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PREFACE

The following report was presented before the joint annual meeting
of the WGLR-DGRR (Scientific Society for Air and Space Travel, E.V.
—German Society for Rocketry and Space Travel, E.V.), Berlin, Ger-
many, September 16, 1964, and was published in Raumfahrtforschung,
Vol. 3, July-September 1965.
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SUMMARY
s 33V

The atmosphere model which is generally assumed
for the planet Mars consists of two overlying layers, the
troposphere and the stratosphere. In the troposphere,
which encompasses altitudes between zero and h, one
assumes a linear decrease of the atmosphere temperature
with altitude. The stratosphere, which is adjacent to the
troposphere, is at a constant temperature (Tg). Other
quantities which determine the Martian atmosphere model
are: rq (the radius of Mars), R (the gas constant), gq (the
Mars acceleration), Tg (the temperature), and pg (the
density at the surface of Mars). The numerical values of
the atmospheric parameters, which have been proposed by

different scientists, are summarized in a table.

In the present paper, we first derive the density
distribution within the Martian atmosphere as a function
of altitude and the atmospheric parameters, assuming the
perfect gas law holds. The equations of motion of simple
bodies are established and solved. The solution consists
of equations for the velocity, the acceleration, and time
as explicit functions of altitude. The case of oblique
entry into the atmosphere is also treated. It is shown how
the altitudes at which acceleration and heating are maxi-

mum can be calculated.

In the second part, we consider a sphere entering
the atmosphere described above. It is assumed that the
center of gravity of the sphere does not coincide with its
center. The diameter containing the sphere’s center of
gravity will be called its ‘‘axis.’

’ First, we consider the

rotational motion of the sphere, assuming that the axis of
the sphere is initially inclined with respect to the tra-
jectory. The axis carries out an oscillation in a plane,
the amplitude of which decreases and then increases

after maximum acceleration is reached. If in addition the

@.wu\ )
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VIl

sphere is spinning initially, it will carry out a complicated
precessional motion around the velocity vector. As in the

first case, the precession angle first converges, and then
diverges.

In the third part, the results obtained above are
compared with the exact solutions. For the exact solution,
a numerical integration of the equations of motion is
carried out taking into account all forces neglected above.

[t is seen that the new theory of motion is a considerable

improvement over the old theories. a/{/
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I.  DENSITY DISTRIBUTION ON MARS

A typical Mars model atmosphere consists of a troposphere extending from altitudes h = 0 to h = h,
above which lies the stratosphere of infinite extension. Within the troposphere, the temperature is assumed
to decrease linearly with altitude h; the stratosphere is assumed to be at constant temperature Tg (see
Figure 1.1). The parameters which completely define a model Mars atmosphere are: the surface density 0;
the surface temperature T, ; the tropopause altitude hT; the stratosphere temperature TS; the gas constant R
of the atmosphere, and the acceleration of gravity at the surface g,. Table 1 shows the numerical values of

these constants for Mars model atmospheres proposed by various scientists.

The density distribution p(h) within the atmosphere will now be calculated, assuming that the

perfect gas law holds and the atmosphere is in equilibrium with the local gravitational field and is nonrotating,.

The equation of equilibrium for an elementary volume element located at a distance r from the planet

center is

przdﬂdrgorg

=pridQ-(p+dp) r+d)?d Q (1.1
2

r
Here p is the density, p the pressure, and dQ the solid angle of the volume element subtended at the planet
center. The perfect gas law in differential form is:

d d dT
@® _ & (1.2)

2
1 dp 2 8% 1 dT
—_ =4 + — — (1.3)

p dr r rRT T dr

Within the troposphere, T =T, + Gh. The boundary conditions are o (h =0) = p. Integration of

Equation (1.3) then gives the following density distribution within the troposphere:
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(1.4)

where

a = gore/R(Ty-Gry)  w = Ga/(Ty-Grp)

The density o at the tropopause altitude h is then found by substituting r =r( + h in Equation (1.4).

Within the stratosphere, T = Tg, and the boundary conditions are p(h =hy) = pr; integration of

Equation (1.3) results in the following density distribution function within the stratosphere:

2

T
T 1 1

p=ppl— ) expj- ,Br(z) _—— 1.5
r I'p r

B = go/RTg

Note that for h = e, p = 0.

If the acceleration of gravity is assumed constant throughout the atmosphere or, equivalently, if a
flat planet is assumed, the density distribution becomes the purely exponential one (o= pgexp (=8 h)]
often treated in the literature (Reference 1). Figures 1.2 and 1.3 show density as a function of altitude for
model G. For comparison, the density distribution, assuming a flat planet, is also included. It is seen that

at 800,000 feet, the densities vary by an order of magnitude.
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il.  VERTICAL ENTRY OF A BODY HAVING CONSTANT BALLISTIC COEFFICIENT

For sufficiently high approach speeds, such as will be encountered by nonretarded Mars entry
vehicles approaching Mars from Earth, the aerodynamic drag will be several orders of magnitude larger than
the acceleration of gravity during entry. Neglecting gravity, the equation of motion of a body descending

vertically into the atmosphere is (see Figure 2.1)

V = -BpV? (2.1)

where B = CDA/Z m, i.e., one half of the reciprocal ballistic coefficient, and is assumed constant. We

assume the boundary conditions
V = VE forh = o (2.2)

where subscript E represents conditions at entry.

Within the stratosphere, the density is given by Equation (1.5), and integration of Equation (2.1)

results in the following equation for velocity V as a function of distance r from the center of the planet:

N e
B,oTrT exp - 8 9
T fo
V(h) = Vpexp ( - exp -1 (2.3)
2 r
B To
The velocity at the tropopause altitude h is given by
2
2
B ['T =Bry
VT = VE exp -— - pT 1 - exp (2.4)
B ro 'y

Within the troposphere, the density is given by Equation (1.4) and the boundary condition is

V(hth) = V1. One obtains the following velocity function valid within the troposphere:




JPL TECHNICAL REPORT NO. 32-845

Vi) =V

exp ot

Within either layer, the velocity is given by

V(h) = Vexp -

[p (r) T() £ - J r?r] (2.6)
8o o

where subscript T refers to conditions at the tropopause altitude hT'

By assigning specific values to the quantities C, j, and k in
F = C pi vk (2.7)

several key trajectory parameters are obtained:
Linear acceleration: IVI =Bp v?2
Average heat-transfer rate: H, = C_ CF,‘ o V3

Stagnation-point heat-transfer rate: Hg = Cg ,Ol/2 3

The altitude at which F reaches a maximum is found by solving the transcendental equation

2

2 8o o dT

+ — }=kBp (2.8)
T

r r2 RT

The time, measured from some convenient reference altitude, is given by the integral:

t=—/ dr + tg (2.9)
V()
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In the stratosphere, V is given by (2.3), and the time becomes:

Y4
o & 4y (2.10)
C Y (InY/K)?
where
B fr -y/
Y = In(Vg/V) K=—{—) pqe 7T C=Vg ek
/8 To

This integral must be evaluated numerically. A first approximation to (2.10) is obtained by setting ry =,

in which case the time can be expressed by the tabulated function Ei (x):

Ei(Y) + t, (2.11)
BV




lll.  NONVERTICAL ENTRY INTO A PLANETARY ATMOSPHERE

Let us now assume that the body approaches the planet along a rectilinear path which misses the
planet’s center by some nonzero distance r, # 0. Let the coordinate y along the path be defined by Figure

2.1. Neglecting the acceleration of gravity as before, we obtain the equation of motion
V =-BpV? (3.1)
Transforming to the independent variable r, we obtain the equation of motion

dv -Bo(r)d
— = -Bpdy = pr rl (3.2)
v VI
c
1-{ -2
r

Within the stratosphere, the density is given by Equation (1.3). If the boundary condition V(h =) = V

E is
imposed, the final equation for the velocity within the stratosphere becomes
B s
Bot r%, exp | -
T 1
V = VE exp - . J0+ — J2 4 eee 4+ Cn J2n 4 eee (3.3)
B g 2
where
~&3/
Bpq r?r e 0T
Jo = exp (8Z) - 1 K = (3.4)
rC
27 2 2 1.3.5..(2n=1)
Jo=exp(82) {22~ = + — |- = C, =
5 & 82 2% n|
2
( (2n) ! 5 B
=1 67) - =
J2n 2 exp ) 82n ;

JPL. TECHNICAL REPORT NO. 32-845
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Te 5 72n"1 (2n = 1)
I, =2Z%® - -
n

2n=2

il
et

Figure 3.1 shows velocity versus altitude for entry into the ‘‘G’> model atmosphere. Curves are
shown for two different ballistic coefficients (B =1 and 10 ft2/ slug ) and two entry angles (=60 and —90°).
Figure 3.2 shows the corresponding acceleration histories. The acceleration increases as the motion pro-
gresses; the altitude at which maximum acceleration is reached depends strongly on the ballistic coefficient,

but not on entry velocity. The acceleration decreases again after reaching a maximum.
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IV. THE ROTATIONAL MOTION OF A SPHERE ENTERING THE MARS ATMOSPHERE

We shall now investigate the six-degree-of-freedom motion of a sphere entering the Mars atmosphere.
For this purpose, let (x, y, z) be the inertial cartesian coordinates of the center of gravity (S) of the sphere
(see Figure 4.1), We also define two additional coordinate systems with origins at the c.g.: (x, y’, z') with
axes paralle! to the inertial system, and (xB, Yg zB) with axes fixed in the body. We assume that the
sphere’s c.g. (S) has coordinates (xB =0, yg = 0, zg= 0), the coordinates of the sphere’s center (M) are
(xB =0,yg=0,z5= N), and the coordinates of the sphere’s center of pressure (D) are (xB =0,y =0,

zg = ~1.). We assume N = constant and L. = constant during entry. The zg-axis of the sphere, which contains

6 . 99
axis.

the c.g. (S), the center of the sphere (M), and its center of pressure (D), will be called its
Figure 4.1 shows the Euler angles (), ¢, 8), which relate the coordinate systems (x’, y ', z") and

(x5, Yr» Zg)- The Euler angles and their time derivative have the following physical meaning:
B'YB’ B g g phy g

' is the inertial precession rate; \ measures the angle between the line of nodes k and the
fixed x “direction. The line of nodes k is the intersection of the x'y “plane and the Xpypg

plane.

¢ measures the rate of self-rotation of the body about its “‘axis”’ zg; ¢ measures the angle

between the line of nodes and the xB-axis.

é is the angular rate of nutation of the body axis with respect to the inertial z-axis; 0 is
the inclination of the ‘‘axis’’ of the sphere with respect to the z-axis.
The six-degree-of-freedom equations of motion for the sphere will now be derived using the Lagrangian
formulation. For this purpose, we first form the kinetic energy T of the vehicle as follows:
T=2 2452420+ L (1P +1 Q% +1,R%) (4.
2 2

It consists of a translational and a rotational part; (x, y, z) are the cartesian velocity components of the c.g.
and (P, Q, R) are the body-fixed components of angular rate. They are related to the Euler angles and their

derivatives by
P =\.ﬁ sin@sin¢+écosqb
Q =\.l/ sin@cosqb—ésinqb (4.2)

R=\,.bc059+q;’>
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If, in addition, we assume the mass distribution of the sphere to be axially symmetric, that is, [ = Iy, then

the kinetic energy becomes

I . . 1 . .
T- 2 (YW?sin26+62%) + = ( cos 6 + @)% + = (x% +y2 +22) (4.3)
2 2 2

The equations of motion for each degree of freedom (x, y, 2z, Y, ¢, &) are found using Lagrange’s
equations. This has been carried out in Appendix 1. It is found that the motion of the c.g. is rectilinear, and
the z-axis direction can be chosen as the direction of motion without loss of generality. The final rigorous

equations of motion are

x =0 X = Xq (4.41)
y =0 Y =Yg (4.42)
CpA p 22
7= — (4.43)
2m
d T . .
— (Ix Y sin“ 6 + IZ(L,(/ cos 8 +Plcos G) =0 (4.44)
dt
d - .

I, — (Wcosf+¢) =0 (4.45)

dt

. . . .. CpAp 22
IL6-1, Y2 sin 6 cos O +1,(f cos 8 + ) Ysin 6 = ~ ——;2—— L sin & (4.46)

Equation (4.43) was solved in the former sections, if one sets z = V, and will not be discussed here. Two

integrals of the rotational motion follow immediately from (4.44) and (4.45):

(I, sin29+Iz cos? 5)\2} +Izq‘5cos 0 =1b (4.5)

Iz(\,ZJ cos O +cj.>) =I,R=1a (4.6)

X

10
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Thus, we have

I

<2)=~x—a-.cos<9 4.7)
IZ
. b~acos8
Yoz —— (4.8)
sin? 6

Equations (4.46), (4.7), and (4.8) constitute the rigorous rotational equations of motion for the sphere.

The terms p and z2 = V2 are known functions of altitude from the former analysis.

Two types of rotational motion will now be treated: fast precession and nutation.

11
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V. FAST PRECESSIONAL MOTION OF A SPHERE ENTERING THE MARS ATMOSPHERE

We assume that the sphere is initially spinning at a high angular rate R about its ‘“‘axis.” (The
axis of the sphere is the diameter which contains the c.g.) Assume also that the axis is inclined to the
trajectory by some angle &;. For small angles of attack &, we can set sin 6 = 0, cos & = 1. The following

differential equation is thus obtained for &:

v s 94U
9_9__4,__— +c92.—c2=0 (5.1)

a? 4
where c =b —a, a? = (IZR/IX)2 and UJ = (2 CDALIX/[zzRZ) © V2 are known functions.

The precession rate is given by

\'L - (5.2)

Let the nondimensional time 7 be introduced by the transformation 7 = t/tl, where t| = 1 sec. Then,
the term & in Equation (5.1) can be reinterpreted to mean double differentiation of & with respect to 7. The

quantity a becomes dimensionless. R is the numerical value of the spin rate.

For large spin rates R, a solution of (5.1) can be found of the form

2

€
Blt,€) = Gy(t) + €6,(t) + — Gp(8) + - (5.3)
2
where
. 2

1
eo () L (5.4)

a’ I R?

12
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Substitution of (5.3) in (5.1) results in the following equation for the zero-order term &

2c

90 - — (3.5)

1+ y1+U
The first- and second-order functions satisfy

~6, 65
91 = —_— (5.6)
9(2)U + 2¢

and

36, + 36,620, + 1.5 UGRRE 4+ c 62

UGS +2c6,

In (5.6) and (5.7), the functions &, .9.1 are known by

d%6, do,
+ Bp I 1= O’ ]’ e N (5.8)
dr? dr

6 - v2 |-

3

Fort =0 (r = =), we assume that 6 = BF’ and the solutions become

8,0 = ¢'/2; 6,(0) = 0; 6,(0) = 0 (5.9)

Thus, ¢ = 912.

The dependence of the zero-order solution Qo(r) on U, which is proportional to the linear acceleration

B o V2, is shown in Figure 5.1, as is the zero-order inertial precession rate Yo = ca/é’g. It is seen that the
angle of attack 90 decreases monotonically with linear acceleration until maximum acceleration is reached;

thereafter, & increases. Y, manifests exactly the opposite behavior,

13
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VI.  NUTATION OF THE AXIS OF A SPHERE ENTERING A PLANETARY ATMOSPHERE

If no initial angular rates are present, and if we assume some small, nonzero initial angle of attack

i.e., R(0) =0, y(0) =0, 6(0) = 9E # 0), the rigorous equations of motion (4.7, 4.8, 4.46) become

O (
[,y cos&+¢) =IR=I,R;=0 (6.1)
kall sin? 8 = I (2’0 sin? 6, =0 6.2
CpA p V2L
g+ ——————— sinf =0 (6.3)
21,

There remains one second-order differential equation for 8. The coefficients of sin & include o and

V2. which are known functions of altitude from the analysis of Section 3.

We now change to the independent variable (y), assuming nonvertical entry into the planetary

atmosphere. From the previous analysis, we have:

1 dv (6.4)

and we obtain the following second-order differential equation for &, with r as the independent variable:

2 2
3 . CpA oL
6. Y + 6 PY 1, 277 sng=o0 (6.5)
r r 3 ZIX

For vertical entry (r_ =0, y =r), and changing to the independent variable h =r ~r., this equation becomes

CpAL
<9hh+Bp0h+Tpsin9=0 (6.6)
x

14
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Within the stratosphere, the density o is given by

5 _< ¥ h )
r
T 1+h/r
P =Py e T (6.7)

T+ h
¥ = Brg/d
The density distribution (6.7) is extremely close to the exponential one, which corresponds to Ty = oo We
seck a solution to (6.6) of the form
62
Oh,€) = Gy(h) + €6, (h) + — G(h) + - {6.8)
2

where ¢ = 1/r,. 7y is a small parameter. The following expansion for the density distribution is then obtained:

P =Py e 14 eyh(yh =2 + €2 () 6.9)

Substituting Equations (6.8) and (6.9) into the differential equation (6.6), the following differential equations

are obtained for 90 (h) and 91 (h):
y+Bope G5+ Cope™M Gy =0 (6.10)

—h - ) (6.11)
67 + Bop e "6 + Cope™m 6, = yh(yh-2) 6]

The differential equations for 8 (h) and the homogeneous equation for 6, (h) are both of the type

H

Yuu * 2feH yp+ge "y =0 (6.12)

where

f=Bp /2y g = CpAL p. /21 »*

15
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and subscript H refers to differentiation with respect to H = yh. The first-order term can be removed by the

transformation

y=2ze (6.13)

which leads to the equation

2y + 2 (e H(f+g~f2e2H) =0 (6.14)

It can be shown that the term containing f2 can be ignored with respect to the others. The solution

to (6.12) then becomes
- h _ -

where J, and Y, are the zero-order Bessel functions of the first and second kind, respectively. If we impose

the boundary condition

d
90(h=°°) = QE, —_— 60([’1:00) = 0
dh

the following zero-order solution is obtained:

For large values of the argument we can expand J;(x) and we have

- %
Gp(h) = 6 efe” 7" (77 f+g e-7h/2> * cos <Z - 2T+ge /2 > (6.17)

4

The general solution of (6.11) consists of the general solution of the corresponding homogeneous equation,

(6.12), and a particular solution of (6.11):
(6.18)

6, (h) = e‘e'”‘{ y, () [c3 v /R b efe™ "y, ) dh] + vy [c4 +Tr/R(h) ey dh:' }

16
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where

y () = Jo@VEvg e, y, ) = Yy 2VT+g eTR/?)
R() = - (y2h2-2yh) e™7h <2 fig fe—yh/2J1(2 Vi+ ge-yh/z) +gy1(h))

and constants C4 and C, are to be adjusted according to the boundary conditions
B(h=0) =0, 6y (h=ca) =0

The solution is not obtainable in terms of elementary functions.

Figure 6.1 shows the behavior of the first-order solution 8, (h) for entry into the *‘G’’ atmosphere
(Equations 6.16 and 6.17). The amplitude of (6.17) has a minimum at the altitude h, = 1/v In (ZB,OT/’)/);

below this altitude, it again diverges. This solution is discussed in detail in Reference 2.

17
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VIl.  NUMERICAL COMPARISON WITH THE EXACT SOLUTION

In the following, a numerical comparison is drawn between the theory, which was derived under

simplifying assumptions, and the exact solution of the problem. The six-degree-of-freedom equations of

motion of a sphere with constant ballistic coefficient have been solved using an IBM 7094 computer. It is

assumed that the atmosphere rotates rigidly with the planet and the gravitational acceleration acts on the

body during entry. The following entry conditions were assumed:

Entry latitude Equator plane
Entry altitude h . = 400000 ft
Inertial entry velocity Vg = 20000 ft/sec
Inertial entry angle Op = -90°
Atmosphere G

Ballistic coefficient B =2 ft2/slug

Table 2 shows a comparison between the present theory, the exact theory, and the flat planet theory

(Reference 1). In this Table, velocity, acceleration, and density are shown at various altitudes. Because no

flat planet theory exists for an atmosphere with a temperature gradient, no values appear for altitudes less

than 82300 ft (the tropopause altitude).

Table 3 shows a numerical comparison of the rotational motion theory (Equations 5.5, 5.7, 6.16) and

the exact solution. In addition to those given above, the following initial conditions were assumed:

18

Initial angle of attack Op = 20°

Static moment L L = 5.17 ft

Pitch moment of inertia [ = 36.135 slugs fit?
Roll moment of inertia I, = 48.18 slugs ft2
Spin rate R = 100 RPM
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Symbol Dimensions
a (rad/sec)
A (£2)
B=CpA/2m (ft2/s1)
c

C

f.g

F

8o (ft/sec?)
G (°R/ft)
h=r-r, (fv)
hp=rp=rq (ft)

ik

W (sl ft2)
Jo

L (ft)

m (slugs)
N (ft)

P (mb)

P (mb)
P,Q, R (rad/sec)
r (ft)

ro (ft)

rr (ft)

22

NOTATION

Explanation

See Eq. (5.1)

Cross-sectional area of the reentry body
(2 x Ballistic coefficient) ™!

See Eq. (5.1)

See Eq. (2.10)

See Eq. (6.12)

See Eq. (2.7)

Acceleration of gravity at the surface of Mars
Temperature gradient in the troposphere
Altitude

Altitude of tropopause

See Eq. (2.7)

Moments of inertia of sphere

Bessel function of the first kind
Coordinate of sphere’s center of pressure
Mass of entry body

Coordinate of entry sphere’s center
Pressure

Pressure at surface of Mars

Body fixed angular rates

Distance from planet center

Radius of Mars

Distance of tropopause from planet center




Symbol

X, Y, 2
! LI
X,y 2

X' Yp' %p

)/

NOTATION (Cont'd)

Dimensions

(fe2/sec? °R)
(sec)

("R;sl ft/sec?)
(“R)

(°R)

(sec™?)
(ft/sec)
(ft./sec)

(ft/sec)

(ft)

(ft)

(dimensionless)

{dimensionless )

(slugs/ft3)
(slugs/fts)
(slugs/ft®)

(rad)

(["dd)

Explanation
Gas constant
Time (see Eq. 2.9)
Temperature; kinetic energy
Stratosphere temperature
Surface temperature
See Fq. (5.1)
Velocity
Velocity at entry

Velocity at h =h .

Defined in Section IV

See Fig. 2.1

In (Vi/'V)

Bessel function of the second kind
See Eq. (1.4)

See Eq. (1.5)

Ratio of specific heats (see Fq. 6.7)

Density

Surface density

Tropopause density

Fuler angles (see Section IV)
See Kgq. (1.4)

Solid angle (see Eq. 1.1)
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NOTATION (Cont'd)

Symbol Explanation
(" Derivative with respect to time t
(=) Double derivative with respect to time t
() Zero-order solution
( )1 First-order solution
)y Second-order solution
( )r Derivative with respect tor
( )” Second derivative with respect tor
( )h Derivative with respect to h
( )hh Second derivative with respect to h
( )H Derivative with respect to H = vh
( )HH Second derivative with respect to H = Yh
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APPENDIX 1. DERIVATION OF THE ROTATIONAL EQUATIONS OF MOTION OF A
SPHERE ENTERING THE MARS ATMOSPHERE

The kinetic energy of the sphere was given in Equaticn (4.3). The left-hand sides of [.agrange’s

equations for the system

d aT JdT

=Fq q=xYy,2 Y, ¢, 6 {1.19
dt \ 9q dq

for each of the degrees of freedom are:

d . .
e (Ix¢sin29+lz (Y cos B + @) cos 6) = Fy
de
{1.29)
d - .
I, —1— () cos 6 + P) = Fy
dt

Ix:? -1, ¢ sin 8 cos 6 +1, (f cos &+ p)yY sin 6 =Fy

The right sides of Fquations (1.1") are the generalized forces. They ure obtained by subjecting the
system to six virtual displacements dx, dy, dz, dP, dQ, dR; the generalized forces are the coefficients of
dx, dy, dz, d, dep, dO in the expression obtained for the virtual work dA. The only force acting on the

-
system is F, , which is in the direction of the negative velocity vector:

. CLApV X
Fp=o i y (1.3
2 z

If we first consider only the translational virtual displacements dx, dy, dz, the following equations of motion

are obtained:
mx = —CpA pV /2 my = =CpA pV y/2 m7 = ~CpA pV 2/2 (.19

25
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Thus, the motion of the c.g. is rectilinear, and we can assume, without loss of generality, that the

2= V.

motion is parallel to the z-axis (i.e,x=0,y=0,

> -
The aerodynamic force F, acting at the center of pressure D is equipollant to a force F, and a

- >
moment M , acting at the c.g. (see Figure 4.1).M, is given by the vector product:

> - > péz
My =SpxF, ==L |0 ]x@jo] [-CpA - (1.5"
1 1

where (A) is the matrix of rotation from the (x’, y ', z") system to the (xB, Ygr zB) system. The moment

becomes

- 1 . g 1
M, =~ —2—LCDA,0z2 [TBcosd)sin@—stincﬁsin@] (1.6 9

E—
i, Jpg are unit vectors along the xg and y 5 body axes,respectively. The virtual displacement components

corresponding to the rotational degrees of freedom along the (xg, yq, zg) directions are
p B g 8 B* VB’ 2B

dP = P dt = dy (sin 6 sin @) + d8 cos ¢
dQ = Qdt = dy (sin O cos ) - dO sin ¢ (1.71

dR = Rdt = dy (cos 8) + d¢

respectively. The virtual work performed by the moment M during the virtual displacement (dP, dQ, dR) is
P y P A g P

given by the scalar product

P
dQ | = -L CpA p 22 sin 6 d6/2 (1.8")
dR

dA

]
=
>

Thus, the generalized forces corresponding to the rotational degrees of freedom are

Fy,=0 Fy =0 Fy = ~CpA p 22 L sin 6/2

Substitution into Equations (1.2') results in the equations of motion (4.44 - 4.46) of Section IV.
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ALTITUDE h
A
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hys

TROPOSPHERE
TEMPERATURE T

} v "
? Ts T0
h=0
P'—'Po
d=do
T=To o
ov

PLANET CENTER

Fig. 1.1. Mars model atmosphere: temperature distribution
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10-4
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™ - Eq.(1.4)
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- Eq.(1.5)
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Fig. 1.2. Mars atmosphere density distribution; atmosphere ‘‘G”’




DENSITY p, slugs/ft3
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10~7
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Fig. 1.3.

ALTITUDE h, ftx 103

Mars stratosphere density distribution; atmosphere

“G”
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\%
VERTICAL TRAJECTORY

\ /

NONVERTICAL Y
TRAJECTORY

STRATOSPHERE

/ \(*-h=hT
/ \ T=Ts
/
/ \
/ \
I |
\ [
\ /

\ /

\ PLANET /

\ /
\

IYig. 2.1.  Reentry trajectories: definition of terms
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ALTITUDE h , ft x103

300
250
B=Cp A/2m ft2/slugs
8g=ENTRY ANGLE
8 =-90°
200 — = -
————— 9 E' 600
/
4
150
Y
Y
L&
//
— ~
B= |O/ 53~
100 — /’/
—= == B=1 /
50 / /
0 pat
o 0.2 0.4 0.6 0.8 1.0

v/ Vg

Fig. 3.1. Velocity V/VE as a function of altitude h; atmosphere “‘G”’
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ALTITUDE h, ftx 103

32
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Fig. 3.2. Acceleration a/Vl% as a function of altitude h; atmosphere “‘G’’
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Zp
(AXIS)

{(AERODYNAMIC
K FORCE)

¥4
DIRECTION
y OF
MOTION

Fig. 4.1. Definition of Euler angles ), ¢, 6
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100

1.0

0.l
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Fig. 5.1. Normalized zero-order precession angle 50/9E as a function of U = constant

% linear acceleration; normalized zero-order precession rate as a function of U
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ALTITUDE h,ft x103

300

280

260

240 /

N

/
220
a4
6o (1) "
200
180 \ \
_ — / AMPLITUDE

140 \ e

s
| ==
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Fig. 6.1. Nutation: behavior of first-order solution; 90 (h)
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