View metadata, citation and similar papers at core.ac.uk

=
brought to you by .{ CORE
provided by NASA Technical Reports Server

ORNL-3746

Contract No. W-Th405-eng-26

Neutron Physics Division

A GENFRAL CATEGORY CF SOLUBLE NUCILECN-MESON
CASCADE EQUATIONS

F. 5. Alsmiller

Note:

This Work Partially Supported by
NATTONAL: AERONAUTICS AND SPACE ADMINISTRATION
Under Order R-10L

DECEMBER 1965

OAK RIDGE NATIONATL LABORATORY
Oak Ridge, Tennessee
operated by
UNICON CARBIDE CORPORATION
for the
U.S. ATOMIC ENERGY COMMISSION


https://core.ac.uk/display/85253356?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

’v

IT.

ITT.

VI.

VII.

iii

TABLE OF CONTENTS

Abstract s e
Introduction @ m-eme e e
General Cascade Equations  e=e=mmecercrcccccccacn—o-

Assumptions Concerning the Kernels, ij(E,E') ————

Application of Iaplace Transformation with Respect

to Position  eeeccmcecmciccm e e

g, (E")

Some Simple Solutions for F. (E,E') = a.(E
P Jk( ) ) ESTET_ J( )

Generalization of a Solution by Fisher -eee-mmeaaao

General Solution for Kernels "Almost Separable"

in Energy Variables  —-=---e-cm—mcmcmmacccneo-

—— -

10

13

18

2k



-

A GENERAL CATEGORY OF SOLUBLE NUCLEON-MESON
CASCADE EQUATIONS

F. S. Alsmiller

ABSTRACT

The set of coupled equations describing a one-dimensional
nucleon-meson cascade fed by arbitrary space and energy-dependent
sources 1s reduced to guadrature under the following assumptions:
(1) charged-particle stopping, meson decay, and deviation of the
nonelastic collision cross sections from a single constant value
are neglected for the secondary particles produced in the cascade;
(2) the secondary particle differential production spectra,
ij(E,E'), which give the number per unit energy, E, of j-type
particles produced in a nonelastic collision of a k-type parti-

cle of energy E' with a target nucleus are taken to be of the
general form:

N

ol &ED .
ij(E,E ) = @,—E-)- *{KJ_(E,E ) + h(E) k(E") sjkj»

with the restriction,

ZKJ(E,E') + h(E) x(E') = H(E) L(E'")
J
The functions gj(E), H(E), and L(E') are arbitrary. Examples

are given.

Solutions are given for a variety of assumptions concern-
ing the form of the primary particle spectra.
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I. INTRODUCTION

Analytic solutions to the nucleon-meson cascade eguations in the one-
dimensional or straight-ahead approximation have been obtained by Passow,l

Fisher,®

and Alsmiller® for special examples of the energy distribution
functions of the secondary particles. In all these cases, charged-particle
stopping, meson decay, and energy variation of the collision cross sections
were neglected. TIn addition, a solution for a two-component cascade, when
one component is assumed to be charged and to slow down with a constant

stopping power, has been obtained by Alsmiller.*

All of these solutions have been obtained for secondary-particle
production kernels which are separable in the energy variables of the

incident and emergent particles.

In this paper, a certain category of kernels which are in some sense
separable is assumed and formal solutions given for a variety of primary

particle spectra.

In Sections II, III, and IV we write down the cascade eguations to be
sclved and discuss the kernels used. Sections V and VI present relatively
simple cases which generalize the solutions of Passow and Fisher. In

Section VII the general case is treated.

1e. Passow, Deutches Elektronen-Synchrotron, Hamburg, Germany,
Phanomenologishe Theory Zur Berechnung einer Kaskade aus Schweren Teilchen
(Nukleonkascade) in der Materie," DESY-Notiz A2.85 (February 1962).

2C. M. Fisher, "Notes on the Nuclear Cascade in Shielding Materials,"
Report of the Shielding Conference Held at Rutherford Laboratory on
September 26-27, 1962, edited by R. H. Thomas; NIRL/R/LO.

SF. S. Alsmiller and R. G. Alsmiller, Jr., Neutron Phys. Space Radia-
tion Shielding Research Ann. Progr. Rept. for Period Ending August 31,
1962, ORNL-CF-62-10-29, p. 138.

4R. C. Alsmiller, Jr., A Solution to the Nucleon-Meson Cascade Equa-
tions Under Very Special Conditions, ORNL-3570 (March 196L).
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II. GENERAL CASCADE EQUATTIONS

We write the coupled one-dimensional transport equations for the nucle-

on and meson secondary-particle intensities, ¢%j(E,r), in the form>’®

+
o6 . Eo -
—Sd - 1 ' 1 1
5o+ Q¢sj _JJ(E,r) +Q f dE Zij(E,E )Ltbik(E ,T) + ¢Sk(E ,r)} (1)
E k
¢Sj(E,O) =0 (2)
+ + +
o (ES,7) = o, (Ep,7) _J(Eo,r) 0
where
" r = dimensionless distance variable, measured along the axis of
the cascade;
EZ = Ey + €, where € is arbltrarily small; this limit is used when
¢;3%(E',r) may be a delta function with a peak at E;
Q = constant inverse mean free path for nonelastic collisions,
assumed the same for all particles;
ij(E,E‘) = the number of secondary particles of type j per unit energy
E produced by incident particles of type k and energy E';
é%(E,r) = arbitrary source spectrum.

In this approximation, we have neglected meson decay, charged-particle
slowing down, and the variation of the nonelastic cross section with energy
and particle type, in the equations for the secondary-particle intensities.

To be consistent, one uses for the primary-particle intensities

SR. G. Alsmiller, Jr., F. S. Alsmiller, and J. E. Murphy, Nucleon-
Meson Cascade Calculations: Transverse Shielding for a 45-GeV Electron
Accelerator (Part 1), ORNL-3289 (December 1962).

®R. G. Alsmiller, Jr., F. S. Alsmiller, and J. E. Murphy, Proceedings
of the Symposium on the Protection Against Radiation Hazards in Space, held
in Gatlinburg, Tennessee, November 5-7, 1962, paper E-3, p. 698.




o. (E,r) = ¢.(E,0) S (3)
1j 3

with
= E -E
¢j(E,O) L 5(E_ - E)
for monoenergetic primaries.

Alternatively, one can include these neglected effects in the source

ternle(E,r), treating them as small perturbations; i.e.,

; 3
#(B,7) = ¢y 55 S;(B) ¢ (E,x) + [a - ay(B) - qup(E)] o 4(E,r) (%)
where
cj = 0,1 i1f particles are uncharged, charged;

S (E) = energy loss per unit distance, - (dE/dr), for j-type particles;

QjD(E) = inverse energy-dependent mean free path for decay of J-type
particles;
Qj(E) = nonelastic inverse mean free path for j-type particles.

The corresponding primary intensities are

3 Q...
[
S.(E.) . J
¢ij(E,r) = ¢j(Ej,O) §jfﬁ%— e (5)
where Ej(E,r) is defined by
EJ(E,r) _
.- dE_ )
s.(E)
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for charged particles. For monoenergetic charged primaries of energy EO,

¢j(Ej,o) = Njo 5E, - EJ.(E,I')] . (6)

For neutral particles, e.g., neutrons,

-Q;(E)r
¢ij(E,r) = ch.(E,O) e . (n

The advantage of separating primary and secondary intensities in Eq. 1
lies wholly in the fact that one can use as exact an expression for the
primaries as desired, at the expense, usually, of an extra integration in

the final result.

ITT. ASSUMPTIONS CONCERNING THE KERNELS, ij(E,E')

We shall initially assume for the kernel ij(E,E') the general form:

by A=) , , ,
ij(E,E ) = g—j?ﬂ— Kj(E,E ) + h(E,E") sjk} o(E' - E) (8)

g(E* -E) =1, if E' >E; =0, ifE'<E .

where gj(E) are arbitrary functions. The additive term, h(E,E') 5jk’
allows for a larger multiplicity and varied energy spectrum for emergent
secondaries of the same kind as the incident particle in a collision. The
restrictions to the single index, j, on the functions Kj(E,E’) and no in-
dices at all on h(E,E') are fairly severe limitations which sometimes make
it possible to obtaln uncoupled equationé for a suitable linear combina-~

tion of the functions ¢sj’ and then for each ¢sj separately.

The general definition of the muitiplicity or number of j-type
secondaries with energy E > Ej, produced in a nonelastic collision by an

incident k-type particle of energy E' is



E!
' Q '
ij(E ) = WE\[ dE ij(E,E ) . (9)
L

The kernels are expected to satisfy this integral condition, as well

as an energy conservation condition at each collision.

Formal solutions of the cascade equations have been found for a

certain category of kernels "almost separable” in E and E'. These are:
g, (E')
1y _ t 1 t . .
ij(E,E ) = g_j—(ﬂ— KJ.(E,E ) + k(E') h(E) sjk e(E E) (10)

i.e., h(E,E') is separable into functions of E and E'; also K.(E,E') must
; ) g’

satisfy the further restriction,
ZKJ(E,E') + h(E) k(E') = H(E) L(E') . (11)
J

One can remove a factor h(E)/h(E') from the curly brackets and in-
corporate it in gk(E')/gj(E), redefining the remaining functions also,

without violating Eq. 11. Hence it is Just as general to set

nE) =1 .

It 1s easy to see that Eq. 1l is a major restriction in that the very

simple separable kernel

o E) [ BB £,
ij(E’E)=QjCE) [ “—3 }

does not generally satisfy it. One example, used in much previous numeri-

cal work on nucleon-pion cascades,® is



’ -1-

Gmw
%m)= = ,

jdE .(E)

B,

ls2]

L‘D
b=

here v.(Ef) = v_. (E') for all k.
wnere v (£') = v, (E')

Examples of kernels which do satisfy Eq. 11 are given below.

1. k(E') = 0; (E') = 1 (12)

K (5,8)= o(8);  H() ZZO‘J(E) - (%)
J

This gives the simplest possible solution. If k(E') # 0, Eq. 11 is violated

wniess a(E) = ZGJ(E) = h(E). Hence, we would have a special case of

dJ

Example 2, putting h(E) = 1. Solutions for this case are given later in
Egs. 30, 39, kO, and 41.

2. k(E') § 0, or = 0; L(E') = a(E") + k(E") (13)
Kj(E,E') = Otj(E‘); HE) = 1
a(E') =Zaj(E'); h(E) = 1
J
3. k(E') # 0, or = 03 L(E') = a(E') + k(E") (1)

i
]

1_7- I Y
%mﬁ)—faw), H(E)

27.=7; h(E) = 1
J
J

Example 3 is a special case of 2, but is iisted separately because it pro-

vides a simpler solution. So far, the examples are all truly separable in

E and E'. Solutions for Examples 1 and 3 have been given previously.s
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. k(E') # 0, or = 0; h(E) 41, or 1; L(E') = a(E') + k(E") (15)

ZKJ(E,E’) - a(E") n(E); H(E) = h(E)
J

Kj(E,E') may be nonseparable for some j.

Example 2 is a trivial case of Example 4; nontrivial cases might involve a

subtraction procedure such as
KN(E,E') = a(BE") h(E) - Kﬂ(E,E') ,

with KK(E,E’) arbitrary.
5. k(E') # 0, or=0; h(E) =1

KJ_(E,E') =OCJ.(E') + [(E'") + k(E")] BJ.(E)

a
+ Z [a(E*) cjn(E’) + k(E") bjn(E')] fn(E) (16)

n=0

where

chn(E‘) = 1; ijn(E’) =1; a(E') = Zaj(E’);

J J J

aj(E’), BJ.(E), and fn(E) are arbitrary functions:

n

H(E) = 1 + ZBJ(E) + an(E); L(E') = a(E') + k(E")
J

Exanple 5 is the most general case, and includes all the preceding

examples, except possibly Example L. A simple example under 5 is



-0~

(E")

Py (B,E') = ?‘—3@— [@,(B) + n(E) 5,1 I(E') (17)

n(E) # 0; H(E) = o(E) + n(E); L(E') = I(E")

This can be transformed into

o E&ED n(E') : :
ij(E,E ) = = {aj(E) BEy h(E") sij I(E") (18)
J
_ g(E) Ot E) '
g5(B) = gy 5 H(E) = g6 + 15 al®) =Zaj(E>
J
k(E') = L(E') = h(E') I(E")
Then
g (E")
F. (EE") = fk [6 (E) + 8 ) K(E')
J g.(E)
J
a. (E)
K, (B,E") = k(E') B5(E); B,(E) = o5
' g (E")
6. ij(E,E)-—- EJTFT (19)

{aj(E') + a(E") Cj(E‘) f(E) + [1 + £(E)] k(E") 531{}

Z Cs(E") = 15 zaj(E') = a(E')

J J

H(E) = 1 + £(E); L(E') = a(E') + k(E')
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a,(E")
If Cj(E') ¥ —%ETY— , this case cannot quite be transformed into the form of
Example 5.
IV. APPLICATION OF LAPLACE TRANSFORMATION
WITH RESPECT TO POSITION
Define
- Qr
X,(B,7) = &y(E) o, (B,x) e (20)
- Qr
XjO(E,r) = gj(E) ¢ij(E,r) e
Qr
G (E,I‘) = gJ(E) ng(E)r) e
X(E,r) = Z xj(E,r)
J
XO(E,r) = EEJ XjO(E,r)
J
a(z,r) = Z Gj(E,r)
’ J
Substituting these definitions in Eq. 1 gives:
+
IX, o
#: Gj(E,r) + f dE' Q {KJ(E,E') [X(E',r) + XO(E',r)]
E
+ h(E,E" [Xj(E',I‘) + XjO(E',r) ]} (e1)
Adding:

E+

(@]

%%: G(E,r) + f dE' Q [Z Kj(E,E') +]'1(E,E'):\ [X(E,r) + XO(E',r@ (22)
E J '




This is the set of uncoupled eguations to be solved for various choices
of the kernel functions. Note the apparent necessity for the restriction
of indices on the functioms Kj(E,EW and h(E,E') . Laplace transform with

o]
respect to r to obtain, if X(E,A) = L/ﬁe-)\r X(E,r), etc.,

o]

A X; = Gy +-§[ dE' Q {Kj(E,E') [X(E',N) + X (E',2)]

- n(EE) K50, + T @01 (2

E

o]

AN X=0C+ f aE' Q {ZKJ(E,E’)+ h(E,E')} [i(E',x) +§(E‘,7\)} . (2
E J

If the incident primary particles are monoenergetic protons of energy

Eo’ Egs. 5 and 6 give

_ gP(E') ) +E' SPE *
XO(E',A) = NPO 5o (E" e (25)
where
Eo —
FEym) = [
i 5p(®

Also, we will use the ILaplace inversion

- — _
-/ ~Ar_ 8(r - 1) .

If primary proton slowing down is ignored, and Qp(E') = Q,
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_ g (E")
XO(E',?\) = NPO = 5(Eqg - EY) . (26)

We will make repeated use of Igplace inversions leading to hyperbolic

Bessel functions:

-1 eB/x
iy = Io (QN/B_T)
1/2
-1 _B/\
Z - H I (287 )
(v-1) /2
-1 eB/?\ v
L WV = {ﬁ} I (2./Br )
- 1/2
L7 BN p(r) + H I, (2/Br ) . (27)

In addition, the convolution theorem gives

. B/.)\_.)\— r ' (V—l)/g
;ﬁ e v f b/wdr' {%—} Iv_l_E«/Br'] 8(r - r' - 1)

A

- |25 1, VB -

and more generally,
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Also,
(E >V/2 Iv(g\/ﬁ; ) = g_r [<i§>(v+l)/2 Iv+l[2Jl3_r ]} (28)

B

(v+1) f2

v/
;?—%(i}) Iv+1(2‘/B_r)=§E K%) 211,[2@]} .

g (E")

V. SOME SIMPLE SOLUTIONS FOR F, (E,E') = a, (E
Jk( H ) %(f)_ J( )

In this section we will derive as special cases some slightly general-

ized versions of a solution published previously by Passow.®

Let

ij(E,E’) = -g—(fraj(E) . (29)

This is the first example satisfying Egs. 10 and 11. For monoenergetic
incident protons of energy Egp with Q = QP and slowing down neglected, the

secondary-particle intensity is

_ a (E) 1/2
¢Sj(E,r) - e QT Z;TET QNPO gP(Eo) [B_(EZW] 1, [2 /B(Eq,E) ] (30)
B EO
BEoE =2 ) [ o® @- ) BEE) - (31)
k E k

The general solution for arbitrary primary spectra is given in Tg.

39. A particular choice of kernel in this form is the function

£

1 E' 1
ij(E,E)z oy = o(E" - 1) (32)

e



1k

for which the solution was carried out by Passow.® The use of the step
function is an attempt to account very roughly for charged-particle energy
losses by lonization; nk is an energy limit for the kEE kind of particle
above which the energy loss is assumed to be zero and below which it is

infinite, so that no further production of secondaries takes place. Here

1y - ik v . _ ot .
g (B') = B 6(E" - )5 gj(E) = E” 6(E nj)
p-n
= Q, - 7.) E
ocj(E) a 6(E ”3)
and
E'Z - 1/2

-Qr 0 T

0,5 (E,r) = ay e ™ Qi ) 6(Eo - mp) Lm} I, [2 /rB(Eo,E) 1 (33)

with
Eo
— —f-n —
B(Eo,E) = Q Z o, f dE E 6(E - nk)
k E
To derive these results, let
El
a(E) = 2 a,(E); B(E'E)= Qf o(E) &E (2h)
J E

Y(E,2) = X(B,2) fa(E) = ) % (5,x) fo(E)
J

Substitution of Eq. 34 in Eq. 24 for X gives, after dividing through
by a(E) and then differentiating with respect to E:

S TCRE - [%E%} - a(E) Q[WEJ\) + WO(E;M] : (35)
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Then,

B(E'ZE)

HEN = f @' & FEACIRNE R (36)

Substituting Eq. %6 in Eq. 23 for ij gives directly,

5. am [ Fo e
)—(J.(E,?\) = 71+ Q—‘)-?\— f dE? {YO(E',?\) + a(E") f dE"-;

E

[ Fo(E", ) - 8o %%’-M} (37)

Interchanging integrations,

E“
_ — fQ%dE
(o] " |
X(E?\) —-J-+Qa(E) {Xo(E A) l+de"0t(ER E J
E
E"
a —
fQ'XdE

- w\a)]f ar L F }

B(E',E)

G.(E,A) o 7\ - _
= J—-)\—+ roj(E) f de! % LXO(E',A) + % (E',')\)} . (38)

E+

The general solution for arbitrary primary spectra, ¢ik(E,r), is
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+ )
a(8) [~ Bo ,
¢SJ(E,r) = e'QrQ-éijy j ar' / ar! ng(E') ¢ik(E',r') e Io [2BE",B(r-r') ]
e} k

E
+
-Qr i Qr' J » < aj(E) Yo [
+e jdr' e {JJ(E,I' ) + _@Ef—j dE' ng(E') < (E',r")
o E k

. L%i_% J v 1, [ BE, B (F = 777 | } : (39)

Use of Eq. 26 for Xo reduces the first term to Eq. 30.

: - 1
If 053 (E',r') = 0x(E',0) e Qr , i.e., arbitrary initial spectra at
r = 0, with no slowing down, and Qk = Q, use Eq. 28 to carry out the inte-
gration in the first term.

Eo - 1/2
-Qr % E) \ 1 ! r 1
¢SJ(E,r) = e Q gj—(ﬁ j dE Z(DK(E ,0) Lm} 11[2./13@ JE)r ]
E k
+ terms in 7}. (40)

The solution in this form has been given earlier, with aj(E)/gj(E) =

fj(E).s

If slowing down of monoenergetic primary protons is to be included, use

Eq. 25 for ?5, and invert Eq. 38 using the convolution theorem to obtain

+
o, (E) s (E") -
bugir) = o gy an, [ o gy e AELAG T L0 -
J E (Bpyr), ©
or E
Eo =g =
@ - a,(E)] aE
. €Xp [ f s } + terms in} . (41)

B S, (E)
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Again, from Eq. 25,

The lower limit on the integration over E' is then the larger of E or

E (Eo,r), defined by
L E
(0]

reTmuE) = [ aEe® . (v2)
EL(EO)I')

Equation 30 is obtained by integration of Eq. 41 if we first put

Q= Qp; &p(E') » g,(Eo); B(E',E) ~ B(Eo,E) ;
SET T
P
and use Eq. 28.

In essence, the importance of primary proton slowing down depends on
the sensitivity of gP(E') and B(E',E) to changes in E'.

A second particular choice of kernel in Example 1 is

t o O
ev(E E)a_l'iB

d

P (BB : (1)

J

Assuming a constant stopping power, S » for charged particles, the exact
solution for a two-component cascade of charged and uncharged particles was

4
carried out by R. G. Alsmiller, Jr.
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VI. GENERALIZATION OF A SOLUTION BY FISHER

Consider a two-component cascade of nucleons and pions only, and
neglect the presumably low-energy nucleons produced by pion-nucleus colli-

sions. Let

(®)

F(E,E) = é—nﬁ-;—ocn(E'); F =0

g (E") £ (E') o (E")
P = éﬁ— (85 Py = ) : (u5)

This case was solved by Fisher,2 for kernels corresponding to

g (E) = g (E') =1
g (B') = E'®; g (E) = F°
o (8') = a (B') = & (6)
and
fn(E') = gﬁ(E') = E'2; i.e.,
Fﬂﬂf = F:r\fl’l

This choice of kernel actually does not fit the form of Egs. 9, 10,
and 11, unless we consider only pions in the cascade, treating the nucleon
term, which can be derived separately, as a source term. We then have the
case of Example 2, Eq. 13. Neglecting external source terms and slowing

down, the solutions for monoenergetic protons are

1/2
B—TEO—E)> 11[2./BnZEO,Er ] u7)

)
n

¢Sn(E,I‘) = NPOQ e

(Eo) @ (Eo)
-qr &n'"0/ Ty <

g, (E)
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where

o]
B (Eo,E) = Q f an(i) dE

-Qr 1/2
Q e
¢S“(E,I‘) = '1&;2—(@-— aﬂ(Eo) gﬂ(Eo) <§Jﬁ> 11[2 \/ﬁn(Eo,E) r]  (48)

7

lo) o /En) £ (En) r 2 <2 «/I'{B CEo, " + B @" E)] >
+ an(EO) gn(EO) f ag" e (E u)
n

[B (Eo,E" + B (E",E) ]

where

A more general solution is given in Egs. 52 and 5L4. For Fisher's kernel,

a =0

50
1 n’

1 1 EO
Bn(Eo,E’) +B_(E",E) = B(Eo,E) = Q £n T -

The absence of dependence on E" makes it possible to carry out the integral
in Eq. 47. Then

1/2
er _____> 1.[2./Q r 2n(Eo/E) 1] (49)
LI (E,r) = NP Qe <Q (EE) 1 r £n(Eo 9

-Qr 1/2
(E r) = N—PQGE—— { < —-—-——-—'> 11[2 Jarin(Eo/E) ]
B2 Q £n(Eo/E)

z >12[2./QrznZEo7E5 ] }

Q #n(Eo/E)
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The derivation proceeds from Eq. 2%, which may be written for this

special case:

xxn=<}n+ f dE'Qan(E') [xn+xno]
E
(50)
_ E] L £ (B')
A Xn = a& * k/ﬁ dE' Q Q%(E') [Xn * Xno * éﬁTETT (Xn * 3<-no)} ’

E

Note, the terms in ih and iﬁo are essentially source terms in the equation

for X .
14

Differentiate Yﬁ with respect to E to obtain

>
I
]

o (B) X (5N + % _(B,N] + % g, (£,

Now integrate:

. B (B',E)

Xn(E,7\) = f dE* 3—?\—— {Q an(E') X o - % GnJ . (51)
E

Similarly, differentiate ?ﬂ with respect to E and integrate:

B (E’;E)
Fo = £ (B')
- e , — n - =
X = \/P ' —— {é o (E') [Xno + EETETY ()(.n + Xno)}

3 = 1
-WGK(E ,7\)} .

Substituting Eq. 51 in for %n gives




-~ =21~

3 (E',E)
Eo “%
X (BN = G (B, N + f aE' {e - Q a (B")
E
_ £ (E') _ Eﬂ(E',A) _ 3
.[xﬂo + ——(—ygi ok xno + ——7\——-—} + [Q Oén(E') XnO(E SN - SET Gn(E ,)\)]_
B (E':E") B (E";E)
B! n .
" fn(E“) Q aﬂ(E") € " " } ( 2)
. f dE gn(E") ?\2 5

from Eq. 26.

The formal solutions of Egs. 51 and 52 for arbitrary initial spectra

are

+

r )
-Qr o}
¢ n(BT) = gnﬁy sfdr' Ef @' I,[2/B(E,H(r - ') ]

[Q o () g (B') o, (8,r) ¥ -2 [g (8) 4 (B",2")] e‘ﬂ
(53
Here, the source term an(E',r') may include, in some approximation,

the production rate per unit distance per unit energy of nucleons from

pion collisions.
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<

+
-qr r EO
SH(E:T) = z—ﬂ(ﬁy jdr‘ f ae! {IO[Q\/Bﬂ(E';E)(r -r') ]1Q Céﬂ(E')
0 E

Qr'

-Lgﬁ(E') o, (E',r') + £ (E") o, (B',") -Qa (B') ﬁa [gﬁ(E')Jﬂ(E',r')]] e

e oo Ey g E o men & R g )8 5,001 &

o BESED
.f dE" Q gn(E") l:Bn(E';-E') . Bﬂ(E",ED]
E ]

1, <2J[Bn(E',E'3 + B _(E",E)(r - r') >j (54)

1/2

It ¢in = 0, and we include slowing down of the initial primary protons,
use Egs. 5 and 6:
E!

[F sl e
@in(E;)r) T amr - a1, 5lEo - Bi(x,r)] < e 5p(E)
Then
[ s
SP

-Qr r
Ppg © o N o E
dJSn(E,r) = —grqlzfy— fdr an<E ) gn(E ) e
o ;

IO[E\/Bn(E',Eﬁ(r - ") 1+ terms in ‘Jn (55)
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where E'(Eo,r') = E (Ey,r") is defined by

Eo

r' = dE

3 (55)
E'(Eo,r‘) SP(E)

Alternatively, using ZEg. 25 in Eq. 51, and inverting by means of the con-
volution theorem, we see that Eq. 55 is equivalent to

E

©(Q-Q,) _
-Qr A f SQP db
QNP © : FO 1 Ozn(E') gn(E') E' £
¢Sn(E,r) = —éiﬁﬂ—— y dE SP(E,) e 8[r-r(Ep,E") ]
E_(E ,7),
L é)r E
I,(2 VB (ELE)(r - 7) ] + terms ind_ . (56)

where EL(EO,I') is defined by Eq. 42, T by Eq. 25. Similarly,

Fo(q-qp)
-Qr Eo 1 t f S an
N, Qe _ ' a (8') £ (E') & P
¢ (Err) = _gn_(f)'— f aE { S(ED °©
E (B ,T),
or E
Fo(q-ap)
ﬁ'/ Sp . o (E') g (E') B
IO[EJBﬂ(E’,E)(r -] +e e SP(E') f ar"
E
1/2

£ (8') a (B [[I‘-;(EO,E')] } }
1

gn(E y Bn(E',E") " Bn(E",Eﬁ <2 \/( r-r) [Bn(E! )E")"Bﬂ;(E",E)] > }

«6[r - r(Eo,E")] +terms in Jn and jﬂ. (57)
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VII. GENERAL SOLUTION FOR KERNELS "AIMOST SEPARABLE"
IN ENERGY VARIABLES

We use

' g, (E') ' ,
. (EE )= W Kj(E,E )+ ajk k(E?!) h(E)}

where

ZKJ(E,E'>+ k(E) n(E') = H(E) L(B')

Although it is understood that either k(E') or h(E) can be set equal to
unity without loss of generality, we will carry both factors so as to make
the final formulas as flexible as possible. For example, the kernel of

Eq. 17 could be used as it stands, without transforming to Eq. 18.

Return to Egs. 2% and 24 and write:

AX=0G+ HE) qQ f aE' L(E') [X(E',N) + io(E',?\)] . (58)
Define V(E,N\) = X(E,\)/H
NS5 T = 3 pdy - QEE) L(ED WEN - L(B) @ X (5,1) (59)
Then
El
f % §(B)L(F)aE
v fo v S : 1y ¥ 1 G(E 7\
V(BN = | aE % WE) Xo(E',N) - v W . (60)
E

The reason for the restriction, ZKJ(E,E’)+ n(E) k(E') = H(E) L(E'), lies
J
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in the possibility of obtaining a first-order linear differential equation

in E for ¥. Equation 24 now becomes

Eo

A ij = Ej + f a' Q KJ(E,E') [H(E') ¥ + ?O]
E
El
+nm a [ @ e { + %0 - (61)
E
Define ﬁj(E,K)= )—(j(E, A /h(E) . (62)
Then
3 - 3 Eo K.(E,E")
" T oL [ e o g mE) T+ %)
E
- Q X(B) [n(B) W,(5) + %, 0]+ & (T,/n) (63)
and, integrating,
E?
Q -— _-, .
o f -Xh(E)k(E)dE _
_ [ G E S 3 (% }
X, (E,N = h(E) Ef dE ~ v [QJ.(E ) X6 - ST <h >
) EE K(EE) . —
- o aE" q 4131-(@—— [X (E",N) + B(E") W(E",NI(. (6k4)

Here, it 1s clear that the restriction

h(E,E') = h(E) k(E')
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enables one to obtain a first-order linear differential equation for N,

provided ﬁ is known.

The solution for kernels of the type given by Example 1, Eqg. 12, has

already been presented in Section IV, with Egs. 36 and 37 corresponding to
60 and 6k4.

Define:
Eo Eo
0(5o,m) = [ 1B u(E) o - f o(F) + x(B)] 8(E) g a  (65)
E B
Eo
D(Eo,E) = L/ Q n(E) x(E) aE . (66)

E
At this point, one can specialize to Example 2, Eq. 13, such that

g (E')
FJk(E,E') = '—Tiﬁ—'[aj(E'> * By k(E") ]

k
&;

KJ(E,E') = aj(E'); h(E) = 1

H(E) = 1; L(E') = }: aj(E') + k(E') = a(BE') + k(E')
J

Then, differentiating the last integral in Eq. 64 at the lower limit gives



o
%,(B,N) = P {QK(E') X, (BN - 557 8, (67,
E
EH
. JF % (ork) GE
' kv 1 EO " eE' "y g o =
+Q on_(E ) {XO(E SN +f aE" =5— [qQ L(E™) X - WG]:’} (67)
El

This expression could be inverted as it stands; or, we can interchange

integrations in E' and E" to obtain

E!
9}{_ _
E+ o A dE
_ " fO ' eE _ S — o=
Xj(E,?\) =f dr {——7\———[Q k(E") on - gE—,-Gj + Qaj(E ) XO:I
E
E' E'
Qk = QX =
. \/*X—G_E+ TdE
_ a _ eE Eﬂ
+[QL(E)XO-WG] de QOLj(E) = } . (68)
E

If aﬁ(E") and a(E") are proportional to each other, i.e., if

7.
aj(E”) = 71 a(E"), with }Z 7& = 7; L(E') = AE') + k(E'), we have Example
J
3, Eq. 1k. The last integral can then be integrated by parts, as follows
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El
E!
b/> 8k 4§ o
A B 5 dE
7 E a En
__Jl S 1"
y n f w e
E
E! EI
9 Rk =
JF )\(O%k)dE J[ 5= dE
4l ]
7 A A

Then Eq. 67 becomes, using L(E) = o(E) + k(E),

El

Jf %& dE
¥o E 7. 3 7.
%3 () f I {—T‘[Q w(B') (G, - 5 %) - 5 (G 'TG)}
E
E'
[ $umaE
E 7 - _ _
+— ;9—[@ L(z) X - 527 G} } : (69)

This is particular simple, since one integration has been eliminated.

Using Eq. 26,

— 8(Eo - E')
1 —_ tr———es
XO<E )?\> - NPO gP(EO) 7\

for monoenergetic primary protons without slowing down, and the definitions

of Egs. 65 and 66. The inversion of Eq. 69 is then:
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[V

o (Er)—e-Qr N (E)Q{k(E)(& _Ll\[ r J
sjt? —ngES PogP o o) B v / DZEO,ES

1
2

7. —
- 1,[2/rD(E_,E) ] + 7'3- L(E,) [ﬂi&@'} 1, [2V/rC(E,E) ] }

_Qr '
f fdr' 1o[e VAE B (rr) ] g2 L, (81) 2, (8, x1) &%)

—QI'

f fdr {‘:I [2VD(E',E) (r-r"')] - T [2JC(E' E)(r- r')ﬂ

-

e ;gk(m JRCISIRL S (70)
k

If primary proton slowing down, and Q 51 Q’P areto be included, use Eq. 25 for
‘)_( in Eq. 69,

s5(BrT) = “7TP ¢ f )@'%ME (jP’?)

orE

Eo

s

. Io[zJ(r-?)D(E',E)] + ;1 L(E") 10[2/(r-?)(EO,E) ]} e 'e[r-r(Eo,E')]

(3-

(71)
|

+ terms in Jj and Jk'

The solution for this case for arbitrary initial spectra of the form
-Qr
=9
¢ij(E,r) j(E,o) e

has been given earlier.®
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Similarly, the inversion of Eq. 68 for the more general Example 2
with Q = QP and no slowing down for the monoenergetic primary proton, is

¢Sj(E,r) =

_Qr
Z—ﬁy Q Ty ep(Ep) {[R(EO) B.p + 05(E)] [Bﬁf—ﬂ} 1, [2/7D(E_,E) ]

a. (E') r
E)f dE! T, E§+D<E E) \:2\/1" ")+D(E', )]}}

-Q p t
i JP dE’L/ﬂdr {? [2./D(E! LE) (r-r') ] 8%7 [gj(E‘)-JS(E',r') eQr ]

k

El
¥ [?ﬁ“ Z (B (B 2) eQr'} f aE" q o, (E")
E

j

. [C(E;’El(f§ _-'._ ]I:;E%”,E)J Il \:2 \/(r—r') [C(ElyE”)-i-D(E",E) ]:] } (72)

' 73 '
As expected, Eg. T2 reduces to Eq. 70 when aj(E ) = - a(E'), by use of
the second of Egs. 28.

If primary proton stopping and energy-dependent absorption are to be
included, use Eg. 25 in Eq. 68 and proceed in the same manner as used for

Egs. 41, or 56 and 57.

S ,gp<E 2 o
003 B7) = T T, QEérﬁ ((") B, + 0, (E1) ]
or B

10[2 J(r-t)D(E',E) ] + L(E f ae" Q a (E")

[I‘ - ;(EO’E')]
.[C(E',E") + D(E”,E)J

o [q - q ()
. e aE (73)
xpf T s®

[

11{2 (r-r) [c(E',E")+D(E",E) ]B olr - ?(EO,E')]
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+ terms in Jj andjk.

7.
Equation 73 reduces to Eq. 71 if aj(E‘) = 71 (E'). Returning to Eq. 6k

for the general case, we have, by straightforward differentiation of the

last integral,

E!
Q —_
E' f A B _
_ ~0 eE _ 3 EJ_
xj(E,)‘) = h(E)f dE —)—{Q k(E ) on - SET
E
E"
Q -
+ f 'XHLdE

1t ot E
K.(E ’E ) /— 1 1 © 1" eE' "y v a a
+QJJ7_)_hE' \XO(E,%)+H(E)de———)\———[QL(E)XO_S.E.'_E]
£t

2 (&",5")
0 5 K (ELE"
- Qf dE" 57 [ Jh(E') :'

El
Nkl
Q —
Bt 3 T
,/_ (o) eE" _ a a
.KXO(E :7\)+H(E)f dag™ ”ﬁ'_"—!:QLXO'FEW'H'} } (74)
E"

' -
For X4E',A) = NP gP(E’) -5-—(-ET—E-:9-)— 5 i.e., monoenergetic primary protons,
o

with no slowing down and Q = Q’P’ the inversion is
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[N

-Qr K.(E ,E )
Sy B T, Q5 {[k(EO) P } {D(Ez}m} T 5 /oBE, )
E; ( x (E',E") HE') LE) r
aE' | 2 I \:2\/ [c(E_,E") D(E',E)]}
—F%§ { h(E") [C(EO,E') + D(E',E)] 2 r o +
: F 3 K.(E’,EO)W{
- [WJ 1,[2 VrD(E',E) ] 55 Jh(E,) |
£y B y K.(BL,E") ;
f as' | aE [ B CRET } H(E") LE) e ey v o, )]
I o

. I, [2\/r[c(EO,E”)+D(E',E)]J }

and ., .

s

- 3
+ terms in /.
< J ~k

The source terms are

(75)

+
i : Fo g.(E') '
o E
( 1 !) Eg %
+Q XK.(E',E H(E')j ag" (I‘ - r') T 2\/(7_ ')[C(E" E') D(E' E)]
zel) EE s sEmy| L P/ e R,
E!
ny i 1 ' QI" E+ "
o gk(E )-i k(E RS ) e o . a K.(E',E ) )
OBE"[ 2 H(EY) }'j Qa [BE' “HE) } H(E")
k ol
E+ 1

(r = ")
" E") + D(E',E) ]

f e [m

g (") 4

. k(E"',r‘) eQ

¢

I.l

I [2 J(r-r') [C(E™ ,E")+D(E',E) ]}

(76)

H(E"')

b
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For the sake of completeness, we include the expression when primary
proton slowing down is important, but, since this involves a triple inte-

gration, it 1is probably not very useful. Equation 75 is replaced by

o .(E,r) =
5J
+ (a-q,) dE
e Yo ' ep(E') ‘g / " T '
m h(E) NPO Q { dE W e ; 6lr - r(EO’E )]
J EL(E ,T),0r E
O
K.(E',E") _
. [k(E') sjP + _%(ﬂ_ ] I, {2 J[r-r(EO,E') ]D(E',E)} }
Eo
" + R
o) o] (E™) w °F
+J[ as! J[ ag" iP = e oir - ?(EO,E )]
E EL(E ,T),0r o

N

(E',E") T - r(E ,E")
{(—H—rh 7 H(E') L(E") {C(E" DR D(E, E)}

- I [2 J[r-}'(EO,E") llc(E",E")+D(E",E) ]J

_ L [k (81,5
1y | e VEFE B | | | |

E

e} —_
. N N (Q-qp)d®
Eo Fo 5 K (E',E") Fo B °p
+-/ de! f ag" H(E") [BE' Jh(E'T ] \J[ de" L(E"' ) e
E E' EL(EO, r),or E"

e R
. -SP7—E—,WT 9[1‘ - I'(EO,E ’)] \:E('E"',E") " D‘CEI,E):‘

. Il [2 \/[r-?(Eo,Em ) ][C(Em ,Eﬂ)+D(E',E) ]] + terms in XJ. and Jk. (77)



Fo _
r(E ,E') = \/ﬁ dE_ , ete.;
Eo _
Jf dE
r = — .
S (E)
EL(EO,r) P

The lower limits on the integrals are the larger of EL(EO,r) or E, and

of EL(EO,r) or E", respectively.

The source terms remain the same as in Eq. 76. A general inversion of
Eq. T4 for arbitrary initial spectra can be carried out, using the convolu-
tion theorem; it will involve quadruple integrations in the absence of a

delta function expression for XO(E,r).

An interesting feature of all solutions in this section 1s that when
k(E") ¥ O, the first term in the solution for ¢sj 1s a term involving
¢ij’ only. If only proton primaries are considered, this term vanishes
for all secondary particles other than the secondary protons. Hence, the
Sjk k(E') term in the kernel produces an additive term in the secondary

intensities of particles of the same kind as the primary particles.
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