which are functions of temperature are taken to be
constant at some '"mean' atmospheric temperature. This simplification
is again particularly accurate because these properties are only introduced
as fourth root products. In particular, the coefficient of expansion, vy,
which is the reciprocal of the absolute temperature for a perfect gas, was
held constant at the value determined by the internal atmospheric tempera-

ture chosen at the start of the calculations. A simple summation over all

of the triangles then gives the net rate of heat flow into the cab.

It was mentioned earlier that a number of tests will be made with
instruments inside the MOLAB., These devices will naturally dissipate
heat. An exact calculation for the rate of heat release would require
solving a heat balance for the device simultanéously with the other heat
fluxes. This complication was avoided by specifying that the rate of heat
release for all devices must be known functions of time. Thus, the gross
heat addition to the cab interior is the summation of the net heat flux from

the lunar environment and whatever heat is released internally.

The dispersion of this heat flux inside the cab is supposed to be

uniform such that the entire contents are at a uniform temperature and




suffer a uniform rate of temperature increase. The thermal capacity of
this essentially constant volume container is all that is required to bring

about the ultimate differential equation

. dF40j
dgross = Cv dt . (1a)

It is clearly impossible to solve this differential equation using analytic

methods; consequently, numerical integration was utilized.

Development of the Equations

The object of the analysis is to determine the inside cab temperature,
F40j, as a function of time. To demonstrate the analysis required to obtain
F40j, it is easiest to work in roughly the reverse order of the solution as

follows.

The temperature, Fy5j, is evaluated by solving the differential

equation (la) which is

dF40j _ Ygross
& C, ' (1b)

As will be clear from what follows, there was no possibility for an analytic
solution and a numerical solution was utilized. The form of the differential
equation and boundary conditions suggested the use of the Runge-Kutta
method. Two papers by Miller and Millerd: 5, demonstrate a Runge-Kutta
method which automatically chooses the maximum time step which the
accuracy bounds will allow and a small amendation of their method was
utilized. The derivation of this equation and the evaluation of C,, has been
explained in another section, '"Reduction of the Problem!'. However, it is
necessary to demonstrate the method of evaluating the function of time
Elgross- The term, qgross, is the summation of the heat flux into the

cab, Eltoj' and the heat releases by instruments, etc., éiroj'



The heat releases inside the cab, Elroj’ occur whenever the
operators of the MOLAB decide to activate any devices, and consequently
rank as input data. The heat fluxes passing into the cab from the exterior,
qtoj, are really the crux of the problem. This flux is the summation of the

heat passing through all the triangles, zlnij’ thus

NTRI

E:-ltoj = E?lnij : (2)

=

peto

As it is most convenient to evaluate the heat fluxes through each triangle

in terms of the unit area, we have

. élnij
Quij = 7~ - (3)
U Aoio
At this stage it is not necessary to evaluate each of the variables explic-

itly, but only to demonstrate that sufficient simultaneous equations are
possible to solve for the appropriate unknowns. Thus, it is possible to

arrive at the following:

Heat Flux Through Insulation

. koij (F1ij - F3ij)
ul Loio

Heat Flux From Inner Wall

éluij = hoij (F3ij - F4oj) (5)

Thermal Conductivity Tables

koij = koijl (Faij + Fsij)/2] (6)

that is, an input table of koij versus temperature.




Evalution of Nusselt Number

&

hoij = 1. 06 Bojo @ I F3ij - Fyojl (7)

where

1

1 1 L

_ (g’ Cpg gm Pg’\*. ) 1y _ /1y
a = ; 1,06 = [ ——— = ——
Mg Fg Lmean 0.79

and B,j, is determined from the following table.

FllJ —F41J<0 FIIJ‘F4iJ FliJ -F41J>0
y-350 -5 >0 0 b3 50 | y-Z>0
_ Y 0. 68y 0. 68y G
Bojo [0.54 + To= |0.93 - = 0 0.25+ =% | 0.64 -
1
(1 -np) [elotm Ent (elots rmGnS)j_i] + (2 €,ots G €08 €) )*
i = (8)
J 2
€rot1 @

when ng 2 0 and cos ¢ < 0, neglect ( )i, and when ng< 0, neglect

( )jand( );-

The derivations of Equations 4, 5, 6, and 7 are trivial and canbe
done by inspection. However, the derivation for Equation 8 is lengthy and

is reserved for Appendix II.

The solution of this system of equations was most easily accom-

plished by a rearrangement to give the following:

S1.06 B
k

o Lo;
0Ol10 010
OzFlij'F3ij+

” | Fsij - Faojh? (9)
oij




when F1jj - Faoj < 0, then S = 1; and when Fi1ij - Fgoj > 0, then S = -1.

Solution of Equation 9 (see Subroutine CALF3) for the variable F3ij

was accomplished by a systematic trial and error method. The more

normal method of iteration was not used because the wide variation in the

parameters gave trouble in convergence.

10




THE FORTRAN PROGRAM

Description of Program Routines

The program consists of a MAIN calling routine and eight
subroutines. A brief description of the purpose of each routine is as

follows:

MAIN - The Calling Routine

The functions of this calling routine are:

1. Read from the card reader the input information for the

integration routine, RUNGKT

2. To give control to that routine

3. later, to write an end of job message
4. To terminate the program.

RUNGKT

This is the basic Runge-Kutta integration which advances from the
boundary conditions. Subroutine DERIV is called by RUNGKT to calculate
the differential at any point in time and Subroutine RUNGKT adjusts the
time step size to the maximum which the tolerances and differential
equation will allow. It also fixes the interval at which the output data is
printed. A comprehensive description of this subroutine is given in

References 4 and 5.

DERIV

This calculates the differential given in Equation 1b at any point

in time. To do this it calls the following subroutines.

11




BOUND

This sets up tables of MOLAB outer surface temperature, 417,

for 60 different tiimes over a cycle for each triangle.

CALF3

This calculates the MOLAB inner wall temperature lor cach
triangle using Equation 9. The method used is systernatic trial and

error,

SUR. F1

This interpolates inside the tables set up in BOUND to find the

outer surface temperature for each triangle, F1l1J, at any instant.

COND

This interpolates in the input data of thermal conductivity against

temperature for each insulation at any temperature.

HEAT

This selects which points in the table of TR and QR the instant
of time falls between and then it linearly interpolates between these valuces

to find the value of QR at that time.

ARCOS

The function ARCOS is not part of the routine on an IBM 7040.
Consequently this subroutine is used to calculate ARCOS and it enables
the angle between the outside normal to a triangle and the vertical to be

determined from a knowledge of the vertical direction cosine.

12




Input Data

Variable Card Column Definition of Variable

NCI 001 7-9 The number of times integration will be
forced at a minimum step size before
the routine will be stopped for noncon-
vergence. (Approx. 10)

P 001 10 - 19 The maximum allowable step size in
hours. This affects the machine time
necessary for the run but it does not
affect the accuracy. Optimum value
depends on irregularities in the differential
equation (e. g., 8.0 hours).

TP 001 20 - 29 The print interval (in hours). Time and
Cab Temperature are printed out at times
Ty+ n - TP where n is an integer. This
does not affect the computations unless it
is less than P; if this happens P is
assumed to equal TP (e. g., 8.0 hours).

TE 001 30 - 39 The value of time in hours from 00, 00
GMT at which the program is to be
terminated.

El 001 40 - 49 The lower bound for controlling step size.

El is dimensionless (e.g., 10™* to 107%).

E2 001 50 - 59 The upper bound for controlling step size.
E2 is dimensionless (usually = 100 X EIl,
i.e., 107% to 107*).

LAM 002 1-10 Longitude of MOLAB on the moon in
degrees, (\).

BETA 002 11 - 20 Latitude of MOLAB on the moon in
degrees, (B).

C 002 21 - 30 The colongitude of sun in selenocentric
coordinates at 00. 00 hours, GMT in
degrees, (C).

THETA 002 31 - 40 Angle between ''x'" axis of MOLAB and
Lunar East in degrees, (6).

13



Variable Card Column Definition of Variable

CcVvV 002 41 - 51 Thermal capacity of complete cab con-
tents in BTU/°F, (Cy)-

RMTS 003 1-10 Reflectivity of lunar surface to solar
heat (dimensionless), (r,,).

G 003 11 - 20 Solar constant in BTU/ft* -hr (normally
442), (QG).

T1 003 21 - 30 The initial value of T in hours from
00. 00 GMT at which F401 is known,
(to01)-

F401 003 31 - 40 Cab temperature in °R at time T1 hours,
(Fso1)-

DTEMP 003 41 - 50 Temperature increment in °R for the

thermal conductivity tables.

TCT 004 1-10 Tables of thermal conductivity (BTU/
through 11 - 20 ft-hr-°R) versus temperature increment
043 21 - 30 (DTEMP) for various materials., Blanks
31 - 40 substituted if no materials.
41 - 50
KG 044 1-10 ""Mean' thermal conductivity of cab

atmosphere in BTU/ft-hr-°R (e. g., for
oxygen at 5 psia), (kg).

CPG 044 11 - 20 "Mean" specific heat at constant pressure
of cab atmosphere in BTU/1b-"R, (Cpg).

MUG 044 21 - 30 ""Mean' viscosity of cab atmosphere in
1b/ft-hr, (pg).

GM 44 31 - 40 Lunar gravitational acceleration at
moon's surface in ft/hr?, (8m)-

RHOG 44 41 - 50 Density of cab atmosphere in 1b/ft?, (pg)-
CcO 45 Coordinates of point numbers in inches.
through Points listed in the order in which
76 numbered.
1 - 10 HXII
11 - ZO Ilyll
21 - 30 llzll

14




Variable Card Column Definition of Variable

77 All data associated with each triangle
through completely listed on one card per
136 triangle as shown below.

JJ 1 - Point numbers of triangle, taken in any
JK 4 . counterclockwise order when viewed
JL 7-9 from the OUTSIDE

o W

EIOTI1 10 - 19 Mean emissivity of MOLAB outer surface
at its own temperature, (eot1).

EIOTM 20 - 29 Mean absorptivity of MOLAB outer surface
to lunar surface temperatures, (e lotm)-

EIOTS 30 - 39 Mean absorptivity of MOLAB outer surface
to solar radiation, (ejots).

TCN 41 Thermal conductivity number. This
selects which of the five materials is
relevant for this triangle.

L 42 - 51 Thickness of insulation for this triangle
in inches, (Lgjo)-

137 Data describing heat fluxes released in
through MOLAB cab. Note if less than 1024 points
116D are required to describe the heat fluxes,
place the number -10.0 in columns 1-10

after the last data card and omit the
remainder of the cards.

TR 1 -10 Time at which heat is released in hours
from 00. 00 GMT, (ty)

QR 11 - 20 Rate of heat release in MOLAB interior
in BTU/hr, (E?lroj)'

Note at all values of the time the heat

fluxes must be uniquely defined. Thus avoid
TR =110.0, QR =0.0, and TR =110.0,

QR = 50. 0 to describe a step input. Instead
use TR = 110.0, QR = 0.0, and TR = 110, 001,
QR = 50, 0.

15



Output Data

The following lists the output in the order in which it appears.
When the output symbols or units are different from those given in the
list of symbols or the input data, then a correspondence between pre-

viously used symbols and units is given.

Tabulated Inputs

NCI

PRINT INTERVAL - TP
TERMINATION TIME - TE
LOWER ERROR LIMIT - El
UPPER ERROR LIMIT - E2
LAMBDA - \

BETA - B

C

THETA - 0

cV
RMTS - r
G

T1
DTEMP
THERMAL CONDUCTIVITY TABLES

Each material is listed with a subheading. The thermal con-
ductivities (in BTU/ft-hr-°R) are then listed from 0°R at intervals of

DTEMP from left to right, row by row.

16




KG

CPG

MUG

GM

RHOG

F4 - Fy01

ALPHA - «

INPUT TABLE OF CABIN HEAT RELEASES

The two columns of figures represent (as shown on the output)
the time in hours from 00. 00 GMT and, on the same row, the respective

instantaneous heat release in BTU/hr inside the cabin.

Calculated Results

The two columns of figures (as shown on the output) give the time
in hours from 00. 00 GMT at which the cab interior temperature {(which is
printed on the same row in degrees Rankine) has been calculated. The

frequency and times of printing are controlled by the input data.

17




FORTRAN IV PROGRAM LISTING OF MAIN PROGRAM

READ (5,1)NCI4P,TP,TE,ELl,E2
N=1
Is4
IF{TP.LT.P) P=TP
IF (El.LT.E2) GO TO 4
EE=E1
El=E2
E2=EE
4 CONTINUE
1 FORMAT (6XI345F10.0)
WRITE(643) NCIP,TP,TE,ELl,E2
3 FORMAT ( 6H NCI=13//20H MAXIMUM STEP SIZE=,
1€16.10//17H PRINT INTERVAL=E19.10//19H TERMINATION TIME=EL17.10//
220H LOWER ERROR LIMIT=E16.10//20H UPPER ERROR LIMIT=E16.10)
CALL RUNGKT (NyIyNCI,P,TP,TE,El,E2)
WRITE 16,2)
2 FORMAT (15H1ss#END OF JOB#w)
CALL EBXIT
STOP

END

18
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101

FORTRAN IV PROGRAM LISTING OF SUBROUTINE RUNGKT

SUBROUTINE RUNGKT(NesI,NCI,P,TP,TE,E1l,E2)
PREPARED BY BEN H KAVANAUGH JR

I52 SECCND ORDER RUNGE-KUTTA

I=3 THIRD ORDER RUNGE~-KUTTA

I=4 FOURTH ORDER RUNGE-KUTTA

STORAGE Fl=E =11
F2=YHAF1 TEMPORARY STORAGE REQUIRED=
F3=YFULL DIMENSION OF F ARRAY=
F4=YSAVE N«(3+])
F5=DYSAVE WHERE N=NO OF DERIVATIVES
F6=22 AND I[=0RDER OF INTEGRATION
F1=213 PROCESS

DIMENSION Y(25),DY(25)+F(175)

CALL DERIV (Y{1l), DY(1),T)

NGII = 0
DI = TP
=T
NK3 = 1
NK1 = 1
MU = 2
H=FP
DT = P
T8 =T
NK2 = 2
M =0

19




103

110

o
-
[

115

116

117

118

120

130

1VALUE OF Y(I) IS

FORTRAN IV PROGRAM LISTING OF SUBROUTINE RUNGKT

640 10 200
M=M=+1
GO TG {(110,120,130) M
D3 111 K = 14N
Kl = K ¢+ N+ N

K1) = Y{K)

IF (ABS (H/P)-.0000010 ) 115,115,118

WRITE(64+4116) INDEXsTT,Y(INDEX)

FORMAT{1HO,///5X,12+25HDOES NOT CONVERGE AT T =

IF(NCI-NCII)O901,901,117

NCII = NCII + 1
NK3 = 2

DT = 5 o H

NK1l = 2

M =1

GO 10 102

NK2 = 4

DT = .5 ® H
Ga 10 102

DO 131 K = 1,N

Kl = K + 2#N

1E15.8777)

FIK) 5 (Y{(K)=F(K1))/(2.%#]-1,)
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FORTRAN IV PROGRAM LISTING OF SUBROUTINE RUNGKT

Y(K) = Y(K) ¢+ F(K)
IF(ABS (F(K)}-.00001)139,139,140
139 F(K)= 0.
GO T0 131
140 F(K) = ABS (F(K)/Y{K))
131 CONTINUE
GO TO (1424141), NK3
141 NK3 = 1
GG T0 1335
142 € = F(1)
INDEX = 1
IF (N-1)1335,1335,1315
1215 DO 133 K = 24N
IF{E-F{K))132,133,133
132 INDEX = K
E = F(K)
133 CONTINUE
1335 IF(E-EL1l)134,135,135
134 H = H + H
1345 DV = H
GG 70 101
135 IF(E-E2)1345,1345,4136
136 DO 137 K = 14N
Kl = K + N

K2 Kl + N
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FORTRAN IV PROGRAM LISTING OF SUBROUTINE RUNGKT

137 F(K2) = F(K]1)
NK1l = 2
138 H = .5#H
GO T0 112
200 GO YO (203,204),MU
203 H = AMAX1{ H,H2 )
MU = 2
204 IF{ P - H )208,209,209
208 H = P
209 ¥2 = TP - 7
IF{ ABS (T2) - .1E-08 ) 212,210,210
210 H2 = ABS (T2)
H3=QR(T,1)
H2=AMINL1(H2 ¢H3)
IF{ TR -~ .1E-05 ) 216,211,211
211 IF(ABS (T72/7P)-.0001 ) 212,213,213
212 TAV = ¥
T = 7P
GO TO0 300
213 IF(H —-H2) 215,215,214
214 MU = 1
H = H2
215 DY = H
GO 70 102

216 IF( ABS{ T2 /7 DI ) - ,0001 ) 212,213,213
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FORTRAN IV PROGRAM LISTING OF SUBROUTINE RUNGKT

300 CALL PRINT (Y(1),DY(1),T)
IF(ABS(TP -~ TE) - .5# ABS({ DI ) ) 901,901,301
301 TP = TP + DI

T = TAV
DT = H
GO 10 209

102 IF({ DI ) T7.8,8
70T = - DT
8 DTIT = .5 # DT
J =0
9 J=J+1
GO TO ( 10,11 ), NK1
10 CALL DERIV (Y{(1),y DY{(1),T)
GO T0 12
11 NK1 =1
12 DO 35 K1l= 14N
Ké = K1 + 3 o N
KT = K6 + N
K2 = K7 + N

K3 K2 + N

K4 = K1 + N

GO TO ( 17,14+15,13 ), NK2

13 F(K1) = DY(K1)
F(K4) = Y(K1)
GO 70 17
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FORTRAN IV PROGRAM LISTING OF SUBROUTINE RUNGKT

14 F(K6) = Y(KL)
F(K7) = DY{K1)
GO TO 1¢

15 DY(K1) = F{KT7)

16 F{K4) = F(Kb)

17 GOTO (1429344),4J
1 FIK1)=DY(K1) # DTV
IF( [-2)999,+5+56
2 F{K2) = DY(KL) = DTT
GOTO (999,22,23,25),1
3 F{K3) = DY(K1l) = DTT
GOTO (999,33,33,34),1
4 Y{(K1) = F(K4) + (DY(K1l) # DTT + F(K1l) + 2.#(F(K2) + F(K3)))
1#,33333333
GO T4 35
S Y{K1) = F{K4) + F(K1l) + 2.
60 70 35
6 Y{(KLl) = F{K4) + FI(K1l)
GO 70O 35
22 Y{K1l) = F{K1) + F{K2) + F(K4)
6Q 10 35
23 Y(KLl) = 4, & F(K2) - 2. # F(K1l) + F{K4)
GO T0 35
25 Y{K1) = FI(K2) + F(K4)

G0 10 35
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FORTRAN IV PROGRAM LISTING OF SUBROUTINE RUNGKT

33 Y(K1) = F{K4) + (F{K1l) + F(K3) + 4., ® F(K2))#*,33333333
GO TO 35
34 Y(K1) = F(K&4) + 2.% F(K3)
35 CONTINUE
NK2 = 1
GO TGO (50+61,62,103),J
50 GO TO {999,56457+57),1
61 GO TO (999,103,57+9),1
62 GO TO (999,999,103,57),!1
56 T =0T + 7T
GO 70 9
571 7T =T + DTY
GO 70 9
999 CALL DuMmP
901 RETURN

END
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FORTRAN IV PROGRAM LISTING OF SUBROUTINE PRINT

SUBROUTINE PRINT (EF4,DF4,TIME )

WRITE(6,1)TIMEEF4
1 FORMAT(/20X¢12HTIME(HRS.) =F11.4,15X,2THCAB INTER1OR TEMP.(DEG.R)
2=F9.4)

RETURN

END
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FORTRAN IV PROGRAM LISTING OF SUBROUTINE DERIV

SUBROUTINE DERIV {(EF4,DF4,TIME)
REAL KG,MUG,L,LAM
INTEGER TCN
COMMON LAMyBETA,CoTHETA9CV,RMTS4GySIG oALPHA,DT,DTEMP
COMMON TN,TCT(40,5),T{60,61),AREA{60),TCN(60)
DIMENSIGN L{60) y XNN(60)
IF {IBM.EQ.602) GO TO 7
18M=602
READ (541) LAM,BETA,C,THETA,CV,RMTS,G,T1,F401,DTEMP,TCT
1 FORMAT (5F10.5)
WRITE (642)LAM,BETA,C,THETA, CVsRMTS,Gy T1, DTEMP
2 FORMAT (8H1LAMBDA=E16.8,6H BETA=E16.843H C=E16.8y7H THETA=E16.8,
177 4H CV=E1l6.8y6H RMTS=E16.8,3H G=E16.8,
2//74H T1=E16.8,TH DTEMP=El6.8,
3 //28H THERMAL CONDUCTIVITY TABLES//)
DO 15 IN=1,5
15 WRITE(6414)IN{TCT{IZ,IN),1IZ=1,40)
14 FORMAT (//10H MATERIALI3//15E20.8))
READ {5,1) KG,CPGyMUG,GM,RHOG
ALPHA=SQRT (SQRT (KG#KG*KG#*CPG#GM#RHOG*RHOG/ (MUG*F401) ))
WRITE (643)KGyCPGosMUGyGMsRHOGsF4014ALPHA
3 FORMAT (///5%X4H KG=El6.8,5H CPG=E16.8y5H MUG=E16.8//
1 4H GM=E16.8,6H RHOG=E16.894H F4=E16.8,yTH ALPHA=E16.8)
TN=708,726

DT=11.8121
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FORTRAN IV PROGRAM LISTING OF SUBROUTINE DERIV

NTRI=60

TIME=T1

NTRI=NTRI+1

QT=0.

CALL BOUND (AREA(1),XNN(1)yL(1))
1=1

EF4=F401

CONTINUE

CALL BOUND (AREA(I)sXNN{I),L(1))
Li1)=Lt11)/12.

CONTINUE

IF (TCN{I).EQ.O0) GO TO 16
EF1=F1{1,TIME)

EL=L(I)
EF3=F3{1,EF1,EF4,XNN{I),ETC,EL)
ETC=TCA1,(EF1+EF3)/2.)
QDU=ETC#*(EF1-EF3) /EL
QDN=QDU*AREA(I)

QT=QT+QDN

I=1+1

IF(I.EQ.NTRI. OR.I.EQ.60) GO TO 8
IFLIST .EQ.12) GO TO 7

GO TO 6

QT=QT+QR(TIME,0)

DF4=QT/CV
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FORTRAN IV PROGRAM LISTING OF SUBROUTINE DERIV

9 FORMAT (//4H QT=E1l6.8,5H DF4=E16.8,6H TIME=E16.8,4H F4=El6.8)
[ST=12
I=1
ALPHASSQRT{SQRT (KG®#KG#KG#CPG*GM#RHOG*RHOG/ (MUG#EF4) ))
QT=0.
RETURN

END
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FORTRAN IV PROGRAM LISTING OF SUBROUTINE BOUND

SUBROUTINE BOUND (A,XNN,L)
COMMON LAMDBETAD,CD,THEDyCV¢RMTSGySI1Gy ALPHA,Qy DTEMP
COMMON TNyTCT(4045),T160,61),AREA(60),TCN(60)
DIMENSION FAR{61),TBET(61)
REAL LyKBARyLKH
REAL LAMR,LAMD,LAMO,LAMS
INTEGER TCN
IF{IBM.EQ.602) GO TO 11
I18M=602
ITRI=0
PI = 3.1415926536
676 FORMAT(T7Fl10.0 )
DO 70 II = 1,61
70 FAR(II)=FLOAT{1I-1)/60.
666 FORMAT(2F10.0)
TBET( 1)= 390.
TBET( 2)= 389.
TBETL 3)= 387.
TBET( #4)=383.5
TBET( 5)=380.0
TBET( 6)=376.0
TBET( 7)=371.0
TBET( 8)=361.0
TBETI 9)=353.0

TBET(10)=341.0
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FORTRAN IV PROGRAM LISTING OF SUBROUTINE BOUND

TBET(11)=330.0
TBET(12)=313.0
TBET(13)=292.0
TBET(14)=266.0
TBET(15)=227.0
TBET(16)=145.0
TBET(17)=119.0
TBET(18)=116.0
TBET(19)=112.0
TBET(20)=110.0
TBET{21)=109.0
TBET(22)=105.0
TBET(23)=103.0
TBET(24)=101.0
TBET(25)=100.0
TBET({26)= 99.0
TBET(27)= 98.0
TBET(28)= 97.0
TBET(29)= 96.0
TBET(30)= 95.0
TBET(31)= 94.0
TBET(32)= 93.0
TBET(33)= 92.0
TBET(34)= 92.0

TBET(35)= 92.0
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FORTRAN IV PROGRAM LISTING OF SUBROUTINE BOUND

TBET(36)= S1.0
TBET(37)= 91.0
TBET(38)= 91.0
TBET(39)= 90.0
TBET(40)= 90.0
TBET(41)= 89.0
TBET(42)= 89.0
TBET(43)= 88.0
TBET(44)= 88.0
TBET(45)= 87.0
TBET(46)= 87.0
TBET(47)=214.0
TBET(48)=259.0
TBET(49)=291.0
TBET(50)=312.0
TBET{(51)=330.0
TBET{52)=342.0
TBET(53)=353.0
TBET(54)=361.0
TBET(55)=370.0
TBET(56)=377.0
TBET{57)=380.0
TBET(58)=385.0
TBET(59)=388.0

TBET(60)=390.0
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12

FORTRAN IV PROGRAM LISTING OF SUBROUTINE BOUND

TBET(61)=390.0

SIG=.1718E-8

DIMENSION CO(3,32)

READ {5,13) CO

FORMAT (3F10.5)

RETURN

ITRI=ITRI+1

READ(5412)JJyJKyJLHEIOT1,EIOTM, EIOTS,TCN(ITRI),L
FORMAT (313,3F10.5,12,F10.5)

IF (TCN{ITRI).EQ.O0) RETURN

XX1=CO0(1lyJJ)

XX2=C041,JK)

XX3=C041,JL)

YY1=C0l2yJJ)

YY2=C0{2,JK)

YY3=C0{2,JL)

221=C013,J4)

272=C0{3,JK)

223=L0{3,4L)
XL3=SQRT({XX2=XX1)#u2+{YY2~-YY]l)ou24(272~-72]1)2%2)
XL2=SQRT{ (XX2—XX3 ) ##2+{YY2~-YY3)nu2+(272-273)%52)
XL1I=SQRT({XX1-XX3) %2+ {YYLl-YY3)#22+(221-273)ws2)
RAD = P1/180.0

LAMR = LAMD#*RAD

BETAR = BETAD#RAD
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FORTRAN IV PROGRAM LISTING OF SUBROUTINE BOUND

CRAD=CD»RAD
LAMO = (PI/2.0)-CRAD
THER = THED#*RAD
XX1=XX1/12.0
XX2=XX2/12.0
XX3=XX3/12.0
YY1l=YYl /12.0
YY2=YY2 /12.0
YY3=YY3 /12.0
Z11=111 /12.0
222=1712 /12.0
123=213 /12.0
XNX = (YY2-YY1)&{ZZ3-2Z1) - (YY3-YY1)%(222-221)
XNY = (222-7Z71)#({XX3=-XX1)=~({ZZ3-2Z1)#(XX2-XX1)
XNZ= (XX2-XX1)#(YY3-YYl) ~ (XX3-XX1)#{YY2-YY1l)
ABAR = SQRT{XNX®#XNX + XNY#XNY + XNZ#XNZ)

A = 0.5#ABAR

XLN = XNX/ABAR
XMN = XNY/ABAR
XNN = XNZ/ABAR

00 300 J = 1,61

Xd = J-1

LAMS = LAMO - 2.,0#PI#XJ/60.
DELLAM= LAMR-LAMS

XLS = ~(COS{THER)#SIN(DELLAM)+SIN(BETAR)#SIN{THER)*#COS(DELLAM})
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FORTRAN IV PROGRAM LISTING OF SUBROUTINE BOUND

XMS = SIN(THER)*SIN(DELLAM) - SIN(BETAR)#COS(THER)*COS(DELLAM)
XNS = COS(BETAR)=COS(DELLAM)

COSALP = XLS®#XLN + XMS#XMN + XNS#XNN

FBAR=10.0+DELLAM/ (2.0+#P1)

IFB = FBAR

FBl1 = IFB

FBAR = FBAR - F8l

BEGIN INTERPOLATION ROUTINE HERE

DO 71 KT = 1,60
KT 1 = KY
IF(FBAR.EQ.FAR(KTL1)) GO TO 72
KT2 = KT ¢ 1
IF(FBARCGT.FAR(KT]1).AND.FBAR.LT.FAR(KT2))GO TO 73
71 CONTINUE
WRITE(6,665)
665 FORMATA{1H1,15X,27HINTERPOLATION NOT POSSIBLE /1lH1l)
PAUSE 77717
72 TINT = TBET(KT1)
G0 10 77
73 DIFFO = FARIKT2)-FAR{KT1)
DIFF1 = FBAR -~ FAR(KT1)
DIFT = TBET(KT2)-TBET{(KT1)

DIFTL = DIFT«DIFF1/DIFFO
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FORTRAN 1V PROGRAM LISTING OF SUBROUTINE BOUND

W

TINT TBET{KYl) + DIFT1

77 CONTINUE

END OF INTERPOLATION ROUTINE

TMBAR = TINT#*SQRTISQRTISQRT{COS(BETAR))))
TN = 1.8#TMBAR
EMIS=SIGesTM==4

Cl = EIOTSsG#COSALP

C2 = EIOTS#RMTS # G e XNS
C3 = EIOTM#EMIS
C4 = 1.0/(EIOTL*SIG)

IF{XNS<GE.0.0.AND.COSALP.LT.0.0)C1 = 0.0
IF{XNS.GT.0.0)G0O TO 700
Cl = 0.0
C2 = 0.0
700 CONTINUE
TEMP = ((l.0-XNN)#(C3+C2)/2.0)+Cl
TUITRI9J)=SQRT{SQRT (C4*TEMP))
300 CONTINUE
RETURN

END
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FORTRAN IV PROGRAM LISTING OF SUBROUTINE CAL.F3

FUNCTION F3(I,F1,F4,XNN,ETC,L)
COMMON LAM,BETA,C,THETA,CV,RMTS,GoSIG »ALPHA,DT,DTEMP
COMMON TNsTCT(40,5),T{60,61),AREA(60),TCN(60)
REAL L

EXTERNAL TC

PSI=ARCOS { XNN)

IF(F1-F4) 5,1,2

F3=F4

RETURN

S=-1.
IF(PSI-1.5707963268)3,3,4
CON=.25+.68+PS1+.318309886

GO TO 18
CON=.64-PS1#.0318309886

GO TO 18

s=1.

IF{PSI-1.5707963268)6,6,7
CON=.54+PSI+.0318309886

60 TO 8
CON=.93-.68#PSI+.318309886
A=F 1

B=F4

GO TO 9

A=F4

B=F1
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FORTRAN IV PROGRAM LISTING OF SUBROUTINE CAL.F3

F3A=(A+B) /2.
ETC=TC(I4(FL+F3A)/2.)
D=S#1.06#CON#L*ALPHA/ETC
F=F1-F3A+D# (ABS(F3A-F4))#e]1.25
IF{F)11410412

F3=F3A

RETURN

B8=F3A

IF{ABS{A-B).GE. .1) GO TO 9
GO T0 10

A=F3A

IF{ABS{A-B).GE. .1} GO TO 9
G0 TO0 10

END
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FORTRAN IV PROGRAM LISTING OF SUBROUTINE SUR.FL

FUNCTION F1(I,TIME)

COMMON LAM+BETA,CoTHETA,CV,RMTS,G,SIG +ALPHA,DY,DTEMP
COMMON TN, TCT{40,5),T({60,61),AREA{60),TCN(60)
IF (TIME.EQ.TIMEL)GO TO 1

TIMO=AMGD (TIME,TN)

TI1J=TIMO/DT +1.

J=T1J

TIM=T1J-FLOAT{J)

TIMEL=TIME

Fl=T(I,J)+TIMB(T(I,J+1)=-T(I,J))

RETURN

END
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FORTRAN IV PROGRAM LISTING OF SUBROUTINE COND.

FUNCTION TC(I,TEMP)

COMMON LAM,BETA,C4THETA,CV,RMTS,64SIG +ALPHA,DT,DTEMP
COMMON TN,TCT(40,5),T(60,61),AREA(60),TCN(60)
INTEGER TCN

TEJ=TEMP/DTEMP+]1.

J=TEJ

TEM=TEJ-FLOAT(J)

LaTCN(])

IF {J.GE.40) GO 71O 2

TC=TCTAJ s LI+TEM® (TCT(J+1,L)-TCT(JyL))

RETURN

TC=TCY (40,L)

RETURN

END
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FORTRAN IV PROGRAM LISTING OF SUBROUTINE HEAT

FUNCTION QR (T1,K)
DIMENSIGON T(1024),Q{1024)
IF (IBM.EQ.602) GO TO 4
18M=602
WRITE (6,8)
8 FORMAT{1H1,50X,34HINPUT TABLE OF CABIN HEAY RELEACES//30X,
110HTIME (HRS.) ,20X,20HRANDOM DQ/DT{BTU/HR)//)
READI5.,1) TMAX
DO 7 L=1,1024
7 T{L)=1.E30
T(1l)=-1.E30
DO 2 J=2,1024
READ (5,1)7(J),QtJ)
WRITE 16,9) T(J),QlJ)
9 FORMAT(11X,2F30.4)
1 FORMAT (2F10.0)
2 IF (T{J)e.LT.~1.) GO YO 3
3 TtJ)=1.E30
WRITE (6,9) T(J),Q(J)
WRITE(6,999)
999 FORMAT(1H1)
4 1=0
IF {T1.G6GT.T{I+512))1=1+45]12
IF (Tl.GT.T(14256))1=1+4256

IF (T1.GT.T{I+128))I=1+128
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FORTRAN IV PROGRAM LISTING OF SUBROUTINE HEAT

IF {(T1laGT.T(I+ 64))I=1+ 64

IF (T1.GTT{I+ 32))I=I+ 32

IF (T1.6T.T(I+ 16))1=1+ 16

IF {T1.GT.T(I+ 8))I=I+ 8

IF (T1.GT.T(I+ 4))I=1+ 4

IF (TL.GT.T(I+ 2))I=1+ 2

IF (T1.GT.T(I+ 1)J)I=1+ 1

IF (Ke.NE.l) GO TO 5

IF (K.EQ.0) GO TO 5
TG=T{I+1)-T1

IF (TG.LT..00001) TG=T(I+2)-T1
QR=TG

RETURN
QR=QII)+{TI-T(I))#{(Q(I+1)-Q(D))/{T(I+1)-T(I))
RETURN

END
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FORTRAN 1V PROGRAM LISTING OF SUBROUTINE ARCOS

FUNCTION ARCOS (XNN)

IF (XNN.GT.1.E-18) GO TO 1
ARCOS=1.5707963268

RETURN
TPSI=SQRT(1l./(XNN2#XNN]I=1.)*XNN/ABS ( XNN)
PSI=ATAN(TPSI)

IF (PSI.LT.0.) PSI=PSI+ 3.14159265
ARCOS=PSI

RETURN

END
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CONCLUSIONS

The foregoing analysis and FORTRAN program enable assessments
to be made of the effect of heat fluxes passing through the walls of arbi-
trarily shaped objects close to the lunar surface. The program also has
the capacity to include heat releases from machinery, instruments, etc.,

which are contained within the envelope.

44




REFERENCES

Kreith, F., "Radiation Heat Transfer', International Textbook Co.,
Scranton, Pa., 1962.

"The American Ephemeris and Nautical Almanac', United States
Government Printing Office, Washington, D. C., Published Yearly.

Spitz, A. and Gaynor, F., '"Dictionary of Astronomy and Astro-
nautics'', Philosophical Library, Inc., New York 16, N. Y., 1959.

Miller, James and Miller, Robert, ""AA ICE4 - Integration with
Controlled Error. Cl1 FORTRAN II Subroutine', Westinghouse Air
Arm (AA), March 7, 1961.

Miller, James and Miller, Robert, "AA INTL . Second, Third,
and Fourth Order Runge-Kutta Integration. A FORTRAN II Sub-
routine'', Westinghouse Air Arm (AA), March 7, 1961.

45



APPENDIX I

LOGICAL PROCEDURE FOR ANALYZING A MOLAB

Preliminary

The MOLAB walls are assumed to be composed of any number of
different materials up to a maximum of five. The thermal conductivities
of these materials (expressed in units of BTU/ft-hr-°F) are assumed to
be functions of the absolute temperature and must be tabulated. The
thermal conductivities must be listed in UNIFORM temperature increments,
with the first value in the table being the thermal conductivity at 0°R. The
temperature interval (called DTEMP) must be the same for all materials.
Furthermore, the maximum temperature in the list must not exceed 975°R
and there must be 40 or less points per material used. Thus, as there
are five numbers per card, there is a maximum of eight cards per ma-

terial (Cards 004 to 043 included).

For example, the MOLAB utilizes two different materials.
Material 1 has a thermal conductivity which is a function of temperature.

Material 2 has a constant thermal conductivity at 0. 05 BTU/ft-hr-°F.

It is sufficiently accurate to tabulate the thermal conductivities at

an interval of 100°R. Thus,
DTEMP = 100. (Utilized in Card 003).

The temperatures at which the thermal conductivities are listed are thus:
0°R, 100°R, 200°R, 300°R, etc. If the table is taken to 900°R., i.e.,

10 points, then the thermal conductivities will be listed as

Card 004 k;(0) k;(100) k;(200) k;(300) k;(400)

Card 005  k,;(500) k;(600) k,(700) k;(800)  k,(900)
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plus 6 blank cards

Card 012 0. 05 0. 05 0. 05 0. 05 0. 05

Card 013 0. 05 0. 05 0. 05 0. 05 0. 05

plus 30 blank cards (i. e., 6 blank cards for this insulation plus 3 x 8 cards

for the remaining materials 3, 4 and 5 which are not used).

Mathematical Description of MOLAB Skin

Choose a right handed Cartesian coordinate system with the
positive z axis vertically upward. It is usually most convenient, but not
necessary, to place the x, y plane at ground level, the positive ''x'" axis
pointing in the direction of motion, and the '"z'" axis coinciding with some

vertical axis of symmetry, if any exists.

Decide how many points are required to describe the MOLAB
surface, up to a maximum of 32 (i.e., 60 triangles), and assign a
different number to each point, starting from and including one (1) and

omitting no numbers.

Note that the number of triangles is determined from the number

of points, p, by
No. of Triangles, NTRI = 2p - 4.
If 25 points are used to describe the body, then NTRI = 46.

List the triangles in any order, which are formed by these points,
such that when viewed from the outside, the numbers run counterclockwise

around the triangle. (Cards 077 to 136 inclusive.) Utilizing Figure 1,

10, 12, 11
12, 13, 11
1, 12, 10
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Figure 1.

Illustration of MOLAB Triangle Notation

48

S e———




Decide upon the values of the following parameters for EACH
triangle: thermal conductivity number, TCN (i.e., what material com-
prises the insulation); the thickness of the insulation in inches at this
triangle, L; the mean emissivity of the outer surface of the triangle at
its own temperature, EIOT1; the mean absorptivity of the outer surface of
the triangle to lunar radiation, EIOTM; the mean absorptivity of the outer

surface of the triangle to solar radiation, EIOTS.
List all the parameters associated with the triangle in the order
in which they will be utilized on the cards. (Cards 077 to 136 inclusive)
JJ JK JL EIOTI1 EIOTM EIOTS TCN L
Card 077 10 12 11 0.1 0.5 0.6 1 0.5
Card 078 12 13 11 0.11 0. 49 0.53 2 0.75
plus Cards 079 to 136 inclusive, some of which will be blank if less than
60 triangles are used.

Calculate the coordinates x, y, and z of each point in inches, and
arrange a list in ascending order of point numbers. (Cards 045 to 076

inclusive.)

If the point numbers are 1, 2, 3, 4, 5...., thex, y, and 2z
coordinates of 1 are 33, 34, 41; for 2, they are 27, 28, 30; and for 3,
they are 27, 36, and 42. Then the list would be

Card 045 33 34 41
Card 046 27 28 30
Card 047 27 36 42

plus Cards 048 to 076 inclusive, some of which will be blank is less than

32 points are used.
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MOLAB Cab Interior Contents

Decide upon the MOLAB interior atmosphere and calculate or

obtain the following: density of the interior gas, or RHOG 1b/ft?;

P
g
mean gaseous viscosity, kg OT MUG lb/ft-hr; mean gaseous thermal

conductivity, k_, or KG BTU/ft-hr-°F; and mean gaseous specific heat,

g
Cpg ©F CPG BTU/1b-°F. These terms partially complete Card 044,
Calculate the '"water equivalent', CV or CV BTU/°R for the con-
tents of the cab. This must be obtained by a subsidiary calculation of the
form: C,, @ Mass of atmosphere X specific heat of atmosphere at constant

volume + Z Mass of material X specific heat of that material (summed

over all materials). This is required for Card 002.

Lunar Environment

Decide upon the selenographic latitude, \°, and the longitude, B8°,
upon which the MOLAB will land (Card 002). This location will fix the
values of the local reflectivity of the surface to solar heat, r Card 003),
and the local lunar gravitational acceleration, GM ft/hr? (Card 44). It is
convenient at this stage to decide upon the direction, 8, which the MOLAB
will be pointing when it leaves the LEM vehicle, such as 6 = 45° (Northeast)
(Card 002).

The date of the anticipated landing will allow the value of the
colongitude of the sun for 00. 00 hours GMT on that date to be referenced
from '""The American Ephemeris and Nautical Almanac', i.e., °C (Card
002). Furthermore, the solar constant, G, is evaluated Card 003). The
interval in hours, from 00. 00 GMT of the date above, at which the MOLAB
is exposed to the lunar environment, namely T1l, must be decided now. At
this instant the environmental temperature inside the MOLAB is also

fixed, namely F401°R. (Both Tl and F401 on Card 003.)
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Random Heat Releases

Decide how long after landing that the heat releases by the
instruments will begin. Decide also upon the manner in which the heat
is released, i.e., what form does the function of E]roj(t) take. Represent
this function with an assembly of points. Ensure that the time of landing,
TI, is added to whatever times after landing that the heat releases take

place. Also ensure that each time uniquely defines a heat flux.

The MOLAB is discharged onto the lunar surface at 13.00 hr GMT.
The only heat released internally occurs 17 hours later when a radio is

switched on which releases energy at the rate of

20 (1 - cos wt/2) BTU/hr

where t is time in hours from the instant of switching on. The transmission

lasts for 3 hours and is then switched off.

A graph of internal heat release against time will then appear as

shown in Figure 2.

A suitable table to be accommodated in the program which would

adequately represent this curve would be as follows:

Card TR QR
137 30.0 0.0
138 30.25 1.52
139 30.5 5. 86
140 30.75 12, 34
141 31.0 20.0
142 31.25 27.66
143 31.5 34,14
144 31.75 38.48
145 32.0 40.0
146 32.25 38.48
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(table continued)

Card TR QR

147 32.5 34.14
148 32.75 27.66
149 33.0 20.0

150 33.001 0.0

151 -10.0

Note the value -10.0 has been placed in the time listing of the last card
(Card No. 151) so that the remainder (Cards 152 to 1160 inclusive) may
be omitted. If the Cards 152 to 1160 were not omitted, they would be

required to be blank because the above is the only heat released for the

duration of the run.

Program Requirements (All contained upon Card 001)

Decide upon the length of the period on the moon that is of
interest. Add to this the period after 00. 00 GMT that the MOLAB lands,

namely T1l. This fixes the parameter TE,

The output is printed first at time T1, the start, and then in
uniform increments, TP, Thus, the print increment in hours required, TP,

may be ascertained.

The maximum time step size in hours which the program will
attempt to make, P, depends upon the form of the qgross function. In
general, there is no way of knowing what value to use in order to avoid
floating point traps. Previous analyses have successfully used TP = 8.
However, usually the printout interval, TP, is less than the maximum
time step size which can be tolerated, and the program will automatically

use TP instead of P.
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The originators of the refined Runge-Kutta method used here
recommend that the dimensionless error bounds be of the order of one
hundred times minimum equals maximum, i.e., maximum error bound,
E2 = minimum error bound, El1 X 100. The program has been successful

with E2 as large as 10°%; E1 = 10™%,

If the time step size cannot be reduced inside the program to
such a value that the Runge-Kutta procedure will converge, then the
program will use the minimum step size a number of times, irrespective
of error, and attempt to evade this region. The number of times the
program will attempt this, NCI, is an input parameter. NCI = 10 has not

given trouble to date.
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APPENDIX II

DERIVATION OF LOCAL OUTER
SURFACE TEMPERATURE, Fiij

Assuming a small plane area of surface, 6§A4,, the heat flux into

the surface directly from the sun is

G cos £ 6A,

where G is the solar constant; cos € is the cosine of the angle between the
normal to the plane area, 6A), and the direction of the sun's rays; and ng
is the direction cosine between the normal to the moon's surface and the

direction of the sun's rays. Thus, the amount of this energy absorbed is

[]

[ W e
A TIA
@]
ow
w
oA
i
[

€1ots G cos ¢ 5A1

where ejpots is the absorptivity of the outer surface to solar radiation.
The energy transmitted from the moon to the elementary area is
Em Am Fma

where E,, is the emissive power of the moon; Ay, is the area of the moon;

and Fy,, is the shape factor from the moon to surface (1). However,

A Fry = 6A, Fi

Hence, the heat flux from the moon to surface (1) is
Em 6A) F

and heat absorbed is

Em 6A]_ Flm €lotm

where e ot is the absorptivity of the body at lunar surface temperatures.

The reflected sun light from the sun to the moon to MOLAB is
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GnsrmAmFm1=Gnsrm6A1F1m with Oéns§l

where r, is the reflectivi'ty of the lunar surface to the solar heat. Hence,

the amount absorbed by the surface is
elots Tm G ng 8A; Fin with 0 = ng £ 1

Having neglected re-reflections, the above three terms are the only

sources of energy.

This inward heat flux is equal to the sum of the heat radiated away
by the body surface, plus the amount of heat conducted away from the back
of the surface. However, the amount conducted away from the surface is
quite small compared with the other heat fluxes and can conveniently be

neglected. Hence we have
elotm Em Fim 8A1 + (ejots Tm G ng Fim 6A,),

+ (eots G cos ¢ 6A;)i= €lot1 O Flij4 0A,

where Flij is the surface temperature of 6A;, o is the Stefan-Boltzmann
constant and ejot) is the emissivity of surface (1) at temperature Fiij.

When ng = 0 and cos ¢ < 0, neglect ( );, and when ng < 0, neglect

( dijand ( ).

4
Fim [ejotm Em t (e10ts Tm G ngljj]+(e ot G cos €)i = eor) © Fij

1
_ Fim [elotm Em t (eots Tm G ns)ii] + (e ,otg G cos E)i 4
Flij = - = . (10)
10t1

where group (i) is neglected if ng 2 0 and cos € < 0, (i.e., when the sun
shines on MOLAB, but not directly on the plane, 5A;) and groups (i) and
(ii) are neglected if ng < 0, (i.e., when the sun does not shine on the

MOLAB).
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- 2

Evaluation of Parameters in Equation 10

A number of the parameters in Equation 10 require determination.

These are F g» COS € and Em.

1m’ B

Shape Factor, F 1m

As described earlier, the moon has been assumed to be an infinite
flat plane within the view of the MOLAB, or in particular, within the view

of the small area, §A;. The shape factor for this configuration! is
1
Fim = P (1 - np)

where n is the cosine of the angle between the outward normal from §A,
and the normal from the lunar surface. To determine the direction of the
outward normal from 6A ) requires coordinating the plane more specifically.
Regardless of how complicated the MOLAB shape is, it will be relatively
easy to pick out a number of points on the surface. However, the only
geometrical shapes which can be bounded by these points without com-
plicated compatibility conditions are triangles; consequently, triangles

were chosen.

To ensure that the three points in space which define a triangle
are treated consistently, it was decided to number them such that when
the triangle is viewed from OUTSIDE the MOLAB, the numbers 1, 2, and 3
run COUNTERCLOCKWISE as shown in Figure 3, Any one of them may be

chosen as 1 provided that the above condition is maintained.

Hence if T;; is a vector from 1 to 2 and T;3 is a vector from 1 to 3,

then a unit normal perpendicular to1l, 2, and 3 is

ri Xry

Tz XT3l

This unit vector, when the points are expressed in MOLAB centered

Cartesian coordinates such that the z axis is perpendicular to the lunar

surface, has direction cosines:
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Derivation of MOLAB Triangle Outward Normal
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Nx
In x direction, £ = —
A
N
In y direction, m, = —%
A

. Ng
In z direction, n, = —
A

where

(vz - v1) (23 - 21) - (22 - 21) (y3 - v1)

Z
(

y = (zz2- z1) (%3 - x1) - (x; - x)) (z3 - z,)

Z
]

z = (xz-x3) (ys =y - {y2 - v1) (x5 - x,), and

>
]

1
(N, 2 + NY"- + N,?%)2

Note here that the area of the triangle, A, is determined by

2]

A =

Thus as the axes have been chosen such that the ""z"" axis is perpendicular
to the lunar surface, then n, is the direction cosine required for the shape

factor in Equation 1.

Normal Solar Direction Cosine, ng

The normal solar direction cosine, or cosine of the zenith angle,
is clearly a function of time depending as it does upon the motion of the
moon around the sun and also upon the latitude and longitude of the MOLAB,
The rotation of the moon around the sun is not uniform but if a period is
based on a mean synodic month, then the maximum deviation from this is
less than 2%3. Another deviation in the moon's motion is that the equatorial
plane is tilted from the ecliptic with an inclination of up to about 1. 75°.

However, for most purposes it is sufficiently accurate to assume that the
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sun rotates uniformly in the moon's equatorial plane with a period of
T (one lunar day) and with a direction from lunar east to lunar west.

Consequently, the longitude of the sun on the moon, Mg, at any time is
Ag = A\g - 360t/

where )‘o is the longitude of the sun when time, t = 0. To determine the

constant, \,, it is convenient to refer to the "Ephemeris"z. The "Ephemeris"

for any year tabulates the colongitude, C, of the moon at 00. 00 hrs (GMT)
for each day of that year. The colongitude is the longitude of the morning
terminator, and hence the longitude of the sun, A, at time t =0 for

that day is
Ag=90-C .

It is convenient to erect a local coordinate system at the point on
the moon at which the MOLAB is oriented. This is done, as shown in
Figure 4, by taking the z, axis at longitude, X\, and latitude, 3, in the
direction of the local zenith, the x, axis east and the y, axis north. With

these coordinates, the direction cosines of the sun (at longitude \g) are

x, axis £, = - sin A\ (11)
y o ermns w1z — ~ S1Nn 5 cos AN (12)
z, axis n, = cos 3 cos A\ (13)

where

Al = A -2 .

However, as the x and y MOLAB fixed axes may not coincide with
those fixed on the lunar surface (the z axis will still coincide), it is neces-
sary to introduce an angle, 6, which determines the rotation of the MOLAB
x axis from the lunar surface x, axis, as shown in Figure 5. Thus trans-
forming the direction cosines of the unit sun vector in Equations 11, 12,

and 13 yields
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Lunar North

Pole, =z,
\ MOLAB
\ East, x;

MOLAB
Zenith,
Z2

Location of

Center of MOLAB, \ B

Moon

x1 Longitude 0

. Y1
Latitude 0

Figure 4. Orientation of Local Lunar Surface Coordinates
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MOLAB
Zenith,
) & z

A

Figure 5. Transformation from Local Lunar Surface Coordinates
to MOLAB Fixed Coordinates
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X axis L, = - (cos 6 sin AN + sin 8 sin 6 cos A)

y axis mg = sin 0 sin AX - sin 3 cos 6 cos A\

z axis ng = cos cos A\ .

Note that, as any excursion the MOLAB will make on the lunar
surface will be small compared with the circumference of the moon, A
and B are effectively constant. Consequently, to represent any motion

of the MOLARB, it is only necessary to represent the angular displacement,

0, as a function of time.

Cosine of Angle Between Sun and Plane Normal, cos ¢

As unit vectors describing the direction of both the sun and the
normal of 6A; are available in MOLAB fixed coordinates, then cos ¢ is

easily determined by the scalar product of the two unit vectors, thus

cose = bgdyt+tmgmy+ngn, .

Emissive Power of the Moon, E,,

To determine the emissive power of the moon, a curve was used
which plots lunar equatorial temperature against time. The local time
in degrees, counting from local lunar moon, at the longitude, A\, in
question is determined by the instantaneous longitude of the sun, with
respect to \, namely AX. This term, A\, frequently has to be converted
to a phase fraction as many time bases are expressed as such. The con-

versions are of the form, phase fraction,

o A an
T 360 or 2w

Thus, from the phase fraction, the instantaneous lunar equatorial

temperature is determined. To determine the temperature at any other
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latitude, B, the one sixth power of cos 3 gives the temperature variation
with sufficient accuracy for all latitudes up to 45°. Thus, the temperature

at latitude is

1/6
T = T3=0 cos B
As most lunar temperatures are in degrees Kelvin, Ty; is converted to

degrees Rankine by

Ty = 1.8 X T

However, because the moon effectively radiates as a black body at its

own temperature, the emissive power of the moon may be calculated as
Emissive Power, E, = ¢ X Tm4

Substitution of the above terms in Equation 1 enables it to be

solved for the MOLAB adiabatic surface temperature, F1ij , namely

1
(1 - np) [elot1 Emnt (elots r, G nS)ii] + (2 e, ots G cos £)i 13

Fig; =
) 2 elotl o
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