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q ABSTRACT 

A cant i levered bar of uniform cross-section and subjected a t  t h e  

free end t o  d i s t r ibu ted ,  nonconservative, compressive loads i s  con- 

sidered. 

. l o s t  by e i t h e r  t o r s i o n a l  divergence ( to r s iona l  buckling) or t o r s i o n a l  

f lut ter ,  depending upon t h e  load d i s t r ibu t ion  a t  t h e  end section. I n  

It i s  shown t h a t  for ce r t a in  cross-sections stability may be 

addition, t ransverse f l u t t e r  can also occur. 

such systems may be rea l ized  by meas of pipes  conveying f lu id .  

It is also indicated how 



1 

I -  1. Introduction 

The problem of the  s t a b i l i t y  of a cantilevered e l a s t i c  bar sub- 

jected t o  a compressive p a r t i a l  follower load a t  i t s  free end has been 

t rea ted  recent ly  i n  d e t a i l  by several. authors [I, 21". 

studies,  it has been establ ished t h a t  t h e  bar may become unstable 

e i the r  by divergence (adjacent equilibrium e d s t s )  o r  by f l u t t e r  

(o sc i l l a t ions  with increasing amplitude) , depending upon the extent t o  

I n  these 

which t h e  load follows the  end-rotation of t he  bar. 

It i s  also well known t h a t  a compressed column m a y  lose s t a b i l i t y  

e i t h e r  by transverse def lec t ion  ( m e r  case) or  by r o t a t i o n  of each 

cross-section, t he  a x i s  remaining s t r a i g h t  ( t o r s iona l  buckling), 

depending upon the  shape of t he  cross-section [3]. 

The purpose of this study i s  t o  show t h a t  a cantilevered bar 

may lose s t a b i l i t y  e i t h e r  by tors iona l  divergence ( to r s iona l  buckli a g ) ,  

subjected t o  follower forces  and possessing a su i t ab le  cross-sectio 

to r s iona l  f l u t t e r ,  or t ransverse f l u t t e r .  

To this end, we consider the system shown i n  Figure 1. A canti- 

levered bar i s  subjected a t  the  f r e e  end t o  a pa i r  of symmetrically 

applied, compressive, follower forces. The bar i s  assumed t o  have two 

axes of symmetry and the  dis tance between the  applied fo rces  P and the  

centrozd is designated 

addi t ion  t o  t ransverse 

buckling and to r s iona l  

by e In  the sequel, w8 s h a l l  
2 

flutter,  the  system can exhib i t  

f l u t t e r  ( to rs iona l  o s c i l l a t i o n s  

show 

both 

vi t h  

t ha t ,  i n  

t o r s iona l  

an increasing 

It 
Numbers in brackets refer t o  Bibliography at the  end of this paper. 
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qpl i tude)  depending upon the value of h 

This system may be realized by placing two pairs of very f l e x i b l e  

pipes a t  the distance 

and pumping f lu id  at a constant velocity U through the pipes (see 

from the 4 s  of rotation (z-axis i n  figure 
2 
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2. Derivation of Equation of Motion and Boundary Conditions I 

3 

We consider a thin-walled, cantilevered, elastic beam with length L, 

to rs iona l  r i g i d i t y  C = G J  , and warping r i g i d i t y  C1 = ECU C4I, s u b  

jected at  the  free end t o  a p a i r  of compressive follower loads applied 

symmetrically about the  centroid of t h e  cross-section, T h i s  is shown 

in figure 1, where the fo rces  at the points A and B fol low the deforma- 

t i o n  of the beam and stay tangent t o  the deformed longi tudinal  f i b e r s  a t  

these points. The beam is  assumed t o  have two axes of symmetry, and con- 

sequently, the  equations 'of the  lateral  and to r s iona l  motions of t h e  beam 

are uncoupled and may be studied independently. 

considered here, t he  l a t e r a l  f l u t t e r  of the beam occurs 151 when 

With the  type of loading 

lS lx  
2P = 20.05 - , where E is  Young's modulus, and Ix t h e  least moment of - 2  

i n e r t i a  of the cross-section (we assume I > Ix) . Y 
We s h a l l  use Hamilton's pr inciple  t o  der ive the  equation of tor-  

s iona l  o sc i l l a t ions  and t h e  boundary conditions. 

the angle of ro t a t ion  at sec t ion  z and a t  time t , t h e  s t r a i n  energy 

With cp(z,t) denoting 

of the tors iona l  deformation i s  131 

L 

where primes denote der iva t ives  Kith respect  t o  z . The k ine t i c  energy is 

L 
T1- - 2,0 r m r 2  (i)2 da 

here dot  denotes d i f f e ren t i a t ion  with respect  t o  t i m e ,  m i s  t h e  mass per  

* 
See Bolotin [6 ]  f o r  h i s t o r i c a l  background and f o r  fur ther  references. 

. 
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unit  of length, and r the  polar radius of gyration of the  cross-section 

of t h e  beam. - 

The work done on the  system by the applied compressive forces  i s  

composed of two parts.  The first 

u1 = 2ps 2 r2 ((P')2 do , 
0 

(3) 

is  due t o  t he  longi tudinal  shortening, and the  second, expressed i n  

incremental form, 

h2 
bW2 = - P 2 cp'(L) b'P(L) , (4)  

is due t o  t h e  moment induced by t h e  project ion of P on the  x-y plane. 

@(L) is t he  var ia t ion  of t he  angle of ro t a t ion  a t  the  f ree  end; z = L . 
With t h e  Lagrangian L = T1 - V1 + W1 , Mamilton1s pr inc ip le  may be 

e ta ted  as 

which, after carrying out t h e  var ia t ions and using in tegra t ion  by 

par t s ,  y i e l d s  

2 

a2 

% = O B  1 1 at z = L  



. . -  
I a . d  

5 

b Let us note. t ha t ,  similar t o  the case of nonconservative trans- 

verse s t a b i l i t y  of a bar, the  e f f e c t  of nonconservative end fo rces  i n  

equations (6) i s  present only i n  the  boundary conditions. 

from t h e  las t  equation in (6) we see tha t ,  f o r  small values of h , t h e  

Moreover, 

conservative components of the  forces  are more dominating (see also 

equation ( 5 ) )  and the  beam can only buckle (loss of s t a b i l i t y  by 

divergence). As h increases,  t h e  nonconservative e f f e c t  of t h e  

follower fo rces  becomes more pronounced and f o r  some value of h , t he  

mode of loss of s t a b i l i t y  s h i f t s  from buckling t o  t h a t  of t o r s iona l  

f lut ter ,  It is noted tha t , a s  i n  the case studied by Herrmann and 

Bungay [7], here too multiple regions of s t a b i l i t y  and I n s t a b i l i t y  

mey occur. 
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A. Torsional Buckling: 

first introduce the  following 

In order t o  study system ( 6 ) ,  l e t  us 

d imensionle as quanti t i e  s : 

Equations ( 6 )  now become 

I 
} ; a t  c = 1. 

AC -ia We now l e t  (~(C,T) = e e ; i =rl and obtain 

. .  



$(C) = A Sh AIC + B Ch AIC + C Sin A2C + D Cos X2C 

where 

*#,A, 
rl 

Subs t i tu t ion  of (8) i n t o  the  boundary conditions ( 7 )  yields a set 

of four homogeneous, l i n e a r  equations i n  four  constants A, B, C, and 

D. This s e t  has nont r iv ia l  solut ions if and only i f  the determinant 

of t he  coef f ic ien ts  is zero, i.e. the frequency equation is 

To obtain t h e  condition for divergent t o r s iona l  motion, we l e t  

w = 0 ; or equivalently X1 = 0 , and obtain 

2 
sa2 3 ( C O S J Z  - 1 )  = 0 . - 

A(F,a) = F + c F(i - - 
To simplify the  numerical calculations,  we set 

p = y T ? ,  K = b ? ? ,  

and g e t  

9 , a is zero, and h e n  2 s y s - we ~ 2 n  - 112 
For y = ,,p , ..., 4 4 4 
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obtain the  f irst  branch ( the only prac t i ca l ly  s ign i f i can t  one) of t h e  

tors iona l  buckling curve. The T h i s  is  shown i n  Figure 2 f o r  b = 1 . 
m a x i m u m  value of a is  obtained f o r  y a  1.30 , t h a t  i s  (I ss L O 4  e 

Be Torsional F lu t te r :  For given a and = y 2 , equation (9) 

yields t he  frequencies of t o r s iona l  osc i l la t ions .  

these frequencies are a l l  real. 

frequencies approach each other,  and f o r  a c e r t a i n  value of F, say 

When F is s m a l l ,  

As we increase i?, the two  lowest 

- , equation (9) y i e l d s  a double r e a l  frequency. If we now increase 
*cr . 
F beyond t h i s  c r i t i c a l  value, Fcre , u2 becomes complex and, therefore ,  
- - 
one of t he  aiw wi l l shave  a pos i t ive  real p a t e  

with an exponentially increasing amplitude. Consequently, we shall 

seek, f o r  given a, an 

The beam will o s c i l l a t e  

which yields a double r e a l  roo t  of  (9). This 

i s  i l l u s t r a t e d  i n  Figure 3 for a = 1.50 e Similar r e s u l t s  may be 

obtained f o r  other  values of a. I n  this manner the  to r s iona l  f l u t t e r  

curve may be constructed. The f i rs t  branch ( the  only p r a c t i c a l l y  

s ign i f i can t  one) of t o r s iona l  f l u t t e r  i s  shown i n  Figure 2 f o r  B = 1 

We note that t h e  buckling and t h e  f l u t t e r  curves are  tangent t o  each 

other  at  a =S 0.9’75 , y 1.69 ; t h a t  is f o r  * 0.975 and 

. a = 0.9’75 is shown by a v e r t i c a l  dotted fine in c1 
A2 P a le345 2 - 

Figure 2. 

The dashed l i n e  i n  Figure 2 indica tes  the  limit of t ransverse 

E rx  r2 
c1 

f l u t t e r  of t h e  beam. It i s  assumed t h a t  = 1.5 f o r  the  gar- 

t i c u l a r  case shown i n  Figure 2. The regions of t o r s iona l  and trans- 

verse f lu t te r  are separated by a v e r t i c a l  dotted line in this Figure. 
, 
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Realizat ion of Torsional I n s t a b i l i t v  and of the  Follower Forces 

I n  order  t o  realize, experimentally, t he  system discussed i n  the  

previous sect ion,  one must be able t o  subjec t  the  cant i levered beam t o  

a syetem of forces which follow the deformation of t h e  f r e e  end of  t h e  

bar. This m a y  be accompllshed by incorporating i n t o  the system two 

p a i r s  of very f l e f i b l e  pipes,  which a r e  securely attached t o  the  bar 

a t  a d is tance  & from the  z-axis (so t h a t  t he  whole system deforms as 

a un i t ) ,  and pumping f l u i d  a t  a constant ve loc i ty  U through t h e  pipes, 
2 

as sketched i n  Figure 4. 

We s h a l l  assume t h a t  t h e  mass densi ty  of t h e  f l u i d  per u n i t  

l ength  of each p a i r  of t he  p ipes  is M , and a nozzle whose opening i s  

n t imes smaller than t h e  area of each pipe i s  also placed at t he  f r e e  

end of each pipe. 

Similar  t o  t h e  work of Benjamin [SJ,  Hamilton's pr inciple  m a y  

very e f f e c t i v e l y  be used f o r  t h e  der ivat ion of a he equation of motion 

and t h e  boundary conditions. 

average displacement a t  sec t ion  z and a t  time t i n  t h e  z-direction. 

The s t r a i n  energy and t h e  k i n e t i c  energy of t he  system (exclusive of 

t h e  f w d )  are given by equations (1) and (2) respectively.  

k i n e t i c  energy of t h e  f l u i d  may be obtained by adding t o  the  k i n e t i c  

energy of t h e  f l u i d  contained within t h e  pipes,  T2 , the  change in the  

k i n e t i c  energy of t h e  f l u i d  entering and leaving the  pipes during a 

To t h i s  end, l e t  w(z,t) denote the  

The t o t a l  

very s m a l l  i n t e r v a l  of t he  t i m e  A t  ; 
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I where T' i s  the  t o t a l  k ine t i c  energy of the f l u i d ,  zo the  o u t l e t  
I 

veloc i ty  vector, and 3 the  i n l e t  velocity vector. But ci a U i , i 
0 -. -+ I 

where i i s  the  u n i t  vector i n  the  a d i r e c t i o n ,  and Uo = r + n U z 
A 

A 
where z is the un i t  vector tangent t o  t he  top  (bottom) pipes a t  

z = L , and ;f t he  posi t ion vector of the top (bottom) pipes a t  

z = L Hence, bT' becomes 

The components of the absolute veloci ty  of  the  f l u i d  are + U 2 
I T2 

1 2  
i n  t he  y-direction, and U (1 - (y  ) ) - 
then becomes (within an addi t ive constant) 

i n  the  z-direction. 
t 

L 

But y = I! cp , which y i e l d s  2 

L 
T2 = "s, [ 8 h2 cp * 2 + d ; ( p ' - U ; ] d z  4 (15) 

A 
With j being the  uni t  vector along the y-axis, we have (see Figure 4 )  

A A A L A  
= j Sin e + i COS 6 = j ( Y ' ) ~ ~  + i 



. ' .  ll 

Then 

(f, 

Lagrangian 

bw(L) is neglected (being a term of  L higher order), 

now becomes 
- 

L = TI + T2 - v1 + 2~ n VL W(L) 

and Hamilton's principle  takes on the form 

t2 
h2 [6(L) + n U Cp'(L)] bQ(L) dt  = 0 , b J  L d t - J  MUr 

t2 

t, t 1 

where , 

I Carrying out' the variations and using integration by parts, we obtain 

2 2  '+ ( m r  2 + M F  h ) L % O ,  
at2 

p = z = o ;  z = o  3 
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Introducing the  following dimensionless quan t i t i e s  ( i n  addi t ion t o  

those introduced i n  t h e  previous section) 

o = % = o ;  c = o ,  

-k [F(2 - $) - K] $ = 0 I 
at: 

Equations (20) are analogous t o  equations (7), except f o r  the  presence 

of a d i s s ipa t ive  term i n  the  equation of motion which has an e f f e c t  

similar t o  t h a t  of viscous damping and is due t o  t h e  Cor io l i s  
-\ 

. accelerat ion,  
\ 

'- The regions of t o r s iona l  buckling, i n  t h i s  casep are i d e n t i c a l  

with t h e  case t rea ted  i n  sect ion 3, But the  f l u t t e r  curve W i l l  shift 

depending upon t h e  values of and n A complete analysis  of this 

case i s  r a the r  cumbersome and w i l l  be relegated t o  a separate study, 

Moreover, the  r e s u l t s  of an experimental inves t iga t ion  ViU also be 

reported elseh%ere. 



13 

5 .  Discussion of Results and Conclusions 
- 

From t h e  above study we see t h a t  the  mode of loss of s t a b i l i t y  of 

a thin-walled cantilevered bar subjected t o  a set  of follower fo rces  

i s  highly dependent upon the  manner i n  which these fo rces  are dis-  

t r i bu ted  over t he  end sec t ion  of t h e  bar. Although the  resultant c o w  

press ive  fo rce  does not change, t he  behavior of t he  system may be 

d r a s t i c a l l y  influenced by varying the  end load d is t r ibu t ion .  This  may 

seem t o  ind ica t e  that t h e  present problem i s  an example of a system i n  

which Saint-Venant' s pr inc ip le  i s  violated.  However, strictly speak- 

ing, this i s  not  t h e  case. 

i n  t h e  case of  t h e  follower forces, does i n  f ac t  change the resultant 

The var ia t ion  of t h e  end load d i s t r ibu t ions ,  

end moment induced by t he  motion of the system. Therefore, t h e  moment 

produced by t h e  deformation of t h e  bar should be taken i n t o  consider- 

a t i o n  if one wishes t o  compare t h e  possible motions of the system. 

In  our study we have considered only t h e  cases where C1 # 8 

(see equations (6)). 

t o r s i o n a l  f lu t te r .  

For C1 = 0 the system can never exh ib i t  

It may e i t h e r  buckle ( tors iona l ly)  or f l u t t e r  

t ransverse ly  independently of t he  load d i s t r i b u t i o n  at  t h e  free end 

(of course, t h i s  d i s t r i b u t i o n  i s  assumed t o  be symmetrical about both 

axes of t h e  symnetry of t h e  cross-section of t h e  rod). 

Another class of systems which was del lbera te ly  excluded i s  t h a t  

comprising compressed bars  with one axis,  or without any axes of 

symmetry. 

which can become quite complicated and t h e i r  thorough study is 

postponed t o  t h e  future .  

These cases lead t o  coupled to r s iona l  and bending motions 



Smilarly, the e f f e c t  of the structural damping coupled with that 

of external dampi& which may lead to destabi l izat ion w i l l  be treated 

elsewhere. 

, 
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