D

 SP

Technical Report No. 32-774

Stiffness Matrix Structural Analysis

B. Wada

GFO PRICE CFSTI PRICE(S) \$.

ATION

Hard copy (HC) Microfiche (MF)

ff 653 July 65

LSION LABORATORY Ţ Þ INSTITUTE OF TECHNOLOGY ίA. DENA. CALIFORNIA

October 31, 1965

Z. Ol

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Technical Report No. 32-774

Stiffness Matrix Structural Analysis

B. Wada

M.E. alpen M. E. Alper, Manager

アンター

Applied Mechanics Section

JET PROPULSION LABORATORY CALIFORNIA INSTITUTE OF TECHNOLOGY PASADENA, CALIFORNIA

October 31, 1965

BLANK PAGE

Section

 \blacksquare

 $\tilde{\mathcal{F}}$

CONTENTS

FIGURES

Å

美国家

t

IV

FIGUR**ES** (**Cont**'**d**)

]

IV $\mathbf{v} = \mathbf{v}$, we have a set of $\mathbf{v} = \mathbf{v}$, we have a set of $\mathbf{v} = \mathbf{v}$

!

|

BT

i

v

r: III and III
In the contract of the contract

I

FOREWORD

This document supersedes Technical Memorandum N**o**. 33-75, dated February 12*,* 196:2, titled S*tij*f*ness Matrix* S*ti*'*uctu*r*al Anal*!*isis*. The computer program has been modified to meet the needs of the engineers that have used the program. The major *m*odifications are:

- 1. Input data is part of output format
- 2. Evaluation of mass properties
- 3. Thermal analysis
- 4. Jacobi's method for eigenvalue and eigenvector evaluation
- 5. Orthogonality check
- 6. Addition of a non-circular rigid-jointed member.

The original program was modi**fi**ed by Lincoln Laboratory of MIT to increase the degrees of freedom that can be handled. The identification given for the program by Lincoln Laboratory is STEIGR.

BLANK PACE

ו
נו

ABSTRACT

Ţ

A computer program is described that solves structu al problems having lumped masses connected by weightless members. The program is capable of handling 136 degrees of freedom with the option of using any one of five different member types.

Using the stiffness formulation, static deflections and loads, thermal deflections and loads, eigenvalues and eigenvectors can be evaluated.

Mutho

 14376

I. INTRODUCTION

A. General Description

A program has been developed at the Jet Propulsion Laboratory (JPL) for the analysis of structural frameworks. Since the program is intended for use as a design tool, particular attention has been given to simplicity and flexibility of input and output. It may thus be used by personnel who have had little training in computer utilization, and input may easily be revised to reflect changes in a design.

The program is coded in FORTRAN-II version-3 language, operating under IBSYS, and may be run at any IBM 7090 installation whose system is compatible with that of the Jet Propulsion Laboratory and whose machine has a 32K memory.

The program has been written for the analysis of five types of structure:

1. Three-dimensional structure, pinned joints

- 2. Three-dimensional structure, rigid joints, equal member cross-section moment of inertia
- 3. Planar structure, rigid joints, loaded in-plane
- 4. Planar grid structure, rigid joints, loaded normal-toplane
- 5. Three-dimensional structure, rigid joints, doubly symmetric cross-sections

B. Function of Program

A structural framework will be defined as a stable system of uniform, weightless members, and joints at which loads are applied and weights are lumped. Such a framework and its environment may be described by the following quantities:

- 1. Coordinates of joints
- 2. Geometric and elastic properties of members

- 3. Locations of restraints
- 4. Weights at joints

 Λ

- 5. Static loads at joints
- 6. Temperature changes of members
- 7. Acceleration of a joint during free vibration in a normal mode

Given these as input, the program will perform the computations to provide the following as cutput:

- 1. Genter of weight and weight moments of inertia of the structure
- Deflections and member loads for static loadings $\overline{2}$
- 3. Reactions and equilibrium checks at each joint for static loadings
- 4. Deflections and member loads for thermal loadings
- 5. Frequencies, mode shapes, and member loads during free vibration in normal modes
- 6. Reactions and c_{4} , c_{9} , in checks at each joint for dynamic loadings a
- 7. Orthogonality cher', of normal modes

C. Method of Analysis

The program enters the stiffness matrix K for a particular control of sucture from geometrical data, and performs stake and normal-mode analyses by solving the equations

$$
\mathbb{H} \neq \mathbf{K}^{\mathsf{-1}} \, \mathbf{F} \, \text{and} \, \frac{1}{\omega^2} \, \mathbf{U} = \mathbf{K}^{\mathsf{-1}} \, \mathbf{M} \, \mathbf{U}
$$

where F is a matrix of static loads, M is a matrix of inertia terms, U is a matrix of static deflections or a normal-mode shape, and ω is the circular frequency of a normal mode. Member loads are computed from a set of deflections U and geometrical properties of the members.

The thermal loads are computed by first calculating member loads with all degrees of freedom fixed and forces at each joint required to prevent joint motion caused by temperature increase. The thermal deflections of joints and thermal loads in members are obtained by superimposing the member loads evaluated above to the member loads and joint defections evaluated by applying forces equal, but opposite in sign, to the joint-restraining forces to the structure.

The stiffness matrix method of analysis was chosen over possible techniques (e.g., flexibility matrix, force relaxation) because it most fully satisfies the following criteria:

- 1. That it provide a complete analysis (deflections, loads, normal modes)
- 2. That input be in a simple form
- 3. That it analyze statically indeterminate structures with no extra effort on the part of the user
- 4. That it be adaptable to any type of framework
- 5. That a seful program be easy to write
- 6. That the computer be utilized efficiently with respect to storage capacity and running time
- 7. That the accuracy of the solution be sufficient for engineering use and be predictable

D. Operating Experience

The program has been used extensively during design of various spacecraft vehicles. In the few cases where prototype experimental data are available, correlation with predicted results is good. Analyses of structures of 130 degrees of freedom have been performed with no accuracy problems, as indicated by a check on static equilibrium of the structure and orthogonality of the modes.

Machine time on the 7094 for complete analyses (static and normal mode) varies from 1 min for 20 degrees of freedom to 20 min for 130 degrees of freedom.

The input for the original Mariner-A basic structure, as an example, could be written in about 2 hr after appropriate idealization. (The structure was of 90 degrees of freedom, statically indeterminate to the 48th degree.) Key-punching the data cards required 20 min; machine time was about 10 min. More than 25 revisions to the original data have been run during the design process.

Some experimentation has been done with very poorly conditioned matrices (in particular, Hilbert matrices) to determine the effect of conditioning on accuracy. Empirical results of these tests are presented in Section II-K.

 \mathcal{L}

- W_{\perp} component of weight (or weight moment of inertia) in x, direction
- W_{ij} = i^{α} weight component of i^{α} joint
- $X_{\mathbb{Z}}^{n}$ trial vector, mth mode, i^{tt} iteration
- X trial vector
- $x_{i+1}^{(i)}$ $i^{\scriptscriptstyle\mathrm{th}}$ compenent of $\mathbf{X}_{\mathbf{u}}^{\scriptscriptstyle\mathrm{int}}$
- $\mathbf{X}^{(k)}$ k^* trial vector
- coordinate of joint p in x, direction \mathfrak{X}_{21}
- reference coordinate system \mathbf{r} :
- unit vector in x_i coordinate direction x,
- location of center of weight from x_i axis \bar{x}_i
- Z transformation matrix
- $\mathbf{Z}^{(k)}$ $k^{\scriptscriptstyle \text{th}}$ transformation matrix
	- coefficient of thermal expansion α
- constant $(t,$
- cosine of angle between member axis and x_i axis
- constant
- eigenvalue, m^{er} mode = $1/\omega_m^2$ λ
- Poisson's ratio
- initial off-diagonal norm \mathbf{r}
- final off-diagonal norm
- $i^{\rm \scriptscriptstyle th}$ off-diagonal norm
- constant \mathbf{r}
- accuracy requirement ρ
- ξ, unit vector in 7th coordinate direction of memberoriented coordinate system
- member coordinate system ž,
- circular frequency, rad/sec

Sign Convention:

- 1. Right-handed coordinate systems
- 2. Forces and displacements positive in positive coordinate directions
- 3. Moments and rotations positive by right-hand rule about positive coordinate axes

B. Derivation of Matrix Equations

At any joint in a structure, a component of load f_i applied to the joint must be in equilibriam with member loads reacting on the joint in the same direction. Since inember loads in a linear structure are proportional to d_0 flections u_i , the expression of force equilibrium in an n degree-of-freedom system may be written

$$
f_i = \sum_{j=1}^{n} k_{ij} u_j \qquad i = 1, n \tag{1}
$$

where the k_{ij} are constants of proportionality. In matrix notation, the same equation is

 $F = KU$

When a joint undergoes free vibration in a normal mode m , its component deflections must be of the form

$$
u_i = u_{im} \sin \omega_m t
$$

The inertia load acting in the same direction is

$$
f_i = -m_i u_i = m_i u_{i m} \omega_m^2 \sin \omega_m t \qquad (2)
$$

Substituting this load into the expression for ferce equilibrium.

$$
n_i u_{im} \, o_{ni}^2 = \sum_{j=1}^n k_{ij} u_{jn} \qquad i = 1, n
$$

or. in matrix notation

$$
\mathbf{MU}_m \backsim^{\mathbb{I}}_{m} \equiv \mathbf{K} \mathbf{U}_m
$$

The analysis thus involves solution of two matrix equations: knowing a set of loads F to compute static displacements **U** from

$$
\mathbf{F} = \mathbf{K}\mathbf{U}
$$

and knowing the inertia of the structure M to compute normal-mode shapes and frequencies (eigenvectors and eigenvalues) \mathbf{U}_m and ω_m^2 from

$$
MU_m \omega_m^2 = KU_m
$$

Member loads may be computed from static displacements **U** or properly normalized mode shapes U_m .

C. Generation of the Stiffness Matrix

In Eq. 1, if all displacements $u_k = 0, k \neq j$, the resulting equations are

$$
f_i = k_{ij} u_j \qquad i = 1, n
$$

The coefficient k_{ij} is thus the force component in the i^{th} direction per unit deflection in the ith direction, all other deflections being zero.

1. Matrices for the members meeting at joint I are computed as

for member $(1-2)$ and

$$
\begin{cases}\nf_1 \\
f_4\n\end{cases} = 10 \begin{bmatrix}\n0.5 & 0.5 \\
0.5 & 0.5 \\
-0.5 & -0.5 \\
-0.5 & -0.5\n\end{bmatrix} (u_1)
$$

for member $(1-3)$.

2. The stiffness matrix of the structure will be set up in an 8×8 array with forces (and deflections) in the order

 f_1, f_2, f_3, f_4 .

3. Due to unit component deflections of joint 1, forces are produced which are the elements of the first two columns of the stiffness matrix. These forces, being reacted by loads in the members at juint 1, are determined by adding the matrices of members 1-2 and 1-3 as follows:

$$
f_{1}
$$
\n
$$
f_{2}
$$
\n
$$
f_{3}
$$
\n
$$
f_{4}
$$
\n
$$
f_{5}
$$
\n
$$
f_{6}
$$
\n
$$
f_{8}
$$
\n
$$
f_{9}
$$
\n
$$
f_{10}
$$
\n
$$
f_{11}
$$
\n
$$
f_{12}
$$
\n
$$
f_{13}
$$
\n
$$
f_{14}
$$
\n
$$
f_{15}
$$
\n
$$
f_{16}
$$
\n
$$
f_{17}
$$
\n
$$
f_{18}
$$
\n
$$
f_{19}
$$
\n
$$
f_{10}
$$
\n
$$
f_{10}
$$
\n
$$
f_{11}
$$
\n
$$
f_{10}
$$
\n
$$
f_{11}
$$
\n
$$
f_{10}
$$
\n
$$
f_{11}
$$
\n
$$
f_{12}
$$
\n
$$
f_{13}
$$
\n
$$
f_{14}
$$
\n
$$
f_{15}
$$
\n
$$
f_{16}
$$
\n
$$
f_{18}
$$
\n
$$
f_{19}
$$
\n
$$
f_{10}
$$
\n
$$
f_{11}
$$
\n
$$
f_{12}
$$
\n
$$
f_{13}
$$
\n
$$
f_{14}
$$
\n
$$
f_{15}
$$
\n
$$
f_{16}
$$
\n
$$
f_{18}
$$
\n
$$
f_{19}
$$
\n
$$
f_{10}
$$
\n
$$
f_{11}
$$
\n
$$
f_{12}
$$
\n
$$
f_{13}
$$
\n
$$
f_{14}
$$
\n
$$
f_{15}
$$
\n
$$
f_{16}
$$
\n
$$
f_{18}
$$
\n
$$
f_{19}
$$
\n
$$
f_{10}
$$
\n
$$
f_{11}
$$
\n
$$
f_{12}
$$
\n
$$
f_{13}
$$
\n
$$
f_{14}
$$
\n $$

4. The complete matrix is formed by similar superpositions:

<u>el</u>

 ϵ

 $\frac{9}{t}$

- 5. Restraints are introduced in the form $u_{11} = u_{12} = u_{12}$ $= 0$. Multiplying these known deflections through the matrix, the first, second, and last columns make no contribution to the product and may be omitted from the operation. Also, the forces f_{11}, f_{12}, f_{32} are unknown reactions to be determined from the unrestrained deflection components.
- 6. Analysis for the unknown deflections thus reduces to solution of the equation

$$
\begin{pmatrix} f_{21} \\ f_{22} \\ f_{13} \\ f_{24} \\ f_{25} \\ f_{26} \end{pmatrix} = 10^4 \begin{pmatrix} 2 & 0 & 0 & 0 & -1 \\ 0 & 1 & 0 & -1 & 0 \\ 0 & 0 & 1 & 0 & -0.5 \\ 0 & -1 & 0 & 2 & 0.5 \\ -1 & 0 & -0.5 & 0.5 & 1.5 \end{pmatrix} \begin{pmatrix} u_{21} \\ u_{32} \\ u_{33} \\ u_{34} \\ u_{41} \end{pmatrix}
$$

In summary, the program generates the stiffness matrix as follows:

- 1. Step through the joints consecutively.
- 2. For joint p , search list of member numbers for v .
- 3. For each member pq , generate and store (temporarily) the matrix columns corresponding to deflections \mathbf{u}_v . The submatrices $\mathbf{K}_{\mu\nu}$, $\mathbf{K}_{\mu\nu}$ have the following locations:

- √. Search list of component restraints; delete rows and contract stiffness matrix columns vertically.
- 5. Store contracted columns into main stiffness matrix array, except where a column corresponds to a zero deflection component as determined by checking the list of component restraints.

A few properties of the stiffness matrix are evident from its derivation:

1. It is symmetric, a consequence of Maxwell's reciprocity theorem.

JPL TECHNICAL REPORT NO. 32-774

- 2. Each diagonal term is positive and is large compared with all other elements in its row, since diagonal blocks are formed by superpesition of off-diagonal blocks.
- 3. Stability of the structure is reflected in the linear independence of rows, after rows have been deleted to account for restraints.
- .. It is generally sparse (many elements are zero), since the position of matrix elements reflects the presence of members.

D. Generation of Weight and Load Matrices

The matrices M and F are generated by appropriate storage of input quantities and contracted to account for restraints in the same manner as for stiffness matrix columps. The diagonal matrix M is stored as a vector.

Loads may be specified either as concentrated forces or moments on the joint, or as linear and/or rotary accelerations of the structure as a rigid body. Loads at joint p corresponding to acceleration in the *i*th coordinate direction a_i are computed as

$$
f_{pi}=m_{pi}a_i
$$

E. Weights, Center of Weight, and Weight Moments of Inertia About Center of Weight

The weights are obtained by adding the values in each ith coordinate direction separately as

$$
\sum_{p=1}^m W_{\mu j} \quad j=1,2\cdots 6
$$

where *m* is the number of joints and W_{μ} is the *j*th weight component of the p^{th} joint.

The center of weight and weight moment of inertia about center of weight are calculated assuming the first weight component represents the weights in all three directions. The center of weight and weight moment of inertia are calculated as

$$
\overline{x}_{j} = \frac{\sum_{p=1}^{m} W_{p1} x_{pj}}{\sum_{p=1}^{m} W_{p1}} \nI_{jj} = \sum_{p=1}^{m} W_{p1} (x_{pk}^{2} + x_{pl}^{2}) - \sum_{p=1}^{m} W_{p1} (\overline{x}_{k}^{2} + \overline{x}_{l}^{2}) \quad (j \neq k \neq l)
$$

 (4)

JPL TECHNICAL REPORT NO. 32-774.

and

$$
I_{jk} = \sum_{p=1}^{L'} W_{p1} x_{pj} x_{pk} - \overline{x}_j \, \overline{x}_k \sum_{p=1}^{m} W_{p1} \quad (j \neq k)
$$

The terms \overline{x}_i , x_{pj} , I_{jj} , and I_{jk} are defined as location of center of weight along x_j direction, coordinate of joint p in x_i direction, weight moment of inertia about the x_j axis through the center of weight, and cross-product weight moment of inertia about center of weight with respect to x_i and x_k axes, respectively.

F. Static Analysis

Given the matrices K and F , the deflections of U are computed from

$$
U=K^{-1}F
$$

by gaussian elimination. No row interchanges or pivot tests are performed, since the diagonal of the stiffness matrix is always strong; i.e., the diagonal element is the largest number in its row. Overflow or underflow during an arithmetic operation is not sensed, so the elimination process continues with whatever remains in the accumulator.

Experience with this basic procedure has been good. It has provided results to highly ill-conditioned problems which compare favorably with those computed by more sophisticated techniques.

Static member loads are computed from the deflections U and the geometry of the structure. Appropriate equations for each member type are given in Appendix B.

Equilibrium check at each joint is made by summing the various loads (member loads plus external loads) in the x, directions. The unbalanced loads at the restrained joints are the reaction loads on the structure.

G. Thermal Analysis

The thermal analysis is performed as follows:

- 1. The load in each member of the structure induced by temperature changes, with all joints restrained, are calculated and stored.
- 2. Equilibrium checks at all originally unrestrained joints of the structure are made to determine the loads imposed by the temporary restraints. The restraint forces on the joints are stored.
- 3. Forces equal and opposite to the restraint forces (determined in step 2) are applied as static loads to the structure and member loads and joint deflections are calculated (Section II-F).
- 4. The addition of member loads calculated in steps 1 and 3 give the thermal loads of the structure, and the deflections calculated in step 3 are the thermal displacements of the structure.

H. Normal-Mode Analysis

An iterative procedure for computing solutions U_m and ω_m of the equation

$$
KU_m = \omega_m^2 MU_m \qquad (3)
$$

is developed in this Section.

First, the above equation will be transformed into

 $AV_m = \omega_m^2 V_m$

OI

 $(\mathbf{A}-\omega_m^2\mathbf{I})\mathbf{V}_m=0$

where A is real and symmetric. Solutions to this equation have the following properties (Refs. 1-6):

- 1. There are *n* solutions ω_m^2 , V_m , where **A** is of order $n \times n$.
- 2. The eigenvalues ω_m^2 are all real and positive, and the eigenvectors V_m are real.
- 3. The eigenvectors are orthogonal with respect to the unit matrix

$$
\mathbf{V}_k^T \ \mathbf{V}_m = 0 \qquad (k \neq m) \tag{5}
$$

- 4. The length of an eigenvector is indeterminate; i.e., if V_m is a solution, $\alpha_m V_m$ is also a solution, where α_m is a constant.
- 5. Any vector X of order n may be represented by a linear combination of eigenvectors

$$
\mathbf{X} = \sum_{m=1}^{n} \alpha_m \, \mathbf{V}_m \tag{6}
$$

- There are two principal reasons for performing the transformation:
- 1. Equation 3, representing an undamped structure, can only have real, positive eigenvalues. It is possible, however, for roundoff during operations on K and M to produce an equation of similar form with

imaginary components in its solution. The convergent process, using real arithmetic, will not converge on such solutions. This problem is avoided if the matrix A in Eq. 4 is kept symmetric.

2. Use of the orthogonality condition is simpler if eigenvectors are orthogonal with respect to the unit matrix rather than to another matrix

$$
\mathbf{V}_k^T \mathbf{B} \mathbf{V}_m = 0 \qquad (k \neq m)
$$

The transformation is effected by defining

$$
\mathbf{M} = \mathbf{M}^{1} \mathbf{M}^{1} \tag{7}
$$

where, since M is a diagonal matrix of positive elements, M^{i_2} is also a diagonal matrix whose element in the i^{th} row is $(m_i)^{r_2}$, and the corresponding element in M^{-r_2} is $1/(m_i)^{5/2}$. Also, let

$$
\mathbf{V}_m = \mathbf{M}^{T} \cdot \mathbf{U}_m \tag{8}
$$

Substituting Eq. 7 into Eq. 3,

$$
\mathbf{K}\mathbf{U}_m = \omega_m^2 \mathbf{M}^{12} \mathbf{M}^{12} \mathbf{U}_m \tag{9}
$$

Substituting Eq. 8 into Eq. 9,

$$
\mathbf{M}^{-1} \cdot \mathbf{K} \mathbf{U}_{\mathbf{m}} = \omega^2 \cdot \mathbf{V}_{\mathbf{m}}
$$

or

$$
\mathbf{M}^{-1} \circ \mathbf{K} \mathbf{M}^{-1} \circ \mathbf{V}_m = \omega_m^2 \mathbf{V}_m
$$

Since K is symmetric, the product

$$
\mathbf{A} = \mathbf{M}^{-1} \cdot \mathbf{K} \mathbf{M}^{-1} \cdot
$$

is symmetric and the desired formulation

$$
\mathbf{A}\mathbf{V}_m = \omega_m^2 \, \mathbf{V}_m
$$

is achieved, where

$$
\mathbf{U}_m = \mathbf{M}^{-1/2} \, \mathbf{V}_m
$$

and ω_m are the desired solutions.

The solutions of Eq. 3 corresponding to smallest values of ω_m are of primary importance in structural applications, since larger deflections and loads occur during vibration at lower frequencies. The iterative process to be described converges most readily on the eigenvalue of largest magnitude, so a transformation of Eq. 4 is performed:

$$
CV_m = \lambda_m V_m \tag{10}
$$

where $C = A^{-1}$ and $\lambda_m = 1/\omega_m^2$

The inverse is computed by straightforward gaussian elimination on the upper triangular half. No row interchanges or checks for division by zero pivot elements are performed.

Solutions of Eq. 10 for the largest value of λ_m and the corresponding value of V_m will now be found. From Eq. 6 any vector

$$
\mathbf{X} = \sum_{m=1}^{\infty} \alpha_m \mathbf{V}_m
$$

$$
\mathbf{C}\mathbf{X} = \mathbf{C} \left(\sum_{m=1}^n \alpha_m \mathbf{V}_m \right)
$$

$$
= \sum_{m=1}^n \alpha_m \mathbf{C}\mathbf{V}_m
$$

and similarly,

 $SO₂$

$$
\mathbf{C}(\mathbf{C}\mathbf{X}) = \mathbf{C}^2\mathbf{X} = \mathbf{C} \left(\sum_{m=1}^n \alpha_m \lambda_m \mathbf{V}_m \right)
$$

$$
= \sum_{m=1}^n \alpha_m \lambda_m^2 \mathbf{V}_m
$$

or, in general,

etc.

$$
\mathbf{C}^k\mathbf{X}=\sum_{m=1}^n\alpha_m\,\lambda_m^k\,\mathbf{V}_m\qquad \qquad (11)
$$

If the multiplication process is continued, the right side of Eq. 11 will eventually be dominated by powers of the largest eigenvalue λ_1 :

$$
\mathbf{C}^k \mathbf{X} \to \alpha_1 \lambda_1^k \mathbf{V}_1 \qquad k \to \infty
$$

In practice, to keep the components of $\mathbf{X}^{(i+1)} = \mathbf{C} \mathbf{X}^{(i)}$ from becoming too large, $X^{(i+1)}$ is normalized after each multiplication so that its largest component is 1. (This is permitted since the lengths of the V's are arbitrary.) Normalized versions of $X^{(i)}$ are multiplied through C until $X^{(k)}$ converges to V_1 and the normalization factor to λ . Multiplications continue until the maximum difference between components of $X^{(i)}$ and $X^{(i+1)}$ is within a given tolerance, or until a maximum number of cycles has been performed.

For obvious reasons, the foregoing procedure is called the "power method." It is a generalization of Stodola's method, where successive guesses at a mode shape $X_{\omega}^{(i)}$ are used to compute better guesses:

$$
\mathbf{CX}_{m}^{(i)} = \lambda_m \mathbf{X}_{m}^{(i+1)}
$$

At any stage in the convergent process, an approximate eigenvalue of better accuracy than the current eigenvector is given (Ref. 1) by Rayleigh's Quotient, defined as

$$
\lambda_r = \frac{X^{\tau}CX}{X^{\tau}X}
$$

If, in Eq. 6, $\alpha_1 = 0$

$$
\mathbf{X} = \sum_{m=2}^{\infty} \alpha_m \mathbf{V}_m
$$

and

$$
\mathbf{C}^k\mathbf{X}=\sum_{m=2}^n\alpha_m\,\lambda_m^k\,\mathbf{V}_m
$$

then convergence will be to the next largest eigenvalue λ_2 and eigenvector V_2 . This condition may be obtained by application of the orthogonality condition of Eq. 5 to keep an arbitrary vector X orthogonal to V , (or any known eigenvectors). Thus if V_1 is known, the transformation of an arbitrary vector X to a vector X_1 orthogonal to V_1 is as follows:

$$
\mathbf{X} = \sum_{m=1}^{n} \alpha_m \mathbf{V}_m
$$

\n
$$
\mathbf{V}_1^T \mathbf{X} = \sum_{m=1}^{n} \alpha_m \mathbf{V}_1^T \mathbf{V}_m = \alpha_1 \mathbf{V}_1^T \mathbf{V}_1
$$

\n
$$
\mathbf{V}_1^T \mathbf{X}_1 = 0 = \mathbf{V}_1^T \mathbf{X} - \alpha_1 \mathbf{V}_1^T \mathbf{V}_1
$$

\n
$$
\mathbf{X}_1 = \mathbf{X} - \alpha_1 \mathbf{V}_1
$$

\n
$$
= \mathbf{X} - \frac{\mathbf{V}_1^T \mathbf{X}}{\mathbf{V}_1^T \mathbf{V}_1} \mathbf{V}_1
$$

Similar transformations orthogonalize X to other eigenvectors V_z , V_z , etc.

When eigenvalues are close, say

$$
\Rightarrow \lambda_2
$$

the trial vector becomes

$$
\mathbf{X}^{(k)} = \alpha_1 \lambda_1^k \mathbf{V}_1 + \alpha_2 \lambda_2^k \mathbf{V}_2
$$

 λ_1 =

in which powers of λ_1 cannot dominate those of λ_2 for any reasonable k. The process described above will be modified to speed convergence to the larger of close eigenvalues. As before,

$$
\mathbf{X} = \sum_{m=1}^{n} \alpha_m \mathbf{V}_m
$$

Given an arbitrary number p ,

$$
\langle \mathbf{C} - p\mathbf{I} \rangle \mathbf{X} = \sum_{m=1}^{n} \alpha_m \langle \mathbf{C} - p\mathbf{I} \rangle \mathbf{V}_m
$$

=
$$
\sum_{m=1}^{n} \alpha_m \langle \mathbf{C} \mathbf{V}_m - p\mathbf{V}_m \rangle
$$

=
$$
\sum_{m=1}^{n} \alpha_m (\lambda_m - p) \mathbf{V}_m
$$

Powers of both sides are

$$
(\mathbf{C} - p\mathbf{I})^k \mathbf{X} = \sum_{m=1}^n \alpha_m (\lambda_m - p)^k \mathbf{V}_m
$$

which converges to

$$
(\mathbf{C}-p\mathbf{I})^k\mathbf{X}\rightarrow\alpha_m(\lambda_m-p)^k_{\mathbf{U}}\mathbf{V}_m,\qquad k\rightarrow\infty
$$

where $(\lambda_m - p)_y$ is the largest value of the difference. The problem here is to choose values of p which

1. will hasten convergence by increasing the ratio

$$
\frac{\lambda_1-p}{\lambda_2-p} > \frac{\lambda_1}{\lambda_2}
$$

2. will not force convergence to a mode other than the first by causing $(\lambda_m - p)$ to be greater than $(\lambda_1 - p)$.

The effect of the procedure is to orthogonalize the trial vector $\mathbf{X}^{(k)}$ to an eigenvector \mathbf{V}_m if $p = \lambda_m$ is chosen, since

$$
\mathbf{X}^{(k)} = (\mathbf{C} - \lambda_m \mathbf{I}) \mathbf{X}^{(k-1)} = \alpha_1 \lambda_1^{k-1} (\lambda_1 - \lambda_m) \mathbf{V}_1
$$

+ \cdots (0) \mathbf{V}_m + \cdots

has no component of V_m . In this context, a "troublesome" eigenvector is one whose eigenvalue is close to that being sought. Convergence is hastened if components of the troublesome eigenvector in the trial vector X are "suppressed." Components of troublesome vectors are never completely suppressed, since even if $p = \lambda_m$, roundoff will soon replace troublesome components in X as p takes on values far from λ_m .

When λ_1 is close to λ_2 , the trial vector approximates V_1 after many cycles, although convergence to the true eigenvector is slow. If the approximate first eigenvector is X_1 , a trial vector X_2 orthogonalized to X_1 will converge to an approximation of V₂. The Rayleigh's Quotient computed from X_2 is a better estimate of the true λ_2 , and is an effective value of p to accelerate convergence on V_i . But, since

$$
\left\| \lambda_n = \lambda_2 \right\| \gg \left\| \lambda_1 = \lambda_2 \right\|
$$

use of $p = \lambda_2$ will also strongly increase components of the lowest eigenvectors V_m, \dots, V_n in X_i . The solution to

this quandry is to alternate values of p between an estimated upper eigenvalue and zero, thereby suppressing components in X of eigenvectors at each end of the range of eigenvalues. Eigenvector components near the middle of the range are then suppressed by varying p between zero and 0.6125 λ_m , where λ_m is the eigenvalue currently being sought.

Variations of p with the power method may be concisely described by the continued product notation

 $\prod_{k=1}^q a_k = a_1 a_2 \cdots a_q$

or

$$
\prod_{k=1}^{q} (\mathbf{C} - p_k \mathbf{I}) \mathbf{X} = \sum_{m=1}^{n} \alpha_m \prod_{k=1}^{q} (\lambda_m - p_k) \mathbf{V}_m \qquad (12)
$$

which denotes products of $(C - p_k I)$ and $(\lambda_m - p_k)$ with p_k varying from p_1 to p_q .

The procedure for automatic selection of p_k in Eq. 12 may be summarized as follows:

- 1. Set $p = 0$. Obtain estimates of the highest six eigenvalues by five iterations on each.
- 2. Alternate $p_k = \lambda_{m+1}, 0, \dots, \lambda_6, 0, 0.9 \lambda_{m+1}, 0, 0.81$ λ_{m+1} , 0 to force convergence on λ_m . If $\lambda_{m+1} > 0.999$ λ_m , use $p_1 = 0.99$ λ_m to prevent undue suppression of the desired eigenvector.
- 3. Vary p_k in the range $0 \leq p_k \leq 0.6125 \lambda_m$ by a quadratic formula emphasizing values of p_k near zero. Repeat a maximum of 20 times for each mode, checking convergence at each cycle.
- 4. Repeat steps 2 and 3 five times.

When two (or morc) eigenvalues are equal,

$$
\lambda_1 = \lambda_2
$$

then, after many iterations the trial vector

$$
\mathbf{X} = \alpha_1 \, \mathbf{V}_1 + \alpha_2 \, \mathbf{V}_2
$$

where the α 's are arbitrary; thus, there can be no convergence to a "first" eigenvector although the eigenvalue $\lambda_1 = \lambda_2$ is well defined. Consider, for example, a mass at the end of a weightless cantilever that is rigid axially and of circular cross-section. The position of the mass is defined by two coordinate components so the system has two degrees of freedom, two mode shapes, and two equal frequencies Using the power method, there would be no convergence to a first mode shape, since this could be deflection in any direction. When iterations are

stopped, however, convergence on a second mode orthogonal to the first will be obtained. The same is true in the case of many degrees of freedom and several identical frequencies.

There is still the possibility that convergence on the first eigenvalue and

$$
\mathbf{X} = \alpha_1 \mathbf{V}_1 + \alpha_2 \mathbf{V}_2
$$

will not be refined enough to eliminate components of lower vectors in X. No test on this error is available. In practice, enough iterations have been made that physically reasonable mode shapes have been obtained in several problems with multiple eigenvalues.

Convergence is tested by searching for the maximum difference between elements in successive trial eigenvectors. If all

$$
|x_{im}^{(i)} - x_{im}^{(i-1)}| \leq \epsilon, \quad j = 1, n
$$

iterations are stopped on that mode and begun on the next. The criterion ϵ varies from 4×10^{-4} when coarse estimates of the eigenvalues are required to 4×10^{-7} for the final cycles.

Initial guesses at the trial vectors $X_{\mu\nu}^{(1)}$ are required to start convergence on each of the six modes computed. These are taken as successive normalized products of the diagonal of $C X C$, in reverse order:

$$
x_{i0}^{(1)} \equiv c_{i\lambda}
$$

$$
\mathbf{X}_{m}^{(1)} \equiv \mathbf{C}^{(m+1)} \mathbf{X}_{0}^{(1)}
$$

The vector X_a should be a fair guess at the first mode shape, since its components are largest where mass and flexibility are largest. This guess improves with successive iterations, so X_1 may be close to Y_1 before convergence is tested. Higher mode guesses \mathbf{X}_m are similarly affected by mass and flexibility, so when they are orthogonalized to lower modes they may be expected to converge relatively rapidly as well. Experience with this procedure has been satisfactory.

In theory, it is possible to compute lower frequencies from the original Eq. 4 of the problem

$$
\mathbf{A}\mathbf{V}_m = \omega_m^2 \mathbf{V}_m
$$

by choosing $p > \omega_1^2$ so that $(\omega_n^2 - p)$ has a larger magnitude than any other $(\omega_m^2 - p)$. This has the advantage that computation of $C = A^{-1}$, with attendant errors, is eliminated. In practice, however, the lower eigenvalues are so close in comparison with the upper ones that convergence

vectors computed by this process are more in error than roots can be evaluated, and zero frequencies systems can those obtained from even a poor inverse. Similarly, al-
though the accuracy of eigenvectors computed from Section H) is retained because it has been successfully

$$
CV_m = \lambda_m V
$$

is dependent on the accuracy of the inver_{ce} C = **A**^{-t}, the Equation 4, $AV_m = \omega_m^2$ V_m , is used for the evaluation of eigenvectors will not be improved by iteration through the eigenvalues and eigenvectors by [acobi's

$$
\mathbf{A}\mathbf{V}_m = \boldsymbol{\omega}_m^2 \, \mathbf{V}_m
$$

If the acceleration in a component direction at a joint is known when a structure is undergoing vibration in a normal mode, the absolute amplitude of the mode shape normal mode, the absolute amplitude of the mode shape where **V** is the matrix of eigenvectors, and **L** is a diagonal
is determined and loads may be computed. An accelera-
intrix of eigenvalues. Since **V** is an orthogonal m tion may be known from previous dynamic testing, or Eq. 13 can be written as analysis of an idealized damped version of the structure. E_q . 13 can be written as Deflections are of the periodic form

$$
u_{\cdot} = u_{\iota m} \sin \omega_m t
$$

so the amplitude of acceleration in the *i*th generalized transform it by direction is $Z^{(k)}$ and $Z^{(k)}$ $\frac{1}{2}$ *direction is*

$$
\ddot{u}_{im} = -u_{im}\,\omega_m^2
$$

when q_{i_m} is the acceleration amplitude input, the eigen- $\prod_{k=1}^{n} \mathbf{Z}^{(k)} = \mathbf{Z}$ vector will be renormalized by the factor _: '

$$
\frac{q_{im} g}{u_{im} \omega_m^2}
$$

In summary, the program operates on the given mat- $(\ell =$ number of transformations), rices **K** and **M** as follows: such that such that

- 1. Compute $\mathbf{A} = \mathbf{M}^{-1}$ ² $\mathbf{K} \mathbf{M}^{-1}$ ².
- 2. Compute $C = A^{-1}$.
-
- 4. Attempt to converge on the six eigenvalues and paring Eq. 15 with Eq. 13, **Z** is the desired eigenvectors corresponding to modes of lowest fre-
eigenvectors corresponding to modes of lowest fre-
matrix and **L**¹ is the eigenvectors corresponding to modes of lowest frequeney*,*.
-
- 6. Renormalize mode shape to input acceleration levels; compute loads from equations given in Appendix B.
- 7. Equilibrium checks at each joint,

8. Output mode shapes, frequencies, dynamic loads.

I**.** J**aco**bi**'s** M**e**th**o**d z_*:*_= 1*,* and *z*_t = *z*_*,*j = *zh*.*,* = 0 i •

The Jacobi method (Ref. 23) of determining eigenvalues and eigenvectors exists in the program. The advantages of the method is that all eigenvalues and

is prohibitively slow**.** Also, there is evidence that eigen- eigenvectors are evaluated with equal accuracy*,* multiple Section H) is retained because it has been successfully i *used for the past 3 yr.*

> the eigenvalues and eigenvectors by Jacobi's Method. $A\mathbf{v}_m = \omega_m^2 \mathbf{v}_m$ $2, \cdots n)$ can be written as **liq**

$$
\mathbf{A}\mathbf{V} = \mathbf{V}\mathbf{L} \tag{13}
$$

$$
\mathbf{V}^r \mathbf{A} \mathbf{V} = \mathbf{L} \tag{14}
$$

jacobi's Method is to start with a given matrix A and transform it by a number of pre- and post-multiplications

where

and

$$
\frac{q_{im}}{l_{im} \omega_m^2} \qquad \qquad \frac{i}{\prod_{k=1}^l Z^{(k)T}} = Z^r
$$

 $\mathbf{Z}^T \mathbf{A} \mathbf{Z} = \text{diagonal matrix} = \mathbf{L}^T$ (15)

The **Z**^{*r*} and **Z** must satisfy the relation **ZZ**^{*r*} = **I**. If the 3. Compute first-guess vectors X_m .
 3. satisfactory matrix condition can be obtained, then com-
 4. Attempt to converge on the six eigenvalues and paring Eq. 15 with Eq. 13, **Z** is the desired eigenvector

The Jaeobi process of obtaining the orthogonal *Z* matrix 5. Compute $U_m = M^{-1} V_m$, $\omega_m = 1/(\lambda_m)^{12}$, is to annihilate, in turn, selected off-diagonal elements of 6. Renormalize mode shape to input acceleration **A** by orthogonal transformations. To eliminate an ele- $\frac{d\Omega}{dx}$ (*i* \leq *j*) of $\mathbf{A}^{(k)}$ the elements of the transform *A* tion matrix $\mathbf{Z}^{(k)}$ would be

$$
z_{1i} = \cos \theta, \qquad z_{ij} = \sin \theta
$$

$$
z_{jk} = -\sin \theta, \quad z_{jj} = \cos \theta
$$

$$
z_{kk} = 1, \text{ and } z_{i1} = z_{kj} = z_{ki} = 0
$$

where

$$
k \neq i, j
$$

$$
l \neq i, j
$$
 (16)

'i *⁵* ¹²

!

Represent the k^{th} transformation matrix product by $\mathbf{Z}^{(k)T} \mathbf{Z}^{(k-1)T} \cdots \mathbf{Z}^{(1)T} \mathbf{A} \mathbf{Z}^{(1)} \mathbf{Z}^{(2)} \cdots \mathbf{Z}^{(k)} = \mathbf{A}^{(k)}$ (17)

The elements of $\mathbf{A}^{(k)}$ are

$$
a_{i1}^{(k)} = a_{i1}^{(k-1)} \cos \theta - a_{j1}^{(k-1)} \sin \theta
$$

\n
$$
a_{j1}^{(k)} = a_{i1}^{(k-1)} \sin \theta + a_{j1}^{(k-1)} \cos \theta
$$

\n
$$
a_{ki}^{(k)} = a_{ki}^{(k-1)} \cos \theta - a_{kj}^{(k-1)} \sin \theta
$$

\n
$$
a_{kj}^{(k)} = a_{ki}^{(k-1)} \sin \theta + a_{kj}^{(k-1)} \cos \theta
$$

\n
$$
a_{kl}^{(k)} = a_{kl}^{(k-1)}
$$

\n(18)

$$
a_{ij}^{(k)} = a_{ij}^{(k-1)} \cos^2 \theta + a_{jj}^{(k-1)} \sin^2 \theta - 2a_{ij}^{(k-1)} \sin \theta \cos \theta
$$

\n
$$
a_{jj}^{(k)} = a_{ij}^{(k-1)} \sin^2 \theta + a_{jj}^{(k-1)} \cos^2 \theta + 2a_{ij}^{(k-1)} \sin \theta \cos \theta
$$

\n
$$
a_{ij}^{(k)} = \frac{1}{2} \left(a_{ij}^{(k-1)} - a_{jj}^{(k-1)} \right) \sin 2\theta + a_{ij} \cos 2\theta
$$
 (19)

In order to eliminate $a_{ii}^{(k)}$, the equation

$$
\frac{1}{2} (a_{ij}^{(k-1)} - a_{jj}^{(k-1)}) \sin 2\theta + a_{ij} \cos 2\theta = 0
$$

or

$$
\tan 2\theta = -\frac{a_{ij}^{(k-1)}}{\frac{1}{2} \left(a_{ij}^{k-1} - a_{jj}^{k-1} \right)}
$$
(20)

is the angle θ required for annihilation of $a_{ij}^{(k)}$.

The orthogonal transformation designed to annihilate an off-diagonal term may undo the previously annihilated off-diagonal terms. For this reason, the Jacobi's method is an iterative process, rather than a finite one, that is carried on indefinitely until a predetermined accuracy requirement is satisfied. The success of the method depends on each transformation reducing the sum of the squares of the off-diagonal terms; the proof is outlined below. Stability of the convergence process against roundoff error is mentioned (Ref. 23).

The Pope-Tompkins scheme for convergence of Jacobi's method when subjected to the transformations shall be pioved.

From Eq. 13

and

$$
a_{i\ell}^{(k)1} + a_{j\ell}^{(k)\ell} = a_{i\ell}^{(k-1)2} + a_{j\ell}^{(k-1)2}
$$

$$
a_{1i}^{(k)2} + a_{1i}^{(k)2} = a_{1i}^{(k-1)2} + a_{1i}^{(k-1)2}
$$
 (21)

and since other elements $a_{kl}(l,k\neq i,j)$ are unaffected by the transformation, with the exception of $a_{ij}^{(k)}$ and $a_{ji}^{(k)}$, the sum of the squares of the off-diagonal element is invariant.

Also
\n
$$
a_{ij}^{(k)} = a_{ij}^{(k)} + a_{ij}^{(k)} + a_{ji}^{(k)} = a_{ij}^{(k-1)2} + a_{ji}^{(k-1)2} + a_{ji}^{(k-1)2}
$$
\n
$$
= a_{ij}^{(k-1)2} + a_{ij}^{(k-1)2} + a_{ji}^{(k-1)2} + a_{ji}^{(k-1)2}
$$
\nSince $a_{ij}^{(k)} = a_{ji}^{(k)} = 0$, from Eq. 19
\n
$$
a_{ij}^{(k)} = a_{jj}^{(k)} = a_{ij}^{(k-1)2} + a_{jj}^{(k-1)2} + 2a_{ij}^{(k-1)2}
$$
\n(23)

Equation 23 shows that the quantity $2a_{ij}^{(k+1)2}$ has been lost from the sum of squares of the off-diagonal terms.

Define
$$
v_l = \left\{ \sum_{\substack{l,k=1\\l \neq k}}^n a_{lk}^{l+1} \right\}^{\frac{1}{n}}
$$
 (24)

where ν_{t} is the initial off-diagonal norm. A threshold ν_{1} is established by dividing r_t by a fixed constant $\sigma \geq n$; the threshold value is used to determine the terms to be annihilated first. The off-diagonal elements for which

$$
|a_{kl}^{(k)}| \geq \nu_1 = \frac{\nu_1}{\mu_1}, k \neq l \tag{25}
$$

is annihilated.

Since $\sigma \geq n$, there exists at least one off-diagonal element \geq _{*v*1}, since if all were \leq

$$
\sum_{l \neq k} a_{kl}^2 \leq \sum_{l} v_l^2 = n(n-1) v_1^2 \leq n^2 v_1^2 \leq \sigma^2 v_1^2 = v_t^2
$$

which contradicts Eq. 24. Note that, because of symmetry, only one half of diagonal elements are used. For any element whose magnitude is not smaller than r_1 , the appropriate transformation is performed. Thus, from Eq. 23 the off-diagonal squared norm is decreased by at least $2v_1^2$. If all off-diagonal terms $\langle v_1, v_2 \rangle$ the off-diagonal norm is bounded as follows:

$$
v_{od}^2 = v_f^2 - \sum_{\{a_{kl}\geq v_1}} 2a_{k\ell}^2 < v_t^2 = 2v_1^2 = \left(1 - \frac{2}{\sigma^2}\right)v_t^2
$$
 (26)

Lower the threshold by $v_2 \leftrightarrow \frac{v_1}{\sigma}$ and proceed as before. Continue until $r_t \leq \frac{p_{od}}{\sigma}$; at this point let r_{od} play the role of v_l and as shown before, there exists an off-diagonal element $\frac{V_{od}}{g}$ and, thus, $\frac{V_{od}}{g}$ Performing the appropriate

transformations on all elements $> v_r$, a bound on the new off-diagonal norm follows

$$
\begin{aligned} \left(\mathbf{v}_{od}^{(2)}\right)^2 &= \mathbf{v}_{od}^2 - \sum_{\{a_{kl}\}\geq \mathbf{v}_r} 2a_{kl}^2 < \mathbf{v}_{od}^r - 2\mathbf{v}_{od}^2 / \sigma^2 \\ &= \left(1 - \frac{2}{\sigma^2}\right) \mathbf{v}_{od}^2 < \left(1 - \frac{2}{\sigma^2}\right)^2 \mathbf{v}_l^2 \end{aligned} \tag{27}
$$

By induction, if $v_{od}^{(n)}$ is the off-diagonal norm after m stages in which at least one transformation has been performed, then at worst

$$
\left(v_{od}^{(m)}\right)^{2} \leq \left(1 - \frac{2}{\sigma^{2}}\right)^{m} v_{I}^{2}
$$
 (28)

For convergence a final threshold v_F must be established such that

$$
\nu_{od}^2 = \sum_{k \neq l} a_{ki}^2 \leq n(n-1) \nu_r^2 < n^2 \nu_F^2 \tag{29}
$$

or the accuracy requirement may be specified as

$$
v_{od}^2 \le \rho^2 v_f^2, \quad \text{where}
$$

$$
v_F = \left(\frac{\rho}{n}\right) v_i.
$$
 (30)

For this problem $\frac{\rho}{n} = 2^{-27}$ has been selected; thus

$$
\nu_{\sigma l}^2 \leq n^2 (2^{-27})^2 \nu_I^2 = n^2 2^{-54} \nu_I^2 \tag{31}
$$

is the convergence criteria of this program.

J. Orthogonality Check

If the structure has discrete nonequal eigenvalues, Eq. 3 can be written

$$
KU_m = \omega_m^2 MU_m
$$

and

$$
KU_n = \omega_n^2 MU_n
$$

where $m \neq n$.

Premultiply the first equation by U_n^r and the second equation by \mathbf{U}_m^r . Subtracting the transpose of the second equation from the first results in

$$
\omega_m^2 = \omega_n^2 \mathbf{U}_n^T \mathbf{M} \mathbf{U}_m = 0
$$

Since $n \neq m$ was assumed, $\omega_m^2 \neq \omega_n^2$; thus, $\mathbf{U}_n^T \mathbf{MU}_m = 0$ for all m and n not equal to each other. By a similar argument

$$
\mathbf{U}_n^T \mathbf{K} \mathbf{U}_m = 0, n \neq m \tag{32}
$$

can be shown. A 6×6 generalized weight and spring matrix representing the orthogonality check is outputed.

To obtain a better comparison of the magnitude of the off-diagonal terms, the generalized weight and spring matrix are normalized as

$$
m_{ij}^{\star} = \frac{\overline{m}_{ij}}{(\overline{m}_{ii})^{i_2} (\overline{m}_{jj})^{i_2}} \tag{33}
$$

and

$$
k_{ij}^{*} = \frac{k_{ij}}{(\bar{k}_{ij})^{\nu_{2}} (\bar{k}_{jj})^{\nu_{2}}}.
$$
 (34)

The values \overline{m}_{ij} and \overline{k}_{ij} are the elements of the *i*th row, *j*th column of the generalized weight and spring matrix, and \overline{m}_{ij}^* and \overline{k}_{ij}^* are the elements of the *i*th row, *j*th column of the normalized generalized weight and spring matrices.

K. Accuracy

Although no analytic studies have been made of error inherent in the nume-al process described herein, enough has been learned from production runs and experiment with abnormal cases to permit some general comments on accuracy of the program. (The discussion is for Section H and not Section I.) Several tests, available to the user when results are in doubt, are discussed in this Section.

Accuracy of a structural analysis performed by the program is affected adversely by the following factors:

- 1. Errors in idealization of a structure. All structures must be idealized by one of the standard-structure types before analysis; a basic discussion of this procedure is presented in Section II-K.
- 2. Gross errors in input. These may be indicated by bvious errors in output, but all inputs should be carefully hand-checked.
- 3. Characteristics of the stiffness matrix **K** that lead the static deflections to be in error.
- 4. Characteristics of the matrix $C = M^{12} K^{-1} M^{12}$ that lead normal-mode shapes and frequencies to be in error.
- 5. Failure to properly test convergence of the normalmode analysis.
- 6. Gross program or machine errors. The programs have been tested on check problems and on nearly 200 production runs. Correlation with test results has been good where thats have been run.

Single-precision arithmetic is used throughout; this provides storage of approximately eight decin¹ digits plus an exponent for all quantities. Required accuracy for the proposed engineering is two or more significant figures for the largest quantities in a set of deflections

Input will usually be provided with three or more significant digits, with zeros filling out the stored number of eight digits. Computation during matrix generation introduces roundoff in the last one or two places of the elements of the stiffness matrix.

Accuracy of the static analysis

$$
\mathsf{U} = \mathbf{K}^{-1} \mathsf{I}
$$

ic impaired if the stiffness matrix is singular or illconditioned. Singularity is caused by structural instability which, in turn, causes division by zero; since no overflow checks are made to detect division by zero, the only indicators are those cited below for ill-conditioning. This latter is a qualitative description of the loss of accuracy during computation of an inverse matrix. Generally, signif .ant figures are lost during subtraction operations when digits (r) subject to roundoff are drawn into the significant places of a number:

$$
0.1234567r \times 10^{\circ}
$$

$$
-0.1234566r \times 10^{\circ}
$$

$$
\overline{0.0000001r \times 10^{\circ}} = 0.1r000000 \times 10^{-6}
$$

It has been observed in structural usage that illconditioning becomes a problem when the stiffness of members are greatly different. Thus, when the ratios of diagonal elements of K were

$$
\frac{k_{ij}}{k_{jj}} < 10
$$

systems of 130 degrees of freedom were successfully analyzed, while smaller systems with

$$
\frac{k_{ii}}{k_{jj}} > 100
$$

gave obviously false results. A second indication of illconditioning is the ratio of maximum to minimum eigenvalues of $\tilde{\mathbf{K}}$ or condition number

$$
P=\frac{\lambda_{\max}}{\lambda_{\min}}
$$

This number is computed for

$$
A = M^{-19} \text{ KM}^{-19}
$$

and only indicates the condition of K when the elements of M are nearly equal. Condition numbers $P > 10^6$ may indicate loss of all significance from computed deflections.

Norma¹ node analysis is subject to the same problems of singularity and ill-conditioning as scatic analysis, plus problems caused by the nature of M, and the convergen: means of solution. If M contains zero diagonal elements, then M^{-1} ² will have elements produced by division by zero and

$$
A_{1} = M^{-1}{}^{2} \, \text{KM}^{-1}{}^{2}
$$

proves to be singular If the ratios of elements of M are large, so that ratios of diagonal elements of A are large,

$$
\frac{d}{a_{jj}} \geq 100
$$

then A may be ill-conditioned and $C = A^{-1}$ subject to large error.

Convergence is tested by comparing elements of normalized trial vectors at successive iterations

$$
\mathbf{CX}_{m}^{(i)} = \alpha_m \mathbf{X}_{m}^{(i+1)}
$$

$$
|x_{jm}^{(i)} - x_{jm}^{(i+1)}| \leq \epsilon
$$

iterations are stopped. Alternate tests are

when

$$
\left(\mathbf{C} - \lambda_m^{(i)}\mathbf{I}\right)\mathbf{V}_m^{(i)} = \mathbf{X}_m^{(i)}
$$

$$
|z_n^{(i)}| \le \epsilon
$$

which may never stop iterations, and

$$
\left|\lambda_{m}^{(i)}-\lambda_{m}^{(i+1)}\right|\leq\epsilon
$$

which proves to stop the convergent process too soon. There is always a risk that convergence will stop too soon when it is very slow, since the ch. Age in any parameter then becomes small even when the parameter is far from its true value. Checks against this possibility include model testing and computation of normal modes by Jacobi's method. The maximum change in a vecter element is output for checking; this value should be $\epsilon \leq 4 \times 10^{-7}$ at the final iteration of each mode.

The ratio of maximam to minimum eigenvalues of a matrix or condition number is a measure of the degree of ill-conditioning of the matrix. The maximum eigenvalue of

$$
\mathbf{A}\mathbf{V}_m = \omega_m^2 \mathbf{V}_m.
$$

 ω_n^2 may usually be found easily and accurately by the power method. The minimum eigenvalue, ω_i^2 , is found from

$$
CV_{\alpha} = \lambda_{\alpha} V,
$$

where

$$
C = A^{-1}
$$

As noted before, condition numbers

$$
P=\frac{\omega_n^2}{\omega_1^2}<10
$$

usually indicate that engineering accuracy can be obtained

A consequence of the power method is that eigenvalues are computed in descending order. If such is not the case, there probably has been no reliable convergence to one or more eigenvectors. Since frequencies are proportional to recipro als of eigenvalues of $C = A^{-1}$, the output frequencies must be in ascending order. (When frequencies are very close, differing in the third place, this rule may be violated without prejudicing the results.)

The following eigenvalues are defined as:

- λ_4 = computed lower eigenvalue of **A**
- λ_c = corresponding computed upper eigenvalue of $C = A^{-1}$
- λ_T = true magnitude of lower eigenvalue of A

It has been observed in tests with Hilbert matrices that the difference

$$
\left|\lambda_{\rm d}-\frac{1}{\lambda_{\rm c}}\right|>>\left|\lambda_{\rm r}-\frac{1}{\lambda_{\rm c}}\right|
$$

Also, in all reliable production runs

$$
\lambda_a\,\lambda_c\thickapprox 1
$$

Thus, if

$$
|\lambda_1\lambda_0=1|>10^{-2}
$$

the validity of λ_C and its eigenvector should be doubted: and, if not, then the error in the computed eigenvalue is

$$
\left|\lambda_{T}-\frac{1}{\lambda_{C}}\right|<\left|\lambda_{A}-\frac{1}{\lambda_{C}}\right|
$$

Experience with the program has indicated that the accuracy rules mentioned above are to be used as a guide and are not absolute in ensuring accurate data. The best methods of evaluating the results have been the equilibrium checks at the joints and the orthogonality of the mode shapes. An estimate of the accuracy of the results can be determined by the equilibrium check from the non-zero terms at the unrestrained joints of the structure. Usually the off-diagonal terms of the generalized weight or spring matrix are orders of magnitude less than the diagonal terms if the mode shapes are correct.

In summary, the following checks are available to the user in program output:

- 1. Normal-mode convergence test, $\epsilon < 4 \times 10^{-7}$
- 2. Condition number, $P < 10^{\circ}$
- 3. Frequencies output in ascending order unless nearly equal
- 4. Equilibrium check at the joints
- 5. Eigenvalues of C equal eigenvalues of A within

$$
||\lambda_A\lambda_C=1||<10^{-2}
$$

6. Orthogonality check of mode shapes

The following tests may be applied as the need arises:

- 1. Hand-check of program input
- 2. Reasonableness of program output
- 3. Ratios of stiffness matrix diagonal elements k_{ii}/k_{jj} < 100
- 4. Solution by independent numerical methods
- 5. Comparison with different idealizations of the same configuration
- 6. Model testing

L. Structural Idealization

Matrix representations of five distinct types of structure have been programmed. Any structure to be analyzed must be idealized by a structure composed entirely of members of one of these types:

- 1. Three-dimensional, pin-jointed
- 2. Three-dimensional, rigid-jointed, with circular member cross-sections
- 3. Planar, rigid-jointed, loaded in-plane
- 4. Planar grid, rigid-jointed, loaded normal-to-plane
- 5. Three-dimensional, rigid-jointed doubly symmetric cross-section

Some types of idealization are commonly used in structural analysis; for example, trusses are usually assumed to be pin-jointed, and continuous slabs are often analyzed as grids. The following remarks will be concerned with typical approximations that extend the power of the program:

- 1. A continuous structure may be approximated by a "lumped-mass" system. Natural frequencies of a lumped-mass system will always be lower than those of the represented system, with the degree of approximation dependent on the quantity of mass points and connecting members in the idealization.
- 2. The stiffness (and thus normal modes) of a structure as stable as a truss will usually be well-represented by a pin-jointed truss. Secondary loads will not be found directly, but may be estimated from deflections.
- 3. The stiffness of a shear panel may be represented by a lattice of pin-connected members (Ref. 14). In most cases, if a negative area is required as specified by the iattice analogy, negative frequencies (obviously erroneous) results.
- 4. Flexible supports may be represented by inserting members with appropriate stiffness at points of support.

JPL TECHNICAL REPORT NO. 32-774

- 5. A beam of varying section properties may be approximated by several beams of constant section. Care should be taken that the problem does not become ill-conditioned by making the stiffness of the small beam segments very large in comparison to other elements of the structure.
- 6. Members normal to the plane of a grid may be included by adding appropriate stiffnesses to the matrix of the grid in the normal direction.
- 7. Pin-ended members in a rigid-jointed frame may be input with zero moment of inertia.
- 8. Loads applied at the interior of a bending member may be approximated by shears and fixed-end moments at its ends.
- 9. The validity of an idealization may be checked by comparison with a continuous structure idealization, comparison with another lumped-mass idealization, or by model testing.
- 10. Increments of elements of the stiffness matrix may be input to the program; thus, the stiffness of structural components that are not conveniently idealized by a standard member may be included in an analysis.
- 11. Various end conditions can be approximated by a linkage system of several members; additional degrees of freedom will be required.

ASSET APPLICATIONS

Iil. PROGRAMMING

Input to the program is provided in the following $\qquad \qquad 0$ No output desired ocks. An example of the input format is given in the $\qquad \qquad 1$ Output desired blocks. An example of the input format is given in the sample problem, Appendix D.

- 1. Comment
-
- 3. Joint coordinates
- 3*.* Joint coordinates 0 Output desired
-
-
- 7. Static loadings (optional) **(**918)
-

The most convenient sheet on which to enter data for N_4 Quantity of joints in structure punching contains nine or more columns. Each line is N_z Quantity of members in structure punched on one card, with a maximum of nine words N_z Quantity of static loadings per card. Where a word is not required as input for a static loading per card. Where a word is not required as input for a problem, it may be left blank; blanks are always read as N₇ Weight code **0**. Most of the ii.put is writ n with fixed-point numbers 0 *No* weight input (integers) in the first two columns and floating-point $\lim_{n \to \infty}$ (rived numbers) in *unceredian relating* F_{n+1} and T Weight input include n numbers (mixed numbers) in succeeding columns. ${\bf r}$ to a ing-point nuribers must be written with a decimal point N_N Quantity of joints having one or more components regardless of whether the fractional part is present of restraint regardless *cf* whether the fractional part is present.

1**.** Comm**en**t

Comments up to 7*2* characters $(12A6)$

-
- i compute dynamic loads 1 Pin-jointed member, three dimensions
	- 2 Rigid-jointed member, equal member cross-
section moment of inertia, three dimensions
	-
	- ,**,** *4* Planar member, rigid joints loaded normal-toplane (grid) N_{11} Output code
Bigid-ininted member doubly symmetric erase. $0 \text{ No output of } K, L, W$ matrices
	- 5 Rigid-jointed member, doubly symmetric crosssection, three dimensions. 1 Output **K, L, W** matrices
- *A*. *Input* **Formal A**. *Input Formal* is provided in the following $\begin{array}{c} N_z \sim 0 \ 0 \ 0 \end{array}$ No output desired
	-
	-
	- *n* Number of modes desired for Jacobi Method (use only if $N_m < 0$)
	- *2*. Control N_ Eigenvalue c**o**ntrol
		- 1 No output desired
		-
	- *n* Numbers of rigid body modes to be eliminated, 5. Restraints if any, $(N_{i_0} < 0)$

- 8. *A*ccelera*t*ions (optional**)** A Problem number (six charact*e*rs *o*r less)
	-
	-
	-
	- -
		-
	-
	- N_ Degrees of freedom pe**t**" joint **I**
	- N,,, Normal-mode code
		-
- The first column must not be used 1 Compute lowest six mode shapes, normalized to input accelerations, and compute dynamic loads
- 2. Control 2 Compute lowest six mode shapes only, normalized to the largest component ($u_{\text{max}} = 1.0$)
	- -1 Jacobi's method for evaluating eigenvectors and eigenvalues; the lowest six non-rigid body eigen-
vectors normalized to input accelerations, and N₁ Structure type vectors normalized to input acceleration of the vectors normalized to input accelerations, and α , $\$
		- $-2\,$ Jacobi's method for evaluating eigenvectors and cigcnvalucs; the lowest six non-rigid bed **3***'* section moment of mertia, three dimensions eigenvectors normalized to the largest compo-
3 Planar member, rigid joints, loaded in-plane heart (y = 1.0) nent $(u_{\text{max}} = 1.0)$
			- N₁₁ Output code
				-
				-

!

or

- $A_1 = D$, outside diameter of circular tube
- $A_2 = T$, wall thickness of circular tube

$$
\mathbf{A}_\gamma = \mathbf{0}
$$

and

 $A_2 = \alpha \Delta T$, coefficient of thermal expansion times change in temperature of member. Positive ΔT indicates increase in temperature.

b. Structure type 2, three-dimensional, rigid-jointed, equal member cross-section moment of inertia

 $A_1 = A$, section area

 $A_2 = I$, section moment of inertia

 $A_n = K$, section to: sional stiffness

α

 $A_1 = D$, outside diameter of circular tube

 $A_2 = T$, wall thickness of circular tube

 $A_3=0$

and

 $A_i = a\Delta T$, coefficient of thermal expansion times change in temperature of member. Positive ΔT indicates increase in temperature.

c. Structure type 3, two-dimensional, rigid-jointed members, loaded in-plane

- $A_1 = A$, section area
- $A_2 = I$, section moment of inertia
- A_3 = non-zero term

 α

- $A_i = D$, outside diameter of circular tube
- $A_2 = T$, wall thickness of circular tube

$$
A_{a}=0
$$

and

 $A_5 = \alpha \Delta T$, coefficient of thermal expansion times change in temperature of member. Positive ΔT indicates increase in temperature.

$\left\vert \text{N}_{12}\right\vert \left\vert \text{N}_{15}\right\vert \left\vert E\right\vert$ $\boldsymbol{\nu}$ $(21S, 3ES.0)$

 N_{12} Quantity of stiffness matrix elements to be altered

 N_{12} Temperature code

0 Temperature problem not to be solved 1 Temperature problem to be solved

- Elastic modulus, 10 $\,$ lb/in.² E
- Poisson's ratio
- Specific weight lb/in.⁷ $\overline{ }$

3. Joint Coordinates

Blank $\left| x_1 \right| x_2$ \mathfrak{X}_i $(218, 3F8.0)$

 j Joint number (must be listed consecutively starting with 1)

Joint coordinates, in. \mathfrak{X}_2 x_{3}

In two-dimensional problems x_3 must be normal to the plane

4. Member Properties

Properties are entered on one line (one card per member); when temperature code, $N_{13} = 1$, then A_3 , A_9 , or A_z must be included. Values for A_i are not required unless specifically indicated.

p | Member ends (enter in any order; $q \nvert$ enter each member once only)

Member properties and temperature inputs are defined for each structure type as follows (all quantities to be

a. Structure type 1, three-dimensional, pin-jointed members

 $A_i = A$, section area

input in inch units):

 A_3 = non-zero term

A. $=$ $\omega \delta T/h$, coefficient of thermal-expansion times 5. Restraints change in temperature across member cross-secwill tend to rotate joint p of the member in temperature problem positive first jointx., listed directi**o**n.in Joint lI[A-4p ofto member describe is the the **]***ⁱ* r, }r_ **III**r_ IIr, r:*.* r_ member**.** (**7**18)

d. *Str*u*ct*ur*e type 4*, t*wo*-*dime*n*sio*n*al* **r**,g*id*-*ioi*nt*ed*, *loaded* normal-to-plane (grid) r_i Rest:aint code (integer)

 $A_2 = I$, section moment of inertia

or

 $A_2 = T$, wa't thickness of circular tubes

 $A_0 = \alpha \delta T/h$, coefficient of thermal-expansion times change in temperature across member cross- *members*, *equal member cross*-*sectlon mome*n*t o] inertia* section divided by **h**eight of rectangular crosssectien. 8*T* is positive if the increase in tempera- $u_{j_1} =$ displacement in x_i direction ture across member cross-section is in positive \mathbf{x}_3 direction.

e. *Struet*_l*re, type 5*, *th*r*ee*-*dime*n*sio*n*al ri*g*id*-*io*l*nted member, doubly symmetric cross-section* u_{j_1} = rotation about x_1 axis member, *doubly symmetric cross-section*

- $A_2 = I_1$, section torsional constant $u_{j_1} =$ rotation about *x_s* axis
-
- $A_i = I_3$ section moment of inertia about ξ_i axis
- $A_5 = \alpha \Delta T$, coefficient of thermal expansion times change in temperature of member. Positive ΔT u_{j2} = displacement in x_2 direction indicates increase in temperature.
- A_7 = Joint number in *input list* (III A-3) not along is about ξ , which is perpendicular to the plane formed by the member **pq** (*p* represents first $u_{j1} =$ displacement in x_{i} direction joint listed to describe member in member prop erties input, and *q* the second joint) and \overline{pA}_7 ; $u_{j2} = \text{total}$ about *x*_t axis ξ_3 is positive in the direction $pq \times \overline{pA}_7$. $u_{j_3} = \text{rotation}$ about *x*₂ axis

change in temperature across member cross-sec-
tion divided by height of rectangular cross-
 $\frac{df_{\text{max}}}{dt}$ always and some in the second in a tion divided by height of rectangular cross-
stiffness matrix element cards are incorporated in a
section. δT is positive if a change in temperature

- *i* Joint number (may be listed in any order)
-

0 No restraint

1 *i*th component of deflection at joint *j* is 0. The *A*₁ = *K*, section torsional constant **order of deflection components at a joint in each ,** structure type is as follows:

a. Structure type I, *three-dimensional*, *pin-jointed a. a. Structure type I*, *three-dimensional*, *pin-jointed members*

 $u_{i1} =$ displacement in x_1 direction

 $A_3 = 0$ *u*_{jz} = displacement in x_2 direction

and $u_{j3} =$ displacement in x_i direction

change in temperature across member cross-
change in temperature across member cross-
nembers, equal member cross-section moment of inertia

 u_{i} : --- displacement in x_i direction

 u_{j3} = displacement in **x**_s direction

 $A_1 = A$, section area upon and *u_{js}* = rotation about *x*₂ axis

 $A_1 = I_2$, section moment of inertia about ξ_2 axis *c. Structure type* 3, *two-dimensional, rigid-jointed members*, *loaded i*n-*pla*n*e*

 $u_{j1} =$ displacement in **x**₁ direction

 u_{j3} = rotation about *x*, axis

point number in appartise (11 A-5) not along d. Structure type 4, two-dimensional, rigid-jointed,
member axis. The section moment of inertia I_1 , I_2 , I_3 , I_4 , I_5 , I_6 , I_7 , I_8 , I_9 , I_1 , I_2 , $I_$ *loaded no*r*mal*.*to*.*plane (*g*r*id*)*

- u_{j2} = rotation about x_1 axis
-

R

 \blacksquare

e**.** *Structure hjpe 5*, *three*-*dimen*s*i*o*nal, ri***g***id***-***i***o***inted* 8**. St**a**t**ic **Lo**ad**i**n**g**s *member*, *doubly symmetric cross***-***section*

 u_{ij} = displacement in \mathbf{x}_i direction

 $t_i =$ displacement in **x**₁ direction The initial card has the format:

 u_{j1} = rotation about x_1 axis u_{j5} = rotation about x_2 axis

 u_{ja} = rotation about *x*_i axis

6. Stiffness Matrix Elements

cannot be idealized by members of the type with acceleration of the structure as a rigid body about
which an analysis is being performed, increments to the *i*ⁿ coordinate direction (III A-5) with respect elements of the matrix may be inputed. This block elements of the matrix may be inputed. This block to the origin of the coordinates. The effect of may be inputed only if the control parameter $N_{12} \neq 0$. may be inputed only if the control parameter $N_{12} \neq 0$.
The stiffness matrix elements must be followed by a
 $(i = 1, 2, 3)$ at each joint by A_i , $(i = 1, 2, 3)$ or

 $\frac{1}{\omega}$, $\frac{1$

- \bullet **100** and commit, respectively, of revised elements
- f is going to an interest of been deleted to account for location *for load on joint f* in the *i*¹ in the *i*¹ restraints), component is as specified in III A-5.
- $\frac{1}{\sqrt{6}}$ and $\frac{1}{\sqrt{6}}$ or $\frac{1}{\sqrt{6}}$ or $\frac{1}{\sqrt{6}}$ or $\frac{1}{\sqrt{6}}$ or $\frac{1}{\sqrt{6}}$ **9.** Accelerations i: **P**, stiffness matrix. The new element, $\kappa_{ij} = \kappa_{ij} = \Delta \kappa_{ij}$.

V

ł

Joint number (may be listed in any order)

 W_i *i*th component of inertia at joint *j*. The order of *translational inertia (lb) and rotary inertia (lb-m.²)* components is as specified for deflections in i . Joint number is comparison in α or defined for definitions in α . In α , α

 $\frac{1}{2}$ I is the computation of $\frac{1}{2}$ if $\frac{1}{2}$ is the $\frac{1}{2}$ in $\frac{1}{2}$ and $\frac{1}{2}$ are I comparation (a) of ight i in direction $\frac{1}{2}$ if $\frac{1}{2}$ 0 zero) inertia components should be specified for all degrees of freedom of the structure; the effect of a q_m Acceleration (g) of joint *j* in direction x_i . If $j = 0$, zero inertia is to produce accumulator overflow. (This $\begin{array}{ccc} \text{the acceleration } q_m \text{ applies to the maximum deflection} \\ \text{is a peculiarity of the numerical procedure.)} \end{array}$ This block tion component in the mode shape. The mode is a peculiarity of the numerical procedure.) This block tion component in the mode shape. The mode is tended t
of input may be vritten only if the weight code. Shape is renormalized with the factor $q_m g/\omega_m^2 u_{jj}$ of input may be vritten only if the weight code, shape is renormalized with the factor $q_m g / \omega_m^2 u_{ji}$
N. = 1. If no loadings follow (N. = 0), the last card before output and load calculation. Rotary accel- $N_7 = 1$. If no loadings follow ($N_6 = 0$), the last card before output and load calculation. Rotary accel-
of weights must be followed by a card with 0 as its crations have no meaning in this application. A first word. If temperature problem is to be solved zero card $(N_{14} = 1)$, the weight cards must not be incorporated. $N_{10} = 1$. $(N_{1.5} = 1)$, the weight cards must not be incorporated.

Each loading is initiated by a card with 0 or -1 u_{i1} = displacement in x, direction as the first word, and the final loading must be followed by a zero card (blank card).

- $j = 0$, A_i ($i = 1, 2, 3$) are the components of translational acceleration on the structure as a rigid body in the *i*th coordinate direction (III A-5) and A_i To account for the effect of structural elements that $(i = 4, 5, 6)$ are the components of rotational
cannot be idealized by members of the type with acceleration of the structure as a rigid hody about The stiffness matrix elements must be followed by a (*i* = 1, 2, 3) at each joint by A; (*i* = 1, 2, 3), or zero card for a temperature problem. $\varepsilon_{(k-1), i_1, j_2, k_3}$ *x_j* A₃ where ($k = 4, 5, 6$).
- \mathbb{R} \Box \Box I! tion'd a**c**eeler**a**tmn is with to "he centel o**f** respect (21*8*,E8.2**)**
- **"**-i i in n**o**n-c**o**ntracted stiffness nfatrix (iu.*,*crt as if rows *]* = joint nmnber. A**,** are comp**o**nents **o**f con*c*entrated

7. Weights must be omitted. If $N_{10} = 1$ or -1 deflections are dynamic loads will be computed. In this case, six cards must be given it, the following format (one for ϵ ach mode *m* in order):

- **[** *i* Tr**a**nslational component direction munber as spec- *.*-'-,_2*,***L**
	- zero card after accelerations is not required if

The matrix of coefficients k_{ij} for a member of any type connecting joints p and q is derived by introducing unitcomponent deflections of p and q , and calculating the forces at p and q produced by each deflection. Matrices for several types of member are presented in Appendix A.

To illustrate the method by which such matrices are computed, and how they are used in the generation of a matrix for a structure, consider the pin-ended member in two dimensions as shown in Fig. 1:

- 1. Compute member length S and direction cosines γ_1 and γ from joint coordinates.
- 2. Introduce $u_{p1} = 1$, holding $u_{p2} = u_{q1} = u_{q2} = 0$.
- 3. Anial load in member \Rightarrow $-(AE/S)\gamma_1$
- 4. Compute force components at p and q , holding loaded member in equilibrium:

 $f_{\mu 1} = \frac{AE}{S} \gamma_1^2$ $f_{pz} = \frac{AE}{S} \gamma_1 \gamma_2$ $f_{q1} = -\frac{AE}{S} \gamma_1^2$ $f_{yz} = -\frac{AE}{S} \gamma_1 \gamma_2$

This set of forces constitutes the first column of the stiffness matrix in the following equation. Succeeding columns are formed similarly:

$$
\begin{Bmatrix} f_{\mu\nu} \\ f_{\mu\nu} \\ f_{\eta\nu} \end{Bmatrix} = \frac{AE}{S} \begin{bmatrix} \vec{r}_1^2 & \gamma_1 \gamma_2 & -\gamma_1^2 & -\gamma_1 \gamma_2 \\ \gamma_1 \gamma_2 & \gamma_2^2 & -\gamma_1 \gamma_2 & -\gamma_2^2 \\ -\gamma_1^2 & -\gamma_1 \gamma_2 & \gamma_1^2 & \gamma_1 \gamma_2 \\ -\gamma_1 \gamma_2 & -\gamma_2^2 & \gamma_1 \gamma_2 & \gamma_2^2 \end{bmatrix} \begin{Bmatrix} u_{\mu_1} \\ u_{\mu_2} \\ u_{\mu_3} \end{Bmatrix}
$$

Fig. 1. Illustrative member

The notation of this equation may be further condensed by writing

$$
\left\{\begin{array}{c}\mathbf{f}_p \\
\mathbf{f}_q\n\end{array}\right\} = \left[\begin{array}{cc}\mathbf{K}_{pp} & \mathbf{K}_{pq} \\
\mathbf{K}_{qp} & \mathbf{K}_{qq}\end{array}\right] \left\{\begin{array}{c}\mathbf{u}_p \\
\mathbf{u}_q\n\end{array}\right\}
$$

where the vectors have components

$$
\mathbf{f}_p = \begin{cases} f_{p1} \\ f_{p2} \end{cases}, \quad \mathbf{u}_p = \begin{cases} u_{p1} \\ u_{p2} \end{cases}
$$

etc., and the elements of \mathbf{K}_{sq} are components of the force vector f_{μ} for unit values of each component $\iota^+ \mathbf{u}_{\eta}$.

The stiffness matrix for the simple truss illustrated in Fig. 2 will be generated by appropriate superposition of the matrices of its members.

医自然病毒病毒

Size limitations

example of the output format is given in the sample $\frac{d}{dx}$ along the positive \mathbf{x}_i directions. problem, Appendix D. along the positive x_i directions.
13. Generalized weight and spring matrix.

- 1. Input data
- 2. Stiffness matrix (lb/in.), weight (lb) matrix, load matrix (lb) printed columnwise, ten words per line.
- 3. Weight (lb), center of weight (in.), and weight moment-of-inertia matrix about center of weight $1.$ Zero time $(lb\text{-}in.^2)$.

The *W*_{*i*} in the directions \mathbf{x}_i (*i* = 1, 2, 3) are summed
individually the \overline{Y}_i (center of weight) is deter, 3. Generating stiffness matrix individually; the \bar{x}_i (center of weight) is determined by using W_i 's in \mathbf{x}_i directions; the weight $4.$ Generate load and weight matrices inertia matrix with respect to center of weight is determined by using only weights in the x_1 direc- 5. Stiffness matrix inversion tion.

- 4. Static or thermal deflections. Each column cor- 7. Static load calculations responds to one loading; deflections at each joint **the same of the set of the** follow the joint number in the order specified in III A-5.
- 5. Static or thermal member loads. The output values 10. Dynamic displacements are defined in Appendix B.
- *6*. Equilibrium check of static solution at each joint. along the positive x_i directions. The equilibrium sents tens of seconds. check is not made for the thermal loads. The unre-
- 7. Convergence data. The results of accuracy tests 1. ERROR READING JOINT COORDINATES. The discussed in Section II-K are printed under appro-
joints coordinates are not in order. discussed in Section II-Kare printed under appro-
priate headings.
- $\bf weight$ in pound units and dimensions in inch units:

$$
f_m = \frac{1}{2\pi} \left(\frac{g}{\lambda_m}\right)^{1/2} = 3.128518 \left(\frac{1}{\lambda_m}\right)^{1/2}
$$

- 9. Eigenvectors and eigenvalues using Jacobi's Method $(N_{\rm m} < 0)$.
- 10. Dynamic member loads. The output values are defined in Appendix B.
- 11. Eigenvectors corresponding to the six eigenvalues of Ill-B-&
- **B.** Output Format 12. Equilibrium check of dynamic solution at each
The output is minted in the following divisions An joint. The non-zero terms represent the reactions at The output is printed in the following divisions. An *following the reactions* are positive if they act the setting of the setting of the setting in the reactions are positive if they act
	-
	- 14. Normalized generalized weight and spring matrix.

matrix (ib) printed columnwise, ten words per line. To obtain an estimate of the time required to solve the *Each* column is numbered. various parts of the problem, the computer times are printed out after the following calculations:

-
- *2*. Reading input
-
-
-
- 6. Static displacement calculations
-
-
- 9. Eigenvalue computation
-
- 11. Dynamic loads

The non-zero terms represent the reactions at the The first two numbers represent hours, the second two restraints; the reactions are positive if they act numbers represent minutes, and the fifth number repre-

strained joints at which elements to stiffness matrix Certain input errors will terminate the computation are added will not be 0 in equilibrium check; the process and the cause will be part of the output format. are added will not be 0 in equilibrium check; the process and the cause will be part of the output format. non-zero term $f_i = \Delta k_{i,i} u_i$. The following errors will be detected: The following errors will be detected:

II

! priateheadings. *2*. PROBLEM EXCEEDS TOTAL DEGREE-*O*F-8. Six frequencies, computed from the eigenvalues of FREEDOM SIZE LIMITATION. The number of the matrix C (see Section II-H), assuming input of joints times the number of degrees of freedom at weight in pound units and dimensions in inch units: each joint exceeds 180.

': **22**

- JPL TECHNICAL REPORT NO. 32-774
- 3. NUMBER OF ALLOWABLE RESTRAINTS EX-CEEDED. The number of restraint exceeds 100.
- 4. PROBLEM EXCEEDS NUMBER DEGREES-OF-FREEDOM SIZE LIMITATION. The number of joints times the number of degrees of freedom for each joint minus the number of restraints exceeds 130.
- 5. NEGATIVE EIGENVALUES.
- 6. STIFFNESS ELEMENT HAS BEEN PUT ON A A RESTRAINT. A change to the stiffness matrix corresponding to a restrained degree of freedom has been specified in the input.

7. NO ORTHOGONALITY CHECK, pq. For option 5, ξ , is not orthogonal to the member for member pq .

C. Tape Requirements

BIBLIOGRAPHY

- 1. Crandall, S. H., Engineering Analysis, McGraw-Hill Book Co., Inc., New York, N. Y., 1956.
- 2. von Karman, T. and Biot, M. A., Mathematical Methods in Fngineering, McGraw-Hill Book Co., Inc., New York, N.Y., 1940.
- 3. Frazer, R. A., Duncan, W. J., and Collar, A. R., Elementary Matrices, and Some Applications to Dynamics and Differential Equations, Cambridge University Press, New York, N.Y., 1955.
- 4. Lanczos, C., Applied Analysis, Prentice Hall, Inc., Englewood Cliffs, N. J., 1956.
- 5. Bodewig, E., Matrix Calculus, Interscience Publishers, Inc., New York, N.Y., 1956.
- 6. Norris, C. H., et al., Structural Design for Dynamic Load, McGraw-Hill Book Co., Inc., New York, N. Y., 1959.
- 7. Hildebrand, F. B., Introduction to Numerical Analysis, McGraw-Hill Book Co., Inc., New York, N. Y., 1956.
- 8. Scanlan, R. H. and Rosenbaum, R., Introduction to the Study of Aircraft Vibration and Flutter, The Macmillan Co., New York, N.Y., 1951.
- 9. Hall, S. A. and Woodhead, R. W., Frame Analysis, John Wiley and Sons, Inc., New York, N. Y., 1961.
- 10. Timoshenko, S., Vibration Problems in Engineering, D. Van Nostrand Co., Inc., New York, N. Y., 1955.
- 11. Roark, R. J., Formulas for Stress and Strain, McGraw-Hill Book Co., Inc., New York, N. Y., 1954, p. 174. -
- 12. Argyris, J. H., "Energy Theorems and Structural Analysis" Aircraft Engineering, October 1954, November 1954, February 1955, March 1955, April 1955, and May 1955.
- 13. Archer, J. S., "Digital Computation for Stiffness Matrix Analysis," Proceedings of the American Society of Civil Engineers, October 1958.
- 14. Archer, J. S. and Samson, C. H., Jr., "Structural Idealization for Digital Computer Analysis," Conference Papers of the American Society of Civil Engineers, Pittsburgh Conference on Electronic Computation, September 1960.
- 15. Martin, H. C., "Truss Analysis by Stiffnets Consideration," Proceedings of the American Society of Civil Engineers, October 1956.

- 16. Clough, R. W., "Structural Analysis by Means of a 20. Melosh, R. J., "A Stiffness Matrix for .he Analysis of American Society of Civil Engineers, Kansas City Conference on Electronic Computation, November 1958.
- L. J., "Stiffness and Deflection Ana**l**ysis of Comp**l**ex Loaded Norma**l**ly to Their Planes," Journal of the Ameri**-**Structures," Journal of Aeronautical Sciences, September r . 1**9**,_v**.**
- November **1**957**,** and June 1958.
- Low-Aspect-Ratio Aircraft Structures," Journal of Aerospace Sciences, September **1**960. N.Y**.**, 1962, pp. 84-91.

'**:** I

- Matrix Algebra Program," Conference Papers of the Thin Plates in Bending," Journal of Aerospace Sciences,
American Society of Civil Engineers, Kansas City Con-January 1961.
- 17. Turner, M. J.**,** C**l**ough**,** R. W.**,** M_rtin**,** H. C.**,** and **T**opp, 21. Martin, I. and Hernandez, J., "Orthogonal Gridworks
- 22. White, P. A., "The Computa**ti**on of E**i**genvalues and 18. Klein, D., "A Simple Method of Matrix Structural Analy-

Eigenvectors of a Matrix," Journal of the Society for

1959,

Analytial and Analised Mathematics December 1958 _"s, Journal o? Aeronautical Sciences, Januar**y** 1957**,** Industrial and Applied Mathematics, December 195**8**.
- i 19. Samson**,** C**.** H**.**, Jr**.** and Bergmann**, H**. W**.**, "Analy**s**is of 23. Ralston, A., _nd Wilf, H. S., Mathemat;cal Methods for

i

A**PPENDI**X **A**

Matrices for Various Me**mber** T**y**p**es**

The following derivations are performed on typical members by introducing successive unit c**oo**rdinate defl*e*ctions of their cl**}**ds and ca**l**culating forc*e*s r*e*acting on the member*.* Coordinate deflections inclm**'**c both tr*a*nslations and rotatiorloads are forces and moments**.** In each case*,* the first column of the required m**a**tr *(*' is derived in some \vec{c} tail to illustrate procedure.

Matrices relating forces and displacements in structure-oriented (x_i) coordinates are desired here; but intermediate use of member-oriented (ξ_i) coordinates is mad*e* in t**he** more complicated derivations.

In the deriwttions below, the following quantiti*e*s are input or computed for each member $p - q$:

- 1. Input coordinates x_p , x_q *i*
- 2. Input member properties, A**,***, E*
- 8. Compute member length

$$
S = [(x_{q1} - x_{p1})^2 + (x_{q2} - x_{p2})^2 + (x_{q3} - x_{p3})^2]^{x_2}
$$

4. Compute direction cosines

$$
\gamma_1 = \frac{(x_{q1} - x_{p1})}{S}
$$

$$
\gamma_2 = \frac{(x_{q2} - x_{p2})}{S}
$$

and

$$
\gamma_3 = \frac{(x_{q, i} - x_{p, i})}{S}
$$

Matrices \mathbf{K}_{pp} , \mathbf{K}_{qp} are written satisfying the expression

$$
\left\{\begin{array}{c} \mathbf{f}_p \\ \mathbf{f}_q \end{array}\right\} = \left\{\begin{array}{c} \mathbf{K}_{pp} \\ \mathbf{K}_{qp} \end{array}\right\} \left\{\mathbf{u}_p\right\}
$$

Section property:

 $A = A₁$

or if

 $A_{\cdot} = 0$

 $_{\rm then}$

 $D = A.$

and

$$
T = A2
$$

$$
A = \pi T(D - T)
$$

Introduce $u_{\mu i} = 1$

$$
Axial load = \frac{AE}{S} \gamma_1
$$

Force components at joints p and q are

$$
f_{p1} = -f_{q1} = \frac{AE}{S} \gamma_1^2
$$

$$
f_{p2} = -f_{q2} = \frac{AE}{S} \gamma_1 \gamma_2
$$

and

$$
f_{\mu s} = -f_{\eta s} = \frac{AE}{S} \gamma_1 \gamma_s
$$

The matrix relating displacements of joint p to forces at joints p and q is

$$
\frac{AE}{S} \begin{bmatrix} \gamma_1^2 & \gamma_1 \gamma_2 & \gamma_1 \gamma_3 \\ \gamma_1 \gamma_2 & \gamma_2^2 & \gamma_2 \gamma_3 \\ \gamma_1 \gamma_3 & \gamma_2 \gamma_3 & \gamma_1^2 \\ \gamma_1 \gamma_3 & \gamma_2 \gamma_3 & \gamma_1^2 \\ -\gamma_1^2 & -\gamma_1 \gamma_2 & -\gamma_1 \gamma_3 \\ -\gamma_1 \gamma_2 & -\gamma_2^2 & -\gamma_2 \gamma_3 \\ -\gamma_1 \gamma_3 & -\gamma_2 \gamma_3 & -\gamma_3^2 \end{bmatrix}.
$$

2. Structure type 2, three-dimensional, rigid-jointed members, equal member cross section moment of inertia (Fig. A-2)

Section properties:

$$
A = A_1
$$

$$
I = A_2
$$

$$
K = A_2
$$

or if

$$
A_3 = 0
$$

\n
$$
D = A_1
$$

\n
$$
T = A_2
$$

\n
$$
A = T (D - T) \pi
$$

\n
$$
I = \frac{\pi}{4} \left(\frac{1}{2} D^3 T - \frac{3}{2} D^2 T^2 + 2 D T^3 - T^1 \right)
$$

\n
$$
K = 2I
$$

Introduce $u_{\mu 1}=1.$ Vector displacements in the axial and transverse directions at joint p are

$$
\delta_1 = \gamma_1^2 \mathbf{x}_1 + \gamma_1 \gamma_2 \mathbf{x}_2 + \gamma_1 \gamma_3 \mathbf{x}_3
$$

$$
\delta_2 = (1 - \gamma_1^2) \mathbf{x}_1 - \gamma_1 \gamma_2 \mathbf{x}_2 - \gamma_1 \gamma_3 \mathbf{x}_3
$$

 δ_z is defined as a vector perpendicular to the plane defined by vectors δ_x and \mathbf{x}_1 .

A unit vector normal to $\mathbf{5}_i$ and δ_z is

í

$$
\delta_{x} = \frac{\delta_{1} \times \delta_{2}}{|\delta_{1}||\delta_{2}|}
$$
\n
$$
= \frac{(\gamma_{1} \gamma_{1} \mathbf{x}_{2} - \gamma_{1} \gamma_{2} \mathbf{x}_{3})}{\gamma_{1} (1 - \gamma_{1}^{2})^{\frac{1}{12}}}
$$
\n
$$
= \frac{(\gamma_{2} \mathbf{x}_{2} - \gamma_{2} \mathbf{x}_{4})}{(1 - \gamma_{1}^{2})^{\frac{1}{12}}}
$$

The vector force exerted on joint \boldsymbol{p}

$$
=\frac{AE}{S}\,\delta_1\,+\,\frac{12EI}{S^3}\,\delta_2
$$

and the vector moment at joint \boldsymbol{p}

$$
=\frac{6EI}{S^2}\,(1-\gamma_1^2)^{1/2}\,\delta_3
$$

Components of these load vectors are

 $f_{\nu 1}$ = force along x, axis = $\frac{AE}{S} \gamma_1^2 + \frac{12EI}{S^3} (1 - \gamma_1^2)$ $f_{\mu\nu}$ = force along x_{ν} axis = $\left(\frac{AE}{S} - \frac{12EI}{S^3}\right) \gamma_1 \gamma_2$ f_p : -- force along x_3 axis = $\left(\frac{AE}{S} - \frac{12EI}{S^3}\right)\gamma_1\gamma_3$ $f_{\nu i}$ = moment about x_i axis = 0 $f_{\rm F5}$ = moment about $x_{\rm z}$ axis = $\frac{6EI}{S^2} \gamma_{\rm z}$ f_{I^a} = moment about x_a axis = $-\frac{6EI}{S^2} \gamma_z$

Similar load components at joint q are

$$
f_{q_1} = -\frac{AE}{S} \gamma_1^2 - \frac{12EI}{S^3} (1 - \gamma_1^2)
$$

\n
$$
f_{q_2} = \left(-\frac{AE}{S} + \frac{12EI}{S^3}\right) \gamma_1 \gamma_2
$$

\n
$$
f_{q_3} = \left(-\frac{AE}{S} + \frac{12EI}{S^3}\right) \gamma_1 \gamma_3
$$

\n
$$
f_{q_4} = 0
$$

\n
$$
f_{q_5} = +\frac{ELI}{S^2} \gamma_5
$$

\n
$$
f_{q_6} = -\frac{6EI}{S^2} \gamma_2
$$

The required matrix will be written in terms of the quantitics

$$
C_{o} = \frac{AE}{S}
$$

\n
$$
C_{1} = \frac{EK}{2S(1+v)}
$$

\n
$$
C_{2A} = \frac{12EI}{S^{4}}
$$

\n
$$
C_{2B} = \frac{6EI}{S^{2}}
$$

\n
$$
C_{2C} = \frac{2EI}{S}
$$

28

-7

Analytic State Company of Articles

and the first control of the control of th

一系 法法定

图 化二氯

3. Structure type 3, two-dimensional, rigid-jointed members, loaded in-plane $(Fig. A-3)$

 $\label{eq:2.1} \frac{1}{2}\sum_{i=1}^{N-1} \frac{1}{2} \sum_{i=1}^{N-1} \frac{$

 α r

Section properties:

$$
A = A_1
$$

\n
$$
I = A_2
$$

\nif
\n
$$
A_3 = 0
$$

\n
$$
D = A_1
$$

\n
$$
T = A_2
$$

\n
$$
A = T(D - T)\pi
$$

\n
$$
I = \frac{\pi}{4} \left(\frac{1}{2} D^3 T - \frac{3}{2} D^2 T^2 + 2 D T^3 - T^4 \right)
$$

z.

The derivation is similar to that preceding with $\gamma_s=0.$

The matrix is written in terms of

$$
C_0 = \frac{A_2}{S}
$$
 $C_{2h} = \frac{6EI}{S^2}$
 $C_{2A} = \frac{12EI}{S^3}$ $C_3 = \frac{2EI}{S}$

Loads at joint p are in the order

 $f_{\rm pr}$ = force along $x_{\rm t}$ axis

 f_{p2} = force along x_2 axis

 f_{p3} = moment about x_3 axis

4. Structure type 4, two-dimensional, rigid-jointed, loaded normal-to-plane $(grid)$ (Fig. A-4)

Section properites:

$$
I = A_{a}
$$

$$
K = A_{a}
$$

JPL TECHNICAL REPORT NO. 32-774

Fig. A-4. Two-dimensional rigid-jointed loaded normai-to-plane member

or if

$$
A_{3} = 0
$$

\n
$$
D = A_{1}
$$

\n
$$
T = A_{2}
$$

\n
$$
I = \frac{\pi}{4} \left(\frac{1}{2} D^{3} T - \frac{3}{2} D^{2} T^{2} + 2 D T^{3} - T^{4} \right)
$$

\n
$$
K = 2I
$$

Introduce $u_{p1} = 1$. Moment about an axis transverse to the member is of magnitude 6EI/S². Components of load exerted on joints *p* and *q* are:

 $f_{\mu} = -f_{q1}$ = force in \mathbf{x}_3 direction = $\frac{12EI}{S^3}$ $f_{p2} = f_{q2}$ = moment about x_1 axis = $\frac{6EI}{S^2} \gamma_2$ $f_{p3} = f_{q3}$ = moment about x_2 axis = $-\frac{6EI}{S^2} \gamma_1$

As before, the matrix is written in terms of the parameters

$$
C_{1} = \frac{EK}{2S(1+v)}
$$
\n
$$
C_{2.1} = \frac{12EI}{S^{3}}
$$
\n
$$
C_{2B} = \frac{6EI}{S^{2}}
$$
\n
$$
C_{3} = \frac{2EI}{S}
$$
\n
$$
C_{2BY_{2}}
$$
\n
$$
C_{2BY_{2}}
$$
\n
$$
C_{1Y_{1}^{2}} + 2C_{3Y_{2}^{2}}
$$
\n
$$
C_{1Y_{2}^{2}} + 2C_{3Y_{1}^{2}}
$$
\n
$$
C_{2BY_{1}}
$$
\n
$$
C_{2BY_{1}}
$$
\n
$$
C_{2BY_{1}}
$$
\n
$$
C_{2A} = \frac{C_{2X_{1}^{2}}}{C_{2X_{1}^{2}}}
$$
\n
$$
C_{2BY_{1}}
$$
\n
$$
C_{2BY_{2}}
$$
\n
$$
C_{2BY_{2}}
$$
\n
$$
C_{2Y_{1}^{2}} - C_{1Y_{1}^{2}} + C_{3Y_{2}^{2}}
$$
\n
$$
C_{1Y_{2}^{2}} + C_{1Y_{2}^{2}}
$$
\n
$$
C_{2BY_{1}}
$$
\n
$$
C_{2BY_{1}}
$$
\n
$$
C_{2BY_{1}}
$$
\n
$$
C_{1Y_{2}^{2}} + C_{3Y_{1}^{2}}
$$
\n
$$
C_{2BY_{1}^{2}}
$$

5. Structure type 5, three-dimensional, rigid-jointed member, doubly symmetrical cross-section (Fig. A-5)

Section properties:

 $A = A_1$ $I_1 = A_2$ $I_2 = A_3$ $I_3 = A_1$ Joint $r = A_{\overline{r}}$

Calculate the direction cosine of the vector $pq \times pr$ and define the vector to be $\xi_i = \xi_1, \mathbf{x}_1 - \xi_2, \mathbf{x}_2 + \xi_3, \mathbf{x}_3$ or the I_i axis of the member. Using the right-handed coordinate system define the axis of I_2 to be

$$
\xi_2 = \frac{\xi_3 \times \xi_1}{|\xi_3| |\xi_1|} = x_1 (\xi_{23} \gamma_5 - \xi_{33} \gamma_2) + x_2 (\xi_{33} \gamma_1 \n- \xi_{13} \gamma_3) + x_3 (\xi_{13} \gamma_2 - \xi_{23} \gamma_1) \n= x_1 \beta_1 + x_2 \beta_2 + x_3 \beta_3
$$

where ξ_1 is a unit vector along the member.

Introduce $u_{\nu 1} = 1$. Vector displacements of point ν in the member-oriented coordinate system (ξ_i) are

$$
\delta_1 = \gamma_1^2 \mathbf{x}_1 + \gamma_1 \gamma_2 \mathbf{x}_2 + \gamma_1 \gamma_3 \mathbf{x}_3
$$

\n
$$
\delta_2 = (\xi_2, \gamma_3 - \xi_{33} \gamma_2)^2 \mathbf{x}_1 + (\xi_{23} \gamma_3 - \xi_{33} \gamma_2) (\xi_{33} \gamma_1 - \xi_{13} \gamma_3) \mathbf{x}_2
$$

\n
$$
+ (\xi_{23} \gamma_3 - \xi_{33} \gamma_2) (\xi_{13} \gamma_2 - \xi_{23} \gamma_1) \mathbf{x}_3
$$

\n
$$
= \beta_1 \mathbf{x}_1 + \beta_1 \beta_2 \mathbf{x}_2 + \beta_1 \beta_3 \mathbf{x}_3
$$

$$
\mathbf{o}_3 = \xi_{13}^2 \mathbf{x}_1 + \xi_{14} \xi_{23} \mathbf{x}_2 + \xi_{14} \xi_{33} \mathbf{x}_3
$$

The vector force excrted . . joints

$$
- q \text{ and } p = \frac{AE}{S} \delta_1 + \frac{12EI_3}{S^4} \delta_2 + \frac{12EI_2}{S^4} \delta_3
$$

and the vector moment exerted on joints

$$
p \text{ and } q = -\frac{6EI_z}{S^2} \delta_x \xi_z + \frac{6EI_z}{S^2} |\delta_z(\xi)|
$$

Components of these load vectors are:

$$
f_{p1} = -f_{q1} = \text{force along } x_1 \text{ axis } -\frac{AE}{S} \gamma_1^2 + \frac{12EI_4}{S^3} (\xi_2 \gamma_3 - \xi_4 \gamma_2)^2
$$

+ $\frac{12EI_2}{S^3} \xi_{13}^2$

$$
f_{p2} = -f_{q2} = \text{force along } x_2 \text{ axis } = \frac{AE}{S} \gamma_1 \gamma_2 + \frac{12EI_4}{S^3} (\xi_2 \gamma_3 - \xi_5 \gamma_2)
$$

 $\times (\xi_{33} \gamma_1 - \xi_{13} \gamma_2) + \frac{12EI_2}{S^3} \xi_{13} \xi_{23}$

$$
f_{p3} = -f_{q3} = \text{force along } x_3 \text{ axis } = \frac{AE}{S} \gamma_1 \gamma_3 + \frac{12EI_4}{S^3} (\xi_2 \gamma_3 - \xi_{13} \gamma_2)
$$

 $\times (\xi_{13} \gamma_2 - \xi_{23} \gamma_1) + \frac{12EI_2}{S^3} \xi_{13} \xi_2$

$$
f_{p4} = +f_{q4} = \text{moment about } x_1 \text{ axis } = \xi_{11} (\xi_2 \gamma_3 - \xi_3 \gamma_2) \left(\frac{6EI_3}{S^2} - \frac{6EI_2}{S^2}\right)
$$

$$
f_{p5} = f_{q5} = \text{moment about } x_2 \text{ axis } = -\frac{6EI_2}{S^2} \xi_{11} (\xi_{23} \gamma_3 - \xi_{13} \gamma_2)
$$

+ $\frac{6EI_3}{S^2} \xi_{21} (\xi_{23} \gamma_3 - \xi_{33} \gamma_2)$

$$
f_{p6} = f_{q6} = \text{moment about } x_3 \text{ axis } = -\frac{6EI_2}{S^2} \xi_{13} (\xi_{13} \gamma_2 - \xi_{23} \gamma_1)
$$

+ $\frac{6EI_3}{S^2} \xi_{34} (\xi_{23} \gamma_3 - \xi_{33} \gamma_2)$

The stiffness matrix is written in terms of the parameters

 $C_1 = \frac{6EI_x}{S^2}$ $K_1 = \frac{2E I_2}{S} = \frac{L_1}{2}$ $K_e = \frac{2EI_x}{S} = \frac{L_2}{2}$ $C_2 = \frac{6EI_3}{S^2}$ $C_3 = \frac{EI_1}{2S(1+\nu)}$ $K_a = \frac{12EI_2}{S^3}$ $C_4 = \frac{AE}{S}$. $K_i = \frac{12EI_3}{S^3}$

ومحاري

k

APPENDIX B

Loads for Various Member Types

Expressions for member loads are developed, using the geometrical parameters of Section III and the joint deflections in the order specified in Section III A-5.

1. Structure type 1, three-dimensional, pin-jointed members, axial extension of the member is

 $\delta_1 = (u_{q_1} - u_{p_1}) \gamma_1 + (u_{q_2} - u_{p_1}) \gamma_2 + (u_{q_3} - u_{p_3}) \gamma_3$

The axial load is computed and output for each loading on each member in pound units, tension positive:

$$
P=\frac{AE}{S}\,\delta_1
$$

2. Structure type 2, three-dimensional, rigid-jointed members, equal member cross-section moment of inertia

A member-oriented coordinate system is defined as follows:

 $\xi_1 =$ unit vector along member axis

 $=\gamma_1\mathbf{x}_1+\gamma_2\mathbf{x}_2+\gamma_3\mathbf{x}_3$

 $\xi_2 =$ unit vector normal-to-plane of ξ_1 and \mathbf{x}_1 (or ${\bf x}_2$ if $\xi_1 = {\bf x}_1$)

$$
= \frac{\xi_1 \times \mathbf{x}_1}{\left|\xi_1 \times \mathbf{x}_1\right|}
$$

$$
= \frac{\left(\gamma_2 \mathbf{x}_2 - \gamma_2 \mathbf{x}_3\right)}{\left(\gamma_3^2 + \gamma_2^2\right)^{\gamma_2}}
$$

"你是'你

1990年1月1日,1990年1月1日,1990年1月1日,1990年1月1日,1990年1月1日,1990年1月1日,1990年1月1日,1990年1月1日,1990年1月1日,1990年1月1日,

第一章 第三章

 ξ_3 = unit vector normal-to-plane of ξ_1 and ξ_2

$$
= \xi_1 \times \xi_2
$$

=
$$
\frac{-(\gamma_2^2 + \gamma_3^2) x_1 + \gamma_2 \gamma_1 x_2 + \gamma_1 \gamma_3 x_3}{(\gamma_3^2 + \gamma_3^2)^{3/2}}
$$

Net displacement components in the ξ_i directions are

 $\delta_{10} = \int (u_{q1} - u_{p1}) \mathbf{x}_1 + (u_{q2} - u_{p2}) \mathbf{x}_2 + (u_{q3} - u_{p3}) \mathbf{x}_3] \cdot \xi_1$ $\delta_{20} = \int (u_{q1} - u_{p1}) \mathbf{x}_1 + (u_{q2} - u_{p2}) \mathbf{x}_2 + (u_{q3} - u_{p3}) \mathbf{x}_3 \cdot \mathbf{x}_2$ $\delta_{30} = [(u_{q1} - u_{p1}) \mathbf{x}_1 + (u_{q2} - u_{p2}) \mathbf{x}_2 + (u_{q3} - u_{p3}) \mathbf{x}_3] \cdot \xi_3$

Net torsional rotation is

$$
\delta_{10} = \left[(u_{q1} - u_{p4}) \mathbf{x}_1 + (u_{q5} - u_{p5}) \mathbf{x}_2 + (u_{q6} - u_{p6}) \mathbf{x}_3 \right] \cdot \xi_1
$$

[

|

t

r

I

!**.**

Transverse rotations of each end are

$$
\delta_{p3} = (u_{p4} \mathbf{x}_1 + u_{p5} \mathbf{x}_2 + u_{p6} \mathbf{x}_3) \cdot \boldsymbol{\xi}_2
$$

\n
$$
\delta_{p4} = (u_{p4} \mathbf{x}_1 + u_{p5} \mathbf{x}_2 + u_{p6} \mathbf{x}_3) \cdot \boldsymbol{\xi}_3
$$

\n
$$
\delta_{q3} = (u_{q4} \mathbf{x}_1 + u_{q5} \mathbf{x}_2 + u_{q6} \mathbf{x}_3) \cdot \boldsymbol{\xi}_2
$$

\n
$$
\delta_{q6} = (u_{q4} \mathbf{x}_4 + u_{q5} \mathbf{x}_2 + u_{q6} \mathbf{x}_3) \cdot \boldsymbol{\xi}_3
$$

Momen*t*s about the transverse axes are

$$
M_{pz} = \frac{-2EI}{S} \left(2\delta_{pz} + \delta_{qs} + \frac{3\delta_{30}}{S} \right)
$$

$$
M_{pz} = \frac{2EI}{S} \left(-2\delta_{ps} - \delta_{qs} + \frac{3\delta_{20}}{S} \right)
$$

$$
M_{qz} = \frac{-2EI}{S} \left(2\delta_{qs} + \delta_{ps} + \frac{3\delta_{30}}{S} \right)
$$

$$
M_{qz} = \frac{2EI}{S} \left(-2\delta_{qa} - \delta_{ps} + \frac{3\delta_{20}}{S} \right)
$$

• The following quantities are output, in order, for each *m*embel :

$$
P = \text{axial load}
$$

$$
= \frac{AE}{S} \delta_{10}
$$

 M_p = resultant bending moment at p

$$
= \big(M_{p_\varphi}^2 \,+\, M_{p_3}^2\big)^{\tau_2}
$$

 M_q = resultant bending moment at *q*

$$
= (M_{q_2}^2 + M_{q_3}^2)^{\tau_2}
$$

 M_t = twisting movement

$$
=\frac{KE}{2S(1+\nu)}\,\delta_{10}
$$

 V_p = resultant shear at *p*

$$
= \frac{1}{S} \left[(M_{p2} + M_{q2})^2 + (M_{p3} + M_{q3})^2 \right]^{1/2}
$$

'_ *3***.** *Structure type 3, two***-***dimensional, ri*g*ld*.*i*o*inted members, loaded in***-**p*lane* **!**'

*A*xial extension of the member is

$$
\delta_1 = (u_{y1} - u_{p1}) \gamma_1 + (u_{q2} - \gamma_{p2}) \gamma_2
$$

Net-transverse deflection of member is

$$
\delta_2 = - (u_{q1} - u_{p1}) \gamma_2 + (u_{q2} - u_{p2}) \gamma_1
$$

 d , and the contract of the

i

/

The following quantities are output, in order, for each member:

$$
M_p = \text{bending moment at } p
$$

= $\frac{2EI}{S} \left(2u_{p_1} + u_{q_2} - \frac{3\delta_2}{S} \right)$

$$
M_q = \text{bending moment at } q
$$

= $\frac{2EI}{S} \left(2u_{q_3} + u_{p_3} - \frac{3\delta_2}{S} \right)$

$$
V_p = \text{shear at } p
$$

= $-\frac{1}{S} (M_p + M_q)$

$$
P = \text{axial load}
$$

= $\frac{AE}{S} \delta_1$

4. Structure typ: 4, two-dimensional, rigid-jointed, loaded normal-to-plane $(grid)$

Net transverse displacement (normal-to-plane) is

$$
\delta_3 = u_{q1} - u_{p1}
$$

 net axial rotation is

$$
\delta_1 = (u_{q2} - u_{p2}) \gamma_1 + (u_{q3} - u_{p3}) \gamma_2
$$

Transverse rotations of the ends are

$$
\delta_{p2} = -u_{q2}\gamma_2 + u_{c3}\gamma_1
$$

$$
\delta_{q2} = -u_{q2}\gamma_2 + u_{q3}\gamma_1
$$

The following quantities are output, in order, for each member:

 $M_p =$ bending moment at p

$$
=\frac{2EI}{S}\bigg(2\delta_{p::}+\delta_{q:2}-\frac{3\delta_{d}}{S}\bigg)
$$

 $M_q =$ bending moment at q

$$
=\frac{2EI}{S}\left(2\delta_{q2}+\delta_{p2}-\frac{3\delta_3}{S}\right)
$$

 M_t = twisting moment

$$
= \frac{EK}{2S(1+\nu)} \, \delta_1
$$

 $V_p =$ shear at p (normal-to-plane)

$$
= - \frac{1}{S} \left(M_p + M_q \right)
$$

5. Structure type 5, three-dimensional, rigid-jointed member, doubly symmetric, cross-section

 Λ member-oriented coordinate system is defined as follows:

 ξ_1 = unit vector along member axis = $\gamma_1 \mathbf{x}_1 + \gamma_2 \mathbf{x}_2 + \gamma_3 \mathbf{x}_3$

 $\pmb{\xi}_2 =$ unit vector normal-to-plane of $\pmb{\xi}_1$ and $\pmb{\xi}_3$

$$
= \xi_1 \times \xi_1 = (\xi_2, \gamma_3 - \xi_3, \gamma_2) \mathbf{x}_1 + (\xi_{13} \gamma_1 - \xi_{13} \gamma_3) \mathbf{x}_2
$$

+
$$
(\xi_1, \gamma_2 - \xi_2, \gamma_1) \mathbf{x}_3 = \beta_1 \mathbf{x}_1 + \beta_2 \mathbf{x}_2 + \beta_3 \mathbf{x}_3
$$

 ξ_i = unit vector normal-to-plane of ξ_i and pr (p is first joint of member and r is an inputed joint not on ξ_1 = ξ_{13} x₁ + ξ_{23} x₂ + ξ_{33} x₃

Net displacement components in the ξ_1 directions are

$$
\delta_{10} = \left[(u_{q1} - u_{p1}) \mathbf{x}_1 + (u_{q2} - u_{p2}) \mathbf{x}_2 + (u_{q3} - u_{p3}) \mathbf{x}_3 \right] \cdot \xi_i
$$

(*i* = 1, 2, 3)

Net torsion rotation is

$$
\delta_{40} = \left[(u_{q4} - u_{p4}) \mathbf{x}_1 + (u_{q5} - u_{p5}) \mathbf{x}_2 + (u_{q6} - u_{p6}) \mathbf{x}_3 \right] \cdot \xi_1
$$

Transverse rotations of each end are

$$
\delta_{pi} = (u_{p1} \mathbf{x}_1 + u_{p5} \mathbf{x}_2 + u_{p6} \mathbf{x}_3) \cdot \xi_i \ (i = 2, 3)
$$

$$
\delta_{ni} = (u_{ni} \mathbf{x}_1 + u_{ni} \mathbf{x}_2 + u_{ni} \mathbf{x}_3) \cdot \xi_i \ (i = 2, 3)
$$

Moments about the transverse axes are

$$
M_{pz} = \frac{2EI_z}{S} \left[2\delta_{pz} + \delta_{qz} + \frac{3\delta_{3m}}{S} \right]
$$

\n
$$
M_{pz} = \frac{2FI_z}{S} \left[2\delta_{pz} + \delta_{qz} - \frac{3\delta_{zz}}{S} \right]
$$

\n
$$
M_{qz} = \frac{2EI_z}{S} \left[2\delta_{qz} + \delta_{pz} + \frac{3\delta_{3m}}{S} \right]
$$

\n
$$
M_{qz} = \frac{2EI_z}{S} \left[2\delta_{qz} + \delta_{pz} - \frac{3\delta_{zz}}{S} \right]
$$

Shears along the transverse axes are:

$$
V_{p_2} = -V_{q_2} = [M_{p_3} + M_{q_3}]/S
$$

$$
V_{p_3} = -V_{p_4} = -(M_{p_2} + M_{q_2})/S
$$

The following quantities are output, in order, for each member:

$$
P = \text{axial load} = \frac{AE}{S} \, \delta_{10}
$$

 M_{pz} , M_{pz} , M_{qz} , $M_{q\beta}$ = moments at joints p and q

$$
M_t =
$$
twisting moment $= \frac{I_1 E}{2S(1 + \nu)} \delta_{10}$

 V_{pz} , V_{q2} , V_{pz} , $V_{q3} =$ shears at joints p and q

APPENDIX C

Thermal Loads for Various Member Types

The analysis method is outlined in H-G. The equation used to calculate the loading in a member with the ends fixed in-space will be calculated.

1. Structure type 1, three-dimensional, pin-jointed members (Fig. C-1)

Fig. C-1. Three-dimensional pin-jointed member

Thermal input

 $\alpha \Delta T = A_5$

where

 α = coefficient of thermal expansion

 $\Delta T =$ change of temperature of entire member; positive if increase in temperature

Force components at joints p and q are

 $f_{\mu 1} = -f_{q 1} = E \Lambda \gamma_1 \alpha \Delta T$ $f_{yz} = -f_{yz} = EA_{\gamma z} \alpha \Delta T$ $f_{ps} = -f_{qs} = EA \gamma_s \alpha \Delta T$

2. Structure type 2, three-dimensional, rigid-jointed members, \sqrt{u} member cross-section moment of inertia

The equations are identical to structure Type 1.

3. Structure type 3, two-dimensional, rigid-jointed members, loaded in-plane $(Fig. C.2)$

Thermal inputs:

$$
\alpha \Delta T = A_b
$$

$$
\frac{\alpha \delta T}{h} = A_a
$$

where

- α = coefficient of thermal expansion
- $\Delta T =$ change of temperature of entire member; positive if increase in temperature
- δT = temperature gradient through member cross-section; positive if the unrestrained rotation of joint p is in positive \mathbf{x}_i direction

 $h =$ height of cross-section

Force components at joints p and q are

$$
f_{p1} = -f_{q1} = EA_{\gamma_1} \alpha \Delta T
$$

$$
f_{p2} = -f_{q2} = EA_{\gamma_2} \alpha \Delta T
$$

Moment component at p and q are

$$
f_{p_1}=-f_{q_2}=\frac{EI\alpha\delta T}{h}.
$$

4. Structure type 4, two-dimensional, rigid-jointed, loaded normal-to-plane $(grid)$ (Fig. C-3)

Thermal input

L

J

41 _ **,**_

41

where

a = c*o*efficie*n*t **o**f **t**hermal expansion

 $8T =$ thermal gradient through the member; positive if gradient increases in positive \mathbf{x}_3 direction

h = height o**f** cross-secti*o*n

Moment component at joints p and q are

$$
f_{p1} = -f_{q1} = -\gamma_2 \frac{El\alpha\delta T}{h}
$$

$$
f_{p2} = -f_{q2} = \gamma_1 \frac{El\alpha\delta T}{h}
$$

5. Structure type 5, three-dimensional, rigid-jointed member, doubly symmet*ri*c *cross***-***section*

The equations are identical to structure T**y**pe 1.

 $\begin{array}{c}\n\cdot \\
\cdot \\
\cdot \\
\cdot \\
\cdot \\
\cdot \\
\cdot \\
\cdot\n\end{array}$

42

APPENDIX D

Example Problem

The option-1 sample problem chosen is shown in Fig. D-1.

Fig. D-1. Example problem

ZERC TIME # 005404
DPTICK CKE SAMPLE PROBLEM-STATIC AND DYNAMIC INPUT DATA
STIFFMESS MATRIX ANALYSIS PROBLEM SAMPLI CONTROL CARD -0

NO. LOS NASS NO. NO. JT. NES. NO DEG F/JT EIG COJE NUT CODE

3

0.10000E 05 0.30000C-00-0.

0.10000E 05 0.30000C-00-0. xo. на. РЕН.
35 Ĵн. $\begin{array}{cc}\n\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2} & \frac{1$ 15
 $100 - 000$ $_{80}$ $\begin{array}{r} \textbf{X3} \\ \textbf{0} \\ \textbf{0} \\ \textbf{0} \\ \textbf{10} \\ \textbf{10} \\ \textbf{10} \\ \textbf{10} \\ \textbf{10} \\ \textbf{20} \\$ **JO1NI** $\begin{matrix} 1 & 0 \\ 0 & 0 \\ 0 & 0 \end{matrix}$ $\begin{array}{r} 0.100000 \\ 0.00000 \\ 0.00000 \\ 0.00000 \\ 0.00000 \\ 0.00000 \\ 0.00000 \\ 0.00000 \\ 0.00000 \\ 0.00000 \\ 0.00000 \\ \end{array}$ $\begin{array}{l} 0.1 \\ 0.00000 \\ 16.00000 \\ 10.00000 \\ 0.00000 \\ 10.00000 \\ 10.00000 \\ 0.00000 \\ 0.00000 \\ 0.00000 \\ 0.00000 \\ \end{array}$ $\frac{1.0000}{5.00000}$
 $\frac{697165}{11. A}$
 $\frac{1}{1}$ 6.006
 $-02-0$.
PRCPFF -
40. \overline{J} r. 8 \mathbf{A} VOLUME
1.000E-01-
1.000E-01-
1.000E-01-
1.000E-01-- エミシャラウォ B o ひ1 12 13 4 うらて 28 0 2 2 2 2 3 4 5 6 7 8 9 0 てんひろんてんろしらでんとてるのようにゅうしまいたいかい - 000E
- 000E
- 000E $\begin{array}{c} 01-0+\\ 01-0-\\ 01-0-\\ 01-0-\\ 01-0-\\ 01-0-\\ 01-0-\\ 01-0-\\ 01-0-\\ 01-0-\\ 01-0-\\ 01-0-\\ 01-0-\\ 01-0-\\ 01-0-\\ 01-0-\\ 01-0-\\ \end{array}$ $\begin{array}{c} 1.0006 - 02 - 0. \\ 1.0006 - 02 - 0. \\ 1.0006 - 02 - 0. \\ 1.0006 - 02 - 0. \\ 1.0006 - 02 - 0. \\ 1.0006 - 02 - 0. \\ 1.0006 - 02 - 0. \\ 1.0006 - 02 - 0. \\ 1.0006 - 02 - 0. \\ 1.0006 - 02 - 0. \\ 1.0006 - 02 - 0. \\ 1.0006 - 02 - 0. \\ 1.0006 - 02 - 0. \\ 1.00$ $\begin{array}{c} 01-0\\ \end{array}$ -0
 -0
 -0
 -0
 0
 0 1226 $\frac{10}{10}$ 31
32
33
33
34
35 $\begin{array}{c} 12 \\ 13 \\ 13 \\ 12 \\ q \end{array}$ $1.000f - 02 - 0.$
 $1.060f - 02 - 0.$ $0.100E 01-0.$
 $0.100E 01-0.$
 $0.100E 01-0.$
 $0.100E 01-0.$
 $0.100E 01-0.$ -0
 -0
 -0
 -0
 -0
 -0 $-0.$
 $-0.$
 $-0.$
 $-0.$
 $-0.$ $\begin{array}{c} 11 \\ 11 \\ 12 \\ 16 \\ 5 \end{array}$ $\begin{array}{c} 1*000E-01-0* \\ 0*122E-00-0* \\ 0*122E-00-0* \\ 0*151E-00-0* \\ 0*151E-00-0* \\ 0*151E-00-0* \end{array}$ AS
35
5LM
RESTRAINTS
4
2
3
4 SUM OF MEMBER VOLUMES & 4.08.954 SUM OF MEMBER VEIGHTS = \mathfrak{d}_{\bullet} $\begin{array}{c}\n\mathbf{J}^{\mathbf{r}} \\
\vdots \\
\mathbf{J}^{\mathbf{r}} \\
\mathbf{J}^{\mathbf{r$ $h0$ \mathbf{a} $\overline{15}$ k6 $\begin{array}{c}\nR_1 \\
1 \\
1 \\
1\n\end{array}$ $\begin{array}{c} 13 \\ 1 \\ 1 \\ 1 \end{array}$ $\frac{1}{1}$ STIFFRESS_MATRIX +LEMENTS

MO. RGW

2 25

2 26

4 31

WEIGHTS

16 COL. ELE. CHANGS
78 0.13300E 05
25 0.13300E 05
34 0.13300E 05
31 0.13300E 05 34

41 0.133006 03

0.150006 02 0.150006 02 0.150006

0.150006 02 0.150006 02 0.150006 VE 1 GHT 02-0.
02-0.
02-0.
02-0.
02-0.
02-0.
02-0.
02-0.
02-0.
02-0. $\begin{pmatrix}\n-2 & -2 & -2 & -2 & -2 & -2 & -2 \\
-2 & -2 & -2 & -2 & -2 & -2 \\
-2 & -2 & -2 & -2 & -2 & -2\n\end{pmatrix}$ $\begin{array}{c}\n 13 \\
 \begin{array}{c}\n 13 \\
 \hline\n 13\n \end{array}\n \end{array}$ y_0 is x_2
0.
0.
0.
0.
-0. \mathbf{x} TOTAL NEIGHIS-195.000 195.000 193.000 \mathbf{o} CENTER OF WEIGHT. X- $Y = 5.000$ 11.538 5.000 WEIGHT NOMENTS OF INERTIA ABOUT CENTER OF WEIGHT IXX- 22038.462. ITT- 22038.462, 1224 - 4000.000, l١٢ LINE A-TER READING INPUT . 005404 TIME AFTER GENERATING STIFFNESS MATRIX . 005404 -0.35355C 04 0.35355E 04 0.
-0. 0. 0. -0.
0. -1.00000E CA $-0.$
 -0.353556 04 $-0.$
 $0.$ 0. \ddotsc

 $-1.30000604 - 0.$

0.35355E 04 -0.35355E 04 -0.

 $\mathbf{0}$

ţ

JPL TECHNICAL REPORT NO. 32-774

 $\widetilde{\mathbb{R}}$

 \mathbf{v}_1

 \bar{t}

EQUILIBRIUM CHECK FOR LOADING 3

46

 $\frac{1}{2}$

č

JPL TECHNICAL REPORT NO. 32-774

 \mathbf{a}

K- '-*2*

'*(* I

I

49

,i

" **ACKNOWLEDGMENT**

The problem was programmed by J. Heath and L. Schmele of the Computer Applications Section (JPL). $\hat{\mathbf{r}}$

t) , the contract of the contr

i