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RE-16

OPTIMUM TRANSFER TO MARS VIA VENUS

ABSTRACT

/1S39F

This report describes an investigation into the advantages

- of a thrust maneuver near Venus during a round trip mission to

Mars. Optimum thrusted flybys of Venus have been computed for
practical dates at Earth and Mars between 1970 and 1990. It

was found that the use of thrust during the flyby of Venus does
offer savings over the pure flyby without thrust, but from a
practical point of view they do not appear significant. The
conclusions apply only to the specific type of Earth-Mars

transfer for a round-trip stopover mission which was studied.

The method of analysis is applicable to any interplanetary
flyby trajectory. f _

by Walter M. Hollister
John E. Prussing

April 1965
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OPTIMUM TRANSFER TO MARS VIA VENUS

Introduction

Several investigators have recognized the fact that the
energy requirements for fast, round-trip missions to Mars can
be substant’ :1ly reduced if Venus is encountered enroute. This
first became apparent in the consideration of round-trip missions
which would fly by both Venus and Mars. (1)(2)3)(4) R has also
been recognized that a flyby of Venus enroute to or upon return

(56 XT)

from a stopover mission to Mars will produce savings
over a stopover mission which proceeds direct to Mars and di-
rect to Earth upon return. In addition, several investigators
have pointed out that a thrust impulse applied during the hyper-
bolic encounter with Venus can provide further savings in com-
parison with those trajectories which make a pure flyby of Venus

(8)(9)(10)

without thrust. The purpose of this study is to investi-
gate the magnitude of any saving associated with the additional
thrust impulse at Venus. It is also an objective to develop a
clearer picture of the saving which the Venus flyby flights make
in comparison to the direct flights and the dates when the flyby
flights are superior. Consequently, there are three types of
Earth-Mars, free-fall transfers which are to be compared.
These are:

1) Direct, free-fall, transfer from Earth to Mars.
2) Venus flyby enroute to Mars (no thrust at Venus).

3) A free-fall transfer which includes a thrust maneuver

during a flyby of Venus enroute to Mars.




When Venus Is Available

The major advantage of making a flyby of Venus is that
the hyperbolic encounter with the planet changes the velocity of
the vehicle relative to the Sun. The magnitude of the velocity
change can be large enough to make a significant change in the
solar orbit. The limiting magnitude of the velocity change is
the planet's circular satellite velocity at the point of closest
approach to the planet. A Venus encounter has the potential
of providing a velocity change of above 20, 000 feet per second.
A fast, round-trip to Mars by direct transfer will already take
the vehicle to the vicinity of the Venusian orbit. The only major
question is whether Venus will be in the right part of its orbit

to be available to the spacecraft.

Two physical principles help in the analysis. The first
principle is that bodies in near circular orbits of the Sun tend
to get ahead of Earth when at distances less than one astronom-
ical unit from the Sun. Likewise they tend to get behind Earth
when at distances greater than one a.u. from the Sun. In order
to return to Earth without circling the Sun, the fast, round-trip
to Mars has to have the vehicle spend time inside of Earth's
orbit catching up for the time it spends outside of Earth's orbit
getting behind. The further the vehicle proceeds inside Earth's
orbit, the greater the angle by which it gets ahead. The second
principle is that low-energy transfers between planets are
characterized by the fact that the planetary alignment of the two
planets with the Sun occurs about half way between the launch
and arrival dates. The combination of these two principles leads
to the conclusion that the location of the Sun-Venus-Mars align-
ment, relative to the Earth, is indicative of the availability of

Venus for a low energy transfer to Mars. The situation is




shown pictorially in Fig. 1, The motion of Venus and Mars is

relative to a frame in which the Earth-Sun !ine is non-rotatine,
Venus at less than one a. u. from the Sun is continually getting
ahead relative to Earth. Mars at greater than one a.u. from
the Sun is continually falling behind. For a Venus encounter en-
route to Mars the encounter must take place ahead of Earth, If
the transfer is to be of low energy requirement, Venus and Mars
must be aligned with the Sun when the vehicle is about half way
to Mars. Consequently, the location of the Sun-Venus-Mars
alignment in the reference frame of Fig. 1 is sufficient to pre-
dict whether or not Venus is available. The same argument applies
to trips which flyby Venus upon return from Mars. The first low
energy transfer to Mars wiil cause the vehicle to get behind
relative to Earth. Consequently, the location of the Sun-Venus -
Mars alignment must be behind relative to Earth.

There are other methods for investigating the availability
of Venus. One method is to look at the optimum direct trip and
see if Venus is at all close to the vehicle when it crosses the
(6) Another method is to look at the dates of

planetary alignment. (8) Still another method is to search for a

Venasian orbit.

flyby opportunity during dates for which low energy transfers

between Earth and Venus are known to exist. The advantage of

Fig. 1 over all these other techniques is that it gives the infor-
mation at a glance and provides more physical insight into what

is going on. For example, it can be seen that Venus is available

on one leg during every Mars opposition period. During every

third Mars opposition period it is possible to utilize Venus both

going and returning. Trips which utilize Venus can be found when the
Sun-Venus-Mars alignment is outside the ''available' region shown

in Fig. 1, but there will probably be direct trips which arrive or
depart Mars on the same date, have shorter flight times, and require
smaller launch velocities. An example of this is discussed later

in connection with Fig. 6.




Optimization of Launch, Flyby, and Arrival Dates

A planetary flyby is a maneuver which, although it occurs
in the immediate vicinity of one planet, actually involves three
planets: the launch planet, the flyby planet, and the destination
planet. The flyby maneuver itself can be thought of as a con-
necting link between two trajectories: (1) the trajectory oriziiu-
tiiz  at the launch planet on a given date and terminating at the
flyby planet on a specified date; and, (2) the trajectory origina-
ting at the flyby planet on the same flyby date and terminating
at the destination planet on a specified arrival date.

The techniques for a mission involving a single planetary
flyby are also directly applicable to a transfer involving more |
than one planetary flyby, such as a non-stop, round-trip mission
flying by both Venus and Mars. In the discussion of a planetary
flyby in this more general context, the 'launch'’ planet is the
planet previously encountered by the vehicle, Thus the '"launch"
planet may be the planet at which the mission originated or it
may be a planet at which a previous flyby took place. Analogously,
in the more general context, the ''destination'’ planet is the planet
subsequently encountered by the vehicle and may be either the

termination planet or a subsequent flyby planet,

For a specified launch date at the launch planet and arri-
val date at the destination planet (sufficient information to uniquely
determine a direct transfer), there exist many possible flyby
dates. For most of the dates a thrust maneuver during the flyby
is required to connect the inbound and outbound trajectories.
Specifically, a thrust maneuver is required for those dates on
which either

(1) The inbound and outbound hyperbolic velocities (relative

to the planet) differ in magnitude, since no energy change

relative to the planet can occur in a pure (unthrusted)

flyby, or

10




(2) some portion of the pure flyby trajectory passes beneath
the surface of the flyby planet.

In mission planning a meaningful criterion defining the
optimum transfer is the minimization of the over-all velocity
requirement for the mission, subject to a constraint on maxi-
mum admissable mission duration time. One might think that
a thrusted flyby would result in a larger velocity requirement
than a pure flyby, since a pure flyby . "quives no velnciiy iimpulse
at the flyby planet. However, this is not necessarily true.
Allowing a thrusted flyby permits the choice of date at fhe flyby
planet for given launch and destination dates. Among this much
larger set of possible flyby dates, there may exist a date for
which the initial velocity impulse at the launch planet is small
compared with launch velocities for other flyby dates. If the
velocity saving at the launch planet is great enough to compen-
sate for the necessary velocity impulse required during the {lyby,
then this mission is optimum even though a flyby thrust maneuver
is necessary.

To find the transfer which results in the smallest over-
all mission velocity requirement, it was decided to investigate
(for a given launch and destination date) each possible date at
the flyby planet. From this the best flyby date was selected for
the given launch and destination dates. This procedure was then
extended to include all launch and destination dates of interest.
The direct computation of trajectories for each of the dates at
the flyby planet was chosen out of preference to many currently

(

popular optimization techniques 11) because of the presence of
more than one local minimum. I was considered more desir-
able to gain an understanding of the complete picture of velocity
requirements for different combinations of dates, rather than
converge on a single trip for which the velocity requirement

possesses a local minimum .

11



General Description of Thrust Impulse Optimization

For a specified flyby date, the hyperbolic excess velocity
vector inbound to the flyby planet is uniquely determined by the
launch date at the previous planet. In like manner, the hyper-
bolic excess velocity vector outbound from the flyby planet is
specified by the arrival date at the next planet to be encountered.
Thus for a given set of launch, flyby, and destination dates the
magnitudes of the inbound and outbound hyperbolic excess velo-
cities and the angle through which the vehicle must turn during

the flyby maneuver are specified.

With this information the computation of the point of appli-
cation of the flyby velocity impulse requires a two-dirnensional
optimization. The optimization problem can be stated as follows:
Given the inbound and outbound hyperbolic excess velocity vec-
tors, determine the point of application of the smallest vector
velocity impulse which will connect the inbound and outbound
trajectories. This optimization must in addition include the
constraint that the vehicle must not pass beneath the surface of

the flyby planet during the maneuver.

To solve this optimization problem, one must consider
the mechanics of the flyby maneuver in more detail, Consider
a vehicle entering the sphere of influence of the flyby planet
along the inbound asymptote with a specified hyperbolic excess
velocity vector. As the vehicle approaches the planet, the fact
that the planet is not a mass point but a mass of finite size be-
comes important. During the flyby maneuver the distance of
closest approach to the planet must be greater than the planet

radius to avoid collision with the planet.

As the vehicle enters the sphere of influence of the flyby
planet, the energy of the trajectory is specified by the magnitude
of the hyperbolic excess velocity, The one additional constant
of motion to completely describe the inbound hyperbolic tra-

jectory (the angular momentum) is arbitrary at the sphere of
influence,

12




In discussing flyby trajectories, the hyperbolic excess
velocity is a convenient parameter describing the orbit of the
vehicle, but the angular momentum is less convenient. The
specification of the distance of closest approach to the planet
(the peripoint radius) is equivalent to specifying the angular
momentum and results in a more easily visualized orbital
parameter. The peripoint radius is related to the angular mo-

mentum by the relation,

Ty = 2 (1)

where

r is the normalized peripoint radius

Vy is the normalized hyperbolic excess velocity
magnitude

h is the normalized angular momentum per unit mass

NOTE: Unless otherwise noted, in all equations
lengths are normalized in multiples of flyby
planet radius.

Velocities are normalized in multiples of
circular satellite velocity at the planet's
surface,

The inbound hyperbolic trajectory of the vehicle as it
enters the sphere of influence is characterized by a specified
value of the hyperbolic excess velocity and a peripoint radius
which is arbitrary in magnitude. The magnitude of the peri-
point radius will be determined by the flyby velocity impulse
optimization. In the optimization it is assumed that the angular
orientation of the peripoint 'is chosen so that the point lies in
the plane defined by the radius vector of the approaching vehicle
and the predetermined direction of the outbound asymptote.

This assumption allows the flyby maneuver to be analyzed as a

planar problem.

13




The actual process of guiding the vehicle toward this
determined peripoint is accomplished by applying small velocity
corrections to the vehicle as it approaéhes the planet from the
sphere of influence. Assuming perfect guidance of this type, the
entire flyby trajectory can be considered to be a planar trajectory.
Thus the optimization to determine the point of application of the
optimum thrust impulse is two-dimensional instead of three-di-

mensional,

14




Details of Thrust Impulse Optimization

In the preceding section the characteristics of a planetary
flyby were described geometrically and the assumption of co-
planar inbound and outbound trajectories was introduced. To
perform the two-dimensional optimization which has been

described, the flyby maneuver must be described analytically.

For a given position of the vehicle, the vector velocity
impulse which is necessary to transfer the vehicle from the
inbound trajectory to the desired outbound trajectory is the vector
difference between the velocities of the inbound and outbound
hyperbolas at that point. Since the inbound and outbound hyperbolic
trajectories are described only in terms of their hyperbolic
excess velocity vectors, it would be convenient to express the
velocity at any point along the hyperbola in terms of the hyperbolic

excess velocity vector.

An equation which expresses the velocity vector along a
hyperbola in terms of the hyperbolic excess velocity vector and
the radius vector to that point is the hyperbolic injection velocity

(4)

equation given by Battin, This equation describes the velocity
necessary at a given point to achieve specified hyperbolic conditions
(magnitude and direction of hyperbolic excess velocity). Since the
hyperbolic excess velocity vectors are known for both the inbound
and outbound hyperbola and since the vehicle position is a point
which is necessarily common to both hyperbolas, this equation

can be adapted to describe the flyby maneuver. The hyperbolic

injection velocity equation can be written as:

\ =-%— Jl + 5 4 . + 1 VH
VH r (1 +cos®) o
o (2)
VHo 4 o
+ 5 f+ 5 -1 T
r VH r (1 +cos 6)
o
15




where the variables are defined in Fig. 2.

This equation is adapted for the analysis of a flyby as
follows. At any point the velocity which will result in the desired
outbound hyperbolic excess velocity vector is given directly by

Eq (2). Thus the outbound velocity can be written as:

VO =—%— \/1 + — 4 +1 VH
VHOr (1 + cos 90) o

VHO‘/ q ‘ _
+2r 1 + 5 -1}7T

VHOr (1 + cos 60)

(3)

where a subscripted variable such as \_/'O denotes that the variable

refers to the outbound hyperbola.

The velocity, VI , of the inbound hyperbola at the same
point is obtained by noting that for the same radius vector T,
- '\_/'1 is the necessary velocity to achieve the hyperbolic excess

velocity - Vy. . This is shown in Fig. 3.
I

Thus the original injection equation can be adapted to
describe the inbound hyperbola by changing the algebraic signs

of the appropriate terms to yield:

— 1 2 J _
V. = = 1+ +1 A%
I 2 \/ VI?I r (1 + cos 91) HI
1 (4)

H !
- 2rI J1+ 5 4 -1) T
VH r (1 + cos 91)
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The necessary velocity impulse applied at T which will

transfer the vehicle from the inbound to the outbound hyperbola is

then AV = V0 - VI
Noting that 90 =7 +A - 61, the general expression for

the velocity impulse AV, can be written in terms of the co-ordinates
of the point of application (r, 91) and the known dynamical properties
of the hyperbolas (Vi , V

He? A). Thus for an arbitrary point
(o) -
described by (r, GI), the velocity impulse AV can be computed.

For computational purposes the vector quantities are
co-ordinatized by defining a two-dimensional Cartesian reference
frame having its origin at the center of the flyby planet, x-axis
parallel to the inbound asymptote, and y-axis perpendicular to the

inbound asymptote. The expressions for the components of AV

are then:
. VHQ[/ 7 .
vV = 1+ {cos A - cos 8,)+ cos A+cos8
x 2 V72 ¢ [t - cos (6, - A)] I I
Ho I
(5)
- 1/(-&- 5 (1+cos61)+1—coseI
VHIr(l +cos 91)
v
AV = H°ﬁ+ 4 1(sin9 -sin A) -sin A -sin 6
y 2 2 _ _ 1 I
VHOr [1 cos (61 Aﬂ
' (6)
VHI 1 -
+ 5 sin 0 I \[1 +— -1
V.. r (1l +cos 6.)
HI 1
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The magnitude of the impulse is given by:

AV = .\/AVZ + AV2
X Yy

18

(7)




The Computation of the Flyby Impulse

To compute the magnitude of the flyby thrust impulse as
a function of position a MAD computer program for use on the
IBM 7094 was written. From the results of this program a map
of the required velocity impulse magnitude as a function of ve-
hicle position in the plane of motion was made for values of in-
bound and outbound hyperbolic excess velocity and turn angle
which are typical for a flyby of Venus.

This map shows in pictoral form the sensitivity of the
magnitude of the impulse to position variation in the radial and
circumferential directions. It also suggests a simplified method
for dealing with the constraint of finite planet size in determining

the optimum thrusting point.

The program to compute the flyby impulse magnitude by
solving Eqgs 5, 6, and 7 was written to compute the AV, not at
arbitrary points in the plane of motion, but at points lying along
hyperbolas, representing various inbound trajectories having
different peripoint radii. In this way the required impulse magnitudes
for adjacent points along a specific inbound trajectory are easily
compared. By doing this computation along many different hyperbolas,
the impulse magnitudes can be computed in the region of the plane
of motion bounded by the inbound and outbound asymptotes and
extending radially from the center of the planet out to several
planet radii. A map of the impulse magnitudes can them be made
by plotting the loci of constant AV, as shown in Fig. 4.

In Fig. 4 two points are labelled: the optimum thrusting
point (characterized by the minimum value of AV) and the common
peripoint (the point which is the peripoint of both the inbound and
outbound hyperbolas). The common peripoint is of interest because
the impulse magnitude is easily computed at this point. The
impulse magnitude at the common peripoint is simply the scalar

difference between the peripoint velocity magnitudes of the two

19



hyperbolas, since the velocities are parallel at this point (both

velocities are perpendicular to the radius vector).

Thus
AV = V. -V (8)
T 7rI
where
2 2
V7r = |5 + VH
e} T o)
(9)
2 2
\% = _[=— + V
Ty Tn H;

V, and Vg are the normalized magnitudes of the peripoint

o}
velocities of the outbound and inbound hyperbolas, respectively.

r. is the normalized common peripoint radius, the
computation of which requires a short iteration. As shown in
Fig. 4 for typical values of turn angle and hyperbolic excess
velocities, the common peripoint lies very close to the optimum
thrusting point. As a consequence, the magnitude of AV at the
common peripoint is only slightly larger than the minimum AV
for the maneuver. The magnitude of AV at the common peripoint
is less than 3% higher than the minimum value of AV for the
typical case shown in Fig. 4. This phenomenon has been noted

by Gobetz (9) and others.

Because the flyby impulse magnitude is easily computed
at the common peripoint and is only slightly larger than the
minimum value of AV to accomplish the specified maneuver, the
following approximation can be made:

If the common peripoint radius is greater than
the radius of the flyby planet, the minimum value of

the flyby impulse magnitude can be approximated by

the impulse magnitude computed at the common
peripoint,

20




If the common peripoint radius is less than the planet
radius (or any arbitrarily defined sphere which the vehicle must
not penetrate), this approximation can not be used, since it would
imply that the vehicle must pass beneath the surface of the planet.
Thus the computed value of the common peripoint radius when
compared with the planet radius determines whether the constraint
of finite planet size must be considered. If the common peripoint
lies beneath the surface of the planet, a different method for

computing the minimum impulse magnitude must be used.

To determine the constrained optimum thrusting point in
the case where the common peripoint and (presumably) the true
optimum thrusting point lie beneath the surface, one must be
able to identify those possible thrusting points which are not
permissible when the constraint of finite planet size is included.
Clearly, only requiring the thrusting point to lie at a radius
greater than the planet radius is not a stringent enough constraint,
since a velocity impulse applied at a distance of several planet
radii could place the vehicle on a trajectory which would eventually
impact the planet.

The regions of the plane of motion in which velocity
corrections are not permissible are bounded by portions of the
inbound and outbound trajectories having peripoint radii equal to
the planet radius. As shown in Fig. 4, the bounding curve in the
region which the vehicle flies through when approaching the planet
is the extension of the outbound hyperbola which skims the surface
of the planet. A velocity impulse applied in this region is not
permissible since it would put the vehicle on an outbound hyperbola
whose peripoint radius was less than the planet radius, resulting
in collision with the planet. In the region of the plane which the
vehicle flies through after passing the planet, the bounding
curve is the continuation of the inbound hyperbola which skims the
surface of the planet. Applying a velocity impulse in this region
is not permissible since it would require that the vehicle had

previously flown beneath the planet's surface.

21




Rather than searching for an optimum thrusting point in
the permissible correction region a more efficient procedure was"
devised. The scheme which was used to compute the constrained
optimum thrusting point is an approximation based on observations
of the general form of the loci of constant AV and on physical

arguments based on characteristics of hyperbolic motion.

As shown in Fig. 4, each locus of constant AV is a closed
contour which necessarily contains all contours for smaller values
of AV, since the impulse magnitude is a continuous, single-valued
function of position. Two contours cannot intersect, since at the
point of intersection the magnitude of the impulse would simultaneously
have two values. Thus, is some sense, the closer a point is to the
true optimum thrusting point, the smaller the value of AV required.
If the true optimum thrusting point lies beneath the surface of the
planet, this implies that the constrained optimum thrusting point
should lie on a trajectory which brings the vehicle as close as
possible to the planet's surface. One then expects the constrained
optimum thrusting point to lie along the boundary of the permissible

correction region,

More specifically, the constrained optimum thrusting
point should lie along the bounding hyperbola having the smaller
hyperbolic excess velocity. The argument for this is the fact that
at a given point near the flyby planet, a smaller velocity along a
hyperbola passing through that point results in a larger turn angle
around the planet,

Because of the constraint of finite planet size, the constrained
optimum thrusting point must lie on a hyperbola having a larger
peripoint radius than the hyperbola passing through the true
optimum thrusting point. This larger peripoint radius results in
a smaller turn angle, The additional AV required in the constrained
case compared to the minimum AV is due in part to the fact that
the inbound hyperbola has not been able to supply enough turn angle

for the maneuver, To make up for this deficiency in turn angle,

22




- . it is more efficient for the vehicle to pass closest to the planet
with a small velocity. Thus an approximate procedure for
computing the magnitude of the impulse in the case of the finite

planet constraint can be stated:

If the common peripoint radius is less than the
radius of the flyby planet, the constrained optimum
thrust magnitude can be approximated by computing
the magnitude of the required impulse along the less
energetic boundary of the permissible correction region.
The smallest value of the impulse magnitude computed
along this boundary is then the constrained optimum
flyby impulse magnitude.

23




Re sults

Optimum transfers to Mars via Venus have been computed
for most of the attractive launch and arrival dates between 1970
and 1990 using the procedures previously described. Fig, 5is a
summary plot of the launch velocity requirements as a function
of date at Earth and date at Mars.

The contours represent the dates for which the launch
velocity requirement from an initial parking orbit is .2 EMOS.
Contours are given for both the direct flights and the optimum
via Venus trips. The minimum velocity requirement is given in
EMOS units next to the location of each local minimum. I can
be seen that Venus is available both going and returning from
Mars during the opposition period of 1971, During the 1973
opposition period Venus is available enroute to Mars only, Dur-
ing the 1975 opposition period Venus is available only upon return,
During the 1978 opposition period the cycle repeats with Venus
again being available both going and returning. The pattern
shown in Fig. 5 is exactly that predicted by Fig. 1.

Several comparisons between the flyby trips and the direct
trips are informative. Fig. 6 shows dates for which the pure flyby
of Venus is not possible without striking the surface of Venus. In
addition the flyby with thrust is better than a direct flight which
utilizes the same dates at Earth and at Mars. When this situation
occurs, however, there are shorter direct trips which leave
Earth at a later date, arrive at Mars on the same date, and require
less velocity. . The date at Mars in Fig. 6 is during the 1976 oppo-
sition period. This opposition period would not be considered a
favorable one for going by Venus enroute to Mars because direct
trips arriving at Mars on the same dates are shorter and more
economical. This result is in agreement with the information
derived from Fig. 1, Although the information presented in
Fig. 6 is for a single date at Mars, the situation which it repre-

sents was observed to be true in general; that is, whenever the
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pure flyby of Venus requires the vehicle to go below the planet's
surface, neighboring direct flights are more attractive than the
resulting thrusted flyby.

I:‘igure 7 shows a situation whenthe flyby of Venus offers
significant savings over direct flight. The optimum via-Venus
trips tend to be of slightly longer duration than the best direct
flights but this is offset by the significant saving in velocity.
For all of the attractive via-Venus trips represented in Fig. 7
the pure flyby is possible. This situtation was also found to be
true in general; that is, whenever the via-Venus trips offer velo-
city savings over the best direct flights, the pure flyby is pos-
sible without striking the planet's surface.

Figure 8 shows the effect of varying the date at Venus
while the dates at Earth and Mars are held fixed. The dates
chosen at Earth and Mars are those of an attractive via-Venus
trip shown in Fig, 7. It is seen that the date of the pure flyby
at Venus occurs very close to the date for the over-all optimum
This is due to the fact that the AV required at Venus changes
more rapidly with date at Venus than the AV required at Earth,
The AV required at Mars is not shown in the figure, but it too
changes comparatively slowly with the date at Venus. These
characteristics, although shown for only one pair of Earth and
Mars dates, are representative of most atttractive via-Venus
trajectories which permit a pure flyby at Venus. Consequently,
the use of thrust during the flyby of Venus when a pure flyby is
available does offer savings, but the savings are very small,

typically a few hundred feet per second.

Figure 9 shows the 1984 opposition in slightly greater
detail. The shaded area inside the .2 EMOS launch contours rep-
resents trips which in addition arrive with less than . 2 EMOS hy-
perbolic approach velocity. A realistic cost function will depend
on both the launch and arrival velocities. It is fortunate that those

trips with low launch velocity tend to have low arrival velocity.
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The dotted lines are the probable contours which would result if
the optimum plane change were made for each interplanetary
(15). The 1984 period is

shown primarily because the availability of Venus both going

transfer that approached 180 degrees

and returning offers a great deal of flexibility for mission plan-
ning. It is possible for instance to utilize Venus during both
halves of the journey and realize a stay time on Mars of over a
hundred days at the expense of a longer expedition. It is also
possible to launch one vehicle to Mars via Venus and have it
arrive at Mars just prior to launching a second vehicle which
siocceds direct to Mars. The vehicles could rendezvous at
Mars and still have time for an economical return via Venus.
Other combinations are feasible which utilize this unique flex-
ibility.

26




Conclusions

As a result of this study the following conclusions are
presented.

1) The method described here can be used to compute
optimum transfers to Mars via Venus for comparison with pure
flyby and direct trips. These computations have been performed
for practical dates between 1970 and 1990 and the results plotted

in a form useful for mission planning.

2) For practical flybys of Venus enroute to Mars the
common-peripoint solution of the thrusted flyby maneuver is an
excellent approximation to the optimum maneuver. The approxi-
mate optimum velocity increment is only a few percent larger

than the true optimum.

3) For dates when a pure flyby of Venus would take the
vehicle beneath the surface of the planet, there are neighboring
direct trips to Mars which are more economical than the resulting
flyby with thrust.

4) For dates at Earth and Mars which produce attractive
pure flybys of Venus, the date at Venus for the pure flyby is very
close to the date for the optimum flyby with thrust. Consequently,
the saving associated with the thrusted flyby in comparison with
the pure flyby is small, of the order of a few hundred feet per

second.

5) The plots of the computed trajectories verify that
Venus is available when the Mars-Venus alignment occurs in
the range shown in Fig, 1.

6) The conclusions of this study are applicable only to
' the specific type of trips investigated. Other investigators(12)(13)(14)

have shown that the addition of a velocity increment during a

27




flyby of Mars will produce significant savings over a pure flyby
of Mars for certain missions.

Since the addition of a thrust impulse has the potential
of providing savings for flyby missions, the magnitude of these
savings should be investigated in each case. The method des-
cribed here can be applied to the optimization of other flyby

missions .
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Fig. 2 The planetary encounter.
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Fig. 3 The flyby parameters.
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