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SEQUENTIAL RANKING FROCEDURES

By
Elias Alphonse Mu‘, Jr.

1. Introduction. Many statistical procedures used and studied
today are sequential in nature. By this we mean that the time vhen a

statistical decision is reached is random. In contrast to such proce-
dures are the fixed sample size procedures., Best known perhaps 1is
sequential analysis and the sequential probability ratic test as formu-
lated by Wald (6], There are other sequential procedures, for example
in process inspection schemes, where, based on o sequence of observations
a decision is made to stop the process and take some adjusting action,
the time at which the process is stopped being a random variable. There
are many other sequential-like procedures,

In the theory of hypothesis testing for the case of a simple hypo-
thesis against & simple alternative it is known that a most powerful test
can be determined by the Neyman-Pearson lemma, which ic of the form

00X, Xy voe s X)) o &
reject '.'Q ir %.o s 2 %40 &

where the hypotheses to be tested are f = f, against f = f,, £, and
f, are the joint densities of the observations X,, Kor 200 l.. eorre-
sponding to each hypothesis. This is an example of & nonsequential
procedure . huuadauh.mnﬂnhmmmbl‘
only modify the test as follows:
teke a sample of size of size m and
reject to ir l\zt‘
soompt fo I ASRK
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if the second sample is required compute l\' and

reject to ir 4\' >K

accept ro ir A SK.

Such a simple modification gives us a two stage procedure with a new
feature in that the total sample size is random, being either m or n,
depending upon the outcome of the first stage, This basic idea of a
sequential test was proposed by Dodge and Romig in [8), and has been
extended to multiple stage sampling plans,

Sequential hypothesis testing as proposed by Wald requires that
a computation of l\: and a decision be made as each observation is
taken, Briefly, to test f = ro against f = rl select constants
B<A and compute l\‘ as each observation is taken, and proceed
according to the rule

if A 2A reject f = f,
ir l\‘_<_l reject r-rl

if l<l\‘<A take another observation and compute %’1

Since the sequential probability ratio test is formulated in
terms of the ratio which leads to most powerful tests according to
“he Neyman-Pearson theory we would expect it to have good properties.
This indeed is the case in that of all tests with the same power the
sequential probability ratio test requires on the average fewest obser-
vations. This optimal property was conjectured by Wald and finally
proved by Wald and Wolfowitz in [9].
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In order to ecarry out these sequential tests of hypotheses we note
that an assumption as to the specific form of ro and ’1 must be
nade, It often happens that the form of the underlying distribution
is not assumed known and in this case nonparametric statistical methode
are used. In nonparametric statistics many tests of statistical hypo-
theses are based on the set of ranks (‘l‘l. Ty vev sy 'l'a) determined
from a random sample (Xl, Xz, vee xn), or the signs of the obser-

vations (+ 1 mccording as X, in positive or negative) or on a

i
combination of both of these sets of statistics derived from the basic
observations., The sign teet, signed rank test, Wilcoxon-Mann-Whitney
test, Fisher-Yates test and many others are examples of such fixed
sample size nonparametric tests.

Contrary to the case in parametric statistics (as opposed to non-
parametric statistics) there are very few sequential procedures in
nonparametric statistics, particularly sequential procedures based on
signs, ranks, or both. One reason for this is that for most specified M
alternatives to the null hypothesis it is difficult to compute proba-
bilities for statistics based on signs and ranks which in turn makes
it aifficult to properly evaluate the properties and operating charac-
teristics of the proeerdures. This difficulty can be circumvented by
restricting attention to special classes of alternatives such as those 4
proposed by Lehmann in (1), where to the null hypothesis F(x) he i
proposed alternatives of the form F'(x), a > 0. This of course does
not solve the basic problem of alternatives as the question of whether
or not the Lehmann alternative is appropriate for the problem being
considered arises. However it is a first stey inasmuch as it does

iR bl ) e st (ST
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allow us to develop some sequential procedures where exact distribution
theory calculations are possible. In the fixed sample size problem it
simplifies considerations of power of rank tests,

An example of a nonparasetric sequential test is the following
adaptation of Wald's sequential probability ratio test for binomial
observations. Consider a sequence of independent identically distrib-
uted random variables Xl, x,. +es  With cumulative distribution function
F(t) = r(x1 £ t). We wish to test PF(ty) = p, against F(tb) =P,
for some fixed value ty+ The number of observations less than or
equal to ‘b' say N, after taking n observations, is a binomial
random variable with parameters F(t,) and n. The probability ratio
reduces to

P(N| ¥(tg) =») /by 1-»
Sou = wrwei - (7 )(.,O

and the sequential test based on this ratio is discussed in Wald [6].
For the special case where ty =0, N is equivalent to the number of
negative observations after n trials and this would be a sequential
test based on the signs of the observations.

An example of a nonparametric sequential procedure based on ranks

of observations is the grouped rank test developed by Wilcoxon, Rhodes
and Pradley [4]). Actually two sequential procedures are developed in
(], the Configural Rank Test and the m Sum Test. Basically, obser-
vations are taken in groups of m X's and n Y's and the observations
are ranked within each group. For each group a statistic is computed

i
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based on the ranks and Wald's sequential probability ratio test is
applied to the sequence of stetistics so generated. Each group of m
X's and n Y's becomes the basic unit used in the probability ratio.

Suppose the X- population has 4istribution F(x) and the Y- population
has distribution G(y), and observations are taken as follows

“11: ‘12' tev xu: 11’ l.ﬂ’ res ’u’ - @group 1

(Xoys Xopr 00 s Xops Yoy0 Yop, 100 Yp) - @rvoup 2

(Xn, ‘n' tee ) ',.p !’10 '”. L] 'n) g m 14

Let R, = (R, Roy ooy Ry 80, 85) «0v y 8,) be the rank
vector associated with group 7 where ln is the rank of lnaul
§,, 18 the ramk of Y , the ranks taken from the combined rauking of
the X's and Y's. Teking a function of R, say T, = ™(R), we
generate a nev sequence of random varisbles T,, T,, ... and the Wald
sequential probability ratio test may now be applied to the !‘. For

independent group to group sampling we have

%_n 'rlr a(y))

(1.2) '

as the probability ratio to test the hypothesis that the Y- population
has distribution P(y) egainst G(y). in [4] the authors consider
Lehmann alternatives G(y) = F(y), k >0 umm!u

P




equivalent to the vector (ln,
case T 1is taken to be the sum of the Y ranks.
Wilecoxon, Rhodes and Bradley observe that the test could be

improved by taking observations in pairs and reranking from the begin-

!n, se0 § ﬂn), and in the second

ning each time a nev observation pair is taken. One reason for the
reduced efficiency of the group ranking method is that the observations
in one group are not compared with observations from any other group.
The reranking suggestion would take into account all comparisons. How-
ever, this is very cumbersome, and moreover reranking introduces non-
independence of successive probability ratios making an analysis of the
properties of such a procedure difficult,

Thus in order to attack the problem of nonparametric sequentisl
tests of hypotheses based on renks we should consider procedures such
that the distribution theory is tractable and such that ranks are
assiyued in a truly sequential manner, avoiding as much as possible
the complexities introduced by reranking. To this end two newv sequen-
tial ranking methods will be defined in this dissertation.

In order to be led somevhat naturally to these new ranking methods
we now consider the reranking procedure in more detail. Let T“ be

h

the rank of X, at the 1" stage in the reranking process. We

J
observe xl. x.‘,, ves xa, «++ and each time a new observation is

taken the entire set of observations is reranked. We heve
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Observntion vectors Rank vectors | ;
(%,) (my,)
(X, %) Tyyr Top)
(X)) Xp0 Xy) (Ty)) Typs Tyy)

o " ‘

: :
(Xys Xgp eev s X)) (Tyyr Topr ++ Tpy) :

Notice that che vector ('ru. Topr +ov s 'ru) completely deter- S
mines the n rank vectors listed above in the sense that eacl vector
could be reconstructed given only ‘l'u 1 21,8, ¢ve ; 2 l'“ is
the rank of X, celative to the set (X, X,: ... , X,). Thus ve
can rank an observation as it is observed, relative to the preceeding
observation" without rerarking the previous observationa and still
retain the information contained in the n rank vectors which would
come from reranking. This method of ranking cbservations is one way
of assigning ranks which fits in naturally with the idea of sequential
procedures and lends itself to developing sequential procedures in none
parametric problems. This ranking procedure also takes into account

all comparisons among the observations.

Analogous to the fixed sample size signed rank test we will define
a second sequential ranking procedu . based upon the absolute values of
the observations and taking into account the signs of the observations.
This signed sequential ranking procedure will be applied to a problem
in process control. hm“umom*ﬂ 7
muuwucuumdmum;f’




from being distributed acezeding to a distridution F(x) to a different

distribution G(x). The term process control enjoys a broader definition
today including those cases where the process is adjusted according to
some statistic besed upon the sequence of observations. OSuch proce-
dures are referred to as adaptive control methods.

The early methods used t0 control a process were based on control
charts (Shewhart charts) and modifications of these control charts.

To control the mean value of some dimension of a process at a particular
value Mo samples of size n are taken at frequent intervals of time
and the sample mean ¥ is compared with .+ ko//n . If X falls
outside these lines the process is stopped and adjustments to the
process are carried out, and for u - ko//n <X <u_ + ko//n the
process is allowed to continue without adjustment. Modifications to
the basic control chart method came in the form of "warning lines"
inside the action lines ., + ko//n . Purther modifications were
introduced which changed the action rule to rules of the type "If K
consecutive points on the chart fall outside control lines, take action."
These early procedures failed to take advantage of all the information
contained in the sequence 11, Xz, . Yn. At best the modified
action rules used only the informaticn contained in a fixed number of
sample values in the immediate past.

In order to take advantage of this unused information the stopping
rule should incorporate the entire sample. A step in this direction
wvas taken by Page in (7] with the introduction of c@htin sum
schemes. If the wean of a process is to be controlled the cumulative
sums l.-‘g(xt-k) are plotted on a chart against n. The entire
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history of the process is presented and changes in the process mean are

visible through changes in direction of the mean path. To detect one-

sided deviations in the mean, say increases, the stopping rule used is

to stop the process when the current point of the path (n, S.) rises

a given amount h > 0 above the previous lowest point of the path.

Tvo-sided deviations are treated by applying two one-sided schemes

simultaneously. For normal observations the cumulative sum schemes

have been found to be more sensitive than the Shewhart control chart.
When no assumption is made as to the form of the underlying dis-

tributions we might look to non parametric methods for a control

procedure. For example, the sequential rank of Xt is equally likely

tobe 1,2, ... , 1 as long as no change takes place in the distri-

bution of xl, X2, coe xi. But vhen a location change takes place,

say an increase in the process mean, larger ranks would be mcre probable.

We will consider the sequential rank of "‘1' relative to "‘1" "a"“'

IX,|, multiplied by the sign of X, (+1 1f X

>0 and -1 if X, <0)

i
in a process control problem. This method of sequentially assigning

i

ranks, as noted before, will be called signed sequential ranking.

This dissertation defines two methods of assigning ranks in a
sequential manner to observations Xl, x2 ¢es + Basic properties of
the sequential ranks are studied and distribution theory is determined.
Section 2 contains some preliminary recults including some relating to
order scatistics of observations taken from non identical distributions.
These results are used in the later sections. In Section 3 the method
of sequential ranking is defined and it is sho'™ that for a fixed sample
size, ordinary ranks and sequential ranks are equivalent for the purpose

9
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of hypothesis testing. Section & is an application to sequential hypo-
thesis testing for the two sample problem where the alternative is of
the form proposed by Lehmann in [1). The signed sequential ranking
scheme is defined in Section 5 and a condition on the distribution of
the sequence of observations is given which implies that the signed
sequential ranks are independent. Distribution theory ie given for the
signed sequential ranks. Section 6 contains an application of signed
sequential ranking to a process control problem.

2. Preliminary results. Let X,» X35 +ev » X be any random
variables with continuous comulative distribution functions '1’
h

'8’ oo 'u' Define X to be the k" smallest in the set

nk
(xl, xz. “ee xn). We can obtain a general expri ssion for the distri-
bution of x“ as follows:

(2.2) B (%) = B(X, < %)

= gr(tx'. are <x and n-i X's are > x)
i

Letting l‘ denote the event [1 X's are <x and n-i X's are > x]
there are (?) ways to select the X's which are less than or equal to
X, and a typical way in which l‘ could occur is

.u -(X.’lsx. ooo.xdisx"<xa g oo g x <X ]

141 I

vhere J -1. 3. see (:) to take into mtlll’o.llbh cases.
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For J ¢4 J)' the avents lu and l“. are disjoint and l‘-fu.

Thus we have

o 2 ()
MCERRNER ALY

and further, when the X, £ are assumed to be independent we obtain

i

P(R“) B n P(XJ < x) n (1 - P(XJ <x)) .
m=l . m=i+l L
As a special case of (2.1), to be used iater, we have the following

result wvhen the X's are distributed according to only two different

distributions.

lemma 2.1, Let Xl, Xa. ,7, be independent random variables
where (X,, 1 <1 <m) are distributed according to F(x) and
(X;p m+1 <1 <N are distributed according to G(x). Then

N 4
- N- m-J
(2.2) Ppc) = 33 (AT P (1-px)

6*"9(x) (1-0(x) ) VP14

Proof: Bach of the basic events '1 (defined above) can be

wvritten as a union of disjoint events Iu, J =0, 1,2 «, 1 vhere

B, consists of J X's (with ddstribution F(x)) <x and 1 - J X's

(wvith distribution G(x)) < x, the remaining X's are > x. Ther: are
(:) (:::) ways to select such an event, each having probability




|

Lomy tiem N
Remark: When G ® F we can use the fact that ) (J)(t-a)'(t)
J=o
to get the known result

N
(2.3) Fu() = L () P a-re)™t .

In order to derive the distribution theory associated with the
sequential ranking procedures proposed in this paper the next lemma
vill be useful. We consider a random variable X with a continuous

Tl ted g e & &9 &0

distribution function F(x) and define the sign of X to be 1 if
X>0 and -1 if X < 0. Letting E = sign of X, we can compute the

Joint distr:' :tion function for E and |X| as
f
0 -.<y<o’-.<x<.

0 cw<y<w, -w<x<-1

N ) =
B Pxo7) 1!'(())-!'(--y) 0O<Cy<w, -1< x<1

Fly) - M(-y) 0<y<w, 1< x<w

\
vhere "803) = P(E €Xx, 'X' < Y)o

since for -w <y <0, -w <x <w, |X| >0 with probability 1 implies
F(x,y) =0, for -w<y<w, -w<x<-1, E=+1 with probability
1 implies PF(x,y) =0, for 0<y<w, - 1 <x<1, PFx,y)

« P(.y <X <0) = FO) - P(-y) and for 0<y<w, 1<x<mw,

P(x,y) = P(-y < X <y) = F(y) - F(-y).

In developing the properties of the signed sequential rank an
important role will be played by the deperdency of the sign of X and
IX| and thus we establish a condition wvhereby E and |X| are
independent random variables in ‘

D O Mg = e 0D T B3 DN B

{
1




Proof: The marginal distribution for E and |X| are

| ¢
0 x< -1

0 y<o
PE<x) = {FO) -1<x<l ana P(IX| S¥) = ¢

1 1¢x Fy) - -y) ogvy

J \

) Lemma 2.2 |X| and sign of X (« g) are independent if and only if
| F(-x) = P(0) [1 - F(x) + F(-x)] for all x > O.

[ and the product of the marginals is

0 cw<y<0, -wCx<w

0 o<y <m, em<x<-1

Fly) - P(-y) 0<y<m, l€x<m

! P(E < x) P(IX| £ y) = (F(O)[F(y) - P(-y)] O<y<w, -1gx¢<1
I |

Thus the Joint distribution function of E and |X| will factor
I into the product of the marginal distributions if and only if

F(0) - F(-y) = P(0) [F(y) - F(-y)] for all 0 <y which i equivalent
to the condition in the lemma.

Qe

| Remark: Throughout, we will assume that the basic random variables,
usually denoted by X or Y, are defined on the same probability space
and have continuous cumulative distribution functions. Thus the ranking
procedures to be defined will always be determined uniquely except
possibly for sets of measure zero.
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5+ [The Sequential Rank. In the introduction we mentioned the
possibility of ranking observations as they are taken without reranking

the previous observations. We make this iden formal by

Definition 5.1 The sequent’al rank of Xn relative to xl,

5’ tee xn is k if xnk .xn’ k = 1. 2’ vee N vhere X is

nk
the k™ smallest in the set (X, X, ..., X ).

Jrer——

Thus the sequential rank of xl is always 1, the sequential rank

a——

of is 1 or 2 according as <X, or X, 6 <X,, the sequential
1 1

rank of X’ is 1, 2 or 3 according as )(5 is the smallest, next largest

or largest of the set (xl, x,‘,, x,), etc. We use th notation z1

for the sequential rank of xi.

Lemma 3.1 There is a one to one ccrrespondence between the set
of n! possible orderings x1 < x1 € s00 € x1 and the n.
1 2 n
possible sequential rank vectors (zl, zz. so¥ 3 zn).

Proof: We can consider (xl, Xop vov s xn) - (xl, Xap voe ) xn)

where the X, are n distinct real numbers and the set ((x1 ’ xle,...,
1l

X, )) consisting of the n! vectors obtained by permuting the coor-
n

'1 dinates of (xl. Xop vee ) xn). The corresponding set ((xil' x‘z' P

X, )) gives the n! possible orderings. Now define the mapping ¢
n

from the set ((xil, :‘2’ voe xin)) into the set ((rl, oy vee s rn)x
r- 1, r, = 1, 2, ¢¢s , . " 1, 2, +vs , n) by setting the Jth

equal to the rank of x

coordinate of q»(x1 , X in the
1l

H’ tee 81 )

set Xy 3’2, vor Xy 1.0, the J‘E coordinate is r \{f xiJ
1 J

rth .-lh.t m x‘l’ x‘a’ tee 81". The -niu 9 is one-to-one

>3

is the

and onto. (This is almost identical to part of the proot of Theorem 1.l
in (2] page 993.).
14




and moreover the sequential rark vector uniquely determines the ordering.
Since a particular ordering of xl, ‘2’ vee ) Xn also determines
the ordinary rank vector “'1' Tyy eoe s 'rn) in & one-to-one manner,
there exists a one-to-one mapping between the set of sequential rank
vectors and the set of ordinary rank vectors.
In order to obtain the probability distribution for sequentiul

rank vectors notice that since a particular ordering X, < X, <« .., < |

i
1 & ;
X determines iu & one-to-one manner an ordinary :rank vector and a '

By this lemma wve mean that if wve consider each ordering, say :
x‘1 <xta € 400 € x‘n of a set of observations (xl, x‘, ver xa)
and use definition 5.1 to obtain the associated sequential rank vector
1n 4
s

(zl, oy vov zn), the sequential rank vector is uniquely determined
sequential rank vector, it is enough to determine a mapping from the
ordinary rank vector determined by the ordering, to the sequential rank |
vector determined by the same ordering. The distribution of “1' !‘. , f
vee zn) is then available for a wide class of distributions of the
basic variables xl, xz. see xn since Hoeffding has given the distri-
bution of (1), T,, ... , T ) in [3].

Consi{der the indicator function

1 if x<vy

X(x,y) =
O if x>y

and for X,, X,, s+ » X~ define the mapping
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Xy, Xy cen ) X)) -(1, ,’.’1"“3’ Rl wee s LXK X,

n
“ew 3 J2_',1x(x.1, xn)>

h

i
The 1" coordinate Zx(xd’ xi) is equal to the number of X's in
J=1

(xl, Xz, voe xi) wvhich are less than or equal to X that is, the

10

sequential rank of X,. But since X, < X, iff 1~1<'rJ (1 #3) we

1’ i 3
have

and this holds for all { and J. Hence we have
(5-1) Q(xlo xza ey xn) 'Q(Tlo Tzo vee Tn) - (zlo 2.2, rvee zn) 5

and 9 is a mapping from the ordinary rank vectors to the sequential
rank vectors corresponding to a particular ordering of the basic
variables.

Let ri i=1,2, ... , n be continuous, non-decreasing functions
defined on the unit interval such that ri(o) -1 - fi(l) = 0 for each
1. Denote by y(rl, £o0 vov s tn) the family of all ('1' Fop vovy rn)
such that F, = ri(r) vhere F runs through all continuous distributions.
Now if xl, xz, vee xn are independent and distribvted according to

F

12 o eeey rn, Lehmann has shown in [1] that

(a) the distribution of the ordinary ranks Tyo Ty eoe y T,
obtained from ‘1. &. ves ‘n is constant within mhm

16
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5 2as P rn), this is lemma 3.2, and

(b) the power of any rank test depends only on £10 £50 o0y o
and that uniformly most powerful tests exist, this is Theorem 3.1.

Because of the one-to one correspondence between rank vectors and
sequential renk vectors properties (a) and (b) are preserved for segren-
tial ranks. The reason for this is that in computing sequential rank
vectors we are merely identifying different points in n - dimensional
space with each possible ordering x11 < x‘z € o0 € x‘n than when
ordinary rank vectors are computed. Thus the probability associated
with any cubset of ordinary rank vectors can also be associated with
& unigue subset of sequential rank vectors and we have, analogously as
in lll.

Theorem 3.1. Given n functions f3, f3, ... . fo and any
sequential rank test of the hypothesis H: ('1, Fop vov s l‘) €
% (r:, rg. o590 B r:) (1.e. a test based on the sequential ranks), the

power of this test depends only on r:, f:, —_ f: That is, 17

1’ !2, veo 'n’ and (Pi, lé, ves P&) belong to the same class
9 (£, £, «ov ) £)) the test has the same pover against these two
alternatives. Furthermore given any class of alternatives K:
(Fyy Fpp wony F) € P7(8y, £ «ov , £)) there exists a uniformly
most powerful test based on the sequential ranks for testing
against K.

When ‘1’ X5» +ev » X are independent and identically distributed
the sequential ranks are independent with distribution

P(!‘-k)-llt k=l,2, +¢v, 1 "““000..0

17

T A T SRR e

T
i

z




\

A proof of this is given in [2). We see that the mapping defined in
(3.1) takes the vector of dependent ranks (T,, T,, ..., T ) into the
vector of independent sequential ranks (2.1, Zyy vov zu). Thus
according to Theorem 3.1 and the discussion leading to it we lose nochi g
in the matter of hypothesis testing by considering sequential ranks
instead of ordinary ranks, and in fact wvhen we are dealing with inde-
pendent and identically distributed random variables we find that the
sequential ranks are independent.

Since there is a one-to-one correspondence between the ordered
observations and the sequential rank vectcr, the distribution theory

for sequential rank vectors is also completely specified Ly

I, SRy S shy ) - x, f ‘/ <e ,&”13(‘14)

- < <ooo<t

L A e W s e

(3.2) ) f f J&“‘J(""J))

-0 < X <ooo<x < w
1, =S¥y

. [f <1“n‘u ()

o 5 239 e e ) B0 &0 50 5| 4 &3 oA

vhere y, -'(x‘)tndtbox are assumed to be indapendent in this

i

J J [
calculation. Let f = (fl, o0 vov fn) and write

P(X, £X, € ... £X ) = P(f). The distribution function for the n!

vectors (2., zz, P zn) is obtained by computing P(f) for all
possible permutations of the components of f. In order to determine

the marginal distribution for z‘ we notice that z1-n if only if

18
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x‘ is the k"h smallest among the first { observaticns, and we get
(3.3) P(Z, = k) = ) P(1) £ - (t,l. r,a. oo o f,‘)
where f, 1s the k' coordinate of f end the summation is taken

1
over the (i1-1)! permutatizns of the coordinates leaving f, fixed at
the k™ coordinate.

For the special case where the X‘ are taken to be identically
distributed, ve can take f, (x) = x without loss of generality, and it

is easy to vompute (3.2) and (%.3) to get
(5-“’ ’(f’ - Vl!

“’(zt.k’.U‘ 301,2,....1,1-1.8....,3

yielding the independence of 7.1, 22, vee 3 Zn as noted above.

Another special case, to be used later, is when the r‘ mﬁh.a
to be the Lehmann alternatives, introduced in (1], We let F,(x) = F '(x)
-‘>o, and in this case a straight forward computation gives

[l o ,
(3.5) P(X) SXp € vor S %) @ B

El (,i ‘:)

By relabeling the X's, the probebility of any order of the X's can
be found using (3.5), giving all the values needed in (3.2) to specify
the distribution of the sequential rank vectors. |




4. An Applisation of Sequentisl Ranking to Hypothesis Testing.
In the nonparametric, fixed sample size, two sample problem, it is
assumed that there are available two sets of observations (xl, x.‘,.
PR &) and ('!1, Y,y «++ » Y ) each set from some probadbility
distribution. The problem is to test the hypothesis that the distri.
butions are the same, against the alternative that they are different.
Usually the alterpative is more restrictive as vhen only a shift in
location is considered. In this section we consider the nonparametric
tvo aample problem us a sequerntial vproblem rather than fixed sample
size.

let X, 4=1,2 ... and Y, j=1,2, ... be independent
random variables and assume we wish to test

Hi G =F oagainst K: G = £(F)

where F 1is the continuous cumulative distribution of the X's and

G the continuous cumulative distribution of the Y's. We propose to
use the sequential probability ratio statistic based on tie sequential
ranks and ve can assume the observetions to be taken alternatively as

xl' !1' &’ !2’ e » xn’ Yn’ L .

Let . (zl, Gy vov s 2') be the sequential rank vector base’ 1 the
first N observations and write rl(z')/ro(z") as the sequential

probability ratio, Pl referring to the alternative to the hypothesis,

!. to the hypothesis.
Under the hypothesis P(Z' = z) = 1/N! and P (2") « 1/N! Under
the alternative we can compute r(z" = 2) by noting that each nutcome
20




vecLor 2 correspouds, in a one-to-one manner, to a particular order
of the X's and Y's. For example | | '
[

Bach Z' in turn corresponds to a vector ((F, 0, F) or (F, ¥, 0)
as in our example) of F's and G's meaning mmmzm

appearing in the 1“‘ smalleat position in tlnl m of X's and
Y's has the distribution F or G sccording as F or O appears
as the 1

P(Z" « 2) for all possible values of 2 we need only compute

coordinate of the F, G vector. M%wﬁ

PU, €U, € o€ Uy)

where 01 is an X ore Y according to the Sutcome. bmicuhr
wvhen f 1s a continuous increasing function on the unit interval with

£(0) = 1 - £(1) = 0, the probability distribution is constant for all

continuous distributions F and depends only on f. In fact we have
P(U; SU, S 000 S ) = ff ﬂ ar, (F(t,))

-.<I‘150005‘.<. i=1 |

* ff ﬁ ar,(y,)

0<y1<...5y'<1 = |
by letting yi-ﬂt)Mt(ﬂt))-ﬂt‘)M.‘ l‘ni
21 ' o 2 A

T —————— . ———




In the special case of Lehmann alternatives r(x) = x*, a>0
and by (3.5) ve get, for N even,

(
1l ir U =X

P, (2N i
1 -

LA a if U =Y
1-1(“.1:> \ ! !

and the probability ratio reduces to

P, (2") w o2
;?z')_ ” le AJ> .‘
g1 V"

A similar result holds for N odd. The vector I. = (A, Ay ooy A,
corresponding to the vector of F's and G's determines r(z" - z)

for [(W2):)® outcomes 2 out of the N! possible. We can compute
the probability ratios at each stage using the following relations:

s

(4.1) a.-;:- {

I B

--~==——~—o---m==:=:=====—t‘

l



( 1

o e "

1=l
(4.2)

N/2
('ff""”ﬁ“_f"i_g,;;,) Ieky 7

vhere 7 = sequential rank of !'?, N odd, and Z = sequential rank

of x!i‘, N even. At the N + 1°' observation 2 is determines

and 1f 2 =k, the N +1°% observation came between the k - 1**
and the k'™ smallest observations of the preceding N observations.
Thus Ayyy = (Al Ay voe s Ay A% Ay cou y AY) where A% =1 if
the N +1°% observation 1s an X and A* = @ if the cbservation is
a Y. Using (4.1) and (4.2) and Z we can pass from By to Sy, e
the observations are taken. For example II-I

2a/1+a 1if X, <Y o t.-(x,u)

!2-
2/1+a if Y, <X, & t'-(.,x)




ol & 1)
o« - a
it L X, <Y, <X X, '
Y1<X1<X2 _ ( )
if - A,. a, 1. 1
uniuoﬂ
Y, <X, <X
x1<x2<Y1

\

ranks 21, &‘,,

not have this independence property. Consider the case N = % where
we observe xl, !1, xz in that order. The possible outcomes are

Ordered observations Sequential ranks
X, <X, <Y, (1, 2, 2)
X, <X <Y, (1, 2, 1)
X, <Y, <X, (1, 2, 3)
X, <Y <X (1, 1, 1)

Y, <X <X, (1, 1, 3)
Y, <X <X (1, 1, 2)

and the marginal distributions are easily computed as

t?"!n “x2<x1<\'1

We noted before that under the hypothesis a = 1 the sequential

™ I, = (1, 1, a)

,z. are independent. However, when a 4 1 we do

Probability
a/2(2+a)

a/2(2+a)

a/(1+a)(2+a)
a/(1+a)(2+a)
1/(1+a)(2+4a)
1/(1+a)(2+a)

I
I
1
|
|
!
I
I
|
I
|
|
i
I
¥
|
|
I
!

i



P2, =1) =1 P(2y = 1) = a(3%)/2(14a)(24a)

Pz, = 1) = /1 P(Zy = 2) = (24an)/2(10a) (2%0)

Mz, «2) = o/lem M2y = 3) = 1/2m

Now P((2), %), 2Z,) = (1, 1, 1)) = o/(14a)(24a) and P(2, =1)

P(% =) P(Zy=1) = rryiosay !ﬁ‘oﬂ‘ and it follows that

2.1, za, z5 cannot be independent unless a = 1 since independence
of %, %, %, implies (3+a)/2(1+a) =1 which in turn implies & = 1.
Thus ve have

Theorem .l lLet X, Y, X, «.. , Xy Y be independent random
variables with Xz distributed according to F and !1 distributed
according to F', u > 0. The sequential ranks based on such a sequence
are independent if and only if a = 1.

As an illustration of the sequential probability ratio test based
on the sequential ranks consider the data given below.

X, = 3.926 Xy = 4.08 Y, = 470 Yo = 1.56

X, = 3.45 X, = 3.67 Y, = k.15 Y, = k29

Xy = 2.00 Xjp = 2.94 Yy = b.55 Yy, = 1.7

X, = 2.28 X)y = 5.90 Y, = 3.3 Y,y = 2.17

Xg = 3.9k X, =2.18 Y = 2.13 ¥y, = 1.97

Xg = .25 X)g = 539 Yg = 4.686 Y, = b.689
X, = 2.3 Xy = 2.7 Y, =2.68 Y6 = 2.87

Xg = 3.02 X)p = 3402 Yg = 2.36 Yy, = 347

Xg = 3.26 X, = 2.70 Yo = 5.93




The data is taken from Table 600A page 600 of "Statistics, A New
Approach,” W. A, Wallis and H. V. Roberts, The Free Press, Glencoe,
Illinois. If we assume X has some continuous distribution F and Y
has P as a distribution then

px<) = [ r atty) - g

Suppose we consider a =4, P(X<Y) = .8 as the alternative to the

hypothesis a = 1. We take as boundaries for the sequential probability
ratio test

A.La-l.l—:ﬁﬁ-m
l-r-?—a,-ﬁ%-.osaé

and if 8'53 ve accept H: a = 1, (if B.ZA ve accept K: a = 4
and if B < B' < A we take another observation and compute 8”1.
repeating the test. Using the computational formulas (4.1) and (4.2)

wa get
8 =1 8, = b5k
8, = 1.6 8, = 125
8y = 2.0 85 = 764
B =32 B, = +396
8g = b.15 8y = 46T
8g = 6.65 Big = 234
8, = 8.75 8, = 168
8g = 4.0 8 = 242
8g = 3.31 8 = 138
80 " .809 850 * .0288
26
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and since 820 < .0526 we accept H at the ao"" observation,
Notice that even though the probability ratio l. is written as

a function of the sequential ranks, in (4.1) and (4.2), it can also be
computed as u function of the order configuration. By this we cean,
for example, the order configuration 1 a 1 stands for 81 <!1<§

or 5<!1<11 and a 1 1 stands for !1<81<!a or '1‘&"1’
Each order configuration determines a value of l. as a function of a.
It can happen that for some value of a fJ 1 and two different config.-
rations, 8, takes on the same value. As an example consider N=6
and the configurations a 1 1 laa and laaall. The denominators
in '6 for these configurations are

g,(a) = afa + 1)(a + 2)(a + 3)(2a + 3)(3a + 3)
g,(a) = 1(1 +a)(1 +2a)(1 + 3a)(2 + 3a)(3 + 3a)
respectively. For a =1/2 and a = 2 we get
g,(1/2) = g,(1/2) = 945/8 and g, (2) = g,(2) = 7560.

Let c¢(t) be the number of different configurations such that
8. = t. We have :,

(4.3)

where the lJ'l sorrespond to any particular configuration making
l.-t(uaul or a according as X cor Y is in the J“ place).
27
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(4.3) follows because any two configurations which make 8y =t have
the same probability under the alternative to the hypothesis. Under the
hypothesis

(b4) m.-el--n-( JCH VLKL :
In (L.3) .u (4.4) [x] 18 the greatest integer function.

In Wald's sequential probability ratio test the approximations
A< ‘-&-! ani B zrﬁ are valid vhen the probability of termination
of the test 18 1. These inequalities were derived under the assumption
that the basic sequence of probability ratios was determined from an
independent sequence of observations and that the sequential probability

ratio at the uw

observation is formed as a product of independent and
identically distributed random variables. Under the alternative hypo-
thesis we have found that the sequential ranks are not independent.
Thus we must now show that the test terminates with probability 1 in
order to interpret @ and £ as error probabilities.

It is enough to show that the test terminates with probability 1

considering only N even. For N even we can write

(.5 g - [l o2y

i=l

i
A
a9

1 -
and define 1:-%‘%% with x:-.V’x: and z:-locq. W

consider first the case where the null hypothesis is true. Al'
~. see ~ are dependent random variables with




(4.6) P(AJ-].)-’(AJ-.)-UQ
giving I(AJ)-I(I:)-LEJ. For 14 ) we have
r(A‘-x.AJ-1)-!(1‘-.,53-.)-§E

(4.7) |
P(A1 -1, AJ -.)-’(A‘ »a, ‘j *1) .*ﬁ

and a simple computation gives Vu(AJ) . éi‘)a and MA‘. AJ,

-ﬁ(i?)a . Also I(Y:)-l'va ;(I:).lﬂi.l’_/: and 5

-1 ol 4 -1 4 :
Var(Y}) = %= var(R)) = % { Lerlag) 2 b 3 covlay, A

B R 114

{0 g ')

& ot TR el

g g

and notice that Vur(t:) is decreasing in 1 as 41 =1,2, ... , N.

If 1<a then 1<%) <a and -‘V'srtsn"/'. If a<1l then
,}/25':5.-1/2.
In order to show that the test terminates with probability one it

ie enough to show that B;l-o- in probability. Thus for arbitrary
positive B we show that




1m P(S;' <1/B) = 1im P(log 8" < log 1/B) = O .

Now Noww

Let K = log 1/B and use Chebyshev's inequality to get

N N N N
(g A (g g websx-gued)
<r(l 2. i:(z’) | >-K+ {n(z’))
e AL = U !
by taking N large encugh to make K - {:(z;'ko. This can be done

i=l

since d is bounded, and bounded away from O, we have

oo noer, + S0 (3

.1/2 2
vhere x.-x(r:)-!i/—i-’-li>1 and g: 1s bounded avay from O,

and further

“4’2“'%'°Iﬁht c>0

N
1§1'“:) = N log A - 0(log N) = O(N) >0 .

we (L)
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wr ()« Bt va g oontl, &
N
s L) ez § etz - e ?

Now, expanding IQY: in only two terms

Var(zy) = E(log Y] - E(log ¥))* < B(log Yy - log A )°

3 (5 <o et - o iy

A
and #ﬂ is decreasing in 1. Now we can write
m( fz") < O(log K) +2 o }.:(l-x)m-(s')
@3/ ° ol 1

= O(N log N)

and finally

r(éz{sx) < 9-“;“,;'1 +0 a8 Naw,

N
Since 1@.!’1- 2!' we have l;l-o- in probability, and when the
oy

null hypothesis is true, the test terminatec with probability 1.




More generally now consider

(4.8) By = B(A™ < 87 < B7F) = P(K) - wy < log 8 - wy <K, - )

vhere K = log A”Y, K, = log B

enough values of N

and uy = E(log 8;1). For large

(4.9) var(log 8-1)
?(lmﬁl-u.lzu.-lz)s—‘-r—::‘%- it oy -
(uy - K,)
Py <
ia Var(log s;l) .
‘Nlma.-u.lgxl-u,)s(ﬁ.u:’,- £ uy N -

The test will terminate with probability 1 as long as P' -0,
and this is independent of the true distribution of the Y population
since the inequalities in (4.9) were obtained without reference to the
distribution of the Y's. In particular we found that when the X and
Y populations are identically distributed,
Var(log Sy') = O(N log N).

The method just given to show that the probability of termination

My = O(N) and

of the test is one is not satisfactory for all alternatives since the
verification of condition (4.9) is difficult. We now consider a better
approach. As before take N even and write the probability ratio as

(4.10) Ty = I;l = ‘Q {5'1/2 % Jil AJ} .

i — s |

L e

omp O=q ¢




In order to show that the probability of termination is one it is
1

enough to show that N log Ty converges to some non-:oro constant

since for fixed boundaries A, B, the equivalent formulation

1 10g A <} log 7y < 3 log ¥

will terminate with probability one, provided N* log T, converges in
probability to some non-zero constant.

let 2n = N and let 7‘1’ za, 2.. be the ordey statistices for
the combined sample. Define the empirical cumulative distribution
functions for the X's and Y's as

P (t) = (number of X's g t)

on(t) . lnumber of Y's g t)

1
Since J}ElAJ = (number of X's in Zy, %, v, ‘1’ + a(number of
Y's in 21, 7.2, voe zi) we can write

L
%42-:1‘3 = §F,(2,) +Jaq ()
% 1log Ty = -4 loge - log2 + log N - § log N!

‘5 ‘f.l 108 (F,(2,) +  0.(,)).
33
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Since .u- (qu-‘la.l!)-l, ve have

N
1im N log T, « log e/2/a + 1im % 1211“ (F,(z,) +a G (2,))

lem Noww

- iog o/2da + % [ Tlog (P(x) + a 0(x)) (aF(x) + a0(x),

the latter limit following from a result of I. R. Savage and
J. Sethuraman communicated to the author by Sethuraman as

Theorem (Savage-Sethuraman) Let Xpp X eee Xy Ypy Yop o0 Y

be independent random variables where the X  are distributed according

i
to the continuous distribution F and the \'1 according to the contin-
uous distribution G. Let H, Z,‘,, vee 2, (N = 2n) be the order
statistics of the combined sample and let rn and Gn be the empirical
cumulative distribution functions of the X's and Y's respectively.

Then
1 X 1 /“'
N tzllu (F,(2,) +a G (2)) =5 | log(F(x) +a G(x))(aF(x) + aG(x))

in probability. (see [10])

In our case G = F or F depending upon which hypothesis holds.
Hovever we will consider the entire class of alternatives !b, b>0
vhich could hold. Let N'' log Ty +L (b). Then

—

——— - —-
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L (b) = log e/2/a + 3 L.m(rou‘)‘ﬂ.:.il

o} [ oatr + o) atta - valm

(4.12) 2
.1o¢./26¢§: fh‘lo.tdt oﬁlflz.q(ton')«
0 0

= - log 2 -%M.Og"m(lﬂ) 05‘[1 Mlﬂt"lm
0

1
The function f 1oc(lntb'1)dt decreases as L increases, and thus
0

L.(b) is monotone in b, decreasing vhen 1 < a, and increasing when
a<l.
Under the null hypothesis b = 1 and

L.(l)-lqM)O for afdl.

Under the alternative hypothesis b = a and

-1/2 1/2 2 pl
L‘(.)-lc.’—.T’—.ﬂ—.h:éLf -—l_m.“

0O a+t

In order to show that the test terminates with protability 1 we must
have L‘(n) $#0 for a ¢ 1. In fact we will shov that x..(.) <0
for a ¢ 1. Notice first that it is enough to conseider 0 <a <1l

since
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l}(l/l’ log L+— [ —IT:I-V: dat

,,,.i{,ui’fi.h.;). r S S,

l+at

-1/2  1/2 o2 g8)
'ML+ j; " dl (t = 8%)

1+a 8"

- tog 2 2 alE L-_L).f e o = 0}

l*l

We can write

2L (a) = I“Q . h,;{-ﬁ> - (a-1)° fo ' :ﬁ_‘ at |
fo O fo‘_ug_“

ba + (a-1)"t

|
) (.-l)af (lu + (a-l) t l+t >dt L

and ve wish to shov that a+t'™® < lba + (a-1)° t for 0<t<1l and

O<a<1l. Define

h(a, t) = 3a + (a-1)% -t'"®

and notice that

e m— PE————————— - ——




g « (a-1)% - (1-a) t™® < (a-1)% - (1-a) = (a-1) & < 0O

ig = .‘10.) t.“’l) >0 .

Since h(a, O) = %a, h(a, 1) = ala + 1) we may conclude that

h(a, t) > 0, which makes the integrand in 2:..(.) negative as was to

be proved.

We have shown that the sequential test terminates with probability
one under the null and alternative hypothesis and moreover the test will
terminate with probability one when the Y's are distributed according

to l‘b for b > 0 except possibly for only one value of b. This
follows from the monotonicity of L.(b).
We also remark here that for a fixed sample size test of

Noz X~F, Y~F
against W, X~ F, Y~ agfl, a>0

using ranks of observations, the Neyman-Pearson theory would give a
most powerful test of the form

accept “o for a;1>x.

An equivalent test would be to accept % ir ilccﬁ;l>‘1~l.
Assume a > 1 and let L.(bo)-o. Then

e T -

e id

oo *%)
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b

im P(§ log Sy >§1o¢x)-1 it Y~P b<b

Now

1n P(} log 8y <% logK) =1 ifr Y~P b>b

Now

and thus for a test of the composite hypotheses
"o' x~r,¥~rb 0<b<b°(l)
agatnst P : X~F, Y~F b f(a)<bd

wne test is consistent (in probability).
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5+ The Signed Sequential Rank. We now extend the ranking procedure
defined in Section 3 to include the sign of the observation. This corre-

sponds to the signed rank statistic used in fixed sample size problems.

Definition 5.1 The signed sequential rank of !u relative to
X)» X5, ++o p X 1s the product of the sequential rank of lx'l relative
to X1, 10, ..., IX | and sign (X ), where sign (X ) =1 1f
X, 20 and sign (xn) =-l4f X <O,

In the case of sequential rank vectors there are N! points in the
sample space corresponding to a sample xl, xz, vee X' and in the
case of signed sequential rank vectors there are 2' N! points corre-
eponding to the same sample. Of course if the basic variables (the Xt)
are positive random variables (or negative) the signed sequential ranks
are equivalent to the sequential ranks.

We found in Section 3 that when the basic random variables are
independent and identically distributed the sequential ranks are inde-
pendent. This result does not hold in general for signed sequential
ranks and so we now determine a sufficient condition for this result to
hold in this case.

let X,, X,y «++ , Xy Ve independent and identically distributed
random variablies and let 2, = sequentisl rank of |X,| relative to
X, 16,0, <oy 1,1, B = stgn (X)) with Y, =B, 2y 4 =1,

2) vivy NP F(x) = P(x1 < x) satisfies the condition in lemma 2.2.
By, %0, 10, «oo s 1%,| are independent and it follows that E
and Z, are independent. Thus ve get

i




P(Y, =) = P(B, =1, 2, =) = B(E, =1) P(Z =)
(5.1) = (1-F(0)) 1/1
P(Y, = =) = P(E, = -1, 2, = )) = P(B, = -1) P(2, =)
= P(0) 1/1

for J=1,2, .0 ,4,11,28, ... , N P(z1 = J3) =1/1 fellows
from (2.4)

We will now show that the condition given in lemma 2.2 {8 a
sufficient condition to guarantee the independence of the signed
sequential ranks.

Theorem 5.1. 1If Xl, xz, soo x. are independent and identically

distributed according to F(x) vhere F(-x) = P(0O)[1-F(x) + P(-x)] for
all x > 0 then the signed sequential ranks !1, \'2, cee Y' are
independent random variables.

Proof: Let (11, Ly ooy 1') be an arbitrary outcome vector for
(), ¥, ««. , ¥y) and let k be the number of positive integers in

(11, 1) coe s 1'). We have

N-k
o ooy - LomQUE O

m=)
from (5.1). Bach outcome vector corresponds to a particular ordering of
the X's, with N-k of the X's negative. The absolute values of these
N-k X's have a perticular ordering among the positive X's. Bo each
outcome vector is equivalent to an event like [0 < e, X <eg X, <. <
- "3 Jl 42
<¢.xJ ] where k of the €, are 1 and N-k are -1. The distri-
N

J
bution function for -X is 1-F(-x) and using F(-x) = F(0)[1-F(x) + F(-x)]

PSS

R R G B B Bod v



T =0 o= e |

P

-
- V—— 3

| D D O e s =

a0-F(-x)) = -aF(-x) = 7H4Rhy aB(x) .

’(Y1 . 11’ Ya - 12’ vee Y. Ll 1.)

=20 < ¢ x31< can B .lxd.) - ff 111"‘: (v,)
i

os’l € oo <”<.
[q?! ]l-k

0< yl < y' < w

N-k '
B [%_ ] P(C < XJ1 € s00 € XJ.'
[ q%! ]l-k P(O < X,, for all 1) W

Thus p(1n1 A %,...,!-%)-Ar(r-t)mm |
the independence.

Remark: In the proof of the theorem we have assumed that F(0) /4 1.

I F0) =1, the X, are negative random variables and the signed

i
sequential ranks reduce 4o (-(sequential rank of lxgl)), vhich are

independent. |
The condition F(-x) = F(0)[1-F(x) + P(-x)] for sll x>0 is %

satisfied by distributions of positive, negative and symmetric {about 0)
random variables. A larger class of distributions satisfies the
condition. If we consider all measurable setse A < [0, ») and define

“A = (%t -« x € A}, then the condition
PriX e A) = k Pr(X € - A) k>0, all A
is enough to insure that F(-x) = F(0)[1-F(x) + F(-x)] for all x >0,
41
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since taking A = [0, =) we get k-%’- and taking A = [0, x] we get
i F(-x) = P(O)[1-F(x) + P(-x)] for all x > 0. On the other hand,
starting with F(-x) = F(0)[1-F(x) + F(-x)] for all x >0 we get

g ar(x) = 4780 a(-#(-x)) .
rs-(xu\)-me)-WLa(-n-x))-Wh(xc-A). 1

— el el

o e M e

We now consider the asymtotic distribution of sums of signed r
sequential ranks based on observations from a distribution satisfying 3
the condition in Theorem 5.1. Let X, X,, ... , X be independent o

identically distributed random variables with common distribution
function F(x) such that for all x >0 F(-x) = F(0)[1-F(x) + F(-x)])

holds. Define Y = signed sequential rank of X . Using (5.1) we !.
get easily i
E(Y,) = (1-2P(0)) e 1
(5.2) ) . |
r(y,) « (3 - QRHQN) 2 (3. Lm0 ), |

O @
&~

+(3 - aguon’)

When F(x) weatisfies the condition of Theorem 5.1 the signed
sequential ranks are independent, but not identically distributed, and

n
V forming the partial sums, § = ) Y, we have
: i=l

s M N S T




I
|
[
|
|
|
|

B(s,) = (hﬁ!‘ﬂ) e (mn) n
var(s ) = (“—mjﬁﬂf ) nasa)(@nsa) + (L.ﬂ%lﬂlﬁ) a(n1)
o (tetlagro’ ) ,

Now for € >0, k'l, 2. vee p N, C:-V.r(ﬂn) it follows that for
large enough values of n

(5.3)

(v ~ Bl ) aky (7) = 0
ly-B(¥ )] > €0,

because the range of integraticn becomes a set with zero probability
since Y, 1s bounded mecording to Y| <k and ou-'c-aya. Thus
a8 n -« the integral is zero forall k=1, 2, ... , n and by the
Lindegerg-Feller Theorem it follows that B“ is asymtotiecally normal.

If we normalize the signed sequential ranks and then consider
partial sums we get

Y, - X%,)
. 2 121 tMr‘);b'

Y, - B(y,) |

0< < Z{__m, " _._—’-—-—-“ - -
"“"’1’; (#,1° + a1 + a,) (@ + /1 V"’

W3 e




2
88 1 + o« vwvhere dl-i- ‘“'—2#9-“- Hence the normalized signed
sequential ranks are uniformly bounded and by the bounded Lyapounov

Theorem 8:/ /n 18 asymtotically distributed as a unit normal random
variable.

As was noted in the introduction, some statistical problems are
concerned with detecting a change in the distribution of a sequence of
observations obtained from some process. We now consider the case where
in the basic set of independent random variables (xl, xz, vee x')
the first m are distributed according to F(x) and the remaining
N-m are distributed according to G(x). As before let Y, denote
the signed sequentinl rank of xi. Since each possible outcome vector

for (\'1, Yo) coey Y') corresponde to an event of the form

(0<e X, <e X, <...<eX ]

1 1 2 12 N 1”

where €, = +1 and (11, Ly vy 11‘) is a permutation of

(1,2, ... , N), the joint distribution of the signed sequential ranks
is obtainable, in prineciple, from

where ¢ = (ll, € von s c"). In general (wvhen F # G) the Y, are
not independent. For example if we are sampling from an unknown distri-
bution F(x) and ve wish to detect a change in distribution to F*(x),
a>1 (a stochastically larger distribution) where F(0) = 0, we lose
the property of independence. In this simple case sigued sequential
ranks and sequential ranks are equivalent and taking N = 3 with m = 1

we have
i

[
t
|
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P(Yl - 1) -1, P(Yz = 1) = I}‘: ’ ’(r, - 1’ = ‘.0 -

1
and P(Yl-l’yz.l’y5-l)'MO Inmﬂl,for a>1

o) # T ATATtERY - S

Since there are cases when the signed sequential ranks are inde-
pendent we now determine the -rjmll distributions for signed segquen-
tial ranks in the case where a change in distribution from F(x) to
G(x) occurs for arbitrary continuous distributions F(x) and 0G(x).
Let xl, x2, coe xu be independent random variables with x1
l<1<m distributed as F(x) and X, m+1 <1 <N distributed
as G(x). Take N » m + n, and let Y, be the signed sequential
rank of X, and H.k(t) be the distribution function of the k'

order statistic from the set (lel, lle, cee x'_l). It is enough
to determine the distribution of Y. Using lemma 2.1 and P(|X,| < x)

= F(x) - P(«x) for x >0 we get

(5.5)

N-1 1§

m(t) = 3 3 (DT - p0))) (1 - B(e) + #(-))™
1=k J=0

e (6(t) - 6(-t))'Y (1-6(t) + 6(-t))P-1t-1
t20

Now let 2 be the k" order statistic from (IX, IX,l, ... ,
lx'_ll). Then

b5




P ————— R

e

P(Yy = 1) = PO < Xy < %)) = B(&(Z)) - 6(0)

- [ "ate) any(e) - ato)
“1- 00 - [ (o) aoe)

Also for 2 <k <N -1

P(Yy * k) = P(2, | <X <) =E(6(2)) - B(a(z, ) .

Nov B(6(z)) = | o(t) am(e) =1 - [ M (t)ac(t) ana
k ‘fo R, fo“t

g = 00 = [ () - ) aot)

k-1 1 [
= Y MG [ Re) - R-e)) (1-R(e) + B(-1))
& Dl fo

(6(t) - 6(-£))*19 . (1-a(t) + a(-£))"** ao(t)

For k = N wve get P(Y, = N) = P(Z, , <Xg) =1 - E(&(2, ,))
-f.l-l._l(t) d6(t). For negative valuee of Yy we can calculate
0

P(Y’ = «k) -l’(zh1 < - x'<2.k) in a similar manner to obtain finally
for 2<k<N-1

b6
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P(Yy = 1) = 1 - 5(0) -j:nl(e) a6(+)

Py = <) = (0) + [ w0 aat-)

k-1l

Pty =1 = 3 (DGy) [ (R(t) - P(-£)) (1-R(e) + B(~£))™9
J=0

(5.6) c(6(t) - o(-6))* 1 (1-a(t) + 6(-£))""** ()

k-1 o
Py = ) = - T (D) f (F(e) - B(-)) (1-F(e) + B(-2))™
J=0

c(a(t) - a(-2))* 1Y (1-a(t) + 6(-2))"** ag(-t)

P(Y, = ) - fo Ty (4) 40(t)

P(Yy = -N) = -J/:a'_l(t) d6(-t)

The equations given in (5.6) can be written in one formula as

b"
Py = e) = ¢ § (Dliey) f (F(t) - F(-))? (1-B(t) + B(-)™
3=0

(5.7)
c(o(t) - 6(-£)) 1Y (1-6(t) + 6(-£))"*" ac(et)

VM" € = : 1 ‘nd k - 1’ 2’ see '0 Vﬂrificltlm mt (507’ m..
t5 (5.6) in the case k =1 and € = + 1 can be accomplished through
the following result

W




N 1§
lemma 5.1 3 ) (G pp)™) M) w1 (W e o).
1=0 =0

I
I
i

Proof: Let a,, = (§)(1-3) »?(1-p)" @' (1-0)"'* and recans

—

the convention of (;) =0 4if b >a. Instead of summing as indiceted

we sum along diagonals and get

[

TR
n - a ‘
120 Jo0 Y 4e0 geo 'Y )
N N-i
- ¥ LM P a-p™ of -
B v I
N N-2
- 3 da-™t Y (M p)(1-p)™ H
£=0 =0
n N-2 l
= 2 () L™t T ) )™ stnce () <0 £>n
£0 3=0 n
Since 0 <4 <n the upper limit in the second sum is N> N - £ > N ﬁ

-n=m implying m < N - £/ and making the second sum always equal

to 1. Using the binomial theorem a second time gives the result.

letting p = P(t) - P(-t), q = G(t) - G(-t) we can write
lll(t) =1 - [1-p)" [].-q]"'1 to complete the verification.

Using lemma 5.1 and (5.7) we can compute the cnaracteristic

function for Y' as

D T W ey gy oy

‘:*-'--‘-—--w T I A g M- o

l




ou) = E(e M) .

| fo.omll-q(t) v a(e) )" [1ep(e) + p(e) 1™ ao(e)

. . .
| e (e v a(e) e )T (1p(e) ¢ p(e) €)' ao(-t)

0

where p(t) = P(t) - P(-t) and q(t) = 6(t) - G(-t).
l Differentiating (5.8) and setting u = 0 we get
(5:9) B0 = [ 0+ (1) a() + m()) a(e) ¢ 6(-0)

(5.10) .
| B(£) = 1+ (n-1) $20,23) *fo (3mp(t) + 2m(n-1" q(t) u(t)

+ m(m-1) p°(t)) dq(t)

The marginal distribution of Yy, equation (5.7), holds for
arbitrary continuous distribution functions F and G and thus (5.8),
(5.9) and (5.10) are the general expressions for the characteristic

function, mean and second moment of the Y.. Thus to generalize (5.2)

to arbitrary continuous distributions F we let F =G in (5.9) and
' (5.10) and we get

(51 Bty = (00 (§ - (o) - [ “ot-0) aote)) + 1 - 20(0)

(5.12) 0f) - o8l

L9




6. An Application of Signed Sequential Ranking to Process Control.
As stated in the introduction, in the process control problem we wish

to determine a procedure vhich will determine wvhen a given sequence cf
random variables changes from being distributed according to F(x) to
a different distribution G(x). In particular we will consider the case
vhere F(x) satisfies the condition of Theorem 5.1 and changes to G(x)
vhich also satisfies the condition. Inasmuch as the distribution of the
signed sequential ranks depends on the parameter F(0) we will of
course require G(0) # F(0). The procedure described in thic section
is still applicable to cases where G does not satisfy the condition
in Theorem 5.1 but we do not have exact results in such instances.
However empirical results are presented at the end of this section
bearing on the effectiveness of the procedure for special cases.

let xl, x2, .++ be a sequence of independent random variables
(observations on a process) with common distribution function F(x)
where for all x > O the condition F(-x) = F(0)[1-F(x) + F(-x)] holds,
and let Yl’ Yz, be the corresponding signed sequential ranks. We
define the cumulative sums S8 =2 +2Z + ... +7Z where Z = Yi/i.

1 2

Since the condition in Theorem 5.1 is satisfied the Z are independent and

i
'1- 2 .1
no t-;l;';)""ﬁn_’l
(6.1) Pz =t) = !
0 2 -

Some easy computations yield




|

(6.2)

B(z) - 1:2H0) . () 4 1)
wetzy) - {3 - ()} o+ - (4} 3 )

M) 3ok ey

wets,) - - (Y} (oo B1) {4 - (3] 403

Although tedious, the distribution P(Sn = t) ecan be computed

exactly. For example /

) ( ) 1-F(0) t =1
P 8 = = P - Y
: 1"t Gt ‘ F(0) t =l

(1-50!) Po) .

P(s2 =t) = P(81+zz =t) = J (1-#(0)) ¥(0) t =0

U MOl ..

(6.3) P(8 =t) =P8 . =t-2)=F P , =tx) P2 «x)
X

\

\

where x ranges over -1,-?,...,-%,%,...,‘;&,1.
The procedure we will propose will stop the process whenever ll

does not lie in some fixed open interval (b, a) where

o1
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«®w<bhb<O0O<a<w, Inorder to determine the operating characteristics

of such a procedure such as the average number of observations until the

process is stopped we must compute

(6.4) P(N«n) «P(b<8 <a, 1=1,2,...,n-1, 8 ¢ (b,a))

i

N being the smallest integral value for which 8. does not lie in the

open interval (b, a). Then E(N) = i;n P(N = n) gives the average
number of observations as a function 2;1 a, b and F(0). In order to
compute the probability of reaching the boundaries b and a for the
first time at time n the following procedure may be used. We define
’1(:) = P(B1 < x), !é(x) - P(B2 <x)b<8 < a) and in general

(6.5) Fh(x) - P(Bn <x,b<8 <a 1=1,2, .., n-1)

It follows that F,(x) = P(Z, < x-8,, b < 8, < a) -j;.rzz(x-y) aF, (y)
and in general

(6.6) 00 = |y (e ap o)

The probability of reaching boundary a for the first time at n 1is
lh(-) - lh(a) and the probability of reaching boundary b for the
first time at n 1s !h(b) - !h(-). Using these probabilities we
can also calculate E(N).

Computations of the probability functions in (6.6) could be
carried out and the computational burden lessened somewhat by noting
that for large values of n, the zn tend to become identically
distributed. We now consider some approximations to E(N) using some

results from sequerntial analysis,
52
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Using (5.1) the characteristic function of zn is given by

(6.7) o (u) = K0} ;‘&{:‘w“.‘i‘ﬂ L Bo) &7t Wn . tulin/n)
n n el Wn . '_—!7_1-.' ~

and using limited expansions of exponentials we have

i -iu
(68)  o(w) = 1tm g (u) = (1-0)) T + p0) g

n —-®
which is the cherscteristic function of a random variable wvith density

o) -1<x<0
(6.9) £(x) =
1-F(0) O0<x<1

For large values of 0, 2 has approximately “he density of (6.9).
The moment generating function associated with (6.9) is

- t
(6.10) M(t) = ®(0) -L'-g—t + (1-1{0)) !-gi

which exists for all real values of t. As an approximation we will use
z(zn) = l'_a.yﬂ In ti2 cumulative sums Bn = zl + &a ® 00 @ "n the
z1 are independent and as noted, not identically distributed. Howvever
Af we disregard the first few signed sequential ranks and start later

in the sequence the approximation t¢ identically distributed random
variables improves. As before, we take N to be the smallest integral

value for which 8' does not 1ie in (b, a). We use the results of
Wald (5] in the sequel.
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Consider first the case where F(0) = 1/2 (F 1s symmetric about 0)

Here s(zn) = 0 and using (3.8) of [5)

() B(5) - ab .
(N) = - “=-3a
BZ)  H(Z)

When F(0) #1/2, E(2)) /0 and ve can use E(8,) = B(Z ) ' B(N) end
the approximation E(8y) = aP(8, > a) + b(1-P(8; > a)) to get

(

-3abd P(0) = 1/2
(6.11) E(N) = ¢

2b + 2(a-b) P(8. > a)

Let h be the nor zero root of M(t) = 1. A further approximation
gives
bh
(6.12) Poy 2 a) = 45yy
e -0

vhere of course h depends on the value of F(0). Setting M(t) =1

t
ve get r(o)--lr""ﬁ vhich must be solved for t. Eash
2 0% -0t

solution corresponding to a fized value of #(0) 1s a value for h in

(6.12) yielding, in turn, a solution to (6.11).

let ‘(t) -;l—’%;’% . Then .O(t) .W
@ -@ -

and considering the numerator a(t) = k(l-cosh t) + 2t sinh t we find

a'(t) = sinh t + 2t cosh t and moreover
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mmrrareices B .-‘:

a'(t) <0 t<o0
a'(0) =0

a'(t) >0 t>0

Thus a(t) >0, making g'(t) >0 and g(t) 1s monotone increasing
in t. As F(0) increases from O to 1 the solution to

r(o)--‘%'—'% say h(F(0)) increases from -=» to = , Notice

22 -¢
that

-t .t

lim g(t) = lim : =

=1
t v t=® 2 -1l-e

t 2t

lim g(t) = 1lim ﬁﬁ-‘,ﬁ-‘—-o .

T t w2 ~-¢ -1

bh

Now for h = h(F(0)) increasing, ’(I.zn)‘-k;-'-‘ is decreasing
-e

in h since for .

bh
)+ 5

) « s (a#b)h . ah . bh

. (™ . QEF

and considering the numerator after factoring out o‘“" ve have to
show

asb - ae™™ + e <0 forall h.




Writing @ = a/a<b, B = - b/a-b we have @ +B =1, @, B >0 and ve
mist shov that 1 < a oP(8°PI g A(a-dIn o p(n) . a GPl8B)n
o8 e MO ) notice that £(0) =1, £'(0) =0 with £'(h) >0

since

£'(h) = aB(a-b) P8P _ qa(qa.p) o-2(a-b)n

£"(h) = a 82(a-b)? P(8PID | Rp(q p)? ~¥(a-D)n

Thus f(h) attains its minimum value at h = 0. For increasing values
of F{0) the corresponding values of h = h(F(0)) increase and
P(B. > a) decreases. For F(0) # 1/2 we have

(a-

In particular taking b = - a, h #0 we have

-ah

(6.14) E(N) - 2allee s L-c

For h =0, E(N) = 5.2 and (6.14) 1s plotted in Figure 1 for
t

selected values of a. g(t) = -}-—’-ﬁ—'-'—_z is shown in Figure 2.

2 -e -e
E(N) 1s plotted against F(0) in Figure 3.
Suppose now that a process is observed according to some measurable
characteristic and wve have a sequence xl, xz, ves 5 distributed accord-
ing to F(x) where F(x) satisfiecs the condition of Theorem 5.1 and

moreover we assume F(0) = 1/2. If we set boundaries (-a, a) a >0
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and use the rule which requires us to stop the process when 8 ¢ (-a, a)
for the first time we can expect to continue for 5-2 observations before
stopping. However if the process is such that F(0) ¢ 1/2 we will stop
the process in the reduced average time as given in Figure 1. Similar
computations can be made for arbitrary intevals (b, a) using (6.13).
However, in the process control problem we vish to detect when a change
takes place in the distribution of the basic random variables. We have
seen that when a change takes place from F(x) to G(x) at some point
in the sequence, the signed sequential ranks are no longer independent
in general. BSuppose the change is to a distribution G(x) such that
the condition of Theorem 5.1 is still satisfied and the change takes
place at time m. Intuitively, one might feel that for large values of
n the distribution of the m + nt'h signed sequential rank would depend
very little on F and m. This being so we could assume the sejuence
(zi) to be independent for the purpose of determing the expected number
of observations until the process is stopped. For example suppose we
take (b, a) as the continuation interval and dencte (6.13) by

E(a, b, F(0)). Given that 8, % b<x<a U expected number of
additional observations under G(x) is

(6.15) :(lla_ = x) = B(a-x, L-x, G(J))

The conditional distribution for I. is

P - |

2

R R R O e b G B B b g O »




P(b <8 <x)

P(s, <xlb <8 <a, b<x<a) m-.lq-’

(6.1€) - w':-.ra-—_-,;.'“ b<x<a

—
!
l
I
! .
I ‘ Fg (x) - Fg {v)
[
g Lo x<b
I ::a the unconditional total expected number of observations is given
i (6.17)  E(N, m, G(0)) = m+ W _/; " B(uls, « %) arg (x)
| e A
' the distribution of 2% .~ does not depend too much on m and the
I
|
I
i
|
i
!
!

—

distribution of ‘1’ 5. ree “ (lll‘ thus could be taken as “:)
to Justify (6.15)) we examine its characteristic function as n == ,
We have

lm ¢ (u) = lim B ‘u“")

n+® n =

. i ‘ i (l-n(t) + q(t) 0‘ *)

u-..

m
(;..m T, =‘3) ac(t)




g u
-« 1lim [01 (1-q(t)¢q(t)oim\.

(1-pm () e 'L) 46(-t)

= 11- (l-q(t) + q(t) e M) ac(t)

on".

-f. lim | 1-q(t) + q(t) .-1 ;’_"') a6(-t)
nLw
_/"'.u(t)u ao(t) - /".-11(1:)\: a0(-t)
0 0
Also, since q(t) -%-t% and - q(t) -aﬁl-l
ve have
«iu iu
Un § (u) = 6(0) 32— + (1-0(0)) E—pd

n o

corresponding to (6.10).

We now consider a case where ve have a change from a distribution
satisfying the condition in Theorem 5.1 to another such distribution.
Imagine a production process vhere some dimension is measured on the
items being produced. Let these measurements be xl, xa, veeo  assumed

to be independent and identically distribute’ as F(x). Each item is
subject to inspection and if X, <O the item is removed from the

-
\

i

| = e T



production line with probability p. The result is a new sequence

say Cy, C,, «+. and ve call this random censoring and (c‘) the

censored sequence. The distribution of c‘ can be found by

NS, 58 » Ji_:l’(c: S eley = Xypy) PXigy =€)
" Ly S tIey = Xypyn) PRypyy =€)

- P(Xl < t'ﬁ = °1) J§1’(c‘ - xt#J-l’

- By < oK = 0y)
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For random censoring vhen X, < O we have

—

4
ST SEUNNRPE

—

(6.9) P(C, < t) = J

-
s sa—)

- 0
o .

‘ |
In a eimilar wvay if we censor with probability p when x1 > 0 we have

t>0

(610) e, st) = <
) MO MO s I
“P*P

‘ |
Suppose now that the symmetry condition F(-t) = F(O)[1-F(t) + F(-t)] 1
holds for all t > 0. In the case of random censoring for X <O we

have for t >0

6(t) = P(C, <t)
P(t) = [1-pP(0)] G(t) + pF(0)

F(-t) = hﬂﬂ 6(-t)
F(o) = 1K) g(0)

Using these relations it follows that

6(0)[1-G(t) + o(-t)] = % L%M
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ard from the symmetry condition on F we get

a(0)(1-6(t) + 6(-t)] = G(-t) for all ¢t 20,

with a change from F(0) to G(0) = % + In particular for
P(0) = 1/2, 6(0) = (1-p)/2-p. A similar calculation for censoring when

X, >0 shows that the symmetry condition holds for G(t) and

G(0) = P(0)/1-p + pP(0). For M0) = 1/2, G(0) = 1/2 + p.

We shall now compare the expected number of observations needed to
gtop a process subject to random sampling using a Shewhart type control
chart with the expected number needed using the procedure described
above. Consider a sequence of independent observations !1, I. ‘en
1% common continuous symmetric distribution F(x). Subjecting the

X, to random censoring when X, <0 we get from (6.9) the distribution

of the censored ohservations Cl, cz. A T

f
|

;ﬁar(t) t<0

(6.11) P(c, < t) = é

%—'—1 t>0

We assume here that vhen p » O the process is in control and that
when the process starts some fixed value of p, 0 < p £1 is in effect,

If p >0 we want to stop the process as quickly as possible. We con-
sider three procedures: ‘

g
;
{
$




procedure 1 - when (:1 >b >0 for the first time, stop the process

procedure 2 - when lct' >b >0 for the first time, stop the process

procedure 5 - when lanl >a >0 for the first time, stop the process

Procedures 1 and 2 are Shewhart type procedures and b {s usually
taken so that the probability of stopping at a particular stage is
small wvhen p = O. Procedure 5 is the signed sequential rank procedure
previously described in this section. Define p, = l’((:1 >b) and
P, = P(IC,| >b) assuming p = 0. For each procedure the probability
of falling outside the control limit for the first time at the n"h

observation is

’n-l

p,(1-p, 1=1,2

and ll(l) = l/pl, lz(l) - l/p2 are the expected number of observations
taken before stopping. E,(N) = 3a° and setting Ey(N) = E,(N) = E,(N)
ve get

Py = 1-F(t) = F(-b) = 1/3a°

P, = 1-F(b) - F(-b) = 2F(-0) = 1/3° .

For p >0 piur(c1>b)-1-r(c15b)-3-§§n-m and

py = P(C, > b) + P(c, < -b) = ZFLB) + LR 2 p-p) - 28(-b) = 1/20?

Y
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Thus for p >0

B, (M) = /py - (22 2

Ey(N) = 1/p) = 3°

h
o (Gt )
Ey(W) = v
and notice that since r(cxso)-}3§<1/a, it follows that h < 0.

Il(l) and lz(l) increase quadratically with a and l, is essentially
linear in a. Fer example

a = 10

«end procedure 2 is insensitive to values of p > 0. The values of h
corresponding to p = 1, 3/h, 1/2, I/b are = , 2.2, -.9, -.5 |
respectively.

The rollowing tabulated results were obtaiued empirically to
determine the effect of translation of the mean of the observations. ‘
We considered normal observations with mean u and variance 1 and
stopped sampling vhen |S,| > a for the first time vhere
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and Yt is the signed sequential rank of X,, xx ~ "(u,1). For each

parameter pair (a,u) tweniy trials were performed except for u = .l,

@, 3 vhere fifty trials wvere used.

Sample averages, sample variances

and sample standard deviations for termination time N c:re given.

)
2

1.0
1.5
2.0
2.5
3.0

W
180.78
101.78

69.95
52455
2.2y
39.60
36.55
28.70
28.00
28.80
23.40
22.40
20.90
21.65

a =10

.2

13449.27
3306.46
710.12
324,99
139.14
121.41
128.05
31.48
38.31
29.6k4
7.95%
k.98
225
7.60

115.97
57.50
26,4
18,08
11.79
11.01
11.351

5.61
6.18
5.4k
2.81
2.23
2.29

2.75

N
364 .56
179.04
130.40
108.65

T7.25
T2.70
67.45
62.05
53.55
52.25
bk .00
b2 .45
41.55
40.95

a = 20

.2

31279 .43
3345.18
1437.18
1160.87

367.14
171.69
130.26
115.31
67.31
39.77
26,94
12.05
9.20
13.83

176.85
57.83
37.91
3k.07
19.16
13.10
11.41
10.73

8.20
6.30
5.19
5.47
3.03
3.72




7. Summary and Conclusions. We remarked in the introduction on
‘ the paucity of nonparametric sequential procedures, particularly those

1 based on ranks of observations. The author feels that the absence of
a natural wvay of assigning ranks to observations, as the observations
) | are taken, without reranking, was a significant cause for the lack of
' such procedures. The sequential ranking schemes defined and studied in
‘ this dissertation provide us with methods whereby ranks nay be assigned

. in Just such a manner.

In order to use the methods of sequential parametric hypothesis

testing (Wald's sequential probability ratio test) in our nonparametric
setting, we must replace the sequence of observations !1, t‘, vee
H by a sequence of ranks Rl, Rz, +++ and base the test on the probability

o —
"

F ratio of the ranks. This can be done by the sequential ranking scheme
defined in Section %. One basic nonparametric problem is the two-

e R S
- - "' v." :" r v.; S
LSRRI 0, [

sample problem where we must decide whether or not an X- population
and a Y- population have the same probability distribution. This

problem was treated in Section 4 in the special case where the slter-
- natives are of the form proposed by Lehmann [1]. However the method

proposed in Section 4 is general in the sense that in order to carry
out the test one must only be able to compute P(U, €U, < ... £ Uy)
where the U's are X's and Y's. In general this computation is
1 difficult, but for special alternatives where the computation is fea-
sible, the method in Section 4 applies directly.

Notice that in the finite sample size problem nothing is sacrificed
by ranking sequentially (Theorem 3.1) instead of using ordinary ranks.
In fact a little is gained inasmuch as the sequential ranks may be

=
“ o
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vieved as a transformation cf the dependent ordinary ranks into the
independent sequential ranks.

Merely ranking observations tells us nothing of their location,
except relative to each other. In order to take into account the
location of each observation relative to the origin as well as its
size (absolute value) and relative location, the method of signed
sequential ranking was devised. Contrary to sequential ranks, signed
sequential ranks obtained from independent identically distributed
observations are not independent in general. A sufficient condition
«n the distribution of the observations is given in Theorem 5.1 to
insure that the signed sequential ranks will be independent. In the
process control problem we used signed sequential ranks of observations
vhose distributions satisfied this condition. 7This simplified the
calculations since sums of independent random variables were involved
in the analysis.

The methods of sequential ranking and signed sequential ranking
proposed in this dissertation are new, as far as the author can deter-
mine, and provide a natural way of assigning ranks to observations
vhich fits into the theory of sequential analysis (hypothesis testing)
and sequential procedures (yrocess control). All the attendant distri-
bution theory results are new and the condition of Theorem 5.) which
insures the independence of signed sequential ranks is the only one
known to the author.

There are many areas for further investigation suggested by this
research. In the sequential probability ratio test of Section 4 we
did not use the sequential ranks explicitly (except for Z in equation
(4.2)) in the definition of the probability ratio Sy. §; can be




el Fe e e ) OO OB

e
O ——

written in terms of (zl, Zoy +oe s z'), the sequential ranks, but the
expression is quite complicated and it is much more convenient to use

(4.1) and (4.2) which incorporate the most recent sequential rank only.
Thus the behavior of 8' vas obtained by reference to “1' A,, voo A'.
More general results are needed as to the probability of termiration of
pl(z")/ro(z") for alternatives other than Lehmann alternatives. This
is necessary because under the alternative hypothesis the sequential

ranks are not independent generally and the conservative approximations

A = 1-f/1-@ remain valid for successive dependent observations when the

probability is one chat the procedure will ultimately terminate.

A second area for further study is the evaluation of the rule
given in Section 6 for process control problems when changes from F
to G are not of the form presented (e.g. G(x) = F(x + &) &4 > 0).
Also there are other ad hoc rules which could be proposed usin; signed
sequential ranks (or sequential ranks) in process control probleme.
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