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A cantilevered bar of uniform cross-section and subjected at the
free end to distributed, nonconservative, compressive loads is con-
sidered. It is shown that for certain cross-sections stability may be
.lost by either torsional divergence_(torsional buékling) or torsional
flutter, depending upon the load distribution at the end section. In
addition, transverse flutter can also occur. It is also indicated how

such systems may be realized by means of pipes conveying fluid.cgzzz




1. Introduction

The probiem of.the stability of a cantilevered elastic bar sub-
Jected to a compréssive partial follower load at its free end has been
treated recently in detail by several authors [1, 2]*. In these
studies, it has been established that the bar may become unstable
either by divergence (adjacent equilibrium exists) or by flutter
(oscillations with increasing amplitude), depending upon the extent to
which the load follows the end-rotation of the bar,

It is also well known that a compressed column may lose stability
either by transverse deflection (Euler case) or by rotation of each
cross-section, the axis remaining straight (torsional buckling),
depending upon the shape of the cross-section [3].

The purpose of this study is to show that a cantilevered bar
subjected to follower forces and possessing a sultable cross-sectio
may lose stability either by torsional divergence (torsional bucklilg),
torsional flutter, or transvgrse flutter.

To this end, we consider the system shown ianigure 1. A canti-
levered bar is subjected at the free end to a pair of symmetrically
applied, compressive, follower forces. The bar is assumed to have two
axes of symmetry and the distance between the applied forces P and the

centroid is designated by h . In the sequel, we shall show that, in
2

addition to transverse flutter, the system can exhibit both torsional

buckling and torsional flutter (torsional oscillations with an increasing

'Numbers in brackets refer to Bibliography at the end of this paper.



amplitude) depending upon the value of h o
This system may be realized by placing two pairs of very flexible
pipes at the distance h from the axis of rotation (z-axis in Figure 1),

2
and pumping fluid at a constant velocity U through the pipes (see

Figure 4).



Ze Derivation of Equation of Motion and Boundary GConditions

We consider a thin-walled, cantilevered, elastic beam with length L,
torsional rigidity C = GJ , and warping rigidity 61 = Ecw [4], sub-
Jected at the free end to a pair of compressive follower loads applied
symmetrically about the centroid of the cross~section, This is shown
in Figure 1, where the forces at the points A and B follow the deforma-
tion of the beam énd stay tangent to the deformed longitudinal fibers at
these points. The beam is assuméd to have two axes of symmetry, and con-
sequently, the equations 'of the lateral and torsional motiomns of the beam
are uncoupled and may be studied independently. With the type of loading
considered here, the lateral flutter of the beam occurs [5J when

EI_*

2P = 20,05 ;55 , where E is Young's modulus, and Ix'the least moment of
inertia of the cross-section (we assume Iy > Ix) .

We shall use Hamilton's principle to derive the equation of tor-
sional oscillations and the boundary conditions. With 9(z,t) denoting
the angle of rotation at section z and at time t » the strain energy
of the torsional deformation is (3] |

L
'v=% [cl(w)+c(¢)2]dz,. (1)

vhere primes denote derivatives with respect to z . The kinetic energy is

mr2 )2 dz , | (2)
0

Nlt—‘
"—'—a

wvhere dot denotes differentiation with respect to time, m is the mass per

'See Bolotin [6] for historical background and for further references.



unit of length, and r the polar radius of gyration of the cross-section
of the beanm, -
The work done on the system by the applied compressive forces is

composed of two parts. The first

L
1l
W = ZPIO 3 2 (?‘)2 dz , . ; (3)

is due to the longitudinal shortening, and the second, expressed in

incremental form,

h2 ) |
dU, = - P 5= @ (L) »2(L) , (4)

is due to the moment induced by the projection of P on the x-y plane.
3?(L) is the variation of the angle of rotation at the free end; z=1 .

with the Lagrangian L = T1 - V1‘+ W Hamilton's principle may be

stated as
t t
2 2 2
aJ’ L dt - J' P -2—- o' (L) (L) dt (5)
tl t

which, after carrying out the variations and using integration by

parts; yields

4 82 32
Clg’—%+(2Pr2-C)—-g+mr2—-§=0,
A 0z ot

2
9_9 - 0
852 ’
;atz"Ls
3 2
[} 2_b%_ 9% :
c1623+[1>(2r ) -¢c]a=0 . (6)



Let us note that, similar to the case of nonconservativé trans-
verse stability of a bar, the effect of nonconservative end forces in
quations (6) is present only in the boundary conditions. Moreover,
from the last equation in (6) we see that, for small values of h , the
conservative compoﬁentslof the forces are more dominating (see also
equation (5)) and the beam can only buckle (loss of stability by
divergence). As h increases, the nonconservative effect of the
follower forces becomes more pronounced and for some value of h , the
mode of loss of stability shifts from buckling to that of torsional
flutter, It is noted that,as in the case studied by Herrmann and

Bungay [7],here too multiple regions of stability and instability

mey ocour.



3. Stability Regions

A. Torsional Buckling: In order to study system (6), let us

first introduce the following dimensionless quantities:

<=2,
c
. e
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Q—‘;,
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F='-—i’ and F=2F-K.
Cy

- 2
o118 -0 .

We now let ¢({,T) = eM: e.iw 3 1 =J-1 , and obtain



¢(()=AShk1(+BChle+Csink2C+DCos kZC | (8)

where

2. F, [P 2, 2L, [P .2
S RN A P A A
e

" Substitution of (8) into the'l;gundary conditions (7) yields a set
of four homogeneous, linear equations in four constants A, B, C, and
D. This set has nontrivial solutions if and only‘if the determinant
of the coefficients‘ is zero, i.e. the frequency equation is

AN A 2 .2 2 ,2
88 (A} +X3) + 2 A A5 Ch Ay Cos Ay = Ay A(A] = A7) sh A, sin A, +

-*ﬂ[()\i"xg)(l-Chleoskz)-2xlkzshxlsinx2]=o (9)
where

- 2
q=F(l-Z—)--za2.

To obtain the condition for divergent torsional motion, we let
w =0 ; or equivalently )‘l = 0 , and obtain

2
A(f,a)=§+[.f‘(l-%—)—fuz](Cos.[%’-l)=0. - (10)

To simplify the numerical calculations, we set

F=y®, x=sm, | | ()
aend get
o = - Ly Cos S ¥ . | o (12)

(y + 8)(1 - Cos T/ ¥)

2 | |
Fory:%,‘%, ...,Ell-z—]—')—,uis zero, and when-l]iS7S%we,



obtain the first branch (the only practically significant one) of the
tofsional buckling curve. This is shown in Figure 2 for = 1 . The
maximum value of a is obtained for y=~ 1,30 , that is a =~ 1,04 .

B. Torsional Flutter: For given a and F = v WZ » equation (9)
yields the frequencies of torsional oscillations. When F is small,
these frequencies are all real, As we increase F, the two lowest
frequencies approach each other, and for a certain value of F, say
F , equation (9) yields a double real frequency. If we now increase

CTe

F beyond this critical value, Fcr. ’ w? becomes complex and, therefore,
one of the #iw yill'have a positive real part. The beam will oscillate
with an exponentially increasing amplitude. Consequently, we shall
Qeek, for given a, an F which yields a double real root of (9). This
is illustrated in Figure 3 for a = 1.50 . Similar results may be
obtained for other values of a., In this manner the torsional flutter
curve‘may be constructed. The first branch (the only practically
significant one) of.torsional flutter is shown in Figure 2 for 3 =1 ,
We note that the buckling and the flutter curves are tangént to each
omuaxa5033,7z1£9;mnismr%xOSBam

¢, | |
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P= 1.345 Tr2 a = 0,975 is shown by a vertical dotted line in

Figure 26
The dashed line in Figure 2 indicates the limit of transverse

E I r2

flutter of the beam. It is assumed that = 1.5 for the par-

¢y
ticular case shown in Figure 2. The regions of torsional and trans-

verse flutter are separated by a vertical dotted line in this Figure.



4o Realization of Torsional Instability and of the Follower Forces

In order to realize, experimentally, the system discussed in the
previous sectidn, one must be able.to subject the cantilevered beam to
a system of forces which follow the deformation of the free end of the
bar, This may be accomplished by incorporating into the system two
pairs of very flexiblé pipes, which are securely attached to the bar
at a distance h from the z-axis (so that the whole system deforms as
a unit), and pﬁmping fluid at a constant velocity U through the pipes,
as sketched in Figﬁre be

We shall assume that the mass density of the fluid per unit
length of each pair of the pipes is M , and a nozzle whose opening is
n times smaller than the area of each pipe is also placed at the free
end of each pipe.

Similar to the work of Benjamin (8], Hamilton's principle may
very effectiveiy be used for the derivation of ihe equation of motion
and the boundary conditions. To this end, let w(z,t) denote the
average displacement &t section z and at time t in the z—directiqn.
The strain energy and the kinetic energy of the system (exclusive of
the fluid) are given by equations (1) and (2) respectively. The total
kinetic energy of the fluid may be obtained by adding to the kinetic
energy of the fluid contained within the pipes, T2 s the change in the
kinetic energy of the fluid entering and leaving the pipes during a
very small interval of the time 4t ; o

‘" P _1
=7 +2uu(zu§ 2

) Ui)At, o (13)
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wvhere T' is the total kinetic energy of the fluid, ﬁo the outlet

' [}
velocity vector, and -ﬁi the inlet velocity vector. But -ﬁi 3vi,

A s A
where 1 is the unit vector in the z~direction, and .ﬁo =r+nU T
A
 where ¢ is the unit vector tangent to the top (vottom) pipes at

z=L, and T the position vector of the top (bottom) pipes at

z =L . Hence, »T' becomes

oT' = o7, + 2MU ( S r+nUT).br (14)

2

The components of the absolute velocity of the fluid are y + U g!

in the y-direction, and U (1 - (y ) ) - w in the z-direction, T

2
then becomes (within an additive constant)
T2=2MJ‘ (= y+Uyy -Uw) dz .
_h
But y = 29 which yields
T"ZMI[e +—M, -Uw]dz. (15)

N A .
With j being the unit vector along the y-axis, we have (see Figure 4)
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Then

- A -» h2 . '
(FT+nUT) . 0% =n U du(L) +Z—[(P(L) +nu«p'(L)] so(L) , (16)

where w(L) dw(L) is neglected (being a term of higher order). The

Lagrangian now becomes

L=T,+T,-V

1 2 1+ i w(L) (17)
and Hamilton's principle takes on the form

tz t

§ 2 .2 | ' ‘
.a_[ Ldt-]’ Mu-k:;—[é(n)+nuq>’(r,)] 39(L) dt = O , (18)
tl . tl '
whefe o
L
1p 2,02
L) = = dz .
wn) = 3 [ % ()7 a

' Carrying out the variations and using integration by parts, we obtain

4 2 2
C A +[2Mn 2 -cl LA +MUB AN
) A 2 0z0¢
0z 0z
2 a2
+mr?eul) L=o,
ot
a
?= 5% =0 ; z2=0,
2
2.0,
82°
i1z=1L.,
c 922 Mn UZ.(Zr2 - QE) c %2 =0 o
1 az3 + [ o 2/ " ] z (19)
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Introducing the following dimensionless quantities (in addition to

those introduced in the previous section)

2.2
p=¥, poaCefi?
1
we obtain ‘ 5:
2 2 2
6 a F 2 0 1 27 0
c4+L2F-K] /B; “Et:_&%“l*'és“];ﬁ”'
0
9= C=05 t=0,
2
Q;Q:Q’
ag?
3 8=1.,
-—:'2 F(Z-—)-K 2=0 ' (20)
L

Equations (20) are analogous to equations (7), except for the presence
of a dissipative term in the equation of motion which has an effect
similar to that of viscous damping and is due to the Coriolis

acceleration,

SN

. \\

The regions of torsional buckling, in this case, are identical.
with the case treated in section 3, But the flutter curve will shift
depending upon the values of B and n , A complete analysis of this
case is rather cumbersome and will be relegated to a separate study.
Moreover, the results of an experimental investigatlion will also be

reported elsewhere.
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5. Discussion of Results and Conclusions

From the above study we see that the mode of loss of stability of
a thin-walled cantilevered bar subjected to a set of follower forces
is highly dependent upon the manner in which these forces are dis-
tributed over the end section of the bar. Although the reSuléant com-
pressive force does not change, the behavior of the system may be
drastically influenced by varying the end load distribution. This may
seem to indicate that the present problem is an example of a system in
which Saint-Venant's principle is violated. However, strictly speak-
ing, this is not the case. The variation of the end load distributions,
in the case of the follower forces, does in fact change the resultant
end moment induced by the motion of the systém. Therefore,ithe moment
produced by the deformation of the bar should be taken into consider-
ation if one wishes to compare the possible motions of the system.
In our study we have considered only the cases where C1 £0

(see equations (6)). For Cy =0 , the system can never exhibit
torsional flutter. It may either buckle (torsionally) or flutter
transversely independently of the load distribution at the free end
(of course, this distribution is assumed to be symmetrical about both
Axes of the syﬁmetfy of the cross-section of the rod).

| Another class of systems which was deliberately.excluded is that
comprising compressed bars with one axis, or without any axes of
symmetry. These cases lead to coupled torsional and bending motions
wvhich can become quite complicafed and their thorough study is

_ postponed to the future.
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Similarly, the effect of the structural damping coupled with that
of external damping which may lead to destabilization will be treated

elsewhere.
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