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L XIfth GENERAL ASSBIBLY, IAU 

Hamburg, Germany 

I. INTROIxfCTION 

The pioneer theoret ical  investigations of Burbidge (1959) [ l ]  and of 

Shklovsky (1960) 121 have shown t h a t  the observations on the extended radio 

sources imply the generation, storage and emission of prodigious amounts of 

energy, i n  round numbers of the order of 10 %c2 - 1061 ergs or even more. 

On the very general grounds tha t  the ultimate source of energy is  the con- 

version of mass, it i s  thus clear t h a t  very large condensations of matter i n  

some form or other are, o r  have been, associated wla e the radio sowces. 

BurbiQe (1962) [31 suggested supernovae explosions i n  large aggregates of 

s t a r s  as a possible mechanism for the original generation of the  energy in- 

volved. 

7 

In  the summer of 1962, af ter  conversations with Geoffrey and Margaret 

Burbidge, Hoyle and I (1963a,b) 14,SI investigated what i s  perhaps the simplest 

of many possible models, namely t h a t  a wss of the  order of 10 %c2 or  greater 

has condensed in to  a single s t a r  i n  which the energy generation takes place. 

On t h i s  point of view, using the standard theory of s t e l l a r  structure, one 

immediately obtains opt ica l  luminosities of the order of ergs/sec and 

l ifetimes for  nuclear energy generation o f t h e  order of 10 t o  10 years so 

t h a t  the w e r a l l  energy release is  10 

the observational data  fo r  the so-called quasi-stellar obdects subsequently 

discovered by Schmidt (1963) [6]. 

the energy requirements for  extended radio sources and found tha t  our model 

0 

5 6 

59 ergs. These figures roughly match 

I Hoyle and I were seeking an explanation of 

had a large opt ica l  luminosity. Problems i n  the s t a b i l i t y  of massive s t a r s  9 
a r i s e ,  a s  w i l l  be discussed i n  d e t a i l  below. 

it i s  apparent t h a t  nuclear energy generation by hydrogen burning i n  massive 

Questions of s t a b i l i t y  aside, 
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8 gkars  y i t h  M -10 

quasi-stellar objects . 
b& is  

However, the energy 

adequate t o  match the energy requirements i n . t h e  

requirements fo r  the extended radio sources involve nuclear 
10 burning i n  s t a r s  with M -10 % or even more. This assumes t h a t  hydrogen burning 

with 0.7% conversion efficiency goes t o  completion i n  about l5$ of the  stellar mass, 

giving an overal l  efficiency of 0.1% and an energy output - 10 %c . The 

efficiency of conversion of t h e m 1  energy in to  t h a t  of the high energy electron 

7 2  

and magnetic f ie lds  necessary t o  give the 

of t h e  order of 1$ of even less. I n  t h i s  

I2 approaching t o t a l  galact ic  masses, - 10 

observational evidence for  such wholesale 

synchrotron radio emission may only be 

case nuclear burning i n  s t e l l a r  masses 

%, i s  required. 

nuclear conversion i n  the galaxies asso- 

Since there i s  no 

ciated w i t h  the extended radio sources, Hoyle and I suggested gravitational collapse 

t o  the general r e l a t i v i s t i c  l imi t  a s  another possible source of e n e r a .  

ple a l l  of the r e s t  mass can be converted t o  energy i n  gravitational collapse 

although t h i s  requires t h a t  2GM/Rc It was realized t h a t  t h i s  

ultimate 100% efficiency was probably not attainable during the  collapse of an 

sc tua l  s t a r  because of the large red shif'ts i n  a l l  forms of energy emission when 
2 2G>l/Rc - 1. hben so, the conversion of gravitational energy seemed more a t t rac t ive  

tao us than  matter-antimatter annihilation which i s  also lo@ ef f ic ien t  i n  the l i m i t .  

We were unable t o  suggest a satisfactory model for  the  assembly of the matter and 

antimatter under r e a l i s t i c  conditions. 

I n  princi-  

2 approach unity. 

It did not seem unreal is t ic  t o  suggest t h a t  

a massive s t a r  of one type of matter could condense f iomthe 

of a large galaxy, most probably i n  the galactic nucleus. 

Feynman (19x3) [7] first pointed out t o  us t h a t  general 

bil i t ies s e t  i n  a t  e very early stage i n  the condensation of 

gas and smaller s t a r s  

r e l a t i v i s t i c  insta-  

massive s ta rs .  

Following Feynman's suggestion, Iben (1963) (81 carried out exact numerical inte-  

grations of the r e l a t i v i s t i c  equations for  a number of polytrapes and confirmed 

Fey-nman's ideas. In my own work (Fowler, 1964a,b) [9,10] I have found tha t  the 
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qhfsical principles involved and i s  particularly useful i n  investigations of the 

conditions under which nuclear reactions occur i n  massive s t a r s .  

Let me hasten t o  say tha t  Chandrasekhar (1964a,b,c) [ll,l2,13] has now given 

i n  very elegant form the exact treatment of the  dynamical i n s t ab i l i t y  of massive 

s tars .  After some i n i t i a l  disagreements concerning numerical values, when we both 

performed our sums correctly [10,121, agreement was reached on such matters a s  the 

radius for the onset of i n s t ab i l i t y  and 60 forth. 

1963 t h i s  f i e l d  of study has become a very active one, and i n  par t icular ,  McVittie 

(1964) (141 Gratton (1964) [E] and Zd'dovich (1964) (161 have independently made 

significant contributions i n  the approach t o  the solution of the problem. A t  the  

California Ins t i t u t e  of Technology, James Bardeen i s  carrying aut  numerical calcu- 

Since the Dallas conference i n  

lations on the dynamical collapse using the IEM 7094. 

2. BINDING ENERGY OF A MASSNE POLYTROPE IN 

HYDROSTATIC EQUILIBRIUM 

The binding energy EB of a s t a r  is  equal but opposite i n  sign t o  the t o t a l  

energy E exclusive of the rest mass energy and, when the  s t a r  has radius R, i s  

given by 

(1) 
2 - EB = E = (M - M0)c 

where M = M(R) is  the mss of the s t a r  and Mo is  t h e  t o t a l  rest mass of i t s  con- 

s t i t uen t  par t ic les .  M i s  t o  be determined i n  principle by measuring the  force 

exerted on a uni t  mass a t  a large distance (>> R )  from the s t a r  and then using 

Newton's inverse square law of gravitational a t t ract ion.  

can be measured by identif'ying and counting the constituent par t ic les  and multiply- 

ing by the appropriate rest mass. 

On the other hand, Mo 

One now employs the  general r e l a t iv i s t i c  equations for M and Mo and the 

general relativist ic equation for hydrostatic: equilibrium throughout the s t a r .  

Each expression i n  these equations is appropriately expanded i n  terms proportional 

t o  in t eg ra l  powers of the gravitational constant 0 and only the Newtonian term 
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asd the.next higher order term are retained. 

approximation fo r  the t o t a l  energy of a spherically symmetric, non-rotating s t a r  

In this way [9,10] the post-Newtonian 

mder hydrostatic equilibrium is found t o  be 

where r i s  the r ad ia l  coordinate, p is the pressure, p i s  the mass-energy density 

expressed i n  mas8 per unit volume, Mr is the mass in te r ior  t o  r and B is the r a t i o  

of gas pressure t o  t o t a l  pressure (gas plus radiation). 

order of the  terms i n  equation (2) it should be noted tha t  p is l inear  i n  G i n  %ne 

approximation under discussion so tha t  the first term on the right hand side of 

equation (2) is the  c lass ica l  Newtonian term and the l a s t  two are the post-Newtonian 

terms. 

pletely ionized in to  electrons and nuclei but t ha t  the temperature i s  below T = 10 

degrees so t h a t  special  r e l a t i v i s t i c  effects for  electrons and electron-positron 

p a i r  formation can be neglected. 

par t ic les  and radiation per cm i s  given by 3p( l  - 8/2). 

It is illuminating t o  express the classical term, which w i l l  be designated a s  

In  order t o  appreciate the 

In deriving equation (2) it was assumed tha t  the  s t e l l a r  material i s  com- 
9 

Under these conditions the internal  energy of 
3 

E(1) i n  terms of the appropriate average for  B throughout the s ta r .  Thus 
eq ’ 

Here the  gravi ta t ional  binding energy R, taken as a positive quantity, has been 

. introduced. It is  well known i n  c lass ical  hydrostatic equilibrium tha t  R = I3pdV 

I n  the approximation under and t h a t  f o r  a polytrope of index n, R = 3G8/(5-n)R0 

consideration it is not necessary t o  distinguish between M and Mo and so the  super- 

fluous subscript has not been retained. 

dependence of (f3) on the polytropic index is made expl ic i t  by appending the 

In the l a s t  fonn of equation (3) the  
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E; ubs c r lp t  n . 
The classical  binding energy per uni t  mass i s  obtained by dividing equstion 

2 . (3) by Mc t o  obtain 

5 where R = 2cy/c2 = 3 X 10 (M/%) cm i s  the limiting gravitational radius or 

Schwarzschild limit and the  right hand side of equation (4) I s  the first and l i nea r  

term i n  a power series i n  the dimensionless parameter R d R  = 2GM/Rc . The post- 

Newtonian terms are, of course, quadratic i n  t h i s  parameter. For polytropes of 

index n, t he  post-Newtonian expression for the binding energy per uni t  ms6 can 

be reduced t o  

g 

2 

h 

where 

I n  equation (6), 5 i s  the dimensionless r ad ia l  variable used by Chandrasekhar (1936) 

[17] i n  t rea t ing  polytropes, Rn is  the value of 5 a t  the surface of the  polytrope, 

€3, = Qn(k) i s  t h e  Lane-Wen function f o r  the polytrope and Mn = - S2dn/dS a t  t he  

polytropic surface. 

It w i l l  be recalled tha t  the run of the  variables throughout the  polytrope are  

Mn is  a dimensionless measure of the mass of the polytrope. 

' given by p = pcQn n and p = n+l where the subscript c designates central  values. Pc'n 

For a nondegenerate gas (T/w@) = (T/pS),0,. 

Equation ( 6 )  can be evaluated analytically fo r  n = 0, 1, and 3 and the  r e su l t s  

are  

5 ,  - - ;; 1 = 0.3183 and c3 = 3 ( 5 )" R3 = 1.2& 57 
16 IC 

5 ,  = 280 = 0.2036, 

where R3 = 6.897 has been used. 
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3. TIB CRITICAL RADIUS, TEMPERATURE AM) DENSITY FOR 

ME 0NSIT.T OF DYNAMICAL INSTABILITY 

The coefficient Sn is positive and thus the internal  energy recpired for hydro- 

s t a t i c  equilibrium eventually becomes positive, the binding energy is negative and 

the system is unbound rather than bound. The energy goes through a minipnun or  the  

binding energy through a maximum a t  a c r i t i c a l  radius given by 

Rc 8(5-n), {n 4(5-n) {n - -  
R13 - 3 m y  9 OT; 

This r a t i o  is 19/7 (e), = 2.714/(0)0 for n = 0, 32/3 (B)l = 3.395/(f3)1 fo r  n = 1 

and (3/71) 4 R3/B3 = 6.740/8, for  n = 3. For n = 3, B i s  a constant throughout the 

polytrope and averaging i s  unnecessary. 

t ion  P1-4/3 = S/6 has been employed a s  a f a i r  approximation i n  massive s tars .  Pl 

is  the  first of the adiabatic coefficients defined i n  [17]. The results for  Rc/R 

are  ident ical  t o  those obtained i n  [11,12,13]. 

In the Lest form of equation (8) the rela- 

g 

The early onset of s t a b i l i t y  can now be traced to  the  fac t  t ha t  Rc i s  inversely 

Fowler and Hoyle (1964) 1181 proportional t o  (a), which is  small for  massive s tars .  

have sham i n  massive s t a r s  t ha t  

where CI is the mean molecular weight and the other symbols have the c u s t m r y  mean- 

ings. For a polytrope of index n = 3, B is constant throughout the polytrope and 

is given by 1 

4.3 5 
= -(J CI 

This expression holds roughly for the average value throughout any polytrope and 
8 - for  hydrogen with p = 3 yields - i n  a polytrope with mass M = 10 b&. The 

upshot is t ha t  Rc i s  several thousand times R for  such a mass, the actual factor 

being sensi t ive t o  the polytropic index. It i s  interesting t o  note t h a t  (S), ( 8 )  

and (10) yield E 

Q 

\ 54 
J 2 %c2 - 4 x 10 ergs a t  the minimum fo r  all large masses. 

6 
eq 



. The onset of in s t ab i l i t y  below the  c r i t i c a l  radius . 

can be understood i n  the following way. Consider an adiabatic COi ~ ession a t  a 

point below the c r i t i c a l  radius. Hydrostatic equilibrium a f t e r  the perturbation 

requires more internal  energy and pressure than before and since t h i s  i s  not made 

available i n  the  adiabatic compression, Arrther collapse ensues. Consider an  

adiabatic expansion. Now hydrostatic equilibrium requires less internal  energy 

and pressure than given adiabatically so expansion continues, Clearly the radius 

a t  which E reaches a minimum is c r i t i c a l  i n  t h i s  regard. A t  larger  r ad i i  the  de- 

crease i n  the equilibrium energy as R decreases gives the w e l l  known classical  

s tab i l i ty .  When an actual  s t a r  reaches t h e  c r i t i ca l  radius it w i l l  lose energy 

by radiation and the general r e l a t i v i s t i c  i n s t ab i l i t y  will lead t o  collapse rather 

than expansion unless some i n t e r n a l  energy resource can be cal led upon. 

Can nuclear energy supply the energy necessary t o  ha l t  the general re la t iv-  

i s t i c  collapse and perhaps even reverse the motion by supplying mre than t h a t  

required by equation (5) f o r  hydrostatic equilibrium? This i s  a problem s t i l l  

under a t t a c k  but t h i s  much can be made clear. The central  temperature and the 

central  density a t  c r i t i c a l i t y  can be shown [9,10] t o  be re la t ive ly  insensit ive t o  

the polytropic structure i n  contrast t o  the outer radius and are given by 

13 Tc = 2.5 X 10 (UM) degrees 

-3 
OC = 2.0 X 10” (vM)7/2 gm cm 

5 It W i l l  be noted t h a t  the c r i t i c a l  values are  only Tc = 2.5 X 10 degrees and 
-10 -3 8 = 2.0 X 10 @pl cm for M = 10 %. The density i s  very small indeed but it 

w i l l  be recalled t h a t  the central  density a t  the  Schwarzschild radius fo r  a poly- 

trope of index 3 is  only - 100 p The main point i s  t h a t  general re la t iv-  

i s t i c  considerations come in to  play i n  massive s t a r s  long before central  t e ~ p e r a t u r e s  

and dens i t ies  necessary for nuclear reactions t o  take place are reached. 

P C  
. 

For 
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7 -3 degrees a t  p ?- loo2 .gm cm :hydroken burning, T - 8 X 10 a re  required. . 
4. GENZRAL RELATIVISTIC GRAVITATIONAL COLLAPSE 

Nuclear energy or any form of energy must thus be generated during the  collapse 

stage and the time scale for  collapse becomes highly relevant i n  connection with 

generation r a t e s  per uni t  timt?. The hydrodynamic equation for the acceleration i n  

the post-Newtonian approximation can be written 

where Mr i s  the mass in te r ior  t o  r. 

term is  approximately correct only for the polytrope with index n = 0 (constant p )  

and then only i n  hydrostatic equilibrium. 

accurate for  our present purposes. 

The numerical coefficient of the post-Newtonian 

Howeven, equation (14) is suff ic ient ly  

I n  c lass ical  free f a l l  the pressure gradient i n  a s t a r  is se t  equal t o  zero 

The increase and the acceleration is just tha t  due t o t h e  gravitational forces. 

i n  kinet ic  energy of f a l l  can be readily computed f’romthe change i n  the gravita- 

t i ona l  potential  energy. Starting f%im rest at a radius large ccanpared t o  R, t he  

velocity of free f a l l  at R is 
1 

2GM 2 
Vff c(z) 

8 and the characterist ic e-folding time i n  R or T6 = T/10 is 

(16) 
4 8 - 2 X 10 sec for M = 10 %, (Ts)c = 0.8 (H-burning) 

It can be argued tha t  t h e  pav i t a t iona l  collapse is not f ree  f a l l  but ar ises  from 

the  post-Newtonian terms i n  the general r e l a t i v i s t i c  expressions for  the  pressure 



gradient. The pressure gradient would just be balanced by the  classical  terms 

if general re la t iv i ty  were not taken in to  account and hence t o  order of magnitude 

the acceleration,is equal t o  the post-Newtonian term. The kinet ic  energy per u n i t  
2 

I mass becomes equal t o  3 c ( ~ R c ~ ) ~  not Just  4 c2 ( W R c 2 )  and so 

Note tha t  vgc SJ vff c i n  the l i m i t  2GM/Rc2 = 1. 

The e-folding time is  

4 
m sec independent of M lo 

C 

5 - 10 sec .c 1 day, (T8) = 0.8 
C 

W e  a r e  reminded of the quotation f r o m  The Lucky Chance by Aphra Beii (1640 

-1689): "Faith, sir, we are here to  day, and gone t o  morrow." In spherically 

symmetric general r e l a t i v i s t i c  collapse the t h e  scale for  the release of nuclear 

enerw is very short and for  14 >, 10 % the collapse i s  probably not stoppec?. 

However, for M < 10 % the nuclear resources would seen t o  be adequate t o  stop 

and reverse the collapse. 

7 

7 

Oscillations of the s t a r  t'nen become possible i f  

adequate modes  of energy transmission t o  and emission fromthe surface are avail- 

able. It can be sham tha t  ordinary thermal mechanisms are grossly inadequate. 

Shock wave phenomena leading t o  the  generation of high energy par t ic les  presumably 

come i n t o  play and may w e l l  lead t o  the excitation of the HI1 and radio-emittirq 

regions surrounding the quasi-stellar objects. 

i n  Pasadena on these problems. 

Detailed calculations are underway 

9 
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. 
XII I th  SOLVAY CONGRIES 

Brussels, Belgium 

I. FIRST DISCUSSION 
4- The formation of massive s t a r s  i n  the range 10 t o  lolo % has come t o  be of 

considerable in te res t  In connection with t h e  possible release of gravitational 

energy i n  order t o  meet the  energy demands i n  extended radio sources. 

investigators i n  many countries, including Feynman, Iben, Chandrasekhar, Gratton, 

Zel'dwich, Hoyle and Iqyself, hav; shown tha t  massive s t a r s  w i t h  spherical symmetry 

exhibit an in s t ab i l i t y  which follows direct ly  from general r e l a t i v i s t i c  considera- 

tions. 

My own calculations deal only with the post-Newtonian approxhation, but give 

resu l t s  ident ical  t o  Chandrasekhar's i n  the appropriate l i m i t ,  while a t  the same 

t i m e  making the  physical considerations involved quite c lear  and transparent. 

Numerous 

Chandrasekhar has given a very elegant and exect proof of t h i s  ins tab i l i ty .  

Consider a spherically symmetric, non-rotating polytrope of index n, gravita- 

t i ona l  mass M, and radius R, i n  hydrostatic equilibrium. 

the in te rna l  energy E, exclusive of the r e s t  mass energy Moc2 of t he  constituent 

It i s  well known t h a t  

par t ic les ,  and t h e  binding energy EB, are given on the basis 

by 

p % 4 3  
where R i s  the gravitational potent ia l  energy and f3 = 

of Newtonian mechanics 

+ pr) is the r a t i o  

of gas pressure, p , t o  t o t a l  pressure, t h a t  of gas and radiation, pro When 

Eddington's quartic equation is  solved for massive polytropes it is found t h a t  
Q 

. where CI is  the mean molecular weight equal t o  4 for pure hydrogen. 

sion'holds throughout a polytrope w i t h  index n = 3 but is approximately correct 

i n  the cent ra l  regions of any polytrope. 

This expres- 

It w i l l  be noted t h a t  B is  quite s n i . ~ l l  



8 &or massive s t a r s  being -loo3 for M = 10 Thus the  Newtonian term i n  the 

binding energy is re lat ively small i n  massive stars. 

In order t o  f'uUy appreciate the general r e l a t i v i s t i c  effect i n  the binding 
2 energy it is best t o  divide by Mc t o  obtain 

E 
Mc Mc 

2 where now the dInen610nle6s parameter 2WRc appears. 

tha t  the post-Nartonian approximation introduces a tern i n  the sQuare of this 

It W i l l  come 86 no surprise 
I 

parameter so t ha t  for a polytrape of index n = 3, for  example, one finds 

-=I-= E 53 
Mc2 Mc 2 (4 )  

I n  t h i s  approximation it is not necessary t o  distinguish between rest mass, Elo, 

and gravi ta t ional  mass M as long as 2GM/Rc Thus the internal  energy 2 is small. 

required fo r  hydrostatic equilibrium eventually becones very large and positive, 

the binding energy is  negative, and the system is unbound rather  than bound. 

energy goes through a m i n i m  or the binding energy through a maximum a t  a c r i t i c a l  

radius given for  n = 3 by 

The 

6.740 Rc = - 
B g  

and f o r  n = 0 by 
19 

Rc = 78 R&3 

where 
2GM 
2 R = - = 3 X X O  

C g 

(5) 

is  the  l imiting Schwarzschild radius. Because of the  smallness of B t h i s  c r i t i c a l  

radius is considerably greater than R and can be expressed for  p = 3, n = 3 a s  
g 

which becomes 2.3 X 1017 for  M = lo8 %. Unfortunately the  c r i t i c a l  radius i s  



c 

quite sensit ive t o  the polytropic index just  as  are  a l l  radius paraneters i n  poly- 

t ropic  structures. 

observations on the r a d i i  of massive "coree" i n  quasi-stellar objects are  subject 

t o  considerable uncertainty since de t a i l s  of the in te rna l  structure of the core 

are involved. 

As n approaches 5, Rc rapidly diverges. Thus comparisons with 

On the  other hand, ' i t  can be shown tha t  the central  temperature and the  central  

density are not greatly sensit ive t o  the polytropic structure and the c r i t i c a l  

values a re  given by 

TC = 2.5 x 1013 VM degrees (9) 

and 
-3 PC = 2.0 x l0l8 ( l p ) 7 / *  gm cm 

??le numerical coefficients displayed hold for  n = 3 but are  f a i r  approximations 

for  n = 0 t o  5. 

degrees and pc = 2.0 X 10 

indeed but it will be recalled tha t  the density a t  the Schwarzschild radius for  a 

polytrope of index 3 is  only -100 gm 

r e l a t i v i s t i c  considerations came in to  play i n  massive s t a r s  long before cen t r a l  

temperatures and densit ies necessary for nuclear reactions t o  take place are  

reached. 

5 It w i l l  be noted tha t  the c r i t i c a l  values are only Tc = 2.5 x 10 
-10 8 gm ano3 for M = 10 %. The density i s  very small 

The main point is  tha t  general 

7 2 For hydrogen burning T - 8 X 10 degrees a t  p 4. 10 gm cmo3 are  required. 

The general r e l a t i v i s t i c  ins tab i l l ty  follows d i rec t ly  f'romthe f ac t  t h a t  E 

increases below the c r i t i c a l  radius or above the c r i t i c a l  temperature and density, 

t h i s  behavior being j u s t  the opposite t o  tha t  before the c r i t i c a l  conditions are 

reached. Consider an adiabatic compression a t  a point below the c r i t i c a l  radius. 

Hydrostatic equillbrium a f t e r  the perturbation requires more in te rna l  energy and 

pressure than before and since this is not made available i n  the adiabatic com- 

pression, further collapse ensues. Consider an adiabatic expansion. Now hydro- 

s t a t i c  equilibrium requires less internal energy and pressure than given 
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cadielmtically so expansion continues. Clearly the  radius a t  which E reaches a 

A t  larger r a d i i  the decrease i n  the  e&- minimum is  c r i t i c a l  i n  t h i s  regard. 

Ubrium energy a s  R decreases gives the w e l l  known c lass ica l  s t ab i l i t y .  When an 

actual s t a r  reaches the c r i t i c a l  radius it w i l l  lose energy by radiation and the 

general r e l a t i v i s t i c  i n s t ab i l i t y  will lead t o  collapse rather than expansion 

L 

unless same internal  energy resource can be called upon. As noted above this 

cannot be nuclear energy u n t i l  t h e  collapse i s  w e l l  advanced. Whether the onset 

of nuclear energy generation can ha l t  and eventually reverse the collapse i s  nuw 

a matter of extensive study by several groups. 

given t o  the effectiveness of o the r  stabil izing agents such a s  rotation, frag- 

Considerations are a l so  being 

mentation, in te rna l  turbulence and entrained magnetic fields. 

It is a lso  of interest  t o  point out t ha t  the luminosity of a massive s t a r  i s  

not greatly sensit ive t o  the polytropic structure being given by L - 2 X 

ergs sec- l  which fields 2 X 

which is  of par t icular  i n t e re s t  i n  connection w i t h  the observed luminosities of 

M/% 
-1 8 ergs sec for M = 10 %. It is t h i s  resu l t  

t h e  quasi-stellar objects. 

2. SECOND DISCUSSION 

It is  natural  t h a t  nuclear physicists should be preoccupied w i t h  the  source 

Energy generation i n  of the energy i n  radio ga l ades  and quasi-stellar objects. 

stars by means of exothermic nuclear reactions has stimulated many interesting and 

f r u i t f u l  researches i n  nuclear physics. 

accustomed t o  begin with Einstein's mass-energy equation, E = Mc . 
can be quite misleading. 

I n  approaching these new problems we are  

However, t h i s  2 

It is better t o  write 

. where E i s  the  energy (exclusive of res t  mass energy) of a system composed of 

pa r t i c l e s  with t o t a l  rest mass Mo when by some mechanism of interaction the mass, 

measured gravitationally by an external observer, has been reduced t o  M. EB i s  
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tKe posit ive binding energy of the system which has been released by the interac- 

t i on  and is  the energy stare available fo r  transformation a t  varying efficiencies 

" 

. 

in to  various observable forms -- uptical  emission, radio emission, neutrinos, high 

energy par t ic les  and SO forth. 
L 

I n  the numerical expression the  ma8ses a re  ex- 

pressed i n  solar  units. 

In  principle it is  possible t o  reduce M t o  zero but not t o  negative values 
2 and so the maximum available energy is indeed Moc . One mechanism by which t h i s  

I can be accomplished is  annihilation of equal amounts of matter and antimatter. 

No detailed theory i s  available of the way i n  which  advantage can be taken of 

annihilation i n  the  radio objects but th i s  mechanism may indeed be the ultimate 

solution t o  the energy problem. 

G. R. Burbidge has reviewed the energy requirements fo r  us. For t h e  
1 

quasi-stellar objects ebirLr!,n st. 

in te rva l  of 10 years, the t o t a l  requirement is  3 X lo5' ergs. 

ergs i n  the  opt icel  range m e r  an estimated 
6 Radio emission 

~ 

by these objects i s  later by one or two orders of magnitude. 

emphasize t h a t  t h i s  requirement can be met by the nuclear resources of a super- 

It is  important t o  

massive s t a r  or  a number of massive s tars .  Hydrogen burning yields 0.007 of the 

r e s t  mass i n  energy and perhaps 25$ of a massive s t a r  can be converted t o  helium 

w h i l e  on t h e  main sequence. 

involved and the  s t e l l a r  mass required i s  10 %, close t o  the mass assigned t o  

the  core of a quasi-stellar object by Schmidt i n  one of h i s  models. 

The overall  yield i s  thus 3 X los1 ergs per solar mass 
8 

The problem does not l i e  i n  the energy resources but i n  the in s t ab i l i t y  of 

massive s t a r s  w h i c h  I have previously discussed a t  t h i s  Congress, and i n  more 

d e t a i l  i n  the Reviews of Modern Physics 36, 545 (1964). The central  temperature 

~ a t  the onset of general r e l a t i v i s t i c  ins tab i l i ty  i n  a non-rotating, spherically 

symmetric massive s t a r  is  insensitive t o  the polytropic structure and is  given by , 

a 2.5 x 1013 VM degrees 
I *C 
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d 

5 8 which becomes Tc 

?the tfhperature a t  which hydrogen burning begins d n  massive s ta rs ,  namely 

2.5 x 10 degree6 for  M = 10 This is  t o  be compared with 

7 = 8 x 10 degrees. 

hydrogen burning begins, collapse i s  in i t ia ted  and it is a question of whether the 

Thus general r e l a t iv i s t i c  i n s t ab i l i t y  sets  i n  long before 
TC 

onset of the  burning can reverse the  collapse and restore some semblance of stable 

equilibrium. Rotation, fragmentation, internal  turbulence and entrained magnetic 

fields probably serve a s  additional mechanisms i n  t h i s  regard. 

ignoring these agents, is under detailed study a t  Caltech, notably by Mr. James 

Bardeen using the full panoply of the general r e l a t iv i s t i ca l ly  correct dynamic 

equations. 

carbon, nitrogen or oxygen nuclei are present, the hydrogen burning occurs through 

the  rapid CNO bi-cycle i n  which proton capture by radioactive nuclei such a s  N 

The simpler problem, 

My own in te res t  l ies primarily i n  the nuclear reactions involved. If 

13 , 
OE and F17 occurs a t  a r a t e  comparable t o  t h a t  of t h e i r  i n t r in s i c  beta decays. 

The nuclear reactions i n  massive s t a r s  composed i n i t i a l l y  of pure hydrogen are  of 

considerable in te res t  i n  tha t  such s t a r s  may well have produced substantial  amounts 

of helium and even some heavier elements early i n  the history of t h e  Galaxy. 

pp-interaction t o  form deuterons is  much too slow t o  be effective on the  short time 

scale available under collapse conditions and the first effective nuclear process 

is  electron capture by protons t o  produce neutrons and neutrinos according t o  

The 

The neutrons are  i n  turn captured by protons t o  form deuterons by 

n + p  -c d + 7 ,  (14) 

and the  deuterons then interact  i n  a variety of ways t o  form alpha-particles by 

reactions which can be symbolically represented by 

2d + a. (15) 

4 The temperatures 

cesses occur are  

and densit ies a t  which these hydrogen t o  helium conversion pro- 

high enough tha t  the alpha-particles produce CE through the 
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w e l l  known Salpeter-Hoyle process 
z c 

The resultant CE i n i t i a t e s  the CNO bi-cycle and leads t o  rapid catalyt ic  proces- 

s i n g  of hydrogen in to  helium. 

reactions lead t o  the formation of s t i l l  heavier elements. In  t h i s  way it may 

prove possible t o  account for  the substantial  amounts of helium and t h e  traces 

of heavier elements thought t o  ex is t  in the oldest s tars ,  Pop 11, in the  Galaxy, 

Only detailed computer calculetions can yield the  ultimate solution t o  these 

problems . 

Additional proton, neutron and alpha-particle 

We have emphasized tha t  general r e l a t i v i s t i c  i n s t ab i l i t y  and not lack of 

e n e r a  resources ig the main d i f f icu l ty  i n  associating large masses w i t h  the cores 

of the quasi-stellar obJects, The situation is  quite different for  the extended 

radio sources associated with e l u p t i c a l  galaxies where a r e a l i s t i c  estimate of 

the various efficiency factors involved i n  the ultimate release of energy i n  the 

radio range leads on the  basis of current knowledge and conventional ideas t o  a 

d i f f i c u l t  and perhaps paradoxical situation. 

Burbidge has to ld  us t h a t  the minimum energy stored i n  r e l a t i v i s t i c  electrons 

and magnetic f ie lds  i n  t h e  extended radio sources i s  of the order of los9 ergs. 

The magnetic f i e l d  need not be f a r  different f romthe equipartition value i n  

e i the r  direction for t h i s  stored energy t o  be ten  times higher, namely, lo6' ergs. 

If r e l a t i v i s t i c  protons are  associated with the electrons t o  give a neutral  plasma 

the energy becomes 2 X 1061 ergs. 

which r e l a t i v i s t i c  par t ic les  are produced, such a s  solar  f la res ,  have eff ic iencies  

for  energy t ransfer  i n to  the  r e l a t i v i s t i c  domain a t  most equal t o  l$. 

the raw energy supply must be 2 X lo6' ergs, t he  full energy equivalent of 10 

solar  masses. Sandage has associated the  radio sources with large e l u p t i c a l  

Biermann has pointed art tha t  known events i n  

On t he  basis 

9 
I 

12 
' galaxies far which the mass is thought t o  be 10 % e  The radio e l l i p t i c a l s  

d i f f e r  very Ut t le  i n  appearance fromthe ordinary e l l i p t i c a l s  and only the nucleus 

17 



c 
I r  cr 

has prbbably been involved i n  the violent event which led t o  the  development of 

the radio source. 

10 l$, with the energy production. To obtain the energy equivalent of 10 % 
it i s  then necessary tha t  the raw energy production mechanism be a t  l ea s t  16 

. .  
1 

On t h i s  basis one i s  tempted t o  associate not more than 1% or 
9 10 9 

eff ic ient .  Nuclear production f a i l s  I n  th i s  regard and as 8 cor3equence Hoyle 

and Fowler suggested the release of gravitational binding energy in massive s t a r s  

as  another possibil i ty.  It is now realized tha t  re la t ive  red s h i f t s  greater than 

lo$ occur when the  energy release exceeds 16. 

energy i n  

and it i s  d i f f i cu l t  t o  find actual physical mechanisms which release the gravi- 

t a t iona l  energy rapidly enough under this handicap. 

Thus the r a t e  of emission of 

form i s  greatly retarded for  strongly bound, collapsing systems 

Several calculations have 

indicated t h a t  1056 is  a prac t ica l  upper l i m i t  for  t he  energy released before t h e  

Schwarzschild radius is reached and the red sh i f t  becomes inf in i te .  If t h i s  

p rac t ica l  limit is  reached i n  lolo % the  raw energy release j u s t  matches tha t  

required. However, it is  d i f f i c u l t  t o  assess the accuracy of our estimates for 

the various efficiency factors involved. It may well prove the case tha t  large 

scale magnetohydrodynamic ac t iv i ty  can lead t o  high energy par t ic le  production 

with f a r  greater than 1% efficiency and may involve f a r  more tnan l$ of the mss 

of a galaxy. On the  other hand, the  limitations ar is ing from t he  in s t ab i l i t y  and 

short time scales pertaining t o  massive systems according t o  general r e l a t iv i ty  

theory may be removed i f  unconventional modifications of th i s  theory, such a s  

those of Hoyle and Narlikar, prove i n  the long run t o  correspond more closely t o  

rea l i ty .  

18 


