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FOREWORD

This document supersedes Technical Memorandum No. 33-75, dated
February 12, 1962, titled Stiffness Matrix Stiuctural Analysis. The
computer prograrn has been modified to meet the nzeds of the engi-
neers that have :LiS@d the program. The major modifications are:

1. Input data is part of output format

Evaluation of mass preperties

Thermal analysis

Jaccbi’s method for eigenvalue and eigenvector evaluation

Orthogonality check

=S QN SRR

Addition of a non-circular rigid-jointed member.

The original program was modified by Lincoln Laboratory of MIT
to iacrease the degrees of freedom that can be handled. The identifi-
cation given for the program by Lincoln Laboratory is STEIGR.

In
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ABSTRACT

{
'

1 457€

A computer program is described that solves structu.al prolilems

having lumped masses connected by weightless' members. The pro-

gram is capable of handling 130 degrees of freedom with the option

of using any one of five different member types.

Using the stiffness fcrmulation, static deflections and loads, thermal

deflections and loads, eigenvalues and eigenveciors can be evaluatea.

/ po

I. INTRODUCTION

A. General Description

A program has been developed at the Jet Propulsion
Laboratory (JPL) for the analysis of structural frame-
works. Since the program is intended for use as a design
tool, particular attention has been given to simplicity
and fiexibility of input and output. It may thus be used
by personnel who have had little training in computer
utilization, and input may easily be revised to reflect
changes in a design.

The program is coded in FORTRAN-II version-8 lan-
guage, operating under IBSYS, and may be run at any
IBM 7090 installation whose system is compatible with

that of the Jet Propulsion Laboratory and whose machine

has a 32K memory.
The program has been written for the analysis of five
types of structure:

1. Three-dimensional structure, pinned joints

1o

Three-dimensional structure, rigid joints, equal mem-
ber cross-section moment of inertia

3. Planar structure. rigid joints, loaded in-plane

4. Planar grid structure, rigid joints, loaded normal-to-
planc

5, Three-dimensional structure, rigid joints, doubly
symmetric cross-sections

B. Function of Program

A structural framework will be defined as a stable sys-
tem of uniform, weightless members, and joints at which
loads arc applied and weights are lumped. Such a frame-
work and its environment may be described by the fol-
lowing quantities:

1. Coordinates of joints

+ 2. Geometric and clastic properties of members
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. Locations of restraints
. Weights at joints
. Static loads at joints

. Temperature changes of members

N R = AR &1 S N ]

. Acceleration of a joint during free vibration in a
normal mode

Given these as input, the program will perform the
computations to provide the following as cntput:

1. Genter of weight and weight moments of inertia of
the structure

Lo

Deflections and member loads for static loadings

S. Reuctions and equilibrium checks at each joint for
static loadings

4. Defleciions and 1oember loads for thermal loadings

5. Frequencies, mude shapes, and member loads dur-
ing free vibration in normal modes

6. Reactions and ¢«-i%ium checks at each joint for
dynamic loadings

-3

. Orthogonality clier’. »f normal modes

C. Method of Ay s

The prograw: . ziaates the stiffness matix K for a -

particular o w0 Wracture from geometrical data, and
perfories sty .o normal-mode analyses by solving the
equaiions

#

¥ix K-t Fandi.. U=K"MU
[ !

where F is &2 matrix of static loads, M is a matrix of inertia
terms, U is a matrix of static deflections or a normal-mode
shape, and « is the circular frequency of a normal mode.
Member loads are computed from a set of deflections U
and geometrical propertics of the members.

The thermal loads are computed by first calculating
member loads with all degrees of freedom fixed and
forces at cach jeint required to prevent joint motion
cansed by temperature increase. The thermal deflections
of juints and thermal loads in members are obtained by
superimposing the member loads evaluated above to the
member Joads and joint defections evaluated by applying
forces equal,but opposite in sign,to the joint-restrainiig
forces to the structure,

]

The stiffness matrix method of analysis was chosen over
possible techniques (e.g., flexibility matrix, force relaxa-
tion) because it most fully satisfies the following criteria:

1. That it provide a complete analysis (deflections,
loads, normal modes)

Lo

. That input be in a simple form

3. That it analyze statically indeterminate structures
with no extra effort on the part of the user

4. That it be adaptable to any type of framework
5. That a .'seful program be easy to write

6. That the computer be utilized efficiently with respect
to storage capacity and runaing time

7. That the accuracy of the solution be sufficient for
engineering use and be predictable

D. Operating Experience ,

" The program has been used extensively during design

of various spacecraft vehicles. In the few cases where

prototype cxperimental data are available, correlation

with predicted results is good. Analyses of structures of

130 degrees of frecdom have been peiformed with no

accuracy problers, as indicated by a check on stativ
equilibrium of the structure and orthoganality of the

mades.

8

Machine time on the 7094 for complete analyses (static
and normal mode) varies from 1 min for 20 degrees of
freedom to 20 min for 130 degrees of freedom.

1

The input for the original Mariner-A basic structure,
as an example, could be written in about 2 hr after appro-

" priate idealization. (The structure was of 90 degrees of

freedom, statically indeterminate to the 48th degree.)
Key-punching the data cards required 20 min; machine
time was about 10 min. More than 25 revisions to the
original data have been run during the design process.

Some exprimentation has been done with very poorly
conditioned matrices (in particular, Hilbert matrices) to
determine che eftect of conditioning on accuracy. Em-
pirical results of these tests are p.csented in Section 11-K.

4



)
! 1
) J ' ,
! , "
: i
' )
| v
1
i v ‘
) [
: : 'x \ i
' ; | 1 b
\ * | 1 I
t ' \v
‘ ’ : o
_ JPL TECHNICAL REPORT NO. 32-774
' ! i
' f : !
Il. MATHEMATICS ; - ' .
AN ‘) ““ ‘ Vs ' . N
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« ’ / . . i . ! | .
, A. Notation ' kx o tue ' row, ' column component of normelized
‘ b ' ; generalized spring matriy

A square matrix

L. diagonal matrix of cigenvalucs, load matrix
A member area

I
. . . M diagonal niut: i of ine tic teims
A% v matrix X ’ oo
. ) : m  unmber of joints in strncture, normal mode
A; input member section property; thermal strains of ] e o
m, ertia i " generalized eomponent direction -
members ‘ : ‘ ;
) . . . inertiaat point pinx, direction
a; acceleration of structure in x; direction : o aaty ! t o
m ’ the i row, ' columm component ol generalized

\ weight matrix

a;; element of matrix A

¢®  element of matrix A% ‘ . , ‘ .
v ‘ ; m*,  he i row. j* colunin component of normalized

B square matrix aencralized spring naorix
X .
C square matrix N input control parameter —
i ¢i; clement of matrix C n degree of freedom of suructure. centrol parameter
} o fe . . . N
; D outside diameter of circular member cross section pfirst joint specified to deseribe member in input
) ST .
. data
i E elastic 1nodulu. ' A ‘ . e ‘
B - . . P condition number . -
, F  matrix of static loadings . S A
- L
‘ . - . . . pq vector from ioint p to jointc : ,
; f; load in i*" generalized component direction; natu- Pd ) pro] / ’
i zal frequency of i™ mode, eps pro vector hiem ioint p to joint » T -
t i ~ 3
i R .
¢ foi  load at point p in the x, direction . pr. - constant ’ -
o ©f, vector load applied to joint p in x, coordinate g sccond joint specified to deseribe member in input
g system data
, . L . . ? acceleration in m*™ mode, in/scc?
g gravity acceleration, 386.4 in./sec ; Gu  acceleration in m' mode, in/scc ) .
. . r svmbol for a joint o
h  depth of member cross-section ymbe 4] " ‘ S
‘ . L r, inputrestraint parameter
I unit matrix ! I amty , ‘ '
o . S member length ; ‘
I moment of inertia of member cross-section :
.. . . ¢t time variable /
‘ I, mgment of inertia of wen. cr cross-section about ‘
‘ € s T wall thiqkncss of circular member cross- sertion ,
I;;  weight moment =€ inertia about the x; axis through 8T thermal gradient across member crogs-section
. ) S A . !
‘ the center of weigt s _ AT thermalincerease of member
I cross product weight moment of inertin about U matrix of static defleetion
N - LT : CACYTAf g . < avte . '
center of \\ymg.,ht \\'lth“wspu.t to x, and x, axis U, vector mode shape, m™ normal riode
p i foput joint number u, aeflection in i generalized component direction )
K square stiftness matrix u,;  deflection of joint pin x, divection: simplitude of 7 )
i . . e ; y ek . s ,
i K member scction torsional stiffness parameter uy, in the i normal modc g
. . . ' et ol et [t RS P e b —_—
! K,, square stiffness matrix relating joint p to joirt u, vector deflection of joint p in v, coordinate system
k,; elementof matrix K ‘ ' ¥V matrix of cigenveetdrs i
T ' N . . ' Mrenveotor 1h \
ki; the i row, j'" column component of gencralized Vi cigenvector, m'™ mode
spring matrix ' W diagonal matrix of weights
) ! ‘ '
‘ 3 -
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W, component of weight (or weight moment of in-
eriia) in x, direction
W. i weioht con " [P
i 1T werght component ol ' joint

.

X trimvector. ;¥ mode, I iteration

X trial vector
xi! i compenent of XU
XN® k- rial vector
Y. coordinate of joint p in x, direction
x; reference coordinate svstem
X, umitvector in x, coordinate direction
x; location of center of weight from x; axis
Z  trausformaution matrix
Z+ kB ransformation matrix
a cocflicien? of thermai expansion
w.; constant
vi cosine of augle between member axis and x; axis
¢ constant
As eigenvalue, m” mode = 1/,
v Poisson's ratio
1o initial off-diagonal norm
e final off-diagonal norm
w, i off-diagonal norm
o constant

p accuracy requirement

€. unit veetor in 7Y coordinate direction of member-
oriented coordinate system

& member coordinate system

ee,  Circular frequency, rad/sec
Sign Convention:

1. Right-handed coordinate systems

2. Forces and displacements positive in positive co-
ordinate directions

3. Moments and rotations positive by right-hand rule
about positive coordinate axes

B. Derivation of Matrix Equations

At any joint in a structure, a component of load f,
applied to the joint must be in equilibriam with member
loads reacting on the joint in the same direction. Since

member loads In a lincar structure are proportional to
d fections u,, the expression of force equilibrium in an
n degree-of-freedom system may be written

fi= 3 ku; i=1ln ()

BB
where the &,
notation. the same equation is

are Cof: taits of proportionality. In matrix

F = KU

When « joint undergoes free vibration in a normal
mode m. its component deflections must be of the form

W; = iljm SIN ol

The inertix load acting in the same direction is

F e P A
fi = —miu; = m; 0, SiN o (2)

Substituting this load into the expression for ferce
equilibrium.

bl
m; Uiy, (";',', = Z kij ";'m i= l~ n

it

or. in matrix notation

}iUm "l,';' = KUM

The analysis thus involves solution of two matrix equa-
tions; knowing a set of loads F to compute static displace-
ments U from

F = KU

and knowing the inertia of the structure M to compute
normal-mode shapes and frequencies (eigenvectors and
eigenvalues) U,, and o7, from

MU, o;, = KU,

Member loads may be computed from static displacements
U or properly normalized mode shapes U,

C. Generation of the Stiffness Matrix

In Eq. 1, if all displacemnents u, = 0, k 54 j, the resulting

cquations are
fi =k;u, i=1n
The cocflicient k,; is thus the force component in the i

direction per wnit deflection in the ™ dwection, afl other
deflections being zero.
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1. Matrices for the members meeting at joint T are computed as

1 0 | {u)
"
K ‘ -1 0
for member (1-2) and
05 05| ‘w)
£,
\9 ( - 05 05
£ —05 —035
—05 -05 !

for member (1-3).

2. The stiffness matrix of the structure will be setup inan 8 X8 array with forces
(and deflections) in the order

fl1 f‘.‘; f‘!’ f-l-

3. Due to unit component deflections of joint 1, forces are produced which are
the elements of the first two columns of the stiffiness matrix. These forces,
being reacted by loads in the members at juint 1, are determined by adding
the matrices of members 1-2 and 1--3 as follows:

¢ 15 053] {u,)
' 05 05
-1 0
f.
= 1Y |- - _O _____ q i
-05 —05
f. —0, —05
. 0 0
H
. 0 0]

4. The complete matrix is formed by similar superpositions:

(f. 15 05-1  0-05 —o0s! o 6| [
05 05 0 0—05 —05 0 0

‘. c1 02 Tei o T or-1 of
0 0 0 I« 0 =1 0 0

] 1% los —0s 0 ol 1 o0i-05 03

! -05 05 0 =11 0  2: 05 -05 !

. 0 o0i-1 o0i-05 05 15 o3 |

! L0 0r 0 0505 -05 05 03 ‘
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5. Restraints are introduced in the form u,, == u,» = u,.
= 0. Multiplving these known deflections through
the matrix, the first, second, and last columns make
no contribution to the product and may be omitted
from the operation. Also, the forces f,,, f.., fi: are
unknown reactions to be Jetermined from the un-
restrained deflection components.

6. Analysis for the unknown deflections thus reduces 1o
solution of the equation

fa 2 0 0 0 -1 w...
fo 0 1 0 -1 0 U
fay =104 0 0 1 0 —05](u,}
fa 0o -1 0 2 03] fu

fu | 1 0 —05 05 15| \u,

In summary, the program generates the stiffness matrix
as follows:

1. Step through the joints consecutively.

2. For joint p, search list of member numbers for p.

(]

. For each member pgq, gencrate and store (tempo-
rarily) the matrix columns corresponding to deflec-
tions w,,. The submatrices K, K, have the following

locations:
(5] R
0l K,

L. Search list of component restraints; delete rows and
contract stiffness matrix columns vertically.

5. Store contracted columns into main stiffness matrix
array, except where a column corresponds to a zero
deflection component as determined by checking the
list of component restraints.

A few properties of the stiffness matyix are evident from
its derivation:

1. It is symmetric, a conscquence of Maxwell's reci-
procity theorein.

(8]

. Each diagonal term is positive and is large compared
with all other elements in its row, sinee diagonal
blocks are formed by superpesition of off-diagonal
hlocks.

3. Stability of the structare is reflectee in the linear
independence of 1ows. arter rows have been deleted

to account for restraints.

. It is generallv sparse (many elements are vero),
since the position of matrix elements reflects the
presence of members. ’

D. Generaiion of Weight and Load Matrices

The matrices 3 and F arc generated by appropriate
storage of input quantities and contr..cted to account for
restraints in the same mannc_ as for stiffness matrix col-
umps, The diagonal matrix M is stored as a vector.

Loads may be specified either as concentrated forces
or moments on the joint, or as linear and/or rotary accel-
erations of the structure as a rigid body. Loads at joint p
corresponding to acceleration in the i*" coordinate direc-
tion a; are computed as

fri = rigia;

E. Weights, Center of Weight, and Weight
Moments of Inertia About Cenier of Weight

The weights are obtained by adding the values in each
i*" coordinate direction separately as

m
YW, =126

pes

where m is the number of joints and W ; is the j** weight
component of the p' joint.

The center of weight and weight moment of inertia
about center of weight are calculated assuming the first
weight component represents the weights in all threc
directions. The center of weight and weight moment of
inertia are caleulated as

m
Z W,
1

J m

Z ‘Vp:

o
n 0

I;,' = Z W,,l (‘tfrk + .1',':,) =" Z‘Vm (ii’ + .\1.) (’ % k 7& I)

[3R! IR}
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and

—EERY W (4K

o
I = Z‘V,, Xpj Xpx
P Pt

The terms X;, x,;, I;;, end I;; are defined as location of
center of weight along x; direction, coordinate of joint p
in x; direction, weight moment of inertia about the x;
axis through the center of weight, and cross-product
weight moment of inertia about center of weight with
respect to x; and x; axes, respectively.

F. Static Analysis

Given the matrices K and F, the deflections of U are
computed from

U=K'F

by gaussian ciimination. No row interchanges or pivot
tests are performed, since the diagonal of the stiffness
marix is always strong; i.e., the diagona: element is the
largest number in its row, Overflow or underflow during
an arithmetic opciation is not sensed, so the elimination
process continues with whatever remains in the accumu-
lator.

Experience with this basic procedure has been geod.
It has provided results to highly ill-conditioned problems
which compare favorably with these coinputea by more
sophisticated techniques.

Static member loads are computed from the deflections
U and the geometry of the structure. 3 ppropriate equa-
tions for each inember type are given in Appendix B.

Equilibrium check at each joint is made by summing
the various loads (member loads plus external loads) in
the x, directions. The unbalanced loads at the restrained
joints are the reaction loads on the structure.

G. Thermal Analysis
The thermal analysis is performed as follows:

1. The load in each member of the structure induced
by temperature changes, with all joints restrained,
are calculated and stored.

2. Equilibrium checks at all originally unrestrained
joints of the structure are made to determine the
loads imposed by the temporary restraints. The re-
straint forces on the joints are stored.

3. Forces equal and opposite to the restraint forces
(determined in step 2) are applied as static loads
to the structure and member loads and joint deflec-
tions are caleulated (Section II-F).

4. The additicn of member loads calculated in steps 1
and 3 give the thermal loads of the structure, and
the dcflections calculatea in step 3 are the thermal
dispiacements of the structure.

H. Normal-Mode Analysis

An iterative procedure for computing solutions U,
and o, of the equation

KU, = o MU, (3)
is developed in this Section.
First, the above equation will be transformed into
AV, =2 V,
or
A-u; )V, =0 (4)

where A is real and symmetric. Solutions to this equation
have the following properties (Refs. 1-6):

1. There are n solutions o?

2, V., where A is of order
nXn

o

. The eigenvalues o2 are all real and positive, and
the eigenvectors V,, are real.

3. The eigenvectors are orthogonal with respect to the
unit matrix

VIiV,=90 (k= m) (5)

4. The length of an eigenvector is indeterminate; i.e.,
if V., is a solution, a,, V,, is also a solution, where
a,, is a constant.

5. Any vector X of order n may be represented by a
lincar combination of eigenvectors

X=3 anVu (6)

m=1

There arc two principal reasons for performing the
transformation:

1. Equation 3, representing an undamped structure,
can only have real, positive eigenvalues. It is pos-
sible, however, for roundoff during operations on K
and M to produce an equation of similar form with




——

imaginary components in its solution. The conver-
gent process, using real arithmetic, will not converge
on such solutions. This problem is avoided if the
matrix A in Eq. 4 is kept symmetric.

2. Use of the orthogonality condition is simpler if
eigenvectors are orthogonal with respect to the unit
matrix rather than to another mairix

VIBY, =0 (k %= m)

The transformation is effected by defining
M= M:=M" (7)

where, since M is a diagonal matrix of positive elements,
M'= is also 4 diagonal matrix whose element ju the i*" row
is (m,-)'“, and the corresponding element in M™% is

l/(m,-)”. Also, let

Vm = BI’: Um (8)
Substituting Eq. 7 into Eq. 3,
XU, =, M=M= U, (9)

Substituting Eq. 8 into Eq. 9,
M- KU, = o, Vu

m

or

M- KM-2V,, = o2, V.,

b
Since K is symmetric, the product
A =M" KM’
is symmetric and the desired formulation
AV, = o, V.
is achieved, where
U, =M"V,

and w,, are the desired solutions.

The solutions of Eq. 3 corresponding to smallest values
of w, are of primary importance in structural applica-
tions, since larger deflections and loads occur during
vibration at lower frequencies. The iterative process to
be described converges most readily on the eigenvalue
of largest magnitude, so a transformation of Eq. 4 is
performed:

Cvm = Am vm (10)
where C=A"and A, = 1/ '

"

The inverse is computed by siraightforward gaussian
elimination on the upper triangular half, No row inter-

JPL TECHNICAL R..PORT NO. 32-774

changes or checks for division by zero pivot elements are
performed.

Solutions of Eq. 10 for the largest value ¢f A, and the
correspoading value of V,, will now be found. From
Eq. 6 any vector

n
x == E [,Hl Vlll

m-i

SO

X =C (z i v)

m o1

n
=3 0. CV,

Mo

n
= Z o /\m vm

m-i

and similarly,

C(CX) =X =C (i Wy Ay Vm)

o1

o
e o LA V2
- Z‘ U Ay, Vi
-1

or. in general,

X = i O Ak vm (11)

wm
m-t

If the multiplication process is continued, the right
side of Eq. 11 will eventually be dominated by powers
of the largest eigenvalue A,:

C- X, A4V, k—>»

In practice, to keep the components of X+ = LX®
from becoming too large, X" is normalized after each
multiplication so that its largest component is 1. (This is
permitted since the lengths of the Vs are arbitrary.)
Normalized versions of Xt are multiplied through €
until X% converges to V, and the normalization factor to
A Multiplications continue until the maximum difference
between components of Xt and X¢*1 js within a given
tolerance, or until a maximum number of cycles has been
performed.

For obvious reasons, the foregoing procedure is called
the “power method.” It is a generalization of Stodola’s
method, where successive guesses at a mode shape X
are used to compnte better guesses:

CXD = A X, (100

m

ete.

D

RS
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At any stage in the convergent process, an approxi-
mate cigenvalue of better accuracy than the current
eigenvector is given (Ref. 1) by Rayleigh’s Quotient,
defined as

, - Xrex
TTXX

If,in Eq. 6, a, =0

H
X=% anVu

m-Z

and

n
PN — K
CFX Z ALV,

m=2

then convergence will be to the next largest eigenvalue
A and eigenvector V.. This condition may be obtained by
application of the orthogonality condition of Eq. 5 to
keep an arbitrary vector X orthogonal to V, (or any
known eigenvectors). Thus if V, is known, the transfor-
mation of an arbitrary vector X to a vector X, orthogonal
to V, is as follows:

<
;»<
I

n
'X =3 au V' Vu=a, VTV,

m-i

ViX,= 0=V X—qV'V,

X, =X-—-qV,
v VX,
= Y —V",’T“

Similar transformations orthogonalize X to other eigen-
vectors V., V,, etc.

When eigenvalues are close, say
) A== Ay
the trial vector becomes
X&) = g, )\';' Vi + ., A’_ V.
in which powers of A, cannot dominate those of A, for any
reasonable k. The process described above will be modi-

fied to speed convergence to the larger of close eigen-
values. As before,

n
= Z (L™ vm

oy

10

Given an arbitrary number p,

(€= pDX = 3w, (€ — pI)V,,

m-1

= i Uy (C‘,m - I’Vm)

mt

n
= Z Ly (Am - ]J)Vm

ne-

Powess of both sides are

(€~ PDFX = 3t (A — p)F Vi

w1

which converges to
(C - PI)" X’eam()\m - pY;l Vun ]‘__? %L

where (A, — p)y is the largest value of the difference.
The problem here is to choose values of p which

1. will hasten convergence by increasing the ratio

Ay p A
Ar— P A

2. will not force convergence to a mode other than the
first by causing (A, — p) to be greater than (A, — p\.

The effect of the prezedure is to orthogonalize the trial
vector X'*! to an eigenvector V,, if p = A, is chosen, since

-

.A'”;) = (C - /\m I)X‘k—” = ‘\’:-l (A‘ - /\”') Vl
+ o (O)Vm 4o

has no component of V,,. In this context, a “troublesome”
eigenvector is one whose eigenvalue is close to that being
sought. Convergence is hastened if components of the trou-
blesor:e eigenvector in the trial vector X are “sup-
pressed.” Components of treublesome vectors are never
completely suppressed, since even if p = A,, roundoff
will soon replace troublesome components in X as p
takes on values far from Ay, ‘

Wher: A, is close to A, the trial vector approximates
V, after many cycles, although convergence to the true
eigenvector is slow, If the approximate first eigenvector is
X, a trial vector X, orthogonalized tn X, will converge
to an approximaiion of V,, The Rayleigh’s Quotient com-

" puted from X. is a better estimate of the true Ay, and is

an effective value of p to accclerate convergence on V.,
But, since

[An = Aa | A — A

use of p = A, will also strongly increase components of
the lowest cigenvectors V,, -, V, in X,. The solution to
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this quandry is to alternate values of p between an esti-
mated upper eigenvalue and zero, thereby suppressing
components in X of eigenvectors at each end of the range
of eigenvalues. Eigenvector components near the middle
of the range are then suppressed by varyving p between
zero and 0.6125 A,,, where A, is the eigenvalue currently
being sought.

Variations of p with the power method may be con-
cisely described by the continued product notation

_
! , a, = thdy " dy,
ko

or
- LN
l , (C — )),l)k = Z iy l l (Am — ])l:) A\ (1-7‘)
Lk nro ko
which denotes products of (C — pd) and (A — pi) with
px varying from p, to p,.

The procedure for automatic selection of pr in Eq. 12
may be summarized as follows:

1. Set p = 0. Obtain estimates of the highest six eigea-
values by five iterations on each.
2. Alternate pr = Aot 0, o0, A 0. 0.9 Auoy, 0. 081

Aty 0 to force convergence on Au. If Ay > 0.999

Ams use py = 0.99 A, to prevent undue suppression

of the desired eigenvector.

3. Vary py in the range 0 < pp < 0.6125 A, by a quad-
ratic formula emphasizing values of p; near zero.
Repeat a maximum of 20 times for each mode,
checking convergence at each cycle. ‘

4, Repeat steps 2 and 3 five times.

When two (or more) eigenvalues are equal,

A T A

then, after many iterations the trial vector

X=oV,+aV,

where the o’s are arbitrary; thus, there can be no con-
vergence to a “first” cigenvector although the eigenvalue
M = A. is well defined. Consider, {or example, a mass at
the end of a wdighiless cantilever that is rigid axially
and of circular cross-section. The position of the mass is
defined by two coordinate components so the system has
two degrees of freedom, two mode shapes, and two
equal frequencies Using the power method, there would
be no convergence to a first mode shape, since this could
be deflection in any direction., When iterations are

stopped, however, convergence on a second mode ortho-
gonal to the first will be obtained. The same is true in
the case of many degrees of treedom and several identi-
cal frequencies.

There is still the possibility that convergence on the
first cigenvalue and

X=uV ~wV,

will uot be refined enough to eliminate components of
lower vectors in X. No test on this error is available. In
practice, enough iterations have been made that physically
reasonable mode shapes have been obtained in several
preblems with multiple eigenvalues.

Convergence is tested by searching for the maximum
difference between clements in successive trial cigen-
vectors. If all

1.\'"' — yleen S €. i: 1,)1

m im

iterations arc stopped on that mode and hegun on the
next. The criterion ¢ varies from 4 X 10-* when coarse
estimates of the eigenvalues are required to 4 X 107 for
the final cycles.

Initial guesses at the trial vectors X!!' are required to
start comvergence on each of the six modes computed.
These are taken as successive normalized products of the
diagonal of C X C, in reverse order:

\‘( 1 o.— Co

TH

X(n — C-;Am»l x'l:‘l'

m

The vector X, should be a fair guess at the first mode
shape. since its components are largest where mass and
flexibility are largest. This guess improves with successive
iterations, so X, may be close to V, before convergence
is tested. Higher mode guesses X, arc similarly affected
by mass and flexibility, so when they are orthogonalized
to lower modes they may be expected to converge rela-
tively rapidly as well. Experience with this procedure
has been satisfactory.

In theory, it is possible to compute lower frequencies
frorn the original Eq. 4 of the problem

l&"’"l = U);';' V,,,

by choosing p > «* so that (w%-— p) has a larger magni-
tude than any other (o3, — p). This has the advantage that
computation of € = A, with attendant errors, is climi-
nated. In practice, however, the lower cigenvalues are so
close in comparison with the upper ones that convergence

11
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is prohibitively slow. Also, there is evidence that eigen-
vectors computed by this process are more in error than
those obtained from even a poor inverse. Similarly, al-
though the accuracy of eigenvectors computed from

CV:‘H = A’II' VIH
is dependent on the accuracy of the inver.e C = A-Y, the
eigenvectors will not be improved by iteration through

Avm = 0’:, vm

If the acceleration in a component direction at a joint
is known when a structure is undergoing vibration in a
normal mode, the absolute amplitude of the mode shapc
is determined and loads may be computed. An accelera-
tion may be knowr from previous dynamic testing, or
analysis of an idealized damped version of the structure.
Defleclions are of the periodic form 4

U, = Uym SN oy, T

so the amplitude of acceleration in ‘he it generalized
direction is

. - »
Uy = —Uim o
m

when ¢, is the acceleration amplitude input, the eigen-
vector will be renormalized by the factor

qm;&
Uim ('F;“:,
In sumiary, the program operates on the given mat-
rices K and M as follows:
1. Compute A = M-"* KM-'+,
. Compute C = A,

o

3. Compute first-guess vectors X, .

4. Attempt to converge on the six eigenvalves and
cigenvectors corresponding to modes ot lowest fre-
quency.,

5- Colnpl]tc U," = Nl‘,; ‘7"1, oy = 1/(4“111)"21

6. Renormalize mode shape to input acceleration
levels; compute loads from equations given in
Appendix B.

7. Equilibrinm checks at each joint.

8. Output mode shapes, frequencies, dynamic loads.

I. Jacobi’s Mefhr.ql

The Jacobi method (Ref. 23) of determining eigen-
values and eigenvectors exists in th) program. The
advantages of the method is that all eigenvalues and

12

eigenvectors are evaluated with equal accuracy, multiple
roots can be evaluated, and zero frequencies systems can
be handled. The modified power method (described in
Section H) is retained because it has been successfully
used for the past 3 yr.

Equation 4, AV,, = »¥, V,,, is used for the evaluation of
the cigenvalues and eigenvectors by Jacobi’s Method.
For an n degree-of-freedom system, n equations (m = 1,
2, --+ n) can be written os

AV=VL (1)

where V is the matrix of eigenvectors, and L is a diagonal
matrix of eigenvalues. Since V is an orthogounal matrix,
Eq. 13 can be written as

V7AV = L (14)

Jacobi’s Method is to start with a given matrix A and
transform it by a number of pre- and post-multiplications
25T and Z'*!

where

and

ﬁ T = Zr
k=1

(2 = number of transformations),
such that

Z7AZ = diagonal matrix = L! (15)

The Z' and Z must satisfy the relation ZZ" = 1. If the
satisfactory matrix condition can be obtained, then com-
paring Eq. 15 with Eq. 13, Z is the desired eigenvector
matrix and L' is the diagonal cigenvalue matyix.

The Jacobi process of obtaining the orthogonal Z matrix
is to annihilate, in turn, selected off-diagonal elements of
A by orthogonal transforma‘ions. To climinate an ele-
ment ai® (i < jj of A% the elements of the transforma-
tion matrix Z* would be

Il

i = cos 8, Z; = sin @

t
il

3y, = —sin 8, R = cos 8
D = Landzyp =z =20 =0
wher¢

ks
15414,
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Represent the k™ transformation matrix product by

The clements of A% are

hy — ath 1 e fl — gt 1
ay =a; cosfl —ajp 't sing \

afi =afi sind+af " cos @

@) = ai " sinf + ¢ cos 6

L) — k-1
G = 4y

ai® = gV cos®  + ah=v sin® § — 2aik" sin 6 cos @

a) = g% sin*g + aj‘.’;“” cos*f -+ 2(1,‘;"“' sinf cosé

Z(I;)'l‘ Z(I.'-l)'l' Z(n'l' AZ“' Zul ...ZIL. - Au.; (17)

4 =a " cos§ — uiv sing H k170, (18)

ji
a®r = 1 a“ " — a1t )sin 26 - a;; cos 20 (19)
i T 79 (a7 i - i )

In order to eliminate a{%, the equation
l th-t) (7N i ) 1 B
5 (afi —a ") sin28 - a,;cos 260 = 0
k-1)
a;t

tan 20 = -
h=1 — gh-t
(0 — ai3')

1ol —

is the angle 6 required for annihilation of al*',

(20)

The orthogonal transformation designed to annihilate
an off-diagonal term may undo the previously annihilated
off-diagonal terms. For this rcason, the Jacobi's method
is an iterative process, rather than a finite one, that is
carried on indefinitely until a predetermined accuracy
reqairement is satisfied. The success of the method de-
pends on cach transformation reducing the sum of the
syuares of the off-diagonal terms; the proof is outlined
below. Stability of the convergence process against round-

ofl error is mentioned (Ref. 23).

The Pope-Tompkins scheme for convergence of Jacobi's
mcthod when subjected to the transtormations shall be

pioved.

FromEq. :3
(L L e Ty e T IL B L B th-1z
ai” talp”t = afitt fag

and

(1;’,”2 4- (t',’,‘."" — ”;l‘:~|l'_- -+ a;';—l’-' (

and since other elements g (Lks4i.)are unaffected by the

transformation, withthe exceptionof a3 and a %' the sum

of the squares of the off-diagonal clement is invariant.

Also

e . ke e ) gt
At Aak el g
— gtz th-112 th-1)2 (k-1 29
= —ay + (I,Il + ai} <~—'
Sincea;’ = a» =0, from Eq. 19

e e — =112 1. Ly . 9pth-pz
a;i"* +aj; ol a4 2al]

(23)

Equation 23 shows that the quantity 2a'%-1* has been
lost from the sum of squares of the off-diagonal terms.

‘I.I-‘I
I,k

Define v, = J )Z’ a;,f.'-'}- ) (24)

where y, is the initial off-diagonal norm. A threshold », is
established by dividing v by a fixed constant « > n; the
threshold value is nsed to determine the terms to be
annihilated first. The off-diagonal elements for which

[ai] 2 = {r'—,k%l 25)

is annihilated.

Since o> n, there exists at least one off-diagonal clement
>y, since it all were <

Stap, K3 v =aln—1) v St Sotel =

sk

whizh coutradicts Eq. 24. Note that, because of symmetry,
ouly one half of diagonal clements are used. For any
clement whose magnitude is not smaller than v, the appro-
priate transformation is performed. Thus, from Eq. 23
the off-diagonal squared norm is decrcased by at least 202,
It all off-diagonal terms < vy, the off-diagonal norm is
boun.ded as follows:

2
v X <o = 2= (10 )t (9

. i3
[T I ]

Lower the threshold by v == Zhand procced as hefore.
Continue until v, < 224 at this point let v, play the role of
v and as shown berore, there exists an oft-diagonal ele-

ment Jp 2L and, thus, > v, Performing the appropriate

13

w
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transformations on all vlements > v,, 2 bound on the new
off-diagonal norm follows

(Vﬁ) R P Z 20l <vpy — i /o

HOSIELES

2 2 \*
= (1 - —) vy < (1 - 7) i@

By induction, if v{;" is the off-diagonal norm after m stages

in which at least one transformation has been performed,
then at worst

Q m
tary < (1= 2) (28)

For convergence a final threshold v must be established
such that

v = o ap, <n(n—1)y2 < nfvi (29)

kstl
or the accuracy requirement may ke specified as

vy < pivi. where

w=&)m (30)

For this problem —Z— = 2-*"  has been selected; thus

v, () = 2 2 E (31)

is the convergence criteria of *his program:.

J. Crthogongelity Check

If the structure has discrete novequal eigenvalues, Eq.
3 can be written

KU, = % MU,
and

KU, = o MU,
where m # n.

Premultiply the first equation by U” and the second

m’

equation from the first results in

equation by U”. Subtracting the transpose of the second

(0f — o) U,’, MU, == 0

"m

Since n 5% m was assumed, of, 7% o%; thus, U? MU,, =0
for all m and n not cqual to each other. By a similar
argument

U KU, =0.nsm (32)

14

can bhe shown. A 8 X6 generalized weight and spring
matrix representing the orthogonality check is outputed.

To obtain 2 better comparison of the magnitude of the
off-diagonal terms, the generalized weight aud spring
matrix are normalized as

i

* ==
7711j

and

e — .__k'i
T (ki) (ki)

(34)

The values m;; and k,; are the elements of the it" row, j*
column of the generalized weight and spring matrix, and
m¥; and k¥, are the elements of the i*" row, /" column of
the normalized generalized weight and spring matrices.

K. Accurucy

Although no analytic studies have been made of error
inherent in the nume- -al process described herein, enough
has been learned from production runs and experiment
with abnormal cases to permit some general comments on
accuracy of the program. (The discussion is for Section H
and not Section I.) Several iests, available to the user
when resulis are in doubt. are discussed in this Section.

Accuracy of a structural analysis performed by the
prograin is affected adverselv by the following factors:

1. Errors in idealization of a structure. All structures
must be idealized by one of the standard-structure
types before analysis; a basic discussion of this pro-
cedure is presented in Section II-K.

2. Gross errors in input. These may be indicated by
sbvious errnrs in output, but all inputs should be care-
fully hand-checked.

3. Characteristics of the stifftness matrix K that lead the
static deflections to be in error.

4. Characteristics of the matrix C = M's K-* M'? that
lead normal-mode shapes and frequencies to be in
error.,

5. Failure to properly test convergence of the normal-
mode analysis,

6. Gross program or machine errors. The programs have

been tested on check problems and on nearly 200 pro-'

duction runs. Corvelation with test results has been
good where t-ats have been run.

A e e van

I
|

!
i
.
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Single-precision arithmetic is nsed throughout; this
provides storage of approximately cight decin ' digits
plus an exponent for all quantities. Required accuracy for
the proposed engineering is two or racre significant
figures for the largest quantities in a set of deflections

Input will usuaily be provided with three or more
significant digits, with zeros filling out the stored number
of eight digits. Computation during matrix generation
introduces roundoff in the last one or two places of the
elements of the stiffness matrix.

Accuracy of the static analysis
U=KF

ic impaired if the stiffness matrix is singular or ill-
conditioned. Singularity is caused by structural instability
which, in turn, causes division by zero; since no overflow
checks are made to detect division bv zero, the only indi-
cators are those cited below for ill-conditioning. This latter
is a qualitative description of the loss of accuracy during
coraputation of an inverse mat-ix. Generally, signif .ant
figures are lost during subtraction operations when cigits

{r) subject to roundoff are drawn into the significant places -

of a number:

0.1234567r X 10°
—0.1234566r X 10"
0.0000001r X 10" = 0.1rC00000 X it

It has been observed in structural usage that ill-
conditioning becomes a problem when the stiffness of
members are greatly different. Thus, when the ratios of
diagonal elements of K were

k.
zu <10
i
systems of 130 degrees of freedom were successfully
analyzed, while smaller systems with
k;' ' !
7 > 100
i
gave obviously false results. A secund indication of ill-
conditioning is the ratio of maximum to miuimum eigen-
values of K or condition number

A .
P = 21X
/\min !

This number is computed for

A =M~ KM~

»

)

when

and only indicates the condition of K when the clements
of M are ncarly cqual. Conrlition numbers P 2> 10 may
indicate loss of all significance from computed deflestions.

Norma!- norle analysis is subject to the same problems
of singularity and ill-conditioning as siztic analysis, plus
problems caused by the nature of M, and the convergen:
means of solution. If M contains zero diagonal elements,
then M-"# will have elements produced by divisiown by zero
and

A = M"KM*

proves to be singular If the ratios of elements of M are
large, so that ratios of diagoaal clements of A are large,

I
o

‘

> 100
then A may be ili-conditioned and C = A * subject to large
error.

Convergence is tested by compuaring <lements of nor-
malized trial vectors at successive iterations '

m

CX ) = g, X;u.un

Ix(_i) _.x(rnll < e

jm “jm =

iterations are stopped. Alternate tests are

(C—)\"’ '[) Vii. = X1

m n “Tm

il <

nt
which may never stop iterations, and

iy - (re1y ]
I/\m )‘m | S €
)

which proves to stop the convergent process too soon.
There is always a risk that couvergencc will stop too

soon when it is very slow, since the cli._ige in any param-

cter then becomes small even when the narameter is far
from its trae value. Checks against this possibility irzlude

model testing and computation of normal modes by

Jacobi's method. The maximum change in a vecter element
is outnut for checking; this value should be ¢ < 4 X 107
at the final iteraton of each mode.

The ratio of maximam to. minimum eigenvalues of a
matrix or condition number is a measuie of the degree of
itl-c puditioning ot the matrix. The maximum eigenvalueof

Avm = "-',:';, vm-

s

15
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»; may usually be found casily and accurately by the
power method. The minimun eigenvalue. «?. is found from

CV,.,=a,¥,
where

C=4a"

As noted before. condition numliers

P= " <o

o 1

usually indicate that engineering accuracy can be ob-
tained.

A consequence of the power method is that eigenvalues
are computed in descending order. If such is not the case,
there probably has been no reliable ~onvergence te one
or more eigenvectors. Since frequencics are proportionai
to recipro als of eigenvalues of C = A, the output fre-
quencies must be in ascending order. (When frequencies
are very close, differing in the thivd place, this rule may
be violated without prejudicing the results.)

The following eigenvalues are defined as:

A; = computed lower eigenvalue of A
Ac

i

corresponding computed upper eigenvalue of
C=A"

Ar = true magnitude of lower eigenvalue of A

It has been observed in tests with Hilbert marrices that
the difference

———|>>

Jl‘l

-

A — L
W

4

Also, in all reliable production runs
I\.! 4\.:’ == 1
Thus, if
i;\_‘ 4\(' - 1 ! > 10—"‘

the validity of A and its cigenvector should be doubted:;
and, if not, then the error in the computed cigenvalue is

1
A

1 f
Ar _/\T < I/\.x

Experience with the program has indicated that the
acenracy rules mentioned above are to be used as a guide
and are not absolute in ensuring accurate data. The best
methods of evaluating the results have been the equilib-
rium checks at the joints and the orthogonality of the

16

mode shapes. Ao estimate of the accuracy of the results
an be determined by the equilibriuzn check from the
non-zero terms at the unrestrained joints of the structure.
Usuully the off-diagonal terms of the generalized weight
or spring matrix are orders of magaitude less than the
diagonal ter.s if the mode shapes are correct.

In summary. the following checks are available to
the user in program output:

1. Normal-mode convergence test, e < 4 X 107
2. Condition number, P < 10¢

Q

3. Frequencies output in ascending order unless nearly
equal

4. Equilibrium check at the joints

bt

5. Eigenvalues of C equal cigenvalues of A within
Al — 1< 10

6. Orthogonality check of mode shapes

The following tests may be applied as the need arises:

1. Hand-check of program input

2. Reasonableness of program output

)

3. Ratios of stiffness matrix diagonal elements k;;/k;;
< 10¢

4. Solution by independent numerical methods

5. Comparison with different idealizations of the sanie
configuration

6. Model testing

L. Structural Ideclizction

Matrix representations of five distinet types of structure
have been programmed. Any structure to be analyzed
must be idealized by a structure’ composed entirely of
members of one of these types:

[
4

Three-dimensional, pin-jointed

o

. Three-dimensional, rigid-jointed. with circular mem-
ber cross-sections

3. Planar, rigid-jointed, loaded in-plane
4. Planar grid, nigid-jointed, loaded normal-to-plane

. Three-dimensional, rigid-jointed doubly symmeu e
crosssection

Tt

o mraremy
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Some types of idealizatior: are commonly used in struc-
tural analvsis; for examyie, trusses are usually assumed
to be pin-ivinted, and continuous slabs are often analyzed
as grids. The following remarks will be concerned with
typical approximations that extend the power of the
program:

1. A continuons strncture may be approximated by a
“lumped-mass™ system. Natural frequenczies ot
a lumped-mass system will always be lower than
those of the represented system, with the degree
of approximation dependent on the quantity of
mass points and connecting members in the ideal-
ization.

2. The stiftness {and thus normal modes) of a structure
as stauie as a truss will usually be well-represented
by a pin-jointed truss. Secondary loads will not
be found directly, but may be estimated from de-
flections.

3. The stiffness of a shear panel may be represented
by a lattice of pin-connected members (Ref. 14).
In most cases, if a negative area is required as
specified by the iattice analogy, negative frequen-
cies (obviously erroncous) results.

4. Flexible supports may be represented by inserting
members with appropriate stiffness at points of
support.

5. A beam of varying section properties mayv he ap-

proximated by several beams of constant section.
Cure should be taken that the probiem does not
become ill-condiiioned by making the stiffness of
the small bean segments very large in comparison
to other elements of the structure.

Members normal to the plane of a grid may be in-
cluded by adding appropriate stiffnesses to the
matrix of the grid in the normal direction.

Pin-ended members in a rigid-jointed frame may
be input with zero moment of inertia.

. Loads applied at the interior of a bending member

may be approximated by shears and fixed-end
moments at its ends.

Tre validity of an idealization may be checked by
comparison with a continuous structure idealiza-
tion. comparison with another lumped-mass ideal-
ization, or by model testing.

Increments of elements of the stiffness matrix may
be input to the program; thus, the stiffness of
structural components that are not conveniently
idealized by a standard member may be included
in an analysis.

Various end conditions can be approximated by a
linkage system of several members; additional de-
grees of fréedom will be required.

17



I "

JPL TECHNICAL REPORT NO. 32-774

ili. PROGRAMMING

A. Input Formaf

Input to the program is provided in the following
blocks. An example of the input format is given in the
sample problem, Appendix D.

1. Comment

o

Control

Joint coordinates

PR

. Member properties

. Restraints

o w

Stiflness matrix elements (optional)

=1

. Static loadings (optional)

8. Accelerations (optional)

The most convenient sheet on which to enter data for
punching contains nine or more columns. Each line is
punched on one card, with 2 maximum of nine words
per card. Where a word is not required as input for a
problem, it may b< ieft blank; blanks are always read as
0. Most of the ir.put is writ n with fived-point numbers
{integers) in th> first two columns and floating-point
numbers {(mixed numbers) in succeeding columns. Float-
ing-point nuribers must be written with a decimal point
regardless of whether the fractional part is present.

1. Comment

Comments up to 72 characters
(I2A8)

The first column must not be used

9. Control

N, | N. | Nq

(318)

N, Structure type
1 Pin-jointed member, three dimensicns

2 Rigid-jointed member, cqual member cross-
section moment of inertia, three dimensions

3 Planar member, rigid joints, loaded in-plane

4 Planar member, rigid joints loaded normal-to-
plane (grid)

5 Rigid-juinted member, doubly symmetric cross-
section, three dimensions.

18

N+

A

N

Ny
N,

N,

Mode shape card output control (13.6FS.5)

0 No output desired

1 Output desired

n Number of modes desired for Jacobi Method
{use only if N, <0)

Eigenvalue control

1 No output desired

0 Output desired

n Numbers of rigid body modes tu be eliminated,
if any. (N, <0}

BOERNREEINY

(918)

Problem number (six characters or less)
Quantity of joints in structure

Quantity of members in structure
Quantity of static loadings

Weight code

0 No weight input

1 Weight input included

Quantity of joints having one or more components
of restraint

Degrees of frecdom per joint
« Normal-mode code
0 Compute no normal modes

1 Compute lowest six mode shapes, normalized to
input accelerations, and compute dynamic loads

o

Compute lowest six mode shapes only, normal-

ized to the largest component (. = 1.0)

-1 Jacobi’s method for evaluating eigenvectors and
rigenvalues; the lowest six non-rigid body cigen-
vectors normalized to input accelerations, and
compute dynamic loads

—2 Jacobi's method for evaluating cigenvectors and

cigenvalues; the lowest six noun-rigia body

cigenvec'ors normalized to the largest compo-

nent (4, = 1.0)

. Output code
0 No output of K, L, W matrices
1 Qutput K, L, W matriccs

- e " =
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N N[ E ] 4|

(21S.3ES.0)
Ni: Quantity of stiffness matrix clements to be altered

N,: Temperature code
0 Temperature problem not to be solved

I Temperature problem to be solved
E  Elastic inodulus, 10 Ih/in.*
+  Poisson’s ratio

v Specific weight ib/in.”

Joint Coordinaics

jIBlank | x, [ x. 1 x.

L

(218,3F8.0)

j Joint number (must be listed consecutively starting
with 1)

X,

Xa 2 Joint coordinates, in.
Ny

In two-dimensional problems x; must be normal to the
plane

Member Properties

Propertics are entered on one line (one card per mem-
ber); when temperature code, N, == 1, then A.. A, or
A: must be included. Values for A; are not required
unless specifically indicated.

plafaja [afafaa]al

(218, TES.0)

P | Member ends {cnter in any order;
g\ enter cach nember once only)

Member properties and temperature inputs are defined
for each structure type as follows (all quantities to be
input in incl units):

a. Structure type 1, three-dimensional, pin-jointed

members

i

A = A, section arca

!

A; == non-zero term

or

A, == D, outside diameter of cirenlar tube
AL = T, wall thickness of circular tube

A =0

and

Az = adT, coefficient of thermal expansion times
change in temperature Hf member. Positive AT
indicates increase in temperature.

b. Structure type 2, three-dimensional, rigid-jointed,

equal member cross-seclion moment of inertia

or

A; = 4, section area
A. = [, section moment of inertia

A. = K, section to:sional stiffness

A, = D, outside diameter of circular tube
As = T, wall thickness of circular tube

A. =0

A. = uaT, coeficient of thermal expansion times
change in temperature of member. Positive AT
indicates increase in temperature.

¢. Structure type 3, two-dimensional, rigid-jointed

members, leaded in-plane

A, == A, section area
A, = I, section moment of incrtia

A, = nor-zero term

or
A, = D, outside diameter of circular tube
A. = T, wall thickness of circular tube
Ay, =0
and ’ |
A; = aAT, cocflicient of thermal expansion times

change in temperature of member. Positive aT
indicates increase in temperature.

19
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A, = u8T/h, coefficient of thermal-expansion times
change in temperature across member cross-sec-
tion divided by height of rectangular cross-
section. 8T is positive if a change in temperature
will tend to rotate joint p of the member in
positive x, direction. Joint p of member is the
first joint listed in III A-4 to describe the
me:mber.

d. Structure type 4, twwo-dimensional rigid-jointed,
loaded normal-to-plane (grid)

A, = I, section moment of inertia

A. = K, section torsional constant
or

A, = D, out.ide diameter ot circular tubes

A. = T, wa't thickness of circular tubes

A, =0

and

A. = adT/h, coefficient of thermal-expansion times
change in temperature across member cross-
section divided by height of rectangular cross-
section. 8T is positive if the increase in tempera-
tuve acrovs member cross-section is in positive
X, dhection.

e. Structure, type S, three-dimensional rigid-jointed
member, doubly symmetric cross-section
A, = A, section area

A

©

== I, sectinn torsional constant

A, = L, section moment of inertia about &, axis

il

A,

I, section moment of inertia about &, axis

&
i

aAT, coeflicient of thermal expansion times
change in temperature of member. Positive AT
indicates increase in temperature.

A; = Joint number in input list (II[ A-3) not along
member axis. The section moment of inertia I,
is about &,, which is perpendicular to the plane
forined by the member pq (p represents first
joint listed to describe member in member prop-
erties input, and ¢ the sccond joint) and pA;;
& is positive in the direction pg X pA:.

20

5. Restraints
The restraints must be followed by a zero card if no
stiffness matrix element cards are incorporated in a
temperature problem.

L,‘ ISR IS A 1B AR IS P B PO I o

i Joint number (may be listed in any order)

-t

i Restraint code (integer)
0 No restraint

1 ith component of deflection at joint j is 0. The
order of deflection components at a joint in each
structure type is as follows:

a. Structure type 1, three-dimensional, pin-jointed
members

u;; = displacement in x, direction
u;. = displacement in x, direction

u;, = displacement in x; direction

b. Siructure type 2, three-dimensional, rigid-jointed
members, equal member cross-section moment of inertia

u;, = displacement in x, direction

u;. = displacement in x, direction

uj; = displacement in x, direction

u;, = rotation about x, axis

j, = rotation about x. axis

u;. = rotation about x; axis

¢. Structure type 3, two-dimensional, rigid-jointed
members, loaded in-plane

i

uj; = displacement in x, direction

u;. = displacement in x. direction

u,; = rotation about x, axis

d. Structure type 4, two-dimensional, rigid-jointed,
loaded normal-to-plane (grid)

u;, = displacement in x, direction

1

Uja

ji2

= rotation about x, axis

Il

;. = rotation about x, axis
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E e. Structure type 5, three-dimensional, rigid-jointed 8. Static Loadings
! member, Joubly symmetric cross-section . . .
: ? y sy Each loading is initiated by a card with 0 or —1

P VS

b i I

EIPRC IS

P

Shialee

-

X

e

u,, = displacement in » , dircection
u;. = displacement in x. direction
u;. = displacement in x_ direction
uj, = rotation about x, axis
u; = rotation about x. axis

u;.; = rotation about x; axis

6. Stiffness Matrix Elements

To account for the effect of structural elements that
cannot be idealized by members of the type with
which an analysis is being performed, increments to
elements of the matrix may be inputed. This block
may be inputed only if the control parameter N, = 0.
The stiffness matrix elements must be followed by a
zero card for a temperature problem.

ifj Ak

(218,ES.2)

Row and column, respectively, of revised element
i { in non-contracted stiffness matrix (inscrt as if rows
j { and columns have not been deleted to account for
vestraints).

Ak,; Incrementai change to element k;; of original
7 J
stiflness matrix. The new clement, &;;=k,;-~Ak, ;.

7. Weights

[i]Blank [w, Tw. Tw, w,Tw. Tw,

(218,6E8.2)
i Joint number (may be listed in any order)

W, i component of inertia at joint j. The order ot
translational inertia (Ib) and rotary inertia (1b-in.?)
components is as specified for deflections in
I A-5.

If normal modes arc to be computed, finite (non-
zero) inertia compounents should be specified for all
degrees of freedom of the structure; the effect of a
zero inertia is to produce accumulator overflow, (This
is a peculiarity of the numerical procedure.) This block
of input may be -vritten ouly if the weight code,
N; = 1. If no loadings follow (N. = 0), the last curd
of weignts must be followed by a card with 0 as its
first word. If temperature problem is to be solved
(N,, = 1), the weight cards must not be incorporated.

as the first word, and the final loading must be fol-
Iowed by a zero card (blank card).

The initial card has the format:

Blank [ A, | AL A | A,

AL A,

!
|

(218 6ES.2)

j == 0, A; (i = 1, 2. 3) are the components of transla-
tional acceleration on the structure as a rigid body
in the i'" coordinate direction (III A-3) and A;
(i =+ 35, 6) are the components of rotational
acceleratiun of the structure as a rigid body alhout
the i coordinate direction (III A-53) with respect
to the origin of the coordinates. The effect of
specifying A; (2) is to multiply componert W,
(i = 1. 2, 3) at cach joint by A; (i=1, 2, 3), or
€. 5. X A where (K = 4.3, 6).

j = — L. same as for j = 0 except the rigid body rota-
tional acceleration is with respect to “he center of
weight.

j = joint number. A, are components of concentrated
load on joint j in the i** direction. Order of load
component is as specified in 1IT A-5.

. Accelerations

If the normal-mode code, Ny, = 0 or 2, this block
must be omitted. If N,w =1 or —1 deflections aad
dynamic loads will be computed. In this case, six
cards must be given ir the following format (one for
each mode m in order): '

ili]
(218,E8.2)

i Joint number

i Translational component direction number as spec-
ificd for deflections (see T A-5)

gn Acceleration (g) of joint j in direction x;. If j = 0,
the acceleration g, applics to the maximum deflec-
tion component in the mode shape. The mode
shape is renormalized with the factor qu.g/enu;;
before output and load caleulation. Rotary accel-
erations have no meaning in this application. A
zero card after accclerations is not required if
N = L

21
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The matrix of ceefficients k, ; for a member of any type
connecting joints p and ¢ is derived by introducing unit-
component deflections of p and ¢, and caleulating the
forces at p and ¢ produced by eazh deflection. Matrices
for several tvpes of member are presented in Appendix A.

To illustrate the method by which such matrices are
camputed, and how they are used in the geaeration of a
matrix for a structure, consider the pin-ended member in
two dimensions as shown in ig. 1:

1. Compute member length S and direction cosines v,
and v. from joint coordinates.

o

. Introduce u,, = 1, holding v,.. = u,, = u,. = 0.
3. Adalload in member = —1AL/SYy,

4. Compute force components at p and g, holding
loaded member in equilibrium:

o =2
o= — AqE ¥

This set of forces constitutes the first column of the stiffness
matrix in the tollowing equation. Succeeding columns are
formed similarly:

fn 1 i TV ~yiv:| [ Um
fue _ AE Y17z i : —yiy: i Up:
fun S l=vi v ;. Cyaye | [
fux L“/l'/i —vi : Yive yi | \ Y

Fig. 1. llustrative member

The notation of this equation may be further condensed
by writing

‘71\_]1" Kw ‘l u, '
K’"’. K., ' u, ‘

where the vectors have compenents

S L S
f 'fn-: ‘ ’ ! ’ Upz ‘

cte., and the clements of K, are components of the force
vector f, for unit values of cach component ¢ " u,.

The stiffness matrix for the simple truss illustrated in
Fig. 2 will be generated by appropriate superposition of
the matrices of its members.

0
‘ I 't

-'g—’:-':no‘ FOR ALL MUMBERS

lj¢——— 1.0 > 10

Fig. 2. lllustrative problem

]
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Size limitations

Degree of freedom of structure 130
Joints in structure (free or fixed) 60
Members in structure 200
Components of restraint 100
Loadings 6

Joints X degree of freedom per joint 180

B. Output Format

The output is printed in the following divisions. An
example of the output format is given in the sample
problem, Appendix D.

22

1.

2

[97)

Input data

. Stiffness matrix (Ib/in.), weight (Ib) matrix, load

matrix (Ib) printed columnwise, ten words per line.
Each column is numbered.

. Weight (Ib), center of weight (in.), and weight

moment-of-inertia matrix about center of weight

(Ib-in.?).

The W in the directions x; (i = I, 2, 8) are summed
individually; the x, {center of weight) is deter-

mined by using Wi's in x; directions; the weight,

inertia matrix with respect to center of weight is
determined by using only weights in the x, direc-
tion.

. Static or thermal deflections. Each column cor-

responds to one loading; deflections at each joint
follow the joint number in the order specified in
111 A-5.

. Static or thermal member loads. The output values

are defined in Appendix B.

. Equilibrium check of siatic solution at each joint.

The non-zero terms represent the reactions at the
restraints; the reactions are positive if they act
along the positive x; directions. The equililrium
check is not made for the thermal loads. The unre-
strained joints at which clements to stiffness matrix
are added will not be 0 in equilibrium check; the
non-zero term f; = Ak,, u;.

. Convergence data. The results of accuracy tests

discussed in Section 11-Kare printed under appro-
priate headings.

. Six frequencies, computed from the cigenvalues of

the matrix G (see Section 11-H), assuming input of
weight in pound units and dimensions in inch units:

10.

11.

13.
14.

1 o \'= 1\
= | = = 285 —
fn = - <A> 3.128518 ( \)

. Eigenvectors and eigenvalues using Jacobi's
Method (N,. < 0).

Dynamic member loads. The output values are
defined i Appendix B.

Eigenvectors corresponding to the six eigenvalues
of II1-B-8.

. Equilibrium check of dynamic solution at each
joint. The non-zero terms represent the reactions at
the restraints; the reactions are positive if they act
along the positive x; directions.

Generalized weight and spring matrix.

Normalized generalized weight and spring matrix.

To obtain an estimate of the time required to solve the
various parts of the problem, the computer times are
printed out after the following calculations:

1

It o WO 10

<D

-1

10.
11.

The

. Zero time

. Reading input

. Generating stiffness matrix ,

. Generate load and weight matrices
. Stiffness matrix inversion

. Static displacement caleulations

. Static load calculations

. Temperature calculations

. Eigenvalue computation

Dynamic displacements

Dynamic loads

first two numbers represent hours, the second two

numbers represeut minutes, and the fifth number repre-
sents tens of seconds.

Certain input errors will terminate the computation
process and the cause will be part of the output format,

The
1.

(841

following ctrors will be detected:

ERROR READING JOINT COORDINATES. The

joints coordinates are not in order.

. PROBLEM EXCEEDS TOTAL DEGREE-OF-

FREEDOM SIZE LIMITATION. The number of
joints times the number of degrees of freedom at
cach joint exceeds 180.

[

| i
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. NUABER OF ALLOWABLE RESTRAINTS EX- 7. NO ORTHOGONALITY CHECK, pg. For option 3, ’
CEEDED. The number of restraint exceeds 100. & is not orthogonal to the member for member py.

. PROBLEM EXCEEDS NUMBER DEGREES-OF-
FREEDOM SIZE LIMITATION. The number of €. Tape Requirements

joints times the number of degrees of freedom for Logical  Channcl-unit Use
;;E,)h joint minus the number of restraints exceels 4 Ad Intermediate input tape R
5 A2 BCD input
. NEGATIVE EIGENVALUES. 6 A3 BCD output -
. STIFFNESS ELEMENT HAS BEEN PUT ON A 7 B4 BCD card output
A RESTRAINT. A change to the stiffness matrix 9 AS Intermediate seratch
cosresponding to a restrained degree of freedom has i4 B7 Intermedi ‘te storage
been specified in the input. 15 AS Intermediate seratch
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AFPENDIX A

Mairices for Various Member Types

The following derivations are performed on typizal members by introducing
successive unit coordinate deflections of their ends and calealating forces reacting
on the member, Coordinate deflections incluce both translations and rotatior -

loads are forces and moments. In each case, the first column of the quuucd matr '

is derived in some ¢ tail to illustrate procedure. ,

Matrices relating forces and displacements in structurc-oriented (x,) coordinates
are desired here; but intermediate use of member-oriented (g,) coordinates is
made in the more complicated derivations.

In the derivations below, the following quantities are input or computed for
each member p — ¢q:
1. Input coordinates x, , x,;
2. Input member properties, A,, E
3. Compute member iength
S = [(an = X))t A (e = ) (Vg Xl ] "
4, Compute dircction cosines

_ {x — 2

4 S
— _(xq:! - x[l‘.?)
Y2 S
and
- (\'H xni)
Y3 —

Matrices K, K, are written satisfving tae expression

f, . Kmr {“n}
f, K.

1. Structure type 1, three-dimensional, pin-jointed members (Fig. A-1)

3
[ 3
X,
2 q
A
77 1
2
77'1/ = 1.0 ’-)
—d '//
// <
rd
/7
s i - x

Fig. A-1. Three-dimensional pin-jointed member
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Section property:

A=A,
or if
A =0
then
D =A,
and
T = A.

A=aT(D~T)
Tntroduce ty, =1

Axial Joad = % 71

Force components at joints p and ¢ are

AE
fn= —frll = 5 71
AE
, fro= ~fp = FERARE
and
AE
f]:.z = - fl/.: == —S_ VAR Z]

The matrix relating displacements of joint p to forces at joints p and ¢ is

v ARG vy |
Ny % eR4!
AL ERZ Yo Vs ¥
B e O O
RARCEE s
IRARCER AR =%

2, Structure type 2, three-dimensional, rigid-jointed members, equal member
cross.section moment of inertia (Fig, A-2)

Section properties:

A= /\1
[ = A,
K = A,

26



=

Fig. A-2. Three -dimensional rigid-jointed member
with equal member cross-section
moment of inertia

or if
A«=0
D = A,
T ~=

. 1 3 3 Kl AR T T 2
I—~—4—(TD~T——2~DT + 2DT T‘)

Introduce u,, = 1. Vector displacements in the axial and transverse

directions at joint p are

8, = fol +oviyaXe oy v X
B = (L —yi)Xi = viy: ¥ = yiyen,

9. is defined as a vector pespendicular to the plane defined by vectors 8, «nd

X1

A unit vector normal to 5,
and 8. is

5, =

(Y1 ¥4 Xz — ¥+ y2 %a)

Y1 (1 - Yf)w )

(*/.« Xy ™ ¥» X,)

(L—=yD™
The vector force exerted on joint p

PAD
=AE g 1261 5,

SB
and the vector moment at joint p
_ BEI

= 5 (1= v,

.l ~ 4" - ~gmempy e Y
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Components of these load vectors are

3 IE
fus = force along x, axis = iSL— vi - 1_.-S§l (1~

D DI
f.: = force along x. axis = (-%E - l—;ﬁ—i) Y1 e

. . . (AE 12EI
fu: — force along x, axis = R RARE

f»s = moment about x, axis = 0

. 61
{7~ = moment about x. axis = G e
. 61
fi« = moment about x; axis = — NEIRE

Similar load components at joint g are

AE | 12E] a
fo= == 7 — = (1—¥)

fre = _A_E_IQEI .
qz T S 'T'*_Sn 7172

AE | 12E1
qu = (—‘ T + T) Y173

fas =0
€Ll
qu = ‘.s'-_‘.
6EI
f«.’G = - ?72

The required matvix will be written in terms of the quantitics

_AE
“=%
EK

C = A

= - SN ] i

[TIPR'N
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~Coi(17)

(C-' - C.' '.)“/1“/:
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(ComCdyey.
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~Ci(l=7)
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- C21573
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(Fig. A-3)

*3

(C.,“C-_.J)y,‘/v_ 0
(C-'—'C: l)‘/:'/;.

Cw: Canys

- Caill=3%)

C. I C 1Y ;

—Cuarn (Ci—2C.r)yye

(C-_' Hi C||)7:7 . C:ll‘/:;
~Cuny:
C'.'Ir‘/: - Cl‘yf

+ C:(-(l —:/.f)

- C..,,-/, (_CI\H C‘.'")7‘7‘-’

0 ( - Cl - C:l')‘/x‘/:«
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C--'r‘/..

~Cuy

’\Cx - ZC:(')‘/F/':

Cl*/:_“:
+ QCyv(l - /:)

(Cl - ?.C._.,.)y,_,.,.v

Fig. A-3. Two-dimensional rigid-jointed loaded

e I I |

in-plane member

o . N I e

T C:liy“

C_-I."/x

(C, - ZC:P)‘{l’lx

(C, _-O-C:f )7:7:

(—‘ C1 - C‘.‘l')‘}'l‘,ﬂ.
(- C,— C-"')‘I:"/J

—Cwj
+ Cc(‘(l - 7‘)

3. Structire type 3, two-dimensional, rigid-jvinted members, loaded in-plane
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Section properties:

A=A,
I=
orif
A; =0
D= A,
T = A,
A=TD - T

I= T (_71’._ DT — .':?'TD-T.. 4+ 2DT* — T-;)

The derivation is similar to that preceding with v, = 0.

The matrix is written in terms of

As 6E]
C, = __S?— Can = ‘—S.'_.w
12EI 2EI
C_...“ = ——Ss N C3 = —_S__-

Loads atjoint p are in the order
fn = force along x, axis
fo= = force along x. axis

‘fp» = moment about. x- axis

Cort+Cu(l=32)  (CoCodyys  —Cay: |
(Co—=Cu)pry= COYI'E“}'CH(I_?;—:.) Cann:
~Canye Cenyn 2C,
—Co—Cus(l~v)  (Cua—Cilyya Corye
(Coa=Co)yry: —Coy; —Cas(1=vi) —Cum
—Cauye Canvr C,

© 4. Structure type 4, two-dimensional, rigid-jointed, loaded normal-to-plane
(grid) (Fig. A-4) ‘

Section properites:
I = A,
K= A,

30
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X,

— T

Fig. A-4. Two-dimensional rigid-jointed loaded
normai-to-plane member

orif
=0
D= A,
T = A,

== (%— D*T - —2- D:T: + 2DT* — T+>

< o

K=

Introduce u, = 1. Moment about an axis transverse to the member is of
magnitude 6E1/S°. Components of load exerted on joints p and ¢ are:

_ _ . . .. _12E
fi = —fq = force in x, direction = 5
. 6EI
fo = fy= = moment about x, axis = TR
: ; 6EI
frs = fo» = moment about x, axis = — g

As before, the matrix is written in terms of the parameters

_EK
€= sy
6E]
C'_'B = —Sf-_,_

Cz,[ CzRYz '

Canys Cup2+2Cay;
_C21171 (Cl _263)}'1')’2
- Cz i - CM‘/ ?

Canys —Cuyi+ Cavi
- Czn)’x - (CI + Cn))’x‘/u

Cu =

12E1
S.’i
281
S

C:‘:

- CzBY)
(C1 - 2C:«)}'172

"'(CL + Cs)Ysz
- Cﬂi +Cyyi

31



JPL TECHNICAL REPORT NO. 32-774

Fig. A-5. Three-dimensional rigid-jointed member,
doubly symmetric cross-section member

5. Structure type 5, three-dimensional, rigid-jointed member, doubly symmet-
#icel cross-section (Fig, A-5)

Section properties:

A=A,
I, = A
L= A
I=A,

Jointr = A;

Calculate the direction cosine of the vector pq X pr and define the vector

tobe&. = &.x; — & x. + & x.or the I, axis of the member. Using the
right-handed coordinate system define the axis of I. to be
- G XE,

& = 'I‘é:”‘g! = X (fz:: Y. & 7:) + x. ({E.:‘/:

— &n ‘/.;) T Xy ('Sl'x v2 = & 71)
=X f e f X By

where &, is a unit vector along the member,

Introduce 1,, = 1. Vector displacements of point p in the member-oriented
coordinate system (§,) are

5, = 7’1 Xp Ty ya X Ty v Xy
By = (Lorys — Gy X+ (Snys — Ly ) (Ea vy — &g ya) Xa
+ ('52‘! va— En ‘r":) ('.513 Y2 T En }'1) Xz
=8, Xy + Bifaxe + B Baxy
R R T

The vector force exerted . . joints

. AE 12E1, 12EL
gandp =5 5, + S 5, + < 5,

32
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and the vector moment exerted on joints

FLs.e. - %,

pand g = — E

Components of thesc load vectors are:

AE 12E1, .
T (¢ o L}’-}

f.. = force along x, axis — ‘_S_ nE

fn=—

. D 12E1,
for = —f,. = force along x. axis = < vt e Gy &1 ya)
12EL

$1s ‘/") T 53— S

X ('S.n Y $3

5 12EI, . .
= Cu 7:)

<"y T 5 (&

frs = —fuz = force along x; axis = S &

X (':61.1 Y2 g:::‘/l
: . . 6EI. ©6EI,
frs = +f, = moment about x, axis = &, (&avs — & )(-—— — _S-—)

6EL,

frs = foo = moment about x; axis = — & Ly —

6LI, . .
+ ? (SN (".?-.'.: va — &as 72)

fue = fu = moment about x, uxis = =

6El, . ,.
4 g . Eas (t::« 7o

BEL . . .
oz S (é‘l.; Y2 T o 71)

The stiffness matrix is written in terms of the parameters

6EI, . .
C| :-—S_—' KI == ——.ST——— 9
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Ct‘/.;. +Klﬁf
+ K"fn
C;'/l‘/.'"}‘KxﬂnB-:

.
+ K S'SI.L":-ZII

C:‘/l‘/z + Kaﬁl[)’.:
+ K:sfl.uf::'i

S!::B:(C'_" Cl)

K(2,1.p)
C;'y::: + qu’:
+Kié2,

C 1Ya2Yn + K4,B'_',8A
'{' st:':uf.'«:,

H-Clélib"_‘_} C‘."l:::iﬁl E:;;B_-(C-_-—C‘)

- le'.::f[)’d
+ C'.‘ﬁ?fﬂ(l

LT g
161,004

+ (‘ “S:I.'Sﬁl

—-KL,., —K(2.1.p)
—K(2,1,p)
~K(3,1,p)

K(4,Lp)

~K(2,2,p)
~K(3,2,p)

K(4,2,p)
K(5,1,p)

K(5.2,p)

K(6,1,p) K(6,2,p)

34
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K(3,1,p)
K(3.2,p)

Cavi +Kip5
+ K"S_;c

C:ér.«ﬁ.x" fo:«zﬁl

- Cx'f.«:'ﬂ:
+Cutasfy

'E.z.zﬁ.&(cr - Cl)

—K(3,1,p)
—K(3,2,p)
—K(3,3,p)

K(4,3,p)

K(5,3,p)

K(6,3,p)

K(4,1,p)
K(4,2,p)
K(4,3,p)

C-"y.—; + L-"’: .l:fl
+- L,,B",'

C:«‘/l‘/z + Lzé:wf:n
+ L3

C:{‘/\‘/:{ =+ L.'fl:;f-n
o Liﬂ]ﬂx

—K(4,1,p)
—K(4.2,p)
—K(43,p)

- Clﬁ’-; + K‘l'i:‘n;:;
+K,p:

-C 7 + K:él:&‘f‘.’ii
+K.3,8:

- C:{YIYZ{ + K-.'Er,éﬁ:.n
+K,5:8

K(5,1,p) K(6,1,p)

K(5.2,p) K(6.2,p)
K(5,3,p) K(6,3,p)
K(5,4,p) K(6,4,p)

C:;‘/::: + L-E:‘
+L,B2

K(6,5,p)

C.;"/:‘/'n +Lafusé
LB

C;,‘y;'; + L-é:”;h‘
+ L,

~K(5.Lp)
- K(s;zap)
- K(5>3:p)

—K(6,1,p)
—K(6,2,p)
—K(6,3,p)

- C:«‘/l‘/z + Kz-'fl.f'fzx - C';Yl‘/s + Kzf] a€az
+KiB:f3: +KiBiBs

- C:q‘,’::: + K_fi, - C:;‘/:‘/:; + K:'f'.'xfaﬂ
+K,B? + K. BB

- C'x'jl~»‘/:| + K:'st':‘:f::': - C.’(Y::) + K‘.'é:_'f;,

+ K. 3. +K, e B

B LI
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APPENDIX B

Loads for Various Member Types

Expressions for member loads are developed, using the geemetrical parameters
of Section Il and the joint deflections in the order specified in Section 11 A-5.

1. Structure type 1, three-dimensional, pin-jointed members, axial extension of
the member is

8, = (g, — Up)y1 + (Uge — Upr) e F (yz — Ups) v

The axial load is computed and output for each loading on each member in
pound units, tension positive:

2. Structure type 2, three-dimensional, rigid-jointed members, equal member
cross-section moment of inertia

A member-oriented coordinate system is defined as follows:

&

unit vector along member axis
= yi X T oya Xa = VER S

€. = unit vector normal-to-plane of &, and x,
(orx.il &, = x,)

)

& X x,
!En X xl;

(vi +3)™

&, = unit vector normal-to-plane of &, and &,
=& X§&;

_(')’:_'f + Yf) X; + yeyi X by ys Xs
(vi +¥5)"

Net displaccinent components in the &; divections are

810 = [(u,,1 = ) Xy (Ugs = Wpa) Xg F (Uga — ) x3] <&,

8.0 [(uql e U]n)xl + (“112 - u,r.:) X - (Uq:r e Up:«) x’l] * &

I

8 = [(u‘,, = i) Xy + (g — Upe) Xo + (Ugz == Upa) x-‘] <&,

Net torsional rotation is

S = [(u,,. = ) Xy (s = Ups) X F (Ugs — Upe) xs] ° &

)

35
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36

‘ransverse rotati each end are
Transverse rotations of each end a
8ps = (Upexy + thn Xy + s %,) * &,
8p1= = (!llu x, + Ups Xa + Uy x:‘,) <&,
8y = (U:n X1 Uy Xo + Uy x:«) * &,

S = (llqs Xy yn Xo F Uy xit) <&

Moments about the transverse axes are

My = _—iy-(\%p.-, ol o
My = ‘_‘"ZISZ—I‘ (—28,,.; — 8y + %\
Mg = ——?—71<2s,,,, + 8y + _‘32—)

The following quantities are output, in order, for each member :
P = axial load

AE
- S 10

i

M, = resultant bending moment at p

I

(M2, + M)

; M, = resultant bending moment at g

M2, + M2 Y'2
qz

g3

M, = twisting movement
- KE_
25(1+y)
V, = resuitant shear at p

% [(AI": + M) + (AIIJH + 1\1:13):]‘[&

3. Structure type 3, two-dimensional, rigid-jointed members, loaded in-plane
Axial extension of the member is

/ y81 = (thyy = tp) ys + (U = ‘,‘p'-') Yz
Nettransverse deﬂectién of member is

8. = (g — Up) y2 (g2 = tUpe) 11

Eay

e Bt e
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The following quantities are output, in order, for each member:

M, = bending momentat p

; 2EI 35,
oo = T<21l1,‘ + Uy — ?>

8, = bending moment at g

IF 35
— £1 (2[(,13 + Upn — 3_6:‘\)

I

i S S
1
I V, = shearaip
% 1
l =-< (M, + M,)
: P = axialload
AE
S
5 4. Structure typ> 4, two-dimensional, rigid-jointed, loaded normal-to-plane
(grid)
| . .
J Net transverse displacement (normal-to-plane) is
- 83 = U — Uy
S
,11 net axial rotation is
1
i 3 = (Uq: - l‘])'.’) it (llq.; - “p:&) Yz
ll:l Transverse rovations of the ends are
' Bps = — Uy + v
= 82 = —Upy: T Uy
;5“ The following quantities are output, in order, for zach member:
IL M, = bending moment at p
1 2EI 35
3 = "'g_ (281):! + 82 — —S-‘)
. M, = bending moment at q
b k1 )
3 ' = T (28”2 + 81)2 - '?‘)

: M, = twisting moment

EK 5
28(1+v)y '

S el oI S

V, = shear at p (normal-to-plane)

I

— -;— (M, + M,)

’
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5. Structure type 5, three-dimensional, rigid-jointed member, doubly symmet-
ric, cross-section
A member-oriented coordinate system is defined as follows:
&, = unit vector along member axis = v, X, + yu Xy oy x
€. = unit vector normal-to-planc of &, and &,

=& X &1 = ('f'.'s“/:; — & 7:) x, + (E:A‘/l - 'Sl:iY() Xz
W ("::Ir‘/: — &y YA) X; = BxXy Ffa X, T X

&, = unit vector normal-to-plane of &, and pr {p is first joint of mem-
ber and ris an inputed joint not on &,) = &, X, + €y Xu + L Xy
Net displacement components in the &, directions are
S0 = [(“ql - ”[ll) X + (”q-.: - u]):) X, + (“q:& - Up:a) xii] +&;
' (i=123)
Net torsinu rotation is
840 = [(Urn - “,:4) x, + (Uq.'. - U/r.) x, + (Uqu - U,n;) K:t] <&,
Transverse rotations of cach end are
8,”' - (uln Xy + Upr. X2 + “’u. x‘() * Ei (1 = 27 3)

Syi = (g Xy + Ugs X + U X)) ¢ & (1= 2,3)

°

Moments about the transverse axes are

F

AIl"-f = HEIJ [281:", - 8:1'. + 32'" ]
2F1, 1
ALK

M, = HSIL"[ZS"" 5, 4 B ]
DI

Shears along the transverse axes are:
V= — V= [My + Mu)/S
Vpc = - Vq.& :"'( pz T l‘Iq )/g

The following quantitics «-e output, in order, for each member:

1)
P = axial load = »é‘;~~ S
M., My, 8., M, = momoenls at joints pand ¢

M, == twisting moment = S

1E
75(1 )

Visy Vi, Vi, Vi = shicars at joints p and g

38
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APPENDIX €

Thermal Loads for v urious Member Types

The analysis method is outlined in 1I-G. The equation used to caleniate
+he loading in a member with the ends fixed in-space will be caleulated.

1. Structure type 1, three-dimensicnai, pin-jointed members (Fig. C-1)

Fig. C-1. Three-dimensional pin-jointed member

Thermal input
UAT = 1’;_—,
where

u = coefficient of thermal expansion

AT = change of temperature of entire member: positive
if increase in temperature

Force components at joizts p and g are

fl'l = - fql = El\)’l aaT

for = = for = EA y. adT
f,m = - fql = EA VE AT

2, Structure type 2, three-dimensional, rigid-jointed members, « vual member
cross-section moment of inertia

The equations are identical to structure Type 1. B
! I\I
3. Structure type 3, two-dimensional, rigid-jointed members, loaded in-plane

(Fig. C-2) . ' ~
Thermal inputs: ‘
ﬂA'l' = A_r, ' . \
adl '
A |
} "1{,

— X, i —
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X,

2
P

A)’I
o
%3

Fig. C-2. Two-dimensional rigid-jointed loaded
in-plane member

where

u = coeflicient of thermal expansion

AT = change of temperatare of entire member;
positive if increase in temperature

ST = temperature gradient through member cross-section:
positive if the unrestrained rotation of joint
p is in positive x, direction

h = height of cross-section

Force components at joints pp and ¢ are
fm = — fm = EAy, cAT
for = — for = EAy. aaT

\oment component at p and g are

. Ela3T
fo: = = -

ERAA

4. Structure type 4, two-dimensional, rigid-jointed, loaded normal-to-plane
{grid) (Fig. C-3)
Thermal input

asT
k

= A,

X
{l
*2
—————— q
%
—— s
// //
.z < K

Fig. C-3. Two-dimensional rigid-jointed loaded
normal-to-plane member

40



where
a = coeflicient of thermal expansion

8T = thermal gradient through the member; positive
if gradient increases in positive x, direction

h = height of cross-section
Moment component at joints p and g are

Ela8T
fpl = - f:n = A

EladT
fr2=—far= 1 n

5. Structure type 5, three-dimensional, rigid-jointed member, doubly symmet-
ric cross-section

The equations are identical to structure Type 1.

JPL TECHNICAL REPORT NO. 32-774
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APPENDIX D

Example Problem

The option-1 sample problem chosen is shown in Fig. D-1.

ll

INPUT

MEMBER AREAS — 0.01in? .

WEIGHT AT EACH JOINT --15.0 Ib

MODULUS OF ELASTICITY =10 psi

SEE THE FIRST TWO PAGES OF THE SAMPLE
PROBLEM FOR DETAILS OF THE INPUT

Fig. D-1. Example problem
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' ZEHT TIPE » 005404 '
DPTICh CNE SAMPLE PROBLEM-SITATIC AKU LYNAMIC
)
i INPUT DATA
. STESFNESS MATRIX ANALYSIS PROBLEM SAMPLE
1
. CONTRCL CARD
1 -0 -0 -0
v KO. J1S K0, MEM. K0. LOS HASS XD, NU. JT. HES. KU DEL F/ZJT  tIG COuE Wy CODF
. 13 35 3 1 “ 3 2 3
- NU. ALY, MDo. COpE [ POLSS OENSITY
. 0.1G900E 05 0.39000L~00-0.
JOINT CCURDENATES

N _JOINT xi x2 x3
2 i c. 0. 0.
. 2 10.u3u00 9. a.
‘ 3 10.00000  15.£nC00 a.
. « o, 10.02000 0.
s 0. 10,0000  10.00000
. ¢ 0. a. 10.04000
L 7 10.000G0 0. 16.90000
. 3 1C.00000  10.00000  10.00590
9 10.20000  10.00000  20.c0000
. 10 0. 10.00000  20.¢9000
., " C. 0. 20.00000
i 12 10.¢0000 o. 20.60000
13 5.00000 5,00600  30.00090
MEMELR PRCPEPTIES
ND. KEP. S A 3.8 st az a3 16 VOLUME  WEIGHT
t 1 2 1.000€-02-0. €..00t -0, 1.€00t-01-0.
2 1 4 1.000€-02-0. ©.100€ -0, 1.000£-01-0.
3 .l 6 1.000€-02-0. 0.100€ -0, 1.600:-01-0. _
- 2 3 1.000€-02-0. 0.100€ -0. 1.090E-01-0.
s 2 6  1.090€-02-0. a.100¢ -0. 0.141€-00-0.
6 2 7 1.0006-02-9. 0-100€ -G, 1.000£-01-0.
7 3 “ 1.000€-02-0. c.100¢+ -u. 1.000£-01-G.
¢ 3 S 1.000€-02-0. 0.100€ -0, 0.141€-00-0.
9 3 7 1.000€-02-0. ©.100¢€ -0. 0. 141E-00-0.
10 3 §  1.0006-02-0. ©.100¢ -0. 1.000E-G1-0,
u 4 5 1.000€-02-0. 0.100¢ -0, 1.C00E-C1-0.
h 12 - 4 1.000€-02-0. 0.100€ -0, 0.141£-00-0.
. 13 s & 1.000€-02-0. 0.100¢ -c. 2.€00E-01-0.
H s s 7T 1.0006-02-9. 0.1¢Gt -b. 6. 143F-00-0.
b4 5 s 8  1.0008-02-0. 0.100€ -0. 1.000L-91-0.
H 16 s 10 1.0006-02-0. 0.100€ -0. 1.000£-01-0.
17 s it 1.G00£-92-0. 0. 100E -o. 0.141£-00-0.
: 18 6 7 1.0007~07-0. o.1u0E -, 1.000£-01-0. - -
H 19 & 1 1.0106-92-0. 0,100t -0. $.C00E-01-0. - -
i 20 7 9 1.000€-02-0. a.100¢ -0. 0.141k-0u- 0.
21 7 12 1.00(3-02-0. 2-100¢ -0, . .1.000£-01-0.
P 22 7 1 1.000t-02-0. 0.3G0E -0. 0.151€-00-0.
F 23 ° 9  1.00C€E-02-0. o.100t -0. 1.€00L-01-0.
I 24 8 10 1.000€-02-0. 0.100¢ -0. 0.141E-00-0.
‘ 25 8 12 1.000€-02-0. c.t00¢ -0. 0.1¢1£-00-0.
a 26 v 1 1.000€-£2-0. ©.100¢F -0, 1.000¢-01-0.
2 2r ? 12 1.00%€-02-0. 0.100t -0, 1.000€-01-0.
o R 28 9 13 j.000€-02-0. 0.100¢ -0. 0.122€-00-0.
4 = 29 10 1 1,090€-02-0. 0.100F -0, 1.€00€-02-0.
] 30 10 13 1.000¢-07-.. 0.100¢ -0, 0.122€-00-0.
.
3
3 11 12 1.000€-02-0. ©.100F 01-0. -0. -0, 1.090£-01-0.
32 1n 13 1.000£-02-0. 0,100+ 81-0. -0. 0.122£~00-0.
.33 2 13 1.0006€-02-0. 0.100E 01-0. -0. 0.122£-00-0.
36 1c 12 1.020¢-02-0. 0. 1U0E 01-0. -0. -0 0.161£-00-0.
35 5 9 1.0606-02-0. S.100¢ 01-0. -0. -0./ 0.141£-00-0.
SLM OF MENRER VOLUMES » 4080954 SUK OF MEMBER WEIGHTS = 0.
RESTRAINTS .
- NO. RES. JT. NO. 21 R2 w3 [ L R6
; 1 1 1 1 1
2 2 1 1 1
3 3 1 1 1 .
4 4 i 1 1
STIFEKESS. MATRIX PLENENTS -
. AG. RUW co. ELE. CHANGS
. : 2% 28 0.13300t 05
2 28 25 0.13300€ 05
' E] k2 34 0,13300t 05
' s 36 31 0.13300€ 05 ,
: MEIGHTS
J0INT w1 w2 u3 “ -
- 1 0.15000€ 02 0.1500%€ 02 0.15000€ 02-0.
‘ 2 0.15000E 02 0.15000€ 02 0.15000€ 02-0.,
R 3 0.15000€ 42 0.15000€ 02 0.15000f 02-0. .
“ ©.15000€ 02 0.15000€ 02 0.15000€ 02-0. o
, .. S. U.150006 02 G.15000E 92 0.15000€ 02-0., - ‘
' 6 0.1500CE 02 0.15000k d2 0.15000¢ 02~0.
- 7 0.15000€ 02 0.15000E 02 0.15000€ 02~0.
: 2 0.15000¢ 02 0.15000€ 02 G.15000€ 02-0. -
7 . 0.15000E 02 0.15000€ 02 0.15000€ 02-0.
10 0.150006 02 0.15000€ 02 0.15000€
. ——Al 0.150C0€ 02 0.15M700€ 02 0.15000€ -
R 1?2 0.15000€ 02 0.15000€ 02 0.15000€
0415000€ 02 0.15000E 02 0415000
XL x2 x> x4 x5 xo
. 0. 0. 04110008 02 0. 0. 0. .
0. 0. [ =0.10000€-00 0. - Ca_ - ! -~
. 0. U ~0.10000€-00 0. 0. -
~0. =0, ~0e =0 ~0.
' TOTAL nEIGHISs 195,000 195,000 193,000 s 0. Q. .
f — LENTER.OF BEIGHI.. X= 540000 Ye 54000, 1= 11.538 . - —
'
WEIGHT MOMENTS UF INERTIA ABOUT CENTER OF WFIGHT
, - IXx~ 2£038.482, IYve 22038.462, 11s 9000,000, e 0. 1x= 0,000 172 0.000
covmemm LAME A-TER KEADIAG INPUT = 005404 - - . R e -
TIME AFTER GENERZTING STIFENESS MATRIX = 00SAD4
YEIFFNESS HATKIX -
' ROW 1
0.20607k 05 -0.35355€ 06 -0. -0, -0 -0, -0.35355C Q4 0.3S355E 04 O.
a2, - 0. . -0.35355E 04 0. ~0,35355€ 04 -0, -0, L I
[N 0. 0. 0. 0. 0. 0. ' '

ROW
=~0.35355€ 04 O0.17( ¢1L 05 -Q.35355k O4 -0. ° =1.30000¢ 0% -0. 0+35355F 04 -0,353358 94 -0, e
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“Ua ~G. G. -0 Ce -0. ~0. 0. -0. -0.3535SE 04
0.3%355¢ 04 0. 0. 0. d. 0. 0.
KO 3 . —— ———
-0. ~C. 35355t O¢ 0.30607F 05 -0. -0. ~0. 0. -0, -0. 0.
=0. -0. =0.35355€ 9% O~ =~U.35355€ 04 O. [} ~1.0000CE 04 9. 0.35355E D4
-0.35355¢r C4 O, 0. 0. C. 0. 0.
ROW 4 .
~U. 0. -0, 0.1353¢E 0° 0. -0,35355€ 04 ~1.00000¢ .~ O, 0. 0.
Q. [ 0. Q. 0. 0. 9. '+ PR ) PR ; PO
0. . 0. 0. ©. 0. 0.
ROW s
0. -1.C00GUE 0% O. 0. 0.135368 05 ~0.35355€ 04 0. -0. -0. .
0. 0. 0. U. 0. 0. 0. O ~0a .~0a
0. c. ' C. n, 0. 0.
ROW 3 e e
-0. o, -0. ~0.35355F Q6 ~0.35355t 04 C.27071€ 05 O. 0. -0. 0.
0. ‘e Q. 0. 0. 0. 0. 0. . 0e - 0.
-1.000u0: 04 0. 0. a. 0. O, 0.
7 -
-0.35359t 0+ D.25355F O¢ 0. «1.00000E 04 -0. -0. 0.17071t 05 -D.35355E C4 ~0.35355€ 04 0.
- . -0, a. 3. o. 0. Q o =0,353S5E_Q4_=0.
0.35355E 04 -0, -0. 0. '8 ve 0.
«On L
171435355k 8% -D.353550 04 O, ~G. -0. -3, ~0.3%355¢ G4 0.10607€ 05 -0, 0.
0. 0. a. -0.35355E 04 -0.35355¢ 06 O. 0. 0. -0. -0.
0. -9, -0. . 0. 0. 0.
RUK . JE—
-0a o. - 0. ~0. -0. -0. -0.35355F C& -0, 0.30607€ €5 0.
0. [ o. ~0.35355€ 0& ~0.35355¢ D& O, c. 0, 0.35355€ 0e O,
-0.35355¢ G+ 0. o. ~1.00C09E us C. o. 0.
ROM 10
-1.00000 3% -0. -0. 0. 0. 0- 0. 0. 0. 0.13536€ 05
0. -0.3525%k 0% -0. -0. 0. -0,35355E 0% -0, 0.35355E 04 O . . - . O -
0. -0. - [T 0. 0. 0.
ROwW 11
-U. -0. -C. o. fo 0. 0. 0. 0. 0.
0.35355¢ G4 ~0.35355E €4 -0, -0. 0. -0. -0. 0. 0. 0. _
0. ~0. -0.39355€ C4 0.35355¢ 0. O. 0. 0.
L0k 12 e e e _ —
-0. -0. -0. 0. 0. 2. 0. 0. 0. ~0.35355E 04
-0.35155C G4 Q.27071E 05 0. 2. -*.00000E 04 U.35355E 04 0. ~0.35355€ 04 0. 0.
0. 0. 0.35355€ C& -0.35355E 06 o Q. Q.
RO« 13
~0.35355E 04 -0. ~0.35355€ C& O. 0. 0. -0, -0. -0.
~0e -0. 0.14896f 05 0.136I6€ 04 0.G13B6E 02 0.33CO00E 04 -0. N P P
Oa -0 -0. -0. -0.%3608E 04 -0.13698L 04 0.27247€
0w % -
-0. - 0. ~0. 0. 0. 0. -0. -0.35355E 04 -0.35355€ 04 =0.
-0. -0. 0.11B0BE U4 0.14896E 05 O0.RI386E 03 -0. -0, -0. B . —
0. -u. -1.09030¢ 0% -0. -0.136C6E 04 -D.13808F 04 D.27217€ 0%
- KUw 1> - e i
-0.35355t Q4 ~D. -0.35355€ 0+ O. c. O -0 -0.35355€E 04 -~0.35355€ 04 -0,
-0, -1.0U00UE 04 O.513E8F 03 0.81388¢ 03 0.22514E 05 -0. -0, -0. . 0. ..
c. -0. ~0. -0. 0.27217F 0% 0.27217€ D4 =0.54433€ 04
Row le -
-0, -0, -0. n. C. D. . 0. 0. ~0.35355€ 04
0. C.35355C ¢ 0.33°00E 0¢ 0. 0. 0. 18432E 05 -0.48954F 0% -0,81348€_03 -0, ___ _  -Q
~0. -0.35355¢ 0% 0.35 <C 04 O. ~C.13608E 04 D.13808€ 0% -0.2721T7€ 04
a0w 17 -
t -0. -0, -0. 0. C. 0. O« 9. 0. 0.
~Co ~Ca 0. ~0. ~0. ~0.4B964E 04 D.14895t 05 -~0.2T217E 04 -0. ~1.00000E 04
-0. 0.35355¢ Q% =0.3535SE 04 -0. 0.13608t 04 -0.13608¢ 04 0.27217t 04
> RO
-0« . =1.000C0E 04 0. 0. 0. g Q. [ | PO ~ . D.35345F 04
~0. +35355F 04 O. ~0. -0, -0.81388€ 03 -0,27217L 0& 0.16979E 05 ~0. ~0.
-0. n, -0, -0a ~0.27217€ 04 0.27217c 04 -0.54433t 04
ROM 117
-0 0. ~0. -0, ~0. -0 ~0.35355¢ 04 O, 0.35355E 04 0.
N. 0. 0. g. o. -0. 0. -0. 0.14896€ 05 0.13608¢ 04
~0.81388: 03 ©0,330G0¢ 0« 0. LS ~0. 3608E 04 ~0.13608¢ 04 -0.27217t C4 - - i e s em e ———
ROW 2
0. ~0.35355¢ 04 G.353S3E 0% -0. -0. -0. 0. -0. -0, 0.
0. n. 0. 0. . 0. +~1.90000€ 04 0. 0.13608F 04 0.14896E 05
-0.81388¢ 03 0. -0, =-0. ~0.13608f 0% -0.11608€ 04 -0,27217¢ 0%
R 21
=0 Ue 35355k 04 -0.35355E 04 -0. =04 ~1.00000t O« 0.35355 04 ~0. . —=0.35355€ 04 Ou_
0. . 0. Q. C. -0. . -0 ~0.81388E 03 -0.81342E 03
0.22514¢ 05 0, U “0e ~0.27217€ 04 ~0.27217€ 04 -0.56433E 04
ROK 22
G. 0. 0. Je 0. 0e =0 =0. =0. “Qa
0. -0. 0. 0. 0. ~0.35355¢ 0% 0, 35355 C& -0, 0433000F 04 =0,
-0, 0.34896L 05 ~0.4RILAE 04 -D.272L0TE .06 ~0c13608E Ov  J-1340%C "% D,2721 7k D4 e e e —_——
ROW 23
Ce ne 0. C. 0. Ue -0, =0a =0. 0.
-0.35355¢ 04 0.35355L 04 O, =1.00000x 04 O, 0.35355€ 04 -0.35355F Q4 O. -0. ~0e
-0 ~0.40964L 04 0.18432¢ 05 -0.81388€ 03 M.13608k 04 -0.13608c 04 ~0.27217¢ 04 14
ROW 24
0. 0. 0. 0. Ce ('8 ~0. ~0a  —~ . .=1.0000DE.C4 ~0a —
0.35355E 04 ~0.35354t C4 -0 0. ~0. ~0e 0. =0, ~0s ~0e
=G ~0.27217t 04 -0.,81388E 03 O0.18979E 05 0.,27217E 04 =0.27217€ 04 -0.544)3E 04
RON 29 -
0. Q. 0. Co 0. Q. 0. 0. 0. 0.
0. [N ~0.1 604E D& =0.13M0FE 0¢ 0.27217E C& ~04138085 04 0.13638E 04 -0,27217E Q4 ~0.1360LF O¢ ~0.13608E 04
“0427217r 06 =0.13604L 04 O0.13508E 04 0.2721TE 0% 0.54433E 04 0. . . . R T
ROw 26
O. 0. 0. 0. 0. Oe 0. 0. 0. 0.
’ 0. 0. ~0.13608t 04 ~0.136068 04 0.27217E 04 0.13608t 06 -0.13638C 0% 0.,27217€ 04 -0.13608E 04 -0.13408E O+
~0427217C 0% 0.13698F 04 -0.13608€ 04 -0,27217¢ 04 O. 0¢544)3E 04 -0.
RCW .
0. C. 0. Q.

>

O 0. 0. Qv . - [ 9 - B
0. 0. T217t 06 0.27217€ 06 -0.56433E 04 ~ye2T217C 04 04,2721 -2 £h -0.%4433E 0k ~0.27217¢ 04 ~0.27217€ 04
~0454433: 06 L 27217¢ s2TZLTE U4 ~0,5%4433€ 06 0. =0 0.21773c 05
KEIGHT NATRIX s
04150008 02 0.15C00t 07 O0J150008 02 0.15000t 02 0.15000€ 02 0.15000€ 02 0.150J0E 02 0.150C0E 2 0.15000E 02 0.15000€ 02
©,15000t @2 0.1%5000t 02 0.15000E 02 9.150006 02 0.1%000: 0 0.150006 02 0.1%000¢ 02 0.15000€ 02 0.15000€ 02 0.1£000€ 02

0.15000t U2 (0.1500Ct 0Z O.1S000E 02 O.15000€ 02 0.15000f O« 0.15000L 02 0,15000% 0« C e eene e '
LOAD MATRIX
LUAD 1
0. ue 0.150C0E 03 0. 0. 0,15000€ 03 O. 0. 0.15000E 03 0. '
0. 0.150C0¢ 03 0. 0. 0.15900¢ 03 0 0. Je15050€ 03 0. 0.
. 0.45000t 02 @, 0. 0.15000F 03 Q. U 0. 15000t 03
A LGaD ’ e e
0. 041400LE €2 =V.15001E 2 0. Go15000F 02 0s 0. 0.15000F 92 O, O
, 04130008 0, ~0.1500CE 02 O. 0.30000¢ 02 -0.15000F 07 C. 0.30000t 02 =0.15000k 02 O, 04360006 02
' o 0. ©.30000F 02 . G. 04456006 02 -0. 75000t 01
L0AD )
' 0. “0.25077F 01 ~0.75000¢ M 0. -0.23077F f1 0.75000€ 01 0. -0.23077€ 01 0.75000€ OL O,
=~0,23077 01 ~0.75000F 01 O. 0.12692E 02 ~0.75006+ 01 Q. 0.12892L U2 -0.79000E 01 O 0¢12692E Q2.
. 0.75000( 01 0. 0.17692v 07 C€.75030+ Ol C. 0a276¥2¢ 02 O,
TIFE AFTER LHERATING LOAD «ND WEIGHT BAIKICES = OUS/05 .

[
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TIVE AFTER STIFFAENS MATRJX INVERSION = 0054US
STATIT DISPLACEN“WIS
Jr tusuy LiAD2 LCAD) LOADS L0ANS
1 0. 0.
De 0.
Oe 0.
2 0. 0.
0. 0.
3. v.
3 o. 0.
0. 0.
0. 0.
4 0. 0.
0. 0.
0. u.
S D.01518117 2o53E287 ~0.002884L5
0.03C06215 0.05494349 0.01979345
0,02778510 -0.01256081 ~0.0046C6L0T
& 8.01935500 v.CUKG239Y 0.00323%89
9.02917826 0.04615866 r.C185422%
0.02667625 0.,01706%74 ¢.D079993%
T 0.01682069 0.0026605C 0.00L55147
0.03%74 145 U.05686254 0.0218934]
0.03824945 0.022292717 0.C1C85492
8 0.011)écus -0.C0408927 -03.00222265
J.M0386676 0.101136R7 0.034¢97047
D.03532609 ~9.012251686 -0.00640767
9 ~D.03526717 0Q.CG511378 0.00143541
0.0241C492 0.12664784 (.05335933
, 9.05163705 -0.02327973 -0.0112113%
10 0.0U785946 -G.Zuv319dC -0.00199049
0.03842554 0.12688644 0.G5407221
0.04321418 -0.01594347 -0.00793725
11 92.50708516 0.0U351332 0.002146157
D.04057192 0.32179944 0.05191859
0.04C04222 0.02761615 0.01391252
12 -0.0034B&48 ~ 0130942 ~0.0012969%
0,02625130 0.13133065 0.05489502
0.0576450864 €.72218695 0.012€56314
13 -0.0117273% DN.UAITII7 0Q.0C136132
0.03337994 0.1%26815C 0.0433110)
0.05566337 0.CU191315 G.001816%
TIFe AFTER STATIC (ISPLACEMENT CALCULATICHS = 00340S
STATIC “EMBER LUALS
JTA 3T LOLL) L0zp? LCaD3 LCADS LOALS
1 2 =0. ~0. -0.
1 4 - C. q. 0.
1 s 266,75 170.69 79.99
2 3 C. 0. 0.
2 & 38.41 53.22 23.82
2 7 382,49 22233 108.55
3 - Q. O. Q.
3 S 62.92 -36.24 -16.12
3 7 12,51 ~172.75 =~55.19
3 8 353,26 -122.52 ~64.08
4 S 2717.48 -125.61 -50.68
b & -12.5%1 -145.45 -42.71
5 6 8.85 87.45 32.51
5 7 =21.2% 30.37 11.43
S 8 ~40,15 12,24 6.23
s 1C “34.26 -33.42 -18.89
S 13 8,73 -133.39 -50.12
3 7 =25.14 ~37.63% ~16.84
6 11 133.60 105.47 59.13
7 3.73 121.16 46.93
7 12 124041 -1.06 20.08
71 57.64 22.85 12.34
8 S 163,11 ~110.26 =43.04
e 10 %6.78 -17.3¢ ~H.81
8 12 - 0.00 21.21 =-3.26
s 10 -131.87 14.39 34.58
9 12 ~21.40 -45.83 -15.39
? 13 37.46 ~21.67 ~12.58
10 11 -2l.4t 50.67 <1.56
ic 13 54,39 ~38.04 ~21.33
1 12 -115.70 -47.23 =33.49
1 13 37,48 33.45 21.33
12 13 54.39 17.07 12.58
e 12 =-1.0% ~T.27 =-0.19
5 9 15.99 -1l.44 ~4.17
EQUILIERIUM CHECK FCR LOADING )
JNINT X1-BIRECTICN X2-DIRECTIONN E3-BIRECTION
] . . ~416.7625
2 25,7410 0. ~558.,2376
3 %3.6581 A.8459 -S55.9648
4 -0, —8.8459 ~417,0351
S =0.0000 0.0000 =3,0001
6 -0.0000 ~0.0000 -2.0000
7 0.0000 -0.0000 = 140000
B 0.0000 0.0C00 ~u. 0130
9 -105.0656 00000 Q.0000
10 70,0534 ~0.2000 $.0000
11 59.6436 0.0000 ©.0000
12 ~94,2326 0.0000 0.0000
13 =0.6000 0.0000 0.0000
! EQUILTBKIYK CHECK FOR LOADING 2
JOINT X1=DIRECTEON “X2~DIRECT N X3-GIRFCTION
1 - 0. =170.6715
2 37,6349 e =260.%5629
3 ~25.625% -122.1518 28%5.2938
Ll =-0. ~102.5484 243,4965
5 0.0000 -0.0000 040000
& 0.0000 b -0,0000
7 0.0000 =0.0000 .
8 =0.0000 G. 0000
9 57,4534 =0.0000
10 “bi.&797 0.0000
1 ) 17.4154 9.0000
1 ¥3 =45.3985 =0,0000
13 ~0,0000 040001 -0.0000

EQUIL IBRIUN CHECK

FOR LOADING 3

LOADS

LOADS
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t

JqinT X1-DIRELTEC
1 .
2 l6.8421
3 -11.2965
4 -0.
H 0.G000
& 0.
7 0.0000
8 -0.0000
9 26,4749
10 -19.4899
11 16.052¢
12 ~28.4830
13 0.0000

TIME AFTER STAT!

CONYERGENCE TO LOWEST & M
MNDE

PR E PV WR RN NN m e e a R R RANLI L L LWL LW CANNNN e mrm e eGP AV AL P FOW WWWA NN AR b e e e O BB WAR S b S AN N A NN = e e e e e e

'

f

¢
i

!

1

s

CIGLMWVALUE
0.639945L11-01
0.63994562€~01
0.639% +562E-0]
0.A3994552€-01
V.63294562E~01
0.53994561E-01
0.53994562€-0]
0.11038709E-01
G.L1038719E-01
0.116G33719F-01
0.11038719E-01
¢.110357198-01
N.11038719€-01
o B2409T3SE~02

- 0.824230€CE-02

0.82424561€-02
0.82425051E-02
0.92425056E-02
0.674666756-02
0.72383913£-02
0.72394553E-02
0.72395213t-02
0.48421382E-02
0.40875141E-02
0.-47534530E-02
0.40191810£-02
0.42004121€-02
0.63994562€-01
0.63994562€-01
0.63994562E-01
0163994502€-91
0.63994562E-01
0.63994562€-01
0.63994502€~01
0.11038719E-01
0.11038714E-01
0.11038719E-01
0.11038719E-01
0.11038719E-01
0.1103879E-01
0.02425056E-02
0.82425058E-02
0.524250586-02
0.8, 25057E-92
0.82425057E-02
0.723952226-02
0.72395132€~02
0.723952326-02
0.72395232€-02
0.52037250£-02
0.52033867E-02
0.52036845E-02
0.42589100£-02
0442591606F-02
0.635945626-01
0463994562E-01
0.61994562€-01
0.6399862E-01
046399« 5621 91
0.639945626-61
0.63994562¢-~01
0.11038720E-01
G.11636719E-03
0.11038719€-01
9.11038719€-01
0,11038719€-01
0.11038719£-01
0.8242505/€-02
0.82425060€ -02
0482425058F-02
0.82425057E+02
0,82425058¢ -02
+723952326-02
04723952 136~02
04723952 12E-02
0.72395233F-02

- 0.52038351€-02.

0,520383326-02
0452038349£~02
0.42591950£-02
0.425919836-02
0.63994561E~-01

. 0.63994562E-01

0.63994562€~01
0.639945626-01
0eb3994562¢~01
0.63994562L-01
839945628 -01
0.11038719L-0]
0. 11034719E-01
0.11038719¢-01
0. 11038719 -01
0.11038719¢~01
«110.8219¢-M
0.8242505tL-02
V82625057402
00202505702
U.82425058E-02
0402425050802
0, 12395231r-02
0.72375232L-02
0.72395233€-02
e T219524326~02

1.

Xe=DIRECTION
11,3077
17,3077

=~21.7193
~l2.8982
n.n000
=0.0000
0.G000
-0.0000
~0.0000
~0.0000
0.0000
©.0000
0.0000

X3-DIRECIIUN

~87.4934

~132.8914

122,000t
98.33%6

~0.0000

c }Oln CALCULA1.INS = ,005411
COES

#AK. VELIOP CHANGE

0.000000007
9.000000007
¢. 000000007
2.600000007
0. 300000307
0.007C00395
7.006690097
0.0008665978
0.0rU058271
0.00001 3456
04000005573
0.000006467T
0.000001729
0.006063089
0.003692661
0.091157068
0.600185383
0.000102922
0.215138115
N 0BZ49253
- 0L2187192
0.000354290
0.127673283
0.2189386933
0.118257985
0.113201775
0.040190138
0.000090522
0.000600007
0.00003¢007
0.00000001$
0.000000007
0.000000440
0.000090112
0.000000082
0.000000022
0.000000007
£.C50000000
0.C00236097
N.0J0009037
0.0000T2084
0.00000 7445
0.000000700
0.000001555
0,000001259
0.000062875
0.000010086
0.000020393
#,0C0017390
0.001769274
0.003032565
0.061835715
0.003401726
0.001366447
0.05000001%
0.000000007
0.000000007
0.006030007
6.000000007
0.000000395
0.000000127
0.006000060
0.000000030
0.000000007
0.000000007
0.600000127
0.00v000052
0,000090812
4.000000201
0.000000060
04000000320
0.000030104%
0,000003271
0.060000514
0.000001038
0.000001013
0.000160731.
0.0002771862
0.000177965
0.000%37558
0.00€ 183134
0.000000007
0.000600007
v.,000000007
6,000000007
0.000000015
0.0000004 02
0.000000104
0.002000045
0,000000037
0.000000007
0,060000015
0,0000001 86
0,000000067
0,0000002 33
0.000000037
0.000000052
0.000000283
0.0000001 1
0,0000001 94
0.00( 00052
0.000000492
0,0000001 49
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5 U.5203836.L-02 0.€06013066)

5 0.52633363F-02 0.000075A83 !

5 0-52038363E-U2 4.,000012%2

& £.6259196% 02 0,000035897

[ 0.42531991L-02 0.000013232 \

1 0639945628 ~U1 1. 0QUCE0007

3 C.6399450 26~} 0. 00U600007

i Cate3965471~UL ©.000CU0V15

1 0.63994562E-01 d.000c00007

1 U.03994567E~U1 2.050020007

1 0.63794562L~G1 €. 000000440 !

1 0.03996562F -51 0.00C00N112 K

2 0.11038720t-C1 0.CC0000082

2 UL HIGSATL9F -0} 0.00600002¢

2 0.1103871%1-02 0.000C00015

2 CL.1103A719F 01 0,00800C007 .
2 0. 1103587208 -01 0.G0OGDOL 56

2 J.18038719€~0) 0.0N0L020030

3 J.32625057E-02 0.00000023¢

3 01.52425054 -2 0.0800001130 -
3 VeBZ425056E-02 0.000G20045

3 U BL42T05TF~0Z 0.000C00233

3 0.82425057¢ -2 0.000000082

4 0.72395233¢L -2 0.000000127

- D.T72395234E£-02 0.200900104

4 ©.72395233+-02 0.000000427

“ 0.723952331~02 @, 90%03020)

S 0.52038352F-02 0. 000002407

s ©.520383637 0.00000444]

5 0.52038363F-02 0.000003144

L3 0.425€1790¢ VZ 04000004329

6 0.42591990F-02 0.00C071580

7 0.303970 BE 06 0.0Q0020037

1 0.1502¢37JE 02 0.40CC30010

1 0.15626357¢ 02 0.000090827 i
2 0.,905902/1E 02 0.500030425

2 D.90590271E 02 2.00Q0V00589 v
3 «t2132239E 03 6.000000931

3 0.12132237€ G3 0.000001013

4 0.138130738 03 0.C00001386

4 0.13313064E 03 0.000001565

S 0.19216610F 23 01, 00M001609

S 0219216595 V3 0.000021602 .
L) V.2347860%¢ 3 0.0070005%1

5 0.234785%¢4£ 0. 0.000931423

3
COXDIFIGH KUFBER 1S L.1945E 03
COMPARISON CF EIGENVALUES CF A AND C

Ge66UYB3E-LY 0a253320¢~086 L .938773C-06 0.238413€-06 0.417233€-06 0.44T03ISE~06
TIME AFTER FIGENVALUE COMPUTATIONS = 005421
FREQUENCLES
12,37 29.78 34046 36,77 43437 “T.94 .
NODU SHAPES N
JY  MOCEL HOLF2 KODE3 MCDES YODES MODES '
1 0. 0. 0. [ te (3
Q. t. Q. 9. C. 0.
0. i, 0. 0. 0. 0.
2 0. 0. 0. 0. c. 0.
0. 0. v, 0. Qo 0.
0. 0. 0. 0. [ 0.
3 0. 0. 0. 0. 0. 0.
0. 0. . 0. 0. 0.
0. [0 0. 0. 0. Yo
4 O, G 0. Q. 0. 0. ‘
0. Qe 0. . e C. -
0. 0. 0. 0. Q. 0.
5 -0,02562743 -0.02810322 0,57066567 0,11458231 0.17826°" 10477999969 .
0.30728967 9.02515277 0.55169928  1.00090000 ~0,184575u - ~0.059485%4 b

-0.05765129 0.042C1912 C.1%+88976 0.16955020 ~0.2019d6%8
6 0.0431C413 -0.03164%22 0,45143711 0.7309154% 0.12906925 B -
0425152379 ~0.03454349 0.4B6T4731  0.90136669 -0, 10255742 -0.07059892 R %
0,09969166 ~0.04768153  0.0530309% 0.,09408917 G.21303938 ~0,03170930
0,02208707 ~0,02174541 0.51014087 «T9665640 0.70332668 0.14045765
0.32539389  9.04869127 0.48133633 .-0,12136800 0.25230478 -0,70506:95
0.13C61885 -0, 10VE6023 0.26766382 0272230422 0.10506120 ~¢.2333%300
8 -0.02075914 -0.03412094 0,42777955 6794161 6866439 1,00000000

0.86G0CE2  1,0P0C0000 V. 13866267 215009185 ~0.08724477 0439294405 . ’

=0.0%058569 0.09659041 0.,47643626 0.05079796 0.98499274 0.03373050
9 0.01576062 -0.00368T37 ~0.10376333  0.02236422 0.0910952% 0,36971948 .

0.7U83C122 0.10336562 ~0.07489931 ~0.44318029 0.06957991 -0.498300666 »

~0.10869638 0.04278I1C 0,78016703 0.06145129 0.09124414 ~0.71498333 \
+02385474 ~0.05195338 0.11152916  0.4471517+ 0.12481312 0.09623892 .
4705406477 0417372541 0.13192506 0.6151209) ~0.06152110 0.14156885 o~

~0.068821717 Q8306655 0.11977845 0.80176635 ©.36569196 -0.49017331

11 0.02142024 «0ALT3765 -0,04222752 =0.11514223 ..37815405 0.17684583 ' Lo
D.67618928 +19743756 U.107/766% 0,788A3633 -C.00428823 0.14388577 *
Dole 25122 -0.09672479 ~0.19778272 0.15198433  0.29315392 -0.095>34554

12 -0.N058948% 0.11889928 ~0,0222942d ~0312521704 -0.02777345 -0.28115080
0.73836164 U.173,1415 ~0.01126443 ~0.42508519 ~0,08527055 36538447
0.12767331 ~0.34515382 0.3958462%7 ~0.3121%494 0.01583693 ~0,33318163

13 0.02491737 0.16700893 -1.000000C0 96618061 1.00G0C000 0.10182600 e - P P
1.00000000 ~0.448%5598 ~0,55408062 =(.61586219 ~0,002B81190 0.50844740 ’
0.02664920 =0,10632525 0.3329487% 0,22555431 0.26999233 -0.29213370

~

GENERALIZED SPRING MATRIX

0.473¢1806¢ 03 ~0.22268295L-03 -0437956238E-03 ~0.45776367E~0¢ Q4 T0571899E~00. .-~ 0.13562175E=03
-0.497417995-C3 0,20923037¢ 04 ~0483923340L~0% 0.28226760L-03 0.106811521 43 ~0429754639€~03
-0.9613€371&-03 =0, L14440I2E-03 0.53654881E 04 ~0.793457035-03 -0} 3275148802 -D.164796492€~02
~0.81052317-03 0.48828125€~02 -0 10528 s84€~02 0.13539269E 05 0.25634768E-D2.. 0432043857603 . ‘.
| 0.97182129-04 0,21362305€-02 ~0423651123€=02 0.31280518¢-02 0.79087302¢ 04 -0.30517578E-03 : : R
" 0.B44ISEALE-03  ~0.54849854E-03 ~0425939941£~02 -0.213623056=03 ~04350952158-03 04115531656 05 o

NORMALIZED SPRING HAIRIX . - PR e —

0.09999999¢ 01 ~0s 18472652806 - 10 14041918L-~V0 ~0e 1321672607 Qe26854921L~07 , 044 13601726~07
=0:368253728-06 0+ €9999999t 01 ~0.20059714L~07 0.53037350£-07 0.26240759L-07 ~0:55875567£~07 . «:“
=0.25563450c -06 =0.27354196€-07 0.09999999€ 01 -0, 74555581t ~07 ~0.16322821E~00. ~0e154766008-06 ... .
~0.23512753L-08 0.91740241t-07 ~0.98929%21L-07 0,09999999€ oL Oe24120L 18506 =0.236545 14607 . .




P mires

Ty

%
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0.37741911t-07 U.52521519€-07

0D.24645585729~06 -0.1217¢008F-08
0.5583399E€ 02 0.33993274L-07
$.33973274£-07 0.23096367E 02
0.,262]1&3976-06 -0, 714505806€-07
~0,10303352C-06 0.556793546-07
—0.40978193(-07 0. 74505806€~07

-0, 14002971t-06 Q. 1LLT58TLE-06

f

0.09999599: 01 0.94810334E-09

0.94610334c-09 9.0999Y9YVE 01
0.39004512e~08 ~0.18649939F-08
~0.14595629F-08 0.11744291t-08
~0.85449562E-0 D.2416B956E-08
—0.246757652E-08 0. 30607300F~08

TEME APTER DYNAPIC DISPLACEMENTS =

32.774

-0.29080888E~00

~0.24361441E~Q8

0. 30232764E-06

=0.15769943E~07

GENERALFZED WEIGHT MATKIX

0.26214387E-06
~D. 14505806£-D7
0.68952616C U2
~0.596048645F~07
-0.14901161F-06

~0.11920929:-0N6

~G. 1803342€-06
0.55679354E-07
—0+5960464% c-07
0.98017911€ 02
0.52899122€-06

0+37252503€-07

NORMALIZED WEIGHT ~ATRIX

0.39004572£-08
~0.18659939E-08
0.0999999% Ot
-0.72502338E-09
-0.279759166~08
-0.18895144¢t~08

0c5422

-0'145955495-08
0.11764291E-08
~0.72502338€-09
0.099494999€ 0L
0.83298151E~38
0.49524917E-09

~ 09999999t 01

~0.33°04293E~07

-0.40978193€-07
0. 745058066~07
~0,14901161E~-06
0.528991226-06
0.41145349€ 02
-0.10430813€-06

-0.85649562E-09 -

0.24168956E-08

' -0.27975918¢-08

0.832981516-08

0.09999999¢ 01
-0.21402931€-08

-0.29480255E-07

0.09999999€ 01

-0.14062971E~06
0-11175871F-06
-0.11920929€-06
9.3725 DIE~C.

-0.10430813€~06

0.57725615E 02

©.304607300E~-08
-0.18895144E-08

TT0.49524817E-09

-0.21402931E-08

0.09999999E Ol

.24757682E-08

A
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