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SUMMARY AND INTRODUCTION

In this report we use a linear fractional transformation to obtain
rational approximations to the response of a physical system which is described
by a second order nonlinear differential equation which includes Duffing’s
equation as a special case,.

In Section I the general problem is stated and discussed. In Section
II we develop the recurrence relations which define the approximations. Sec-
tion III contains some examples and applications which exhibit the uses and
advantages of the rational approximations. A FORTRAN program and its operating
procedures are given in Section IV.
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I. THE DAMPED MASS SPRING OSCILLATCR EQUATION

Many physical problems, such as large amplitude vibration and
response of curved panels, can be resolved by obtaining the solution to the
nonlinear differential equation

y' +ay' + ofn(y) = Q(t), vy = y(t) , (1.1)

where h(y) is a cubic in y and Q(t) is an arbitrary forcing function.
The difficulties involved in computing the solutions to (1.1), to within a
desired degree of accuracy, are well known.

Techniques are available for deducing local and asymptotic solutions
(e.g., power series, perturbation, Fourier series, etc.) but these schemes are
of limited use if reasonably high accuracy is desired. Further, these methods,
in general, require much algebraic manipulation which can be tedious and
lengthy.

Numerical integration can be used effectively only when one has ac-
curate information on the behavior of the solution. For example, without
knowledge as to the location of poles of the solution to (l.1), numericel in-
tegration can be disastrous. A Taylor's series expansion has this same draw-
back. Since the existence of poles of solutions to nonlinear differential
equations is the rule, rather than the exception, a method for obtaining,
simultaneously, both the solution and information about the location of poles
is very desirable.

Now rational approximations are useful for numerical evaluation of
the solutions. But more important, they provide a valuable and effective
technique for deducing global behavior of the solutions including zeros and
poles.

Some work has been done in this area, see [l] and [2]. In this
report, we construct rational approximations to a second order nonlinear dif-
ferential equation which includes as special cases (1.1), Ricatti's equation
and Abel's equation.




II. THE GENERALIZED SECOND ORDER RICATTI EQUATION

In the present study we generalize (1.1) by considering the equation
(A tB y)y" + (C,*D. y)y' - 2B,( ')2 FE, +Fy+ Gy +Hy =0
o Po¥ Y o “oY N T eP\Y o T Fo¥ T Ho¥ oy TP
¥y(0) =y, y'(0) =B, , ab, # 0 , (2.1)

where each of the coefficients is expandable in a Taylor's series about x = O,
and A (0) = Bo(0) = Co(0) = Du(0) = Go(0) = Hy(0) = 0 . In particular,
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We further assume that the solution of (2.1) has a power series expansion of
the form

k
y:qo'*' Z ka . (2'3)
k=1




. Note that (2.2) and (2.3) together with (2.1) uniquely determine ¢, @and
Bl . We also require that the coefficients in (2.3) have the property that

Co Bl sesera Bp
By Bo  «eeeen Bpn

4, =1 . £0, p=0,1,2,.0. ,

By By - eeeee Bap

and

By By eeeees Boy
Bp Bz eeeeer Bpip

optl =] . 1#0, p=012,... . (2.4)
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Then y has a continued fraction expansion of the form

1+, . (2.5)

For further information on continued fractions, see Wall [3].




A transformation of the type

y = m(x) + n(x)y*
p(x) + a(x)y*

(2.6)

wvhere m, n, p and g are polynomials in x may be necessary to bring the
differential equation into the required form. We suppose that this has al-
ready been done. See [4] for the results of applying transformations of this
type to (2.1). We give an example in Section III.

The even approximants of (2.5) are the main diagonal Pade approxi-
mations which have the following properties. ILet

n
> Pn,kxk
k=0

P,
n L
= = A 2.7
A (2.7)
k
Z 0—‘n, k_x
k=0

be the nth order main diagonal Pade’ approximant. If Q, is formally di-
vided into Pp, , the resulting power series agrees with the power series solu-

tion to (2.1) for the first (2n+l) terms. The polynomials P, and Q, both
satisfy the relation :

+d
1]

2
n [l * (@2n-l+c2n)g]Pn—l - dpp-10on-2% Fpo2 >

o =Gy, Py = a0(1+a2x) » @, =1 and Q =1+ (al+c2)x . (2.8)

Thus, rational approximations to the solution of (2.1) are immediately forth-

coming if the values ¢ »Cp sz, ee e CBD be computed. We compute these values
by utilizing a linear fractional transformation. ILet

-1
Y =95, ¥n = op(l¥xypsy) ©, nz20 . (2.9)




Repeated application of (2.9) to (2.1) and division by anX at each step
yields

2
(A e1*Buaa¥n+1 Wnr1 * (CpaptDps1¥n+ Wasr = 2Bpe1(Whe1) + Epeg

2 3 ~
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- -1 -1
Gpep = @X A, - C, + 3o TXE_ + XF, ,
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_ =12
oy = ooix%E . (2.11)

It is easily shown that

Ap4q(0) =B 4(0) = C_41(0) = D_41(0) = G ,1(0) = H ,,(0) =0

and

En1(0) 0 , Fpyy(0) £0 . (2.12)

It follows that after setting x = O in (2.10), one gets



Fn+l(0)yn+l(0) = - En+l(o) }]

or
En+l(0)

Gy = - (2.13)
ntl Fn+l(o)

and this value is well defined. Computaticn of the Pade approximations (2.7)
by using (2.13) is now easily accomplished.

It is evident that, for realistic computer application, the functions
appearing in (2.11) must be polynomials. Accurate polynomial expansions are
available for the usual transcendental functions. The validity of the rational
approximations to the solution of (2.1) are limited by the range of accuracy
of these polyncmial approximations. This is not serious for in practice one
computes approximations for a restricted range and then obtains approximations
over an adjacent range by the method of analytic continuation. Ve briefly
discuss this technique.

Suppose a rational approximation y_(t) is obtained to the solution
of (2.1) vhich is valid for ty <t <ty . Thé transformation t = r + t; is
then employed to convert (2.1) into a new initial value problem with the ini-
tial conditions yh,o(tl) and Yﬁ,o(tl) . A nev rational approximation,

Yn,1 > is obtained which is valid for t; <t <ty . Repetition of this proc-
ess yields a sequence of rational approximations Ya .(t) , valid over the
interval tj-l £t < tj . This can be continued until the entire desired range
is covered.

Convergence of the rational approximations (2.7), in general, is
still an unresolved problem and warrants further investigation. In the im-
portant special case of the first order Ricatti equation convergence proofs
are available for a number of examples, see [1] and [5].

A very reliable estimate of the error incurred by the n*®  order
approximation is easily obtained by comparing the ntl  order approximation
with the (n+1)S' order approximation (see the third example in Section I11).

In the cases investigated, the magnitude of the error of the nth approximent,
Yo » is the same order of magnitude of the difference, I+l = Ip - This method
of error analysis is quite common in the stepwise integration of differential
equations.

It should be noted that once rational approximations have been con-
structed for y , like approximations for y' and y" are easily obtained by
differentiation.




III. EXAMPLES AND APPLICATIONS

In this section we exhibit the varied uses of the approximations
developed in Section II. In the first two examples we construct raticnal ap-
proximations to Painleve's first and second transcendents. These approxima-
tions are accurate for a surprisingly wide range of the variable. At the same
time they effectively predict the poles of the solutions. The third example
shows the use of the rational approximations and the idea of analytic continu-
ation to compute functional values of the solution of Duffing's equation.

Painleve's first and second transcendents are defined by the differ-
ential equations

u" - 6u® - xx =0, u(0) =1, u'(0)=0 , (3.1)
and

v - 2v0 - xv - §

0, v(0)=1, v'(0) =0 , (3.2)

respectively. In what follows, A = § = 1.0 .

To cast (3.1) and (3.2) into the required form of (2.1), we set

1 + 3x°0

[
]

and

1 + 1.5%°¥ (3.3)

<
"

in which case (3.1) and (3.2) become

30" + 1exi’ + (6-36x° ) - 54x™T - (6%x) = 0, G(0) =1 (3.4)

and

5T + LOKT + (5-18%- 60 JF - 27x°F - 13.5x°%°
- (5t4x) =0, v(0) =1 . (3.5)

- 8 -




Now u has a pole of the second order at x = 1.2067 and v has a simple
pole at x = 1.1577 . This behavior manifests itself in Tables III.l and

III.2 below where &y &and Vg are the sixth order main diagonal Pad€ approxi-
mations to U and ¥V obtained using the algorithm of Section II. We have

g = 1+ 3x2ﬁ6
and

ve = 1 + 1.5%°% (3.6)

6 . 6 3 .
TABILE ITI.1 TABIE III.2

X u(x) ug (x) x v(x) ve(x)
0.0 1.0000 1.0000 0.0 1.0000 1.0000
0.1 1.0305 1.0305 0.1 1.0152 1.0152
0.2 1l.1264 1l.1264 0.2 1.0626 1.0626
0.3 1.3015 1.3015 0.3 1.1464 1.1464
0.4 1.5831 1.5831 0.4 1.2742 1l.2742
0.5 2.0228 2.0228 0.5 1.4592 1.4592
0.6 2.7212 2.7212 0.6 1.7254 1.7254
0.7 3.8909 3.8909 0.7 2.1184 2.1184
0.8 6.0383 6.0383 0.8 2.7369 2.7369
0.9 10.6226 10.6223 0.9 3.8344 3.8343
1.0 23.3936 23,3860 1.0 6.3110 6.3104
1.1 87.7732 87.376%

The values of u(x) and v(x) were taken from a paper by Simon [6] who used
(3.1) and (3.2) as examples in a study of a numerical integration technique
for the solution of initial value problems in ordinary differential equationms.

The poles of smallest magnitude of wug and Vg are 1.2051%10.0134
and 1.1578 , respectively. These values are deduced from the rational approxi-
mations which are very accurate near x = 0.0 . If more accurate estimation
of the poles are desired, the method of analytic continuation can be used to
obtain approximations in a region closer to the true poles.




For our third example we develop approximations to the solution of
Duffing's equation (with constant coefficients)

y' + Ay' + By + Cy3 = D cos(wt+p) ,

A>0, y(0)=ay, ¥'(0) = By - (3.7)

This equation describes a damped mass-spring system with control proportional
to By + Cy° and driven by the force D cos(wt+p) .

If C 1is large, the usual perturbation scheme is not adequate. The
validity of our rational approximations does not depend on the relative magni-
tude of C , and in ocur example we purposely choose a large value for C . We
also illustrate the method of extending the range of validity of the rational
approximations by analytic continuation.

In (3.7) let A=0.2,B=5.0, C
fo =@ = 0.0 . The equation becomes

10.0 , D = gy = 1.0, and

y" + 0.2y' + 5y + 10y° = cos wt , y(0) = 1.0, y'(0) = 0.0 .  (3.8)

To cast this equation in the required form, set

=1- 7t . (3.9)

!
|

Then (3.8) becomes
Ttov" + (28t+1.4t° W' + (14+2.8t+245t° v - 1740t5°2

+ 3430t8v° - 15 + cos wt = 0, v(0) = 1.0 . (3.10)

In (3.10) we replace cos wt by a polynomial approximation which
is accurate to five decimals for O < wt s 1 . Using our technique to obtain

-lO..




rational approximations to the solution of the resulting equation, we con-
struct rational approximations v, to v and y, to y , where

Yo =1 - 7t2vn . (3.11)

It is clear that the range of validity of our approximations is limited to the
range of validity of the approximation to cos wt . For purposes of illus-
tration, we consider two cases, w =0 and w=1.

In Tables III.3 and III.4 the sixth order approximations to y for
w=0 and w =1 are listed. Also given are values determined by stepwise
numerical integration which we call the true values. As is evident, the
rational approximations are quite accurate.

Since the accuracy of our approximations decreases as t increases,
ve employed the analytic contlnuation technique for the w = 1 case in order
to compute accurate values for 0.4 <t < 1.0 . Thus the rational approxima-
tions were computed for 0.0 =t < 0.4 , and then the transformation
t = ¢ + 0.4 was utilized to comvert (3.10) into a new initial value probtlem.
Then rational approximations were computed for r = 0.0(0.04)0.6 , i.e.,

t = 0.4(0.04)1L.0 . Note that the approximations can be used to tabulate zeros
of the solution and hence may be used to obtain an accurate estimate of periods
of periodic solutions.

The approximents y,, yz, ¥y, and yg5 were also computed but, for
the sake of brevity, these are not given here.

We do, however, illustrate our remarks in Section II concerning the
error involved in these approximations. For the case w =1, t = 0.8,
y(0.8) = - 0.68%1 , y,(0.8) = - 0.69119 and y5(0.8) = - 0.68966 . Note
that the true error incurred by y4(0.8) is y(0.8) - y4(0.8) = 0.00158 ,
vhereas y;(0.8) - ¥4(0.8) = 0.00153 , so that Yp+1(t) - y,(t) does indeed
give an accurate estimation of the error of the nth  approximation.

- 11 -




TABIE IiI.3

@w = 0.0
t x(t) ve(t)
0.00 1.00000 1.00000
0.C4 0.98888 0.98888
0.08 0.95625 0.95625
0.12 0.90399 0.90399
0.16 0.83%481 0.83%481
0.20 0.75186 0.75186
0.24 0.65838 0.65838
0.28 0.55742 0.5574.2
0.32 0.45162 0.45162
0.36 0.34315 0.34315
0.40 0.23373 0.23373
0.44 0.12469 0.12469
0.48 0.01708 0.01708
0.52 -0.08822 -0.08821
0.56 -0.19037 -0.19033
0.60 ~-0.28848 -0.28837
0.64 -0.38151 -0.38127
0.68 -0.46826 -0.46774
0.72 -0.54734 -0.54628
0.76 ~0.61722 -0.61516
0.80 -0.67629 -0.65482
0.84 ~-0.72298 -0.71633
0.88 -0.75596 -0.74481
0.92 ~-0.77421 -0.75632
0.96 -0.77720 -0,77346
1.00 -0.76495 ~-0.75084

* Analytic continuation begins here.

TABLE III.4
w=121.0

t ¥(t) Ye(t)

0.00 1. 00000 1.00000
0.04 0.98868 0.98888
0.08 0.95625 0.95625
0.12 0.90398 0.90398
0.16 0.83478 0.83478
0.20 0.75179 0.75179
0.24 0.65825 0.65825
0.28 0.55718 0.55718
0.32 0.45121 0.45121
0.36 0.34251 0.34251
0.40 0.23276 0.23276
0.44 0.12328 0.12328
0.48 0. 01509 0.01509
0.52 -0. 09095 -0.09095
0.56 -0.19402 -0.194C2
0.60 -0.29324 -0.29324
0.64 -0.38760 -0.38760
0.68 -0.47589 -0.47589
0.72 -0.55672 -0.55672
0.76 -0.62851 -0.62851
0.80 -0.68961 -0.68961
0.84 -0.73840 -0.73840
0.88 -0.77347 -0.77348
0.92 -0.79375 ~0.79379
0.96 -0.79865 -0.79876
1.00 -0.78817 -0.78841




IV. FORTRAN PRCGRAM FOR CQMPUTATION OF RATIONAL APPRCXIMATIONS

Here we give a listing of a FORTRAN program used to compute the
rational approximations developed in Section II. We also give a description
of operating procedures, input and output. We assume that the differential
equation is already in the desired form, see Egs. (2.1) - (2.4). We assume
also that the coefficients in (2.1) are polynomials.

Since two particular transformations occur frequently in the develop-
ment of rational approximations to the solution of (2.1), provisions were made
in the program for the incorporation of these transformations into the final
approximations. We briefly discuss these transformations and the way in which
the program accommodates them.

Type 1

Suppose k transformations of the type y, = qn(l+xyn+l)'l are
needed to bring (2.1) into the required form. The result of the transforma-
tions is a differential equation of type (2.1) in the independent variable
Yg+1, Where @ ,89,...,& 7 and o @are determined. The program accepts
the values Qs seee,0y 8nd the coefficients of the equation in ¥ com-
putes the main diagonal Pade’ approximations yk,n to yx and then
computes the following approximation ?h to ¥y,

%o
7, = : (£.1)
G«lx

Type II

If y(0) # 0 and y'(0) = 0, a transformation of the form
y = & + bx“v is needed (see (3.3)) to bring the equation into the required
form. The program accepts Sl =a = y(0), S2 = b = y"(0)/2 , computes the
main diagonal Pade approximations v, to v and then computes y, = a + bxzvn.
If this transformation is not needed, no values are entered for S1 and 82 .

In some cases, combinations of the two types of transformations dis-
cussed above are needed.

- 13 -



. Description of Input in Crder

M

D+1 , D being the degree of highest order polynomial in (2.1).

N = 2L+l where L is desired order of main diagonal Pade’
approximations.

K =k where Xk 1is defined by (4.1).

Sl =a, 82 =b where a and b are defined in the Type II
transformation. (No entry if no transformation is made. )

XI =x5, XF =% , 2= Xp47 - Xy = 4x where the evaluation of the
main diagonal Pad€ approximations are desired for x = xo (8% )%y,

A(J), B(J),....,H(J) are the coefficients appearing in (2.2), i.e.,
A(T) = 8410 § = 1,2,...,M , ete.

ALPH(J) = @5.1 » § =1,2,...,k where k is defined in (¢.1).

Description of Output in Order

1. Coefficients of polynomials in (2.1).
2. VL FERRPL T R where N and k are defined above.

3. Order of Padé , x, Yu(x) , and yl(x) for n =1,2,...,N and
X = xo(Ax)xn .

We conclude this section with a listing of the FCRTRAN program.

- 14 -




PImbEaSTUN ACAD) s B4 )3 Cl40) sy D(40) s FLA40) s F{40) 3G 140 )91 (40)yAL(G0),8
11{40),01040)501040)yEL(40)3F1(40)461(40) 4HL{40)4ALPH(30)
BIMENSTON TO15)sTI{16)3T2(16)43R(16)4R1(16),R22(16)
CUhenigdn Ayfsv(;?{)!F1FV(;1H9/X11H17C1’019El,Fl,Gl7H].7ALPH,|‘I,N,X1XF,Z,T,T
11sT29RyR1LyRZ
3 L0 1y I=14,640
10 H1(I)=0.
by 12 I=1,30
12 ALPHIT)=0.
READ 1yilyivgKyS1yS2eXT s XFy?Z
1 FORALT(31442219.0/(3E19.,01))
RFEAD 1094 {Al(T)yT=1yM)
PRIMT 1014 (A(T)yI=1,410)
RFAD 109, (B(I)yT=1yM)

PRINT 102, (B8(I),I=1,M)
READ 109,{C(1),1=1,yM)
PRINT 1034 {ClI)yI=1,M)
READ 1094(D(I),1=1,4M)
PRINT 1044(D(1)yI=1,M)
READ 1094 (F{I)yI=1,M}
PRINT 1054 (E(I)yI=1,M)
READ 109,{(F(1),I=1,4M)
PRINT 106y (F(I),I=1yM)
READ 109,{(G(I1),I=1,M)
PRINT 1079(G(I)yI=14M)
READ 109, (H(I),I=1yM)
PRINT 1089 (H(I)yI=1ym)

101  FORMAT (5Xy14HA COEFFICIENTS/(6F19,9)//)

102  FORMAT(5X4s14HB CUEFFICIENTS/(6F19.9)//)

103 FORMAT (5Xy14HC COE~FICIENTS/(6F19.9)//)

104 FORMAT(5X414H0 COEFFICIENTS/(6F19.9)//)

105 FORMAT (5Xy14HE COE~FICIENTS/(6F19.9)//)

106 FORMAT{5X,14Hr CDEFFICIENTS/(6F19.9)//)

107 FORMAT (5X,14HG COEFFICIENTS/(6F19.9)//)

108 FORMAT(5Xy14HH COEFFICIENTS/(6F19.9)//)

109 FORMAT (4E19.0)
ALPH(1)=-2(1}/F(1)
DO 50 I=14N
ALP=ALPHI(I)

=M+{I-1)/2+3

D0 18 J=1,tL
ALUJI=A0Y)
Bl1(Ji=B(J)
Cltyl)=C(J)
CliJdi=D(J)}
E1(J)=E()
FL{J)=r(J)
GliJl=G(J)

18 HI(D)=H{J)
A(l)==A1(1)-ALP=BL1(1)
Cl1)=-2.%({A1(2)+ALP*BL1(2))-C1l(1}=ALP%D1(1)
D(1)=2.+A1{1)
E(1)=E1(2)/ALP+FL{2)+ALP=*GL(2)+ALP*ALP=H1(2)
FOL)==(CL(2)+ALP#D1(2))4+3e%E1( 1) JALP+2,#F1 (1) +ALP*G1(1)
Gl1l)=24%A1(2)-C1(1)
A{2)=-A1(2)~ALP%B1(2)
B(2)=-A1(1)
Cl2)=-2e#(A1(3)+ALP%#BL1(3))-CLl(2)-A_P%D1(2)
DE2)=2.%A1(2)-C1(1)
E(2)=E1(3)/ALP+F1(3)+AtLP#GL(3)+ALP*ALP=*H1(3)
F(2)==(Cl(3)+ALP=D1(3)}+3.#EL(2)/ALP+2.#F1 (2)+ALP=G1(2)
G2)=2,%#A1(3)-CLl(2)+3*EL(1)/ALP+F1(1])
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24
5()

52

53

57

58

61

59

60

62

PO 24 J=3, 1.

ACI)I==A1(J)=ALP=B1(J)

plJ)l==-al(J-1)
ClU)==2e#{ALIJ+ 1V +ALPERL(J+1) ) =CLlJ)=ALP2DL (J)
NDEJY=ZexAL(I)-CLLI-1)

ECI)I=E10J+ L) ZALP+FL(J+ 1) +ALP*GLIJ+1 ) +AL P2 ALP*HL (J+1)
FUJ)=={CLOJ+1 I +ALP#DLLU+1) ) +34#ELL UV /ALP+2 o FL{J)+ALP#G1 ()
GUJI)=2e# A 0I+1)=CHJ)+3.#E1{J=1)/A_P+FL(J~1)
()=l (J=2)/ALP

ALPH(I+1)==E(1)/F (1}

N=N+1

Y =K

I={Y )94 454,52

PO 53 I=1,N

L=N+1-1

J=K+L

ALPH{J)=ALPHI(L)

READ 74 (ALPH(I)sI1=1,4K)

FORMAT (4E19,.0)

X=X1I

PRINT 5 ,4ALPH

FORMAT (38X 43HALPHAS FOR CONTIMUED FRACTION APPROXIMATIOM// (681941
11y /)

PRINT 2

FORMAT (5X 3 13HURDER OF PADE, 10Xy 8HARGUMENT 325Xy 13HAPPKUXIMATIAN, QY
12 1IHPERIVATIVE (OF APPROX.)

Pl=ALPH(1)

P2=ALPH(Y)

Ql=le+ALPH(2) %X

02=1.0

PlP=0,

P2P=0.

QIP=ALPH(2)

G2P=0.

J=N+K

DO 60 I=3,J

P=Pl+ALPH(I)®X%pP2

O=01+ALPH(I ) #X*Q2

PP=P1P+P2Z2P#ALPH(I )#X+ALPH(T)}*P2
OP=Q1P+Q02P*ALPH({TI)#X+ALPH(I)*02

KORD=1/2

IF(2#KORD=1)57459,459

IF(S1)58455,58

APPRUX=P/Q

APXPRI=(Q#PP=P#QP ) /{Q%Q)

GO Tu 61

APPRUX=S1+52:#X#X#P/Q

APXPRI=2.0#S2#X2P/Q + (S2#X#X#(Q#PP=-P#QP) )/ (Q#0Q)
PRINT 6yKURDyX s APPROXyAPXPRI

FORMAT (10X 9129 7X9E19e1192(19XyE19.11))

pP2=P1

P1=P

pP2P=pP1P

P1P=pPP

QW2=01

Q2P=41lP

QLP=QP

Q1=Q

IF{X=XF)62,8,8

X=X+Z

GO TU 56

END
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