|
n

THE EFFECT OF IATERAL FLOW ON

EXOSPHERIC DENSITIES¥

John Robert McAfee

Department of Physics

——

University of Pittsburgh

Pittsburgh, Pennsylvania

*Submitted to the Graduate Faculty in the Division of Naturel Sciences
in partial fulfillment of the requirements for the degree of Doctor
of Philosophy.

M O O e

- -

@ https://ntrs.nasa.gov/search.jsp?R=19660006095 2020-03-16T21:47:00+00:00Z '



THE INFLUENCE OF LATERAL FLOW
ON
'EXOSPHERIC DENSITIES
John Robert McAfee, Ph.D.

vUnAiversitxbr of Pittsburgh, 1965 /53 5‘%

Lateral flow in a collisionless exosphere at the top
of the earth's atmosphere is calculated for a spherical
geometry. The model consists of an exobase surface below
which a Haxwellian distribution 1s assumed and above which
particles describe elliptical orbits. The net flux into the
exobase surface is the difference between the flow in from
all other points on the surface and the flow out from below.
The difference arises from both variations in density and |
temperature on the exobase surface. The net fluxes calculated
for atomic oxygen and molecular nitrogen and oxygen are too

small to cause a departure from diffusive equilibrium. The

- flux for helium toward the night side could be sunported by

diffusion but is sufficiently large to question the assumption
of diffusion. equllibrium° The hydrozen flux 15 1arger than

can be 1upported by diffusion from below and would necessitate

a:more complicated approach to calculations of its density
distribution. In any case, the hydrogen nignt-time-oulge
would persist.: Ihe ma jor effeot,on exospheric densities of
helium and'nydrogen would come indirectly because of their
departure.from diffusive equilibrium in the region below

and hence their change in density at the exobase surface

and corresponding change in exospheric density. éfzaLZ;‘
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1.0, INTRODUCTION

The usual method for determining the theoretical
composition of the heterosphere is that of solving the
problem of diffusing gases for a spherically symmetric
atmosphere with time independent parameters (see for instance
hoekarts and Nicoletl’29 Godart and Nicolet3, or Van Zandt
‘and Knecht‘*)° Statie (diffusive equilibrium) solutions
are found as a function of the altitude temperature profile
which is usually assumed to be dependent only upon the
exospheric temperature., Hence, the vertical composition in
any lbcal region is presumed to be a function only of the
exospheric temperature overhead. This is of course an ideal-
ization since the atmosphere is not spherically symmetric,
nor is it time independent. In fact the temperature of the
exosphere varies between night and day as well as with the
sunspot cycle. Accordingly, the compositions derived stati-
cally as above would then vary in the same manner, Hence, .
by this reasoning, lateral gradients in density as well as
in temperature must exist. A natural question would then
be: do these lateral gradients affect the heterospheric
composition, and if so, in what way and to what degree?

One non-static effect has already been investigated,
namely that of the planetary esocape of hydrogen, first
proposed by Jean55, The fact that there can be an appreciable
hydrogen escape flux necessitates a steady state solution to
the diffusion equation which 1s radically different than the

1,2
static diffusive equilibrium case.(see Kockarts and Nicolet

1l
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or Figure 11). This is still a case of considering local
conditions only since this diffusion is presumed vertical
and dependent only upon the overhead exospheric temperature.
This model, however, did lead to the first consideration of
the possible effect of lateral flow because of the resultant
"night-time bulge".

The removal of hydrogen due to escape creates a large
diurnal variation in its density if the steady-state diffusion
equations are applied. Since the escaping flux is much
greater on the hot day side, this removal reduces the daytime
hydrogen densities much more severely than on the night side.
Hence, there should be more hydrogen on the night side of the
earth than on the day side. This diurnal hydrogen variation
has been offered as ah explanation of the observation of a
large night time Lyman - X »intensity by Donahue6° Calcu-

lations by Thomas7 and Donahue and Thomas8

have shown that
the transporf éf resonance radiation from the day to night
side might produce the observed intensities if there is a
sufficiently large diurnal variation in the hydrogen densities.
This approach by Donahue has drawn considerable
objection from Hanson and Patterson9 on the grounds that
a large diurnal variation would be quickly wiped out by a
lateral mass flow out of this night~<time bulge. Their
estimate of the lateral flow indicated just this. Improve-
ments in their model by Donahue and McAfeelo9 however,
suggest that this is not the case; and that furthermore,
an appreciable night time bulge is demanded by lateral flow.

This is a necessary consequence of the diurnal temperature




variation, since the temperature induced flow would be from
the day to the night side.

Experimental evidence for the existence of a lateral
flow has been discovered by Reber and Nicoletllo In the
interpretation of mass spectrometric data from the Explorer
XVII satellite, they conclude that at altitudes greater than
400 kilometers any explanation must include horizontal gradi=-
ents and mass transport near sunrise. The possibility that
helium is not in diffusive equilibrium is also suggested by
their data, and this might be attributable to a lateral flow
of helium.

It would then seem that the possibility that lateral
flow is a legitimate and observable effect is one that should
be considered. 1In such a determination several questions
must be answered including the obvious ones of the magnitude
and form of the lateral flow as well as others such as the
times involved, the reaction of the atmosphere to the flow,
and how the flow might affect observations. The effort here
has then been to calculate this la teral mass flow for as
realistic conditions as possible as well as to determine its

possible effect upon heterospheric densities,
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2.0, MODEL OF THE HETEROSPHERE

Before any meaningful calculations of lateral flow
can be performed it is necessary to begin with an initial
model of the heterosphere. Since the parameters describing
this région are by no means accurately determined at this
time, any model must contain a number of assumptions.
Ideally, calculations should be made based upon all of the
various models which might be applicable., This is unfortu-
nately impractica. due to the length of time involved.
Therefore, a single type of model has been used which is
hoped to at least represent the b.l« of the atmospheric
properties.

The heterosphere or non-mixing region, assumed here
to begin at an altitude of 120 kilometers; can be divided
into two main parts, an endosphere {or diffusosphere) and
an exosphere. The endosphere is considered to be the region
above 120 kilometers where diffusion is the controlling
process. At higher altitudes collisions become less frequent
due to the reduction in density. At sufficiently high alti-
tudes they become so infrequent that they may be neglected.
This region where collisions are neglected is called the
exosphere. There will naturally be a transition region be-
tween the endosphere and exosphere, but for purposes of
calculation, it is assumed that the change is sharp and

occurs at the base of the exosphere, or exobase.
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2:1. Temperature

Neither the question of vertical profile nor lateral
distribution of temperature in the heterosphere has been
resolved to the satisfaction of most investigators. However,
assumptions for the values of temperature are a necessity
since temperature is the primary parameter which will determine
the density distributions in the model used here. Hence, it
is important to make an attempt to consider the best form
possible.

Direct temperature measurements have been made in
the lower heterosphere by Blamont e‘l:.allz-18 by analysis
of the Doppler line'pfbfile of resonance radiation from
Sbﬁium-and other elements which have been injected into the
atmosphere at various altitudes and allowed to come into
thermal equilibrium with the local gas. Some results of this
type of experiment are shown in figure 1. They indicate a |
temperature Mwhich is more moderate than that used in
some previous models (for instance Kockarts and Nicoletlva)
and an isothermal region in_ﬁhe upper heterosphere. The |
temperature of the 1sd£hermal region will be referred to as
the exb!§hﬁric temperature, Unfortunately, this experimental
data near 200 km 1s basically for periods of low solar
activity only and some type of extension must be made to
higher exospheric temperatures. Two types of behavior were
considered: firét, a continuation of the temperature
gradient and a relatively sharp turnover to an isothermal

4

region at some higher level (Model A)g and second, a more

5
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and more gradual turnover to the isothermal region as the
exosphere temperature becomes larger (Model B). The two
models are shown in figure 2.

Further evidence for the validity of these models

has been supplied by Hedin, Avery, and Tschetter19

and Hedin
and Nier20 who have made an independent measurement of the
temperature profile with altitude by an analysis of the
behavior of mass spectrometric measurements as a function of
the angle of rocket attack. These results are in good agree-
ment with the chemical release measurements.

One questionable feature of the models chosen is
the fact that the exospheric temperature variation is assumed
to affect only the upper part of the temperature profile.
The errors involved in the chemical release measurements (see
figure 1) are sufficiently large to allow a good deal of
fluctuation in the behavior of the temperature profile at
lower altitudes. It has been pointed out by 21pf21 that small
changes in the behavior of the temperature near 120 km within
the experimental errors can have a large effect upon the
eventual densities of the various important constituents at
higher altitudes. Such a possibility should be kept in mindj
however, for purposes of calculation here, any low altitude

temperature fluctuations have been igncred.
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2.2. Endosphere

The endosphere is defined as that region of the
heterosphere in which diffusion is the dominant process in
controlling the distribution of density. Below the lower
boundary of the endosphere the atmosphere is mixed by turbulent
diffusion so that the ratio of densities between the various
constituents remains fixed (disregarding local effects such
as caused by chemical or photochemical effects), The altitude
at which diffusion replaces mixing, the turbopause, is an
important parameter, since the theoretical density profile of
individual constituents may be quite different in a mixing as
opposed to a diffusing region. It is possible that the turbo-
pause may vary with season,; solar cycle, latitude, local time
or other parameters.

Experiments such as neutral mass spectrometric rocket
probes (see for instance Meadows and Townsend229 Pokhunkov23,
Meadow - Reed and Smithzh, or Schaefer and Nicholszs) have
placed the turbopause at about 110 km., Kockarts and Nicoletl
have investigated theoretically the‘éffecfs of different turbo-
rause levels upon the density distributions above and have
found for example that the helium density at 120 km varies by
a factor of 10 for turbopause values of 100 or 120 km, since
the helium scale height 1s much greater than the atmospheric
scale helght in this region. The heavier elements are not
affected as severely since their scale heights do not differ
greatly from the atmospheric scale height. On the other hand,

by the same reasoning hydrogen should show an even larger
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discrepancy since its scale height is even larger than that
of helium. As has been pointed out by Kockarts and Nicoletl,
however, this is not the case. In fact, as will be shown
later, the hydrogen density profile follows the atmospherie
density profile fairly closely in this region because hydro-
gen 1s probably not in diffusive equilibrium. Furthermore,
it has been pointed out by Van Zandt and Knechtk that the
diurnal variation of the turbopause level can vary only by
a few kilometers due to the slowness of diffusion in this
region,

Since the interest here is in diurnal effects, and
since first; the turbopause level should not show a large
diurnal variation, and second, the variation should only
affect helium to a noticeable degree, it has been assumed
that the densities of the various constituents at 120 km
are independent of any turbopause effects. This is to say
that densities in the mixing region are unaffeeted by the
variation of other parameters such as exospheric tempera-
ture. Hence, for the calculation of densities above 120 km,
a constant normalization density at 120 km will be used for

each constituent. These normalization densities are shown

'in Table 1., Values for atomic oxygen, and molecular nitrogen

and oxygen were chosen to agree with Hedin and Nier20 and
Nier et a126. The helium value is an approximate fit to

the Explorer XVII data of Reber and Nicoletllo The hydrogen
value, very approximate, is about three times that of
Kockarts and Nicoletl9 as suggested by Donahue27 from

photometric observations.
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Table 1. Density normalization at 120 km.

Constituent H  He o N, 0o

7 10
Number density 6x105 2x10 L4.5x10 3°leoll hxlo1

at 120 km

0

The popular model for the endosphere is to assume
that the various constituents are in diffusive equilibrium.
The diffusion equations are solved in appendix A and the

diffusive equilibrium solution from equation (46) is

4

120

where 1 refers to the ith constituent. The number densities
as so calculated, using the temperature profile of Model &
in figure 2, are given in tables 2-5 fof.éxdsphéric tembera-
tures of 7OCQK, IOOOOK, 1500°K5 and 2100°%K respectively.
Also included in these tables are the temperature, total

density, n, where

n

.Eini9
i
and the mean molecular mass, m, where

Zogn,

n

m=

The same information is plotted in figures 3-9 for n(H),

n(He), n(0), n(Hy), n(C2), n, and m respectively. The changes
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Table 5. Atmospheric parameters for 2100° exospheric
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due to using Model B rather than A are not particularly
significant as may be seen by the comparison of the two
models for the 2100° Ease (it resulted in the largest differ-
ence) in figure 10. Hence for further calculation, Model A

has been used.

2.3. Exosphere

The diffusion that determines density distributions
in the endosphere is based upon a high frequency of collisions
between the various atoms and molecules. At higher altitudes
where the density becomes relatively small this is no longer
the case. In this region, the exospﬁere, collisions may be
neglected.

For purposes of calcﬁlation it is convenient not to
sgpafﬁié the endosphere and éxosphere by a fihité transifion
region where collisions are few., It is more practical to
simply define a single level of transition, the exobase, below
which diffusion predominates and there is a Maxwell-Boltzmann,
directionally isotropic velocity distribution, and above which
no collisions whatsoever take place.

2.31. Exobase ‘

The determination of the exobase altitude is somewhat
arbitrary and has been calculated in several different ways.
An extremely simple definition is to consider the probability
of a collision by a typical particle leaving the level of
altitude z and proceeding directly upward to an infinite
distance, which is
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P= an(z')dz' (2)
z

where O 1is the collisional cross-section and n(z') is the
total density. The exobase is then defined by the altitude,
b, where P=1/2, Since this definition is arbitrary it is
important that any effects under consideration will not be
highly dependent upon this or any other choice, The exo-

=1
bases as calculated in this manner with O = 5x10 5cm2

are shown in Table 6.
Table 6. Exobases.

Exospheric temperature (°K) 700 1000 1500 2100
EBxobase altitude (km) 360 LLo 555 680
2.32. Planetary Escape

One obvious effect of the lack of exospheric collisions
is the possibility of planetary escape. Some of the particles
at the exobase in a Maxwell-Boltzmann distribution will have
velocities in excess of the escape velocity. If these suffer
no collisions as they proceed outward, they will escape.

The number of particles of constituent i leaving the
exobase per unit time per unit area at the angle o< from the
vertical in the solid angle dwW with velocity between v and
v+dv will be

/2 >

esc m

ifF =n (b w[i{ [ 1 o
Fi ni( ) vV exp -J-r VLY VCOs




or
/2 g
sc -
dFi =n,(b 1 v3exp[ E%f]dvdpdx sin& cos e (3)
where
dw = d@ de sinex,

The total escape flux will be the integration of equation (3)

between the proper limits, namely

Vesc< v <®oo,

o<p<am,
0< X <LTIV2,

where

Vege = 2g{b)Ry= escape velocity at altitude b,

Ry =geocentric radius appropriate to altitude b.

Integration of equation (3) between these limits yields

esc_ ni(b) [2g(b)H;(b) [ Rp ]exp [- Rp ]
Fi T2 \F 7 [t E® Hy (b) )

where the scale height, Hij(b), is defined as

Hy (b) = ﬁgbb)- (5)
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esc
The effusion velocity, Wy , may be defined by

esc esc

= F3 =4 [2g2(b)H;(Db) R +p [.R '
'1 ....ﬁ.%_ &+ [<E i [“F?m]“"[‘ﬁ?m]‘ (6)

T

The variation of escape flux with the choice of
exobase may be seen by considering the escape flux at some

level b+Az = z, which 1s

ese, . _nj(z) [2g(z) Hi(z) R - Rz
Fy (z)= 5 _/ T l}-'i‘H-zii?iexp[m . (7)

Since the region around the exobase is an isothermal one

the scale height is dependent only upon the gravitational

acceleration:
EZ 2
Hi(z)= Hi(b) (Hb)

and the density, assuming diffusive equilibrium, may be

written

=

- _Rp Az
nj (z)=n; (b)exp ToEy ﬁ;] e .

Substitution of these into equation (7) yields

esc,_,_ ni(b) /2g(b)Hi(b) R R Rp

The ratio of the escape fluxes at levels b+4Az and b is then
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escC

L (9)
€scC kp

or for Az <<Rp

esc

F; (b+aAz)
esc

F (b)
i

=1-

(10)

IR

which i1s a very small correction.
2.33.  Correction to Endosphere Densities

The presence of an escaping flux at the top of the
endosphere is inconsistent with the assumption of diffusive
equilibrium in the endosphere. The correct solution to the
diffusion equation with escape at the top assuming also a
source in the mixing region and a steady state is derived

in appendix A and given by equation (50). It is

2z

ni(z) - ni(Z) ]T- mz‘) dz (11)

120
where
, 2
esc Rh ]
bW ‘
sy(120) = "W [Riso . y
1+n(owes[By ])? L Ri20f dz*
: i R120 Di(Z'Tﬁ(z'j Rz'
120
(12)
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is the flux at 120 km. In order to consider the correction
to the diffusive equilibrium solution, this flux can be
compared with the maximum flux supported by diffusion as
defined in appendix A. The diffusion coefficients are
estimates based upon experimental values for various gas
combinations found in Nawrocki and Papa28° The equivalent

l')‘cm‘?‘, Table 7 shows the

cross sections vary around 5x10=
escape fluxes for the important constituents (calculated
for diffusive equilibrium densities) as well as these

maximum fluxes.

Table 7. Escape and Maximum Diffusive Fluxes.

Exos. Temp. H He o No 0o
700 Fesc 5°9x10$ h,3x10é6 == 11 =-_10 _ =-_ 8
Fmax 8.9x10 5,4x10 1.3x10 2.5x10 3.5x10
1000 Fesc 7°5x10; 5=7xlOgl lohxlOI§3 == 10 _ == 8
Fmax 8.9x107 5.3x10 1.2x10-* 2.1x10° 3.0x10
9 -

1500 Fesc 1.1x109 ho6x10% 1°2x101§O == 1090 =-_ 8
Fmax 8.8x10° 5.3x10 1.1x10 1.8x10" " 2.5x10
2100 Fesc l°2x1010 6,6xlog 233x102i1 == 19 -- 8
Fmax 8.8x107 5.3x10° 1,0x10°" 1.5x10"° 2.0x10

For hydrogen in particular, the escape fluxes of
table 7 are incorrect since its density at the exobase will
be modified by the escape flux itself. The correct endo-
spheric solutions for hydrogen are shown in figure 11 along
with the diffusive equilibrium solutions for comparisocne.
The corresponding escape fluxes are given in table 8. It
should be noted that the modification of the diffusive

equilibrium solution takes place entirely in the lower
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and Kyle” , Shem , Chamberlain
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endosphere and that the hydrogen densities will follow a
diffusive equilibrium profile in the upper endosphere.

Table 8. Escape fluxes, corrected,

Exos. Temp. Fesc(H) Fmax (H)

700 5.5x100 8.9x10%
1000 3.7x10 8.9x105
1500 5.9x10 8.8x107
2100 6.2x10 8.8x10

2.34. Exospheric Densities

Densities in the exosphere :i:eclf have been
calculated in several ways— (see Opik and Singerzg, Herring

30 32, Johnson33) by considering
the contribution to density it a point ‘above the exobase by
particles originating at various points on a spherically
symmetric (constant temperature and density) exobase. These
densities differ from the diffusive equilibrium densities
because they lack certain portions of the isotropic Maxwell-
Boltzmann distribution. The first are those particles . s8
with velocity greater than escape velocity returning to the
earth. The second of these 1s the ‘80-calTe® bound—
orbdting component, which is simply those particles which
would have orbits lying entirely in. the exosphere such that
they never cross the exobase., Since some collisions do occur,
it 1is possible that some of this latter component may indeed
be present. However, since these particles spend more than
half their time in the presence of the ionizing solar flux,
it is felt that they are eventually ionized and removed from °

consideration.



The lack of a returning escape component creates a
discontinuity at the exobase since above it, half the escape
region in the Maxwell-Boltzmann distribution is missing, and
below it, all regions are full. The real distribution at
the exobase due to the absence of returning escape particles
has been investigated by Chamberlain32° His estimation of the
correction is that it does not exceed 20%. For the purpgse”
afi-the present’ this error may be neglectea.

A comparison of the diffusive equilibrium distri-
butions and the no-collison theory, is given in figures 12
and 13 for hydrogen and helium respectively. The difference
is not particularly apparent at small altitudes above the
exobase. This is a comforting result since it diminishes
the importance of the choice of the exobase in this respect.
The correction to the exospheric distribution of the heavier
atoms and molecules occurs at altitudes where their presence

is negligible and hence may be disregarded.
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for helium densities.,




3.0. LATERAL FLOW

When calculating the escape flux in section 2.32,
the flow of particles with velocities greater than the
escape veloclity was considered. Particles with velocities
less than the escape velocity leave the exobase surface at
one point, describe ballistic orbits, and re-enter at some
other point. If the number density varies on the exobase
surface, this process leads to a net flow out of high
density regions and into low density regions. Also if the
temperature varies on the exobase surface, there will be a
net flow out of the high temperature region and into the
low temperature region due to the dependence of particle
velocities on temperature. The combination of both temper-
ature and density variation over the entire surface will |
then lead to a net flow into or out of a region because
of this lateral motion of individual particles and hence
should be called a lateral flow,

3.1. Planar Models

The effect of lateral flow wés first investigated
for the particular case of hydrogen by Hanson and Patterson9,
who considered the flow through an imaginary semi-infinite
strip of unit width with its base at some particular point

on the exobase surface, assumed a plane (see Appendix D).

The-follow1ng approximations were made:

35
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plane parallel atmosphere

parabolic (constant gravitational acceleration)
orbits .

single velocity, Maxwell-Boltzmann rms velocity,
€, for all particles

density-temperature variation on the exobase surface
determined by

nc(y)= (ne) s+ 8 y

where y was a lateral coordinate

neglect of temperature variations in determining
integration limits.

Their conclusion was that the lateral flux dominated the

escape flux and would quickly wipe out any night-time bulge

due to escape, or more correctly, not allow its establishment.

Further investigation by Donahue and McAfeelo

Suggéstedfthat-this.conclusion can not be supported (see

the following set of approximations:

1)

£
Nt " Nt

5)

plane parallel atmosphere

parabolic orbits

a Maxwell-Boltzmann velocity distribution
temperature and density variations

Y+YO)
Ry

n=n_(1+ $ sin

T=To(1-¥ sinf*Y0)
Rp

where yo, was the location of the strip on the
exobase surface and R, the exobase radius
temperdature dependent integration limits.

The resulting fluxes were considerably smaller in magnitude

than those of Hanson and Patterson (more comparable to the

escape flux) and more favorable to the temperature dependent

' .~ Appendix D). The Hanson and Patterson model was modified to



37

part of the flow. This was primarily due to the improvement
in using a Maxwell-Bolt zmann distribution. A comparative
example is shown in figure l4. The flow through the semi-
infinite strip has been transformed into a vertical flux into

or out of the exobase surface by taking the negative derivative.

3.2. Spherical Models

Although the Donahue-McAfee model was an improvement
over the Hanson-Patterson model, several assumptions were
stlll inherent in the derivation. The assumption of the
parabolic orbits may underestimate the flows since the
physically real elliptical orbits have a longer range. The
plane parallel approximation makes the calculations suspect
everywhere except near twilight because of the large distor-
tion in the geometry. Hence, it would seem worthwhile to
consider the case of the real spherical geometry with the
true elliptic orbits.

3.21. First Models

The first spherical model was an extension of the
Donahue-McAfee planar model. The change in geometry, how-
ever, makes it necessary to discard the semi-infinite strip
in favor of a semi-infinite cone described by an angle ch
The geometry is shown in figure 15. The model was assumed
to be axially symmetric so that any variation in density
or temperature would depend only on a colatitude angle.
Since particles may pass through a particular cone twice

while on the same orbit, it is incorrect just to consider
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all particles which pass through. Instead, only those
which pass through once should be considered. o

[

Figure 15. The first spherical model showing particles
both leaving and entering eacli of the areas.

If the net flow, o, into the area :osverned by ©< 6,
(shaded area in figure 15) 1is the number of particles
per unit time leaving the exobase at &> eo and entering at
6< 6, (orbit 1 in figure 15) minus those leaving at ©< &,
and entering at © > 84, (orbit 2 in figure 15), a vertical
flux, F, into the endospvhere may be calculated by taking the
negative derivative of ?with respect to 6, .
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Hence

F=- 1 4 F(8,)
2nRy2sin6, 46,

where Ry 1s the exobase radius. The problem is then to
calculate .

However, this model has the drawback of excessi&elv
long calculations. The calculation of < must be done for
a sufficient number of angles, GZ,, in order to make a
graphical calculation of the derivative at all meaningful.
For each calculation'ét a different angle, it is necessary
to integrate over the entire surface, and hence there is a
~good deal of redundancy in the calculations. ‘ _

An 1umediate modification which rids the calculation

of thpse redundancies and also eliminatesAthe graphical

V derivatives consists of dividing the exobase surface into a

‘number of eircular strips of width AG whose borders are

lines of constant reference angles, ©4 , as shown in figure

kl6° A flux of particles leaving from some point on the sur-

face,,€3 ;'willvré—enter qt another point at an angle, 69' ’

which lies on a particular strip, i, which may be described

by

6,<6'< 84

Then if the 1ntegration is carried out over the entire
surface once, the total flow into each strip is the sum of v

the contributions of flow originating from the various parts
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of the surface which ended within that strip. Hence, a
single integration will simultaneously calculate the flow
into each of the strips, E} . The vertical flux, Fy,

1s then simply this divided by the strip area, or

1

s = 2mR sin®y ° (13)

Figure 16. Geometry for spherical model with particle
orginating at © and ending at &’ between
The pertinent parameters used in calculatine the 371

are showr in figure 17. The number of particles leaving the

surface element
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dA = Rb2sin9 aodd

located at (Rb,‘e ,®) with velocity between v and v+dv in
the solid angle

dw) = sinetdoex dp

per unit time will be

3/2 2
¥ o cosotvn ( ,d’)%m)] v dvexp[—_-r_(e—a)] . (1)

Pttt

sun

Figure 17. Parameters involved 'in calculating the lateral
flow,
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Using azimuthal symmetry,
n# n($)
T# T(P)
the limits are also ¢ independent and

372 3 -mv2
dvv’d6sinexp dptsinoccosxdpo(IS) '

d3=21rab2[ m ]
2KT (0

2NnkT(8)

Ifr (I) is defined as the angle traversed by these particles
between leaving and entering the endosphere, then the angle,
e’ , Where they enter is related to the other parameters by

the spherical trigonometric relationship
4
cos® = cosOcosY 4sind sinYcos B- (16)

The expression for \P is derived in appendix B and is

2
cos 'P - [a+ cos Y] - sin?Y

(17)
[A+ cos¥]° + sin?Y

When the integration of equation (15) is carried out »

numerically, the element of flux is subtracted from the flow



Lk

pertinent to the strip containing @ and added to that
containing ©/ . The appropriate limits on the integration

when summed in this manner are

O<’F<:275

0 < o&< /2,
0<OKT,

0<v<vgge.

This calculation was made on an IBM 7090 computer. An
example for hydrogen with a sinusoidal temperature dis-
tribution between 1000° at @ =0 ana 1500° at ©= 77 and
a sinusoidal number density distribution of 3-1 with maximum
at ©=0 is shown in figure 18. The points represent the
flux, F, of equation (13},

The scatter in the computed points is due to the
approximations in the numerical integration. It is more
severe near the end points due to the fact that the strips

are heavily distorted in these areas. Although for a given

set of integration variables in equation (15) this entire -

flux is assumed to re-enter at a single point, the flow
is actually scattered and may enter in part in more than
one strip. It would be hoped that errors of this nature
would cancel each other. However, this does not occur
because the shapes of adjacent strips are not identical.
One solution to this problem is of course to make

the integration more accurate by reducing the size of the
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Figure 18, Lateral flux, F, for 1000-1500 , 3-1 hydrogen
case. The flux scale is relative.

various integration differentials. However, the computation

such as that for the example in figure 18 is already quite

- lengthy because it is an Integration over four variables,

Any aicempt at an increase in accuracy must be accompanied
by a corresponding increase in computing time. This proved
to be prohibitive and the method had to be abandoned.
3.22. Final Model

A finally successful approach is to take into
account directly the effect of the spreading of a flux

element by the time it has re-entered the exobase surface.
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Upon leaving the exobase from point 1 the differential
flux will be again as in equation (13)
3/2 2
— 4w , m 2 -my< §
a3 ET.Tdm;c.s;egvnlrr\' 2'1{1,] dvv exp[ —2kT] (18)

If this flow re-enters at point 2, an angle %’away from its
origin, the flux will have spread as shown in figure 19 to
an area dA'. The flux into point 2 due to those particles

.obeying the conditions on d o will then be

qaF
dF = $&v.

- Figure 19; The spread of the differential flux.

If dA' is small it may be written
2
dA' =Ry sinydy 1@

and equation (18) becomes



L7

aF

P (19)
Rp“sin pdp 4@

The total flux into point 2 is then the sum of these fluxes
over other velocities, angles, and positions.

If point 1 is given the coordinates, ©, ¢ , and
point 2 the coordinates, 90, ¢o* in a system the same as
in section 2.31, a second spherical coordinate system may
be established at point 2 héving variables © and 45’ as
shown in figure 20. This coordinate system will be related
to the original by

cos § = cos B, cos o'+ sin@, sin 8'cos ¢'. (20)

By considering an integration in the primed system, the
i '
differential flow from the point O ¢ may be written

3/2

¢ UL !
2 .
d?:Rb2 m] dvv3de.s_ined¢n(e’¢)exp[‘ -mv‘ .ldo(sinucosadp
onk Fea]2 laaEd)

and equation (19) becomes with Glst}* in this case

4F = [ ]3/2 3d6d¢n(9,¢) |' -mv?® ] _ (~dcos ¥) (21)
2k

[rle @P/z Plaaelgy * ay
where again

=2,

The dependence upon p disai)pearso If d«lo is assumed to
be caused by the variation in ¥ while v, 6’, and @’ are
fixed as they would be if the ¥ integration were done first,
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Figure 20. The second spherical coordinate system.

then

(--dcosb’)‘__:> -9cos ¥

L4

ay EY)
The relationship between ¥ and \P is derived in appendix B
and 1is
cos ¥ = =All-cos WitV 1+cos¥ vV o-(1-cosP)a2 . (22)

2

Differentiation of equation (22) with respect to NP yields

-dcos) sin¥ [1+AQcos¢' F AV I+cosWy2-42(1-cos 'l/‘l‘.(23)
3'-[3 B 2V1+cosy’ V 2-a%(1-cos¢p)’ |
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The derivative is double-valued because there are two
values of o« which give the same range. When the contributions
from each of these two is added, the second terms in equation

(23) cancel leaving

-ocos¥ —sin Y Ili A2cog 5[{]

Y1tcos V’Jé-Az(l-cos ¥)
’
and with W-‘- © the flux, equation (21), becomes
/2 348 '+ 2 ! ol dy
dF:‘i‘[J.l_j dvv désin?& Accos doﬁn(e,(b)exp[ —mv2 (25)
ank]  1+cos®'|2-42(1-cos6) 2T (6,

: /
The 1imits of integration for v and @ are
0<€v<Lvgge
/
o< <o

respectively. The limits for e’ are more complex. For

4
v<vesc/-{§‘ the maximum value for & is given by

J2-4%(1-c0s0) =0
and hence
! v
1>cos6 >1- 2. ve =E£3€
A2, vz

[
For v>vVego/V2 the © integration may cover the entire

sphere and

[
1»cosO® >-1, vVv>Vesc/N2.




If the substitutions

v
Vesc

X

|l

/
g;z:cos€9
are made, then the final form for the flux equation is

32142 1 5 27 1, _Ex2]
i +A
. n___"escE j‘ dxx3J a§(1+A<g) d¢n(§¢)expl—m
-2
o 152

1y [1#18p-27(1-5) | [r5,$)]3/2

1 1

§aun’h e drexz2 |
x| e | PTG
ﬂg@ fl RSV T K

To compute the net flux into or out of the exobase
surface, the outgoing flux must be subtracted from the
incoming flux of equation (26). The outgoing flux can be
calculated directly using equation (14) in the same manner
as the escape flux calculation except with the limits on

the velocity integration being

o< V'<vesc'

The solution is then, upon integration,

out_ ny(b) [2g(b)H{(b) ™ +Ry, - R
F, = -1 = 1- X b
1 2 T l E Hi(b)] °*P (27)
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This exact solution does turn out to be impractical, however,
due to the inexactness of the numerical integration in
solving for the incoming flux. Since the net flow is a
small difference of two large numbers, even small relative
errors between the two terms can lead to grave errors in the
difference. This discrepancy can be avolded by integrating
the outflow in the same manner as the inflow,

If there were no temperature or density'variation
the symmetry would demand a zero net flow.A Then the out-
going flux in this case is equal to the incoming flux.
That this is indeed the case for équation (26) is demonstrated
in appendix C. A calculation of the outgoing flux can then
be replaced by a calculation of the incoming flux for the
symmetric case with a constant density and temperature
which is that of the point, 60, ¢° The ¢’ integrations
in the two terms of equation (26) then become, when computing

the net flux:

2

e . (28)

‘"; ) n1(§9¢')33p[-}Exf Ill(emé)exp[;Ex
Sﬂ‘b [?(594;)]3/2 - [T(Q,@]:a/z

e

With this method the errors in calculating each term are
similar and the difference would then contain the same
appfoximate error,

The expression for the outgoing flux, equation (27%
gives an idea of the problem inherent in the choice of an

exobase when concerned with lateral flow. Including the
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escape flux term the outgoing flux may be written
t ny(b) {2g(b)Hi(b '
Fgur_ 1(b) [2g(b)H;(b) (29)
2 m

and since g(b)Hij(b) is a constant in this isothermal region
the outgoing flux has the same height dependence as the
density.

The lateral flow of energy may be calculated in a
very similar manner by the inclusion of a kinetic energy
term in the flux equations. Hence equaticn (18) can be

multiplied by
£m1v2

and the integrations carried out as before. The outgoing

energy flux in analogy to equation (24) is

-
an-outz_ kT g(b)H, (b) { -exp[=E][E%' E.,.]]} . (30)
2m




4.0. LATERAL FLOW RESUITS

The numerical integration of equation (26) including

equation (28) was performed on an IBM 7090 computer for several

values of G, under various temperature and density distri-

butions (azimuthally symmetric in all cases) for the important

constituents at the exobase. Table 9 shows the errors of
numerical integration by comparing the incoming flux for no
density or temperature variation with the outgoing flux of

the exact solution of equation (27) for a typical case,
Table 9. Numerical integration errors, 700°K.

Integrated influx Exact Outflux % Error

i 1.32x1070 1.41x1070 6.1
He 7.OOxlO11 6,53x1011 6.7
0 lh?OxlO10 ‘+o39x101O 6.7
N2 1.6)4'}[108 1053!108 606
05 3.19x10 2.98x10 6.6

The errors of about 7% are well within the tolerance for
this type of calculation, but they certainly necessitate
use of the method discussed. Table 10 shows a sample flux
for the sinusoidal 1000-1500° case. This comparison, which
is fairly typical, shows how the net flux is always a small
part of either the influx or outflux.

The dependence of the lateral flow upon density
can be seen by a calculation for a constant temperature but
a sinusoidally varying density about unity with a maximum
at =0. The obvious result is an antisymmetric flow,

outgoing for e<900, ingoing for © > 90°, Such a result
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for maximum to minimum density ratios of 1.5, 3, and 9 is
shown for hydrogen at 1000° and 1500° in figures 21 and 22
respectively and for oxygen at 1600° and 15’00o in figures 23
and 24 respectively. The oxygen fluxes in general are much
smaller as might be expected.

Table 10. Comparison of net flux with outflux at ©=0
for 1000-1500°K temperature variation.

Integrated Integrated % Net flux
influx outflux Net flux of outflux
H 5.6807x107;  5.34shx10)  -3.35x105 6.3%
He 5.1+5’+5x1011 ‘5:%9283(1011 3.82x10g 0.7%
0 3.6366x107,  3.6377x107y 1.07x30¢g 0.03%
Np  1.2661x108°  1.2662x103 1.20x10y, 0.01%
05 2.4412x10 2. 441410 1,70x10 0.007%

The opposite effect might be expected for a constant
density of unity but sinusoidal temperature distributions
with the maximum temperature at 8 = 180°. The results for
such calculations are shown for hydrogen and oxygen at tem-
peratures varying about 10009 and 1500O in figures 25-28.
The flow is not quite antisymmetric due to the nonlinear
dependence of the flow on temperature. The oxygen fluxes
are again much smaller in magnitude.

The fluxes for both a sinusoidal density and
sinusoidal temperature variation are shown in figures 29-3k4
for hydrogen and oxygen again with an average density of
1.0 and maximum at © = 0° and a maximum temperature at
© =180°, The density variations are 2-1, 3-1, and 5-1,
while the temperature ranges are 700-1000°, 1000-1500°, and

1500-2100°. For all cases, as the maximum to minimum density
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Figure zl. Hydrogen flux in 10 em sec for a constant
temperature of 1000°with various sinusoidal
density variations about unity, maximum at &= 0.
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Figure 22; Hydrogen flux in lOl“c;:m"‘esec"’1 for a constant
temperature of 1500° with various sinusoidal
density variations about unity, maximum at 6 =0.




56

1.5

190 amnd

0.5

0.0 Influx
Outflux

-1.5 | L | | i o
0o 30° 600 900 1209 150° 5 780

Figure 23. Oxygen flux in 10cm 2sec -1 for a constant tem-
perature of 1000° with various sinusoidal density
variations about unity, maximum at & = 0,
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Figure 24, Oxygen flux in lOcm“2sec‘l for a constant tem-
perature of 1500° with various sinusoidal density
variations about unity; maximum at ©=0.
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Figure 25. Hydrogen flux in 1O“cm'25ec'l for a constant

density of unity and various sénusoidal tem-

peraturg variations about 1000~ with maximum at
6=180 ° : .
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Figure 26. Hydrogen flux in 10'cm sec for a constant

density of unity and various sinusoidal tem-
perature variations about 1500° with maximum at
6 = 1800,
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Figure 27. Oxygen flux in ].Oc:m"‘zsed'1 for a constant density
of unity and various ginusoidal temperature
variations about 1000° wi th maximum at © = 1800,
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Figure 2R, Oxygen flux in 1l0cm~ sec~l for a constant density
of unity and various sinusoidal temperature
variations about 15000 with maximum at © = 180°.
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Figure 29. Hydrogen flux in thcm
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Figure 30. Hydrogen flux in 10%em-2sec™t for 1000-1500°

sinusoidal temperature variation and various
sinusoidal density variations about unity.

Density maximum at © = 0, temperature maximum
at © = 180°.



{

60

— Outfiux | I | 1L
oo 300 60° 90° 1209 150° 180°
e

Figure 31. Hydrogen flux in lol*cm"2seo::'l fer 1500-2100°
sinusoidal temperature variatiocn and various
sinusolidal density varlations about unity.
Density maximum at © = 0, temperature maximum
at 8 = 180°,
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Figure 32. Oxygen flux in lOcm™%sec™l for 700-1000°
sinusoidal temperature variation and various
sinusoidal density variations about unity.
Density magimum at 8 = 0, temperature maximum
at @ = 180".
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Fiéure 33. Oxygen flux in 10cm~2sec™) far 1000-1500°

sinusoidal temperature variation and various
sinusoidal density variations about unity.

Density maximum at © = O, temperature maximum
at ©= 180",
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Figure 3%. Oxygen flux in 10cm-Zsec™l for 1500-2100°

sinusoidal temperature variation and various
sinusoidal densfty variations about unity.
Density magimum at 6= 0, temperature maximum
at = 180",
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ratios are varied, the fluxes range from a day to night flow

for a small ratio to a night to day flow for a large“ratio;

A comparison with the o0ld models is shown in figure 35.

1.5
Influx
1.0
0.5 |
Lat. f1
0.0 S,
(Rel. urdits)
-0. 5
H.P.
=1.0 |
-1.5 Outflux | N ] | 1
0 30° 60° 90° 120° 1500 180°

Antisolar angle

Figure 35. Comparison of lateral flow models including the
Hanson-Patterson (H.P.), Donahue-McAfee (D.M.)
and spherical (8).

The previous results of a general nature tend to
demonstrate the functional dependence of the lateral flow.
In order to estimate the magnitude of the effect upon a
real atmosphere, it is necessary to use real parameters. The
densities of the various constituents at the exobase can be
taken from tables 2-5 for helium, atomic oxygen, molecular
nitrogen, and molecular oxygen and from figure 11 for
hydrogen. In practice, for a given temperature variation

the densities were found for the maximum and minimum
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temperature and corresponding exobases, and then assumed to
vary sinusoidally in the region between. Since the exobase
altitude is a function of the temperature it is apparent that
the exobase surface is not spherical but has a day-night
asymmetry, being at a larger altitude on the day side. This
variation was not considered in the calculations involving the
various orbital relationships since the criterion of importance
is the change in exobase height as compared with its geocentric
distance. The variation in exobase height is small compared
with this radius so that it does not alter the solutions sig-
nificantly. The important feature is in the fact that the
densities used are not for the same altitudes at different
points on the exobase surface. The pertinent data concerning
the parameters at the exobase for various temperatures is

given in table 11,

Table 11. Exobase parameters.

T(°K) b(km) n(H) n(He) n{0) n(N;) ngozz

700 360 1.47x10° 1. héxlo6 1.96x107 osxlog 1. 88x1oh
1000 LL0 5. 26x10§ 1. 02x105 1.36x10 6 6.26x107 1.29x10,
1500 555 8,.78x102 6.81x107 9. 12x106 L4,22x10 5 8.73x10
2100 680 2.57x103 L.81x107 6.21x10° 2.77x10° 5.68x103

The results of calculations of lateral flow (along
with the escape fluxes and maximum fluxes) using the data
from table 11 are shown in tables 12-14 for temperature
variations of 700°-1000°, 1000°-1500°, and 1500°-2100°
respectively. They are also shown in graphical form in

figures 36-38 for hydrogen and helium.
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Table 12. Pertinent fluxes for 700-1000° temperature
variation.

Constituent Angle Lateral flux Bscape flux Max.Diff.flux

I

0 2.29x108 0.55x107 8°9x10;
30 1.11x10 0.69x107 8.9x107
60  ~-1.1kx10 1.20x10 8.9x10
H 90  =1.82x10 2.12x107 8.9x107
120 0.24x10 3.11x107 8.9x10
150  3,l4x10§ 3.63x10 8.9x10/
180 k,97x10 3.73x10 8.9x107
0 1.56x108 4. 26x1076  5.hx105
30 1,36x103 1,29x10=9 5 4x10g
50 0.78x10% 2.00x107% 5.4x108
He 90  -0.10x10; I, 6Lx10_3 5.3x103
120 -0.86x108 6.31x10 5,3x10g
150  -1.22r10g 3.26x1071 5. 3x10g
180  -1.27%10 5.65x10 5.3x10
0 .l2x10; - 103110%%
30 Lix10 - 1.3x10
60 2.38xlo; - 1a3xlo}%
0 90 -Oo 0110 - loleoll
120 -2,69x107 - 1.2x1077
150 -3°58x10; - 1.2x1011
180 -3.65x10 - 1.2x10
0 5.57x102 - 2.5x1010
30 i.80x1072 - 2ogx101°
é0 2.53x102 - 2, xloig
N, 90  -0.52x107 - 2.3x1079
120 -3.00x102 - 2.2x10t
150  -3.88x102 - 2.1x1019
180  -3.90x10° - 2.1x10
0 80101103 - 3»5X10§
30 7.00x103 - 3.5x10
60 3. 84x103 - 34 x108
0, 90  -0.81x103 - 3.2x108
120 -k4,.52x103 - 3.1x10§
150  -5.68x103 - 3.0x10g
180  -5.71x103 - 3.0x10
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Table 13. Pertinent fluxes for 1000-1500 temperature

Constituent

Ho

aans

variation.

Angle

0
30
60
90

120
150
180

0
30
60
o0

120
150
180

180

180

"3 ° 59x108
=2.,38x10
~1,23x108

-00 131101*
_09 92X1 )+
"1 ° 2 Xl

-1628xlgh

Lateral flux

8
8

2,77xlog
6.67x103
8.28x10°
3.82x10§
3°3hx108
1.91x10

=N 2N
-V

c_)v.AJ.O‘
8

-2,19x108
°2°97X108
-3.07x10

1.07x108
Og9hxlog
0.531108

-0,08x10g
-0. 59X10
-0°78x108
-0.79x10

1e16x102
1.03x106
0.57x10

-oeogxlog
-0.6hx106
-09 85)(106
-0.86X10

1.71x10%
1.50x10H
0.83x10%

ok
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Excape flux Max.Diff.flux

3.73x10/
L.39x107
6.28x107
8,h5x10;
8,86x107
7.13x10/
5.92x10"

5.65x1061
1.38x10
1.20x101

1 21N
LaJTALY

9;33x103
3.07x10
L.56x103

(S O I I T R | U D R A A |

8.9x107
8.9x107
8.9x107
BOBXIOZ
8.8x10

8.8x107
8.8x107

3,0xlog
2.9x10

2.8x108
2.7xlog
2.6x10

2.5x108
2°5x108
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Constituent Angle
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Pertinent fluxes for 1500-2100° temperature
variation.

Lateral fiux

0]
30
60
90

120
150
180

0

30
60
90
120
150
180

0

30
60

90

180

-1552x102
-1.540x10

-o.95xlo§
"00 13Xl 08

0.89x10
1.71y108

( ——an

2.03x108

7.90x108
6.71x108
3.15x108

1,60x102
l.35x106
O.67x106
-O.22x106
-Oo 791106
=0. 8)+X106
-0.75x10
2.31x10h
1.94x10M
0.95xlot
-l.lhxloh
-1.00x10

Escape flux

5.92x107
6534x10;
7 3lx10

8,04x10/
7,75x107

6 . 73x] 07

rgor Y-

6.16x107

h°56x103
7.28x1
2.31x10,

8,75x103

88 ¢ 8 0 2 LI I I I I |

Max.Diff.flux

.8x107
.8xlOZ

1.5x1010
1.5x1010
2.5xlog
2.hx108
2.3x108
2.2x10

2.1x108
2,0x108
2.,0x108
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The result for the heavier constituents, O, N, and
02 is that the computed lateral flow may be neglected since
it is much smaller than the maximum diffusive flux. Hence
the vertical distribution should remain one of diffusive
equilibriﬁm in these three cases. This is of special impor-
tance for the case of atomic oxygen. It is the dominant

constituent in the exobase region and a change in its density

" would necessitate a consistent change in the exobase level.

Therefore, since there should be no change in its density,
the exobase can be assumed unaffected by the lateral flow.

The lateral fluxes for helium, however, are com-
parable to its maximum diffusive flux, and hence bear
consideration. The hydrogen fluxes are of even more concern
since they are actually larger than the maximum diffusive
fluxes.

The lateral energy fluxes turn out to be small
compared with other energy sources. Even the total flux
out of a surface as from equation (30) is only on the order
of 103 ergs em—2 sec'l. A sample calculation for hydrogen
and oxygen at constant density of 1.0 with a 900-1100°
temperature variation is shown in figures 39 and 40. Since
the real densities are on the ordér of 105 or 106 times the
unity used, realistic flows would include this approximate

factor also,
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Figure 36. Hydrogen and helium fluxes in 108cm sec 1
for 700-1000° sinusoidal temperature variation
with corresponding densities as in table 11.
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Figure 37. Hydrogen and heligm fluxes in loacm‘zsec‘“1
for the 1000-1500" sinusoidal temperature

variation with corresponding densities as in
table 11.
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Figure 38, Hydrogen and gelium fluxes in 108cm"'?sec'1 for
the 1500-2100" sinusoidal temperature variation
with corresponding densities as in table 11.
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Figure 39. Lateral_snergx fluxes for hydrogen in 10“9

ergs cm “sec”— for 900-1100° sinusoidal temperature
variation and constant density of 1.0.
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Figure 40. Lateral Snergx fluxes for oxygen in 10'12
ergs cm~<sec~+ for 900-1100° sinusoidal
temperature variation and constant density of 1.0.




5.0. LATERAL FLOW INFLUENCE

5.1. Endosphere

The lateral fluxes derived in the previous section

will influence the vertical density distributions in the

endogphere by destroying the assum

Y umption of zero flux
necessary to a diffusive equilibrium situation. As was
shown, the fluxes are so small for O, N,, and 02 that they
make no appreciable difference and may be ignored. The
fluxes for H and He are significant and their effect on the
endospheric densities could be large.
5.11. Zero Lateral Flow Distributions

The endospheric effect of the lateral flow can be
simply described as follows. In a region where the flux is
into the endosphere the density will build up. The reverse
is true in a region where the flux is out. These density
changes in turn decrease the lateral flux and in this manner
the density distributions would tend toward those which would
yield no lateral flow., Such distributions can be found by
successive approximations to the density distributions con-
sistent with the calculated lateral flow. These are compared
in figures 41-43 with the distributions from table 11 which
were used in calculating the actual flux.

Even if conditions in the heterosphere were kept
fixed for a sufficient length of time; however, the final
distribution would not be a no lateral flow distribution.

This is Yue to the fact that a zero flow distribution on

71
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Figure 41. Hydrogen and helium densities in th and loécm‘3
respectively fgr zero flow and as in table 11.
for a 700-1000" cinusoidal temperature variation.
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*izure 42, Hydrogen and helium densities in 10° and 106cm"3
respectivel{ for zero flow and as in table 11,
for a 1000-15000 sinusoidal temperature variation.
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Figure 43. Hydrogen and helium densities in 103 and loﬁcm'3
respectively for zero flow and as in table 1i
for a 1500-2100° sinusoidal temperature variation.

the exobase surface would mean that the endospheric

distributions were not ones of diffusive equilibrium and
would yield a flow by diffusion. Hence the distributions
would tend toward a zero lateral flow situation but would
not reach one.

5.12. Steady State

If the homosphere 1s assumed to be able to act as
either a sink or a source as endospheric conditions warrant,
then a steady state distribution can be imagined similar to

a steady state with escape in which the lateral flows for a

given exobase distribution are matched by the vertical

diffusive fluxes in the endosphere which give that same dis-

tribution at the exobase when used in the diffusion equation,

This distribution would have to lie somewhere between the
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diffusive equilibrium model and the zero flow model by virtue
of the correlation between the lateral flow and the diffusive
flow created by the resultant change in density.

This type of steady state distribution depends upon
two major assumptions, however. ‘The first is that of a
source and/or sink at the turbopause. If these are not suf-
ficient to supply or accept the steady state fluxes, then of
course a steady state distribution would be impossible. The
second assumption is that a new steady state will be quickly
assumed by the gas as the parameters, temperature in particular,
change with time.
5.13. Time Considerations

A representative time for lateral flow is desirable
when considering the ability of the lateral flow to quickly
adjust density distributions. The lateral flow itself is
made up of particles which take a finite time between leaving
and re-entering the endosphere. Some times, T, for typical
orbits designated by the initial conditions at the exobase,
velocity, v, and an angle from the radial direction of 45°,
are shown in table 15. Since the escape velocity is 10,9x105
cmasec‘l, it is apparent that the majority of particles take
less than an hour in flight. It should be pointed out in all
fairness that much of the hydrogen flux comes from higher
velocity particles 608 or 9x105)so that one hour might be a
little small as a useful time. Anyway, in the period of one
or even two hours conditions will not have changed drastically
and the lateral flow itself can be thought of as taking a

negligible amount of time.
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Table 15. Orbital times for lateral flow particles.

V(cm sec'1) T(hr)
2x102 0.0k
4x102 0.11
6x102 0.31
8x102 0.95

10x107 11.19

In a steady state the total amount of either helium
or hydrogen in a column would differ with lateral positioho
Hence it would be necessary for a diffusive flow in the endo-
sphere (in this case equivalent to the lateral flow) to
remove the excess or build up the deficiency in 12 hours.

To get an idea of what this would involve, it can be done

for the hydrogen steady state escape distributionsrof figure

11. If the difference between column densities above 120 km
at maximum and minimum temperature is divided by 12 hours, an
average flux for removal between day and night is the result.
Using the hydrogen densities of figure 11 these fluxes turn

'1, 1.37x108cm“25ec‘1, and 2.72x107

out to be l.67x1080m-2sec
cm~2sec=l for 700-1000°, 1000-1500° and 1500-2100° respectively.
In this case they are even larger than possible which imme-
diately suggests thgt these diurnal variations are too large.
However, a steady state with lateral flow would not be as
extreme and fluxes derived from differences in this case
might be tolerable.
5.14, Alternative to Steady State

If a steady state distribution as formulated is not

possible, the alternative is a distribution dependent upon
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the lateral flow and how it can be supported or absorbed

by diffusion in the endosphere. Since diffusion rates vary
inversely with the total density, diffusion is much quicker
in the upper endosvhere than in the lower endosphere. 1In a
region of removal by lateral flow, densities in the near exo-

base region could quickly diminish the lateral flow.

5.2. Exosphere
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may be regarded as in two parts. The first is the alteration
of the exospheric densities. This is an obvious consequence
since the density in the lower exosvhere is simply an extension
of that in the endosphere. The second is the presence of a
net flow in the exosphere itself.
5.21., Exospheric Densitles with Lateral Flow

The effect upon exospheric densities of lateral flow
in the exosphere region may be seen by consideration of the
origin of particles contributing to the density at any point.
These particles originate from all points on the exobase sur-
face and hence come from regions of different density and
temperature. The density at an exospheric point is then no
longer a simple function of the local temperature and density
variation.

It should be expected that at small altitudes above
the exobase, such an effect would be small since most of the
density contributions come from locally originating particles;

At higher altitudes the origin of particles is much less
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localized and modification should take place. At extremely
high altitudes particles contributing to the loral density
have an almost equal chance of originating from any position,
a necessary fact already pointed out by Chamberlain32. 1In
this case the density at these high altitudes should be
spherically symmetric regardless of the temperature and density
distributions below.

Without the assumption of spherical symmetry exospheric
density calculations become more complex but can be handled
in a manner similar to the calculation of the lateral flux.
The pertinent geometry for such a calculation is shown in
figure 44. The contribution to the density at point 2 from
the flux originating at point 1 is that flux divided by its
velocity at point 2, v(2), and divided by the flux area at
point 2, dA(2).

Figure 44. Geometry for exospheric density calculation.
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Hence,
dn(2) = dX1) (31)
dA(2)v(2)
For practical purposes the area and velocity as specified
may be replaced by the lateral component of velocity, Wg,
and the area normal to Wg, dA'. Then
an(2)= 4FA) (32)
A lm

By conservation of angular momentum with velocity v at point 1
W‘= Vo ¥= XVggeYSin (33)
where

= Rb/r

x ;-_-_v/vesc°

The area dA' may be expressed in terms of useful

variables

dA'=rdrd @ sin@= Ry dg s;ned(-y) (34)
y

where p is an azimuthal angle at point 1, The flux is the
familiar form of equation (13)

_ E]3/2 2 sinededd
d¥= n(9’¢)vesc[ﬁ] R% [T(G,@P dusindcosudfdxx eXP[T(e,(p

(35)
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Substituting equations (33), (34) and (35) into equation (31)
yields

E 3/2 spao 14
dn(2)= y°n(@ 45)[—] ducos«xzexpg' X & __
T e @ Ja(-y), 38

By first performing the x integration,

dx —-ax
d(-Y) ay .

From appendix B, differentiating equation (67), and inverting:

-90X _ x3sinex
ay - l-cos 8

’ (37)

and substitution of equation (37) into (36) gives

/2d¢de dec 5 Ex2
dn(2)=y2n(6,4>)[:f-':-]3 HeOSX _ sinex exp[:__] s
(1-cos8) [T(Q¢?]3/2 T(6¢)
(38)

For azimuthal symmetry (directly above the temperature
minimum or maximum) the ¢ integration gives the factor,
2. The functional form of x from Appendix B, equation
(67) is

2= (1-cos@®
2sinx [y-cosefc ot«xsine]

(39)

The integration for © is over the whole surface, i.e.,

0< 6K T,
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The limits for the o« integration are determined by the
relationship for « and x2., From <=0 until x° becomes
negative there 1s always a velocity such that the orbit
will pass through Ry, & and y,0. Hence

D<K <L cot-1 Z?f_"_"ﬁ
sin @

The numerical results from an IBM 7090 computer are
shown in figures 45=50. 1In all cases these are for hydrogen
and helium at points of maximum and minimum temperatures.
Figures 45 and 46 show the dependence upon density for the
particular case of a 3-1 density ratio and various constant
temperatures. Figures 47 and 48 show the temperature
dependence. In figures 49 and 50 a continuation of the real
density curves has been shown where between 120 km and the

exobase diffusion is presumed and above the exobase densities

are calculated from the orbital theory. Since definite changes

from diffusion theory do not appear until large altitudes
are reached, no correction need be made for the fact that the
exobase 1s non-spherical.

The gross features are readily apparent. The height
density profile is ignorant of lateral conditions in the
region immediately above the exobase. At higher altitudes
the lateral flow tends to smooth the densities toward a
spherical symmetry between the extremes. These variations
occur at such large altitudes, however, that for all intents
and purposes a diffusive equilibrium type distribution can

be assumed in the lower exosphere.
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below the exobase, no-collision theory above.
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5.22. Measurements in the Exosphere

Another feature of a lateral flow concerns its
possible effect on various exospheric measurements by
virtue of the net flow velocity. For instance, it is possible
that this might produce perturbations in the orbits of high
altitude satellites. Also photometric measurements concerning
radiation emitted in the exosphere would contain Doppler
shifts due to the net relative velocity.

An estimate may be made of the average flow velocity
by considering the total lateral flow above the exosphere base
through a semi-infinite strip of unit width, exactly the
reverse of converting lateral flow to vertical flux. This

flow ZF may be written in terms of the vertical flux, F, as

8,
?1(90) = L g F; (8) sinBde. (40)
sin &
°0

and the average flow velocity would be this flux divided by
the total column density, N, or

%
?1(9 ) -R, f F; (6) s1n0do
Vave = (41)

Ni(Rb'eQ) sin@ny (R, ,8 )H; (Ry,8,)

where the approximation
Ny (Ry,8,) ~ n, (Ry, 8,)H, (R, 8)

has been made. Two values for Vave which were lateral
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maximums (8,~ 90°) are 5x103cm sec™! and 5.4x10%cm sec™!

for the 1000-1500o helium and hydrogen cases respectively.
These were the largest values that occurred for each. In
terms of the rms velocities, the helium is about 5% and the
hydrogen about 10% while they are about 1% and 8% of satellite
velocities respectively. However the local lateral flow
velocity will increase with altitude so that in the relatively
dense region near the exobase it will be smaller than the
average flow velocity and conversely, at high altitudes it
will be larger. Hence if these effects are at all observable,

it would be at high altitudes.
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6.0, CONCLUSIONS

The conclusions that may be drawn from calculations
of lateral flow are rather definite with respect to the gross
effects. First, the flow for the heavier constituents,
atomic oxygen, and molecular nitrogen and oxygen, is small
enough to occur without altering the picture of a density
distribution from a diffusive equilibrium one. Second, the
flow for hydrogen and helium is sufficiently large to pro-
hibit ignoring the effect in calculations of their density
distributions. The energy flow may be neglected in any case.

These statements must be tempered by two conditions,
namely the approximation of the diffusion coefficient in
calculating maximum diffusive fluxes and more important the
adoption of the criterion for establishing the exobase. The
second is important because the lateral flow is directly
proportional to the density and will vary in the same manner.
Fortunately, the helium and hydrogen densities vary slowly in
the exobase region so that it would take a large change in
exobase altitude to seriously alter the lateral flow.

Several conclusions may be drawn from the form of
the flow, but they are rather unspecific in nature. The
lateral flow will demand an asymmetry as pointed out by
Donahue and McAfeel0 from earlier work. This is most easily
seen from the density distributions yielding zero net flow.
They contain an approximate 2.5-1 maximum to minimum density
ratio. A distribution lying between this and the escape flux

distribution for hydrogen would have a larger ratio and

89
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between this and the diffusive equilibrium distribution for
helium would have a smaller ratio. Added effectiveness of
the zero flow distributions is in the fact that they are
general, and imd evendent of exobase choice.

The problem of calculating the exact effect of the
flow on density distributions has not yet been attempted.
It could be approached in two ways. If a steady state solution
is desirable, diffusion equations in the exosphere could be
coupled to lateral flow in the exosphere, much as escape
is included in the diffusion equations for hydrogen. Unfor-
tunately an exact solution is not readily available. Perhaps
the best way to proceed would be by successive approximations
with alternate calculation of lateral flow and vertical den-
sities using the information from one in the other. 1In thié
case the fluxes would have to be scaled down, however, to
avold divergences.

The second approach would be to consider a time
dependent atmosphere with both vertical and lateral diffusion,
the lateral diffusion replacing lateral flow as calculated
here. This is probably permissible in the lower exosphere
since the atmosphere seems to act like a diffusive one in this
region anyway.

Each of these processes must contain assumptions
about the boundary conditions, not only with respect to the
densities, themselves, but also with respect to the flows.

A definite knowledge of such conditions must be known before
a real description of the effects of lateral flow can be

made.
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It does not seem likely that evidence could be
gathered experimentally directly involving the lateral flow
ag in section 5.22. Experimental support would then have to
arise from measurements on an atmosphere that has been altered
due to the presence of the flow., Obviously, density measure-
ments on helium and hydrogen would be the most likely.

In summation, then, the particular features of the

lateral flow are:

1) The flow is negligible for O, NE’ and O,.

The flow is large for He and H.

Diffusive equilibrium is unlikely for He.

Hydrogen should have a very complicated lateral and
vertical variation, at least with respect to its
theoretical determination.

5) Real distributions of H and He will be determined
by diffusion and lateral flow and also by the
boundary conditions on both density and flow.

£ o
N




APPENDIX A. DIFFUSION EQUATIONS

According to Chapman and Cowling35 the general
equation of diffusion for a binary gas of constituents
1l and 2 may be written:

}
{

- =-n2 n }

In nmn

S1-C=—"n;, v(_l.).‘. 1 2(mp-m )Y 1n P
nin, ~\n np

-0 niny o 1
1 (F1-Fo)+ 122 “T;SZ.T}s - (42)
er n
where:
C1,6, = diffusion velocities,
o AR,
n ,n, = number densities,
m;,mp = Mmasses,
fjJ£2 = accelerations due to external forces,

0
-
o
]

mass densities,

L=
ot
N

i

diffusion coefficlent,

5
[

total number density,

.-
i

total pressure,

total mass density,

KX -0
f

coefficient of thermal diffusion,

T = temperature.

92




93

The four terms represent diffusion due to the non-uniformity

of composition, pressure, and temperature and due to external

forces.

If the region of atmosphere of interest is considered

to be plane parallel, the vertical diffusion will be:

- - 2 n
wi-wo = L Di»o a )
nino az ny

n n n
—l—:(mg-ml)- —-+-qu§ %,},—g_f_ o)

where wy and wp are the vertical components of diffusion

velocity. Using the relationships
nijt+np =n
P::E'n
where m, the mean molecular mass, is defined bys

= m) Ny 4 Moly

3
n

and applying the ideal gas law,
P= nkT’

and the hydrostatic equation

1%

=‘Pge

~”
£

Q
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equation (43) reduces to:

N

| 1)T
‘V1°"2='1)12(rl ] 1o, me, 1+—‘1°(T] 2 } (L)

n-nqyl | 0y az kT n Tz

In the case of diffusive equilibrium, w;-wp=0, and

- =— =0, L
TJz ° ()

If thermal diffusion is neglected, i.e. &y =0, equation
(4+5) has the solution:

T
ni(z):=ni(a)[ (a) ] vg'g(z (46)
T(z) T(z')

where the index i refers to the ith component. This is

the familiar barometric formula for diffusive separation.

If component 1 is not in diffusive equilibrium but

it is a minor component such that
n1<<n2

then equation (44) may be written for this ith component:
wiz-Di{l ony +-i-+(1+o< BE DT} (%7)
ny oz 0z

One case of importance that involves a non-zero diffusion

is the steady state flow. If there is a source and sink
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at different altitudes with no loss or gain between,
continuity (now written as in a spherical geometry) imposes

a restriction on the diffusive flux, S4(z), namely

2

Si(z)Eni(z)wi(z)=si(a)(%§) (48)
Z

where R, is the geocentiric radius of level h. Eguation (k)
then becomes upon substitution of (48)

2
Si(a)(f_a.\+Di {%’.’i‘{.w.g.ni(uﬂ-r)i ?.ﬂ:o, (4+9)
\Nz/ (dz K Toz)

and has the solution:

S Z 8i(a) R
ng(z)= ny(2) {1 -f F{Ti_';'n'im (-}i) dz'\ , (50)

again ignoring thermal diffusion.

For small values of S,;(a), the steady state solution,
ny(z), is that for diffusive equilibrium, E;?;S. For larger
positive values (flow out at the top), this solution will
be reduced from that for diffusive equilibrium, while for

large negative values (flow in at the top) the solution is

‘enhanced.,

For a sufficiently large positive value of Si(a),
the steady state solution becomes negative at some altitude.:
Hence a maximum flux, S?ax(as,in the steady state case be-
tween levels a and z may be defined by that flux which will

reduce the density to zero at level z, or in terms of
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equation (47),

max
Si {a)=

. (51)

1 __(§§)2 dz'
Dy(z'In;(z2') By
a _

Any flow greater than S?ax(a) will give the non-physical
situation of negative densities somewhere between levels
a and z.

The diffusion coefficient, Dj(z), for the case of

hard sphere elastic collisions, again as derived in Chapman

and Cowling35, may be writtenrs

1/2 1/2

Di(z)-:““/z[uﬁ] [;k-T-] 2 (52)
n

where O is the collisional cross-section.
In the particular case where planetary escape acts
as a sink at the top of the atmosphere and an equivalent

source is available from below, Si(a) may be determined by

relating it to the escape flux:

S3(b)= 51(a)(§_q‘)2=nicb)"§sc (53)
Rp

where b is the exobase altitude and wgsc the effusion

velocity as defined in section 2.3. Substitution for ni(b)
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from equation (47) in equation (53) yields
esc 2 b 2
Si(a)=ni(b)"i Ry 1- 8 (a) Ra dgt (5k4)
Ra Di(Z')niZZ') Rb
a
and solving for Si(a) gives
ng (D)W, (Ry/Ry)2
S.(a)= (5%)
’ T .eSC 2 P 1 — [ Ra 2dz'.
1410, (D)wSSS(Ry/R,) j honGo (T

Diffusion in a lateral direction, say the y

direction, for a minor constituent without thermal dif-

fusion, from equation (43) is

lat —n p) ni) ny.. .19P
wy = —Dy)=[—=|+ =(m-my)- =— } . (56)
1 nj i{é)’(ﬂ P T Pay}

If there is no lateral flow of the bulk atmosphere,

oP

— =0

oY

and using this and the perfect gas law
P = nkT

reduces equation (56) to

lat 1 9ng 13T] .
v =_.ni{____+_.—.} . (57)

nji 9y TQvy




APPENDIX B. ORBITAL RELATIONSHIPS

Given a particle of velocity v at an angle o< to
the radial direction when at the radial distance Ry, its
trajectory in the earth's gravitational field.is given by:

1 1 ; ‘ 1 1
12 )-cotsinP+}1- cosp+ (58)
r Ry { ‘ 2x251n2,(] f' 2x2s1naK }
where
x= ¥
Vese

Vesc = 2g8(b)R = escape velocity at Hb

\P= angle traversed by particle in orbital plane.

If equation (58) is solved for lp , the trajectory

may be expressed as:

—

cos 4)__ [A+cos?_]£ﬁycos¥+l-y]isin)/\/@Fcosﬂz«)-l-[u—ycos\'f-l-ﬂg

a——

[A+cosl_.‘2+sin2Y (59)
sing = sinXEA-i-ycosZH—l-y];[McosX]jE\f—cos‘fﬂ- E\+ycosx+l-y] 2’
':11+cos’6]2+sin28 (60)
where
f=ox
y -:-R.b/r
A=l ~-l.
x2
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For the particular case of y=1, i.e, the angle traversed

by the particle between leaving the sphere r=R._ and returning,

b
equations (59) and (60) become
2 2
+
cos ¢ = [a+cos¥]“tsin“Y (61)
[A+cosx]2+sin2¥
sin('z sin l@-}cosY]Ll-T-ﬂ (62)

[Aa-cos Y] 2+ sin?Y¥

In a similar manner, if equation (58) is solved for

¥=2e,

cos ¥= {-(y-coslll) [A(l—costPHL-y] * }

Sin“’ﬁ}'-cos\ll)2+sin2\)'- LA(l-COS\'))+1-y] 2
(y-cos)2¢sin?y

sinf= {@(l-cos'})i—l-y!sin']lt ‘}
(y-cosy) (y-cos‘ll)2+sin%}':[_A(l-cosl/)H-l-y]E‘ (64)

(y-cos¢/)2+sin2tp *

(63)

These in turn when y =1 reduce to:

-A(1-cos )'.'.'Jli—cosq)j\lz-(l-coswm?

cos¥ = (65)
2
sinf = AsinPF/TI-cosP V2-(1-cost)a? (66)
2
Finally, solving equation (58) for x yields
%2 l-cosy (67) .

= sin¥sinp+ (1-cos¥) (y-cosy)
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APPENDIX C. LATERAL FLOW UNDER SYMMETRY CONDITIONS

The validity of the lateral flux equation may be
checked by consideration of the case of a spherical symmetry

in both density and temperature. Under these conditions

equation (32) may be writtents

/2 i 2 t

Fil_l__ E(§)3 vescjdxx3exp[-ﬁ'.12}{de'ﬁne'(l""ﬂ cos@') Sd¢'

My {I+cos@ y2-A¢(1-cosB')
(68)

where now

2
ez Mesc

2kT

With the proper limits of integration this becomes

1/ 27
Fing ng 3/$e sc{ g dxx3exp ["Exa ( dcos@) (1+A2c°sel) S d¢'
b Jl-&-coseé Ag(l-cose
0

¢ 2 2’
+‘§ dxx3exp[=Ex2]f (-dcos@) (1 Accos ) ad't  69)
¥y \/l—fcosquAz(l cosd)

'
For each of the two terms the ¢ integration is 2W, The

©' integrations are of the form:

_ yd§ (1+2°8)
(14§ 2-27(2-)

=/1+§ /2-4%(1-8).
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Substitution of these into equation (69) yields:

75 (] [rontond (e E]

1- 2/A2

J‘/ exp -Exz_) [\/I-? m ] }

3/2 1/V2
Fin___’r_g_r_l(%) vesc{ g dxx3exp —EX2](2-0)

0

1
+ j dxx3exp[-Ex2] (2-0)}
1//2

1
in 3/2
— E 3 -,
F _Wn(_,—r) vescj dxx’exp [Ex _] (70)
0

The equation for the outgoing flux is:

3/2
Fout = n(%)

™
v dxx3exp [-Ex2] I sinstcosotdX | d ‘
esc P
0 0]

3/ 2
Fout__; n(%)

3/2
out_ E
F _Trn( 7T)

Vese Idxx:'s exp [—Ex2J . (71)

Equations (70) and (71) are identical and hence

the net flux is zero as it must be in a symmetrical situation.
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APPENDIX D. INFLUENCE OF LATERAL FLOW ON THE DIURNAL VARIATION
IN EXOSPHERIC HYDROGEN
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