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A new set of equations for the linear behavior of elastically

isotropic, constant thickness, circular cylindrical shells subject to

edge and surface loads is proposed. The final form of the equations

consiste of a single, non—homogeneous, fourth order partial differential

equation for a complex—valued displacement—stress function together with

auxiliary equations for calculating all necessary quantities. The new

equations are both concise and adequate in that they comprise a consis—

tent first approximation theory as defined by Koiter. They are compered

with previously proposed cylindrical shell equations and are shown to

have special advantages while carefully avoiding certain inadequacies of
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~ A Set of Simple, Accurate Equations for
*
Circular Cylindrical Elastic Shells
by

sk
James G. Simmonds

1. INTRODUCTION

Circular cylindrical elastic shells of constant thickness, because
they are technically important and easy to analyze mathematically; and
because they exhibit nearly every type of behavior found in shells of more
complicated geometry, have been extensively investigated throughout the
history of shell theory, especially within the last 35 years. The technical
uses of circular cylindrical shells are too well known to be catalogued
here. Theilr mathematics is simple because of their simple midsurface
geometry which makes their governing equations, in lines of curvature
coordinates, of the constant coefficient type. The many important phenomena
displayed by the equations of circular cylindrical shells, such as boundary
layers, the degeneracy of boundary layers near edges which coincide or
nearly coincide with midsurface asymptotic lines, the inadequacy of equating
the two in-plane shear stress resultants, or the limitations of the
assumption that the "interior'" behavior of the shell is the sum of a membrane
and an inextensional bending state, make circular cylindrical shells ideal
for testing the adequacy of simplifications proposed in general shell

theory.

This work was supported in part by the National Aeronautics and Space
Administration under Grant NsG-559, and by the Division of Engineering
and Applied Physics, Harvard University, Cambridge, Massachusetts.

Research Fellow in Structural Mechanics, Harvard University
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In this paper we propose a new set of equations for the linear
behavior of elastically isotropic, constant thickness, circular cylindrical
shells subject to edge and surface loads. The final form of our equations
consists of a single, non-homogeneous, fourth order partial differential
equation for a complex-valued displacement-stress function, ¥, together
with auxiliary equations for midsurface displacements, stress resultants,
stress couples, and effective Kirchhoff edge forces. The chief virtue of
these new equations, as compared to others which have been proposed*, is

that they are at once concise and adequate. By adequate, we mean that for

any given set boundary conditions, the solution of the unreduced equations
of any of the acceptable first approximation shell theories** will agree
with the solutions of our equations to within errors inherent in the stress-
strain relations of the first approximation theories themselves, namely, to
within errors of O¢h/a) where h is the shell thickness and a the midsurface
radius.

Our derivation starts from a set of equations for arbitrary shells
first proposed by Sanders [3] in 1959. (An improved derivation of these
equations, employing an exact definition of the modified symmetric shear
stress resultant, is given by Budiansky and Sanders in [47.) Utilizing
Koiter's arguments [2] on the adequacy of, and the errors in, Love's
uncoupled stress-strain relations, we reduce the Sanders' equations for a
circular cylindrical shell to two coupled fourth order partial differential
equations for the midsurface normal deflection W and a stress function F.

One of these equations has a non-homogeneous part involving the surface

*
With the exception of Novozhilov's [1], which we discuss in section 2.

sk
As defined by Koiter [2].
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loads and their integrals. In the reduction, the static geometric analogy
‘enjoyed by the Sanders' equations is preserved, which enables us to combine

the two equations for W and F into a single equation for a complex

displacement-stress function Y. We further show that all auxiliary variables,

or in some cases the first partisl derivatives of these variables, .
can be expressed in terms of W, F, and load integrals alone.
The claim that our reduced equations are adequate is based on the

fact that we make approximations only in those parts of the governing

equations into which it is necessary to introduce stress-strain relations -

namely, the bending terms in the equilibrium equations and the extensional
strain terms in the compatibility equations - and that the approximations
involve only neglect of terms of the type M/a compared to N or neglect of
terms of the type €/a compared to x, respectively, where M, N, €, and ¥ are
typical stress couples, stress resultants, extensional and bending strains.
This means, first, that the errors we introduce into the stress-strain
relations are consistent with the errors already contained in these relations
because of the neglect of transverse shearing and normal stress effects [2];
and second, that for the extreme states of inextensional bending and pure

membrane stress, where it is known that indiscriminate neglect of 0O(h/a)

terms in the governing equations can lead to errors of 0(l) in the final

*
solutions , our equations will lead to solutions with errors of only O(h/a).

A summary of our final equations may be found in-Section 7. .

*
We cite an example of this in section 2.
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2. SIGNIFICANT DEVELOPMENTS IN THE HISTORY OF CIRCULAR CYLINDRICAL SHELLS

To place our results in perspective, we have listed in this section
various sets of reduced equations which, in our opinion, have marked a
significant development in the theory of circular cylindrical shells. No
attempt has been made to indicate the method of derivation of these equations,
nor have equations for auxiliary quantities and boundary conditions been
listed, although these are certainly as important as the reduced equations
themselves. Also, for simplicity, surface loads terms have been omitted.
Shell geometry and sign convections for displacements, loads, stress-
resultants, and stress couples are indicated in figure 1. Below, and
elsewhere in this paper, primes and dots denote, respectively, differentiation
with respect to the nondimensional axial distance £ = az, and the angular
variable 9.

The first set of cylindrical shell equations general enmough to
include all possible states of (linear) deformation, yet simple enough to
yield manageable solutions, appear to have been given by Love in the 3rd
edition (1920)ofhis. treatise[5, pp. 574 £f]. (Also, [6, pp. 582 ff]). From
the three exact force equilibrium equations expressed in terms of stress
resultants and couples, Love obtained, via a set of stress-strain and strain

displacement relations, 3 simultaneous equations for the midsurface dis-

placements. 1In our notation, Love's equations read

2

2
YTul +vw + 2By e oo (2.1)
- 24 ‘a )

oo+ 1-v U o+ 1+v
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M+ui v +-i—2- (%) v W - (2-v) Uyt U k=0 (2.3)

where v is Poisson's ratio.

It seems curious that, despite the renown of Love's treatise, most
writers credit Fliigge [771 (1932) with having obtained the first adequate,
workable, set of circular cylindrical shell equations. Certainly the well-
known texts of Fliigge [8], Timoshenko and Woidowsky-Kriegér [9], Novozhilov
F1], viassov [10], and Goldenveiser [11], as well as the two fundamental
papers of Donnell [12], [13], make no specific mention of the above-cited
equations of Love. This oversight is probably explained by the fact that
one generally ascribes to Love a set of equations based on his first-~
approximation theory [6, p. 531] which assumes that the two in-plane shear

*
stress resultants, NEQ and NBE , are equal . However, in his derivation

of (2.1) to (2.3), Love distinguished between NEg and Neg , obtaining

an expression for NEe + NBE from the stress-strain relations and an

expression for Nge - ng from the moment equilibrium equation about the

normal.

It should be emphasized that, in general, terms of relative order
(h/a)2 in (2.1) to (2.3) cannot be neglected even though terms of relative
order (h/a) were neglected in the derivation of the stress-strain relations
used in obtaining (2.1) to (2.3). 7To cite an example, if we set
UE = () =0, (2.1) to (2.3) reduce, as they should, to the two equations
of ring bending of plane strain theory.. If U9 is now eliminated between
these two equations, the terms independent of (h/a) identically cancel, and

the following equation for W is obtained.

W """ +2W +W)' =0 (2.4)

*
An example of the non-negligible errors this assumption can introduce is
given by Reissner [141], [15].

.
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Had the underlined term in (2.2) been omitted as being of relative order
.(h/a)z, then the last term in (2.4), which is non-negligible, would
have erroneously been found to be zero.

This importance of apparently negligible terms in (2.1) to (2.3),
which is by no means unique to the Love equations, is closely related to
problems of inextenmsional and partially inextensional deformation, and is
one of the chief drawbacks in taking the midsurface displacements as the
dependent variables. A great advantage of the dual displacement-stress
function approach used to derive the new set of equations proposed in the
present paper is that this small-term problem is completely avoided.

*
The popular Fligge equations [7], [8, p. 2197, in our notation,

read
1-y 1 b2 14v
1 i Jul 4 S (2 o e ' 1 E R
UE+ 2[1+ 12(a)JU,_j+ 2u9+ v W 123)(2 W'') =0 (2.5)
2
1-v 1ch 2, ., ee v . 3-v,h
T+ 1 g v+ Up" + W -5 G) W= (2.6)
. 1
W+ Ue + v UE
1 2 l-v 3-v
2 .. Sl AN ITRR 11 _ 22V arrey o
+33 a) (v WH 2+ U+ Ug Ug 3 Ue )=0 @2.7)

Note that the terms in (2.5) to (2.7) proportional to (h/a)2
are considerably different from the corresponding terms in (2.1) to (2.3).
In particular, the term of relative order (h/a)2 which must be kept in
order to obtain the equations of ring bending - the underlined term in
(2.7) - now appears in a different place and in a different form than it

did in Love's equations.

*The original papers of Fligge [7] and Donnell [121, [13] were concerned
primarily with buckling problems, and their equations contain a number of
non-linear terms. Any references in this paper are to the linear parts of
these equations.




) A significant simplification of Fliigge's equations was proposed
by Donnell {127 in 1933 in conjunction with an analysis of torsional
buckling. By omitting a number of terms in Fligge's equations, Donnell was
able to obtain the single eighth order equation,

Pw+atgrn=o (2.8)

where

al = 120-42) (a/m)? (2.9)

is a large parameter which appears constantly throughout the rest of this
paper. As Donnell himself indicated [12], (2.8) is generally valid only if
the deformation pattern has a characteristic circumferential wavelength
small compared to the radius a. The fact that (2.8) does not include the
ring bending equation (2.4) as a special case is evidence of this limitation.
To obtain a more accurate equation than (2.8), Donnell [13] in
1938 started with a set of shell equations in which he attempted, at the
start, '"to include all terms which might be significant". He then reduced
these equations to a single equation for W without neglecting any terms
along the way and attempted to ascertain which terms in this single equation
could be neglected. The "modified" or "extended" equation obtained in this
fashion was

8 . .

Bwsow: v w +4“4 W' = (2.10)

which differs from (2.8) only by the addition of two terms.

Although (2.10) now includes the ring bending equation (2.4) as a
special case, it still contains another limitation pointed out to me by
Dr. V. T. Buchwald. As shown in section 8, the extended Donnell equation
(2.10) leads to an incorrect overall moment-curvature relation for a very
long cantilevered circular cylindrical shell acted upon by a net moment at

its free end.




In 1958 Morley [17], seeking an equation which retained the
. *
accuracy of Flugge's equations but the simplicity of Donnell's equation
(2.8), proposed the equation

P us el wrr e (2.11)

Morley's equation coutains several notable improvements over Donnell's
extended equation (2.10). First, the necessarily invariant nature of the
equation for W is more evident. Second, (2.11) contains both ring and beam

bending as special cases. And third, (2.11) can be factored into the form
[72(P+ 1) + 12 202721 1V2 (V%+ 1) - 1262027352 1w = 0 (2.12)

which, among other things, tremendously simplifies calculation of the roots
of the characteristic polynomials which arise from solving (2.11) by
separation of variables.

The numerous contributions of Soviet writers to the theory of
cylindrical shells is outlined in chapter III of Novozhilov's book [1]. We
mention here two important, and relevant equations. - According to
Novozhilov [1, p. 90], Feinburg in 1936 proposed a simplified equation of

the form
Fy-12,2vr=0 (2.13)
vhere Y is a complex-valued displacement-stress function defined by
Yow+1@i/Ean)F (2.14)

The new symbols appearing in (2.14) are F, the airy stress function of
plane stress theory and E, Young's modulus. Equation (2.13) will be recognized
as nothing more than the basic equation of shallow shell theory specialized

%%
to a cylinder . Upon elimination of B, (2.13) reduces to the simplified

%
By this time, Fligge's equations had been reduced to a single equation for W.

**Of course, at the time, Marguerre's general theory of shallow shells (18]
had not appeared,.
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Donnell equation (2.8), and thus suffers from the same limitations as this
‘latter equation. Nevertheless, there are good reasons why it is preferable
to work with Feinburg's equation instead of Domnell's. First, (2.13)
emphasizes the basic duality among the field equations of shell theory known
as the static-geometric analogy (of which more shall be said later).
Second, as a consequence of the static-geometric analogy, the order of (2.13)
is, effectively, half that of (2.8). This is especially useful in simpli-
fying the algebra in those cases where the boundary conditions can be
expressed in terms of W and F alone. (e.g., see [19]). And third, by
working with W and F (i.e., ¥Y) instead of W alone, a number of auxiliary
formulas are greatly simplified. For example, when using the simplified
Donnell equations, the only way to express the axial stress resultant NE

in terms of W alone is tc write

a 7 N, = - (l-vz) EhW''® (2.15)
whereas, using the Feinburg equations, one has, simply,

2 .

a” N, = F (2.16)

In 1946 Novozhilov [1, p. 1841 proposed an equation for
cylindrical shells of artitrary cross-section which, specialized to circular

cross sections, reads in our notation

Prer - 1227 =0 (2.17)

where

¥=N_+N, - 1(Eh a/2 w0, + o) (2.18)

¢ g

and ”g and *y are bending strains. Note that, aside from the different
dependent variable, (2.17) differs in form from (2.13) only by the addition
of a single term, yet because of this term, (2.17) is applicable to both

ring and beam bending, though (2.13) is not.
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Despite its compactness and comprehensiveness, Novozhilov's
equation has not received much attention in the Western literature. One
reason is the relatively recent translation date of his book (1959).
Another may be that, in deriving (2.17), Novoszhilov begins by specializing
to cylindrical shells, a set of equilibrium-compatibility equations for
arbitrary shells [1, Eqs. (16.10)1 into which he has introduced the assumption
that the in-plane shear stress resultants are equal [1, Eq. (16.4)]. However,
it turns out that, for circular cylindrical shells at least, this assumption

is unnecessary, if, in Eqs. (40.3) of [1], one takes

~ 2

Finally, we mention a recent paper by Lukasiewicz [20] in which
an attempt is made to reduce the equations for arbitrary shells to &wo
coupled equations for W ard an Airy-type stress function F. For circular

cylindrical shells, Lukasiewicz's equations reduce to

M7+ D2 W-aF'' =0 (2.20)
AP Fr+awu=0 (2.21)
where
3
D "'1%?-72) and A “%ﬁ (2.22)

Upon elimination of F, (2.20) and (2.21) reduce to Morley's equation
(2.11). While one might criticize the lack of symmetry between (2.20) and
(2.21), the most important shortcoming in Lukasiewicz's results are his
auxiliary equations, which can easily be shcwn not to be universally

applicable. Two of the ctjectionable auxiliary equations are

Ngg = NM_. [20, Eq. (3.1)3] , (2.23)
and
Mﬂr- M . = D(l-v) W'". f20, Eqa. (3.1}, and (5.1)3} (2.24)
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.Reisaner'a analysis of the split tube under torsion (141 (15] shows that
(2.23) is unacceptable,and it is not difficult to comstruct another problem
to show that (2.24) is generally incorrect.

The new reduced equation for circular cylindrical shells proposed
in this paper is

Prrv-srer - 2vrap (2.25)

vhere ¥ is given by (2.14) and )\ can be any arbitrary 0(l) constant. Thus
our equation resembles an amalgam of the results of Feimburg, Novozhilov,
and Lukasiewicz: our compliex displacement-stresg function Y is the same as
Feinburg's; the form of {2.25), with A = 0, is identical to Novozhilov's
(2.17); and we have attempted, as has Lukasiewicz, to extend the use of the
basic variables of shallow shell theory, W and F, to non-shallow circular
cylindrical shells.

A brief comparison of our equation (2.25) and Novozhilov's (2.17)
is of interest. The great advantage of Novozhilov's equation is that it
easily generalizes to arbtitrary cylindrical shells while ours does not*. On
the other hand our dependeat variable ¥, being essentially a twice integrated
form of Novozhilov's dependent variable T, seems more convenient for the
application of boundary conditions. Moreover, the form of our equation
provides a ready comparison with the standard form of the shallow cylindrical

shell equation, (2.13).

3. THE SANDERS' EQUATIOWS FOR A CIRCULAR CYLINDRICAL SHELL

Specialized to z circular cylindrical shell, the field equations

of the Sanders' theory [3,4], in the notation of figure 1, consist of three

*In fact, some unpublished calculations indicate that only the equations
of shallow, (nearly) spherical, and (nearly) cylindrical shells can be
reduced ,without loss of generality, to two coupled equations for the
aormal deflection on a stress function.
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_exact reduced force equilibrium equations

. 1. 2
a(Né + 8°) -3 T" +a P = 0 (3.1a)
a(S' +K) +2 T +M +a2p =0 (3.1b)
8” " 2 4 8 ’
L] -9 ® 2
Mé' + 21! +'Me -a NO +a"p=20 , (3.1c)
six exact strain-displacement relations
2 .- " 2 .- . e .
a xg W s a ne W+ Ue (3.2a,b)
ars w43y -1y (3.2¢)
40 4 ¢ )
= Q' = 7
a €§ Ug , a €, Ué + W {3.3a,b)
ay= 2 +0) (3.3¢)
Y=3 +] 14 ’ .

plus a set of approximate stress-strain relatioms which, for an elastically

*
isotropic shell, can be taken in the form

€. = A(NF-V NG)’ MG = D(u9 + v nE) (3.4a,b)
69 = A(Ne"v NE_), Mg = D(KE + v Ke) (3.4C,d)
vy = A(1+v)S , T = D(1-v)* (3.4e,f)

vhere A and D are defined by (2.22).

In (3.1) and (3.4), S and T are, respectively, a modified
shear stress resultant and a modified twisting stress couple,
defined by Budiansky and Sanders [4] in terms of the conventional unsymmetric

stress resultants and couples as follows:

*

When we wish to distinguish between (3.4a,c,e) and (3.4b,d,f), we shall
refer to the former as the force-extension relations and the latter as the
moment ~curvature relations.
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1 1

S= i(ugn + NB,!') - 3 M* (3.5)
1

TG0, +M) (3.6)

For a complete system, the above equations must be supplemented by
boundary counditions. These may be read off from the expression for the work
of the edge loads, alIE. Agsume for simplicity that we are dealing with a
panel of nondimensional length £ = g and angular width gr= «a. Then,

with the displacements satisfying the Kirchhoff hypothesis, we have
2

I = {[n@3 Uy + Sq Up + RV + M, q;e];BO dg

o’
+ I a
| [NE uE-u-sgue+REw+M,§cpE vt 8

o >

[o] [+
+,‘r,[u9 Uy + ...] a§+£tu U+ ...] 0

8= £ % E=Q
+ [2IWE o + ... + [ZT"an 3.7
4=0 g=a
where
-1 ., -1_..
cpg = ~-g W, V= -2 W -Ue) (3.8)

are the edge rotations and
S.=N +a M , S =N (3.9a,b)

RE=QF+a'1M' , RQ=Q9+a-1M

[ ] g
Ep he (3.10a,b)

are the effective Kirchhoff edge forces. In terms of the Budiansky-Sanders
variables, (3.9) and (3.10) can be expressed exactly as

Csela L. l,t
Sg—s+2a1'l‘ , Sy=S-3alT (3.11a,b)

R =a’leupe2r), R = a'l(ué +21') (3.12a,b)
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Thus a typical stress boundary condition, say R_ = ig(a), reads, in

expanded form,

3

Mé + 21" = a Qg(n) + Mée (8) (3.13)

where a bar denotes a prescribed quantity

4. COMPATIBILITY CONDITIONS, THE STATIC-GEOMETRIC ANALOGY, AND

STRESS FUNCTIONS

While the equations of the preceeding section are a complete set,

a more symmetric formulation is possible utilizing the Goldenveizer-Lur'e

*
[117static-geometric analogy . The static-geometric analogy permits the

governing equations to be stated in a concise and elegant form, and in

many cases (but not all!), the order of these equations is thereby halved.

In our reduction of the Sanders' equations for the circular cylindrical

shell, the static-geometric analogy shall be exploited fully.

Since the 6 extensional and bending strains are expressable in

terms of the 3 midsurface displacement components, they cannot be specified

independently, but must satisfy compatibility conditions. From (3.2) and

(3.3) these follow as

If we set P = p9 = p

(the static-analogy),

N, & -«
>

g’

a(ex) + 1) +3y =0  (4.1a)
. 3 ' . =

a(y' - ng) =3 V' +e =0 (4.1b)

eé' -2y"+eé'+an€=0 (4.1c)

= 0 and make the following correspondence of variables

Set (4.2a,b,c)

ye-T (4.3a,b,c)

“Not all of the linear shell equations proposed in the literature admit a
static-geometric analogy. The general form of those which do is given in [4].
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then (3.1) and (4.1) become identical.

When the strains are expressed in terms of the displacements,
equations (4.1) are identically satisfied. Let particular solutions of
(3.1) be given by the surface load integrals of membrane theory. It then

follows from the static-geometric analogy that if we introduce the following

correspondence between displacements and stress functioms

WerF U. ¢H U «<H
b4 F 4

A " (4.4a,b,c)
> r

the reduced force equilibrium equations will be identically satisfied if the

stress resultants and couples are expressed as follows.

aZNgF"-Hé+a3f[f(p"+pé)d§-pg]di (4.58)
a2 N9 = p'* 4-33 p (4.5b)
aZS=-F"+-2Hé-%Hé-a:’\f(p”-}-pé)dg (4.5¢)
a¥, =H +F a My & B} (4.6a,b)
aTs= - %(Hé.*' He) (4.6¢)

Stress function representations for the effective Kirchhoff edge

forces Sg, Sq‘ Rg, and Re are also of interest. These follow from (3.11),

(3.12), (4.5) and (4.6) as

a2 Sg = -(F' + Hg)' - a3 f " + p;) d E (4.7a)
alg =-(F -H) -2 [ (" +p)dE (4.7b)
A A v A “
a2 R. = F' - H’ a2 R = - H' (4.8a,b)
3 g’ ) ) B

A further duality among the field equations is exhibited by the

stress-gtrain relations., Observe that if we introduce the correspondence of
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elastic constants

.

Ae-D, Ve -y (4.9a,b)

and use (4.2) and (4.3), then the pairs (3.4a,b), (3.4c,d), and (3.4e,f)

become identical.

5. REDUCTION OF THE SANDERS' FIELD EQUATIONS

We now proceed, with the aid of certain arguments of Koiter [27, to
reduce the Sanders' field equations to two coupled fourth order partial
differential equations for the normal midsurface deflection W, and the stress
function F. Because of the static-geometric analogy, we shall be able to
combine these two equations into a single equation for a complex displacement-
stress function Y. The reduction is straightforward, and analogous to the
one used in shallow shell theory.

We begin with the reduced normal force equilibrium equation,

M!' o+ 2T' + M - aN, + ap =0 (5.1)

)

As noted before, this equation becomes identically‘satisfied when the stress
resultants and couples are expressed in terms of stress functions and

load integrals. If instead, we express the streéss couples in .

terms of displacements via the moment-curvature relations (3.4b,d,f) and

strain-displacement relations (3.2), but leave N, in terms of F and p,

2]
then (5.1) can be written

D[V"w + f(Ug, Ue, W, +aFfF''=20 (5.2)
where

f(UE, U W) = -;'-(l_v) Ué-- - %(3_‘,) Ué'- -u (5-3)

2 L

By use of the strain-displacement relations (3.2a) and (3.3), and the

compatibility equation (4.1lc), we can write
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. f(U?, Ua’ W= W°"+al-G-v) y'" + (2-v) "~ eé'] (5.4)
The following, more general form of f 1is obtained if (4.1lc) is multiplied
by an arbitrary constant ) and added to (5.4):

£(Uy, Uy, W) = W' "+ AW'Y - a [ ep'+ (3-20-v) ¥'' ~Q2-A-v) e+ 6P (5.5)

-

We now come to the crucial argument in our reduction. We observe that had

we started with the set of stress-strain relations

Mg = Der + v Ke -a A ee] (5.6a)
M o=Dx_+va_ +at@rv)e -ale.] (5.6b)
A T £ € 8- ’
1 -1
T=D[(1-v) T - 5 a  (3-2a-v) v], (5.6c)

instead of (3.4b,d,g), then the underlined terms in (5.5) would have been
identically zero. Now the stress-strain relations in any first approximation
shell theory including Sanders' are obtained from the stress-strain relations
(or the strain energy function) of three dimensional elasticity by invoking
the Kirchhoff hypothesis or some equivalent, such as the assumption of a
state of three-dimensional plane stress. But Koiter [2] has shown that the
errors one introduces into the stress-strain relations of shell theory by

the adoption of the Kirchhoff hypothesis are of the same order of magnitude
as those one introduces by replacing a bending strain term of the type x

by a term of the type = + 0(e/a). Thus, assuming A to be an arbitrary
constant of O(l), we conclude that it is consistent to neglect the under-
lined terms in (5.5) and (5.6), and therefore to take (5.2) in the simplified

form
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DOVW W 41 W' +afF'' =0 .7

To obtain a second equation relating W and F, we give an analogous

treatment to the third compatibility equation,

3

<

e te X =
ee 2y'" + eg + an 0 (5.8)

Expressing the extensional strains in terms of stress functions and load

integrals via (3.4a,c,e) and (4.5), and setting azn = - W'', we find that

13
(5.8) reduces to
4 'y 3
ATV' F + £(H,, He’ F)]-aW'= -a AP(pg, Pys p) (5.9)
where
P(pg, Py, P) = NG fragan)+v Pe - r P, dE (5.10)

+@+vyp+[fp"rdgas

and where f 1s precisely the same function (but with differeat arguments)
as defined by (5.5).

By virtue of the static-geometric analogy, it follows that Koiter's
arguments also imply that the errors we introduce into the force-extension
relations (3.4a,c,e) by replacing terms of the type N by terms of the
type N + O(M/a), are of the same order of magnitude as the errors already
contained in these equations as a consequence of the Kirchhoff hypothesis.

Thus we conclude that it is consistent to set

*
£, By, F) =F" + ) F'' (5.11)

g}

*
We could choose the arbitrary comstant in (5.11) different frem the constant
A in (5.5). For sywmetry, however, we do not.
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whereupon (5.9) reduces to

ACF+F 4 E') - aW's -a3AP(p§, Pys P) (5.12)

Equations (5.7) and (5.12) are the two coupled fourth order
equations we set out to derive. They may be expressed in a more concise

form by dividing (5.7) by D and then adding to it (5.12) multiplied by

1
i(AD)'§ . This yields the single equation

AR T R 2;;2 Y''=- 12, azAP(pg, Pg»P) (5.13)
where
Y=W+i /AP ¥ (5.14)
and

202 = a/ JAD = V12(2-v%) a/h (5.15)

A number of remarks are now in order. First, we reiterate that
that the only place we have introduced approximations is in the stress-strain
relations, and that these approximations have been consistent with the
approximations inherent in the stress-strain relations of any first approx-
imation shell theory.

Second, even though it is consistent to set N =N + 0(M/a) and
n = n + 0(c/a) in the stress-strain relations, this does not necessarily
imply that N > > O0(M/a) or # > > 0(efa). For example, if a state of
inextensional bending occurs (such as ring bending), we have, generally,
N = 0(M/a); consequently, the uncoupled force-extension relations (3.4a,c,e)
cease to have any meaning. But this makes sense, for it shows that it is
not inconsistent to have zero extensional strains but non-zero stress
resultants. Incidentally, the fact that the coefficient of A in (5.9)
contains relative errors of O0(l) for inextensional bending is inconsequential,
since, necessarily, inextensional bending occurs only if the W - term on

the left hand side of (5.9) dominates.
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Third, the way in which we have introduced the load integrals is
not unique. An alternate way which may be useful when the tangential

loads are derivable from a potential, i.e., when

= - ' = - *
Pe Q' P, N

is to define a new stress function
3
F,=F-e [[(-p)dEdE (5.16)
Then (5.7) and (5.11) read

DWW+ W'')+afF'= a“(p - 0). (5.17)

-l ATQ-v) P a+IT (p) dEdE+ A(0-p)] (5.18)

In this form, the reduced equations resemble the equations of shallow shell
theory, with the exception of the terms with a dashed underline.

Fourth, our freedom in choosing the constant ) 1is useful both in
simplifying algebra and in comparing our equations with those of other
writers. For example, if for a cylindrical shell complete in the a -

direction we assume a product solution of the fdérm
¥(£,8) = ePfcos ng n=0,1,2,... (5.19)

then the choice A = 0 gives the simplest po.ynomial for p except for
n =1, in which case the choice ) = 2 1leads to the simplest polynomial.

To compare (5.13) to other reduced equations which have been proposed,
we first set ) = 0. The homogeneous part of (5.13) in this case is identical
in form to an equation proposed by Novozhilov. However, as noted in section

2, the dependent variable in Novozhilov's equation is

T=u§+%-1mmnf)mg+%)
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We now set )\ = 1, write (5.13) as two real equations, and

eliminate F between them, obtaining thereby
PPy w4 ot wree
4 ‘VA 4o 1y - .o ' “yr1 ¢
= (a/) [V'p - pg "+ 2py" "+ p "+ vipz +p)""] {(5.20)

*
which is the equation proposed by Morley [17] on an admittedly ad hoc

basis.

Finally, let us see if it is possible to reducz our equations to
the extended Donnell equatiom, (2.13). Since preserving the static-geometric
analogy is of no concern here, we can obtain mcre flexibility by taking
the arbitrary O0(l) coustants in (5.12) and (5.13) to be different. Calling
the comstant in (5.12) 1,, eliminating F between (5.7) and (5.11), and,
for simplicity, setting P = 0, we obtain the equation
&w+2w.‘..‘l+w.lll+4“4 w""
+ O WITNTRY 2 2(0,) WU () W

+ (0 +2y) Wt 4 Aa Wit =9 (5.21%

from which it is clear that no choice of A and ), will yield the extendad

Donnell equation (2.10).

6. FORMULAS FOR AUXILIARY VARTABLES

In this section simplified formulas are developed for the auziiiary
variables Ug, Up, Ng, Ng’ S, SE’ 89’ Rg, Re, Mg, Mq, and T. Formulas for

HE, H, ..., v are generally of secondary interest, but, if nceded, can

*
Morley assumed pg =P, = 0.
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be easily obtained from the above formulas by the &tatic-geometric analogy
(with due regard for load integrals). We find that Ng’ Ng, R., Rn, ME’

and T can be

a’ Q’

expressed entirely in terms of W, F, and load integrals. It is here

and Mg’ and the first derivatives of U_, U, S, SE’ S
that we differ with Lukasiewicz [20] whose results imply that all the stress
variables can be expressed in undifferentiated form in terms of W, F, and
load integrals. The expressions below have been derived in order of

convenience. An orderly sumary of these results is given in Section 7.

Consider first the moment-displacement relations for M and MQ:
Mg = D(ng + v xe) , Mﬁ a D(n9 + vy "g) (3.4b,4d)"'
a2 n_= - W't a2 . =-W'4+T (3.2a,b)’
4 ’ 9 C) B
Using (3.3b) we can write
2 LN g
a“n =W ' +W) +ace¢ (6.1)

A 8

As it stands, (6.1) cannot be simplified by dropping ae9 as compared to

2 . .
a~ Mg . However, once (6.1} is introduced into (3.4),¢ can be ueglected giace

e

(3.4) are stress-strain relations vhich, by Koiter's arguments, already

neglect terms of the same type. Thus we may set

aZMg = - D[W''+v(W" "+W) ], azne = - D[W" "y W''] (6.2a,b)
Consider next Ng and Ng‘ Equation (4.5b),
az Ng = p'! + a3 P, (4.5b)'

is adequate as is. By use of (4.6a), (4.5a) can be written

2. _ .. T TP _ .
a’N, =F'"+F - qu ra” [ [ [ (" + Py) 4 8 pE] d = (6.32)

If (6.2a) is introduced, (6.3) reads
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SN, = F +F+ (Ofa) (W' + v(@ " +WT
+ JLf @ +p)dg-plde  (6.4)

which is the degired form. It is important to emphasize that in (6.3) we

cannot set aZNE + aMg 2$a2NE since (6.3) is not a stress-strain relation.

Consider next the moment-curvature relation for T:

T = D(l - v)T (3.41)°

Substitution of the exact equation for 7 , (3.2c), into (3.4f) gives T in

terms of Ug’ UQ, and W. 7Two simpler forms for T are possible. Using

(3.3c), we can also write, to within negligible terms involving v,

a’r = -(1-v) D(w'-ub)' or a7 = -(1-v) D(W'+Ug)', (6.5a,b)

but in no way is it possible to express T in terms of W alone. However,
it is possible to express T' and T° in terms of W alone. Since (3.4f)
is a stress-strain relation we may add to T the negligible term - % y/a.
Then, using the compatibility equation (4.1b), and (3.2a), we can write

azT' zazD(l -v) (7 - ‘g' y/a)'

= aZD(l - v) (ug - eE/a)‘

=-D(l1-v) W' (6.6)

where, again, we have used the fact that (6.6) 1is a stress-strain relation

to neglect the underlined term in the second line.

In an analogous way we can write, with the use of (4.la) and (3.3b),
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az'r' > aZD(l - v) (1 +-;— v/a)®

= aZD(l - v) xé

~a’pQ1

v)(n9 - ¢ /a)!

= -D(l-v) (W +W' 6.7)

Note that if we substitute (6.2) and (6.6) into (5.1), we obtain a form
of (5.7) corresponding to ) = v vwhereas if we substitute (6.2) and (6.7)
into (5.1), we get a form of (5.7) corresponding to 3\ = 2-v. Since 13
can be any arbitrary O(l) constant, this shows that the discrepancy between
(6.6} and (6.7) (i.e., that T‘' #T°%) is of no importance.

With (6.6) and (6.7) in hand, expressions for the remaining variable

follow readily. From (3.12), (6.2), (6.5) and (6.6) we have,

a%R_ = - DIW'' + (2-v) (W + W)T* (6.8)
a3“6 = -D[W " +W+ (2-v) W' (6.9)

Consider naext (4.5c), ignoring for the moment the load integrals:

25 1ve 33 _ 1.
as -F'" + A HB A HE

(4.5¢)"'
There is no way in which S may be expressed in terms of F and W alone,

but several equivalent forms for S are possible, of which we note the

following two. Using (4.6a) we can write, in place of (4.5c),

- -H) +3aT (6.10a)
aZS =ﬁ
l-er+m)" -2 ar (6.10b)

s0 that by substituting, respectively, (6.5a,b) for T dinto (6.10a,b), and

restoring the load Integral, we get either
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a’s = - [F' - B, +3(1-v) (0/a) ("-U)]" - & (p""4p)) dE  (6.11a)

or

as = - [F' + H, - %(l-v) (D/a) (W'+U,) - a3 T (p"4p,) dE]”  (6.11b)

It is possible, however, to express S' and S° in terms of W, F, and
load integrals alone. Using the reduced force equilibrium equations

(3.1a,b), we first write

2., _ .2, .1 . _ .3

a’s a Ng +5aT a pg (6.12)
2 ' = 2 - é ' - 3

as (a Na + 7 8 T' +a MQ + a pg), {(6.13)

and then subotitute for N

o My, T' and T° (4.5b), (6.2b), (6.4), (6.6),

and (6.7). This gives

2’5" = - (B 4r+(D/a) (W' () DT 10 - 2 [T (6.14)

and

a%s' = - {F'' - (D/a) W'+ W +%(3-v) w1l - a3(p'+99)

a - TF'" - (Dfa) (W'° + W) - a (p + Py (6.15)

it 1is permissible to neglect the underlined term in {(6.13) compared to
F'' since (5.7) indicates that the solutiom for F'' will contain errors
of O(Dfa W'').

The last stress variables to be considered are the effective

Kirchhoff shear forces, SE and Se. Undifferentiated expressions for SE

and Sa in terms of W, F, and ioad integrals alone are not possible, but
differentiated ones are. There fcllows from (2.1la}, (3.9b), ard (6.4)

2

as 2

. 3
= - r o . \
5 a NE a’p, (6.16)

<

= - (B4 F 4 (/) D v (WY - a® Tt p)e
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-

and from (3.1b), (3.%a), (4.5b), and (6.20)

200 o o a2Mt o oamt - a3
a Sg a Ng aMQ a pg

= - [F'' - (@/a) (W THW + D] ~a (' p)

Q

- [E' - (Dfa) W'+ W) - ad(p+ Py) (6.17)

vhere, as before, the underlined term may be neglected compared to F'' by

virtue of (5.7). More useful for the statement of boundary conditions are

expressiors for Sé and Sé. From (4.7), (4.8), (6.8) and (6.9) there
follows
azs; =-F'""-H - a3 J '+ pe)“ id
= - (BT +aE -a J G+p,)" dE
' i € 9
= - {F'"+F + (Dfa) [W't + 2-v) (W "+ W] }* - 83 J e+ pp)"d§/
' /
(6.18)
2 H - . 1 B '2- 3 - -
a S9 F''°4+ Hg a“(p°+ pq)
L] 2 3 . .
=~ - F''""- a Ry - a (r +pg)
=~ {F''- (D/a) (W "+ W+ (2-v) ¥''] 4+ a3(p'+ pe)}'
- [F' - (D/a) (e + W) + a3k p)]" 6.19)

vhere the underiined term in (6.19) cen be neglected. We note, however,
that for the purpose of czpressing boundary conditions in terms of W and
F, it may be simpler to use the exact expression for &' given by the

Al

R

second line of (6.19).
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It remains to obtain expresgsions for the tangential midsurface
displacements Ug and Ue. Undifferentiated forms for Ué and Ue are
rot posgible. Expression=z for U! and U follow from (3.3a,b), (3.4a,c),

g o»
(4.5b), and (6.3) as

I o = -
Ué a eg a A(Ng v Ng)

~ o -1 -

(A/a) B+ F - vF'") +a?a { [ [ [ (@ "+p)) d= - p_FdE - vp}
v 6 g —
r6.20)

U =-W+ae, =-W+aA(N-vN
: ¢ 2 AWy v )

o~ - "'1
XeW+a A[Ne v (NE+ a ME)]

= - W+ (Ala)[P''- v(F "+ F)] + a2A {p-v Tl f (p' '+ pé)dE-pE]dgz/
(6.21)

when obviously negligible terms have been added in the second lines of (6.20)
and (6.21).

Displacement boundary coaditions for UE or Ug along an edge

-

£ = constant or § = constant, respectively, may cften be simplified by

expressing them in terms of Ué‘ or Ué'. For Ué' we have
U

é'= 2ay’ - Ué' s, by (3.3¢c)

aW'+2ay ~-a eé, by (3.3b)

=K' - a A[Né - v N -2(1+v) $°], by (3.4c,e)

=W -a ATy -y Né -2(i+v) (5 - %T.'a')‘J
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= W -aA [N9+ (2+v) Ng]' - 2(1+v) azA Pe, by (3.1a)
7 ol

~

~W - aA [u9+ (24v) (ug-a- néla' Y1' - 2Q1+v) aZA pg

=W' - (Afa) [F'' + (24v) (F°" + F)]'
- a%a [p"+ gt @) [ (077 By g, (6-22)

by (4.5b) and (6.3). A similar set of substitutions and approximations

yields as the final expression for Ué',

ué'a - (Afa) [(24v) F''"+ F" "+ F]’

- a?a { @) p'+ 2(1+) Py + JUT @ +py) o - pel” 43 }(6.23)

7. SUMMARY OF EQUATIONS

Below,we summarize the simplified equations derived in sections

5 and 6. An “approximately equale’ sign, ~ , has been used in those equations

which,because they involve stress-strain relations, are not exact.

Basic Equation

/3
Ty ey v o522 v

r - 125 2AT( [fpazde + vPg - J pg dg + @) pt [[ p "dEdE )2

Y =W+ 1iVAMDF W = 301-v%) (am)? (7.22,b)

A = arbitrary , 0(1) ccnstant.



29

Auxiliary Equations

Stress Resultants

azngz F''+F+ (D/a) (W' + v(W AT

+ &0 [ (o 4py) de - p TaE (7.3)
azuq =F'' ¢ a3p (7.4)
200 - ' .. . 3, .
a"§'x~ - (F'" = P/A)W '+W)]" - a"(p'+ pg) (7.53)

a?s" - {F 4R+ /) (W' '+ () (D] 3 - a3j'(p'+pe)'d€ (7.5b)

2

a Mgﬁ‘a"- DIW'* + v (W '+ W) (7.6)
2 o~ . te
aML‘ov-D(W + W+ vW'Y) (7.7)
2 § ~ tte 2 . o~ . 1
aT' X - (1-v) W s 8T % - (1-v) (W '+ W) (7.82,5)
Effective Kirchhof: Edge Forces
a2s = - (F'+H) -a [ (p+p)dE (7.92)
g 3 v 8

2. . 2 3 . .
asg-(F +F)' +a'7 -a j(p+pe) dg

X -{F+F 4+ /a)[WH(2-V)(W '+W)]}'-a3\r(p'+pe)'d§ (7.9b)
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azse = -(F'- B)' - a £ o+ Py) d E (7.10a)
2|=_ vee_ 25 3. .
ase F aR8 a(p+pg)

~ - [F' - (D/a)(@"*+W)]" - a>(p°+ Py (7.10b)
a3RFm = DPW''+(2-v) (W “+ W) 1! (7.11)
aBRq == DIW "+ W+ (2-v) W''7° (7.12)

VPR (A/a)(FHE-VE') + af [ 1 S 4p) e - ] 48 - v} (7.132)

Uik W' - (Afa) [F''+ (2+v) (F" '+ F) 1

g
-a%Alp"4pg* (2+v) | (674 b)) ] (7.130)
Up ™= W +HA/a)[F' '=vie " +F) HaAlp-y[T (P"'+p)AE - p 1aE}  (7.14a)

Ué'z - (Afa) [(24v) F'i+ F' "+ F]°

- a’Al@vypH2(tip, + [ [ [ (" +p;)d8 - p )" d€l  (7.141)

8. AN EXAMPLE OF THE INADEQUACY OF THE EXTENDED DONNELL EQUATION

Consider a horizontally cantilevered circular cylindrical shell,
built in at the end £ = 0 and welded to a rigid imsert at the end

g€ = p = L/a (Figure 2). Let the vertical displacement of the insert be




T

31

L]

denoted by A and its rotation about a horizomtal line by & .

»

The displacement boundary conditions of the shell are, at £ = 0,
U.=20 =W=W'=0 8.1
e = % 8-1)
and at € = 4,

Ug =-ad cos @, U9 = ~-Asinpg, W= Acosnh, W=a2a} cos g (8.2)

Since the first two of (8.1) imply that Ué' = Ué = 0, and the first two of

(8.2) that Ué'= a $ cos g, Ué = - A cos §, we may, with the aid of (7.13b)

and (7.14a) express the boundary conditions in terms of W and F as

follows:
at £=0,
[P 4+ Q4+V)(F "+F)]' = F''-y(F "+F) = W=W' = 0 (8.3)
at £=4,

CF'"'+(2+V)(F""+F)]' = F''-v(F""4F) = 0
W= Acos 8, W'=2a#3 cos gr (8.4)

To simplify things, we shall set v = 0 and assume that the only
external load is a bending moment of magnitude M applied to the insert
*
and acting about a horizontal axis . Furthermore, we shall take A =2 in

{7:1). Under these conditions oae easily checks by direct gubstitution that

the expressions

2

W= giaEh cos @ , F= - %; f sin ¢ {8.5a,b)

satisfy the basic differential equation (7.1), all the boundary conditions -

(8.3), and the first two boundary conditions (8.4).

*
These two simplifications preclude the existence of boundary layers at
E=Q and E=4 .
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The last two boundary conditions (84) give the following relations between

the displacement and rotation of the insert and the applied moment:

2
M - M (8.6)

A=%ET » ¥7%r

where I = g 33 h is the moment of inertia about a horizontal diameter.
Equations (8.6) agree exactly with the well-known results of elementary beam
theory [21, p. 182].

Consider now the solution for W predicted by the extended Donnell

equation, (2.10). With
W =w(Z) cos g (8.7)

(2.10) reduces to

TTEVIN0S a0ty o v tuy | i +4H4 wi!it't = 0 (8.8)

We assume, as found in the above analysis, that no boundary layers
are present in the solution for w, i.e., that differentiation does not
increase orders of magnitude. Then, since p4 >>1, we are tempted to

replace (8.8) by the simpler equation
w''i* =0 (8.9)

*
which, it cen be shown , leads back to (8.5a).

The replacement of (8.8) by (8.9) is valid providing 4 < < pz,

i.e., providing that the shell is not “too long". However, if z,z;uz,
the influence of the w'' - term in (8.8) can no longer be neglected.

Accordingly, we now match the last two terms in (8.8) by introducing the

scaled variable,

n = e/’ (8.10)

*

Even though the solution of (8.9) contains only 4 arbitrary constants, it

is nevertheless possible, for v=0 and the assumed type of loading, to satisfy
all eight of the boundary conditions (8.3) and (8.5).
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-

so that (8.8) assumes the form

- + +... =0 (8.11)

The solution of {8.11) may be written

. -4
w=a, +-a1 v+ a, cosh r + ay ginh.n + 0{u ) (8.12)

where the error estimate O(p_h) is uniformly valid over the entire range
0<n< =,

If we regard the moment M as given and the displacement and
rotation A and & to be determined, then by the conditions of overall

force and moment equilibrium of the shell, it may be shown that the last two
displacement boundary conditions (8.4) at £ = 4 can be replaced by the
foliowing boundary conditiome at E = Q.

M
nakEh ’

W't = w''t=0 (8.13)

Denoting the right hand side of (8.12), less the O(p-b) term, by LY and

fitting L to the jagt two of (8.3) and (8.13), we obtain

4

o= -PZL - - %
vy T (cosh'nn -~ 1; (8.14)

which gives for the vertical displacement of the insert

4

By = %E'ﬁ [ cosh &) - 1] (8.15)
au

The shortcoming of (8.15) is apparent, for as the length L of the shell
increases without limit (for fixed apz), the difference in end deflection
predicted by the extended Donnell equation and that predicted by elementary

beam theory, (8.6), increases without limit.
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FIG. | GEOMETRICAL AND STRESS CONVENTIONS
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