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ABSTRACT s

, (5250
A sufficiency theorem for the stability of 2 linearly viscoelastic

s0lid subjected to partial f‘ollowe’r surface tractions is established.

It is shown that an appropriately defined functional metric space must

be introduced in order to formulate a well-posed problem, The usual

energy method, if applicable, and the Galerkin method, if convergent,

y-eld stability conditions only in a functional space whose metric is

Lefined in an average sense. ﬂm/




1l, Introduction

It was shown by R. T. Shield and A. E. Green [1]* that proofs of
vhe commonly used sufficiency theorems for the stability of a linearly
elastic continuum are, in general, deficient. It is the aim of this
study to indicate, using the stability theorems for partial differ-
entisl equations given by zubov [2], that this deficiency arises from
tae definition of stability of a continuum, and is not directly
related to the linearization of the equations of motion governing the
e¢-astic continuum.

4t the outset, it is shown that the stability of a continuum
zust necessarily be defined with respect to a metric which measures
Gistance in an infinité—dimensional space. This metric may be
postulated in Various suitable forms. The equations of the boundary
value problem of a continuum, together witw an explicitly defined
zeziric, P, form & functional metric space whose fundamental proper-
vles vary depending upon the specification of P, and thus leed to
different stability criteria., In this connection, we shall show that
the usual energy methods, if applicable, and the Galerkin method, if
convergent, yleld stability only with respect to an average metric.

The problem of a linear viscoelastic solid subjected to partial
follower surface tr;ciions is treated in detail and a sufficient
condition for stability of the continuum with respect to an averagg.

~atric is established,

¥ Numbers in brackets refer to Bibliography at the end of this paper.



2., Statement of the Problem

We consider a finite isotropic, homogeneous, linearly viscoelastic
solid, bounded by a regular surface S, contained in a volume V. At thé
time t = 0, the solid is in a state of initial stress oij ;s 1, = 1,2,3,
caused by a system of partial follower surface tractions P; » appiied
at the boundary S. By partial follower forces we shall mean forces
which follow in a specified meanner the deformation of the surface
element upon which they are acting and aré therefore dependent upon
the motion of the system. We shall refer to the state of initial stress
of the solid as unperturbed (equilibrium) state and study its possible
notions with reference to this state. Furthermore, we shall assume that
the perturbed quantities are small (these quantitites will, subsequently,
be indicated by a bar - ) so that all terms of order higher than the
second msy be neglected. The equations of motion of the perturﬁed

solid, referred to a fixed orthogonal Cartesian coordinate system,

~
~.

are [ 3] .
- - o \\\\
dij,j + (djkAui,k),j n u 0 inv,
- - L * -
dij ny + djk u ey =By ons, 1i,j,k=1,2,3 > (1)

where m is the mass density, x3 are the coordinates, Ei the displacenent

components measured from the unperturbed state, n, the components of the

J
unit normal to S, ﬁi the perturbations of the applied surface tractions.

A comza followed by indices k,] indicates differentiation with respect

iIn these equations and in the sequel the repeated indices are
sumzed over the range of their definitions, '




To Xj ’ X and dots denote derivatives with respect to time. We

shall assume here thet

By=o(x)p; 3 ; oms @

vhere o x ) = c.(x1 » Xy xb) is a parameter which serves to describe
the manner in which the surface tractions follow the deformation. If
« = 0 the system is conservative and for a = 1 we have the case of
Tollower force introduced in [3]. We shall consider here the cases
where uf x ) is, at least; of class Cl in the region of its defini-

tion [4]. The constitutive equations shall be taken in the form

-— p 2
%15 % Cigir %,1* Cigia %1

Cijna ™ ™M b5 Y+ 2m By 8y
’ Y / '
ad Cigq = N ¥y5 Y+ 2wf ¥y by (3)

uhefe bij is the Kronecker delta, N\ and p are Lamé constants, and N
and ./ are viscous constants corresponding to Lamé constants.

A general solution to the nonself-adjoint mixed initial and
ooundary value problem (1) cannot, in general, be easily obteined.
Therefore, in order to.study the stability of this system, we have to
resort to sohe other means and; consequently, we shall not expect to
gain as much inform;tion concerning stability as we would if we were to
construct and evaluaﬁe a general solution of the system. As we shall
see in the following section, this is by no means a shortcoming, A
stroi; stébility criterion, that may be imposed on the system and which

could e applied if we were to solve system (1) completely, would be of




doubtful interest.

In this connection, we shall consider a certain functional (which,
i.. effect, expresses the energy of the system) and explore the stability
of (1) in some .appropriate average sense. Furthermore, we shall show
that the usual Galerkin method, which reduces the system of partiel
c¢ifferential equations (1) to a set of ordinary differential equations,
y.elds the same results as those obteined by a siudy of the functional
mentioned, provided all the series expansions employed converge in an
average sense.

To this end, we consider a complete set of normalized eigen-
vectors, obtained by solving the homogeneous, self-adjoint system

= n/ =
1 - Cijx1 T Py

geomeirical boundary conditions as the original problem, Let this set

deduced from (1) by setting ¢ = 0 , which has the same
¢ orthonormal [5] eigenvegtors be denoted by {win('z )} ; 1=1,2,3,
2= 1,2,s00 o We shall reduce our original system of partial to a
systen of ordinary differential equations by expanding Gﬁ and its
derivatives in terms 6f these eigenvectors, without any attémQ:~to

» resolve the questioh of convergence. In fact, a rigorous proof of
convergence of the Galerkin method, as applied to nonself-adjoint
linear differential operators, does not, to the best knowledge of the
authors, as yet exlst. However, some comparison between the results
obtained by applyling this method to some simple problems and the exact

: : *
solutions [3], certainly suggests that convergence may be assumed.

“The paredox in the problem of flutter of a membrane, as was shown
in [3], 1s not related to the fact that the system is nonself=adjoint,




In our problem, we shall therefore state that if convergence exists
{(in an average sense at least) then the two methods yleld identical
Tesulis,

Let us now consider the fundamental question concerning siability

of a solid.



-

3. Concept of the Stability of a Continuum

The concept of the stability of a state of a dynamic system with
& finite number of degrees of freedom has & significant geometrical
reaning, We consider a system with r degrees of freedom described by |
Scneralized coordinates Q, and generalized velocities an H
n= 1,200, + For a holonomic and autonomous system, we write the
cquations of motion as

%n:: fn (zl ’ 22 ...,er) H n =‘1,2,...,21‘ (4)

where 2z

n- % 2

I

D= 1,200y ,

“e

Z
Fn

and fn( z ) are bounded, continuous, real functions vanishing for

5, = O« We assume fn satisfy all the conditions required for the
existence of a single-valued solution for t > O in the region of the
definition of 2, . Furthermore, we represent the state of this
¢/namic system by a point in a 2r-dimensional Euclidean space, EZr ’
with coordinsates z, ;0= 1,2,e0032r « The equilibrium state of the

system at the origin is said to be stable if for any € > O we can find
2r

Z:zi <oatt=0, w

a ® > 0 depending on & only such that when
: : =1

by

Lave Z:zi < € for al1 t > O . In the opposite case z, = 0 is
=1
cclled unstable [6]. Furthermore, Z, = 0 is called asymptotically

tisble if it is steble and  lim I izi] ~0.
~» o =

The ebove definitions of stability are due to Lyapunov [6].



Ze also supplied.the proofs of necessity and sufficiency, employing

the notlon of distance in the finite-dimensional Euclidean space E2r .
Tor systems with an infinite number of degrees of freedom (con-

tinuous systems) the notion of distance in an infinite dimensional

space needs to be introduced, if one wishes to extend Liapunov's con-

cepts to such systems., In this case, we have to be concerned with

functionals rether than functions and must explicitly define a measure

(metric) of distance of two states of the system and then study the

stabllity of the system with respect to this metric, p. The metric

‘J

ney be selected in any suitable manner (provided it satisfies three
Tundazental conditions [7]) so as to fulfill some physical require-

zents of the problem at hand. It may be desirable, for example, to

~mit ihe displacements and the velocities at each point of the

sclié, in which case we define

Py =Yy U +uyu everywhere in V and on S .

In some other cases, we may wish to restrict the strains as well as
the displaceﬁents and the velocities at each point of the solid,

such that

92 = U ouobouou o+ ui,j ui,j everywhere in V and on § .
For most practiéal problems, however, it is usually preferable

to define p in an average sense; for example

93=_[v[

We now state the definition of the stability of the initial state

we oI

+ Ei u Jav .

£l

1% 7Y% %5




of a solid with respect to an explicitly defined metric p'[2] , By
eppropriately extending the corresponding definition for a finite
systen,
The initial state of the continuous solid is said to be stable
if for a given € > O we can find a § > O depending on € only such
that when p ¢ 5 at t = 0 we have p ¢ € for a1l t > O . 1In the
opposite case, the initial stete is called unstable, Fuwrthermore,
the unperturbed state is called asymptotically stable if it is
stable and t¥i%p p~» 0 . The sufficiency theorem of stability may
row be stated as
Theorem:
In order that the unperturbed state of system (1) be
stable with respect to a metric p , it 1s sufficient
that there exists, by virtue of the requirements of the
boundary value problem (1), a finite, non~increasing
functional which is identically equal to zero for p = 0
and admits an infinitely small upper bound with respect
to the metric p .
Tﬁe sbove theorem is an appropriate version of the theorem of stability
given by f. A. Movchgn [8]. 1In the sequel we shall use this theorem to
establish a sufficiency criterion for the stability of system (1). But
let us first discuss some aspects of the definition of stability.
It is seen that the stability criteria are highly dependent upon

ine specification of the metric p « We may not, therefore, expect to




apply a criterion obtained, say, for 93 to Py and get like results.
The problem which was treated by R. T. Shield and A. E. Green [1]

ney exemplify this very point. An isotropic, homogeneous, linearly
elasfic sphere was perturbed by radially symmetric applied infinite-
simai disturbances at t = 0 and it was shown that the strain at the
center of the sphere can become finite for some t > O . Let us show
taat although this system is unsteble with respect to the metric p2 s
it is steble with respect to 93 « To this end we conéider the follow-.

#*
ing functional

2[I (m i t Cijr1 1,j“k1)d"]

whose time derivative is zero by virtue of the equations of motion,
2nd which admits an infinitesimal upper bound with respect to the

metric Py e From the inequalities [11, 12, 13]

Cl'fv ug U, dv < fv ui,j ui,j dv ,

C2 f uy 'd i,J dv € I C

Ly 1jk1 1,;} “k 1 ¢

waleh are velid for all admissible motions of the solid with Cl and

02 being fixed positive constants independent of ui , we immediately

construct the inequality

Hl 2K 93 for 211 t 20,

1 reforence [9] A. A. Movchan has proved some stability and
;nstabl;*t/ theorems for a linearly elastic solid subjected to con-
servative Jforces. See also [10].




waere X is also a fixed positive number not dependent on 1_11 .

; < Ke and obtain 93 eatt=0., But Hl is a non-increasing

We
et H
function of time, Therefore Ke is an upper bound of Hl for all
t >0 , which implies |

p,<e forall t20.

3
In [1], the initial disturbances were taken to be

_u_ Ou_ o« _ 2 1 o4 . . -
u= =50 = 0, u= = [ ™ £'(r) -« £7(x) ] ; att =0

where r measures distances from the center of the sphere, ¢ = }-i—zg

cad £{r) is given by

£f(r) =0 ’ 0rsSsa

. 1 4 :

£(r) = 5S(r—a) (r - a - 2¢ca) alrfa+ 2a
g a ’

fr)=0 a+2asr.,

4 slmple calculation shows that p, = O(g) at t = 0 . Furthermore, at

3
t = a/c we have, for 0 < r < 2¢a ,

u = r2 (2¢ca —-r)3 (7r - 6ca)

55

g & ‘
which immediately yields p3 = 0(c) at t = a/c , while the strain at
the center of the sphere at this instent is finite:

ru n du _
Lr]r=ea-l’ [Tr r=ea—6'

In this example, one is able to obtain an exact solution to the
differential equations of the boundary value problem. Therefore, one

is in the position of requiring as strong a stability criterion as




cne pleases. We see that the system is not stable with respect to p2 ’
elthough it is stable with respect to pl and P3 « The important point
to note in this connection is that the stability with respect to the
metric P3 could have been deduced without possessing an explicit
soiuvion of the problem,

I» most practical problems, the system may well be stable for all
oractical purposes, while it may not satisfy.the point-wise stability
conditions with respect to the meirics P1 and P2 « In those cases
vhere may exist a finite number of points in V where an infinitesimal
»erturbation at ¢ = O may cause finite, say, sirains at these points

or some t 2 0 o If the collection of these points forms a set with

by

measure zero, then the stability mey exist with respect to the
metric 93 .

The metric 93 seems to be more appealing also from a purely
nathematicel point of view. In this regard, let us note that the
ceries expansion of a piecewlse continuous function in a finite domain
is an approximation in a mean square sense and not a pointwise repre-

sentation, The following discussion will, therefore, be devoted to

the stability of system (1) with respect to the metric P3 .




Le Ln2lvsis of Stability

W2 consider a functional H given by

=32 {.f (= Y Y 1Jkl Y, uk 1+ (1-a) djk i,k i,J] dv +

t , S - =
+ 2 i' j;_[cijkl U5 U1 Sk (a ui,j),k uiJ dvdt } (5)

end note that, from the requirements of the boundary velue problem (1),
Z is a continuous functional which vanishes identically at the initial

wnperturoed state of the solid, p, = O . The total time derivative of

3
= is
dH _ s o KX -— _ - 2
ac fv (mu; u + Cijil %,5 %,1+ (1~ a) %k Y4,k %y, *
/ 2 R
Ciji1 Y4,5 %,1 "~ %k (@ u, 1,30,k “i] dv . (6)

But we have

Jvfukl“kl"cijkl“kl]u Jdv=f 93 By Uy 95 -

f La-a) gy u u .- (a U o5) e Yy } dv = -

_ - - L . - _ - a2
J‘ ‘djk uy k],j uy av +.f Ldjk ui,k nj a Py ui,k] uy ds ,



vhere in the last reduction we have used the fact that for the unper-

wurbed state we have

dij,j =0 inV and ojk n, = pj on S .
Bquation (5) now becomes
GH_f (.2 _=  _ - v
a"’E_Lrj‘m“i %505 T e e T e
e - ] K
+jS[ 15 %5 * %5k Y -ap;u 1y ds (7)

wiich is identically equal to zero by virtue of equations (1) for all
cinissible perturbed motions of the solid. Moreover, H admits an
Ininitely small upper bound. To show this we let the initial per-
Lwoation be caused by en impulse of an infinitesimal magnitude; and

trerefore the initial value of the metric p3 is

Tzen, at this instant, we have
3 2 2 LIS
=§f mu, u, v“% fuiuidv < 6=%‘m€.
v
Zat & is en upper bound of H for all ¢+ 20 , as H is a non-increasing
function of time. Therefore, if H is a positive definite functional,
.;”,n ail the requirements of the sufficiency theorem are fulfilled and
we have the following theorem
Tl.zorems

For a linearly viscoelastic solid subjected to a set of



partial follower forces to be stable with respect to the
metric p3 s 1t is sufficient thaﬁ the functional H given
Ly equation (5) be a positive definite quantity for ad-
missible perturbed motions of the solid about the state
of initial stress.
Let us note that the requirement of H being a positive definite
Sunctional may imply a stronger stability condition than is given by

- « wais touches then upon the question of the necessary conditions
2

viich will not be dealt with here.

T

Fron the above discussion we may conclude that the commonly used
- ciergy methods yield stability criteria with respect to an average
zelric 93 . Therefore we may not, by any means, expect to retrieve
ény mors information than_is retained after this averaging process.
U2is conclusion is also valid for most approximate methods such as
vte Ritz, the Galerkin and other methods, where we use some averaging
processes to reduce the system of partial to a set of ordinary differ-
ential equations. We shall explore this point further in the sequel,
out let us meke first another remark regarding system (1) and funct-
zonal He We let solution of (1) be of a form Ei = ¢i (x) Pt

and obtain from (5)

L ozt [ 1 2 _ |
H= e {zjv[p B by Gy by Wyt (- Y wi,j] v +

v J;V o cipa b5 17 o G P ]} @
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T

I we substitute Ei = \bi ept into equations (1), we obtain an eigen~
value problem with eigenvalues p « From equation (8) we may conclude
that, for H to be a non-increasing function of time, p must have a
aon~positive real part.

We now reduce equations (1) to a set of ordinary differential
ecuations. Ve assume that Ei and its derivatives can be éxpanded in
terms of the comp.lete set of eigerivectors { q)in ( x ) } s 1=1,2,3,
L= 1,2,.4.,%, such that

1

aﬁviul i L ®in %in %(t)ldv < €1 fvlu Y4 z(pin ®in % Z(t)]dv < €22

=1 n=1
N N
u Jukl Z Z-qaln,j kmlqn(t) qm(t)ldv<e ’
=1 =1

¥ U
"! ]u 1,jk Ui z chln ,jk ®in qn(t) %“‘”dv( €,

=1 m=1
and
o ¥
ugvl;‘i,j w1 " ) Zq)in,j Pm,1 Glt) W) lav < g
=1 p:l
2,051 = 1,2,3 , (9)

for some N > M, where M is a large positive number depending on €43
L = 2,2,4e095 in the above inequalities and €; may be made as small as

we please by selecting M sufficiently large. For such en M, equation
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{7) reduces to

H N i
2:{ <4+ 2:Cmn 4+ Uﬁ Ez(bmn + b)) g } 4 =0
=1 =1 =1

waere

oo =[] a- - v]
O = W2 j‘(l a) ¢ Jjk 1n,3 ¢1m,k dv IV jk (a an,J),k ®in d
“n
axnd
— :.‘ Y .
Can = J_Cisxl %n,1 Pim,; 97 (10)

v
In obtalning (10), in eddition to the Gauss theorem we have also

uioilized the fact that { @in } are solutions to

2
= 3
Cijkl Pkn,2j ¥ B9 %pn =0 12V,
. %k k1 %0 om s,
o 2 %n Pin dv = bmn ¢

'l
Tor &m 3 = 1,3,...,N not identically zero, equations (10) yield
N

Lo b D G ) 570, mm b, 09
=1 =1

waich is a system of non-self-adjoint, ordinary differential equations,

Similarly, H reduces to
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e

<4

N
LR+ C ] Lagaae

==1 =1

|
Pl

»

»

t N
2l Llomt v s s e )
=1

n

-yg) o
were & fv(l a) 3k q)in,j @im,k dv ,

= . r !
%mn = Jvdjk (a cpin,j) k ®in 4V s
ad b _=—=(a_+D ) (11)
i wn 2 “mn . mn °
m

For & positive definite H in a region Ps <R; R>0, we can find
an M cuch that H is also a positive definite quantity within a ring

§;! < 23 <R , where ;3 is defined by

N

- 2 .2 . e

Py = Z (q,n + qn) in a 2N-dimensional Euclidean space. More-
n=1 '

- over, §1 is dependent only upon &, in inequalities (9) and may be made
as small as we please by choosing M large enough., From the stability
theorem we therefore: conclude that, for system (1) to be stable with
resbpe,ct to the metric p3 , 1t is sufficient that H Ee a positive

dt
equal to zero along any path satisfying equations (10'). Therefore,

definite quantity. But H vanishes for 33 = 0 and i is identicallyA

oy Liapunovls stability theorem [6], system (10’) is stable when H




s a positlive definite quantity, and likewise when H is a positive
definite quantity.

The study of stability of the system of linear homogeneous
ordinary differential equations (10) is, however, a classical
zathenatical problem. For the stability of (lO’), it is necessary
and sufficient that the roots of the chéracteristic equation of (10')
-ave non-positive real parts., However, the study of the function K,
valeh in fact i1s a statement of the energy of the system, can provide
s with a better insight into the physical behavior of the system.

Tz sheil consider this aspect in detail in enother study and merely
rote here that there exist two distinct modes of instability of
system (1). One is characterized by divergent motion or the existence
of &n adjacent equiiibrium configuratioﬁ, the other by flutter or the
exdstence of an amplified oscillation. Divergent motion may occur if,
Jor a virtual (static) displacement of the system, the work of the

applied forces equals the change in the strain energy of the system,

namely

l -— -— — -—
- - [o} -
o fv 2 [Cijkl Ui, 1t (L - Oy oy Jdv

or equivalently
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I3 :‘ ; r b I [+ I a -
¢ JV 2 Lcijkl “1,5 Y1 T %5k Yk Y,g ]dv
- | ap.u , du ds=0
fs pJ 1,5 %% S (12)

waere d is the varlational symbol,

Let us now assume that a is function of a real parameter v ;
~» <y <+2 , in addition to X » X, , and X35 G = a(x1 y X X3 3 Y) .
Moreover, we consider a proportional loading 8 pj( x ) , where B is
.a finite, dimensionless, reel number; O £ B < ® ., 1In this way, the
piane of B-Y is divided into regions of stability and instability
oy equation (12). The effect of the linear viscosity (equation (3)),
in this case, is to make the stability regions a closed set (except,

possibly, for a set with measure zero; a finite number of isolated

points in this plane.). |

The limiting conditior . .r the flutter of system (l), by con-
vrasty is obtained when

[ L

~ w [ o
o= | L o! u -0 u u ] =
BTy ‘[v, LOigkL Y,y Me,1 ™ Oqc @y 5) vy [dvdt =0

where w is the frequency of steady state oscillation of the solid
ebout its unperturbed state. The motion of the solid deceys if

H3 2> 0 znd emplifies if H3 <0 .




5o Corncluding Remarks

<n conclusion it should be emphasized that the sufficiency
theorem for the stability of a linearly viscoelastic solid sub-
jected to partial follower surface tractions advanced in this study
has been established only with respect to a particular functional
zetric space. This work, then, in effect, is an illustration of
the indispensebility of an explicitly defined metric and no attempt
was nade to establish a ﬁecessity theorem., Nor was the question
ralsed as to the convergence of the Galerkin method as applied to
aon-self-adjoint operators. Likewise, the important problem of the
ossible role of nonlinearity of various sources was deliberately
excluded. The two different types of loss of stability (divergent
~otion and flutter), pcssible in the presence of follower forces?
vere mentioned only briefly and will be “reated in detail for a
Zeneral finite system in a separate investigation. The destabilizing
effect of linear viscous damping in a continuous system subjected to

nonconservative forces will alsc be discussed elsewhere.
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