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ABSTRACT
A mathematical formulation of a problem of optimizing nonlinear closed-loop

dynamical control systems is presented. It is shown that an integral performance

functional induces a partial orceri:nz of the closed-loop controls which stabilize

the system. Definitions of miuime: and optimal controls are made.
It is proved that for certain conditicns on the nonlinearities in the equation

of the system any minimal control is optimal and a technique is presented for

constructing a minimal control. Thus the existence and conétruction of optimal

closed-laop controls for many systems has been established. )
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FOREWORD N

This document is the final report on one phase of the study carried on under

contract NAS8-5222, sponsored by the 0ffice of Astrodynamics and Guidance Theory,

—— 2l P - A [ [ o DT | “r ~11 Y
VADAVIL UL iNaoss db dtie \JCUL&C Ve {ial diiali i OPO\-C

Aeryv and Astrodynamics Di
Center, Huntsville, Alabama. Mr. C. C. Dearman was the project monitor for this
program. The purpose of this portion of the work was to develop an optimal synthesis
technique for closed-loop systems using Liapunov techniques. The other portion of
the work was presented in Honeywell Report 1546-FTR 2, "Predictive P-Guidance."

In this a simplified guidance technique for possible back-up systems was evaluated.

Project personnel were D. L. Lukes, R. G. Johnson; principal investigators. The
J P P) , s P P

work was supervised by E. R. Rang.
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OPTIMAL STABILIZATION OF
NONLINEAR DYNAMICAL SYSTEMS

by D. L. Lukes

INTRCDUCTION AND SUMMARY

A mathematical formulation of a problem of optimizing nonlinear closed-loop
dynamical control systems is presented. It is shown that an integral performance
functional induces a partial ordering of the closed-loop controls which stabilize
the system. A natural definition of an optimal control is that control which
represents a zero of the partially ordered system. The minimal elements in this
ordering are analogous to extremal controls in open-loop optimization problems.

It is proved that any minimal control is optimal if the nonlinearities in the
equation of the system satisfy certain boundedness conditions, and a technique is
presented for constructing a minimal control. Thus, the existemce and construction
of optimal closed-loop controls for many systems has been established.

Letov and Kirillova studied the problem of optimal stabilization for linear
systems with quadratic index-integrand in References?2,3 and 5, respectively.

The existence éf an optimal control for the case in which the equations of the system
are linear in the control but possibly nonlinear in the dependent variable was
investigated by Al'brekht, Reference 6 . His technique was based upon the
construction of a Liapunov function. The-work presented here outlines the extension
of these problems to cases in which the control function may appear nonlinearly

in the equations of the system and the state variables may occur in a general manner

in the performance index. The proof that the formal calculation of the closed-loop

control law converges will be completed in subsequent work.
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DEFINITIONS AND ASSUMPTIONS
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We assume that the uncontrolled process is described by the system equation

% = f(x,u) = Ax + Bu + h(x,u),

P v

For the choice of allowable feedback controls, we restrict our attention to the

control space

] U = {u(x)ecw, u(x} = Dx + O(HXHE), RE)\FA + BD] < O}-

We shall assume that “/ # ¢. A sufficient condition for this is that rank

n"'lBﬁ

3 . [B, AB, AQB,...,A J =mn. This assumption on the linear part of the system

equation and control functions ensures that the origin is asymptotically stable
for each choice of control functiom from .

In order to compare the performance of the controls in Z(wé define a performance

functional. Let us assume as given

G(x’u) = (X::C' X) + (u, T u) + H(X);

- where 97 and fi are symmetric and positive definite matrices, H(x)e c® and
lu(x)| = O(“xH3). Then we can define the performance integral
- ’ «
J{x,u) = f G dt.
o

i The integration is done along a trajectory of the system with control ue?(; x is the

* . .
Cw denotes the class of functions analytic in a neighborhood of the origin. We
let dim(x) = n and dim{u) = r. A and B are constant matrices.
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initial condition. It can be shown that J(x,u) is finite-valued and analytic for
all x in some neighborhood of x = o for each uei{.
We shall say that u, < u; for u, and u, in °/ if J(x,ug) < J(x,ul) on some

neighborhood of x = o.
*
Lemma (?{, <) is a partially ordered system.

Proof: That u < u is trivial for each ue /.

Suppose that u, < u, and u_ < u, where u,,u, and u, are in Z( Then J(x,u,) <
- 2 2= 3 172 17 =

1
< J(x,uy;) and J(x,ug) < J{x,u

3

on neighborhoods 9. and 92, respectively, of the

3) 1

origin. Thus J(x,ul) < J(x,u,) on 83 = Glﬂ 62. But this says u, < u

1S Y3

Q. E. D.

Definitions
1f uer( and u, < ¢{, then ug is called an optimal control for the system.

s s < .
If Yy < u,, but it is not true that u, S 4y for uy and u, in ?{, then we say

u1 < u2.

For each pair of control elements u, and u, in {{ we define an "order function"
B -4

of x by Ox(ul,ug) E-f(x,ul(x))u. va(X’uE) + G(x,ul(x)) on a sufficiently small

deleted neighborhood of the origin.

Lemma

For each pair u, and u, ia (/,

(1) Ox(ul’UE) <o implies u; < u,

*
A partially ordered system is a set S with a relation < satisfying the conditioms:

(1) a<bandb<c implyac<c .
(2) and'a < a for all a, b and ¢ in S.

VAN
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(2) Ox(ul’uQ) < o implies u

1 2
(3) Ox(ul,ug) = o implies u; <y, and u, < uy
(&) Ox(ul’u2) > o implies u; > u,
(5) OX(Ul,uE) > o implies u; > u,

(6) Ox<u1’u2) < o implies J(x,ug) is a Liapunov function for the system with

control u, .
Proof: We first prove (2). Let u; and u, be in.%{ and suppose Ox(ul’uE) < o on

some deleted neighborhood of x = o. Then on some sufficiently small deleted neigh-

borhood of x = o (namely a neighborhood in which both J{(x,u,) is finite and

»

Ox(ul’u2) < o) we can integrate the inequality

0 (u,,) = £(x,u,(x)) - v I(x,u,) + G(x,u (x)) < o e

along the trajectories of the system with control ul(x)’ X(t) with X(o) = x, to get

t v -

I(K,u,) - 3(x,uy) + j 6(X,u,(X))do < o for t > 0. Then letting
t » o, and using the fact that X(t) - o, we get J(x,u ) > f G(X,u 1(X))da = J(x,ul)
on a neighborhood of x = o so u; < u,. This proves (2).

The p}bofs of (15, (3), (4) and (5) are obtained in a similar manner by
replacing the inequality signs by the appropriate alternatives in the aBove calcu-
lations,

Now we prove (6). For ugeeﬁiwe can easily see that J(x,uz) satisfies most of | o
the requirements of a Liapunov function; namely, J(o,u2) = o, J(x,ug) >o0on a
deleted neighborhood of the origin, and J(x,ug)ecw. Then the added assumption that

N
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OX(ul,ue) < o on a deleted neighborhood of the origin requires N

f(x,ul(x)) P V%J(x,ug) + G(x,ul(x)) <o,

This in turn implies that

£x,u,(0) 5 73050, < ~Clxuy () < 0

on a deleted neighborhood of x = o sinceﬁfL_and.CZQEre positive definite. Thus
J(x,uE) is a Liapunov function for the system with control u; . .
Q. E. D,
We now prove a theorem which states that in at least some cases proving the
existence of an opiimal control reduces to proving the existence of a minimal
element® in (Y, < ). Of course, every optimal control is minimal.

Lemma - e

If‘uleZ( is minimal and there is a uge// so that

Ox(uz,u

1) = min [f(x,u)-V;J(x,ul) + G(x,u)] :
u ,

on a neighborhood of x = o, then u, is optimal.

1

Proof: Assume the hypothesis. But Ox(UQ’ul> < o since Ox(ul’ul) = o. Thus u, < ue

Now if Ox(uQ’ul) = 0 on a neighborhood of x = o then u; is optimal since then

Ox(u,ul) > o for every u(x)e (/ on a neighborhood of x = o. Now apply (4) of the
previous lemma.

The contrary case, namely that Ox(uQ’ul) is negative on a sequence of points

If (S,_) is a partially ordered system then an element aeS is called minimal)if-

beS and b < a implies a < b.
N

i3
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converging to the origin, violates the minimality of u This last fact can be

l.
seen from the same calculation used to prove (1).

Q' E. D.

e o
LilCOL il

Let JQEZ denote the positive definite quadratic form determined by the optimum
solution of the linear problem.*

If both: .

(1) uleql is minimal and |

(2) min [(Bu + h(x,u))“-V&J(g)(x) + (u,Zu)] has an analytic solution u(x)
u

on a neighborhood of x = o,

then u, is optimal.

Proof: ) .

1

We assume the hypotheses. We first note that J(Q)(x,ul), the quadratic term
in the expénsion of J(x,ul), depends upon only the linear part of e Also the

minimality of u, implies that its linear part is the optimum solution to the linear

1
problem. Thus J(e)(x,ul) = J(E)(x).

s

Therefore,

-min[(Bu + h(x,u))'va(g)(x,ul) +‘(u,§101

.

= [(Bu(x)+h(x,u(x))e VXJ(Q)(x,u1)+(u(x) s ﬁ u(x) )]

"By the linear problem we mean the case H(x) = o_and f(x,u) = Ax + Bu. The solution

is determined by the equations{uo(x) = -%B*V%J(Q)(x)

(ax + Bu_(x))- 9,33 (x) = ~(x,0tx) ~(u(x), §u (x))

(see reference5)

-
- i
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on a neighborhood of x = o. Therefore, on a neighborhood of x = 0, by adding terms
in x, we get

min [f(x,u).’- VXJ(x,u )+ G(X,u)]
u ,

£(x,u(x)) . VXJ(x,ul) + G(x,u(x))

Ox(u,ul).

i

Thus all that remains before we can apply the lemma is to show that u(x)eQ{.
(Note that u(o) = o). Thus we must show that its linear term makes the linear part
of the closed loop system stable.

But since u(x) satisfies the minimizing condition (2) it is necessary that

$.5mu + 10x,0)) e 7,32 () + (0,8 0)7)

u = uw(x)

& scarm s, o

on a neighborhood of x = o. That is

u(x) = -3 B*V%J(Q)(x) + R(x) .

where |[R(x)|| = O(Hx”e). Thisvsays that the linear part of u(x) is the solution to
the linear problem. Therefore uel/. Thus, applying the lemma by using ue(x) = u(x)

we conclude that Uy is optimal. - -
Q.E.D.

i

An example of a nonlinear system satisfying the hypotheses of the theorem is

Example

Moo
i
»

= U - %3
2 T Tque TFY X
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THE FORMAL CONSTRUCTION

We now develop a procedure for constructing a minimal control.

N

Let uec%/(be fixed and let X = X(x,t) be the solution of the corresponding -

closed loop system equation where X(x,0) = x. We restrict x to the domain of

asymptotic stability about the crigin. Thon we calculate
) ©
I(x(x;t),u) = [ GIX(x(x,t),9), uX(X(x,t),0))]ldo
o

-]

= [ 6lx(x,0 + t), X(x,0 + t)) Mo =

(o}

-]

= j 6lx(x,0), utX(X,U))]dG. »

t

Differentiating with respect ot t yields

W(Xu) -G[X,u(X) ], for t > o.

dt N

Bgt.using the chain rule,

B g gy B

dt

= ; B = £(X,u(X))- VXJ(X:U)-

Then éétting t = o we get f(x,u(x))- VXJ(x,u) = -G(x,u(x)).

This last equation is an identity in x on the domain of asymptotic stability.

Since all functions are analytic, in a neighborhood of the origin we can expand

terms in the identity in convergent power series. Let

[}

3eu) = 35D« 330+ L

u(x) = u(l)(x) + u(e)(x) + eeee

o w) = B3+ 1)+ .

all

! f : . ' ;
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where the superscript denotes the degree of the homogenéous forms. . ‘;
Then the identity may be rewritten as | L
{lax + Bu(l)J + CB(u-u(l)) + h(x,u) ]} * VX[J(Q) + J(3) + eee] :‘A RS
) ) o= "(K,G'LX) - (u’ @( U) - [H&B)""' H("J’) + oo ]' ’;
. Eduating terms of similar degree,‘ we get the system of equations
i
¥ - .
H i [4
(Ax + Bu(l))' VXJ<2) = -(%,77 x) - (u(l),\:}\u(l))
b .
(Ax + Bul1)ye VXJ(3) - _[Bd® 4 n(@1 VXJ(e) - 2l ulB)y . 43)
"""""""""""""""" ﬁlii'“""""'""""""'""“"""f',‘"f "f A
(Ax + Bu(l))° VxJ(m) = - Z fBuKm‘k‘kl) + h(m-k"—l)j . ij(k)‘
e S
% ’
© (1) 2 (nek) "
e m=- -
-2 E (u »y U ) A
k=1 ‘ - -
NG (3) **
- TN e T T L |
. . i
<m = 3,”—,5-&..-
i * : - ,
. In the limits of summation the symbol [M] denotes the integer part of M.
‘N .
I3 ' ** - -
This term is omitted for m odd.
N
. 4

e et

D11 e o e s g o % L e

N
A 100 2 AL g
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(k) th .
Here the symbol h denotes the k  ~order terms in the variables XpsXgeeo X

kN .
obtained from the formal power series expansion of h(x,u(l)(x) + u(a)(x) + coe)e

Thus it is an n-vector whose components hi(k) are homogeneous forms of degree k.

We now examine the way the J(k)(x) depend upon the choice of u. Noticerthat4

th general form of the equations is

where A is a stability matrix (ReA[Ak 0) and Z(k)(x) and Y(k)(x) are kth-degree
homogeneous forms. In this equation how the choice of Y(k)(x) affects the solution
Z(k)(x) and the converse are questions about solutions of linear equations. A
theorem proved by Malkin, Reference 1 , states that each choice of Y(k)(x) results
(k) |

in a unique solution for Z and the converse also holds. Also we note that

u(m-l) is the highest ordered term upon which h(m) depends so Jem) depends upon

no term higher than u(m-l).' J(2) depends upon only u(l).
Since we can restrict our attention to an arbitrarily small neighbdrhood of
the origin in discussing most questions we would expect that in selecting u so as

" to achieve a minimal control the lower ordered J(k) would have highest priority.

. With this motivation>we now develop a method of determining an infinite series

-
~ ~ ~

. | Y .

"The discussion of its minimality and convergence is momentarily postponed.

. e e -

We shall make use of the formula

an(™ =)
b = et = )4_

(k) [au:] 2;35%5000
Ou ' = 1,2,3,e00

k=1 ‘ i h 'E ,?d”{k’

R S T
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1St Step We begin the selection by choosing u(l) to be the solution of the
\

truncated optimization problem (f(x,u) = Ax + Bu, H(x) = o). That is, according

to the equations

e e,

- —— st
4

I 1) T P = 1 Lo 1 §
" | (..X a2 B'J( )/_ (:)xq( ) - '(I{,L—(: _-) - (u( ),3.“( )) :
‘ 1 -1 % (2
ol1) 2 -3%°B VXJ( )
. and J(Q)(x) is positive definite. ‘f,{;¢wQ¢— b
nd . . (3) . . ?
. 2 _Step For the determination of J we consider the equation
! >
. {
(ax + Bull)). V}g‘3) = -[al® 4 h(Q)J-va(Q)
(1) 2 ,(2)y g N
) s o o
(U 2 o u ) . o {
‘ T
| NE) ‘ B IR
(1) Lo
But in view of our choice of u the equation reduces to ;
X X . : -

and since all terms have been determined, except J(3), we.appeal to Malkin's =~ -
theorem and define J(3) to be the unique solution to the eqﬁation, : b

3rd Step In this step we make the determination of J(h) and u(2) by éonéidering

]

the equation

i

P . .
b e g S 8
[E R N

AU ¢ IOR ¢ IR ) SN € Y € RO €
b | N T I © P C B
-2(u{ g3y (ul2), G ul2))

-
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(1)

By our choice of u

(2)

the terms containing u(3) cancel and the right hand

side depends upon u as the only undetermined variable. Since 0(2) enters

linearly in h(3) andeiis positive definite, by integrating both sides of the

equation along the trajectories of the linear system X = Ax + Bu(l) maximizing:

the right hand side with respect to u'“/ minimizes J\4)(x) for every choice éf X ;

Thus u(e) is determined by the formula

U(Q)(x) _ _%(.214-1[8*‘7}(‘](3) + (%%Eg; ) VXJ(Q)J .

Using our previously mentioned formula this can be written as

WDy = a3 4 (@) (g 4(2); ‘

o

Then with u(e) determined, J(u) is determined via Malkin.

Inductive Step We now define the u(k) and J(k

) by induction. Let m > 3 be even

.

and fixed. Let

o e ottt

k-1
\‘\— ‘:‘(k)(x) = %gl[B*VxJ(k+l) + z (%)(j)*vx‘](k-j-’-l)]
j=1

k = 1,2,3,...,32l -1

in which the J(p)(x) have been determined recursively so that the identity egﬁations

N

have been satisfied for p = 2,3,..., m-1 and so that

N J(m-2)(x) < J(m-E)(X,E) for all x : . .(P)

whenever ~ ( s ) ~ ( S)
ue{u‘uefl{and I (x,u) = JV7/(x) for all x, 2 < s < m-3}.

(We assume that in the previous step the right hand side of the equatioﬂ used to

determine J(m-l) had been shown to be independent of all undetermined functions). -

Now we examine‘the right hand side of the identity equation for J(m).
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Differentiating the right hand side with respect to u(p) for p ='m.-1,4 mfe,..;,gﬂ-l;
. \’ ’ ‘ c
we get :.
: m-1 {m-k+1) m-1 (m k+1)
z k - |
9 -y Ly g -y < Ry ) VJ( ) _28um-P)
k=0 k=2 3
; . P
x i* SN
L a w-x+1-p 7 %
k=2
Making a change of variable of summation s = m-p-k+l, we get . :
mp-l | ox(s) ; | )
g%y (2 _ z oh (m-p-s+1) _ 53 (m-p) ' , ‘ )
BV, J (55 J 2 u . 4 R
: s=1 g
This is identically zero for the range of p considered because this is another way P g
’ N B I 1
of writing R b
\\\ . k-1 * : ;
s L u(k)(x) = _%@:1[B*V J(k+1) + Z (@E)(J) v J(k'J+1)] ) ‘ . o é
B . x du X Ci o Lk
D for k = 1,2,3,-..:%"1, which was assumed above. k e k
o Thus the right. hand side depends upon no u(k) of order higher than g._.
'.7 . ~ By 'the same reasoning used in the third step we can use Malkin's theorem to
* define J(m)(x) as the solution of the equation where'J(,m)(x) is minimized for all x.
‘ ]
m m : !
by choosing u(2) 50 as to maximize the right hand side. Thus u(2) is determined by ’
differentlatlon as the solution to the equatlon .
= (m k+1 ( (m-k+1) -
k) g‘ dh (k) _
-2 (u - B V J v J =
\5 S Gum ) f
k=2 : k 2 . ;




- g
; 14
[. # m :
; ‘ m m 5 m_ ‘ s
' = -2(} (2)- B*V J(2 oY - z (i)*(z kﬂ)v 5(k) " S
; - u X du X \ S
| k=2
: : m m 3-1 m B
l K @ (E) * (§+1) 2 Sh *(k) (§~k+l) : Co S
| = -2Qu " - BV - z 9 vJ B Lk
l k=1 :
= Qe ;q
; i -
v But this formula agrees withmthe one used to define u(k)(x) k =1,-2,“‘,2-1= i
With this determination of u (x) and J(m)(x) all that remains to complete - - I
the proof of the induction is to show that the right hand side of the equation f.or_ q
J(mﬂ‘) is independent of u(p)) P = %+ 1, -2- + 2,...,m. Again by differentiafiné we
‘ -
get . F
(m-k+2) (m k+2; % ‘ : s
- z u g*v gk _ 2 (—- ) v gtk - - S
au(P) X X
* N ' a8
. . N K
3 k nrtl-k L
8 i‘“()‘“( ), =4 :
k=1 ) -
* - ;4
m-p+1 . ‘ ! i
- ¥* - - | - .
- = _pty g(mp22) _ z (,g_h) (m-k+2-p) o (k) 2Bu(mtl) g
. x s u X ' ’ ; i
. k=2. {
~ ~ ~ ‘,
; (Letting j = m-k+2-p), i :
P L e (mpt2) v on*3)_ (n -i+2)  a (m-p+l) SRR
.o = -B"v J --Z(-a—) v JA\Boprl -2Ru =0 . Lo
' : X u x . : e L
, =1 ' L
, \ ' G
‘ L
4 i
3 e
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for the range of p being considered. This completes the induction, A
Thus we have shown that it is possible to generate infinite series I u(k)(x) 3!
® (k) k=1 ‘
and I J' /(x) for which the identity equations hold and so the property (P).
k=2 , ® (13 '
hoids. Note that it the intinite series u(x) = X u'"/(x) has a non-zero radius
| k=1 ‘
. of convergence than u(x)eiL’.
We summarize the construction by a theorem. : V v *
@
 Theorem If u(x) = Zu(k)(x) constructed above has a non-zero radius of convergence
- k=1 ‘ P
then ue Z{and u( x) is a minimal control. . '
© N o
Proof: Assume the hypothesis. Thus u(x) = Z‘u(k)(x) as constructed has a non-zero i

(x) () |
radius of convergence. Also J‘' /(x) = J‘ /(x,u), k = 2,3,4,... because of the S

uniqueness of the solutions of the equations used to define the J(k)(x). S
To prove u is minimal we shall use the property (P). Let C be a chain in . hi,‘A;
(ol(_ ,5) containing u and let uy be an arbitfary fixed element in C. - ol
'Ih_u‘s either J(x,ua) < J(x,u) on a neighborhood of x = o or else J(x,u) < J(x,ﬁa) L

on a neighborhood of x = o. In the latter case we have nothing to prove.

. o - T
Therefore -suppose J(x,ua) < J(x%,u) in a neighborhood of x = o. It can be

chosen so that the expansions

. :. J-(‘x,ua) = J(g)(x,ua) + J(3>(x,ua) + l:... . i g

% | J(x,u) = J(Q)(x,u) + J‘(S)(x,u) F eees ' . ‘ - :

* are valid there. - / o 0 *
f ’ ‘ J(Q)(x,uayg J(E)(x,u)v for all x L

-~

; ‘because - ' : E

- [

J(»)sx,ua) = J(x,u) = )\ng(g)(x,ua) - J(E)(x,u)] + X3O( "x||3)
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for every x for all A in some open interval (possibly depending upon x) about A = 0.

But also

1(x,u) 2 33 (x,u)

for all x by the property (P) resulting from the way u was constructed. Thefefore,}

t 3(3)(x,ua) = 3(3)(x,u)

o

for all x too because

30,8 ) - 30,u) = B3T3 ) - 0w T+ ol e -
> 2
for every x for all A in some open interval about A = o.
We now proceed by induction. Suppose that m is even and that J(k)(x,ua) =

= J(k)(x,u) for all x for k = 2,3,..., m=1. Thus

30x,u) - 30su) = L ) - I (00 T+ A o)

for all x for all A in some open interval about X = o so J(m)(x,ua) - J(m)(x,u) <o
for otherwise we would contradict the fact that J(x,ua) < J(x,u) about x = o.
. But also J(m)(x,ua) - J(m)(x,u)tz o for all x by (P). Therefore J(m)(x,ua)‘s

c= J(m)(x,u) for all x. Therefore,

SOyu) = 30) = L oy - ) (0 T+ ™ 20( ]2*2)

~

where m+l is odd. This shows that J(m+1)0x,ua) = J(m+1)(x,u) for all x. This
completes the induction.

Therefore J(x,u) = J(x,ua) on a neighborhood of x = o so we have shown u < u

implies u £ u,. But u, was arbitrary in C and C was an arbitrary chaint containing

u. Thus u is a minimal control.

. Q.E.D.
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