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Pneumatic Tire 

Richard N. Dodge 
Dept. of Engineering Mechanics, University of Michigan 

THIS PAPER UTILIZES a rotating cylindrical shell as a 
model by which one may approximate the dynamic response 
of a real pneumatic tire. This circular cylindrical shell is 
presumed to have characteristics such as shown in Fig. 1, 
where a relatively inextensible outer band of known elastic 
propeities is supported by an elastic foundation, which in 
turn is caused to rotate about a central hub. The width of 
this shell is considered small in comparison with its diam- 
eter or radius. 

There are two reasons for studying the response of such 
a shell to a stationary point load. The first is that such a 
model may be  quite easily constructed from conventional 
materials whose properties are well  known, so that experi- 
ments may be carried out to compare the actual deflection 
under point load of such a model with calculations made 
by using the expressions developed analytically for this 
problem. This allows correlation between theory and ex- 
periment in a much more secure way than could be  accom- 
plished by using a real pneumatic tire. The real pneumatic 
tire suffers from the disadvantage of having very complex 
and variable elastic properties, as well as having a geometry 
that is not immediately susceptible to interpretation in 
terms of cylindrical shell dimensional parameters. 

The second reason for studying such a problem is that it 
represents an approximation to a real pneumatic tire run- 
ning under fairly light contact loads. The analytical solu- 
tion of this problem, representing the light contact loads by 
an idealized point load, is rather straightforward and allows 
a fairly complete analytical solution to be obtained for this 
problem. Thus, one may study this problem analytically in 
a more thorough way than the more complicated problems 

h 

Fig. 1 - Basic cylindrical shell model for a pneumatic tire 

involving finite contact area between the tire and the road- 
way. Details of the motion outside the contact patch may 
thus be examined in considerably more detail here than i n  
other solutions. Thus, one of the primary aims of this paper 
is to discuss motion outside the contact patch while the tire 
is rolling. 

The specific problem treated is that of determining 
expressions for the load deflection characteristics of a rotat- 
ing cylindrical shell loaded by an external stationary point 
load. Both analytical and experimental calculations are pre- 
sented for a single model. 

ANALYSIS OF A ROTATING CYLINDRICAL SHELL 
SUPPORTED BY AN ELASTIC FOUNDATION 

It has been pointed out in Refs. 1 and 2 that some hope 
exists that the dynamic properties of the pneumatic tire may 

ABSTRACT 

The problem of the rotating cylindrical shell under the 
action of a stationary point load is treated in detail as a 
means of approximating the action of a tire while rolling. 
Comparison is made between calculated and measured load 
deflection curves, using a model very similar to the postu- 

lated cylindrical shell. There is reasonable correlation 
between such dynamic load deflection characteristics as 
predicted from the model and obtained experimentally, so 
that some support is lent to the eventual application of this 
model a8 an analog for real  pneumatic tire studies. 
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Fig. 2 - Coordinate nomenclature 

be wel l  described by the same set of equations that describes 
the motion of a circular cylindrical shell. One must con- 
&der the circular cylindrical shell to be internally supported 
by an elastic foundation such as is illustrated in Fig. 1. In 
this case, no loss mechanism is assumed in the generalized 
foundation so that its response is purely elastic. 

In Fig. 2 the coordinate system shown defines the dis- 
placements associated with the circular cylindrical shell. 
A stationary coordinate system X X is fixed in space. 

Rotating about this origin with the rotating shell is a moving 
while anached to &e shell itself coordinate system x 

ate the cosrdinrtrer for dirplncement w, v in tks radial and 
tangential directions, respectively. Eq. 1 defitla certain 
variables used: 

1' 2 

1' '2' 

r = a + w  

W z = -  
a 

V $h= - 
a 

h2 

12a 
a = -  

2 

t = time 

Note that the angle 8 is measured relative to the mov- 
ing coordinate system x. .  As has been shown in Ref. 1, the 

cquations ofmotion, in terms of the moving coordinates of 
such a shell, are 

1 

P a  E ("") E +- ( $ 9  + 2) +- - = 0 
2 

paO 

P 

Fig. 3 - Externally applied point load to shell model 

5 - Q ( Q j r  - 2%) -- E (9" + 2') = 0 

paO 
2 

The primes and dots denote differentiation with respect to 
8 and "1," respectively. 

lowing assumptions: 
The development of Eqs. 2 is predicated upon the fol- 

1. Plane strain is assumed; that is, the strain parallel to 
?he generarorr of the &ell ir everywhere mro. 

2, k l a t i v e  motion is assumed small enough so thatprods 
ucts of displacements and their derivatives can b e  neglected 
with respect to first-order terms. This implies that Eqs. 2 
are the linearized form of the equations of motion. 

the deformation of the supporting elastic foundation, the 
deformation d u e  to rotational effects, and local deforma- 
tions due to bending. Damping has not been included. 

ators has been neglected for convenience. 

3. This development considers only those effects due to  

4. Lateral contraction of the shell parallel to the gener- 

In Eqs. 2, "k" represents the local spring constant per 
unit areaof the supporting elastic foundation, p is the mass 
density of the shell band, E is the extension modulus of the 
shell band, and Q is the constant angular velocity of the 
combined shell and its supporting foundation. 

POINT-LOAD PROBLEM 

The point-load geometry is illustrated in Fig. 3, where 
i t  is seen that a concentrated load ? is ap?lied to the model 
at a fixed point in space. In order to cause this point in 
space to remain fixed, it is convenient to introduce the new 
coordinates 

e = e + o t  (3) 1 t = t  1 



y use of such coordinates, it may be seen that the load 
p may  be applied at  the point e = 0,  which now corre- 1 
sponds to 3 fixed point in space. Eqs. 2 may be expressed 
in terms of these new coordinates. Omitting the details of 
such a transformation. one obtains from Eqs. 2 :  

9 * 

'TLr 

+ - Eh2 (aTV + 22" + z )  +-(@ E + 2) 4 
12  pa 0 paO 

(4) 
E kz = o  + p  h 

2 J + 2QiL" + n 9" - nIn+- 2 ( i  + n z y  

L 

Eqs. 5 take the form: 

z " + A z "  + A z + A  9' = A  1 2 3  4 
(sa) 

As$'' - A4$ - A Z'  = 0 
3 

The quantity + may be eliminated from Eqs. 5a. yielding 
a single sixth-order differential equation in  the radial d i -  
mensionless displacement "z." 

zvl + H 1 zIV + H2z" - H 3 z = -H4 ( 6 )  

where: 

A($" + z ' ) =  0 

P"0 T; 1 z2 
2 

(2a2 + a2J+ (1 - 2 w  -2 ) 2 

H2 = 
- + - - - 
U U  U2 [I+ (W2-1) j U2(%2 -1) where dots and primes now indicate differentiation with re- 

s?ect to t and 8 respectively. 

(7) 
1 1' - 2  

W e  are interested here in steady -state running conditions, 
in which case the transient terms of Eqs. 4 vanish, since they 

system, a system that is now fixed in space. 
of time dependent terms of Eqs. 4 results in a steady-state 

H3-- - 
U2 u2 u2 2 

( a  -1) 

2 2  
represent transients with respect to our 8 - t coordinate 

The omission 

equation that describes the geometry of the standing waves 
in the rotating shell with respect to the 8 

ordinate system. Such equations become 

1 1  
- 6 1 

H4- 2 - 2  
(w - 1) 

or fixed, co- 
1' A particular solution of Eq. 6 is 

-2 2 
-H4 w /a z =-= 

2 2 -2 2 
P -Hg ~ + ( i i / a )  +(l/a - ( w  /a 

a a ( 8) 

If the solution to the homogeneous equation formed from 

2 (5) Eq. 6 is assumed to b e  of the type z = Ae , then the qel 
u C 

characteristic equation for "q" is 

-2 
q 6 + H q  4 +H2q 2 - H 3 = 0  (9) 1 

a u  U u u  
This may be rewritten as 

where 2 
Q 3 +  H 1 Q + H 2 Q - H 3 q  0 (10) 

2 
where Q = q . 

Upon consideration of the form of H H , and H , it may 
1' 2 3 

In view of the fact that the coefficients of "z" and its be shown that the solutions of &. 10 consist of one negative 
root (Q ) and a pair of complex conjugate roots (Q derivatives are constant for constant 0. p, h, a and E, and 

0' 1 2 
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2 Q3j. The root Q leads to pure imaginary "q," while Q 

aRJ Q lead to a pair of complex conjugate "q"s. These 
1 

3 
roots are represented as 

1 = kib from Q 

= f ( a  + ib ) from Q 

q 1 - 2  1 

q3 - 4  2 2  2 

q5 - = f b2 - ib 2 ) from Q 3 

Thus the homogeneous solution of Eq. 6 is 

a t 3  
cos b 8 IC, 2 1 z = C  cosb  8 + C  s i n b e  + e  

c 1 1 1  2 11 

+ C s i n b e  3 
4 2 1  

-a e 
[ C ~ C O S  b e + c  s i n b  8 3 

(11) 

- 2  1 
2 1  6 2 1  

+ e  

It is instructive to view Eq. 11 first from the point of view 
of angles 8 lying between 0 and T . In this region of posi- 

t i ve  angle, one physically expects the effects of the point 
load to be relatively small a t  the upper surface of the shell 
denoted by 8 = II . This leads immediately to the realiza- 

tion that the constants C and C of Eq. 11 must be very 
3 4 

small. Funher. i f  we restrict attention primarily to the re- 
gion 8 small, then the effect of the small constants C and 

1 3 
C upon the overall solution must be  nearly negligible. 

By such a line of reasoning, one may separate out Eq. 11 

1 

1 

4 

into two portions, one valid for positive angles, or forward 
of the point of load application, and the second portionvalid 
aft of the point of load application, say, in the region 8 up 1 
to T .  This is expressed analytically in Eqs. 12a and 12b. 

For 0 < 8  < I T ,  
1 

z = C  cosb  8 + C s i n b  e 
1 1 11 2 11 

-a 8 
+ e  - 2 1  I C  cosb  8 + C  s i n b e  3 

5 2 1  6 9 1  

For - T  < 8 < 0, 
1 

z = C  cosb  0 + C s i n b  e 
2 1 1 1  2 1 1  

a e  
+ e '(c c o s b  e + C  s i n b  8 3 

3 2 1  4 2 1  

The constants appearing in Eqs. 12.3 and 12b may beeval- 
uated by using equations expressing the continuity of the 
dimensionless deflection and its derivatives across the locd 
point, as we l l  as the continuity of such quantities a t  the 
upper edge of the shell. These are given in Eqs. 13a. b, c, 
d, e, and f: 

z 1 ' ( 6 )  - z 2 ' ( T i ) = 0  (13b) 

z * (6)  - z 2 - ( q  = 2P (1%) 1 

( 13el z (+*-) - z  ( - T + )  = 0 
1 2 

z '(+n-) - z  9 ( - 7 r T )  = 0 ( 13f 
1 2 

where: 
6a 2p 

0 

bw' €31' 
P * =  

Note that Eq. 13a represents continuity of displacement 
at 8 = 0, Eq. 13b represents continuity of slo?e, Eq. 13c 

continuity of bending moment, and Eq. 13d indicates that .  
the s u m  of the shear forces is equal to the total applied 
force P. Eqs. 13e and 13f represent continuity of displace- 
ment and slope a t  the point 8 = II or -TF . Using these 

conditions. along with the solutions of Eqs. 12, the constants 

1 

1 

C C C , and C are found to be 
3' 4' 5 6 

P' 
2 2  

2a2(b2 +az)  
c3=c5  = 

and from Eqs. 13e and 13f 

c2 = 0 

-a T 2 e I sin (b,s ) 3 P* 
L 

'1= -2b a b sin(b T )  
1 2 2  1 

(143) 

Combining Eqs. 8, 12, and 14 gives finally solutions for 
the dimensionless deformation "2" due to a point load ap- 
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plied at 8 = 0 in the form 
1 

[sin (b2n) l  cos b 8 

-b a b sin(b n )  
1 2 2  1 

f -a2n 

I 

1 cos b e - - sin b 9 1% 2 1  b2 2 1  

J 
-2 2 w /a + - r < e  < o  

2 2 -2 2 1 
1 +&/a ) + ( P / u  ) - ( w  /a ) 

Nore that it is raiher difficult to interpret the influence 
of any single parameter upon the load deflection relation- 
ships as given by Eqs. 15. since almost all the quantities en- 
tering into these relaiionships are derived from the cubic 
Eq. 10. whose solutions are difficult to estimate in terms of 
:he iiipui parameters. However, the calculations that have 
been done seem to indicate the following results, given with 
the restriction that they may not represent general conclu- 
sions but are rather specific conclusions for the model used 
iarer on in the experimental studies: 

1. At a given value of load P*, the deflection "z" at the 
point 8 = 0 increases slightly as speed increases, since the 

quantity a in the denominator decreases more rapidly than 

the quantity (a + b ) mcreases. 

1 

2 2 .  
2 2  

2. The first term of Eq. i 5a  represents an undamped har- 
monic wave that travels completely around the circumfer- 
ence of rhe shell. The magnitude of this wave starts with a 
negative vaitie, but increases with speed so that it moves 
closer toward zero. It would be expected that a t  high speeds 
this magnitude would pass through zero and become a larger 
positive number. 

monic wave with maximum amplitude a t  the point of load 
application. The damping constant a decreases as the 

angular velocity increases, so that the wave becomes more 

3. The second term of Eq. i5a represents a damped har- 

2 

.. 
. .. 

! 

t I 

Fig. 4 - Experimental test model 

pronounced around a greater portion of the circumference 
of the shell. 
4. It wil l  be recognized that identical conclusions hold 

for E q .  15b as we l l  as Eq. 15a. 

EXPERIMENTAL MEASUREMENTS 

A model designed to provide a means of conducting sim- 
ple experiments verifying the applicability of Eqs. 15a and 
i5b was built, and is illustrated in Fig. 4, where the model 

elastic constants are k = 27 Ib/in. , h = 55 Ib-in.. a = 

3.121 X 

3 
ft/in. . The cylindrical shell used here is made of a thin 
rubber belt reinforced with twisted steel cords wrapped in 
the circumferential direction, and is merely the core of an 
ordinary timing belt. The elastic foundation consists of a 
sponge rubber insert bonded to the belt with silicone rubber. 
This elastic foundation is attached to a central hub ofpiexi- 
glass and aluminum. 

Table 1 gives load deflection data taken on ihe model 
in a stationary position and under a point load at e = 0. 

The test stand used for these experiments is illustrated in 
Fig. 5. It consists of a variable speed motor for controlling 
the angular velocity, a pivoted arm for applying the load, 
a ball bearing roller to serve as the loading point, and a load 

3 3  2 

-5 = 3.875 in., and ph = 1.51 x 10 slug- ' a. 

1 
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T3ble i - Poinr Load versus Deflection at 52 = 400 rprn 
m 

Load, Ib Deflecrion, in. 

0 
-1. 
-2. 
-3. 
-4. . 
-5. 
-6. 
-7. 
-8. 
-9 

0 
-0.021 
-0.041 
-0.061 
-0.079 
-0.095 
-0.119 
-0.145 
-0.171 
-0.198 

I 
VASIABLE SPEED 
0. C WTOR 

Fig. 5 - Schematic of test stand 

ceX for measuring magnitude of the applied load. A me- 
chanical dial gage records the deflection of this load. 

In collecting these data, the deflection measurements 
were made after the model was running at its prescribed 
angular velocity. This introduced a slight error when such 
measurements were compared with calculations done on the 
basis of E+. 15a and 15b. since these do not include the de- 
formation due to pure rotational effects. However, as can 
b e  seen from the calculations, the deformation d u e  to these 
effects was very small compared with the bending deforma- 
tion. 

An additional error was introduced because the roller 
representing the point load was a finite radius of curvature. 
i n i s  caused the contact to be over soine length, a situation 
rrot coniemplated in the analytical solution given by Eqs. 
15. Xowever, comparison between static load deflection 
data taken with the model loaded against a sharp edge and 
loaded against the roller used here seems to indicate that 
the differences betwcci; the two load deflections should be  
negiigible. 

\ 

-7-- .  

Typical load deflection data taken from the  rotating shell 

1 
I 
! 

K:27. EH3'55, a'~3121~10~' 
I OI 

1-1 P 
I&. 

Fig. 

0 .02 .04 .06 OB IO I2 I4 
(-1 W n. 

Fig. 6 - Load versus deflection, test model 1, C2 = 0 

I 
l 41.89 radfrec. 

0 02  04 06 08 IO I2 14 
1-1 W in. 

7 - Load vefsus deflection, test model 1, 0 = 400 rpm 7 - Load vefsus deflection, test model 1, 0 = 400 rpm 

(-)P 
Ibr 

* 8368 rodlrcc. 

i 

I -  

1-1 W in. 

Fig. 8 - Load versus deflection, test model 1, 0 = 800 rprn 

model are shown in Figs. 6-10. Load deflection curves pre- 
dicted from Eqs. 15 are also given for these same tests as 
solid lines on the figures. Note that, in  genera:, agreement 
seems to b e  reasonably good, since the elastic data for the 
model were obtained by separate measurements of its com-  
ponents before assembly. Calculations I I  ? d e  on the basis 
of Eqs. 15 seem to b e  somewhat less sliccessful a t  higher 
rotating speeds, and further work on these dynamic effects 
is probably necessary. 

In general, one would expect the deflection of such asys- 
tem to increase with speed under a constant load, bu1 as has 
been pointed out by Kenney in Ref. 8 ; .  -;- increjsing surface 
speed, one is moving up the left-hacd bcaiich of a simple 
resonance diagram corresponding to the equality of surface 
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* 

* 12566 rcd/sec. 

(-1 W in 

Fig. 9 - Load versus deflection, test model 1, Q = 1200 rpm 

speed with the wave propagation velocity for bending dis- 
turbances. That particular resonant condition should result, 
in lhe undamped case, in indefinitely large deflections per 
unit load so that in generai the deflections should be in- 
creasing. 
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