

NUMERICAL RESIDUAL PERTURBATION SOLUTION APPLIED TO AN EARTH SATELLITE INCLUDING LUNISOLAR EFFECTS

SEPTEMBER 1965

GPO PRICE S \qquad
CFSTI PRICE (S) S \qquad

Hard copy (HC) \qquad
Microfiche (MF) \qquad
ff 653 July ${ }^{\circ} \mathrm{E}$

Prepared under Contract No. NASw-901 by Douglas Aircraft Company, Inc. Missile and Space Systems Division

Santa Monica, California
for
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

NUMERICAL RESIDUAL PERTURBATION SOLUTION APPLIED TO AN EARTH SATELLITE INCLUDING LUNI-SOLAR EFFECTS

SEPTEMBER 1965

By
J.T. Martin
M.C. Eckstein

Prepared under Contract No. NASw-901
by Douglas Aircraft Company, Inc.
Missile and Space Systems Division
Santa Monica, California
for

Abstract

The purpose of this report is to demonstrate a new method of numerical residual perturbation solution as applied to the problem of an earth satellite including luni-solar effects. Cowell demonstrated a method of numerically solving the total differential equations of motion of an orbiting object. The variation of parameters and Encke's methods take advantage of the known analytic solution to the two-body problem and numerically handle only the perturbations to the orbit. This report demonstrates the use of an analytic series perturbation solution of the oblateness problem as a reference orbit (rather then using conics as a reference) with numerical solution of the residual perturbation equations of motion including neglected higher order effects as well as perturbations not included in the analytic model. Results obtained from this demonstration program were compared with both single precision and double precision Cowell programs, and showed significant accuracy improvements over the single precision program as well as reducing computing time by a factor of four over the double precision program. Further refinements were suggested in order to obtain the maximum benefit from the technique for a production program. This work was supported by contract NASw-901.

CONTENTS

Section 1 INTRODUCTION 1
Section 2 SYMBOLS 3
Section 3 SOUFCES OF EQUATIONS 33
3.1 Formulation of the Problem and the Approximate Solution 33
3.2 Derivatives Required for the Generalized Encke Solution 46
3.3 Additional Developments 53
Section 4 BLOCK FLOW CHART 67
Section 5 EQUATIONS IN ORDER OF SOLUTION, DETAIL FLOW CHARTS, AND PROGRAM LISTING 69
5.1 Main Program 69
5.2 Subroutine CONST 79
5.3 Subroutine APSOL 92
5.4 Subroutine EXPERT 106
5.5 Subroutine ENCKE 111
5.6 Subroutine RKTOM 119
5.7 Function Subprogram ELIPE 133
5.8 Function Subprogram ELI 137
5.9 Function Subprogram ELIF 141
5.10 Subroutine GPOT 145
5.11 Function Subprogram QUAD1 152
5.12 Function Subprogram QUAD2 156
5.13 Modes of Input and Output 160
Section 6 DISCUSSION OF RESULTS 165
Section 7 REFERENCES 175

Section 1

INTRODUCTION

This program was developed primarily as a research program to investigate the practicality of a generalized Encke-type solution to the motion of an earth satellite, in satisfaction of portions of research contract NASw-901. The program uses an approximate analytic solution of the oblateness problem (ref. 1) for a reference orbit, and numerically integrates using the Runge-Kutta method to find the contribution of the neglected higher-order analytic terms as well as other perturbations not included in the analytical model. The analytical model considers only the perturbations of the second and fourth zonal harmonics of the potential. The program is designed to consider additional zonal, tesseral, and sectorial harmonics up to and including the coefficients C_{66} and S_{66}, and to also consider lunar and solar perturbations if desired.

Section 2

SYMBOLS

NOTE: In the definition of symbols, the numbers in parentheses represent the numbers assigned to equations throughout the rest of the report; the names or letters in parentheses represent the titles of specific subroutines.

A Symbol for $\frac{p_{a}}{\cos i_{00}}$, initial total angular momentum (nondimensional), or array of dimension 3 in subroutine EXPERT to store the sum of the sun and moon accelerations (nondimensional) or FORTRAN floating point variable for $L=N-1$ in subroutine GPOT

A
$\frac{\mathrm{p}}{\cos \mathrm{i}}=$ total angular momentum at any time (non-dimensional), (FORTRAN symbol Al)

Acceleration in local geocentric south direction (nondimensional with respect to g),(FORTRAN symbol AF)
$\frac{\cos 2 w-\cos 2 \omega}{\bar{S}_{0}+\operatorname{sign}\left(\bar{S}_{0}\right) \sqrt{\bar{\kappa}_{0}-k_{1} \cos 2 \omega}}, \quad$ (APSOL) $\frac{\cos ^{8} i_{0 O}}{2 p^{8}}, \quad(\operatorname{CONST})$

Acceleration in local geocentric east direction (nondimensional with respect to g), (FORTRAN symbol AG)

Acceleration outward along the local geocentric vertical (nondimensional with respect to g),(FORTRAN symbol AH)
er

AC

ACC

ACS $\quad \frac{\cos ^{5} i_{00} \sin i_{0 O}}{2 p^{5}}, \quad$ (CONST)

ACSS

ACS2

ACS32

AC32

AD
Array of derivatives of the approximate solutions in subroutine APSOL.

$$
\begin{aligned}
& A D(1)=\frac{d p_{a}}{d \phi}=0, A D(2)=\frac{d \Omega_{a}}{d \phi}, A D(3)=\frac{d i_{a}}{d \phi}, A D(4)=\frac{d q_{a}}{d \phi}, \\
& A D(5)=H, A D(6)=\frac{d t_{a}}{d \phi}
\end{aligned}
$$

AF
AFI

AF2

a_{g}
${ }^{a_{81}}$
AG
a

AI
AH

AH

AN

AN

AMP

AM 4

AVG

ANG2
fOR
The J_{2} zonal coefficient of the potential, (MAIN)
The J_{4} zonal coefficient of the potential, (MAIN)
$\sqrt{\frac{\bar{\kappa}_{0}-k_{1}}{\bar{k}_{0}+\kappa_{1}}}$ or $\sqrt{\frac{k_{1}-\bar{k}_{0}}{\bar{\kappa}_{0}+k_{1}}}$ depending on perigee case number IC,
(COST)
$\frac{\cos ^{4} i_{00}}{p^{4}}, \quad$ (CONST)
$\sqrt{2 k_{1}}\left(\bar{\phi}_{T}-\bar{\phi}_{0}\right)$ or $\sqrt{2 k_{1}} \phi_{T}$, auxiliary angle to find ω
$\phi_{\mathrm{T}}=$ total ϕ (not modded), (APSOL)
$\frac{\phi_{1}-W}{2}=$ angle to determine quadrant of TANG in subroutine CONST (rad) or $=\frac{\phi-\omega}{2}=$ angle to determine quadrant of TANG in subroutine APSOL

Array of $\frac{J_{n}}{\underline{r}^{n+2}}$ in subroutine GPOT. AOR(9) maximum

Array of approximate solutions in subroutine $\operatorname{APSOL} . \quad \operatorname{AS}(1)=p_{a}$, $\operatorname{AS}(2)=\Omega_{a}, \quad \operatorname{AS}(3)=i_{a}, \quad \operatorname{AS}(4)=q_{a}, \quad \operatorname{AS}(5)=u_{a}$, $\operatorname{AS}(6)=t_{a}$

AU2
$\frac{A_{1}}{u^{2}}, \quad$ (ENCKE)
Al $\quad A_{1}=\frac{p}{\cos i}, \quad$ (ENCKE)

A3
$\frac{p^{3}}{\cos ^{3} i_{00}}, \quad(\operatorname{const})$

A3E

A6
b

B

B

BEW

B2E2

B2E

B2S

Angle measured from ascending node to satellite's meridian along the equator (rad), (104). FORTRAN symbol B, (EXPERT)
b, (EXPERT)

M, (GPOT)

Integer multiples of the longitude, (GPOT)
$2 \varepsilon^{2} B_{2}^{*}, \quad(\operatorname{CONST})$
$\varepsilon^{2} B_{2}^{*}, \quad(\operatorname{CONST})$
$B_{2}^{*}, \quad(21)$

B2SP	$B_{2}^{\prime \prime},(20)$
C	$c=$ ratio of $\frac{D}{J^{2}}$ where D and J are coefficients of the second and first zonals of the potential, respectively. $c \simeq 4 / 7$
C	Two-dimensional array (6×6) for the $C_{m m}$, (GPOT)
$C_{n m}$	Coefficients for computation of tesserals and sectorials of the earth's potential, used in subroutine GPOT
CA	Array of reduced moduli k obtained by decreasing Landen transformation in subprogram ELIPE
CAP	Array of reduced modified moduli k^{\prime} obtained by descending Landen transformation in subprogram ELIPE $k^{\prime}=\sqrt{1-k^{2}}$
CAS	$\mathbf{k}_{\text {ir }}$ - SNVE, (ELIF)
CAI	$k=$ dummy variable for the modulus, (ELIPE)
CB	$\cos \mathrm{b}$, (EXPERT)
CBE	Array of $\cos (\mathrm{n}$ - EW) in subroutine GPOT. CBE (6) maximum
CC	Two-dimensional array (6×6) of coefficients used in computation of complete potential, (GPOT)
CC7	(3-7 $\cos ^{2} \theta$), (ENCKE)
CHII	Intermediate angle needed to find CHIlS

CHIIS

CHI2

CHI2S

CI

CI2

CI3

CI31

CI4

CIOC

CMAX

CMC

CN

COEFF

COSP

CP

CPMW
$x_{1}^{*}=$ angle used to find $\bar{\phi}_{0}$ in subroutine CONST, case 1

Intermediate angle to find CHI2S
$x_{2}=$ angle used to find $\bar{\phi}_{0}$ in subroutine CONST, case 3
$\cos i$ in subroutine ENCKE, or $\cos i_{\infty}$ in subroutine CONST
$\cos ^{2} i$ in subroutine ENCKE, or $\cos ^{2} i_{00}$ in subroutine CONST
$\cos ^{3}{ }_{i}$ in subroutine ENCKE
$1-3 \cos ^{2} i_{00}$ in subroutine CONST
$\cos ^{4} i$ in subroutine ENCKE, or $\cos ^{4} i_{00}$ in subroutine CONST
$\cos \mathrm{i}_{\mathrm{OC}},(\mathrm{APSOL})$

Maximum value of the absolute value of the Runge-Kutta increments over two complete steps.
$\cos 2 \omega-\cos 2 \omega,(A P S O L)$

Elliptic function cn , (APSOL)

Array of coefficients for the potential. Contains $J_{0} \rightarrow J_{8}$, $\mathrm{C}_{1,1} \rightarrow \mathrm{C}_{6,6}, \mathrm{~S}_{1,1} \rightarrow \mathrm{~S}_{6,6}$, N 1 and N 2
$\cos (\operatorname{PHIS}(I-1)),(E L I)$
$\cos \phi$
$\cos \left(\phi_{i}-w\right),(\operatorname{CONST})$
$\cos (\phi-\omega),(A P S O L)$

```
CPPW }\operatorname{cos}(\phi+\omega),(APSOL
CQ
CRD
    "Critical divisor term"
    1-5 cos}\mp@subsup{}{}{2}\mp@subsup{i}{00}{},(CONST
CS
CT
CT2
    \mp@subsup{\operatorname{cos}}{}{2}0,(ENCKE)
CVE
    cos (VEO), (ELIF)
CW
    cos w, (CONST)
CXW
    \operatorname{cos}\omega
    \mp@subsup{\operatorname{cos}}{}{2}}\mp@subsup{i}{OC}{\prime},(APSOL
C2P
cos2\phi
C2S
    C*, (23)
C2SP C C2',(22)
C2E
C2PMW
C2T
cos20,(ENCKE)
```


Array of three coefficients used to compute the total energy

DENOM
$p^{2} u^{2} \sin ^{2} i \sin \theta+\cos ^{4} i \cos \theta F,(E N C K E)$

DFDPHI
$\frac{\mathrm{dF}}{\mathrm{d} \phi}$, (ENCKE)

DIDPHI
$\frac{d i}{d \phi}$, (ENCKE)

DMI
D-1, (GPOT)

DODPHI
$\frac{d \Omega}{d \phi}$, (ENCKE)

DOMEO

DOME12
$\frac{1}{\varepsilon^{1 / 2}} \frac{d \Omega_{00}}{d \phi}$, (APSOL)
$\frac{d_{0} 1 / 2}{d \phi},(A P S O L)$

DOME 32
$\frac{d \Omega 3 / 2}{d \phi}$, (APSOL)

DP
Array of coefficients in subroutine GPOT, $\mathrm{DP}(10)$

DPDPHI
$\frac{d p}{d \phi}$, (ENCKE)

DPH

DPHI

DPHIDT
Test ratio to determine when the limit of $\frac{\phi_{n}}{2^{n}}$ has been reached (ELI)
$\Delta \phi$ used to find approximation for $\frac{d}{d \phi}\left(\frac{d \phi}{d t}\right)$, (ENCKE)
$\frac{d \phi}{d t}$, (ENCKE)

DQO
$\frac{d q_{o}}{d \phi},(A P S O L)$

DQ1
$\frac{\varepsilon d q_{1}}{d \phi},($ APSOL $)$

DSIOC
$\frac{\mathrm{di}_{\mathrm{OC}}}{\mathrm{d} \phi} \sin \mathrm{i}_{\mathrm{OC}}$ (APSOL)

DT
Change in time since entering subroutine EXPERT (initially $=0$). Also used as the step size in subroutine RKTOM

DTA
$\frac{d t_{a}}{d \phi},(A P S O L)$

DTDPHI

DTHETP

DTIP2
$n \rho_{1},(G P O T)$

DTI21
$(2 n-1) \rho_{1},(G P O T)$

DTM
Multiplicative input parameter to increase the step size if the estimated computing error is too small

DTSAVE

DT2

DT3

DUDSI

DU1
Saved value of time to compute change in time since entering subroutine ENCKE, (MAIN)

Half the step-size in subroutine RKTOM

Step-size over 3 in subroutine RKTOM
$\frac{\partial U}{\partial \psi},(E N C K E)$
$\frac{d u_{1}}{d \phi},($ APSOL $)$

DVr

DW
$\frac{d \omega}{d \phi}=\omega^{\prime},($ APSOL $)$
DWB

D2EA $\frac{d^{2} e_{a}}{d \phi^{2}},(A P S O L)$

D2W

E

EA

EALL

EE
Allowable error computed in subroutine RKTOM

Dumny name for the array of 6 stored in labeled common /ENERG/. Used in main program to obtain quantities to compute the total energy

EF

EM
Array of 6 which represents the sum of the approximate numerical values of the dependent variables at any time. (MAIN)

B
$\frac{\mathrm{d} \omega}{\mathrm{d} \bar{\phi}}$, (APSOL)
\qquad
$\frac{d^{2} \omega}{d \phi^{2}},($ APSOL $)$
e_{o} or e_{o}^{*} in subroutine CONST, or dummy output array of (6) giving evaluation of the derivatives for numerical integration (ENCKE) $E(1)=\frac{d p_{n}}{d \phi}, E(2)=\frac{d \Omega_{n}}{d \phi}$, $E(3)=\frac{d i_{n}}{d \phi}, \quad E(4)=\frac{d q_{n}}{d \phi}, \quad E(5)=\frac{d u_{n}}{d \phi}, \quad E(6)=\frac{d t_{n}}{d \phi}$ e_{a}, (APSOL)
compute the total energy
$\frac{\sqrt{1-e_{o}^{2}}}{1+e_{0}},($ CONST $)$

$$
\mathrm{k}_{\mathrm{n}}^{2} \text { where } \mathrm{k}_{\mathrm{n}} \text { is the last reduced modulus, (ELIF) }
$$

Input value to program and to subroutine RKTOM, which is a measure of the maximum allowable accuracy desired

EMIN

EM2

EM212
Input value to program and to subroutine RKTOM, which is a measure of the minimum allowable accuracy desired

EM22

ENK
$\left(1-e_{o}^{2}\right),(\operatorname{CONST})$
$\frac{2}{\sqrt{1-e_{0}^{2}}},($ CONST $)$
$\sqrt{1-e_{0}^{2}},($ CONST $)$
Array of 6 which is $\frac{d p_{n}}{d \phi}, \frac{d \Omega_{n}}{d \phi}, \frac{d i_{n}}{d \phi}, \frac{d q_{n}}{d \phi}, \frac{d u_{n}}{d \phi}, \frac{d t_{n}}{d \phi}$
$\frac{e_{0}}{2},(\operatorname{CONST})$

E06
$\frac{e_{0}}{6},($ CONST $)$

E03
$\frac{e_{0}}{3},(\operatorname{CONST})$

EPD2IO
$\varepsilon^{1 / 2} \frac{d^{2} i_{o l}^{*} / 2}{d \phi^{2}},($ APSOL $)$

EPS

EPS 12
$\varepsilon=J=$ non-dimensional coefficient of the second zonal harmonic of the potential $=1.623 \times 10^{-3}$
$\varepsilon^{1 / 2},($ CONST $)$

EPS2
$\varepsilon^{2},(\operatorname{CONST})$

EPS 3	$\varepsilon^{3},(\operatorname{CONST})$
EPS32	$\varepsilon^{3 / 2},(\mathrm{CONST})$
ERMIN	Minimum allowable error computed in subroutine RKTOM
EROT	Input rotation rate of the earth in rad/hour, but used internally as a non-dimensional rate. (EXPERT)
ESTER	Estimated computing error in subroutine RKTOM
ESI2	$\mathrm{e}_{1 / 2}^{*}$, (APSOL)
EW	East earth longitude of the satellite, (EXPERT)
EWOG	Longitude of Greenwich measured from 1950.0 equinox at any time. $0 \leq E W O G \leq 2 \pi$. Initially input as the value at t_{i}
E12	$\mathrm{E}_{1 / 2}$, (A.23)
E2	$e_{0}^{2}, \quad($ CONST $)$
E2C	$e_{0}^{2} c, \quad(\operatorname{CONST})$
E3K	$\varepsilon^{3} \mathrm{~K}_{1}, \quad(\mathrm{CONST})$
F	Symbol for the term $\frac{\partial U}{\partial \phi}+\tan i \frac{\cos \phi}{\sin \phi} \frac{\partial U}{\partial \psi}$ (non-dimensional) same in FORTRAN, (ENCKE)
FDT	Multiplying input factor used in selecting the optimum computing interval

GAMI

GAPOB $\quad \bar{x}_{0}, \quad($ CONST $)$

GAPI

GAPIP

GM
$K_{1}, \quad($ CONST $)$
$k_{1}^{\prime}, \quad($ CONST $)$
Array of 2 where $G M(1)=G M \operatorname{sun}\left(\frac{\mathrm{~km}^{3}}{\sec ^{2}}\right)$, $G M(2)=G M_{\text {moon }}\left(\frac{\mathrm{km}^{3}}{\sec ^{2}}\right), \quad($ EXPERT $)$

GOK
$\frac{\bar{k}_{0}}{k_{1}}, \quad(\operatorname{CONST})$

GP(I, J)
Two-dimensional array storing perturbative accelerations of the sun and moon. $I=1,2,3, j J=1$ (sun), $J=2$ (moon) $\left(\mathrm{km}^{3} / \mathrm{sec}^{2}\right)$, (EXPERT)

GO
$-\left(1-3 \cos ^{2} i_{00}\right)-\frac{e_{0}^{2}}{2}\left(1-5 \cos ^{2} i_{00}\right)$, coefficient in u_{1}, (CONST)
$\frac{e_{0}^{2}}{4}\left(1-3 \cos ^{2} i_{00}\right)$, coefficient in u_{1}, (CONST) $-\left(\frac{\sin ^{2} i_{00}}{3}-\frac{e_{0}^{2}}{3}+\frac{5}{6} e_{o}^{2} \sin ^{2} i_{00}\right)$, coefficient in u_{1}, (CONST) $\frac{e_{0}^{2}}{6}$ (1-9 $\cos ^{2} i_{00}$), coefficient in n u_{1} (CONST)
$-\frac{e_{0}}{12}\left(5-11 \cos ^{2} i_{00}\right)$, coefficient in $u_{1}, \quad(\operatorname{CONST})$

G5	$-\frac{e_{0}^{2}}{12}\left(1-3 \cos ^{2} i_{00}\right), \text { coefficient in } u_{1}, \quad(\operatorname{CONST})$
H	All small terms in $\frac{\mathrm{dq}}{\mathrm{o}} \mathrm{d}$ (non-dimensional), (81) and (82), (FORTRAN symbol $=\mathrm{H}$)
H	FORTRAN symbol for theoretical H, (APSOL)
HAH	Array of dependent variables and their derivatives $H A H(12)$. (MAIN)
HS	Array of six values of the Simpson's rule increments over two complete computing intervals
i	Inclination (rad)
IC	Flag which gives the case number for perigee calculation IC $=1,2$, or 3 , (CONST)
IE	Flag to determine case number for $e_{1 / 2}^{*}$ calculations IE $=1,2$, or 3 , (CONST)
IMII	Counter for I-1, (ELI)
IMI	I-1, (ELIPE)
IP	Initial point flag $=1$ for first point, $=2$ thereafter, (MAIN)
IPRINT	Print flag - calculations for print only and printing are done if IPRINT $=1$; if IPRINT $=2$, this is suppressed. (MAIN)
IR	NOT2 - I, used to determine last k value to be used in computing the elliptic function in subprogram ELIF

IWC

K
k_{1}

Quadrant of the angle W in subprogram QUAD1. $I W=1,2,3$ or 4

Flag which tells if $\omega=$ constant in case 2 perigee calculation. If $I W C=1, \omega=W$. If $\quad I W C=2, \omega$ is a variable, (CONST)

Quarter-period of the elliptic integral $F(\phi, k)$ in subroutine (CONST) or $=\mathrm{N}-1$ in subroutine GPOT

Modulus of elliptic function (non-dimensional), (50)

Modulus of elliptic function (non-dimensional), (58)

Simpson's rule flag in subroutine RKTOM; when $K C=1$, no Simpson's rule calculation is made; when $K C=2$ (two complete steps of Runge-Kutta have been completed), the Simpson's rule calculation is made to check the accuracy

Input flag that indicates the model considered. Input $K D E R=1$ if the model is the same as the analytical model (J and D terms only and no sun or moon). Input $K D E R=2$ if any other perturbations are considered

Intermediate failure counter in subroutine RKTOM

Total failure counter in subroutine RKTOM

Halt flag. KHALT $=3$ is normal halt upon completion; KHALT $=2$ is halt due to failure of computing interval selection. (MAIN)

Runge-Kutta flag indicating the Runge-Kutta cycle. ($K R=5$ indicates two complete integration steps have been completed). (MAIN)

K10R3	Flag to determine point about which perigee oscillates. Input Quantity $=1$ if w closer to $\frac{\pi}{2}$, or 2 if w closer to $\frac{3 \pi}{2}$
L	Quadrant of angle Zl in subprogram QUAD2. $L=1,2,3$, or 4; $L=N-1$, in subroutine GPOT
L_{0}	Initial angle of the ascending node to order ε (rad)
LS	Luni-solar flag. LS = l means consider luni-solar perturbation. $L S=2$ means ignore luni-solar perturbation
MFAIL	Maximum number of failures in computing interval selection input to the program and to subroutine RKIOM
N	Counter in subprogram ELI which equals the last value of I done in the loop
NN1	Nl+1, (GPOT)
NOT	Variable that counts the number of times the Landen transformation is used in subprogram ELIPE, also gives the index of the last calculated member of the arrays CA and CAP
NOT2	$\mathrm{NOT}+2$
NPTWO	Used to generate $2^{(i-1)}$ in subprogram ELI
N1	Degree of highest zonal harmonic to be considered, N1
N2	Degree of highest tesseral harmonic to be considered; N2 ≤ 6

```
OMEG
OMEGA
    \Omega= longitude of ascending node (rad)
    \mp@subsup{\Omega}{a}{}= approximate }\Omega\quad(\Omega=\mp@subsup{\Omega}{a}{}+\mp@subsup{\Omega}{n}{\prime}), (rad
    or = dummy variable for }\Omega\mathrm{ in subroutine EXPERT
    or = dummy angular variable in subprogram QUADl which
    represents the angle that is to be placed in the proper
    quadrant
OMEGN
    \Omega
    \overline{\Omega}=\mp@subsup{\overline{\Omega}}{\textrm{a}}{}+\mp@subsup{\overline{\Omega}}{n}{}
OMEGT
    \Omega= \Omega
OMEOO
OMEO12
    \OmegaOO, (APSOL)
    \OmegaOl/2, (APSOL)
OME32
    \Omega3/2, (APSOL)
OSK
OSK2
OTD
    \frac{\sqrt{}{k}}{\overline{L}}
    \frac{K}{1}
    S
    Dimensional \Omega}\mp@subsup{\Omega}{\mathrm{ TOTAL for output, (degrees), (MAIN)}}{
    P
    p = component of angular momentum along the polar axis
        (non-dimensional) or array of coefficients }\mp@subsup{\rho}{n}{}\mathrm{ in subroutine
        GPOT, P(10)
    PA
    p
PHI
    \phi = independent variable, angle from node to satellite, (rad)
```

PHIB

PHIBT

PHIIB

PHIK

PHILT

PHIO

PHIS

PHISTP

PHIT

PHITD

PHII

PHI2

PI π, (CONST)

PIO2
$\bar{\phi}_{i}$ (MAIN)
$\frac{\pi}{2}, \quad(\operatorname{CONST})$
$\bar{\phi}=\varepsilon^{3 / 2} \phi, \quad$ (APSOL)
$\bar{\phi}_{\mathrm{TOTAL}}=\varepsilon^{3 / 2} \phi_{\mathrm{TOTAL}}, \quad$ (APSOL)

Angle which is the number of complete revolutions of ϕ multiplied by 2π, (ELI)

Array of angles ϕ used in decreasing Landen transformation. (ELI). Maximum dimension (10). Total angle not modded (rad)
$\bar{\phi}_{0}=$ constant angle needed to calculate approximate perigee in case 1 or case 3. (CONST)

Array of modded angles ϕ in subprogram ELI, maximum dimension (10). (rad)

Stopping condition for ϕ, input in degrees, used internally in radians. (MAIN)
$\phi_{\text {TOTAL }}=$ total accumulated angle to compute secular terms,

Total ϕ in degrees for output. (MAIN)
ϕ_{1} used to approximate $\frac{d}{d \phi}\left(\frac{d \phi}{d t}\right)$, (ENCKE)
ϕ_{2} used to approximate $\frac{d}{d \phi}\left(\frac{d \phi}{d t}\right)$, (ENCKE)

PN

PP
Dummy name for first three elements of labeled common array /EX/. Used in main program to eliminate changing values
$p_{n,}$ (ENCKE)

PR

P4
q

Variable used to accumulate the product in subprogram ELIPE

Total $p=p_{a}+p_{n}, \quad$ (ENCKE)
$p^{2}=(E N C K E)$
$\mathrm{p}_{\mathrm{a}}^{2}, \quad(\operatorname{CONST})$
$p_{a}^{4}, \quad(\operatorname{CONST})$
$\frac{d u}{d \phi}$ (non-dimensional) used to change second-order differential equation to two first-order differential equations

Durmay variable for $\sin \theta$, (GPOT)
q_{a}, \quad (APSOL)
q_{n}, (ENCKE)

Quarter-period of elliptic functions or integrals with modulus k_{1} or k_{2} in subroutine CONST
Dummy variable in subprogam QUADl for same as above or $\frac{\pi}{2}$

Dummy name for last three elements of array stored in labeled common /EX/. Used in main program to prevent changing values that are stored there

Total $q=q_{a}+q_{n}, \quad($ ENCKE)

R	Mean equatorial radius (n. mi.) FORTRAN symbol for non-dimensional radius vector $=\frac{1}{u}$, (ENCKE)
r	Radius to satellite (non-dimensional with respect to R)
RAD	Conversion factor from degrees to radians. (MAIN)
RD	Dimensional r in subroutine EXPERT, (km)
REST	Dummy name for last 12 elements in labeled common array /APS/. Used in main program to prevent changing values that are stored in that part of the array
RK	$\sqrt{2 k_{1}}$ or $\sqrt{\bar{k}_{0}+k_{1}}$ in subroutine CONST depending on perigee case number IC
RK1 RK2	Arrays of 6 which represent the Runge-Kutta parameters for each of the six dependent variables
RK3	
RKINC	Array of 6 to compute the common increment used in HAH and $S R$
RMK	$\sqrt{\bar{\kappa}_{0}-k_{1}}$, quantity needed for case 3 perigee calculations, (CONST)
RR	Dumay storage array of dimension (125) for reference run usage in main program
RUM	$\frac{F}{\text { DENOM }}, \quad \text { (ENCKE) }$
RX	Array of r^{n+2} (non-dimensional) in subroutine GPOT. RX(9) maximum

RI
r_{1} Used to approximate $\frac{d}{d \phi}\left(\frac{d \phi}{d t}\right)$, (ENCKE)
r_{2} Used to approximate $\frac{d}{d \phi}\left(\frac{d \phi}{d t}\right)$, (ENCKE)

S the earth's potential; used in subroutine GPOT imus tation of complete potential, (GPOT)
$\sin i_{00}$, (CONST), or $\sin i$, (ENCKE, EXPERT)
$\sin ^{2} i_{00},(C O N S T)$, or $\sin ^{2} i, \quad(E N C K E)$
$\sin (\operatorname{PHIS}(I-1)),(E L I)$
$\sin i_{o c}, \quad(A P S O L)$
Elliptic function sn , (APSOL)

Quantity used recursively to find sn , (ELIF)
$\frac{\bar{s}_{0}}{\sqrt{k_{1}}},(\operatorname{coNST})$
$\sin \phi, \quad(A P S O L)$

Array of 14 in which values of dependent variables, their derivatives, the time, and ϕ are saved for ordinary Runge-Kutta use, or two-dimensional array (6×6) of coefficients in computation of complete potential, (GPOT)

Coefficients for computation of tesseral and sectorial of

Array of $\sin (n \cdot E W$) in subroutine GPOT. $\operatorname{SBE}(6)$ max-

Two-dimensional array (6×6) of coefficients in comp-

SPMW	$\sin \left(\phi_{i}-w\right)$ in subroutine CONST or $\sin (\phi-\omega)$ in subroutine APSOL
SPPW	$\sin (\phi+\omega),(A P S O L)$
SQ	$\sqrt{\bar{k}_{0}-k_{1} \cos 2 \omega}, \quad(A P S O L) \text { or } \sin q \text {, (EXPERT) }$
SQ1	$\sqrt{\frac{\bar{k}_{0}}{k_{1}} \cos 2 \omega, \quad \text { (APSOL) }}$
SR	Runge-Kutta increments over two complete computing intervals; $\operatorname{SR}(6)$
SS	Array of 14 in which values of dependent variables, their derivatives, the time, and ϕ are saved for Simpson's rule use and in case of computing interval selection failure
ST	$\sin \theta$
SVE	$\sin (\mathrm{VEO})$, (ELIF)
SW	$\sin (w), \quad(C O N S T)$
SXW	$\sin \omega$
SOB	$\bar{S}_{0}, \quad(A .20)$
SOBS	$\bar{s}_{0}^{2}, \quad(\operatorname{consT})$
S1	$S_{1}, \quad(25)$
SlP	$S_{1}^{\prime}, \quad(24)$

S1S	$\mathrm{s}_{1}^{2}, \quad(\mathrm{CONST})$
S2P	$\sin 2 \phi, \quad(\mathrm{APSOL})$
S2PMW	$\sin 2(\phi-\omega),($ APSOL $)$
S2T	$\sin 2 \theta, \quad(E N C K E)$
S2XW	$\sin 2 \omega$
S3PMW	$\sin (3 \phi-\omega), \quad(A P S O L)$
S4PMW	$\sin (4 \phi-2 \omega), \quad(A P S O L)$
t	Time (non-dimensional with respect to $\sqrt{\frac{R^{3}}{\mu}}$)
T	Total time since 1950.0 equinox $=t_{a}+t_{n}$, (ENCKE), also the dummy name for the independent variable in subroutine RKTOM
t_{a}	Approximate analytic time
t_{n}	Numerical correction to the time
TA	$\begin{aligned} & \mathrm{t}_{\mathrm{a}}=\text { approximate solution for time (non-dimensional), } \\ & (\mathrm{APSOL}) \end{aligned}$

TABl Tape control array to read data from JPL ephemeris tapes,

Tape control array to read data from JPL ephemeris tapes, (EXPERT)

TANG
$T D$
$T F$

THETA

TI

TILT

TN

TOTE

TS

TSI

TWON

TWOPI
TW2

相

Value of $\tan ^{-1}$ expression for time constant in subroutine CONST (rad), or value of $\tan ^{-1}$ expression for t_{a} in subroutine APSOL

Dimensional time in subroutine EXPERT (hours)

Dummy variable in input array of subroutine RKTOM which represents the maximum desired value of the independent variable
$\tan i_{00}$, (CONST), or $\tan i$, (ENCKE)

Dummy variable for inclination in subroutine EXPERT
"Next time" after Runge-Kutta step would be completed

Total energy which is computed and printed when only J and D perturbations are considered

Place to accumulate double sum of tesserals and sectorials for a_{f} in subroutine GPOT.

Place to accumulate double sum of tesserals and sectorials for a_{g} in subroutine GPOT

Place to accumulate double sum of tesserals and sectorials for a_{h} in subroutine GPOT.
2^{n} accumulation in subroutine ELI

TO

TOL
Initial time (non-dimensional)

Constant used in approximation for time, (CONST), (non-dimensional)

U
U_{nm}
U_{1}

UA

UN

UT

UOO

UOI

Ul

U2

U3
Earth's potential (non-dimensionalized), or in FORTRAN a symbol for $u=$ reciprocal of non-dimensionalized radius (divided by R), or dumny angular variable in subprogram ELIF which is the argument of sn (rad), or two-dimensional array of coefficients for perturbative accelerations in subroutine GPOT. $U(6,6)$ maximum
$\sec \phi \cdot \rho_{n}^{m}, \quad(G P O T)$

Small terms in the radial acceleration (non-dimensional), (96)
$u_{a}=$ approximate u (non-dimensional), $u=u_{a}+u_{n}$
$u_{n}=$ numerical correction to u (non-dimensional), $u=u_{a}+u_{n}$

Total $u=u_{a}+u_{n}, \quad$ (ENCKE)
u_{0}, \quad (APSOL)

Quantity to store zero in the location for zero index in array U in subroutine GPOT
$\varepsilon u_{1}, \quad(A P S O L)$
$u_{t}^{2}, \quad($ ENCKE $)$
$u_{t}^{3}, \quad(E N C K E)$

U5	$u_{t}^{5}, \quad \text { (ENCKE) }$
V_{0}	All small terms in $\frac{d \phi}{d t}$ (non-dimensional), (87)
V_{1}	All small terms in $\frac{d}{d \phi}\left(\frac{d \phi}{d t}\right)$ (non-dimensional), (88) and (89)
V_{3}	Small terms in $\frac{d q}{d \phi}$ (non-dimensional), (9\%) and (98)
VEO	$\frac{U}{P R}=\text { last reduced argument, (ELIF) }$
vU2	$\frac{V_{0}}{A_{1} u^{2}}, \quad$ (ENCKE)
vo	V_{0}, (ENCKE)
V02	VU2 (2 + VU2), (ENCKE)
V1	V_{1}, (ENCKE)
V22	$\left(1+\frac{v_{0}}{A_{1} u^{2}}\right)^{2}, \quad(\text { ENCKE })$
V3P	V_{3}^{\prime}, (ENCKE)
W	Dummy variable in subroutine CONST for $w^{*}=w=$ initial angle of perigee (rad), or dummy variable for angle which determines the quadrant in subprogram QUADl, or two dimensional (6×6) array for the $W_{n m}$ in subroutine GPOT
$W_{n m}$	$\cos \phi \cdot \rho_{n}^{m^{\prime}}, \quad$ (GPOT)
WO2	$\frac{\mathrm{w}}{2}, \quad(\mathrm{CONST})$
XI	$i=$ inclination (rad) $=^{\text {i }} \mathrm{i}_{00}=\mathrm{i}_{\mathrm{OO}}^{*}$ in subroutine CONST
XIA	$i_{a}=$ approximate inclination, $i=i_{a}+i_{n}$, (rad)

XIN

XINCI

XIT

XITD

XIOC

XII

XII2

XLO

XMOD

XNODEI

XW

Z

21

Z1
$i_{n}=$ numerical correction to inclination $i=i_{a}+i_{n}$, (rad)

Initial value of the inclination in degrees, (APSOL)

Total inclination $=i_{a}+i_{n}$, (ENCKE)

Total inclination in degrees for output, (MAIN)
$\mathrm{i}_{\mathrm{OC}}, \quad$ (APSOL)
$\varepsilon \mathbf{i}_{1}, \quad($ APSOL $)$
$i_{o l / 2}^{*},($ APSOL $)$
L_{0} (constant related to Ω_{i}) when input, changed to $L_{0}+L_{1 / 2}$ in subroutine APSOL to make initial $L_{0} \simeq \Omega_{i}$

Modulus of elliptic functions and integrals $=k_{1}$ or k_{2} depending on perigee case number IC. (CONST)

Initial value of ascending node in degrees, (APSOL)

Analytic value for the osculating argument of perigee, (rad), (APSOL or CONST)

Place to accumulate the sum $\sum_{n=2}^{N 1}\left(\frac{J_{n}}{r^{n+2}}\right) \rho_{n}^{\prime} \quad$ in subroutine GPOT Also name of input array of dimension (125) in main program

Dummy angular variable in subprogram QUAD2 used to determine the quadrant of the first argument

Place to accumulate the sum $\sum_{n=2}^{N 1}(n+1)\left(\frac{J_{n}}{r^{n+2}}\right) \rho_{n}$ in subroutine GPOT

z_{1}	Angle used to find quadrant of ω, (rad), (53)
z_{2}	$\sqrt{\bar{\kappa}_{0}+\kappa_{1}}\left(\bar{\phi}-\bar{\phi}_{0}\right)$ angle used to find the quadrant of ω, (rad)
Z2	z_{2}, \quad (APSOL)
ZD	$l+\cos \left(\phi_{i}-w\right)$ in subroutine CONST or $l+\cos (\phi-\omega)$ in subroutine APSOL
γ_{1}	Constant defined in (48), (non-dimensional)
ε	Coefficient of the second zonal harmonic of the earth's potential, (non-dimensional)
θ	Complement of the latitude, (rad)
$\bar{\kappa}_{0}$	Constant defined in (A.21)
k_{1} and k_{1}^{\prime}	Constants defined in (28) and (29)
λ	Instantaneous East longitude of the satellite measured from Greenwich (FORTRAN symbol EW)
λ_{G}	Instantaneous longitude of Greenwich measured for equinox of 1950.0 (FORTRAN symbol EWOG)
$\lambda_{\text {OG }}$	Longitude of Greenwich measured from equinox of 1950.0 at $t=0$
μ	$G M_{\text {earth }}\left(\frac{\text { n.mi. }}{\mathrm{hr}_{.}^{2}}\right)$

$\rho_{n}, \rho_{n}^{m}, \rho_{n}^{\prime}$, etc Coefficients used for calculation of the complete potential in subroutine GPOT. Defined in (111) ff
ϕ
$\bar{\phi}$
$\bar{\phi}_{0}$
X_{1}^{*}
ψ
Ω
ω
ω_{E}

SUBSCRIPTS

a.
n
t or T
$0,01 / 2, \infty$
1, 1.2, oc Denote various orders of the approximate solution

Section 3

SOURCES OF EQUATIONS

3.1 FORMULATION OF THE PROBLEM AND THE APPROXIMATE SOLUTION

In general, it is the purpose of this program to solve a set of simultaneous differential equations by a combination of numerical and analytical methods which might be called a modified-Encke solution. Thus, for the problem:

$$
\begin{gathered}
\ddot{X}=f(X, t), \\
\ddot{X}_{n}=f\left(X_{a}+X_{n}, t\right)-\ddot{X}_{a},
\end{gathered}
$$

where X_{a} is an approximate solution, X_{n} is the correction obtained by solving the latter differential equation numerically, and the complete solution is then $X=X_{a}+X_{n}$. In the normal Encke method, the approximate solution is taken as the two-body solution (a fixed Keplerian ellipse). In the modified-Encke approach, the approximate solution will be a solution of the oblateness problem considering the first, second, and fourth zonal harmonics of the potential. The approximate solution differs from reality for two reasons. First, the mathematical model is necessarily simplified from the actual physical case, and second, the solution only approximates the true solution of the simplified problem. The numerical solution accounts for both of these discrepancies. For this program, the complete model will include zonal, tesseral, and sectorial harmonics of the potential up to and including the coefficients C_{66} and S_{66}, in addition to luni-solar perturbations.

The general equations of motion, nomenclature, and approximate solution to the oblateness problem as described in reference 1 are used as a framework for this program. For convenience, all equations taken directly from this reference will be given the original numbering at the left in addition to consecutive numbering for this report on the right.

The complete set of differential equations is given in equation (3.5) of the reference and consists of four first-order equations and one second-order equation. In this formulation, the independent variable is the angle ϕ between the ascending node and the radius vector, and the dependent variables are p (component of angular momentum along the polar axis), Ω (argument of the ascending node), i (instantaneous inclination of the orbital plane), u (reciprocal of the radius), and t (time). These equations are:

$$
\begin{equation*}
\frac{d p}{d \phi}=\frac{\frac{\partial U}{\partial \psi}}{\frac{p u^{2}}{\cos i}+\frac{\cos ^{3} i \cos \theta}{p \sin ^{2} i \sin \theta} F} \tag{3.5a}
\end{equation*}
$$

$$
\begin{equation*}
\frac{d i}{d \phi}=\frac{-\sin ^{2} i \cos ^{3} i \cos \phi F}{p^{2} u^{2} \sin ^{2} i \sin \theta+\cos ^{4} i \cos \theta F}, \tag{3.5c}
\end{equation*}
$$

$$
\begin{equation*}
\frac{d \Omega}{d \phi}=\frac{-\cos ^{3} i \cos \theta F}{p^{2} u^{2} \sin ^{2} i \sin \theta+\cos ^{4} i \cos \theta F} \tag{3.5b}
\end{equation*}
$$

(3.5g)

$$
\begin{equation*}
\frac{d t}{d \phi}=\left[\frac{\mathrm{pu}^{2}}{\cos i}+\frac{\cos ^{3} i \cos \theta F}{p \sin ^{2} i \sin \theta}\right]^{-1} \tag{5}
\end{equation*}
$$

where the co-latitude θ is related to i and ϕ by

$$
\begin{equation*}
\cos \theta=\sin i \sin \phi, \tag{3.5h}
\end{equation*}
$$

$$
\sin \theta=+\sqrt{1-\cos ^{2} \theta}
$$

Since $0 \leq \Phi \leq 180^{\circ}$
where U is the potential of the central body, and

$$
\begin{equation*}
F \equiv \frac{\partial U}{\partial \theta}+\tan i \frac{\cos \phi}{\sin \theta} \frac{\partial U}{\partial \psi} . \tag{8}
\end{equation*}
$$

These equations of motion are exact for any satellite orbiting around a central body of potential U. To consider additional perturbations, the equations can be kept unaltered by including the appropriate components of the perturbative accelerations in the quantities $\frac{\partial U}{\partial \psi}, \frac{\partial U}{\partial r}$, and F. The equations would then still be exact.

Defining the accelerations a_{f}, a_{g}, and a_{h} in a local orthogonal frame with a_{h} outward along the geocentric vertical, a_{f} directed south, and a_{g} directed east:

$$
\begin{gather*}
a_{f}=\frac{1}{r} \frac{\partial U}{\partial \theta}, \tag{9}\\
a_{g}=\frac{1}{r \sin \theta} \frac{\partial U}{\partial \psi}, \tag{10}
\end{gather*}
$$

and

$$
\begin{equation*}
a_{h}=\frac{\partial U}{\partial r} . \tag{11}
\end{equation*}
$$

Then, from equations (8), (9), and (10):

$$
\begin{align*}
& F=\frac{\partial U}{\partial \theta}+\tan i \frac{\cos \phi}{\sin \theta} \frac{\partial U}{\partial \psi} \\
& =\frac{1}{u}\left(a_{f}+\tan i \cos \phi a_{g}\right) \tag{12}
\end{align*}
$$

The analytical solution of reference l only includes the first, second, and fourth zonal harmonics of the earth's potential. To include more terms of the potential, the a_{f}, a_{g}, and a_{h} accelerations will be used directly from reference 2, pages 4-97 and 4-98. (Repeated in this report, equations 108, 109, and 110.)

It is also desirable to change the original equations of motion into six first-order equations rather than having one second-order equation. Equation (4) then is replaced by the following two equations:

$$
\begin{equation*}
\frac{d u}{d \phi} \equiv q, \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{d q}{d \phi}=\frac{2}{u} q^{2}-\frac{q \frac{d}{d \phi}\left(\frac{d \phi}{d t}\right)}{\frac{d \phi}{d t}}-\frac{\frac{p^{2} u^{5}}{\cos ^{2} i}+u^{2} \frac{\partial U}{\partial r}}{\left(\frac{d \phi}{d t}\right)^{2}} . \tag{14}
\end{equation*}
$$

These two equations need special consideration when finding the numerical differential equations. Using subscripts a and n for approximate and numerical solutions and defining the right side of equation (14) as the function $G(p, q, u, i, \phi)$ leads to:

$$
\begin{equation*}
\frac{d q_{n}}{d \phi}=G\left(p_{a}+p_{n}, q_{a}+q_{n}, u_{a}+u_{n}, i_{a}+i_{n}, \phi\right)-\frac{d^{2} u_{a}}{d \phi^{2}} \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{d u_{n}}{d \phi}=q_{n}, \frac{d u_{a}}{d \phi}=q_{a} . \tag{16}
\end{equation*}
$$

Now the appropriate approximate solutions will be selected from reference 1 . From equation (3.6a):

$$
\begin{equation*}
\mathrm{p}_{\mathrm{a}}=\text { const. }=\text { initial } \mathrm{p} \tag{17}
\end{equation*}
$$

From equations (3.71), (3.73), and (3.76):

$$
\begin{equation*}
\Omega_{a}=\frac{\Omega_{00}}{\varepsilon^{1 / 2}}+\Omega_{01 / 2}+\varepsilon \Omega_{3 / 2}+L_{0} . \tag{18}
\end{equation*}
$$

Before writing the expressions for Ω_{00}, etc., it should be mentioned that some numerical difficulties would be experienced by using the results of reference 1 exactly as written. The results of the reference are algebraically correct and pose no analytical ambiguities. However, in certain cases there are apparent indeterminacies which a computer cannot handle. Most of these can be eliminated by minor modifications of constants, but several quantities will still require two or more different forms for accurate and correct numerical evaluation.

Let

$$
\begin{equation*}
A \equiv \frac{p}{\cos i_{00}} \tag{19}
\end{equation*}
$$

designate the total initial angular momentum.

From equation (A.1l), define:

$$
\begin{align*}
& {B_{2}^{*}}^{\prime} \equiv \frac{1}{2 A^{8}}\left\{\left(\frac{1}{12}-\frac{3}{2} c\right)\left(1-e_{o}^{2}\right)\right. \\
& +\cos ^{2} i_{o o}\left[\left(1-e_{o}^{2}\right) 12 c-\frac{7}{3}+\frac{4}{3} e_{o}^{2}\right] \\
& \left.+\cos ^{4} i_{o o}\left[-\frac{21}{2} c\left(1-e_{o}^{2}\right)+\frac{5}{4}\left(5-e_{o}^{2}\right)\right]\right\} \tag{20}
\end{align*}
$$

so

$$
\begin{equation*}
B_{2}^{*} \equiv e_{0} \quad B_{2}^{*} \tag{21}
\end{equation*}
$$

Equation (20) uses equation (3.38), i.e.,

$$
i_{\infty 0}^{*}=i_{\infty 0}, e_{0}^{*}=e_{0}, w^{*}=w
$$

From equation (A.14), define:

$$
\begin{equation*}
C_{2}^{*}=\frac{1}{4 A^{8}}\left[-\frac{1}{6}+3 c+\left(\frac{5}{2}-21 c\right) \cos ^{2} i_{\infty 0}\right] \tag{22}
\end{equation*}
$$

$$
\begin{equation*}
c_{2}^{*} \equiv e_{0}^{2} \cos i_{00} \sin i_{00} c_{2}^{*} \tag{23}
\end{equation*}
$$

From equation (A.18), define:

$$
\begin{equation*}
S_{1}^{\prime}=\frac{1}{2 A^{4}}\left(2-15 \cos ^{2} i_{\infty 0}\right), \tag{24}
\end{equation*}
$$

so

$$
\begin{equation*}
S_{1} \equiv \tan i_{\infty 0} S_{1}^{\prime} \tag{25}
\end{equation*}
$$

(A.21)

$$
\begin{equation*}
\bar{k}_{0}=\bar{S}_{0}^{2}+k_{1} \cos 2 w \tag{27}
\end{equation*}
$$

Equation (27) assumes $j_{1 / 2}{ }^{*}=0$. In reference 1 it is assumed that constants of integration can be expressed in series form. For the program, the leading term will be taken as accurately as desired, and all the higher order terms will then be zero except for $L_{1 / 2}$. To make the constant L_{0} approximately equal to the initial value of the ascending node, the $L_{1 / 2}$ constant is chosen to make $\Omega_{01 / 2}=0$ initially.

From equation (A.22), define:

$$
\begin{equation*}
k_{1}^{\prime}=s_{1}^{\prime} c_{2}{ }^{\prime}, \tag{28}
\end{equation*}
$$

so

$$
\begin{equation*}
k_{1}=e_{0}^{2} \sin ^{2} i_{00} k_{1}^{\prime} \tag{29}
\end{equation*}
$$

From equation (A.23):

$$
\begin{equation*}
E_{1 / 2}=-\frac{{B_{2}^{*} \bar{s}_{0}}_{k_{1}}=-\frac{B_{2}^{*} \bar{s}_{0}}{e_{0} \sin ^{2} i_{00} k_{1}^{\prime}} ~ . ~}{} \tag{30}
\end{equation*}
$$

Now we can return to writing the approximate expressions.

$$
\begin{equation*}
\Omega_{00}=-\frac{\cos i_{00}}{A^{4}} \bar{\phi} . \tag{3.79}
\end{equation*}
$$

$$
\begin{equation*}
\Omega_{01 / 2}=-\frac{5 \cos i_{00}}{A^{4} S_{1}^{\prime}}\left[\bar{S}_{0} \bar{\phi}-\omega_{0}\right]+L_{1 / 2} \tag{32}
\end{equation*}
$$

$$
\begin{gather*}
\Omega_{3 / 2}=-\frac{\cos i_{00}}{A^{4}}\left[-\frac{\sin 2 \phi}{2}+e_{0} \sin \left(\phi-\omega_{0}\right)\right. \tag{3.80}\\
- \tag{33}\\
\left.e_{0} \sin \left(\phi+\omega_{0}\right)-\frac{e_{0}}{6} \sin \left(3 \phi-\omega_{0}\right)\right]
\end{gather*}
$$

As stated in equation (18), $\Omega_{a}=\frac{\Omega_{00}}{\varepsilon^{1 / 2}}+\Omega_{01 / 2}+\varepsilon \Omega_{3 / 2}+L_{o}$. From equations
(3.43) and (3.48b):

$$
\begin{equation*}
i_{a}=i_{o O}+\varepsilon^{l / 2} i_{o}^{*} 1 / 2+\varepsilon i_{1} \tag{34}
\end{equation*}
$$

since $i_{1 / 2}=0$ from reference 1 , page 27.

$$
\begin{equation*}
i_{o o}=\text { initial inclination to order } \varepsilon \tag{35}
\end{equation*}
$$

The equation for $i_{0} 1 / 2^{*}$ is given in equation (3.33) but two forms are required for the numerical evaluation.

When $62^{\circ} \leq i_{00} \leq 65^{\circ}$ (Limit on i_{00} satisfied when $\left|1-5 \cos ^{2} i_{00}\right| \leq 0.106$), use:

$$
\begin{equation*}
i_{01 / 2}^{*}=\frac{1}{S_{1}}\left[\pm\left(\bar{\kappa}_{0}-\kappa_{1} \cos 2 \omega\right)^{1 / 2}-\bar{S}_{0}\right] \tag{3.33}
\end{equation*}
$$

The sign of the square root must agree with the sign of the numerical value of \bar{S}_{0}.

Otherwise, use the form:

$$
\begin{equation*}
i_{0} 1 / 2^{*}=c_{2}^{*} \frac{\left[\cos 2 w^{*}-\cos 2 \omega\right]}{\bar{s}_{0} \pm \sqrt{\bar{\kappa}_{0}-\kappa_{1} \cos 2 \omega}} \tag{37}
\end{equation*}
$$

Equations (36) and (37) are algebraically equivalent with equation (37) coming from equation (36) by multiplying and dividing by $\left[\sqrt{\bar{k}_{0}-k_{1}} \cos 2 \omega\right.$ $+\bar{S}_{0}$] and by using equations (A.21) and (A.22) for \bar{K}_{0} and k_{1}, and equations (23) and (25) for C_{2}^{*} and S_{1}.

The final expression required for i_{a} is then:
(3.15a)

$$
\begin{gather*}
i_{1}=\frac{\cos i_{00} \sin i_{O O}}{2 A^{4}}\left[\cos 2 \phi+e_{0} \cos (\phi+\omega)\right. \\
\left.+\frac{e_{0}}{3} \cos (3 \phi-\omega)\right] . \tag{38}
\end{gather*}
$$

Since the differential equation for u was changed from one second-order equation to two first-order equations in u and $\frac{d u}{d \phi}$, the approximate values for both these quantities are required.

Repeating the equation from reference 1 :
(3.48a) $\quad u_{a}=\frac{\cos ^{2} i_{o c}}{p^{2}}\left[1+e_{a} \cos (\phi-\omega)\right]+\varepsilon u_{1}$,
(since $u_{1 / 2}=0$ from reference 1 , page 27).

From equation (3.43):

$$
\begin{equation*}
i_{o c}=i_{\infty 0}^{*}+\varepsilon^{1 / 2} i_{01 / 2} \tag{40}
\end{equation*}
$$

[^0]To compute u_{a}, the expressions e_{a}, w, and u_{1} are needed.

From equation (3.41):

$$
\begin{gather*}
e_{a}=e_{0}^{*}+\varepsilon^{1 / 2} e_{1 / 2}^{*} \tag{41}\\
e_{0}^{*}=\text { constant, } \tilde{=} \text { initial e. } \tag{42}
\end{gather*}
$$

The variable $e_{1 / 2}{ }^{*}$ is given in equation (3.35), but again different forms are required for numerical evaluation by computer. As in the development of $i^{*}{ }_{01 / 2}$, if i_{00} is not between 62° and 65°, use:

$$
\begin{equation*}
e_{1 / 2}^{*}=\frac{B_{2}^{*}\left(\cos 2 w^{*}-\cos 2 \omega\right)}{\bar{S}_{0} \pm \sqrt{\bar{k}_{0}-k_{1} \cos 2 \omega}} . \tag{43}
\end{equation*}
$$

If $62^{\circ} \leq i_{00} \leq 65^{\circ}$, then use:

$$
\begin{equation*}
e_{1 / 2}{ }^{*}=\gamma_{1}\left[\pm \sqrt{\frac{\bar{\kappa}_{0}}{\kappa_{1}}-\cos 2 \omega}-\frac{\bar{S}_{0}}{\sqrt{\kappa_{1}}}\right] \tag{44}
\end{equation*}
$$

providing $\bar{S}_{0}^{2} \leq \kappa_{1}$. Otherwise, use:

$$
\begin{equation*}
e_{1 / 2}^{*}=\gamma_{1} \frac{\sqrt{\kappa_{1}}}{\bar{S}_{0}} \frac{\left(\cos 2 w^{*}-\cos 2 \omega\right)}{1+\sqrt{1+\frac{k_{1}}{\bar{S}_{0}^{2}}\left(\cos 2 w^{*}-\cos 2 \omega\right)}} \tag{45}
\end{equation*}
$$

Again, all these formulas are mathematically identical, but they are required because of possible ambiguities in computer calculations. In equations (44) and (45), the quantity γ_{1} is defined by:

[^1]\[

$$
\begin{equation*}
\gamma_{1} \equiv \frac{B_{2}^{*^{\prime}}}{\sin i_{00} \sqrt{k_{1}^{\prime}}} \tag{46}
\end{equation*}
$$

\]

The solution for ω also requires three forms, given as three cases in reference 1 depending upon the relative values of $\bar{\kappa}_{0}$ and $\bar{\kappa}_{1}$.

For case 1 when $-k_{1}<\bar{k}_{0}<k_{1}$:

$$
\begin{align*}
\omega^{*}= & \pm \tan ^{-1}\left\{\frac{\kappa_{1}-\bar{\kappa}_{0}}{\kappa_{1}+\bar{\kappa}_{0}}\left(1+\operatorname{tn}^{2}\left[\sqrt{2 k_{1}}\left(\bar{\phi}-\bar{\phi}_{0}\right)\right]\right)\right\}^{1 / 2} \tag{3.55}\\
& = \pm \tan ^{-1}\left\{\left[\frac{k_{1}-\bar{k}_{0}}{k_{1}+\bar{k}_{0}}\right] \quad \frac{1}{\operatorname{cn}\left[\sqrt{2 k_{1}}\left(\bar{\phi}-\bar{\phi}_{0}\right)\right]}\right\} \tag{47}
\end{align*}
$$

where the modulus of $t n$ or cn is k_{1} and
(3.54c)

$$
\begin{equation*}
k_{1}=\left[\frac{\bar{k}_{0}+k_{1}}{2 k_{1}}\right] \tag{48}
\end{equation*}
$$

From equations (3.54a) and (3.54b):

$$
\begin{equation*}
\bar{\phi}_{i}-\bar{\phi}_{0} \equiv \pm\left(2 \kappa_{1}\right)^{-1 / 2} F\left(x_{1}^{*}, k_{1}\right) \tag{49}
\end{equation*}
$$

(\pm same sign as \bar{S}_{0} which is sign of $\frac{d \omega}{d \phi}$ at $\omega=w$)
and

$$
\begin{equation*}
x_{1}^{*}= \pm \tan ^{-1}\left[\frac{\kappa_{1}+\bar{k}_{0}}{k_{1}-\bar{\kappa}_{0}} \tan ^{2} w^{*}-1\right]^{1 / 2} \tag{50}
\end{equation*}
$$

and the sign is chosen so w^{*} and $X_{1}{ }^{*}$ are in the same quadrant. In these expressions, $F\left(x_{1}{ }^{*}, k_{1}\right)$ is an elliptic integral of the first kind and t_{n} and cn are elliptic functions. To determine the quadrant of ω^{*} from equation (47), a new angle and K (the quarter-period of the elliptic functions on or tn) are used. Let

$$
\begin{equation*}
z_{1} \equiv \sqrt{2 \kappa_{1}}\left(\bar{\phi}-\bar{\phi}_{0}\right), \tag{51}
\end{equation*}
$$

now the quadrant of w^{*} can be related to the quadrant (defined by K) of z_{1} 。
${ }^{2}{ }_{1}$
(when $w^{*}{ }^{*}$ nearer $\pi / 2$)
(when w* $^{\omega^{*}}$ nearer $3 \pi / 2$)

O-K
K - $2 K$
$2 K-3 K$
$0-\pi / 2$
$\pi-3 \pi / 2$
$\frac{\pi}{2}-\pi$
$3 \pi / 2-2 \pi$
$3 K-4 K$
$\frac{\pi}{2}-\pi$
$3 \pi / 2-2 \pi$
$4 K-5 K$
$0-\frac{\pi}{2}$
$\pi-3 \pi / 2$
etc.

For case 2, when $\bar{\kappa}_{0}=\kappa_{1}$, there are two possibilities. If $w^{*}=0$ or π, then ω^{*} always equals 0 or π. If w^{*} has any other value, ω^{*} is given by the formula:

$$
\begin{equation*}
\tan \frac{\omega^{*}}{2}=e^{ \pm \sqrt{2 k_{1}}\left(\bar{\phi}-\bar{\phi}_{i}\right)} \tan \frac{w^{*}}{2} \tag{52}
\end{equation*}
$$

Here the \pm sign is determined from the sign of the quantity, $\bar{S}_{0}+S_{1} i_{o l / 2}^{*}$, since

$$
\begin{equation*}
\frac{d \omega^{*}}{d \bar{\phi}} \equiv \bar{S}_{0}+S_{1} i_{o l / 2}^{*} \tag{3.27c}
\end{equation*}
$$

(Can use only \bar{S}_{o} since derivative always has the same sign in this case.) Also the quadrant of ω^{*} is determined by the fact that the quadrant of $\frac{\omega^{*}}{2}$ is the same as the quadrant of $\frac{W^{*}}{2}$. Physically this means that for this case, the perigee either starts at 0 or π and remains there or approaches one of these values as the time becomes very large. The limit to which the perigee travels is not determined by the nearest of the two values, but by the sign of the derivative given in equation (53). Equation (52) replaces equation (3.59) of reference 1 . This is done because the integral (3.58) should read

$$
\bar{\phi}-\bar{\phi}_{0}=\int_{0}^{\omega^{*}} \frac{d \varepsilon}{\left(2 \kappa_{1}\right)^{1 / 2} \sin \varepsilon}
$$

rather than with $\cos \varepsilon$ replacing $\sin \varepsilon$ as shown in the reference.

Case 3 occurs when $\bar{\kappa}_{0}>\kappa_{1}$. In this case,

$$
\begin{align*}
& \omega^{*}=\tan ^{-1}\left\{\left[\frac{\bar{k}_{0}-\kappa_{1}}{\bar{k}_{0}+\kappa_{1}}\right] \operatorname{tn}\left[\left(\bar{\kappa}_{0}+\kappa_{1}\right)^{1 / 2}\left(\bar{\phi}-\bar{\phi}_{0}\right)\right]\right\} \tag{3.65}\\
& =\tan ^{-1}\left\{\left[\frac{\bar{k}_{0}-k_{1}}{\bar{k}_{0}+k_{1}}\right] \quad \frac{\left\{1-\operatorname{cn}^{2}\left[\left(\bar{\kappa}_{0}+\kappa_{1}\right)^{1 / 2}\left(\bar{\phi}-\bar{\phi}_{0}\right)\right]\right\}^{1 / 2}}{\operatorname{cn}\left[\left(\bar{\kappa}_{0}+\kappa_{1}\right)^{1 / 2}\left(\bar{\phi}-\bar{\phi}_{0}\right)\right]}\right\} \tag{54}
\end{align*}
$$

where tn and cn are elliptic functions with modulus \mathbf{k}_{2} and

$$
\begin{equation*}
k_{2}=\left[\frac{2 k_{1}}{k_{1}+\bar{k}_{0}}\right]^{1 / 2} \tag{55}
\end{equation*}
$$

This is the correct modulus and replaces the k_{2} given in equation (3.64b) of reference 1 .

As in case 1 , the quadrant of $z_{2}=\left(\bar{\kappa}_{0}+\kappa_{1}\right)^{1 / 2}\left(\bar{\phi}-\bar{\phi}_{0}\right)$, determined by K, provides the quadrant of ω^{*}. In this case, the quadrants are equal, i.e.,

z_{2}	ω^{*}
$0-\mathrm{K}$	$0-\pi / 2$
$\mathrm{~K}-2 \mathrm{~K}$	$\pi / 2-\pi$
etc.	

The quantity $\bar{\phi}_{0}$ must be determined from equation (3.64a) and (3.64c) of reference 1 :
(3.64a)

$$
\begin{align*}
\bar{\phi}_{i}-\bar{\phi}_{0} & = \pm\left(\bar{\kappa}_{0}+\kappa_{1}\right)^{-1 / 2} F\left(x_{2}, k_{2}\right) \tag{56}\\
& \left(\pm \text { same sign as } \bar{S}_{0}\right)
\end{align*}
$$

$$
\begin{equation*}
x_{2}= \pm \tan ^{-1}\left\{\left[\frac{\bar{k}_{0}+k_{1}}{\bar{k}_{0}-\kappa_{1}}\right] \quad \tan w^{*}\right\} \tag{57}
\end{equation*}
$$

In equation (57), the sign and quadrant are chosen such that X_{2} and w^{*} are in the same quadrant.

Finally, all that is required for u_{a} is the expression for u_{1}. This comes directly from reference 1.

$$
\begin{equation*}
u_{1}=\frac{1}{2 A^{6}}\left\{-1+3 \cos ^{2} i_{00}-\frac{e_{0}^{2}}{2}\left(1-5 \cos ^{2} i_{00}\right)\right. \tag{3.15b}
\end{equation*}
$$

$$
+\frac{e_{0}^{2}}{4}\left(1-3 \cos ^{2} i_{00}\right) \cos 2 \omega-\left(\frac{1}{3} \sin ^{2} i_{00}-\frac{e_{0}^{2}}{3}+\frac{5}{6} e_{0}^{2} \sin ^{2} i_{00}\right) \cdot \cos 2 \phi
$$

$$
+\frac{e_{0}^{2}}{6}\left(1-9 \cos ^{2} i_{00}\right) \cos 2(\phi-\omega)-\frac{e_{0}}{12}\left(5-11 \cos ^{2} i_{00}\right) \cdot \cos (3 \phi-\omega)
$$

$$
\begin{equation*}
\left.-\frac{e_{o}^{2}}{12}\left(1-3 \cos ^{2} i_{00}\right) \cos (4 \phi-2 \omega)\right\} \tag{58}
\end{equation*}
$$

Now,

$$
\begin{equation*}
q_{a} \equiv \frac{d u_{a}}{d \phi} \tag{59}
\end{equation*}
$$

From equations (39) and (40):

$$
\begin{gather*}
q_{a}=-\frac{2 \cos i_{o c} \sin i_{o c}}{p^{2}}\left[1+e_{a} \cos (\phi-\omega)\right] \varepsilon^{1 / 2} \frac{d i_{o l / 2}^{*}}{d \phi} \\
+\frac{\cos ^{2} i_{o c}}{p^{2}}\left[\frac{d e_{a}}{d \phi} \cos (\phi-\omega)-e_{a}\left(1-\frac{d \omega}{d \phi}\right) \sin (\phi-\omega)\right]+\varepsilon \frac{d u_{1}}{d \phi} \tag{60}
\end{gather*}
$$

All these derivatives will be given in the following section.

3.2 DERIVATIVES REQUIRED FOR THE GENERALIZED ENCKE SOLUTION

Derivatives of all the approximate solutions must be taken to find the differential equations to be numerically integrated. These derivatives are taken rather than using the original derivatives of the theory since in some cases approximations are made to carry out the integration.

From equation (3.6a),

$$
\begin{equation*}
\frac{d p_{a}}{d \phi}=0 . \tag{61}
\end{equation*}
$$

From equation (18),

$$
\begin{equation*}
\frac{d \Omega_{a}}{d \phi}=\frac{1}{\varepsilon^{1 / 2}}\left[\frac{d \Omega_{o O}}{d \phi}+\varepsilon^{1 / 2} \frac{d \Omega_{o l / 2}}{d \phi}+\varepsilon^{3 / 2} \frac{d \Omega_{3 / 2}}{d \phi}\right] . \tag{62}
\end{equation*}
$$

From equation (3.79)

$$
\begin{equation*}
\frac{d \Omega_{O O}}{d \phi}=\frac{d \Omega_{O O}}{d \bar{\phi}} \frac{d \bar{\phi}}{d \phi}=-\frac{\cos i_{O O}}{A^{4}}\left(\varepsilon^{3 / 2}\right) \tag{63}
\end{equation*}
$$

From (3.82) and (25):

$$
\begin{equation*}
\frac{d \Omega_{0} 1 / 2}{d \phi}=-\frac{5}{A^{4} S_{i}} \cos i_{00} \varepsilon^{3 / 2}\left(\bar{S}_{0}-\frac{d \omega}{d \bar{\phi}}\right) . \tag{64}
\end{equation*}
$$

Equation (3.27c) will always be used for $\frac{d \omega}{d \bar{\phi}}$, i.e.,
(3.27c)

$$
\begin{equation*}
\frac{d \omega}{d \bar{\phi}}=\bar{S}_{o}+S_{1} i_{o}^{*} 1 / 2 \tag{65}
\end{equation*}
$$

Then from equations (64), (65), and (25)

$$
\begin{equation*}
\frac{d \Omega_{0} 1 / 2}{d \phi}=\frac{5 \varepsilon^{3 / 2}}{A^{4}} \sin i_{00} i_{0}^{*} 1 / 2 . \tag{66}
\end{equation*}
$$

From equation (3.80):

$$
\begin{align*}
& \frac{d \Omega_{3 / 2}}{d \phi}=-\frac{\cos i_{00}}{A^{4}}\left\{-\cos 2 \phi+e_{o} \cos (\phi-\omega)\left(1-\omega^{\prime}\right)\right. \\
& \left.-\frac{e_{0}}{2} \cos (\phi+\omega)\left(1+\omega^{\prime}\right)-\frac{e_{0}}{6} \cos (3 \phi-\omega)\left(3-\omega^{\prime}\right)\right\} \tag{67}
\end{align*}
$$

where from equation (3.2lc):

$$
\begin{equation*}
\omega^{\prime} \equiv \frac{d \omega}{d \phi}=\frac{d \omega}{d \bar{\phi}} \frac{d \bar{\phi}}{d \phi}=\varepsilon^{3 / 2} \frac{d \omega}{d \bar{\phi}}, \tag{68}
\end{equation*}
$$

and $\frac{d \omega}{d \bar{\phi}}$ is given in equation (65).
Next the derivatives of i_{a} will be given from equation (34):

$$
\begin{equation*}
\frac{\mathrm{di}_{a}}{\mathrm{~d} \mathrm{\phi}}=\varepsilon^{1 / 2} \frac{\mathrm{di}{ }_{o l / 2}^{*}}{\mathrm{~d} \phi}+\varepsilon \frac{d i_{1}}{d \phi} \tag{69}
\end{equation*}
$$

since $\frac{d i_{00}}{d \phi}=0$.
From equations (3.33), (3.34), and (A.22):

$$
\begin{equation*}
\frac{\mathrm{di}_{\mathrm{O} 1 / 2}^{*}}{\mathrm{~d} \phi}=\varepsilon^{3 / 2} C_{2}^{*} \sin 2 \omega . \tag{70}
\end{equation*}
$$

This agrees with equation (3.29a), so that (3.29a) was integrated exactly. Also note that there is only one form for $\frac{d i_{o l / 2}^{*}}{d \phi}$ while $i_{o l / 2}^{*}$ required two different algebraic forms for computation.

From equation (3.15a):

$$
\begin{gather*}
\frac{d i_{1}}{d \phi}=-\frac{\cos i_{O O} \sin i_{O O}}{2 A^{4}}\left[2 \sin 2 \phi+e_{o}\left(1+\omega^{\prime}\right) \sin (\phi+\omega)\right. \\
\left.\quad+\frac{e_{0}}{3}\left(3-\omega^{\prime}\right) \sin (3 \phi-\omega)\right] \tag{71}
\end{gather*}
$$

Equation (63) gave an expression for q_{a}, but some derivatives were required and they will be formed here.

From equation (3.41):

$$
\begin{align*}
\frac{d e_{a}}{d \phi} & =\varepsilon^{1 / 2} \frac{d e_{1 / 2}^{*}}{d \phi} \tag{72}\\
\frac{d e_{1 / 2}^{*}}{d \phi} & =\varepsilon^{3 / 2} B_{2}^{*} \sin 2 \omega, \tag{73}
\end{align*}
$$

Thus, equation (3.29b) was integrated exactly, and no special cases are required for the derivative of $e_{1 / 2}^{*}$.

Now the derivative of u_{1} is needed. From equation (3.15b):

$$
\begin{align*}
& \frac{d u_{1}}{d \phi}=\frac{1}{2 A^{6}}\left\{-\frac{e_{0}^{2}}{2} \omega^{\prime}\left(1-3 \cos ^{2} i_{00}\right) \sin 2 \omega\right. \\
& +2\left(\frac{\sin ^{2} i_{00}}{3}-\frac{e_{0}^{2}}{3}+\frac{5 e_{0}^{2} \sin ^{2} i_{00}}{6}\right) \sin 2 \phi \\
& -\frac{e_{0}^{2}}{3}\left(1-9 \cos ^{2} i_{00}\right)\left(1-\omega^{\prime}\right) \sin 2(\phi-\omega) \\
& +\frac{e_{0}}{12}\left(5-11 \cos ^{2} i_{00}\right)\left(3-\omega^{\prime}\right) \sin (3 \phi-\omega) \\
& \left.+\frac{e_{0}^{2}}{12}\left(1-3 \cos ^{2} i_{00}\right)\left(4-2 \omega^{\prime}\right) \sin (4 \phi-2 \omega)\right\} \tag{74}
\end{align*}
$$

This completes q_{a} and now $\frac{d q_{a}}{d \phi}$ is required. The form for this derivative will be chosen to allow analytic cancellation of the terms of order unity when forming the modified-Encke equations of motion. If this were not done, accuracy would be lost trying to find numerically the small difference between two large numbers. Define:

$$
\frac{d q_{a}}{d \phi} \equiv \frac{d q_{0}}{d \phi}+\varepsilon \frac{d q_{1}}{d \phi}
$$

where

$$
\begin{equation*}
q_{0}=\frac{d u_{0}}{d \phi}, q_{1}=\frac{d u_{1}}{d \phi} . \tag{75}
\end{equation*}
$$

q_{0} can be found from equation (60) and q_{1} from equation (74). From equation (60) by differentiation:

$$
\begin{equation*}
\frac{d q_{0}}{d \phi}=-u_{0}+\frac{\cos ^{2} i_{o c}}{p_{a}^{2}}+H \tag{76}
\end{equation*}
$$

where

$$
\begin{align*}
H= & -\frac{2 u_{o}}{\cos ^{2} i_{o c}}\left[\varepsilon\left(\frac{d i_{o l / 2}^{*}}{d \phi}\right)^{2} \cos ^{2} i_{o c}+\frac{\varepsilon^{1 / 2}}{2} \frac{d^{2} i_{o l / 2}^{*}}{d \phi^{2}} \sin 2 i_{o c}\right] \\
& +\frac{\cos i_{o c}}{p_{a}^{2}}\left\{-4 \frac{d i_{o c}}{d \phi} \frac{d e}{d \phi} \sin i_{o c} \cos (\phi-\omega)\right. \\
& +2\left[e_{a} \frac{d i_{o c}}{d \phi} \sin i_{o c}-\cos i_{o c} \frac{d e_{a}^{d \phi}}{d \phi}\right]\left(1-\omega^{\prime}\right) \sin (\phi-\omega) \\
& +\left[\cos i_{o c} \frac{d^{2} e_{a}}{d \phi^{2}}+e_{a} \cos i_{o c} \omega^{\prime}\left(2-\omega^{\prime}\right)\right] \cos (\phi-\omega) \\
& \left.+e_{a} \cos i_{o c} \omega^{\prime \prime} \sin (\phi-\omega)\right\}, \tag{77}
\end{align*}
$$

and from equations (72) and (73):

$$
\begin{equation*}
\frac{d^{2} e a}{d \phi^{2}}=2 \varepsilon^{2} B_{2}^{*} \quad \omega^{\prime} \cos 2 \omega \tag{78}
\end{equation*}
$$

from equations (65), (68), and (70):

$$
\begin{equation*}
\omega^{\prime \prime}=\frac{d^{2} \omega}{d \phi^{2}}=\varepsilon^{3 / 2} S_{1} \frac{d i^{*}}{d \phi} \frac{d / 2}{d}=\varepsilon^{3} \kappa_{1} \sin 2 \omega, \tag{79}
\end{equation*}
$$

from equation (70):

$$
\begin{equation*}
\frac{d^{2} i_{o l / 2}^{*}}{d \phi^{2}}=2 \varepsilon^{3 / 2} C_{2}^{*}(\cos 2 \omega) \omega^{\prime} \tag{80}
\end{equation*}
$$

Then to compute $\frac{d q_{a}}{d \phi}, \frac{d q_{1}}{d \phi}=\frac{d^{2} u_{1}}{d \phi^{2}}$ is required.

From equation (74):

$$
\begin{align*}
& \frac{d^{2} u_{1}}{d \phi^{2}}=\frac{1}{2 A^{6}}\left\{-\frac{e_{0}^{2}}{2}\left(1-3 \cos ^{2} i_{\infty 0}\right)\left(\omega^{\prime \prime} \sin 2 \omega+2 \omega^{\prime} \cos 2 \omega\right)\right. \\
& +4\left(\frac{\sin ^{2} i_{00}}{3}-\frac{e_{o}^{2}}{3}+\frac{5 e_{o}^{2} \sin ^{2} i_{00}}{6}\right) \cos 2 \phi \\
& \frac{-e_{o}^{2}}{3}\left(1-9 \cos ^{2} i_{o 0}\right)\left[2\left(1-\omega^{\prime}\right)^{2} \cos 2(\phi-\omega)-\omega^{\prime \prime} \sin 2(\phi-\omega)\right] \\
& \frac{+e_{0}}{12}\left(5-11 \cos ^{2} i_{00}\right)\left[\left(3-\omega^{\prime}\right)^{2} \cos (3 \phi-\omega)-\omega^{\prime \prime} \sin (3 \phi-\omega)\right] \\
& \frac{+e_{0}^{2}}{12}\left(1-3 \cos ^{2} i_{00}\right)\left[\left(4-2 \omega^{\prime}\right)^{2} \cos (4 \phi-2 \omega)-2 \omega^{\prime \prime} \sin (4 \phi-2 \omega)\right] \tag{81}
\end{align*}
$$

Before finding the modified-Encke equations, the quantity $\frac{d}{d \phi}\left(\frac{d \phi}{d t}\right)$ must be developed in an ordered fashion.

From equations (3.5g) and (8):

$$
\begin{equation*}
\frac{d \phi}{d t}=\frac{p u^{2}}{\cos i}+\frac{\cos ^{3} i \cos \theta}{p \sin ^{2} i \sin \theta} F \equiv A_{1} u^{2}+V_{0} . \tag{82}
\end{equation*}
$$

Differentiating:

$$
\begin{equation*}
\frac{d}{d \phi}\left(\frac{d \phi}{d t}\right)=2 A_{1} u q+u^{2} \frac{d A_{1}}{d \phi}+v_{1} \tag{83}
\end{equation*}
$$

where

$$
\begin{equation*}
v_{1}=\frac{\cot ^{2} i \cot \theta}{A_{1}}\left[\frac{d F}{d \phi}-F\left(\frac{1}{A_{1}} \frac{d A_{1}}{d \phi}+\frac{2}{\sin i \cos i} \frac{d 1}{d \phi}+\frac{1}{\cos \theta \sin \theta} \frac{d \theta}{d \phi}\right)\right], \tag{84}
\end{equation*}
$$

and from equation (6):

$$
\begin{equation*}
\frac{d \theta}{d \phi}=\frac{-1}{\sin \theta}\left[\cos i \sin \phi \frac{d i}{d \phi}+\cos \phi \sin i\right], \tag{85}
\end{equation*}
$$

From equation (83):

$$
\begin{equation*}
\frac{d A_{1}}{d \phi}=\frac{d}{d \phi}\left(\frac{p}{\cos i}\right)=\frac{1}{\cos i} \frac{d p}{d \phi}+\frac{\sin i}{\cos ^{2} i} \frac{d i}{d \phi} \tag{86}
\end{equation*}
$$

from equation (12):

$$
\begin{gather*}
\frac{d F}{d \phi}=\frac{d}{d \phi}\left\{\frac{l}{u}\left[a_{f}+\tan i \cos \phi a_{g}\right]\right\}=\frac{-F}{u} \frac{d u}{d \phi}+\frac{l}{u}\left[\frac{d a_{f}}{d \phi}+\tan i \cos \phi \frac{d a_{g}}{d \phi}\right. \\
\left.+a_{g}\left(\frac{\cos \phi}{\cos ^{2} i} \frac{d i}{d \phi}-\tan i \sin \phi\right)\right] . \tag{87}
\end{gather*}
$$

Since the a_{f} and a_{g} are quite complex for the general problem, the derivatives of a_{f} and a_{g} will be approximated for perturbations other than the analytical model by the quantities

$$
\begin{equation*}
\frac{d a_{f}}{d \phi} \approx \frac{a_{f_{2}}-a_{f_{1}}}{\phi_{2}-\phi_{1}} \text { and } \frac{d a_{g}}{d \phi} \approx \frac{{ }^{a_{2}}-a_{2} g_{1}}{\phi_{2}-\phi_{1}}, \tag{88}
\end{equation*}
$$

where ϕ_{2} and ϕ_{1} are values of ϕ close to and on each side of the value of ϕ at which the derivative is required. For example, if $\frac{\mathrm{da}_{f}}{\mathrm{~d} \phi}$ is desired when $\phi=30^{\circ}$, take $\phi_{2}=31^{\circ}, \phi_{1}=29^{\circ}$. Then $a_{f_{2}}$ and $a_{g_{2}}$ will be found as a function of ϕ_{2}, Ω, i, t, and u_{2} where Ω, i, and t are the values when $\phi=30^{\circ}, \phi_{2}$ is 31°, and u_{2} is given by:

$$
\begin{equation*}
u_{2} \simeq u+\frac{d u}{d \phi} \Delta \phi, \tag{89}
\end{equation*}
$$

where u is the total reciprocal radius at $\phi=30^{\circ}$ and $\frac{d u}{d \phi}$ is taken as the q_{a} at $\phi=30^{\circ}$.

3.3 ADDITIONAL DEVELOPMENTS

In addition to the straightforward development to this point, a number of less obvious considerations were necessary before formulation of the computer code. These topics are the elimination of taking differences between two large, nearly equal numbers (with a resultant loss of accuracy) in finding the $\frac{d q_{n}}{d \phi}$ equations, the orientation of the rotating earth beneath the satellite, the treatment of the time, the formulation of the disturbances from the complete potential, the formulation of the disturbances due to lunisolar effects, and the development of the Runge-Kutta formulation.

3.3.1 Elimination of Large Quantities from the Encke Equation for q_{n}

Substituting the expressions for $\frac{d \phi}{d t}$ and $\frac{d}{d \phi}\left(\frac{d \phi}{d t}\right)$ from equations (82) and (83) into the differential equation for q in equation (14), and multiplying by $\left(\frac{d \phi}{d t}\right)^{2}$ yields:

$$
\begin{gather*}
\left(\frac{d q}{d \phi}-\frac{2}{u} q^{2}\right)\left[A_{1}{ }^{2} u^{4}+2 A_{1} u^{2} v_{0}+v_{0}^{2}\right]+q\left(A_{1} u^{2}+V_{0}\right)\left[2 A_{1} u q+\frac{d A_{1}}{d \phi} u^{2}+V_{1}\right] \\
=-A_{1}^{2} u^{5}+\left(u^{2}+U_{1}\right) u^{2} \tag{90}
\end{gather*}
$$

where

$$
\begin{equation*}
U_{1}=-\left(u^{2}+\frac{\partial U}{\partial r}\right)=\varepsilon u^{4}\left(1-3 \cos ^{2} \theta\right)+c \varepsilon^{2} u^{6}\left(35 \cos ^{4} \theta-30 \cos ^{2} \theta+3\right)+a_{r} \tag{91}
\end{equation*}
$$

(arepresents accelerations in the outward radial direction in addition to those given in the analytical model).

Using the abbreviation:

$$
v_{3}=-v_{0} \frac{d q}{d \phi}\left[\frac{2}{A_{1} u^{2}}+\frac{v_{0}}{A_{1}^{2} u^{4}}\right]+\left[2 \frac{v_{0}}{A_{1} u^{3}} q^{2}-\frac{v_{1} q}{A_{1} u^{2}}-q \frac{d A_{1}}{d \phi} \frac{1}{A^{I}}\right]\left(1+\frac{V_{0}}{A_{1} u^{2}}\right)+\frac{u_{2} U_{1}}{A_{1}^{2} u^{4}}
$$

(92)
one obtains after dividing equation (90) by $A_{1}{ }^{2} u^{4}$:

$$
\begin{equation*}
\frac{d q}{d \phi}=-u+\frac{1}{A_{1}{ }^{2}}+v_{3} \tag{93}
\end{equation*}
$$

Using the expression for $\frac{d q_{0}}{d \phi}$ from equation (76) and adding and subtracting $\frac{\mathrm{d} q_{0}}{\mathrm{~d} \phi}$ gives:

$$
\begin{align*}
\frac{d q_{n}}{d \phi} \equiv \frac{d q}{d \phi}-\frac{d q_{o}}{d \phi}+\frac{d q_{o}}{d \phi}-\frac{d q_{a}}{d \phi} & =-u+u_{o}+\frac{\cos ^{2} i}{p^{2}}-\frac{\cos ^{2} i_{o c}}{p_{a}^{2}}+v_{3}-H \\
& +\frac{d q_{o}}{d \phi}-\frac{d q_{a}}{d \phi} . \tag{94}
\end{align*}
$$

Note that

$$
\begin{equation*}
\frac{1}{p^{2}}-\frac{1}{p_{a}^{2}}=\frac{p_{a}+p}{p^{2} p_{a}^{2}}\left(p_{a}-p\right)=-\frac{p_{n}}{p^{2} p_{a}^{2}}\left(p_{a}+p\right) \tag{95}
\end{equation*}
$$

and from reference 4, equation (401.13):

$$
\begin{gather*}
\cos ^{2} i-\cos ^{2} i_{o c}=-\sin \left(i+i_{o c}\right) \sin \left(i-i_{o c}\right) \\
=-\sin \left(i+i_{o c}\right) \sin \left(i_{n}+\varepsilon i_{1}\right) \tag{96}
\end{gather*}
$$

After substitution, the result is then:

$$
\begin{align*}
& \frac{d q_{n}}{d \phi}=-u_{n}-\varepsilon u_{1}+\frac{\cos ^{2} 1}{p^{2}}-\frac{\cos ^{2} i_{o c}}{p^{2}}+\frac{\cos ^{2} i_{o c}}{p^{2}}-\frac{\cos ^{2} i_{o c}}{p_{a}^{2}} \\
&+v_{3}-H-\varepsilon \frac{d q_{l}}{d \phi} \\
&=-u_{n}-\varepsilon u_{1}-\frac{1}{p^{2}} \sin \left(i+i_{o c}\right) \sin \left(i_{n}+\varepsilon i_{1}\right) \\
&-\cos ^{2} i_{o c} \frac{p_{a}+p}{p_{a}^{2} p^{2}} p_{n}+v_{3}-H-\varepsilon \frac{d q_{l}}{d \phi} \tag{97}\\
& \frac{d u_{n}}{d \phi}=q_{n} \tag{98}
\end{align*}
$$

All terms occurring in these equations are numerically small. However, this is not the completed form, since V_{3} contains the term $\frac{d q}{d \phi}$.

From equation (92), let

$$
\begin{equation*}
v_{3} \equiv-\frac{v_{0}}{A_{1} u^{2}} \frac{d q_{n}}{d \phi}\left(2+\frac{v_{0}}{A_{1} u^{2}}\right)+v_{3}^{\prime} \tag{99}
\end{equation*}
$$

Then

$$
\begin{gather*}
v_{3}^{\prime} \equiv-\frac{v_{0}}{A_{1} u^{2}} \frac{d q_{a}}{d \phi}\left(2+\frac{V_{0}}{A_{1} u^{2}}\right)+q\left(1+\frac{V_{0}}{A_{1} u^{2}}\right)\left[\frac{2 V_{0} q}{A_{1} u^{3}}\right. \\
\left.-\frac{V_{1}}{A_{1} u^{2}}-\frac{1}{A_{1}} \frac{d A_{1}}{d \phi}\right]+\frac{U_{1}}{A_{1}{ }^{2} u^{2}} . \tag{100}
\end{gather*}
$$

Note that $U_{1}=-a_{h}$ if the coefficient of the leading term of the potential is zeroed. From these two equations and equation (97), the final form for dq_{n} is:

$$
\begin{align*}
& \frac{d q_{n}}{d \phi}=\left[-u_{n}-\varepsilon u_{1}-\frac{1}{p^{2}} \sin \left(i+i_{o c}\right) \sin \left(i_{n}+\varepsilon i_{1}\right)\right. \\
& \left.-\cos ^{2} i_{o c} \frac{p_{a}+p}{p_{a}^{2} p^{2}} p_{n}+V_{3}^{\prime}-H-\varepsilon \frac{d q_{1}}{d \phi}\right] \cdot\left(1+\frac{V_{o}}{A_{1} u^{2}}\right) \tag{101}
\end{align*}
$$

3.3.2 Orientation of the Earth Beneath the Satellite

To find the effects of the tesseral and sectorial harmonics of the potential, the longitude of the satellite above the rotating earth must be known. Denoting the east longitude of the satellite as λ :

$$
\begin{equation*}
\lambda=\Omega+b-\lambda_{G}, \tag{102}
\end{equation*}
$$

where

$$
\begin{equation*}
\lambda_{G}=\lambda_{O G}+\omega_{E}\left(t-t_{0}\right) \tag{103}
\end{equation*}
$$

and

$$
\begin{gathered}
\lambda_{O G}=\begin{array}{c}
\text { longitude of Greenwich measured from } \\
\text { the equinox of } 1950 \text { at } t_{0}
\end{array} \\
\omega_{E}=\text { mean rational rate of the earth } \\
\Omega=\text { longitude of the node measured from the } \\
\text { equinox of } 19 \% 0 .
\end{gathered}
$$

b is given by the following sketch

From spherical trigonometry:

$$
\begin{equation*}
\cos b=\frac{\cos \phi}{\sin \theta} \tag{104}
\end{equation*}
$$

and b is in the same quadrant as ϕ except when $i=90^{\circ}$. In that case $b=0$ always.

3.3.3 Treatment of Time

The only reason that time is calculated in this program is to find the orientation of the rotating earth and the location of the sun and moon. Therefore, extreme accuracy in the time is not required. A simple approximate solution which includes the predominant effects will be used so that the numerical differential equation for time will be of the same order as those for the other parameters. This is done to keep the computing interval as large as possible for the complete system of equations. Since great accuracy is not necessary, no attempt will be made to analytically cancel the terms of order unity in the numerical differential equation.

The approximate solution chosen for the time is:

$$
\begin{align*}
& t_{a}=\frac{p^{3}}{\cos ^{3} i_{o O}\left(1-e_{o}^{2}\right)}\left\{\frac{-e_{0} \sin (\phi-\omega)}{\left(1+e_{0} \cos (\phi-\omega)\right.}\right. \\
& \left.+\frac{2}{\sqrt{1-e_{o}^{2}}} \tan ^{-1}\left[\frac{\sqrt{1-e_{0}}}{1+e_{0}^{2}} \tan \frac{(\phi-\omega)}{2}\right]\right\}+t_{o l} \tag{105}
\end{align*}
$$

where the $\tan ^{-1}[]$ is in the same quadrant as $\frac{(\phi-\omega)}{2}$.

The derivative of the approximate solution is simply:

$$
\begin{equation*}
\frac{d t_{a}}{d \phi}=\frac{p^{3}\left(1-\omega^{\prime}\right)}{\cos ^{3} i_{00}\left[1+e_{o} \cos (\phi-\omega)\right]^{2}} \tag{106}
\end{equation*}
$$

Now $t_{o l}$ is given by:

$$
\begin{align*}
& t_{o l}=\frac{p^{3}}{\cos ^{3} i_{00}\left(1-e_{o}^{2}\right)}\left\{\frac{e_{0} \sin \left(\phi_{i}-w\right)}{1+e_{o} \cos \left(\phi_{i}-w\right)}\right. \\
& \frac{-2}{\sqrt{1-e_{0}^{2}}} \tan ^{-1}\left[\frac{\sqrt{1-e_{o}}}{1+e_{0}} \tan \left(\frac{\phi_{i}-w}{2}\right)\right\}+t_{o} \tag{107}
\end{align*}
$$

3.3.4 Development of the Perturbative Accelerations Due to the Complete Potential

This description determines the perturbative gravitational acceleration of a spacecraft by means of the zonal, sectorial, and tesseral harmonic equalions found in reference 2 (pages 4-97, 4-98). These equations are as follows:

$$
a_{f}=\cos \phi \sum_{n=2}^{N 1}\left(J_{n} r^{-n-2}\right) \rho_{n}^{\prime}+\sum_{m=2}^{N 2} m r^{-m-2} \sin \phi\left(\sec \phi \rho_{m}^{m}\right)\left(c_{m m} \cos m \lambda+S_{m m} \sin m \lambda\right)
$$

NB NB

$$
\begin{equation*}
-\sum_{m=1} \sum_{n=m+1} r^{-n-2}\left(\cos \phi \rho_{n}^{m^{\prime}}\right)\left(C_{n m} \cos m \lambda+S_{n m} \sin m \lambda\right) \tag{108}
\end{equation*}
$$

$$
a_{g}=-\sum_{m=2}^{N 2} m r^{-m-2}\left(\sec \phi \rho_{m}^{m}\right)\left(C_{m m} \sin m \lambda-S_{m m} \cos m \lambda\right)
$$

NB NW

$$
\begin{equation*}
-\sum_{m=1}^{m} \sum_{n=m+1}^{r^{-n-2}}\left(\sec \phi \rho_{n}^{m}\right)\left(C_{n m} \sin m \lambda-S_{n m} \cos m \lambda\right) \tag{109}
\end{equation*}
$$

$$
\begin{align*}
a_{h}= & \sum_{n=2}^{N 1}(n+1)\left(J_{n} r^{-n-2}\right) \rho_{n}-\cos \phi\left[\sum_{m=2}^{N}(m+1) r^{-m-2}\left(\sec \phi \rho_{m}^{m}\right)\left(c_{m m} \cos m \lambda+s_{m m} \sin m \lambda\right)\right. \\
& \left.\quad \sum_{m=1}^{N 1} \sum_{n=m+1}^{N 3}(n+1) r^{-n-2}\left(\sec \phi \rho_{n}^{m}\right)\left(c_{n m} \cos m \lambda+S_{n m} \sin m \lambda\right)\right]
\end{align*}
$$

where:

$$
\begin{gather*}
\rho_{n}=\left[(2 n-1) \sin \phi \quad \rho_{n-1}-(n-1) \rho_{n-2}\right] / n \\
\rho_{0}=1 \tag{111}\\
\rho_{1}=\sin \phi
\end{gather*}
$$

$$
\begin{aligned}
\left(\sec \phi \rho_{m}^{m}\right)= & (2 m-1) \cos \phi\left(\sec \phi \rho_{m-1}^{m-1}\right) \\
& \left(\sec \phi \rho_{1}^{1}\right)=1
\end{aligned}
$$

$\left(\sec \phi \rho_{n}^{m}\right)=\left[(2 n-I) \sin \phi\left(\sec \phi \rho_{n-1}^{m}\right)-(n+m-1)\left(\sec \phi \rho_{n-2}^{m}\right)\right] /(n-m)$

$$
\begin{gather*}
\left(\sec \phi \rho_{m-1}^{m}\right)=0 \tag{113}\\
\left(\cos \phi \rho_{m}^{m^{\prime}}\right)=-m \sin \phi\left(\sec \phi \rho_{m}^{m}\right) \tag{114}
\end{gather*}
$$

$$
\left(\cos \phi \rho_{n}^{m^{\prime}}\right)=-n \sin \phi\left(\sec \phi \rho_{n}^{m}\right)+(n+m)\left(\sec \phi \rho_{n-1}^{m}\right)
$$

It is noted that the components of the acceleration are non-dimensional and in a local rectangular system (f, g, h) with h along the outward geocentric vertical, f directed south, and g directed east. Also, the recursion equations may be recognized as the Legendre polynomials, the rhos being the zonal set, and the secant rho and cosine rho comprising the sectorial and tesseral set.

The equations may be written in a more convenient form by substituting $U_{n m}$ for $\left(\sec \phi \rho_{n}^{m}\right), W_{n m}$ for $\left(\cos \phi \rho_{n}^{m}\right)$, and $V_{m m}$ for $\left(\sec \phi \rho_{m}^{m}\right)$; also $m \sin \phi\left(\sec \phi \rho_{m}^{m}\right)$ may be replaced by $-\left(\cos \phi \rho_{m}^{m^{\prime}}\right)$ in the sectorial term of a_{f}. Finally, if the degree of the highest sectorial harmonic (N2) is taken equal to the degree of the highest tesseral harmonic (N3), the sectorial and tesseral terms may be combined with the summation scheme being set at:
N2 n
$\Sigma \quad \Sigma$. The equations may then be written:
$n=2 \quad m=1$

$$
\begin{equation*}
a_{f}=\cos \phi \sum_{n=2}^{N 1}\left(\frac{J_{n}}{r^{n+2}}\right) \rho_{n}^{\prime}-\sum_{n=2}^{N 2} \sum_{m=1}^{n} \frac{1}{r^{n+2}} W_{n m}\left(C_{n m} \cos m \lambda+S_{n m} \sin m \lambda\right) \tag{115}
\end{equation*}
$$

$$
a_{g}=-\sum_{n=2}^{N 2} \sum_{m=1}^{n} \frac{m}{r^{n+2}} U_{n m}\left(C_{n m} \sin m \lambda-S_{n m} \cos m \lambda\right)
$$

$$
\begin{equation*}
a_{n}=\sum_{n=2}^{N 1}(n+1)\left(\frac{J_{n}}{r^{n+2}}\right) \rho_{n}-\cos \phi \sum_{n=2}^{N 2} \sum_{m=1}^{n} \frac{n+1}{r^{n+2}} U_{n m}\left(C_{n m} \cos m \lambda+S_{n m} \sin m \lambda\right) \tag{117}
\end{equation*}
$$

where the $\rho_{n}^{\prime \prime s}$ and $\rho_{n}^{\prime \prime s}$ are given in equations (111) and (112) and:

$$
\begin{gather*}
U_{\mathrm{rmm}}=(2 \mathrm{~m}-1) \cos \phi U_{\mathrm{m}-1}, \mathrm{~m}-1 \\
U_{11}=1 \tag{118}
\end{gather*}
$$

$$
\begin{gather*}
U_{n m}=\frac{1}{n-m}\left[(2 n-1) \sin \phi U_{n-1, m}-(n+m-1) U_{n-2, m}\right] \\
U_{m-1, m}=0 \\
W_{m m}=-m \sin \phi U_{m m} \tag{119}\\
W_{n m}=-n \sin \phi U_{n m}+(n+m) U_{n-1, m}
\end{gather*}
$$

3.3.5 Development of Luni-Solar Perturbations

The most difficult part of obtaining luni-solar perturbations would normally be encountered in obtaining the relative positions of the earth, moon, sun, and satellite at any particular time. This problem has been circumvented by utilizing the JPL Ephemeris Tapes and their associated tapereading routines to determine the positions of the earth, moon, and sun. These routines are described in detail in reference 5, and will not be discussed here.

The remaining problem is that of expressing the perturbative accelerations in the a_{f}, a_{g}, a_{h} reference frame adopted for the earth potential perturbations.

3.3.6 Development of Runge-Kutta Equations and Self-Computing Interval Scheme

The Runge-Kutta method is used for the numerical solution of the differential equations. The method is a simple extension of the methods for secondorder and first-order simultaneous equations given by Hildebrand (ref. 6, page 237) which are:

Given the simultaneous first-order equations:

$$
\begin{align*}
(6.16 .7)^{*} \quad & \frac{d y}{d x}
\end{align*}=F(x, y, u),
$$

[^2]the solution may be written as:
(6.16.8)
\[

$$
\begin{align*}
& y_{n+1}=y_{n}+\frac{1}{6}\left(k_{0}+2 k_{1}+2 k_{2}+k_{3}\right)+0\left(n^{5}\right) \\
& u_{n+1}=u_{n}+\frac{1}{6}\left(m_{0}+2 m_{1}+2 m_{2}+m_{3}\right)+0\left(h^{5}\right) \tag{121}
\end{align*}
$$
\]

where
(6.16.9)

$$
\begin{gather*}
k_{0}=h F\left(x_{n}, y_{n}, u_{n}\right), \\
k_{1}=h F\left(x_{n}+\frac{1}{2} h, y_{n}+\frac{1}{2} k_{0}, u_{n}+\frac{1}{2} m_{0}\right), \tag{122}\\
k_{2}=h F\left(x_{n}+\frac{1}{2} h, y_{n}+\frac{1}{2} k_{1}, u_{n}+\frac{1}{2} m_{1}\right), \\
k_{3}=h F\left(x_{n}+h, y_{n}+k_{2}, u_{n}+m_{2}\right),
\end{gather*}
$$

and
(6.16.10)

$$
\begin{gather*}
m_{0}=h G\left(x_{n}, y_{n}, u_{n}\right) \\
m_{1}=h G\left(x_{n}+\frac{1}{2} h, y_{n}+\frac{1}{2} k_{0}, u_{n}+\frac{1}{2} m_{0}\right), \tag{123}\\
m_{2}=h G\left(x_{n}+\frac{1}{2} h, y_{n}+\frac{1}{2} k_{1}, u_{n}+\frac{1}{2} m_{1}\right), \\
m_{3}=h G\left(x_{n}+h, y_{n}+k_{2}, u_{n}+m_{2}\right) .
\end{gather*}
$$

Given the second-order equation:
(6.16.11)

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}=G\left(x, y, y^{\prime}\right), \tag{124}
\end{equation*}
$$

The above equation can be written as two simultaneous first-order differential equations as:

$$
\begin{equation*}
\frac{d y}{d x}=u \tag{125}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{d u}{d x}=G(x, y, u) \tag{126}
\end{equation*}
$$

Then equation (6.16.9) gives:

$$
k_{0}=h y_{n}^{\prime}, \quad k_{1}=h y_{n}^{\prime}+\frac{h}{2} m_{0}, \quad k_{2}=h y_{n}^{\prime}+\frac{h}{2} m_{1}, \quad k_{3}=h y_{n}^{\prime}+h m_{2},
$$

and hence equations $(6.16 .8)$ and $(6.16 .10)$ give:

$$
\begin{align*}
& y_{n+1}=y_{n}+h y_{n}^{\prime}+\frac{h}{6}\left(m_{0}+m_{1}+m_{2}\right)+o\left(h^{5}\right), \tag{6.16.12}\\
& y_{n+1}^{\prime}=y_{n}^{\prime}+\frac{1}{6}\left(m_{0}+2 m_{1}+2 m_{2}+m_{3}\right)+0\left(n^{5}\right), \tag{127}
\end{align*}
$$

where

$$
\begin{gather*}
m_{0}=h G\left(x_{n}, y_{n}, y_{n}^{\prime}\right), \tag{6.16.13}\\
m_{1}=h G\left(x_{n}+\frac{1}{2} h, y_{n}+\frac{1}{2} h y_{n}^{\prime}, y_{n}^{\prime}+\frac{1}{2} m_{0}\right), \\
m_{2}=h G\left(x_{n}+\frac{1}{2} h, y_{n}+\frac{1}{2} h y_{n}^{\prime}+\frac{1}{4} h m_{0}, y_{n}^{\prime}+\frac{1}{2} m_{1}\right), \tag{128}\\
m_{3}=h G\left(x_{n}+h, y_{n}+h y_{n}^{\prime}+\frac{1}{2} h m_{1}, y_{n}^{\prime}+m_{2}\right) .
\end{gather*}
$$

After integration over two intervals of equal size, the results for the velocity components are compared with an integration over the same intervals using Simpson's rule which is also of fourth order accuracy. Simpson's rule is given on page 73 of reference 6 as:

$$
\begin{gather*}
\int_{x_{0}}^{x_{2}} f(x) d x=\frac{h}{3}\left(f_{0}+4 f_{1}+f_{2}\right)-\frac{h^{5} f^{I V}(\xi)}{90} \tag{129}\\
\text { where } x_{0}<\xi<x_{2}, \\
f_{0}=f\left(x_{0}\right), \quad f_{1}=f\left(x_{0}+\frac{h}{2}\right), \text { and } f_{2}=f\left(x_{2}\right)
\end{gather*}
$$

By virtue of the comparison between the two integrated results, decisions are made by the program concerning the accuracy of the integration, and the computing interval for the next two intervals is chosen. The logic underlying these program decisions will now be explained using one first-order differential equation as an example.

Let the differential equation to be solved be of the form:

$$
\begin{equation*}
\dot{x}=\dot{x}(t, x) \tag{130}
\end{equation*}
$$

If this equation is integrated over an interval, h, by Runge-Kutta methods of fourth order, then the numerical value of that function corresponds to a Taylor series expansion with an error term of $O\left(h^{5}\right)$, i.e.:

$$
\begin{equation*}
x_{n+1}=x_{n}+\dot{x}_{n} h+\ddot{x}_{n} \frac{n^{2}}{2!}+\frac{\ddot{x} n^{3}}{3!}+\frac{x^{I V} n^{4}}{4!}+0\left(n^{5}\right) \tag{131}
\end{equation*}
$$

The complete functional form of the coefficient of the error term is unknown, but it is known to contain x^{V}. For the purposes of this program, the coefficient of the fifth order term is assumed to be the next term in the Taylor series $\frac{x}{5!}$ and x^{V} is assumed to be a slowly varying function. The coefficient of the fifth order term in Simpson's rule is known to be $-\frac{x^{V}}{90}$. Thus, if we let x_{c} be the correct value of x at the end of the two equal intervals, and let $x_{R K}$ and $x_{S R}$ be the Runge-Kutta and Simpson's rule integrated values respectively, we may write:

$$
\begin{align*}
& x_{c}=x_{R K}+2\left(\frac{x_{h^{5}}}{5!}\right) \tag{132}\\
& x_{c}=x_{S R}-\frac{x_{h^{5}}}{90} \tag{133}
\end{align*}
$$

Eliminating x_{c} between these two equations and solving for x^{V} results in:

$$
\begin{equation*}
x^{v}=\frac{36\left(x_{S R}-x_{R K}\right)}{h^{5}} \tag{134}
\end{equation*}
$$

From equations (132) through (134) the error in the Runge-Kutta solution is estimated to be:

$$
\begin{equation*}
\delta x=\frac{3}{5}\left(x_{\mathrm{SR}}-x_{\mathrm{RK}}\right) \tag{135}
\end{equation*}
$$

A factor of $\frac{3}{5}$ is dropped in the use of this equation because an arbitrary constant is introduced at this point.

Letting $\Delta \dot{x}, \Delta \dot{y}, \Delta \dot{z}$ be the changes in the $\dot{x}, \dot{y}, \dot{z}$ values over the double interval, then what is required in the program is that:

$$
\begin{gather*}
E=\operatorname{maximum}(|\delta \dot{x}|,|\delta \dot{y}|,|\delta \dot{z}|)<E_{a l l}=\operatorname{maximum}\left(\left|W_{8}\right| C_{\max }\right), \tag{136}\\
10^{-9} \operatorname{maximum}(|\dot{x}|,|\dot{y}|,|\dot{z}|)
\end{gather*}
$$

where

$$
\begin{equation*}
c_{\max }=\operatorname{maximum}(|\Delta \dot{x}|,|\Delta \dot{y}|,|\Delta \dot{z}|) \tag{137}
\end{equation*}
$$

and W_{8} is an input number designed to require a series truncation greater than number truncation but as small as possible. An error which is less than 10^{-9} of the maximum of the absolute values of \dot{x}, \dot{y}, and \dot{z} is always acceptable since it will be lost in the first addition anyway because of the limits of machine word length.

If $E \leq \mathrm{E}_{\mathrm{all}}$, the computation proceeds. If $\mathrm{E}>\mathrm{E}_{\mathrm{all}}$, the last two steps are done over.

If E is greater than an input minimum error $E_{\min } \cdot C_{\max }$, then Δt is computed by:

$$
\begin{equation*}
\Delta t_{\text {new }}=F D T \cdot \Delta t_{\text {old }}\left(\frac{E_{\text {all }}}{E}\right) \cdot 25 \tag{138}
\end{equation*}
$$

If it assumed that $E_{a l l}=W_{8} C_{\max }=K \Delta t$ where K is some constant (since x is roughly proportional to Δt and $C_{\max }$ is normally proportional to Δx)
and $F D T=1$, then by equations (132), (135), and (136), $\Delta t_{\text {new }}$ would result in an error of exactly $E_{a l l} . F D T$ is an input number <1 to prevent $\Delta t_{\text {new }}$ from resulting in an error $E>E_{a l l}$ due to number truncation or changes of x^{V} over the two new intervals as compared to the x^{V} of the previous two intervals.

If $E<E_{\min } \cdot C_{\max }$, then it is assumed that the error in $X_{R K}$ is primarily due to number truncation in the computations. In this case equation (132) does not apply. The new computing interval is then computed by:

$$
\begin{equation*}
\Delta t_{\text {new }}=\Delta t_{\min } \cdot \Delta t_{\text {old }} \tag{139}
\end{equation*}
$$

where $\Delta t_{\min }$ is an input quantity >1.

Section 4

BLOCK FLOW CHART

Section 5

EQUATIONS IN ORDER OF SOLUTION, DETAIL FLOW CHARTS, AND PROGRAM LISTING

5.0 GENERAL

In the following sections, certain equations will not be repeated in the equations in order of solution due to their length. In this event, the equation number for the expression in Section 3, Sources of Equations, will be given. This avoids lengthy repetition and also links Sections 3 and 5.

In order to relate the FORTRAN coding and the analytical formalism, both the FORTRAN variable name and the equivalent algebraic expression are presented throughout Section 5. In some cases indices of an array are also used in the FORTRAN style using parentheses, i.e. $A(1)=A_{1}, A(I)=A_{i}$, etc.

5.1 MAIN PROGRAM

The main program serves mainly as a control program to convert input quantities to non-dimensional units for internal purposes, to control the flow to and from subroutines, and to print the results in the desired dimensions.

5.1.1 Equations in Order of Solution

I. Call Input Data, Store, and Modify for Internal Computation.
A. Non-dimensionalize input quantities and store necessary constants. Start clock to time the case (call TIKTOK). Read input array into storage using INPUT 1 routine with reference run capability. Store J_{2} and J_{4} in AJ2 and AJ4 for permanent use. Store nondimensional values of $w, \phi_{\mathrm{T}}, \mathrm{i}_{00}, \mathrm{~L}_{\mathrm{o}}, \phi_{\text {stop }}, \Delta \phi$, longitude of Greenwich, t_{0} and $\omega_{E}=$ EROT. Compute

$$
c=-\frac{J_{4}}{J_{2}^{2}}\left(\frac{5}{18}\right)
$$

Compute

$$
\varepsilon^{1 / 2}=\sqrt{\frac{3}{2} J_{2}}
$$

Place the coefficients of the potential in common by filling the array COEFF. Set the initial conditions of the numerical solution equal to zero. ($\operatorname{HAH}(i)=0,1=1,6)$. Save the initial time in DTSAVE.
B. Print the input array and the format heading for the regular output during operation.
C. Set initial values of flags.

Set Runge-Kutta flag $=1$ for Pirst cycle of Runge-Kutta.
Set IP = 1 for the first point of the trajectory.
Set KHALT $=1$ to show no halt.
Set $\operatorname{IPRINT}=2$ to initialize print flag.
II. Compute the Constants Required for the Approximate Solution and Its Derivatives.

Store the computed constants in labeled common /CON/ by calling subroutine CONST. Compute

$$
\begin{aligned}
& \bar{\phi}_{i}=\varepsilon^{3 / 2} \phi_{i}, \\
& \operatorname{DENK}(1)=2 \varepsilon, \\
& \operatorname{DENK}(2)=2 \varepsilon c, \\
& \operatorname{DENK}(3)=2 \varepsilon^{2} c
\end{aligned}
$$

III. Evaluate the Approximate Solutions and Their Derivatives for the Current Value of ϕ.

Store the approximate solutions as the array $\operatorname{AS}(6)$ and the derivatives of the approximate solutions as the array $A D(6)$ in labeled common /APS/ by calling subroutine APSOL.
IV. Sum Numerical and Approximate Solutions and Find the Change in Time. Store the sums of the numerical and approximate solutions for the six dependent variables in the array $\operatorname{DVT}(6)$.

Find

$$
D T=t_{T}-\text { DTSAVE }
$$

Save the total time in DTSAVE.
V. Evaluate the Encke Equations of Motion and Test for Print Store the values of the differential equations of motion in the array ENK(6) by calling subroutine ENCKE.
A. If the Runge-Kutta flag (KR) is 1 , go to $V B$, otherwise, call the Runge-Kutta routine at VI.
B. If the halt flag (KHALT) is 3 , go to VC for print computations and print, otherwise call the Runge-Kutta routine at VI.
C. Compute ϕ_{T}, i_{T}, Ω_{T}, in degrees. Compute t_{T} in hours and r_{T} in kilometers.
D. Check if energy print is desired.

If KDER is 2, go to VF; otherwise go to VE.
E. Calculate the total energy and print.

$$
\begin{aligned}
\text { TOTE }= & -u\left(2-\frac{p^{2} u}{\cos ^{2} i}\right)-\frac{2}{3} \varepsilon u^{3}\left(1-3 \cos ^{2} \theta\right) \\
& -c \varepsilon^{2} u^{5}\left[\cos ^{2} \theta\left(14 \cos ^{2} \theta-12\right)+1.2\right]+\left[\frac{q}{u^{2}} \frac{d \phi}{d t}\right]^{2}
\end{aligned}
$$

Print in three rows of six columns the approximate solutions AS (6), the numerical solutions $\operatorname{HAH}(6)$, the $\phi_{\text {TOTAL }}$ (deg), time (hours), radius (km), Ω (deg), i (deg), total energy (non-dimensional), e_{a}, and ω_{a} (non-dimensional). Go to VG.
F. Print in three rows of six columns, the approximate solutions AS (6), the numerical solutions $H A H(6)$, and the dimensional values of ϕ_{T}, $t_{T}, r_{T}, \Omega_{T}, i_{T}$, and the values e_{a}, and ω_{a} (non-dimensional).
G. Test halt flag.

If the halt flag (KHALT) is 1 or 2, go to VI. If the halt flag is 3 , go to I to start a new case.
H. Test print flag.

If the print flag (IPRINT) is 1 , set it equal to 2 and proceed to VC for print computation.

If the print flag (IPRINT) is 2 , set it equal to 1 and proceed as in VG.
VI. Call Runge-Kutta Routine and Test for Direction after Exit.

Find new values of the numerical solution and the independent variable, ϕ, by calling the Runge-Kutta routine RKTOM.

After exit:

```
A. If the Runge-Kutta flag (KR) is 1 , go to VII. If the Runge-Kutta flag (KR) is 2 or 4 , go to III. If the Runge-Kutta flag (KR) is 3, go to IV. If the Runge-Kutta flag (KR) is 5 , go to VH .
```

VII. If the Halt Flag (KHALT) is 2, start a new case by going to I. Otherwise, continue by going to IV.

Section 5.1.3 Program Listing

The following pages give the listing of the MAIN program.

C PROGRAM TO COMPUTE SATELLITE MOTION ABOUT A NON-SPHFRICAL CFNTRAL
C BODY INCLUDING LUNI-SOLAR PERTURRATIONS. MODIFIED FNCKE APPROACH
C USING KEVORKIAN OBLATE PLANFT SOLUTION AS THE RFFFRFNCF ORRIT. DIMENSION Z(125), RR(125),FNK (6), HAH(12), DVT(6)
EQUIVALENCE $(Z(84), P),(Z(85), E),(Z(93), M F A I L),(Z(94), F M A X)$, $1(Z(95), E M I N),(Z(96), D T M),(Z(99), L S),(Z(100), K 10 R 3),(E N K, H A H(7)$ $2,(Z(101), F D T),(Z(82), N 1),(Z(83), N 2),(Z(102), K D F R)$

COMMON /CON/ CI,CI2,CI4,SI,SI2,CS,TI,E2,E2C,EM2,P4,AB
$1, C R D, C 2 W, E P S 32, E P S 2, E P S 3, C 131, E O 2, E O 6, E O 3, A M 4, A C, A C S, A$
$2 \mathrm{CS} 32, A C 32, G 0, G 1, G 2, G 3, G 4, G 5, C 2 S P, C 2 S, B 2 S P, B 2 S, S 1 P, S 1$, 3 SOB, GAP 1P, GAP1,GAPOB,C2E, B2E,B2E2,E3K,C22E,PI, TWOPI, 4PIO2,IC,RK, XMOD, AMP, CW, QPER,PHIO,TW2,RMK,IE,GAMI,GOK, 5SOK,OSK2,OSK,E12,S1S,SORS ,ACSS ,C4F,A3,EPS $6, A C S 2, E M 22, E M 212, F F, A 3 F, T 01, P 2, A C C, A 6, X W, I W C, W O 2$
COMMON/CPOT/COEFF(81),N1,N2/APS/AS(6),REST(12)
COMMON/EX/QQ(3), EWOG,FPOT, DP (3)
COMMON/ENFRG/EE(6) / NERIV/OFNKI3)
C 1 CALL INPUT DATA, STORF AND MODIFY FOR INTERNAL COMPUTATIONS
C IA NON DIM INPUT QUANTITIFS AND FORM NECESSARY CONSTS.
1 CALL TIKTOK
CALL INPUT1(Z,Z(125),RR)
$A J 2=2(2)$
$A J 4=2(4)$
$R A D=017453293 \mathrm{E}-01$
$W=2(86) * R A D$
PHI=2(88)*RAD
PHIT $=$ PHI
$X I=Z(89) * R A D$
$X L 0=Z(90) * R A D$
PHISTP = Z (91)*RAD
DELPHI $=2(92) * R A D$
EWOG=2(97)*RAD
$T O=2(87) / .22411493$
$E R O T=Z(98) * 22411493$
$C=-27777777 * 2(4) /(Z(2) * 2(2))$
EPS12 =SQRT(1.5*2(2))
DO $10 \quad I=1,81$
$10 \operatorname{COEFF}(1)=2(1)$
DO $21 \quad I=1,6$
21 HAH(I) $=0.0$
DTSAVE $=T 0$
C IB PRINT INPUT ARRAY AND OUTPUT HEADING
WRITE (6.11)Z
11 FORMAT(5E19.8)
WRITE (6.12)
12 FORMATI $21 H$ OUTPUT FORMAT //
$140 H \quad A P P R O X . ~ S O L U T I O N S ~ A S(6) \quad(N O N-D I M)$
$240 H \quad$ NUMERICAL SOLUTIONS HAH(6)(NON-DIM)
348 H TOTAL PHI(DEG) T(HRS) R(KM) NONF (DFG) INC(DFG),
C IC SET INITIAL VALUFS OF FLAGS
$20 K R=1$

```
            IP=1
            KHALT=1
            IPRINT=2
    C II COMPUTE CONSTANTS REORD. FOR APPROX. SOL. AND DERIVATIVES
                CALL CONST(E,P,XI,C,EPSI2,W,PHI,TO,LS)
                PHI1B=PHI*EPS32
            DENK(1)= 2.*EPS
            DENK(2)=DFNK(1)*C
            DENK(3)= DFNK(2)*FPS
C III EVALUATE APPROX. SOLS. AND THEIR DERIVATIVES FOR PHI
        30 CALL APSOL(PHI,PHIT,IP, XI,XLO,TO,W,F,KIOR3,PHIIR,FPS17)
C IV SUM NUM. AND APPROX. SOLS. AND FINN IT
        40 DO 41 I=1.6
        41 DVT(I)=HAH(I)+AS(I)
            DT=DVT(6)-DTSAVE
            DTSAVE=DVT(6)
C V EVALUATF ENCKF EQS. OF MOTION
        50 CALL ENCKE(DVT(1),DVT(2),DVT(3),DVT(4),DVT(5),DVT(6),
            1 PH1,LS,DT,N2,HAH(3),HAH(1),HAH(5),P2,P,HAH(4),FNK,AJ2 ,AJ4 ,KDER)
C VA TEST RUNGE-KUTTA FLAG
            GO TO(51.60.60.60.60),KR
C VB TEST HALT FLAG
        51 GO TO (60,60,52), KHALT
C VH CHFCK PRINT FLAG
        54 GO TO(55,56), IPRINT
        55 IPRINT=2
C VC COMPUTATION FOR PRINT ANO PRINT
C CONVERT TO DIMFNSIONAL QUANTITIFS
    52 PHITD=PHIT/RAD
            XITD=DVT(3)/RAD
            OTD=DVT(2)/RAD
            TD=DVT(6)**22411493
            RD= 6378.1521/DVT(5)
CVD CHECK IF FNFRGY PRINT IS DFSIRFD
            GO TO (57.58),KDER
C VE CALCULATE ENERGY AND PRINT INCLUDING ENERGY
        57 TOTE=-DVT(5)*(2.-P2*DVT(5)/EE!1))-.66666667*EPS*
            1EE(2)*(1.-3.*EE(3))-EPS2*C*EE(4)*(EE(3)*(14**EE(3)-12.
            2)+1.2)+(DVT(4)*EE(5)/FE(6))**2
            WRITE(6,53) AS,(HAH(I),I=1,6),PHITD,TD,RD,OTD,XITD ,TOTE
            1,REST(12)*XW
                    GO TO 59
        53 FORMAT(6E15.8)
C VF PRINT WITHOUT FNERGY
        58WRITE(6,53) AS,(HAHII),1=1,6),PHITD,TD,RD,OTD,XITD,REST(12),XW
CVG TEST HALT FLAG
        59 GO TO (60,60,1),KHALT
C VI RUNGE-KUTTA
        60 CALL RKTOMIKR,IP,KHALT,PHISTP,HAH,EMIN,EMAX,MFAIL,FDT,DTM,DFLPHI,
            IPHIT, PHII
C TEST RUNGE-KUTTA FLAG
```

GO TO $170,30,40,30,54)$, KR
C VII TEST HALT FLAG
70 GO TO $(40,1,40)$, KHALT
56 IPRINT=1
GO TO $(60,60,1)$, KHALT END
5.2 SUBROUTINE CONST (E, P, XI, C, EPSI2, W, PHI, TO, LS)

Calculates constants which depend only on initial conditions and stores them in labeled common /CON/. Inputs are $e_{0}, p, i_{00}, c, \varepsilon^{1 / 2}, w^{*}, \phi_{0}$, t_{0}. and LS.

5.2.1 Equations in Order of Solution

I. Calculate Combinations of Constants Needed Frequently.
A. $P_{4}=p^{4}$
$C 2 W=\cos 2 W$
$C I=\cos i_{00} \quad E P S=\varepsilon$
$S I=\sin i_{00}$
EPS32 $=\varepsilon^{3 / 2}$
AM4 $=\frac{\cos ^{4} i_{00}}{p^{4}}$
EPS2 $=\varepsilon^{2}$
$C I 2=\cos ^{2} i_{00}$
EPS3 $=\varepsilon^{3}$
PHIB $=\bar{\phi}_{i}$
CI4 $=\cos ^{4} i_{00}$
Cl31 $=1-3 \cos ^{2} i_{00}$
$A B=\frac{\cos ^{8} i_{00}}{2 p^{8}}$
$\mathrm{EO2}=\frac{e_{0}}{2}$
$E 06=\frac{e_{0}}{6}$
$S I 2=\sin ^{2} i_{00}$
$E 03=\frac{e_{0}}{3}$
$E 2=e_{o}^{2} c$
$A C=\frac{\cos ^{5} i_{0 O}}{p^{4}}$
$T I=\tan i_{00}$
$C R D=1-5 \cos ^{2} i_{00}$
$A C S=\frac{\cos ^{5} i_{00} \sin ^{i_{0 O}}}{2 p^{5}}$

EM2 $=1-e_{0}^{2}$

$$
\begin{aligned}
& \operatorname{ACS} 32=\frac{5 \varepsilon^{3 / 2} \sin i_{o o} \cos ^{4} i_{o O}}{p^{4}} \\
& \operatorname{AC} 32=\frac{\varepsilon^{3 / 2} \cos ^{5} i_{00}}{p^{5}} \\
& G O=-1+3 \cos ^{2} i_{0 O}-\frac{e_{0}^{2}}{2}\left(1-5 \cos ^{2} i_{00}\right) \\
& \begin{array}{l}
G 1=\frac{e_{o}^{2}}{4}\left(1-3 \cos ^{2} i_{o O}\right) \\
G 2=-\left(\frac{\sin ^{2} i_{o O}}{3}-\frac{e_{0}^{2}}{3}+\frac{5}{6} e_{o}^{2} \sin ^{2} i_{o O}\right)
\end{array} \\
& G 3=\frac{e_{0}^{2}}{6}\left(1-9 \cos ^{2} i_{00}\right) \\
& G 4=-\frac{e_{0}}{12}\left(5-11 \cos ^{2} i_{0 O}\right) \\
& G 5=-\frac{e_{0}^{2}}{12}\left(1-3 \cos ^{2} i_{00}\right) \\
& \text { ACS2 }=A C S \cdot P \\
& \operatorname{c2SP}=C_{2}^{*}{ }^{\prime} \\
& \mathrm{C} 2 \mathrm{~S}=\mathrm{C}_{2}^{*} \\
& \operatorname{sIP}=S_{i} \\
& \mathrm{Sl}=\mathrm{S}_{1} \\
& \mathrm{~B} 2 \mathrm{SP}=\mathrm{B}_{2}^{* \prime} \\
& B 2 S=B_{2}^{*} \\
& S O B=\bar{S}_{0} \\
& \text { GAPIP }=K_{I}^{\prime} \\
& \text { GAPI }=k_{1} \\
& E 12=E_{1 / 2} \\
& \mathrm{~S} 1 \mathrm{~S}=\mathrm{s}_{1}^{2} \\
& \text { SOBS }=\bar{S}_{o}^{2} \\
& \text { GAPOB }=\bar{K}_{0} \\
& \operatorname{C2E}=\varepsilon^{2} C_{2}^{*} \\
& \mathrm{~B} 2 \mathrm{E}=\varepsilon^{2} \mathrm{~B}_{2}^{\mu} \\
& \mathrm{B} 2 \mathrm{E} 2=2 \varepsilon^{2} \mathrm{~B}_{2}^{*} \\
& E 3 K=\varepsilon^{3} K_{1} \\
& P 2=p^{2} \\
& \mathrm{C} 22 \mathrm{E}=\frac{2 \varepsilon^{2} \mathrm{C}_{2}^{*}}{\mathrm{p}^{2}} \\
& P I=\pi \\
& \text { TWOPI }=2 \pi \\
& \mathrm{PIO}=\frac{\pi}{2} \\
& A C C=\frac{5 \cos i_{00}}{A^{4} S_{i}} \\
& A 6=\frac{1}{2 A^{6}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { EM22 }=\sqrt{1-e_{0}^{2}} \\
& \text { EM212 }=\frac{2}{\sqrt{1-e_{0}^{2}}} \\
& E F=\frac{\sqrt{1-e_{0}^{2}}}{1+e_{0}} \\
& A 3 E=\frac{p^{3}}{\cos ^{3} i_{O O}\left(1-e_{0}^{2}\right)} \\
& A C S S=-\frac{\cos ^{5} i_{00} \sin ^{2} i_{O O}}{2 p^{4}} \\
& C 4 E=\left(\operatorname{C2E}^{2}\right. \\
& A 3=p^{3} / \cos ^{3} i_{O O}
\end{aligned}
$$

B. Calculate constants for time approximation.

$$
\begin{aligned}
& T 01=t_{o l}=\frac{p^{3}}{\cos ^{3} i_{00}\left(1-e_{0}^{2}\right)}\left\{\frac{e_{0} \sin \left(\phi_{i}-w\right)}{1+e_{0} \cos \left(\phi_{i}-w\right)}\right. \\
& \left.\frac{-2}{\sqrt{1-e_{0}^{2}}} \tan ^{-1}\left[\frac{\sqrt{1-e_{0}^{2}}}{1+e_{0}} \tan \left(\frac{\phi_{i}-w}{2}\right)\right]\right\}+t_{0}
\end{aligned}
$$

where

$$
\tan \left(\frac{\phi_{i}^{-w}}{2}\right)=\frac{\sin \left(\phi_{i}-w\right)}{1+\cos \left(\phi_{i}-w\right)}
$$

The $\tan ^{-1}$ is taken as the positive principal value and corrected to be in the same quadrant as $\frac{\phi_{i}-w}{2}$ by subprogram QUADI.

If $1+\cos \left(\phi_{1}-w\right)=0, \tan ^{-1}$ is set equal to $\frac{\pi}{2}$ and corrected for quadrant by subprogram QUAD1.
C. If lunisolar perturbations are to be considered, set tape control arrays.

If $L S=1$, set $T A B 1, T A B 2$, and $G M$ arrays, and continue. If $L S=2$, go to II.
II. Check Case Number for Perigee Calculation.

$$
\begin{aligned}
& \text { If }-\kappa_{1}<\bar{\kappa}_{0}<\kappa_{1} \text {, go to IIIA. } \\
& \text { If } \kappa_{1}=\bar{\kappa}_{0} \text {, go to IIIB. } \\
& \text { If } \bar{\kappa}_{0}>k_{1} \text {, go to IIIC. }
\end{aligned}
$$

III. Set Case Flag for Perigee Calculation and Evaluate Necessary Constants for Case in Question.

> A. Set

Calculate

$$
I C=1
$$

$$
\begin{aligned}
& \mathrm{RK}=\sqrt{2 k_{1}} \\
& \mathrm{XMOD}=k_{1}=\sqrt{\frac{\bar{k}_{0}+k_{1}}{2 k_{1}}} \\
& \mathrm{AMP}=\sqrt{\frac{k_{1}-\bar{k}_{0}}{k_{1}+\bar{k}_{0}}} \\
& \mathrm{CW}=\cos (w)
\end{aligned}
$$

If $\cos w=0$, set $C H I L S=w$, and go to A.2. Otherwise, continue.

1. $\left.\mathrm{CHII}=\tan ^{-1}\left[\frac{\kappa_{1}-\bar{\kappa}_{0}}{k_{1}+\bar{k}_{0}} \tan ^{2} w-1\right]\right]^{1 / 2}$

$$
\begin{gathered}
\text { CHIIS }=x_{1}^{*}=\text { CHIl adjusted for quadrant } \\
\text { (function QUADl) }
\end{gathered}
$$

2. $Q P E R=K$ (quarter-period of elliptic function)

$$
\text { PHIO }=\bar{\phi}_{0}= \pm \frac{F\left(x_{1}^{*}, k_{1}\right)}{\sqrt{2 k_{1}}}+\bar{\phi}_{i}
$$

(sign is chosen opposite sign of \bar{S}_{0})

Go to IV.

$$
\begin{aligned}
& \text { B. } \begin{array}{l}
\text { Set }=2 \\
\text { If } w=0 \text { or } \pi, \omega=\text { const. }=w, \text { and was stored in subroutine } \\
\text { CONST, set flag IWC }=1 \text { and go to IV. Otherwise, } \\
\text { calculate } \\
\text { RK }=\sqrt{2 \kappa_{1}} \\
\text { TW2 }=\left|\tan \frac{W}{2}\right|=\left|\frac{\sin W}{1+\cos W}\right|
\end{array}
\end{aligned}
$$

Set flag

$$
I W C=2, \quad W 02=\frac{W}{2}
$$

Go to IV.

C. Set

$$
I C=3
$$

Calculate

$$
\begin{aligned}
& \mathrm{RK}=\sqrt{\bar{k}_{0}+k_{1}} \\
& X M O D=k_{2}=\left[\frac{2 k_{1}}{k_{1}+\bar{k}_{0}}\right] \\
& R M K=\sqrt{\bar{K}_{0}-K_{1}} \\
& \operatorname{AMP}=\left[\frac{\bar{\kappa}_{0}^{-k_{1}}}{\frac{\bar{\kappa}_{0}+\kappa_{1}}{1 / 2}}\right]^{1} \\
& \text { If } \cos w=0 \text {, set CHI2S }=w \text {, and } \\
& \text { go to C.2. Otherwise, continue. } \\
& \text { 1. } \mathrm{CHI} 2=\tan ^{-1}\left[\left(\frac{\bar{\kappa}_{0}+\kappa_{1}}{\bar{\kappa}_{0}-\kappa_{1}}\right)^{1 / 2} \tan w\right] \\
& \text { CHI2S }=x_{2}=\text { CHI2 adjusted for quadrant } \\
& \text { (function QUADI) } \\
& \text { 2. } \quad \text { QPER }=K \text { (quarter-period of elliptic function) } \\
& \text { (function ELIPE) } \\
& \text { PHIO }=\bar{\phi}_{0}= \pm\left(\bar{x}_{0}+k_{1}\right)^{-1 / 2} F\left(x_{2}, k_{2}\right)+\bar{\phi}_{i} \\
& \text { (sign chosen opposite sign of } \overline{\mathrm{S}}_{0} \text {) }
\end{aligned}
$$

IV. Determine Which Form Will Be Used to Find e_{a}. Set Flag and Evaluate Necessary Constants.
A. If $\left|1-5 \cos ^{2} i_{00}\right| \leq 0.106$, go to IVC; otherwise go to IVB.
B. Set flag to use first form for $e_{a}(I E=1)$.

Go to V.
C. Calculate

$$
\text { GAMI }=\gamma_{1}=\frac{\mathrm{B}_{2}^{{ }^{\prime \prime}}}{\sin i_{00} \sqrt{k_{1}^{\prime}}}
$$

D. If $\bar{S}_{0}^{2} \leq \kappa_{1}$, continue; otherwise go to IVF.
E. Set flag to use second form for $e_{a}(I E=2)$. Calculate

$$
\begin{aligned}
& \text { GOK }=\frac{\bar{\kappa}_{0}}{\kappa_{1}} \\
& \text { SOK }=\frac{\bar{S}_{0}}{\sqrt{\kappa_{1}}}
\end{aligned}
$$

Go to V.
F. Set flag to use third form for $e_{a}(I E=3)$.

Calculate

$$
\text { OSK2 }=\frac{\kappa_{1}}{\bar{S}_{0}^{2}} \text { OSK }=\frac{\sqrt{\kappa_{1}}}{\bar{S}_{0}}
$$

V. Return to Main Program.
5.2.2 Detail Flow Chart
** Has transfer for $w=0$ or π, then $\omega=w=$ Const.

Section 5.2.3 Program Listing

The following pages give the listing of subroutine CONST.

SUBROUTINE CONSTIE,P,XI,C,EPSI2,W,PHI,TO,LS)
COMMON /CON/ CI,CI2,CI4,SI,SI2,CS,TI,F2,E2C,EM2,P4,AB 1,CRD,C2W,EPS32,EPS2,EPS 3,C131,E02,E06,FO3,AM4,AC,ACS,A 2 CS32,AC32,G0,G1,G2,G3,G4,G5,C2SP,C2S,B2SP,B2S,S1P,S1, 3 S08, GAP1P, GAP1,GAPOB, C2E, B2E, B2E2,F3K,C22E,PI, TWOPI, 4PIO2,IC,RK, XMOD, AMP, CW, OPER,PH1O, TW2,RMK,IE,GAMI,GOK, 5SOK, OSK $2, O S K, E 12, S 1 S, S O B S$, ACSS , C4F,A3,EPS
6,ACS2,EM22, EM212,EF,A3E,T01,P2, ACC,A6, XW, IWC,WO2
COMMON /TABLF/ TAB1(36), TAR2(13),GP(3,2),GM(2)
COMMON /APS/AS(6),AD(6),C2IOC,U1,XIOC,DQ1,XII
C IA STORE CONSTANTS USED FRFQUENTLY
P4 $=$ P** 4
$C 1=\cos (X I)$
SI $=\operatorname{SIN}(\times 1)$
$C I 2=C I * C I$
CI4 $=$ C12* C12
AM4 $=$ C14 /P4
$A B=.5 *$ AM4*AM4
SI2 $=$ SI*SI
$E 2=E * E$
$\mathrm{E} 2 \mathrm{C}=\mathrm{F} 2 * \mathrm{C}$
$C S=C I * S I$
$T I=S I / C I$
$C R D=1 .-50^{*}$ CI2
EM2 = 1.-E2
$C 2 W=\operatorname{Cos}(2 . * W)$
EPS=EPS12*EPS12
EPS32 $=$ EPS 12**3
EPS2 $=$ EPS 32* EPS12
EPS3 $=$ EPS 32* EPS32
PHIR=PHI*EPS32
C131 $=1 .-3 . * C 12$
$F O 2=F / 2$.
$E 06=E / 6$.
EO3 $=E / 3$.
$A C=C I * A M 4$
$A C S=.5 * S$ I*AC/P
ACS32 $=5 . * E P S 32 *$ AM4*SI
$A C 32=E P S 32 * A C / P$
GO $=-$ C131-E2*CRD*. 5
G1 $=$. 25* E2* CI31 *
G2 $=(E 2-S 121 / 3$. -.83333333* E2*S 12
$\mathrm{G} 3=E 2 *(.16666666-1.5 *(1)$
G4 $=\mathrm{E}$ * (11.* CI2-5.)/12.
G5 = - E2* C131/12.
$A C S 2=A C S * P$
$C 2 S P=A B *(1.5 * C-83333333 E-01+(1.25-10.5 * C) *(12)$
C2S = E2* CS* C2SP
S1P=AM4*(1.-7.5*C12)
Sl = TI * SIP
$B 2 S P=A B *(1.83333333 E-1-1.5 * C) * E M 2+C I 2 *(E M 2 * 12 * C$

```
            1-2.3333333+1.3333333*E2) +CI4*(-10.5*C*FM2 + 1.25
            2*(5.-E2)|
            B2S = F* R25P
            SOB = - CRD* AM4/(2**EPS12)
            GAP1P = S1P* C2SP
            GAP1 = E2* SI2 *GAP1P
            E12 = -B2S*SOB/GAP1
            S1S = S1*S1
            SOBS = SOB* SOB
            GAPOB = SOBS + GAPI* C?W
            C2E =EPS 2*C2S
            B2E = EPS 2 *B2S
            B2E2 = 2.* B2E
            F3K = EPS3* GAP1
            P2 =P*P
            C22F=2.*C2E /P2
            PI = 3.1415927
            TWOP1 =6.2831853
            PIO2 =1.5707963
            ACC = 5.*AC/S1P
            A6 = 5*CI*AC/P2
            EM22 = SQRT(EM2)
            EM212= 2./EM22
            FF=EM22/(1e+E)
            A3E = C12/(AC*P*FM2)
            ACSS=-FPS*ACS*P
            C4F=C FF*C\F
                A3=P2*P/(CI2*CI)
C IB CALCULATION OF CONST. FOR TIME APPROXIMATION
C CHECK IF ARC TAN IS PI/2
            CPMW = COS(PHI -W)
            SPMW = SIN(PHI-W)
            ZD = 10 + CPMW
            IF (ZD) 1,2.1
            2 TANG = PIO2
            GO TO 3
            1 TANG = ATAN(EF*ABS(SPMW)/ZN)
            3 ANG? = 5*(PHI -W)
            TANG = QUADIITANG,ANG2,PIO2,PI,TWOPI)
            TO1 = A3E*( E* SPMW/11.+F.*(PMW) -EM212* TANG) + TO
C IC IF LUNI-SOLAR PERT. CONSIDERED, SET TAPE CONTROL ARRAYS
            GO TO (4.20),LS
C GLOSSARY
C TABI(7) = GM(FARTH) IN KM***/SEC**?
C TABI(21)=GM(SUN) IN KM**3/SEC**2
C TAB1(23)=GM(MOON) IN KM**3/SEC**2
C TAB1(25)=A.U. IN KM
C TAR1(27)= CONV.FACTOR FOR LUNAR COORDS.(KM) (FICT.FARTH RADIUS)
C TAB1(33)= SECONDS/ MFAN SOLAR DAY
C (TAB2 CONTAINS FPHEM.TAPF OUTPUT CONTROL FLAGSI
            4 DO 100 K = 1.36
```

```
    100 TABl(K) = 0.
    TAB1(7) = 398603.2
    TAB1(21)=1.3271544 E11
    TAB1(23)=4902.7779
    TAB1(25)= 1.49599 F8
    TAB1(27)=6378.327
    TAB1(33)= 86400.
    DO 101 K = 1,13
    101 TABP(K) = 0.
    TAB?(3) = 1.
    TAB2(10)=1.
    TAB2(11)=1.
    GM(1) = TAB1(21)
    GM(2) = TAB1(23)
C II CHECK CASE NO. FOR PERIGEE CALC.
    20 IF (GAP1- GAPOB) 32.31.30
C IIIA COMPUTE CONSTANTS FOR CASE 1
    30 IC =1
    RK = SQRT(2.* GAP1)
    XMOD = SQRT(GAP1 +GAPOR)/RK
    AMP = SORT((GAP1-GAPOR)/(GAP1+GAPOR))
    CW = COS(W)
    IFICW) 34:33,34
    33 CHIIS= W
    GO TO 35
C III Al
        34 CHIl= ATANISQRT((SIN(W)/(AMP*(W))**2 -1.))
            CHIIS = QUADI(CHII,W,PIO2,PI,TWOPI)
C III A2
        35 QPER = ELI'DE (XMOD)
            PHIO = - ELIICHIIS, QPER)/SIGN(RK,SOB)+PHIB
            IWC= 2
            GO TO 40
C IIIR COMPUTF CONSTANTS FOR CASF?
        31 IC = 2
    C IF PERIGEE INITIALLY O OR PI, IT IS CONSTANT
    SW = SIN(W)
            IF (SW) 311,310,311
    310 XW = W
            IWC = 1
            GO TO 40
    311 RK = SQRT(2.*GAP1)
    TW2=ARS(SW/11.+COS(W)))
    WO2 = W/2.
    GO TO 40
C IIIC COMPUTF CONSTANTS FOR CASF 3
    32 1C = 3
            RK = SORT(GAPOB+GAP1)
            XMOD = SORT(2.*GAP1)/RK
            RMK = SORT(GAPOR- GAP1)
            AMP = RMK/RK
```

```
            CW = cos(w)
            IF (CW)37.36.37
    C III Cl
        36 CHITS = W
        GO TO 28
    37CHI2 = ATANI ARSISIN(W)/(AMP*(W)))
        CHI2S = QUADI(CHI2,W,PIOZ,PI,TWOPI)
C 111 C2
    38 QPER = FLIPF (XMOD)
            PHIO = -FLI (CHI2S, QPFR)/ SIGN(RK,SOB) +PHIB
C IV DETERMINE FORM FOR FA,FVALUATE CONSTANTS
C IV A
    40 IF (ARS(CRD)-.106) 42,42.41
    C IV B
        41 IE =1
            GO TO 50
    C IV C
    42 GAMI= B2SP/(SI *SORT(GAPID))
C IV D
            IF (SOBS- GAPI) 43,43,44
    C IV E
        43 IE = 2
            GOK = GAPOB/GAP1
            SOK = SOR/SQRT(GAP1)
            GO TO 50
C IV F
        44 IE = 3
            OSK2 = GAP1/SOBS
            OSK = SQRT(OSK2)
c v
C STORE APPROX. SOL. AND DFRIV. FOR P
    50 AS(1)=P
                AD(1)=0.0
            RETURN
            END
```

5.3 SUBROUTINE APSOL (PHI, PHIT, IP, XIO, XLO, TO, W, E, KIOR3, PHIIB, EPSI2)

Calculates approximate solutions and necessary derivatives for the desired angle ϕ. Inputs are ϕ (modded to 2π each time it is stepped), ϕ_{T} (total Φ unmodded), lst point flag ($=1$ if lst point $=2$, otherwise); initial values of $p, i_{\infty 0}, L_{0}, t, \omega$, and e; flag to determine perigee center of oscillation, $\bar{\phi}_{i}$, and $\varepsilon^{1 / 2}$. Outputs are in common /APS/ as arrays $\operatorname{AS}(6), \operatorname{AD}(6)$ for approximate solutions and derivatives. $\operatorname{AS}(1)=p_{a}, \operatorname{AS}(2)=\Omega_{a}, A S(3)=i_{a}$, $\operatorname{AS}(4)=q_{a}, \operatorname{AS}(5)=u_{a}, A S(6)=t_{a}, \quad A D(1)=\frac{d p_{a}}{d \phi}=0, A D(2)=\frac{d \Omega}{d \phi}, A D(3)=\frac{d i_{a}}{d \phi}$. $A D(4)=\frac{d q_{a}}{d \phi}, A D(5)=H, A D(6)=\frac{d t_{a}}{d \phi}$. Other outputs are $C 2 I O C=\cos ^{2} i_{o c}$. $X I I=\varepsilon i_{1}, U I=\varepsilon u_{1}, X I O C=i_{O C} . \quad D Q 1=\frac{\varepsilon d q_{1}}{d \phi} . \quad$ Uses as input labeled common /CON/ to provide all the constants obtained in CONST.

5.3.1 Equations in Order of Solution

Calculate

$$
\begin{aligned}
\text { PHIB } & =\bar{\phi} \\
\text { PHIBT } & =\bar{\phi}_{T}
\end{aligned}
$$

I. Determine if This is the First Point of the Trajectory.
A. If this is the first point oi the trajectory ($I P=1$), go to $I B$; otherwise (IP = 2) go to II.
B. Set some of the approximate solutions equal to the initial conditions.

$$
t_{a}=t_{i}, i_{o l / 2}=0, e_{1 / 2}=0, \omega=w
$$

Combine L_{0} and $L_{1 / 2}$ constants and store in L_{0} location. Go to III.
II. Determine the Case Number for Calculating the Perigee (IC is the Case Number).

$$
\begin{aligned}
& \text { If } I C=1, \text { go to IIA. } \\
& \text { If } I C=2 \text {, go to IIB. } \\
& \text { If IC }=3 \text {, go to IIC. }
\end{aligned}
$$

A. Calculate ω from case 1 formula.

If $\mathrm{cn}=0$, set $\omega=\frac{\pi}{2}$ and go to QUAD2; otherwise,

$$
X W=\omega=\tan ^{-1}\left\{\left[\frac{\kappa_{1}-\bar{\kappa}_{0}^{1 / 2}}{\kappa_{1}+\bar{\kappa}_{0}} \frac{1}{\operatorname{cn}\left[\sqrt{2 \kappa_{1}}\left(\bar{\phi}-\bar{\phi}_{0}\right)\right]}\right\}\right.
$$

Adjust this ω to the proper quadrant by using QUAD2.

$$
\omega=\text { QUAD2 }\left(\omega, z_{1}, K, K 1 O R 3, \pi\right)
$$

Go to III.
B. If $W=0$ or π, (IWC $=0)$; go to III. Otherwise, calculate ω from case 2 formula.

$$
X W=\omega=2 \tan ^{-1}\left\{e^{\operatorname{sign}\left(\bar{S}_{o}\right) \sqrt{2 \kappa_{1}}\left(\bar{\phi}-\bar{\phi}_{i}\right)} \tan \frac{w}{2}\right\}
$$

Adjust the quadrant of ω using QUAD1.

$$
\omega=2 \text { QUADI }\left(\frac{\omega}{2}, \frac{\omega}{2}, \frac{\pi}{2}, \pi, 2 \pi\right)
$$

Go to III.
C. Calculate ω from case 3 formula. If $\mathrm{c}=0$, set $\omega=\frac{\pi}{2}$ and skip calculation. Otherwise, calculate

$$
\omega=\tan ^{-1}\left\{\left[\frac{\bar{k}_{0}-k_{1}}{\bar{k}_{0}+k_{1}}\right] \frac{\left[1-\operatorname{cn}^{2}\left(z_{2}\right)\right]^{1 / 2}}{\operatorname{cn}\left(z_{2}\right)}\right\}
$$

Adjust ω to correct quadrant using QUADl and the elliptic function quarter-period K.

$$
\omega=\text { QUADI }\left(\omega, z_{2}, K, \pi, 2 \pi\right)
$$

Reduction of Entries to Trig Functions for Approximate Solutions and Derivatives.

$$
\begin{gathered}
\mathrm{CP}=\cos \phi \\
\mathrm{SP}=\sin \phi \\
\mathrm{CXW}=\cos \omega \\
\mathrm{SXW}=\sin \omega \\
\mathrm{S} 2 \mathrm{P}=\sin 2 \phi=2(\mathrm{CP})(\mathrm{SP}) \\
\mathrm{C} 2 \mathrm{P}=\cos 2 \phi=2(\mathrm{CP})^{2}-1 \\
\mathrm{~S} 2 \mathrm{XW}=\sin 2 \omega=2(\mathrm{CXW})(\mathrm{SXW}) \\
\mathrm{C} 2 \mathrm{XW}=\cos 2 \omega=2(\mathrm{CXW})^{2}-1 \\
\mathrm{CPPW}=\cos (\phi+\omega)=(\mathrm{CP})(\mathrm{CXW})-(\mathrm{SP})(\mathrm{SXW}) \\
\mathrm{SPPW}=\sin (\phi+\omega)=(\mathrm{SP})(\mathrm{CXW})+(\mathrm{CP})(\mathrm{SXW}) \\
\mathrm{CPMW}=\cos (\phi-\omega)=(\mathrm{CP})(\mathrm{CXW})+(\mathrm{SP})(\mathrm{SXW}) \\
\mathrm{SPMW}=\sin (\phi-\omega)=(\mathrm{SP})(\mathrm{CXW})-(\mathrm{CP})(\mathrm{SXW}) \\
\mathrm{C} 2 \mathrm{PMW}=\cos 2(\phi-\omega)=2 \cos { }^{2}(\phi-\omega)-1=2(\mathrm{CPMW})^{2}-1 \\
\mathrm{~S} 2 \mathrm{PMW}=\sin 2(\phi-\omega)=2 \sin (\phi-\omega) \cos (\phi-\omega)=2(\mathrm{CPMW})(\mathrm{SPMW}) \\
\mathrm{C} 3 P M W=\cos (3 \phi-\omega)=\cos 2 \phi \cos (\phi-\omega)-\sin 2 \phi \sin (\phi-\omega) \\
=(\mathrm{C} 2 P)(\mathrm{CPMW})-(\mathrm{S} 2 P) \mathrm{SPMW}) \\
\mathrm{S} 3 \mathrm{PMW}=\sin (3 \phi-\omega)=\sin 2 \phi \cos (\phi-\omega)+\cos 2 \phi \sin (\phi-\omega) \\
=(\mathrm{S} 2 P)(\mathrm{CPMW})+(\mathrm{C} 2 P)(\mathrm{SPMW})
\end{gathered}
$$

$$
\begin{gathered}
\text { C4PMW }=\cos (4 \phi-2 \omega) \\
=\cos (3 \phi-\omega) \cos (\phi-\omega)-\sin (3 \phi-\omega) \sin (\phi-\omega) \\
=(\mathrm{C} 3 \mathrm{PMW})(\mathrm{CPMW})-(\mathrm{S} 3 \mathrm{PMW})(\mathrm{SPMW}) \\
\mathrm{S} 4 \mathrm{PMW}=\sin (4 \phi-2 \omega) \\
=\sin (3 \phi-\omega) \cos (\phi-2 \omega)+\cos (3 \phi-2 \omega) \sin (\phi-\omega) \\
=(\mathrm{S} 3 \mathrm{PMW})(\mathrm{CPMW})+(\mathrm{C} 3 \mathrm{PMW})(\mathrm{SPMW})
\end{gathered}
$$

III. Calculate approximate nodal solution.

$$
\begin{align*}
& 0 \mathrm{MEOO}=\Omega_{00} \tag{31}\\
& \text { OME012 }=\Omega_{01 / 2} \tag{32}\\
& \text { OME32 }=\Omega_{3 / 2} \tag{33}\\
& \Omega_{a}=\frac{1}{\varepsilon^{1 / 2}}\left[\Omega_{00}+\varepsilon^{1 / 2} \Omega_{01 / 2}+\varepsilon^{3 / 2} \Omega_{3 / 2}\right]+L_{0}
\end{align*}
$$

Calculate

$$
\begin{equation*}
\text { XII }=\varepsilon i_{1} \tag{38}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{Ul}=\varepsilon u_{1} \tag{58}
\end{equation*}
$$

Calculate
$T A=t_{a}=\frac{p^{3}}{\cos ^{3} i_{o O}\left(1-e_{o}^{2}\right)}\left\{\frac{-e_{o} \sin (\phi-\omega)}{1+e_{o} \cos (\phi-\omega)}+\frac{2}{\sqrt{1-e_{o}^{2}}} \tan ^{-1}\left[\frac{\sqrt{1-e_{o}^{2}}}{1+e_{o}} \tan \left(\frac{\phi-\omega}{2}\right)\right]+t_{o l}\right.$
providing $\tan \left(\frac{\phi-\omega}{2}\right) \neq \infty$. If it does, take $\tan ^{-1}(\infty)=\frac{\pi}{2}$.
Take the positive principal $\tan ^{-1}$ and find correct quadrant using QUAD1. Save the number of complete revolutions and add this to the QUADI result.
IV. Decide Which Equations Will be Used to Calculate $i_{o l / 2}$ and $e_{1 / 2}$.

$$
\begin{aligned}
& \text { If } I E=1, \text { go to IVA. } \\
& \text { If } I E=2 \text {, go to IVB. } \\
& \text { If } I E=3 \text {, go to IVC. }
\end{aligned}
$$

A. Calculate

$$
A A=\frac{[\cos 2 w-\cos 2 \omega]}{\bar{S}_{0}+\operatorname{sign}\left(\bar{S}_{0}\right) \sqrt{\bar{k}_{0}-k_{1} \cos 2 \omega}}
$$

then

$$
\begin{aligned}
& \text { ESI2 }=e_{1 / 2}=B_{2}^{*} \cdot \mathrm{AA} \\
& \text { XII2 }=i_{01 / 2}=C_{2}^{*} \cdot A A
\end{aligned}
$$

Go to V.
B. Calculate

$$
\begin{aligned}
i_{01 / 2} & =\frac{1}{S_{1}}\left[\operatorname{sign}\left(\bar{S}_{0}\right)\left(\bar{\kappa}_{0}-\kappa_{1} \cos 2 \omega\right)^{1 / 2}-\bar{S}_{0}\right] \\
e_{1 / 2} & =\gamma_{1}\left[\operatorname{sign}\left(\bar{S}_{0}\right) \sqrt{\left.\frac{\bar{k}_{0}}{\kappa_{1}} \cos 2 \omega-\frac{\bar{S}_{0}}{\sqrt{\kappa_{1}}}\right]}\right.
\end{aligned}
$$

Go to V.
C. Calculate

$$
i_{01 / 2}=\frac{1}{s_{1}}\left[\operatorname{sign}\left(\bar{s}_{0}\right)\left(\bar{\kappa}_{0}-\kappa_{1} \cos 2 \omega\right)^{1 / 2}-\bar{s}_{0}\right]
$$

$$
e_{1 / 2}=\gamma_{1} \frac{\sqrt{\kappa_{1}}}{\bar{s}_{0}} \frac{(\cos 2 w-\cos 2 \omega)}{1+\sqrt{1+\frac{\bar{\kappa}_{1}}{\bar{S}_{0}^{2}}(\cos 2 w-\cos 2 \omega)}}
$$

V. Calculate

$$
\begin{gathered}
X I O C=i_{o c}=i_{O O}+\varepsilon^{1 / 2} i_{O L / 2} \\
X I A=i_{a}=i_{O C}+\varepsilon i_{l} \\
E A=e_{a}=e_{o}+\varepsilon^{1 / 2} e_{1 / 2} \\
U A=u_{a}=u_{o}+\varepsilon u_{1}
\end{gathered}
$$

VI. Calculate the Derivatives and Second-Derivatives of the Approximate Solutions Which are Necessary to Find the Modified-Encke Equations.

These are:

$$
\begin{gather*}
\text { DOMEO }=\frac{1}{\varepsilon^{I / 2}} \frac{d \Omega_{O O}}{d \phi} \tag{63}\\
D W B=\frac{d \omega}{d \bar{I}} \tag{65}\\
D W=\frac{d \omega}{d \phi}=\varepsilon^{3 / 2} \frac{d \omega}{d \bar{~}} \\
\text { DOME12 }=\frac{d \Omega_{O} 1 / 2}{d \phi} \tag{66}\\
\text { DOME32 }=\frac{d \Omega_{3 / 2}}{d \phi} \tag{67}
\end{gather*}
$$

$$
\begin{align*}
& A D(2)=\frac{\mathrm{d} \Omega_{a}}{\mathrm{~d} \phi} \tag{62}\\
& A D(3)=\frac{d 1_{a}}{d \phi} \tag{69}\\
& D E A=\frac{d e_{a}}{d \phi} \tag{72}\\
& \operatorname{DU1}=\frac{d u_{1}}{d \phi} \tag{74}\\
& \mathrm{D} 2 \mathrm{~W}=\frac{\mathrm{d}^{2} \omega}{\mathrm{~d} \phi^{2}} \tag{79}\\
& \text { D2EA }=\frac{d^{2} e_{a}}{d \phi^{2}} \tag{78}\\
& \text { EPD2IO }=\varepsilon^{1 / 2} \frac{\mathrm{~d}^{2} i_{0}^{*} 1 / 2}{d \phi^{2}} \tag{80}\\
& \operatorname{AS}(4)=q_{a} \tag{60}\\
& \mathrm{DQ1}=\varepsilon \frac{\mathrm{dq}}{\mathrm{~d}}{ }_{\mathrm{d}} \tag{81}\\
& \text { DSIOC }=\sin i_{o c} \frac{d i_{o c}}{d \phi}=\varepsilon^{1 / 2} \sin i_{o c} \frac{d i_{o l} 1 / 2}{d \phi} \tag{70}\\
& \mathrm{H}=\mathrm{H} \tag{77}\\
& D T A=\frac{d t_{a}}{d \phi} \tag{106}\\
& D Q O=\frac{d q_{0}}{d \phi} \tag{76}
\end{align*}
$$

If this is first point of trajectory (IP = 1), print initial values of Ω (deg), $i(d e g), u$, and q and return.

If this is not the first point ($I P=2$), skip the print and return.

* Includes Transfer to Obtain $\frac{\pi}{2}$ for $\tan ^{-1}(\infty)$

Section 5.3.3 Program Listing

The following pages give the listing of subroutine APSOL.

```
            SUBROUTINE APSOLIPHI,PHIT,IP,XIO,XLO,TO,W,F,KIOR3,PHIIR,FPS121
            COMMON /CON/ CI,C12,C14,S1,S12,CS,T1,F2,F2C,FM2,P4,AR
        1,CRD,C2W,EPS32,EPS2,EPS3,C131,EO2,FO6,FO3,AM4,AC,ACS,A
        2 CS32,AC32,GO,G1,G2,G3,G4,G5,C2SP,C2S,B2SP,B2S,S1P,S1,
        3SOB,GAP1P,GAP1,GAPOB,C2E,B2E,B2E2,E3K,C22E,PI,TWOPI,
        4PIO2,IC,RK,XMOD,AMP,CW,QPER,PHIO,TW2,RMK,IE,GAMI,GOK,
        5SOK,OSK2,OSK,E12,S1S,SOBS ,ACSS ,C4E,A3,EPS
        6,ACS2,EM22,EM212,EF,A3E,TO1,P2,ACC,A6,XW,IWC,WO2
        COMMON /APS/AS(6),AD(6),C2IOC,U1,XIOC,DQ1,XII,EA
        PHIB = PHI* EPS32
        PHIRT = PHIT *FPS32
C I IS THIS IST POINT
            GO TO (10,20 1.IP
C IB SET APPROX. SOLS. = INITIAL CONDITIONS
    10 TA = TO
            XI12=0.0
                ES12=0.0
            XW=W
C COMBINE LO AND LI/2 CONSTANTS
    XLO=XLO+ACC*(SOB*PHIRT-XW)
    GO TO 30
CII DETERMINE PERIGFE CASF NO. (IC)
    20 GO TO (21,25,28). IC
C IIA CALCULATF PFRIGEE RY CASE I FORMULAS
    21 ANG = RK* (PHIBT-PHIO)
    CN = SQRTI1.-(FLIFIANG )\**2)
    IF (CN) 23.22,23
C IF PERIGEE SHOULD BF PI/2, FLIMINATF ARC TAN
    22 XW = PIO2
    GO TO 24
    23 XW = ATANI AMP/CN I
    24 XW = QUAD2(XW,ANG,QPER,K1OR3,PI)
            GO TO 30
C IIB CALCULATE PERIGFF BY CASF 2 FORMULAS
C CHECK IWC TO SEF IF PFRIGFF IS CONSTANT
        25 GO TO (30,26),IWC
    26 ANG = RK*(PHIRT -PHIIR)
            XW = ATANI TW2 *FXP(STGN(ANG,SORI)I
            XW = 2.*QUADIIXW,WO2,PIO2,PI,TWOPII
            GO TO 30
C IIC CALCULATE PERIGEE BY CASE 3 FORMULAS
    28 22 = RK*(PHIBT-PHIO)
            SN = ABS(ELIF(Z2))
            CN = SQRT(1. - SN*SN)
C IF PERIGEE SHOULD BE FI/2 , ELIMINATE ARC TAN
            IF (CN)290.29.290
        29 XW = P1O2
            GO TO 28O
    290 XW = ATAN( AMP*SN/CN)
        280 XW = QUA\cap1(XW,Z2,QPFP,PI,TWOPI)
C 11I
```

```
C CALCULATE TRIG TERMS FOR SOLS. AND DERIVATIVFS
    30 SP = SIN(PHI)
        CP= COS(PHI)
        CXW = COS (XW)
        SXW = SIN(XW)
        S2P=2**CP*SP
        C2P= 2.* CP*CP - 1.
        S2XW = 2.*SXW*CXW
        C2XW = 2.*CXW*CXW-1.
        CPPW =(CP*CXW)-(SP*SXW)
        SPPW =(SP*CXW)+(CP* SXW)
        CPMW = (CP* CXW)+(SP*SXW)
        SPMW = (SP*CXW)-(CP*SXW)
        C2PMW = 2.* CPMW*CPMW-1.
        S2PMW = 2.*CPMW *SPMW
        C3PMW = C2P*CPMW - S2P*SPMW
        S3PMW = S2P*CPMW +C2P* SPMW
        C4PMW = C3PMW*CPMW -S 3PMW *SPMW
        S4PMW = S3PMW *CPMW + C3PMW *SPMW
C CALCULATE APPROX. NODAL SOLUTION
    OMFOO = - AC*PHIRT
    OMEO12 = -ACC*(SOB* PHIRT-XW)
    OME 32 =-AC*(-.5*S2P+F*SPMW-FO2*SPPW -FO6*S 2PMW)
    OMEGA = OMEOO/EPS 12 +OMEO12 +EPS*OME 32+XLO
C CALCULATE II APPROXIMATION
    XII = ACS2*(C2P+E*CPPW +EO3* C3PMW)*FPS
C CALCULATE Ul APPROXIMATION
    Ul=A6*(GO+G1*C2XW+G2*C2P+G3*C2PMW+G4*C3PMW+G5*C4PMW)
    1 #EPS
    GO TO (50.300) IP
C CALCULATE ADPROX. TIMF TA
C CHFCK FOR ZFRO DIVISOR IN ARC TAN
    300 2D = 10+ CPMW
        IF (2D) 31,32.31
        32 TANG = PIO2
        GO TO 33
        31 TANG = ATAN(EF* ABS(SPMW)/ZD)
        33 ANG2 =(PHIT-XW)/2.
        ANG3=ANG2
        TANG = AINTIANG3/TWOPII*TWOPI +QUADI(TANG,ANG2.PIO2,
        1PI TWOPI)
            TA =A3E*(-E*SPMW/110+F*(PMW)+EM212*TANG) + T01
C IV CHFCK FORM OF F AND I FOUATIONS
    SQ = SQRT(GAPOB- GAPI*C2XW)
    GO TO (40.41,42). IF
C IVA CASE 1
        40 AA = (C2W-(2XW)/(SOB+SIGN(SQ,SOB))
    ES12= B2S* AA
    XI12= C2S* AA
    GO TO 50
C IBV CASE 2
```

41 SQ1= SQRTIGOK *C2XW)
XII2 $=(S I G N(S Q, S O B)-S O R I / S 1$
FSI2 $=$ GAMI*(SIGN(SQ1,SOR)-SOK)
GO TO 50
C IVC CASE 3
$42 \times 112=(S I G N(S Q, S O B)-S O B) / S 1$
$C M C=C 2 W-C 2 X W$
ES12 $=$ GAM1*OSK*CMC/11.+SQRT(1.+OSK2*(MC))
C V
$50 \times I O C=X I O+E P S 12 * X I 12$
XIA $=X I O C+X I I$
$E A=E+E P S 12 * E S 12$
CIOC $=\cos (\times 10 C)$
SIOC $=$ SIN(XIOC)
C2IOC $=$ CIOC* CIOC
UOO= C2IDC *(1.+FA* (PMW)/P?
$U A=U 00+U 1$
C VI CALCULATE DERIVATIVES
DOMEO $=-A C * E P S$
$D W B=S 0 B+S 1 * \times 112$
DW = EPS32* DWB
DOME12 $=$ ACS32* $\times 112$
DOME32 $=-A C^{*}(-C 2 P+E *(1 .-D W) * C P M W-E O 2 *(1 \bullet+D W) * C P P W$
1- FO6*(3.-DW)*(3PMW)
AD(2) $=$ DOMEO + DOME12 +FPS *DOME32
$A D(3)=C 2 E * S 2 X W+A C S S *(2 . * S 2 P+E *(1 *+D W) * S P P W+F O 3 *$
1(3.- DW)*S3PMW)
DFA $=$ R2F* $52 \times W$
DU1 = A6*((G1*DW*S2XW + G2*S2P +G3*(1.-DW)*S2PMW)
1*(-2.)-G4*(3.-DW)* S3PMW -2.*G5*(2.-DW)*S4PMW)
n2W = E3K* S2XW
D2EA = B2E2* DW* C2XW
FPD210 = 2.*C2F*DW* $2 \times W$
AS(4) $=-C 22 E * S 2 X W * C 10 C * S 10 C *(1 .+E A *(P M W)+C 210 C$
1 * (DEA*CPMW-EA*(1,-DW)*SPMW)/P2 + FPS*DU1
$D Q 1=A G^{*}(-2 \cdot * G 1 * 1$ D2W* $52 \times W+2$ **DW*DW* $(2 \times W)-4 * * G 2$
1*C2P-2**G3*(2.*C2PMW*(1.-DW)**2-nつW*S2PMW)-G4*1
2C3PMW*(3.-DW)**2-D2W*S3PMW 1- 5 5*(C4PMW*4.*(?. -
3DW)**? $-2 . * D 2 W * S 4 P M W) 1 * F P S$
DSIOC= C2F*S2XW*SIOC

2*(EA* DSIOC - CIOC*DFA)*(1.-DW)*SDMW +CIOC*(D2FA +FA*DW
3*(2.-DW))*CPMW+FA*(IOC*F, 7 W*SPMW 1/P2
DTA $=A 3^{*}(1 .-D W) /(1 *+F *(P M W) * * ?$ $D O 0=-400+C 210 C / P 2+H$
$A O(6)=$ DTA
$A D(4)=D Q 1+D Q 0$
$A D(5)=H$
$A S(2)=$ OMFGA
$A S(3)=X I A$

```
    AS(5)=UA
    AS(6)=TA
    GO TO (60,70),IP
60 XNODEI =OMEGA/ . 17453293E-01
XINCI=XIA /.17453293E-01
VEL=AS(1)*UA*7.90535872/COS(XIA)
WRITE(6,61)XNODE1,XINCI,UA,AS(4) ,VEL
61 FORMAT(32H INITIAL VALUFS OF NODE.INC.,U.Q//4F18.81
70 RETURN
FND
```

5.4 SUBROUTINE EXPERT (LS, OMEGA, TILT, PHI, R, T, DT, AF, AG, AH, N2) Subroutine EXPERT calculates the nondimensional accelerations a_{f}, a_{g}, and a_{h} due to the earth's potential and due to the sun and moon if the luni-solar flag $L S=1$. Other inputs are $\Omega, i, \phi, r, t, \Delta t$, and $N 2$. (Δt is the difference in time since the last entry to this routine).
5.4.1 Equations in Order of Solution

Store quantities needed for SOLUN and GPOT routines.
$S P=\sin \phi, C P=\cos \phi, S I=\sin 1$,
$C T=\cos \theta, S T=\sin \theta$.

Check if longitude is required.
If $N 2=0$ (no tesseral or sectorial harmonics), longitude not needed, go to IB. If $\mathrm{N} 2 \neq 0$, longitude needed; go to I.
I. Find longitude (λ) of the Satellite.

$$
\begin{gathered}
\text { compute } \cos b=\frac{\cos \phi}{\sin \theta} \text { and } \\
b=\cos ^{-1}(\cos b)
\end{gathered}
$$

This gives the principal value. To find desired angle, check $\cos \theta$. If $\cos \theta \geq 0$, principal value is correct, go to IA. If $\cos \theta<0$, replace b with $2 \pi-b$ and continue.
A. Find longitude of Greenwich at this time by replacing previous value with the previous value plus amount the earth has rotated. If the longitude of Greenwich exceeds 2π, reduce it by 2π.

Calculate longitude of satellite:

$$
\lambda=\Omega+b-\lambda_{G}
$$

B. Find accelerations due to the earth.

Call subroutine GPOT.
II. Consider Luni-Solar Perturbations.

If luni-solar flag (LS) is 1 , go to III and prepare to calculate luni-solar perturbations.

If LS is 2, return to the calling program.
III. Convert R to $k m$ and T to Hours Before Entering Luni-Solar Routine. Calculate accelerations due to moon and sun (subroutine SOLUN). Sum lunar and solar contributions. Convert accelerations from $\mathrm{km} / \mathrm{sec}^{2}$ to nondimensional units.
A. Rotate these accelerations into the desired $A F, A G$, and $A H$ frame. Compute necessary trig functions for the rotations.

$$
\begin{gathered}
S Q=\sin q=\sin i \cos b \\
C Q=\cos q=+\sqrt{1-\sin ^{2} q}\left(\operatorname{since} q \leq 90^{\circ}\right) \\
a_{f}=G P(1, J) \cos q-G P(2, J) \sin q \\
a_{g}=G P(1, J) \sin q+G P(2, J) \cos q \\
a_{h}=G P(3, J)
\end{gathered}
$$

B. Sum lunar, solar, and earth's potential contributions and return.

Prepare Inputs to Luni-Solar Routine, Determine Luni-Solar Perturbations (SOLUN). Convert Jutput Into Nondimensional Units and Rotate to Desired Frame, Combine with Accelerations Due to the Earth.

Section 5.4.3 Program Listing

The following page gives the listing of subroutine EXPERT.

```
    SUBROUTINE EXPERTILS,OMEGA,TILT,PHI,R,T,DT,AF,AG,AH,N2
        1)
            DIMENSION A(3)
            COMMON /TABLE/ TAB1(36),TAR2(13),GP(3,2),GM(2)
            COMMON /EX/ CB,CT,ST,FWOG,FROT,SP,CP,SI
C STORE QUANTITIES NEEDFD FOR SOLUN AND GPOT
    SP = SIN(PHI)
    CP= COS(PHI)
    SI = SIN(TILT)
    CT = SI* SP
    ST = SQRT(1. -CT* CT)
C CHFCK IF LONGITUDF NEFNFN
    IF(N2) 70,80,70
C I FIND EARTH LONGITUDF OF SATELLITE
        70 CB =CP/ST
            B=ACOS (CR)
            IF (CT) 10,11,11
        10B=6.2831853 - B
C IA
        11 EWOG = FWOG + FROT * NT
            IF (FWOG -6.3) 12.13.13
        13 EWOG = EWOG - 6.2831853
        12 EW = OMEGA +B - FWOG
C IB FIND ACCELERATIONS DUE TO THE EARTH
        8O CALL GPOT(ST,CT,EW,R,AF,AG,AH)
C II CONSIDER LUNI-SOLAR PERTURBATIONS
            GO TO (30,20).LS
C III PREPARE FOR LUNI-SOLAR ROUTINE
        FIND DIMENSIONAL R AND T
        30 RD = R * 6378.1521
            TD = T * . 22411493
            (ALL SOLUN IOMEGA,TILT,PHI,RN.TN)
C SUM LUNAR ANN SOLAR PFRT. ANN NON-NIM.
C GP(K,1),K=1,3,ARE THE PERT.ACCELS.DUF TO THE SUN (KM3/SFC2)
C GP(K,2),K=1,3,ARE THE PERT.ACCELS.DUE TO THE MOON(KM3/SEC2)
            DO 31 I=1,3
        31 A(I) = (GP(I,1)+GP(I,2)I/.97983068 F-02
C IIIA ROTATE ACCELERATIONS TO AF, AG, AH FRAME ANN SUM
    SO = SI*CB
    CQ = SQRT(1.- SQ* SQ)
    AF = AF + A(1)*CQ-A(2)*SQ
    AG = AG + A(1)*SO +A(2)* CQ
    AH = AH + A(3)
    >0 RFTURN
    FND
```

5.5 SUBROUTINE ENCKE (PT, OMEGT, XIT, QT, UT, T, PHI, LS, DT, N2, XIN, PN, UN, P2, PA, QN, E, AJ2, AJ4, KDER)

Subroutine ENCKE evaluates Encke equations of motion for the Runge-Kutta subroutine. Inputs to ENCKE are $p, \Omega, i, q, u, t, \phi, L S, D T, N 2, i_{n}, p_{n}, u_{n}$, $p_{a}^{2}, p_{a}, q_{n}, J_{2}, J_{4}$, and KDER. Other inputs come from subroutine APSOL through labeled common /APS/. Output is the array $E(6)$ where:

$$
\begin{gathered}
E(1)=\frac{d p_{n}}{d \phi}, E(2)=\frac{d \Omega_{n}}{d \phi}, E(3)=\frac{d i_{n}}{d \phi}, E(4)=\frac{d q_{n}}{d \phi}, \\
E(5)=\frac{d u_{n}}{d \phi}, \text { and } E(6)=\frac{d t_{n}}{d \phi} .
\end{gathered}
$$

5.5.1 Equations in Order of Solution

I. Compute and Store Useful Quantities.

Find $r, \cos i, \sin i, \tan i, \cos ^{2} i, \sin ^{2} i, \cos ^{3} i, \cos ^{4} i, A_{1}, u^{2}$, $p^{2}, u^{5}, \sin \phi, \cos \phi, \cos \theta$, and $\sin \theta$.
II. Find Perturbative Accelerations, a_{f}, a_{g}, a_{h} (EXPERT). Calculate

$$
\frac{\partial U}{\partial \psi}(10), \quad F \quad(8), \quad \frac{d \phi}{d t}(5), \quad \frac{d t}{d \phi}, \frac{d p}{d \phi}(1) .
$$

Calculate

$$
\begin{gathered}
\operatorname{DENOM}=\mathrm{p}^{2} u^{2} \sin ^{2} i \sin \theta+F \cos ^{4} i \cos \theta \\
\text { RUM }=\frac{F}{\text { DENOM }}
\end{gathered}
$$

Calculate

$$
\begin{equation*}
\text { Ahtums ont } \quad \text { GO DODPHI }=\frac{d \Omega}{d \phi} \tag{2}
\end{equation*}
$$

A. Zero J_{2} and J_{4} since they have already been accounted for.

$$
\begin{gathered}
\mathrm{DPHI}=1^{\circ} \text { in radians } \\
\phi_{1}=\phi-\mathrm{DPHI}- \\
\phi_{2}=\phi+\mathrm{DPHI} \\
\mathrm{DELU}=\Delta u=\frac{d u_{\mathrm{a}}}{\mathrm{~d} \phi} \mathrm{DPHI}
\end{gathered}
$$

$$
R I=\frac{l}{u-\Delta u}
$$

$$
R 2=\frac{1}{u+\Delta u}
$$

Find $a_{f_{1}}, a_{g_{1}}, a_{h_{1}}$, and $a_{f_{2}}, a_{g_{2}}, a_{h_{2}}$ (EXPERT).

Calculate:

$$
\begin{align*}
& \text { DAFAP }=\frac{d a_{f}}{d \phi} \text { approximate } \\
& \text { DAGAP }=\frac{d a_{g}}{d \phi} \text { approximate } \tag{88}
\end{align*}
$$

Set the total derivatives equal to the sum of the exact portion and the approximate portion.

Restore the values of J_{2} and J_{4} in the working array for subroutine GPOT.
IV. Complete the Evaluation of the Encke Equations.

Compute:

$$
\begin{equation*}
\mathrm{DFDPHI}=\frac{\mathrm{dF}}{\mathrm{~d} \phi} \tag{87}
\end{equation*}
$$

$$
\begin{gathered}
V 1=V_{1} \\
\text { AU2 }=A_{1} u^{2}, \mathrm{VU2}=\frac{\mathrm{V}_{0}}{\mathrm{AU2}}, \mathrm{VO2}=\mathrm{VU2}(2+\mathrm{VU2} 2) \\
\mathrm{V} 3 P=V_{3}^{\prime} \\
\mathrm{V} 22=(1+\mathrm{VU} 2)^{2}
\end{gathered}
$$

(100)

Calculate

$$
\begin{aligned}
& E(4)=\frac{d q_{n}}{d \phi} . \\
& E(5)=q_{n}
\end{aligned}
$$

$$
E(1)=\frac{d p_{n}}{d \phi}=\frac{d p}{d \phi}
$$

$$
E(2)=\frac{d \Omega_{n}}{d \phi}=\frac{d \Omega}{d \phi}-\frac{d \Omega_{a}}{d \phi}
$$

$$
E(3)=\frac{d i_{n}}{d \phi}=\frac{d i}{d \phi}-\frac{d i_{a}}{d \phi}
$$

$$
E(6)=\frac{d t_{n}}{d \phi}=\frac{d t}{d \phi}-\frac{d t_{a}}{d \phi} .
$$

Return

Section 5.5.3 Program Listing

The following pages give the listing of subroutine ENCKE.

```
            SUBROUTINE ENCKEIPT,OMEGT,XIT,QT,UT,T,PHI,LS,DT,N2
            1,XIN,PN,UN,P2,PA,QN,E,AJ2,AJ4,KDER)
                DIMENSION E(6)
                COMMON /APS/AS(6),AD(6),C2IOC,U1,XIOC,DQ1,X11/DERIV/DENK(3)
                    COMMON/ENERG/ C12.U3,CT2.U5,DPHIDT, U2/CPOT/COFFF(83)
C I COMPUTE AND STORF USEFUL OUANTITIES
R=1.NUT
CI = COS(XIT)
SI = SIN(XIT)
Tl= SI/CI
CI2= CI* CI
SI2= SI* SI
CI3= C12* Cl
CI4 = CI3* CI
Al = PT/C1
U2= UT*UT
PT2 = PT* PT
U5= UT** 5
SP= SIN(PHI)
CP= COS(PHI)
CT = SI* SP
ST = SQRT(1.-CT*CT)
C II FIND PERTURBATIVE ACCFLFRATIONS
    CALL EXPERT (LS,OMEGT,XIT,PHI,R,T,DT,AF,AG,AH,N2)
    DUDS1 = R* ST* AG
    F=R* AF + TI* CP*DIDSI/ST
    DPHIDT = PT* U2/CI +F*CI3*CT/(PT* SI2*ST)
    DTDPHI = 1./DPHIDT
    DPDPHI = DUDSI/ DPHIDT
    DFNOM = PT2* U2*SI2*ST + CI4*CT* F
    RUM = F/IFNOM
    DODPHI = -C.13 *CT*RUM
    DIDPHI = -SI2*CI3*CP* RUM
    VO = F*CI3*(T/(PT*SI2*ST)
    DAIPHI =(DPDPHI +TI*DIDPHI)/CI
    DTHETP = -(CI*SP*DIDPHI +CP*SI)/ST
    CT2=CT*CT
    C2T=2.*CT2-1.
    S2T=2.*ST*CT
    CC7=3.-7.*CT2
    U3=UT*U2
    DAFDPH=DENK(1) *U3*(UT*C2T*DTHFTP+2.*QT*
    1S2T)*(1.+DENK(2)*U2*(C7)+nFNK(3) *U5*S?T*(2.*
    2CC7+7.*UT*S?T*DTHETP)
    DAGDPH=0.0
C III CHECK IF APPROX. VALUFS FOR DAF + DAG ARE REQUIRED
    GO TO (20,21),KDER
C III A CALC. APPROX. VALUFS FOR DFRIVATIVFS
    21 COEFF(2)=0.0
    COEFF(4)=0.0
    DPHI =.17453293 E-01
```

```
    PHII = PHI -DPHI
    PHIl = PHI +DPHI
    DELU = AS(4)* DPH!
    R1 = 1./l UT - DELU)
R2 = 1./(UT + DELU)
CALL EXPERT ILS, OMEGT,XIT ,PHII,RI,T,O.
1 AF1. AGI, AH1, N2)
CALL EXPFRT ILS, OMEGT, XIT, PHI2, R2,T,O
1,AF2, AG2, AH2, N2)
DAFAP = (AF2 - AF1)/ .34906586E -01
DAGAP = (AG2 - AG1)/ .34906586 E-O1
DAFDPH = DAFDPH +DAFAP
DAGDPH = DAGAP
COEFF(2) = AJ2
COEFF(4) = AJ4
C IV COMPLETE THF FVALUATION OF FNCHF FQS.
    2O DFDPHI = (- F*QT + חAFDPH + חARAPH *CP * YT
    1 + AG * (CP*DIDPHI/CI2 - TI *SP)I/UT
    V1 = CT*(DFDPHI - F*(DAIPHI/AI +2.*DIDPHI/ISI*CI)
    I+DTHETP/(CT*ST)))/(AI*ST*TI*TI)
    AU2 = Al*U2
    VU2 = VO/AU2
    V02 = VU2*(2.+ VU2)
    V3P=-(V02*AD(4)+AH/(A1*AU2))+QT*(10+VU2)*(2.*OT*VU2/UT-V1/AU2-
    1 DAI PHI/A1)
        V22=(1.+VU2)**2
    E(4)=1-UN - UI -SIN(XIT+XIOC)*SINIXIN+XII)/PT2
    1-C2IOC*PN*(PA+PT)/(P2*PT2) +V3P -AD(5)- DQ1)/V22
    E(5)= QN
    F(1)= DPDPH1
    E(2) = DODPHI -AD(2)
    E(3) = DIDPHI - AD(3)
    E(6) =DTDPHI - AD(6)
    RETURN
    END
```

```
5.6 SUBROUTINE RKTOM (KR, IP, KHALT, TF, HAH, EMIN, EMAX, MFAIL, FDT, DTM,
    DT, T, PHI)
    Subroutine RKTOM Calling Statement
    KR Runge-Kutta flag
    IP Initial point flag
    KHALT Halt flag
    TF Run stop time
    HAH Array of dependent variables and their derivatives;
    HAH(1) through HAH(6) are dependent variables
    HAH(7) through HAH(12) are their derivatives
    EMIN Input minimum error allowed
    EMAX Input maximum error allowed
    MFAIL Maximum failures allowed
    FDT Multiplier to decrease computing interval
    DTM Multiplier to increase computing interval
    DT Current value of computing interval
    T Current value of independent variable
    PHI Current value of the angle }\phi\mathrm{ which is always kept }\leq2\pi\mathrm{ .
```


5.6.1 Equations in Order of Solution

Test Runge-Kutta flag, KR. If $K R=1$, continue below.
If $K R=2$, go to IV.
If $K R=3$, go to V.
If $K R=4$, go to VI.
If $K R=5$, go to IB.
I. Test Initial Point Flag, IP.

If IP $=1$, continue below.
If $I P=2$, go to IC.
A. Initial point calculations.

$$
\begin{array}{ll}
I P=2 & \text { Increment initial point flag } \\
\text { KHALT = 1 } & \text { Set halt flag to continue run } \\
K C=1 & \begin{array}{l}
\text { Set Simpson's rule flag to signal } \\
\text { first cycle computations }
\end{array} \\
K F=0 & \text { Set intermediate and total } \\
\text { KFAIL =0 } & \text { failure counters to zero } \\
S R(i)=0 & \text { Set Runge-Kutta increments to zero } \\
i=1,2, \ldots 6 &
\end{array}
$$

B. Save quantities for Simpson's rule calculations and for use if computing interval selection fails.
Set

$$
\begin{gathered}
S S(13)=T \\
S S(14)=\phi \\
S S(i)=\operatorname{HAH}(i) \\
\text { for } i=1,2, \ldots .12
\end{gathered}
$$

Go to ID.
C. Test Simpson's rule flag, KC.

$$
\begin{gathered}
\text { If } K C=1 \text {, set } K C=2 \text { and continue below. } \\
\text { If } K C=2 \text {, go to III. }
\end{gathered}
$$

D. Save quantities for ordinary Runge-Kutta use.

Set

$$
\begin{gathered}
S(13)=T \\
S(14)=\phi \\
S(i)=\operatorname{HAH}(i) \\
\text { for } i=1,2, \ldots 12
\end{gathered}
$$

E. Compute the next value of time and determine if it exceeds run stop time.

$$
T_{n}=S(13)+\Delta T
$$

$$
\begin{aligned}
& \text { If } T_{n}>T F, \text { continue below. } \\
& \text { If } T_{n}=T F, \text { go to IG. } \\
& \text { If } T_{n}<T F, \text { go to } I H .
\end{aligned}
$$

F. Set $\Delta T=T F-S(13)$.
G. Set halt flag.

$$
\text { KHALT }=3
$$

H. Complete first pass of Runge-Kutta. Compute

$$
\begin{gathered}
\Delta T_{2}=\Delta T / 2 \\
T=S(13)+\Delta T_{2}
\end{gathered}
$$

Compute Runge-Kutta parameters.

$$
\begin{aligned}
& \operatorname{RKl}(i)=\Delta T \cdot S(i+6) \\
& \text { for } i=1,2, \ldots .6
\end{aligned}
$$

Compute new values for quantities.

$$
\begin{aligned}
\operatorname{HAH}(i) & =S(i)+1 / 2 \quad \mathrm{RKI}(i) \\
\text { for } i & =1,2, \ldots 66
\end{aligned}
$$

Increment Runge-Kutta flag.

$$
K R=2
$$

II. Exit from Subroutine (Return).
III. Perform Accuracy Tests on Integrated Values.

Reset Simpson's rule flag.

$$
\mathrm{KC}=1
$$

Compute

$$
\Delta T_{3}=\Delta T / 3
$$

Set

$$
\begin{aligned}
H S(i)= & \Delta T_{3}[S S(i+6)+4 S(i+6)+H A H(i+6)] \\
& \text { for } i=1,2, \ldots 6
\end{aligned}
$$

Compute estimated and allowable errors.

$$
\begin{gathered}
C_{\max }=\text { Maximum of }|S R(i)|, i=1,2, \ldots 5 \\
E_{e s t}=\text { Maximum of }|S R(i)-H S(i)|, i=1,2, \ldots 5
\end{gathered}
$$

Set Runge-Kutta increments to zero.

$$
\operatorname{SR}(i)=0, \quad i=1, \ldots 6
$$

$E_{\text {all }}=$ Maximum of $\left[E_{\max } C_{\max }\right.$ or 10^{-9} times the maximum $\left.\operatorname{HAH}(i)\right]$

$$
\begin{aligned}
& i=1,2, \ldots \ldots 5 \\
& E_{r \min }=E_{\min } C_{\max }
\end{aligned}
$$

Print the values of $T, \Delta T$, number of intermediate failures,

$$
E_{a l l}, E_{e s t}, \text { and } E_{r \min }
$$

Test estimated error versus maximum allowable error.

$$
\begin{aligned}
& \text { If } E_{\text {est }}>\mathrm{E}_{\text {all }}, \text { continue below. } \\
& \text { If } E_{\text {est }} \leq \mathrm{E}_{\text {all }}, \text { go to III } D .
\end{aligned}
$$

A. Increment total failure counter.

$$
\text { KFAIL }=\text { KAIL }+1
$$

Test total failures against maximum allowed.

$$
\begin{aligned}
& \text { If KFAIL } \geq \text { MFAIL, continue below. } \\
& \text { If KFAIL < MFAIL, go to III C. }
\end{aligned}
$$

B. Set halt flag to stop run.

$$
\text { SHALT }=2
$$

Write "computing interval selection fails," exit subroutine at II.
C. Increment intermediate failure counter.

$$
K F=K F+1
$$

Set halt flag to 1 .

$$
\begin{aligned}
& \text { KHALT }=1 \\
& \text { Go to III H. }
\end{aligned}
$$

D. Test estimated error against minimum allowed.

$$
\begin{aligned}
& \text { If } E_{\text {est }} \leq E_{r_{\text {min }}}, \text { continue below. } \\
& \text { If } E_{\text {est }}>E_{r_{\text {min }}} \text { go to III } G .
\end{aligned}
$$

E. Increment total failure counter, KFAIL.

$$
\text { KFAIL = KFAIL }+1
$$

Test total failures against maximum allowed.

$$
\begin{aligned}
& \text { If KFAIL } \geq \text { MFAIL, go to IIIB. } \\
& \text { If KFAIL < MFAIL, continue below. }
\end{aligned}
$$

F. Increment intermediate failure counter.

$$
K F=K F+1
$$

Set halt flag to 1.

$$
\text { KHALT }=1
$$

Increase ΔT by input multiplier.

$$
\Delta T_{\text {new }}=D T M \cdot \Delta T_{\text {old }}
$$

Restore values saved at IB to the ordinary Runge-Kutta values.

$$
S(1)=S S(1), \quad 1=1,2, \ldots 14
$$

Go to IE.
G. Set intermediate failure counter to zero.
H. Compute new allowable computing interval.

$$
\Delta T_{\text {new }}=(F D T)\left(\Delta T_{\text {old }}\right)\left[E_{\text {oll }} / E_{\text {est }}\right]^{1 / 4}
$$

Test $\frac{\Delta T}{T}$ against 10^{-8}.

$$
\begin{gathered}
\text { If } \Delta T / T \leq 10^{-8}, \text { print "Computing interval }=(\Delta T), " \\
\text { and go to III B. } \\
\text { If } \Delta T / T>10^{-8}, \text { continue below. }
\end{gathered}
$$

J. Test intermediate failure counter, KF.

$$
\begin{aligned}
& \text { If } \mathrm{KF} \leq 0, \text { continue below. } \\
& \text { If } \mathrm{KF}>0, \text { go to III } \mathrm{L} .
\end{aligned}
$$

K. Set $K R=5$, and exit to print at II.
L. Restore values saved at IB to ordinary Runge-Kutta values,

$$
S(i)=S S(i), \quad i=1,2, \ldots .13
$$

Go to IH.

IV, Second Pass of Runge-Kutta.

Increment Runge-Kutta flag.

$$
K R=3
$$

Compute Runge-Kutta parameters and new values of dependent variables.

$$
\begin{aligned}
\operatorname{RK2}(i) & =(\Delta T)(\operatorname{HAH}(i+6)) \\
\operatorname{HAH}(i) & =S(i)+1 / 2 \operatorname{RK} 2(i) \\
i & =1,2, \ldots .6 .
\end{aligned}
$$

Exit subroutine at II.
V. Third Pass of Runge-Kutta.

Increment Runge-Kutta flag.

$$
K R=4
$$

Compute new time.

$$
\begin{gathered}
T=S(13)+\Delta T \\
\phi=\bmod (S(14)+\Delta \phi, 2)
\end{gathered}
$$

Compute Runge-Kutta parameters and new values of dependent variables.

$$
\begin{aligned}
\operatorname{RK3}(i) & =(\Delta T)(\operatorname{HAH}(i+6)) \\
\operatorname{HAH}(i) & =S(i)+\operatorname{RK} 3(i) \\
i & =1,2, \ldots 66
\end{aligned}
$$

VI. Fourth Pass of Runge-Kutta,

Reset Runge-Kutta flag.

$$
K R=1
$$

Compute Runge-Kutta integrated values and increments.

$$
\begin{gathered}
\operatorname{RKINC}(i)=\{\operatorname{RKI}(i)+2[\operatorname{RK} 2(i)+\operatorname{RK} 3(i)]+(\Delta T)[\operatorname{HAH}(i+6)]\} / 6 \\
\operatorname{SR}^{(i)_{\text {new }}=}{\operatorname{SR}(i)_{\text {old }}+\operatorname{RKINC}(i)}_{\operatorname{HAH}(i)=S(i)+\operatorname{RKINC}(i)}^{\text {for } i=1,2, \ldots 6}
\end{gathered}
$$

Exit subroutine at II.

Section 5.6.3 Program Listing

The following pages give the listing of subroutine RKTOM.

```
    SUBROUTINE RKTOM IKR, IP, KHALT, TF, HAH, FMIN, FMAX.
    1 MFAIL, FDT, DTM, OT, T, PHI)
        DIMENSION HAH(12), S(14), SS(14), SR(6), HS(6), RK1(6),RKINC(6)
    1,RK2(6)* RK3(6)
    C TEST RUNGE-KUTTA FLAG
        GO TO (10, 350, 370, 390, 60), KR
    C I TEST FIRST POINT FLAG
        10 GO TO (40, 20), IP
    C IC TEST SIMPSONS RULF FLAG
        20 GO TO 130, 160). KC
        30 KC = 2
            GO TO 80
    C IA FIRST POINT CALCULATIONS
        40 IP = 2
            KHALT = 1
            KC=1
            KF=0
            KFAIL =0
            DO 50 ! = 1,6
        50 SR(I)=0.
    C IB SAVE QUANTITIES USED IF COMP INT SFLECTION FAILS
        60 SS(13)=T
        S5(14)=PHI
        DO 70 1 = 1, 12
        70 SSIII = HAH(1)
    C ID SAVE QUANTITIFS FOR ORDINARY RUNGF-KUTTA USF
        80 S(13)=T
        S(14)=PHI
        DO 90 I = 1, 12
        90 S(I) = HAH(I)
    C IE COMPUTE NEXT TIME AND DETFRMINE IF IT FXCEEDS STOP TIMF
    100 TN = S(13) + DT
        IF (TN - TF) 130, 120. 110
    C IF
    110 DT = TF - S(13)
    C It
    120 KHALT = 3
    C IH COMPLFTE 1ST R-K PASS, COMPUTE NFW TIMF AND POSITIONS
    130 DT2 = DT / 2.
        T=S(13)+DT2
        PHI=S(14)+DT2
        DO 140 1 = 1:6
        RKI(I)= DT * S (I+6)
    140 HAH(I) = S(I) +.5 * RKI(I)
        KR=2
    C II
        150 RETURN
    C III PERFORM ACCURACY TESTS ON INTFGRATFD VALUFS
    160 KC = 1
        DT3 = DT/ / 3.
C COMPUTE SIMPSONS RULE INTFGRATED VALUES
```

```
            DO 170 I = 1. 6
    170 HS(I) = DT3 * (SS(I+6) + 4* * S(I+6) + HAH(I+6))
C COMPUTE ESTIMATED AND ALLOWABLE ERRORS
    CMAX = AMAX1 (ABS (SR(1)), ABS (SR(2)), ABS (SR(3)),
    1 ABS (SR(4)), ABS (SR(5)))
    ESTER = AMAXI (ABS (SR(1) - HS(1l), ABS (SRI?) - HS(2)
    1 1. ABS (SR(3) - HS(3)), ARS (SR(4) - HS(4)).
    2 ABS (SR(5) - HS(5)ll
    1000 DO 180 1 = 1, 6
    180 SR(I) = 0.
        EALL = AMAX1 (EMAX * CMAX, 1.E-9 * AMAX1 (ABS (HAH(1))
    1,ABS (HAH(2)), ABS (HAH(3)), ABS (HAH(4)),
    2 ABS (HAH(5))))
        ERMIN = EMIN * CMAX
    WRITE (6, 190) S(13),OT, KF, EALL, FSTFR, ERMIN
    190 FORMAT (1H 2E20.8, 112, E27.8, 2E20.8)
    IF (ESTER - EALL) 230, 230, 200
C IIIA
    200 KFAIL = KFAIL + 1
    IF (KFATL - MFATL) 220, 210, 210
C III B EXIT TO HALT RUN
    210 KHALT = 2
    WRITE (6, 215)
    215 FORMAT (1HO,35H COMPUTING INTERVAL SFLECTION FAILS)
    GO TO 150
C IIIC
    220 KF = KF + 1
        KHALT = 1
        GO TO 280
    C 1110
    230 1F (ESTER - FRMIN) 240, 240, 270
C 111E
    240 KFAIL = KFAIL + 1
        IF (KFAIL - MFAIL) 250, 210, 210
    C IIIF
    250 KF = KF + 1
        KHALT = 1
        DT = DTM * DT
        DO 260 1 = 1, 14
    260 S(1) = SS(1)
            GO TO 100
C IIIG
    270 KF = 0
C III H COMPUTE NEW ALLOWABLE COMPUTING INTERVAL
    280 DT = FDT * NT * (EALL / FSTER) ** 0.25
    IF (DT / T - 1.E-8) 290, 290, 310
    290 WRITE (6, 300) DT
    300 FORMAT(1HO.16H COMP INTERVAL = E17.8)
    GO TO 210
C IIIJ
    310 IF (KF) 320, 320. 330
```

```
C IIIK FXIT TO PRINT
    3>0 KR = 5
    GO TO 150
    C 111L
        330 DO 340 1 = 1, 14
        340 S(1) = SS(1)
        GO TO 130
C IV 2ND PASS OF RUNGE-KUTTA
    350 KR = 3
        DO 360 I = 1, 6
        RK2(1) = OT * HAH(I+6)
    360 HAHII) = S(II + .5 * RK2(I)
    GO TO 150
C V 3RD PASS OF RUNGF-KUTTA
    370 KR = 4
        T = S(13) + DT
        PHI=AMOD(S(14)+DT,6.2831853)
        DO 380 1 = 1. 6
        RK3(1) = OT * HAH(I+6)
        380 HAH(I) = S(I) + RK3(I)
        GO TO 150
    C VI 4TH PASS OF RUNGE-KUTTA
        390 KR=1
        DO 400 1 = 1,6
        RKINC(I)=(RK1(I)+2.*(RK2(!)+RK3(I))+DT*HAHII+6))/6.
        HAH(I)=S(I)+RKINC(I)
        400 SR(I)=SR(I)+RKINC(I)
        GO TO 150
        END
```


5.7 FUNCTION ELIPE

5.7.1 Equations in Order of Solution

The quarter-period K of the elliptic integral $F(\phi, k)$ is evaluated by sucessive application of the decreasing Landen Transformation. From reference 3 , equation 17.5 .7 and 17.5.1:

$$
\begin{aligned}
& K=\frac{1}{2} \pi \prod_{s=1}^{\infty}\left(1+k_{s}\right) \\
& k_{s+1}=\left(\frac{k_{s}}{1+\sqrt{1-k_{s}^{2}}}\right)^{2}
\end{aligned}
$$

where $\sin \alpha_{s}$ in reference 3 is replaced by k_{s}. The k_{s} are decreasing very rapidly. Even for $k_{0}=.99995$, seven steps are sufficient to make k_{7} less than 10^{-8}. Therefore a maximum of 10 steps is suggested. The k_{s}, $k_{s}^{\prime}=\sqrt{1-k_{s}^{2}}, \operatorname{Pr}=\prod_{s=1}^{N_{t}}\left(1+k_{s}\right)$, and N_{t} are stored in COMMON because they will be needed in the computation of the elliptic integral $F(\phi, k)$. ($N_{t}=$ Number of transformations.)

FUNCTION ELIPE (k)

Section 5.7.3 Program Listing

The following page gives the listing of function subprogram ELIPE.

```
    FUNCTION FLIPF ( CAY)
C FUNCTION ELIPE TO COMPUTF THF QIIARTFR PFRION
    COMMON /QUART/ CAP 110I,PR,NOT.(AI1O)
    PR = 1.
        NOT =2
    CA(1) = CAY
        DO 300 I = 2,10
            NOT = 1
            IMI = 1-1
            CAP(IMI) = SQRT (1. - CA(IMI)* CA (IMI))
            CA (I) = (CA(IMI) / (1. + CAP (IMII)) ** ?
            PR=PR+PR* (A(I)
C TFST LAST FACTOR OF THF DRODUCT
            IF (CA(I)-.IE-07) 400,400,300
300 CONTINUE
400 ELIPE = 1.5707963 *PR
            RETURN
            END
```


5.8 FUNCTION ELI

5.8.1 Equations in Order of Solution

The eliptic integral $F(\phi, k)$ is evaluated by successive application of Landen's decreasing transformation. From reference 3, equations 17.5.8, 17.5.6, and 17.5.2:

$$
\begin{gathered}
F(\phi, k)=\frac{2}{\pi} \cdot K \cdot \lim _{n \rightarrow \infty} \frac{\phi_{n}}{2^{n}} \\
\phi_{n+1}=\phi_{n}+\arctan \left(\sqrt{1+k_{n}^{2}} \cdot \tan \phi_{n}\right)
\end{gathered}
$$

The k_{n} are stored in COMMON and K is known from function ELIPE.
The quantity $\Delta \phi=\phi_{n+1}-\phi_{n}=\arctan \left(\sqrt{1+k_{n}^{2}} \cdot \tan \phi_{n}\right)$ is computed at each step and added to ϕ_{n}. The quadrant of $\Delta \phi$ is the same as the quadrant of ϕ_{n}. To accomplish this, $\Delta \phi$ is written as

$$
\Delta \phi=\Delta_{s}+\Delta_{i}
$$

where Δ_{i} is 2π-times the number of revolutions completed by ϕ_{n}, and Δ_{s} is the remainder, determined by QUADI so that

$$
\tan \Delta \phi=\sqrt{1-k^{2}} \tan \phi_{n}
$$

After adding this value of $\Delta \phi$ to ϕ_{n}, the total is modded with 2π giving $\phi_{s i}$ which preserves small arguments for the next step.

According to the above limit approach, the iteration process is halted when

$$
\phi_{n+1}=2 \phi_{n}
$$

or when

$$
D \phi=\left|\phi_{n+1} / 2 \phi_{n}\right|-1=0
$$

5.8.2 Detail Flow Chart

FUNCTION ELI (ϕ, K)

Section 5.8.3 Program Listing
The following page gives the listing of function subprogram ELI.

5.9 FUNCTION ELIF

5.9.1 Equations in Order of Solution

The evaluation of the elliptic function $s n(u, k)$ is accomplished by the use of formulae (16.12.1) and (16.12.2) of reference 3:

$$
\begin{gathered}
\operatorname{sn}(u, m)=\frac{\left(1+\mu^{1 / 2}\right) \operatorname{sn}(v, \mu)}{1+\mu^{1 / 2} \operatorname{sn}^{2}(v, \mu)} \\
\mu=\left(\frac{1-\sqrt{1-k^{2}}}{1+\sqrt{1-k^{2}}}\right)^{2}=\left(\frac{k}{1+\sqrt{1-k^{2}}}\right)^{4} \quad, \quad v=\frac{u}{1+\mu^{1 / 2}}
\end{gathered}
$$

The above transformation from v, μ to u, m is repeated until the modulus is zero. Thus, we have in general:

$$
\operatorname{sn}\left(u_{n-1}, k_{n-1}\right)=\frac{\left(1+k_{n}\right) \operatorname{sn}\left(u_{n}, k_{n}\right)}{1+k_{n} \operatorname{sn}^{2}\left(u_{n}, k_{n}\right)}, n=1,2, \ldots
$$

where the modulus k is used rather than $m\left(k^{2}=m\right)$

$$
u_{n}=\frac{u_{0}}{\prod_{i=1}^{\infty}\left(1+k_{i}\right)}
$$

and the k_{i} have been calculated in function ELIPE and are stored in COMMON. The procedure of computing $s n\left(u_{0}, k_{0}\right)$ is as follows.

The number of transformations (NOT) is chosen such that k_{n} is sufficiently small to permit the approximation:

$$
\operatorname{sn}\left(u_{n}, k_{n}\right)=\sin u_{n}-\frac{1}{4} k_{n}^{2}\left(u_{n}-\sin u_{n} \cos u_{n}\right) \cos u_{n}
$$

(equation 16.13 .1 , reference 3)
Then starting with $\operatorname{sn}\left(u_{n}, k_{n}\right)$, the recursive formula is applied n-times. After the $n^{\text {th }}$ step, the value of $\operatorname{sn}\left(u_{0}, k_{0}\right)=\operatorname{sn}(u, k)$ is obtained.

FUNCTION ELIF (u)

Section 5.9.3 Program Listing

The following page gives the listing of function subprogram ELIF.

```
FUNCTION FLIF (U I
C FUNCTION ELIF TO CALCULATF THE ELLIPTIC FUNCTION SN
    COMMON / QUART/CAP(10) ,PR , NOT ,CA(1O)
    EM= CA(NOT)**2
    VEO = U/PR
    SVE = SIN(VFO)
    CVE = COS(VFO)
    SNVF = SVE -. 25*FM *(VFO -SVF *CVF)*CVF
NOT? = NOT +2
DO 150 I= 2 , NOT
IR = NOT2-I
CAS = CAlIRI* SNVE
150 SNVE = (SNVE +CAS)/11.+ (AS*SNVE)
ELIF=SNVE
RETURN
FNO
```

5.10 SUBROUTINE GPOT ($\mathrm{Q}, \mathrm{CT}, \mathrm{EW}, \mathrm{R}, \mathrm{AF}, \mathrm{AG}, \mathrm{AH}$)

This subroutine calculates perturbative accelerations a_{f}, a_{g}, and a_{h} due to the earth's potential. The inputs are $\sin \theta, \cos \theta$, longitude of satellite, and non-dimensional radius. The subroutine obtains coefficients of the potential from labeled common /CPOT/.

5.10.1 Equations in Order of Solution

I. Set Original Recursion Values.

$$
\begin{aligned}
& P(1)=\rho_{0}=1 \\
& D P(2)=\rho_{1}^{\prime}=1 \\
& U 01=0[\text { Stores zero before array } U \text { to become } U(0,1)] \\
& U(1,1)=U_{11}=1 \\
& \operatorname{RX}(1)=r^{3} \\
& P(2)=\rho_{1}=\cos \theta
\end{aligned}
$$

II. Set Sum Limits and Zero Original Sum Quantities.

$$
\mathrm{NNL}=\mathrm{Nl}+\mathrm{l}
$$

Zero locations to gather sums of zonal coefficients for \mathbf{a}_{f}, zonal coefficients for a_{h}, tesseral and sectorial contribution to a_{f}, tesseral and sectorial contribution to a_{g}, and tesseral and sectorial contribution to a_{h}. These are, respectively, $\mathrm{Z}=0, \mathrm{Zl}=0, \mathrm{TS}=0, \mathrm{TSl}=0$, and $\mathrm{TS} 2=0$.

Calculate the arrays for ρ_{n} and $\rho_{n}^{\prime}(P$ and $D P)$.

Calculate the array of $r^{(n+2)}$, (RX).
Calculate the ratio-array $\frac{J_{n}}{r^{(n+2)}}, ~(A O R)$.
Find the sum:

$$
z=\sum_{n=2}^{N 1}\left(\frac{J_{n}}{r^{n+2}}\right) \rho_{n}^{\prime}
$$

and

$$
z 1=\sum_{n=2}^{N 1}(n+1)\left(\frac{J_{n}}{r^{n+2}}\right) \rho_{n}
$$

III. Are Tesserals Required?

If the limit on the tesserals (N2) is less than 2, tesserals are not required, go to VI; otherwise, continue.
IV. Calculate Quantities for Tesseral and Sectorial Sums.

Calculate arrays for sine and cosine of $n \cdot$ longitude (SBE and CBE). Calculate and store the arrays for $U_{n m}$ and $W_{n m}$.
v. Sum Appropriate Tesserals and Sectorials.

Calculate and store arrays for:

$$
\begin{aligned}
& \operatorname{CC}(N, M)=C_{n m} \cos (m \lambda) \equiv C_{n m} \\
& \operatorname{CS}(N, M)=C_{n m} \sin (m \lambda) \equiv C_{n m} \\
& \operatorname{SC}(N, M)=S_{n m} \cos (m \lambda) \equiv S_{n m} \\
& \operatorname{SS}(N, M)=S_{n m} \sin (m \lambda) \equiv S S_{n m}
\end{aligned}
$$

Find the sums:

$$
T S=\sum_{n=2}^{N 2} \sum_{m=1}^{n} \frac{W_{n m}}{r^{n+2}}\left(C C_{n m}+S S_{n m}\right)
$$

$$
\begin{aligned}
& T S 1=\sum_{n=2}^{N 2} \sum_{m=1}^{n} \frac{m}{r^{n+2}} U_{n m}\left(C S_{n m}-S C_{n m}\right) \\
& T S 2=\sum_{n=2}^{N 2} \sum_{m=1}^{n} \frac{n+1}{r^{n+2}} U_{n m}\left(C C_{n m}+S S_{n m}\right)
\end{aligned}
$$

VI. Calculate perturbative accelerations.

$$
\begin{gathered}
a_{f}=A F=Z \cos \theta+T S \\
a_{g}=-T S 1=A G \\
a_{h}=A H=Z 1+\cos \theta T S 2
\end{gathered}
$$

Return.

SUBROUTINE GPOT

Section 5.10.3 Program Listing

The following pages give the listing of subroutine GPOT.

```
    SURROUTINF GPOTIO,CT,FW,R ,AF,AC,AHI
C SUBROUTINE GPOT TO COMPUTF THE ACCFLFRATIONS NUF TO
C THF HIGHFR HARMONICS ,TESSFRALS ANN SFCTORIALS OF THF
C EARTHS POTFNTIAL
COMMON / CPOT/ AJ(9),C(6,6), S(6,6), N1,N2
    I /GNUOI,U(6,G)
        DIMENSION P(10),DP(10),CRE(6), W(6,6),C((6,6),
    1CS(6,6), S((6,6),SS(6,6),SBE(6), RX(9),AOR(9)
        I
C SET ORIGINAL RECURSION VALUES
    P(1) = 1.
    DP(7) = 1.
    UO1=0.0
    u(1,1) = 1.
    RX(1)=R**3
    P(?)=CT
    C II
C SET SUM LIMITS AND ZERO ORIGINAL SUM QUANTITIFS
    NN1 = Nl + l
    143 Z = 0.
    Zl=0.
    TS = 0.
    TS1= 0.
    TS2= 0.
C CALC. RHO,RHO- AND ZONAL SUMS
    DO 175 N = 3,NN1
    n=N
    L=N-1
    A = L
    P(N)=((2.*A-1.)*P(2)*P(L)-(A-1.)*P(N-2))/A
    OP(N)=P(2)*DP(L) + A*P(L)
    RX(L)=RX(L-1)*R
    AOR(L)=AJ(L)/RX(L)
    Z=Z+ AOR(LI*DP(N)
    125 21=21+D*AOR(L)*P(N)
C Ill ARF TFSSFRALS RFOUIREN
        IF(N2-1)30,30,40
C IV CALCULATE OIIANTITIES FOR TFSSFRAL AND SFCTORIAL SIMMS
    40 SBE(I)=SIN(FW)
            CBE11)=COS(FW)
            DO 126 N=2,N2
            K=N-1
            n=N
            BEW=D*FW
            CBE(N)=COS(BEW)
        10 SBF(N)=SIN(RFW)
            U(N,N)=(2.*(n-1.)*O*!(K,K)
            U(K,N) = O.
            W(N,N) = -D*P(2)*U(N,N)
            DM1=0-1.
            NT171=(2**D-1.)*D(2)
```

```
            DT1P2=0*P(2)
            DO 126 M=1,K
            B = M
            U(N,M)=(DTI21*U(K,M)-(DMI+R)*U(N-2,M))/(D-R)
    126W(N,M)=-DTIP2 *U(N,M) + (R+N)*U(K,M)
CV SUM TESSERALS AND SECTORIALS
            DO 242 N=2,N2
            D = N
            DO >42 M=1,N
            R=M
            CC(N,M)=C(N,M) * CRF(M)
            CS(N,M)=C(N,M)*SRF (M)
            SC(N,M) =S(N,M) * CRF(M)
            135SS(N,M)=S(N,M)*SBF(M)
            228 TS = TS-(W(N,M)/RX(N) )*(CC(N,M)+SS(N,M))
            232 TS1=TS1+(R/RX(N) 1*U(N,M)*(CS(N.M)-SC(N,M))
            242 TS2=TS2- ((D+1.)/RX(N) )*U(N,M)*(CC(N,M)+SS(N,M))
C VI CALCULATE PFRTURRATIVF ACCFLFRATIONS
            30 AF = 2*Q+TS
            AG = -TSl
            AH=ZI+TSつ*Q
            RETURN
            END
```

5.11 FUNCTION QUADI (OMEGA, W, QPER, PI, TWOPI)

QUAD l is the angle which is in the same quadrant as W (with respect to $Q P E R$) and $|\tan (Q U A D 1)|=\tan$ (OMEGA). All inputs and outputs in radians.
5.11.1 Equations in Order of Solution
I. Adjust W so $-4 \cdot Q P E R \leq W \leq 4 \cdot Q P E R$.
(Mod W with $4 \cdot$ QPER)
II. If W is negative, go to IIA; otherwise go to IIB.
A. Make W the equivalent positive angle by adding the total period $4 \cdot$ QPER.
B. Find $I W$, which is the quadrant of W with respect to QPER.

$$
\mathrm{IW}=\text { Integer part of }\left(\frac{\mathrm{W}}{\mathrm{QPER}}\right)+1
$$

IW is then $1,2,3$, or 4 .
III. If W is in the first quadrant (IW $=1$), go to IIIA.

If W is in the second quadrant $(I W=2)$, go to IIIB.
If W is in the third quadrant (IW $=3$), go to IIIC.
If W is in the fourth quadrant ($\mathrm{IW}=4$), go to IIID.
A. Set QUADI $=$ OMEGA, and return.
B. Set QUADI $=\pi-$ OMEGA, and return.
C. Set $Q U A D L=\pi+$ OMEGA, and return.
D. Set QUADI $=2 \pi-O M E G A$, and return.

5.11.2 Detail Flow Chart

Section 5.11.3 Program Listing

The following page gives the listing of function subprogram QUAD1.

```
            FUNCTION QUADIIOMEGA,W,QPFR,PI,TWOPII
C I ADJUST W
            W=AMOD (W,14**OPFR))
C II CHFCK W SIGN
    IF (W) 20,21,21
C IIA MAKE W EQUIVALENT POSITIVE ANGLE
    20W = W + (4.*QPER)
C IIB FIND QUADRANT OF W
    21 IW = IFIX (W/QPER) +1
C III CHFCK QUADRANT
            GO TO (31,32,33,34),1W
C IIIA
    31 QUADI = OMFGA
    RETURN
C IIIR
    3 2 \text { QUADI = PI - OMEGA}
    RETURN
C IIIC
    33 QUADI= PI + OMEGA
        RETURN
C IIID
    34 QUAD1= TWOPI -OMFGA
        RETURN
        FND
```

5.12 FUNCTION QUAD2 (XW, $21, K, K 10 R 3, P I$) - Adjusts the Quadrant of XW to Agree with the Conditions of Case 1 for the Perigee Calculation

Inputs are ω, angle z_{1}, quarter-period K, flag that indicates whether ω oscillates around $\frac{\pi}{2}$ or $\frac{3 \pi}{2}$, and π. All angles are in radians.

5.12.1 Equations in Order of Solution

I. Adjust z_{1} so $-4 K \leq z_{1} \leq 4 K$.
(Mod z_{1} with $4 K$)
II. If z_{l} is then negative, go to IIA; otherwise go to IIB.
A. Make z_{1} the equivalent positive angle by adding the total period 4 K .
B. Find L, which is the quadrant of z_{1} with respect to K.
$L=$ Integer part of $\left(\frac{{ }^{2}}{\bar{K}}\right)+1$
L is then $1,2,3$, or 4 .
III. If $L=1$ or 4, no change is necessary in ω; go to IIIB.

If $\mathrm{L}=2$ or 3 , go to IIIA.
A. Place ω in the second quadrant by replacing ω with $\pi-\omega$, since the magnitudes of the tangents of the two angles must be equal.
B. The input quantity KlOR3 determines if ω oscillates around $\frac{\pi}{2}$ or $\frac{3 \pi}{2}$. (KIOR $3=1$ or 2 , respectively). If $\frac{\pi}{2}$ is the oscillation point, go to V. If $\frac{3 \pi}{2}$ is the oscillation point, go to IV.
IV. Replace ω by $\pi+\omega$ so the oscillation will be around $\frac{3 \pi}{2}$.
V. Set QUAD2 $=\omega$.

Return.
5.12.2 Detail Flow Chart

Section 5.12.3 Program Listing

The following page gives the listing of function subprogram QUAD2.

```
    FUNCTION QUAD2(XW,Z1,OPFR,K1OR3,PI)
C I ADJUST Z1
    Z1=AMOD (21,(4.*OPER);
C II CHECK 2I SIGN
    IF (21) - 20,21,21
    11 A MAKE 21 EQUIVALFNT POSITIVE ANGLE
    20 Z1 = Z1 + (4** QPER)
    II B FIND QUADRANT OF ZI
    21 L= IFIX(Z1/QPER) + 1
    III CHFCK QUADRANT
    GO TO (31,30,30,31), L
C III A PLACF OMFGA IN QUADRANT 2
    30 XW = PI - XW
    III R CHFCK OSCILLATION POINT
    31 GO TO (50,40),KIOR3
        IV MAKF OMEGA OSCILLATF AROUND 3PI/2
    40 XW = XW + PI
    V PREPARE FOR RETURN
    50 QUAD2 = XW
        RETURN
    FND
```


5.13 MODES OF INPUT AND OUTPUT

5.13.1 Input

This program has only load sheet input through subroutine INPUT 1. The card format is:

```
column 1 - a one
columns 2 through 6 - location number of piece of data
columns 7 through 15 - input number
columns 16 and 17 - location of decimal place from beginning of field
positive if to the right
```

Three other pieces of data may be entered on the card. The location numbers are punched in columns $18-22,34-38$, and $50-54$. The data are punched in columns 23-31, 39-47, and 55-63. The exponents, as explained above, are punched in columns $32-33,48-49$, and $64-65$, respectively. The remaining information required is:
columns 66-68, zeros
columns 69-70, reference run number
columns 71-73, case number.

This routine allows identification on the card of each piece of input data by relative location number; only-non-zero numbers need be entered. It has a "Reference Run," "Case" setup. If the case number (card columns 71 to 73) is non-zero, but the reference run number (card columns 69, 70) is zero, then the data on the load sheet are assumed to be sufficient and the case is computed. If the case number is zero and the reference run number is non-zero, the data are stored in array $R R$ and no case is attempted. If the following load sheets with non-zero case numbers have also the reference run number of the stored array, then a case is run using the input of array $R R$ as modified by the new load sheet.

The order of stacking cases is then:

1. All cases with zero reference run number
2. First reference run (zero case number)
3. All cases with first reference run number and non-zero case number 4. Second reference run (zero case number)

The total input array utilizes 102 locations. The locations and quantities are listed below. All input quantities are non-dimensional unless otherwise noted.

Location	Quantity	Remarks
1-9	J_{n}	Leave $J_{1}=0$
10-45	$c_{m, n}$	Arranged in column-sort in 6×6 array
46-81	$S_{m, n}$	Arranged in column-sort in 6×6 array
82	No. of zonals, N1	Integer, $0 \leq \mathrm{Nl} \leq 9$
83	No. of tesserals, N2	Integer, $0 \leq N 2 \leq 6$, If set $=0$ or 1 , no tesserals or sectorials are considered
84	Initial value of polar component of angular momentum, p	
85	Initial ecrnntricity, e_{0}	

86	Initial argument of perigee, w	In degrees
87	Initial time, ${ }_{\text {o }}$	In hours
88	Initial ϕ	In degrees
89	Approximate initial inclination, 1_{00}	In degrees
90	Approximate initial argument of node, L_{0}	In degrees
91	Total ϕ desired	In degrees
92	Initial guess at computing interval, DELPHI	In degrees
93	Maximum failures allowed for computing interval selection, MFAIL	Positive integer
94	Maximum error allowable, EMAX	
95	Minimum error allowable, EMIN	
96	Factor to increase computing interval, DIM	
97	Longitude of Greenwich with respect to 1950.0 equinox at initial time, EWOG	In degrees

98	Rotation rate of the earth, EROT	$\operatorname{In} \frac{\mathrm{rad}}{\mathrm{hr}}$
99	Luni-solar flag, LS	Integer; if $=1$, consider luni-solar; if $=2$, omit
100	Perigee flag, Kl0R3	Integer, set $=1$ if initial perigee closest to $\frac{\pi}{2}$ or $=2$ if closest to $\frac{3 \pi}{2}$
101	Multiplier to compute new computing interval, FDT	
102	Derivative flag,	Integer; set $=1$ if J_{2} and J_{4} are the only perturbations; otherwise, set $=2$

5.13.2 Output

At the beginning of each case, the entire input array is printed in floating point. There are 25 rows of 5 columns, with locations 1 through 5 printed in the first row, etc.

The next printed values are the initial values of:

```
\Omega(deg.) i (deg.) u (non-dim.) q (non-dim.) velocity (non-dim.)
```

At the attempted completion of each two computing steps, the following information is printed from the Runge-Kutta routine:

Total ϕ	Intermediate	Maximum		Minimum
(rad)	Computing Interval	Failure	Allowable	Estimated Allowable

At the completion of each four successful computing steps, either Format 1 or Format 2 is printed.

Format 1

p_{a}	Ω_{a}	i_{a}	u_{a}	q_{a}	t_{a}	
p_{n}	Ω_{n}	i_{n}	u_{n}	q_{n}	t_{n}	
$\phi(\operatorname{deg})$	$t(h r s)$	$r(k m)$	$\Omega(d e g)$	$i(d e g)$	Energy (non-dim.)	
e_{a}	$\omega_{a}(r a d)$					

Format 2 differs only in that the energy is not printed and the approximate eccentricity is printed in its place, and the approximate argument of perigee then appears in the first column.

Format 1 is printed if the only perturbations are J_{2} and J_{4}. If any other perturbations are considered, Format 2 is used.

After a case has been completed successfully, a start time, stop time, and total time for reading the input data and doing all the computations are printed in minutes.

Error Prints
If the computing interval becomes too small, it is printed along with the comment - COMPUTING INTERVAL SELECTION FAILS, and the case halts.

If the number of computing interval selection failures exceeds the maximum value which is input, the case halts with the comment the same as above.

Section 6

DISCUSSION OF RESULTS

In order to evaluate the effectiveness of the modified Encke approach, comparisons were made between three programs. These programs were the modified Encke program described here, and two existing programs based on a Cowell formulation of the problem and using Runge-Kutta integration. The two Cowell programs were essentially the same except that one performed operations using single-precision arithmetic, and the other used doubleprecision. The modified Encke program used single-precision arithmetic exclusively.

Three representative orbits were chosen for comparison. These were:

Orbit l: A low altitude, moderate eccentricity orbit which considered the same perturbations as the analytic model (second and fourth zonal harmonics only). The initial osculating elements were 30° inclination, 0° argument of perigee, . 03117 eccentricity, and 6928.2255 kilometers for the semi-major axis. This orbit was chosen so that known integrals of the motion could be used as indications of the accuracies of the three programs.

Orbit 2: A very high altitude, low inclination, nearly circular orbit which considered the second and fourth zonal harmonics of the potential in addition to luni-solar perturbations. The initial osculating elements were 5° inclination, 0° argument of perigee, . 0001 eccentricity, and $41,138.154$ kilometers for the semi-major axis. This orbit was chosen because orbits of this type are of interest for communications networks for example, and because luni-solar perturbations are significant at these altitudes.

Orbit 3: A highly eccentric, low inclination orbit considering the second and fourth zonal harmonics of the potential in addition to lunisolar perturbations. The initial osculating elements were 5° inclination, 0° argument of perigee, . 723 eccentricity,
and 23,963.206 kilometers for the semi-major axis. This orbit was chosen because orbits of this type are of interest for environment sampling, and because the oblateness perturbations predominate at perigee while the luni-solar perturbations become significant at apogee.

Figure 1 shows the variation in the polar component of angular momentum (p) for orbit 1 for 20 revolutions of ϕ. This is plotted non-dimensionalized as $\frac{\left(p-p_{i}\right)}{p_{i}}$. In this case, p should remain constant or Δp should be zero. The modified Encke program satisfies this condition identically, since p is one of the dependent variables, however, the error is shown on the plot as 10^{-9}. It can be seen from Figure 1 , that the single precision Cowell solution drifts off monotonically with increasing angle until the error is greater than 10^{-5} after 20 revolutions of the angle ϕ. The double precision Cowell solution oscillates, but the error is never as large as 10^{-7}.

Figure 2 shows the variation in the total energy for orbit 1 for 20 revolutions of ϕ. This is also plotted non-dimensionally as $\frac{\text { Energy-Energy (initial) }}{\text { Energy (initial) }}$. Again this quantity should be constant and zero, but it can be seen that the single precision Cowell solution builds up the error monotonically to approximately $.5 \times 10^{-5}$ after ϕ reaches 7200 degrees. The errors for the double precision Cowell solution and for the modified Encke solution undergo oscillations with the double precision results varying between 10^{-7} and 10^{-9} and the modified Encke results not exceeding $.5 \times 10^{-7}$. This clearly shows that the modified Ecnke approach can improve accuracy while using only single precision arithmetic. A further improvement in accuracy could be achieved by analytic cancellation of all terms of order epsilon when forming the Encke equations of motion. This is theoretically possible and allows the maximum accuracy available with this approach, but it was not deemed feasible within the limits of the present study.

Finally, the positional error was analyzed for all three representative orbits. This was done by taking the double precision $r-\phi$ history as correct and plotting $\frac{r-r \text { (double precision) }}{r}$ (double precision) vs. a function of ϕ during the 20 th

Figure 1. Angular Momentum Error vs. Argument of Latitude $\mathrm{a}=6928 \mathrm{~km} ., \mathrm{e}=.03, \mathrm{i} \approx 30^{\circ}, \mathrm{J}_{2}$ and J_{4} Perturbations Only

Figure 2. Energy Error vs. Argument of Latitude

$$
\mathrm{a} \approx 6928 \mathrm{~km} ., \mathrm{e} \approx .03, i \approx 30^{\circ} . \mathrm{J}_{2} \text { and } \mathrm{J}_{4} \text { Perturbations Only }
$$

revolution of ϕ and comparing the single precision Cowell results and the modified Encke results for all three representative orbits. Figure 3 shows this result for orbit l, while Figures 4 and 5 represent orbit 2 and orbit 3, respectively.

Figure 3 shows that both the modified Encke and the single precision Cowell solution show reduced errors in the radius near the apogee during the 20th revolution. In general the radius error follows the trend of the error in energy plotted in Figure 2. That is that the single precision Cowell error is nearly 2 orders of magnitude larger.

Figure 4 presents the non-dimensionalized error in radius for the high altitude, nearly circular orbit. The single precision Cowell solution exhibits a smaller error at apogee with a high error near perigee. The error from the modified Encke solution is somewhat erratic, but it remains nearly two orders of magintude below the single precision Cowell solution near perigee. In general the modified Encke solution would have shown a bigger improvement if rectification was included, since oblateness perturbations and luni-solar perturbations are of equal magnitudes at this altitude.

Figure 5 represents the largest error for both the single precision Cowell solution and the modified Encke solution. It can be seen that the modified Encke error is nearly constant and generally below the single precision Cowell error. However, the single precision Cowell error drops very low around the apogee. This can be interpreted to mean that the modified Encke solution should have been rectified before this time, since the lunisolar perturbations are significant and are not included in the analytic model. It also shows that the error in the single precision Cowell solution is due mainly to an error in the time-history of the angle ϕ, and the radius is not sensitive to small time errors in the vicinity of apogee.

In conclusion it can be stated that the modified Encke approach can be used to increase the accuracy of solutions without resorting to double precision arithmetic. In the comparisons made, the more lengthy calculations

Figure 3. Radial Error vs. Argument of Latitude $\mathrm{a} \approx 6928 \mathrm{~km} ., \mathrm{e} \approx .03, \mathrm{i} \approx 30^{\circ} \mathrm{J}_{2}$ and J_{4} Perturbations Only

Figure 4. Radial Error vs. Argument of Latitude $\mathrm{a} \approx 41,138 \mathrm{~km} ., \mathrm{e}=.0001, \mathrm{i}=5^{\circ} \mathrm{J}_{2}, \mathrm{~J}_{4}$, and Luni-Solar Perturbations

Figure 5. Radial Error vs. Argument of Latitude $\mathrm{a}=23,963 \mathrm{~km} ., \mathrm{e}=.723, \mathrm{i}=5^{\circ} \mathrm{J}_{2}, \mathrm{~J}_{4}$, and Luni-Solar Perturbations
per step were offset by the larger allowable step-size, so that running time was reduced by nearly a factor of four over the double precision Cowell program and was essentially the same as the single precision Cowell program. To achieve the utmost accuracy from such a program for production purposes, the analytic solution should be cancelled analytically to order epsilon when forming the Encke equations, or this portion of the calculation should be done in double precision. Furthermore, for long time predictions a rectification capability would be a necessity.

1. Eckstein, M.; Shi, Y.; and Kevorkian, J.: Satellite Motion for All Inclinations Around an Oblate Planet. Douglas Paper No. 3078, August, 1964.
2. Anon,: ESPOD Mathematical and Subroutine Description. TRW Space Technology Laboratories Report No. 8497-6065-RU000, June, 1964.
3. U.S. Dept. of Commerce, National Bureau of Standards: Handbook of Mathematical Functions. Applied Mathematics Series .55. June, 1964.
4. Dwight, H. B.: Tables of Integrals and Other Related Data. Fourth ed., The Macmillan Co., 1961.
5. Peabody, P. R.; Scott, J. F.; and Oroyco, E. G.: User's Description of JPL Ephemeris Tapes. Jet Propulsion Laboratory, Technical Report No. 32-580, March 2, 1964.
6. Hildebrand, F. B.: Introduction to Numerical Analysis. McGraw-Hill Book Co., Inc., 1956.

[^0]: * The sign of the square root must agree with the sign of the numerical value of \bar{S}_{0}.

[^1]: * The sign of the square root must agree with the sign of the numerical value of \bar{S}_{0}.

[^2]: * These numbers are equation numbers from Hildebrand.

