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ABSTRACT

The purpose of this report is to demonstrate a newmethod of numerical

residual perturbation solution as applied to the problem of an earth
satellite including luni-solar effects. Cowell demonstrated a method

of numerically solving the total differential equations of motion of

an orbiting object. The variation of parameters and Encke's methods

take advantage of the known analytic solution to the two-bodyproblem

and numerically handle only the perturbations to the orbit. This

report demonstrates the use of an analytic series perturbation solution

of the oblateness problem as a reference orbit (rather then using conics

as a reference) with numerical solution of the residual perturbation

equations of motion including neglected higher order effects as well

as perturbations not included in the analytic model. Results obtained

from this demonstration program were comparedwith both single precision

and double precision Cowell programs, and showedsignificant accuracy

improvements over the single precision program as well as reducing

computing time by a factor of four over the double precision program.
Further refinements were suggested in order to obtain the maximum

benefit frmm the technique for _ production program. This work vas

supported by contract NASw-901.
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Section I

INTRODUCTION

This program was developed primarily as a research program to investigate

the practicality of a generalized Encke-type solution to the motion of an earth

satellite, in satisfaction of portions of research contract NASw-901. The pro-

gram uses an approximate analytic solution of the oblateness problam (ref. I)

for a reference orbit, and numerically integrates using the Runge-Kutta method

to find the contribution of the neglected higher-order analytic terms as well

as other perturbations not included in the analytical model. The analytical

model considers only the perturbations of the second and fourth zonal harmonics

of the potential. The program is designed to consider additional zonal, tes-

seral, and sectorial harmonics up to and including the coefficients C66 and

$66 , and to also consider lunar and solar perturbations if desired.



NOTE:

Section 2

SYMBOLS

In the definition of symbols, the numbers in parentheses represent the

numbers assigned to equations throughout the rest of the report; the

names or letters in parentheses represent the titles of specific

subroutines.

A
Pa

Symbol for cos i ' initial total angular momentum (non-
oo

dimensional), or array of dimension 3 in subroutine EXPERT

to store the sum of the sun and moon accelerations (non-

dimensional) or FORTRAN floating point variable for L = N-I

in subroutine GPOT

AI ---_= total angular momentum at any time (non-dimensional),cos i

(FORTRAN symbol AI)

af Acceleration in local geocentric south direction (non-

dimensional with respect to g),(FORTRAN symbol AF)

AA

AB

a

g

cos 2w - cos 2_

-So+
, (APSOL)

- KI cos 2_

cosSi
OO

2p8 '
(CONST)

Acceleration in local geocentric east direction (non-

dimensional with respect to g),(FORTRAN symbol AG)

Acceleration outward along the local geocentric vertical (non-

dimensional with respect to g),(FORTRAN symbol AH)



a
r

AC

Accelerations in the outward radial direction not considered

in original analytical model (non-dimensional) (96)

cosSi

oo (CONST)
,

P

ACC

ACS

ACSS

ACS2

ACS32

AC32

AD

5 cos i
OO

A4 Sl' '

(co.sT)

cos5i sin i
OO OO

2p 5

, (CONST)

-c cos_i sin i
OO OO

9

2p

(CONST )

coS5ioo sin ioo

Zp_

(CoNsT)

5 3/2 coshi sin i
OO OO

P

, (CONST )

c3/2 cos5i
OO

p5
, (CONST)

Array of derivatives of the approximate solutions in subroutine

APSOL.

AD(1) dPa d_ di dqa= aT = o, _(2) = _-_, _(B) = a-_, _(_) = dT'
dt

a

AD(5) = H, AD(6) = aT

AF af

AFI
af I

AF2
af2

4



AG

AGI

AG2

AH

ANI

AH2

AJ2

AJ_

g

gl

a

g2

%

%1

%2

The J2 zonal coefficient of the potential, (MAIN)

The Jh zonal coefficient of the potential, (MAIN)

AMP

AM_

ANG

ANG2

AOR

¢ ;'o+,=l v'_o+%.

(c0_s_)

depending on perigee case number IC,

coshi
OO

P

, (co.s_)

¢T = total $ (not modded), (APSOL)

¢-i-w angle to determine quadrant of TANG in subroutine
2

CONST (rad) or = 9-_-= angle to determine quadrant of
2

TANG in subroutine APSOL

J

Array of n in subroutine GPOT. AOR(9) maximum

5



AS

AU2

Array of approximate solutions in subroutine APSOL.

AS(_)= qa' AS(5)= uAS(2)= _a' AS(3)= i a, a'
AS(6) = t

a

A1
(ENCKE)2'

U

AS(l)= Pa'

A1

A3

A3E

A1 = ---_i'COS
(ENCK_)

3
P (cO_ST)

cos3i '
OO

3
P (CONST)

coS3ioo (l-e2o)'

A6 21A-_, (CONST)

b Angle measured from ascending node to satellite's meridian

along the equator (rad), (10h). FORTRAN symbol B, (EXPERT)

B b, (EXPERT)

B M, (GPOT)

BEt4 Integer multiples of the longitude, (GPOT)

B2E2 2£2B_, (CONST)

B2E _2B[, (co_sT)

B2s B_, (21)

6



B2SP
!

, (20)

13

c = ratio of _ where D and J are coefficients of the

second and first zonals of the potential, respectively.

c = _17

C Two-dimensional array (6 x 6) for the Cnm , (GPOT)

C
rBn

Coefficients for computation of tesserals and sectorials of

the earth's potential, used in subroutine GPOT

CA Array of reduced moduli k obtained by decreasing Landen

transformation in subprogram ELIPE

CAP

CAS

CAr

Array of reduced modified moduli k' obtained by descending

Landen transformation in subprogram ELIPE

k' =

kir • SNVE, (ELIF)

k = dummy variable for the modulus, (ELIPE)

CB cos b, (EXPERT)

CBE Array of cos(n • EW) in subroutine GPOT. CBE(6) maximum

CC

CC7

Two-dimensional array (6 x 6)

putation of complete potential,

(3-7 cos2e), (ENCKE)

of coefficients used in com-

(GPOT)

CHII Intermediate angle needed to find CHIIS



CHIIS X_ = angle used to find T° in subroutine CONST, case 1

CHI2

CHI2S

Intermediate angle to find CHI2S

X2 = angle used to find To in subroutine CONST, case 3

CI

C12

CI3

cos i in subroutine ENCKE, or cos ioo in subroutine CONST

2 2
cos i in subroutine ENCKE, or cos i

OO

cos3i

in subroutine CONST

in subroutine ENCKE

C131

CIh

.

1-3 cos z
OO

in subroutine CONST

2. 2.
cos I in subroutine ENCKE, or cos z

OO
in subroutine CONST

CIOC cos ioc, (APSOL)

CMAX Maximum value of the absolute value of the Runge-Kutta

increments over two complete steps.

CMC cos2w - cos2_ , (APSOL)

CN Elliptic function cn, (APSOL)

COEFF

COSP

Array of coefficients for the potential.

Cl, I _ C6,6, Sl, I ÷ S6,6, NI and N2

cos(PHIS(I-I)), (ELI)

Contains Jo ÷ J8'

CP

CPMW

cos ¢

cos(Si-w) , (CONST)

cos(S-m), (APSOL)



CPPW cos(¢+_), (APSOL)

cQ

CRD

cos q, (EXPERT)

"Critical divisor term"

2. (C0NST)
1-5 cos Zoo ,

CS
cos iooSin ioo , (CONST), or /

two-dimensional array (6 x 6) of coefficients in

computation of complete potential, (GPOT)

CT cos e

CT2 cos2e, (ENCKE)

CVE cos (VEO), (ELIF)

CW cos w, (CONST)

CXW COS

C210C 2. (APS0L)
COS i

OC

C2P cos2¢

C2S (23)

C2SP

C2E

C2PMW

C2T

(22)

2 .
e C2 ,(CONST)

cos2(_-_)

cos28, (ENCKE)



C2W cos2w*, (CONST)

C2XW

C22E

cos2_

2_2c_ (CONSTI
2 '

P

C3PMW

ChE

C4PMW

cos(3¢-_)

c_(c_)2, (CONST)

cos(4¢-2_)

D

DAFDPH

DAGDPH

DA/PHI

DEA

N, (GPOT)

da

.._._6. (ENCKE)
de

dA I

d--_--' (ENCKE)

de

(APSOL)
de '

DELI Angle representing the total even number of revolutions of

PHILT in radians. (ELI)

DELPHI Original guess at computing interval, input in degrees used

internally in radians. (MAIN)

DELPHO Angle used to find A¢ in ELI

DELS Modded change in ¢, (ELI)

DELU d a__ (ENCKE)
Au used to approximate _ (dt),

I0



DENK

DENOM

DFDPHI

Array of three coefficients used to compute the total

energy

22 2. h.
p u sin i sin 8 + cos i cos e F, (ENCKE)

dF
d--_' (ENCKE)

DIDPHI d_%
de "

DMI D-I, (GPOT)

DODPHI

DOMEO

DOME12

DOME32

d_ (ENCKE)
d_ '

dn
1 oo (APSOL)

el/2 d#

_o 1/2 , (APSOL)
de

dR3/2 , (APS0L)
de

DP Array of coefficients in subroutine GPOT, DP(IO)

DPDPHI

DPH

da
d_ '

_n

Test ratio to determine when the limit of -- has been
2n

reached (ELI)

DPHI

DPHIDT

DQO

A@ used to find approximation for

d__ (ENCKE)
dt '

dq° (APSOL)
d@ '

d (mcE)
_(dt ),
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DQI

DSI0C

dq 1

d---_' (APSOL)

di

o_.___csin i (APSOL)
de oc,

DT

DTA

Change in time since entering subroutine EXPERT

(initially = 0). Also used as the step size in

subroutine RKTOM

dt

a (APSOL)
de

DTDPHI dt (ENCKE)
d,

DTH_P

DTIP2

DTI21

de , (ENCKE)
de

nPl, (GPOT)

(_-I)_I, (GP_)

DTM Multiplicative input parameter to increase the step size

if the estimated computing error is too small

DTSAVE Saved value of time to compute change in time since

entering subroutine ENCKE, (MAIN)

DT2 Half the step-size in subroutine RKTOM

DT3 Step-size over 3 in subroutine RKTOM

DUDSI

DUI

SU (ENCKE)

du 1

d-C-- ' (APSOL)



DVT Array of 6 which represents the sum of the approximate

numerical values of the dependent variables at any

time. (MAIN)

DW

DWB

D2EA

d--9-_m' (APSOL)
d@

d-9-m (APSOL)

d,

d2e

__a (APSOL)

d_2 '

D2W
d2_

d$2

, (APS0L)

E

EA

e or e* in subroutine CONST, or dummy output
o o

array of (6) giving evaluation of the derivatives for

dPn d_n

numerical integration (ENCKE) E(1) = d-_-' E(2) = d-_-'

dqn du dt
din E(_) = _, E(5) = n E(6) =

E(3) = d-_--' d_ d_ ' d_

ea, (APSOL)

FALL Allowable error computed in subroutine EKTOM

EE Dummy name for the array of 6 stored in labeled common

/ENERG/. Used in main program to obtain quantities to

compute the total energy

EF

EM

l_e
o

l+e
0

, (CONST)

kn2 where kn is the last reduced modulus, (ELIF)

IS



_4AX Input value to program and to subroutine RKTOM,

which is a measure of the maximum allowable accuracy

desired

mMIN Input value to program and to subroutine RKTOM,

which is a measure of the minimum allowable accuracy

desired

_42

EM212

(l-e_), (CONST)

2 (C0NST)

AL?_/
0

1_22

E02

lm6

E03

l-e_, (CONST)

di dqn du dtdPn dRn n n n
Array of 6 which is _

de' de' dT' dT' d-_-' aT

e

o (C0NST)
D2

e

o (C0NST)T-,

e

o (C0NST)
3

EPD210

2. U

ci12 d 10112

de2
,(APSOL)

EPS

EPSI2

¢ = J = non-dimensional coefficient of the second zonal

harmonic of the potential = 1.623 x 10-3

c1/2, (C0NST)

EPS2 2 (C0NST)C9

14



EPS3

EPS32

c3, (CONST)

c3/2, (CONST)

ERMIN Minimum allowable error computed in subroutine RKTOM

EROT Input rotation rate of the earth in rad/hour, but used inter-

nally as a non-dimensional rate. (EXPERT)

ESTER Estimated computing error in subroutine RKTOM

ESI2 e /2, (APSOL)

EW East earth longitude of the satellite, (EXPERT)

EWOG

El2

E2

E2C

E3K

F

Longitude of Greenwich measured from 1950.0 equinox at any

time. 0 _EWOG _ 2w. Initially input as the value at ti

El�2, (A.23)

2 (CONST)e,
o

2c, (CONST)
e o

3 (CONST )
E KI,

SU cos_____SU (non-dimensional)
Symbol for the term _+ tan i sin ¢ _-_

same in FORTRAN, (ENCKE)

FDT Multiplying input factor used in selecting the optimum com-

puting interval

15



GAMI Symbol for YI = constant for cases 2 and 3 eccentricity

calculations • (CONST)

GAPOB K--o, (CONST) (27)

GAP1 KI, (CONST) (29)

GAPIP K{, (CONST) (28)

GM Array of 2 where GM(1) = GM
sun

1_ 3

GM(2) = GMmoon(----_) , (EXPERT)
sec

GOK -2° (C0NST)
K1 '

1_ 3
(----g),
sec

GP(I,J) Two-dimensional array storing perturbative accelerations of

the sun and moon. I = i, 2, 3,; J = i (sun), J = 2 (moon)

(km3/sec2), (EXPERT)

2
e

coS2ioo ) o (i - 5 cos2i ), coefficient in Ul,GO -(i - 3 - _--- OO

(C0NST)

2
e
o

_-- (i - 3 coS2ioo ), coefficient in

sin2i e2

-( 3 oo 3° + _ e2o sin2ioo)' coefficient in Ul, (CONST)G2

2
e

o (i - 9 coS2ioo ) coefficient in Ul, (CONST)O3 _- ,

GI Ul, (CONST)

e

o (5-11 cos2i ), coefficient in Ul, (CONST)G4 - i'-2 oo

16



G5

H

2
eo

- _-_(i-3 coS2ioo), coefficient in Ul, (CONST)

dqo
All small terms in --

de

(FORTRAN symbol = H)

(non-dimensional), (81)and (82),

H FORTRAN symbol for theoretical H, (APSOL)

HAH Array of dependent variables and their derivatives HAH(12).

(MAIN)

HS Array of six values of the Simpson's rule increments over

two complete computing intervals

Inclination (rad)

IC Flag which gives the case number for perigee calculation

IC = i, 2, or 3, (CONST)

IE
Flag to determine case number for e_l 2

IE = l, 2, or 3, (CONST)

calculations

IMII Counter for I-l, (ELI)

IMI I-l, (ELIPE)

IP Initial point flag = i for first point, = 2 thereafter, (MAIN)

IPRINT Print flag - calculations for print only and printing are

done if IPRINT = i; if IPRINT = 2, this is suppressed.

(MAIN)

IR NOT2 - I, used to determine last k value to be used in com-

puting the elliptic function in subprogram ELIF

17



IW

IWC

K

kI

k2

KC

KDER

KF

Quadrant of the angle W in subprogram QUADI.

IW = i, 2, 3 or 4

Flag which tells if m= constant in case 2 perigee calculation.

If IWC = i, _ = w. If IWC = 2, _ is a variable, (CONST)

Quarter-period of the elliptic integral F(@,k) in subroutine

(CONST) or = N-I in subroutine GPOT

Modulus of elliptic function (non-dimensional), (50)

Modulus of elliptic function (non-dimensional), (58)

Simpson's rule flag in subroutine RKTOM; when K( = I,

no Simpson's rule calculation is made; when KC = 2 (two

complete steps of Runge-Kutta have been completed), the

Simpson's rule calculation is made to check the accuracy

Input flag that indicates the model considered. Input

KDER = 1 if the model is the same as the analytical model

(J and D terms only and no sun or moon). Input KDER = 2 if

any other perturbations are considered

Intermediate failure counter in subroutine RKTOM

KFAIL Total failure counter in subroutine RKTOM

KHALT

KR

Halt flag.

KHALT = 2

selection.

KHALT = 3 is normal halt upon completion;

is halt due to failure of computing interval

Runge-Kutta flag indicating the Runge-Kutta cycle. (KR = 5

indicates two complete integration steps have been completed).

(MAIN)

18



KIOR3 Flag to determine point about which perigee oscillates.

Input Quantity = i if w closer to _ or 2 if w
3_ 2 '

closer to _-

L Quadrant of angle ZI in subprogram QUAD2. L = i, 2, 3, or 4;

L = N-I, in subroutine GPOT

L
o

Initial angle of the ascending node to order ¢ (rad)

LS Luni-solar flag. LS = i means consider luni-solar perturbation.

LS = 2 means ignore luni-solar perturbation

MFAIL Maximum number of failures in computing interval selection

input to the program and to subroutine RKTOM

N Counter in subprogram ELI

done in the loop

which equals the last value of I

NNI NI+I, (GPOT)

NOT Variable that counts the number of times the Landen trans-

formation is used in subprogram ELIPE, also gives the index

of the last calculated member of the arrays CA and CAP

NOT2 NOT+ 2

NPTWO Used to generate 2 (i-l) in subprogram ELI

NI Degree of highest zonal harmonic to be considered, NI ! 9

N2 Degree of highest tesseral harmonic to be considered; N2 < 6

19



OMEG fl = longitude of ascending node (tad)

OMEGA fla = approximate fl (fl = fla + _n )' (rad)

or = dummy variable for fl in subroutine EXPERT

or = dummy angular variable in subprogram QUADI which

represents the angle that is to be placed in the proper

quadrant

OMEGN = numerical correction to fl (rad)
n

a n

OMEGT + n (_.SCK_)
fl = fla n'

OMEO0 noo, (APSOL)

OMEOI2 noll2, (APSOL)

OME32 n312, (APS0L)

OSK

OSK2

OTD

-----, (co_s¢)

S
O

(CONST)
-2'

So

Dimensional flTOTAL for output, (degrees), (MAIN)

P p = component of angular momentum along the polar axis

(non-dimensional) or array of coefficients Pn in subroutine

GPOT, PC10)

PA Pa = approximate solution for p, (APSOL)

PHI ¢ = independent variable, angle from node to satellite, (rad)

2O



PHIB

PHIBT

PHIIB

;_ _3/2 ¢, (APSOL)

- c3/2
CTOTAL = ¢'I'0TAL'

%.

(_SOL)

PHIK Angle which is the number of complete revolutions of ¢

multiplied by 2w, (ELI)

PHILT

PHIO

PHIS

Array of angles ¢ used in decreasing Landen transformation.

(ELI). Maximum dimension (lO). Total angle not modded (rad)

m

¢o = constant angle needed to calculate approximate perigee

in case i or case 3. (CONST)

Array of modded angles ¢ in subprogram ELI, maximum

dimension (lO). (rad)

PHISTP Stopping condition for ¢, input in degrees, used internally

in radians. (MAIN)

PHIT
¢TOTAL = total accumulated angle to compute secular terms,

(MAIN)

PHITD

PHI1

PHI2

PI

PI02

Total ¢ in degrees for output. (MAIN)

d de (ENCKE)
¢i used to approximate _(_),

d d__ (ENCKE)
¢2 used to approximate _ (dt),

_, (CONST)

w

_, (CONST )

2]



PN Pn, (ENCKE)

PP Dummynamefor first three elements of labeled commonarray
/EX/. Used in main program to eliminate changing values

PR Variable used to accumulate the product in subprogram ELIPE

PT

PT2

Total P -- Pa + Pn'

2
p : (ENCKE)

(EN CKE )

P2

P4

q

2
Pa' (CONST)

Pa ' (CONST )

d__uu(non-dimensional) used to change second-order differen-
de
tial equation to two first-order differential equations

Q Dummy variable for sin 8, (GPOT)

QA qa' (APSOL)

qn' (mCKE)

QPER Quarter-period of elliptic functions or integrals with

modulus k I or k 2 in subroutine CONST

Dummy variable in subprogam QUADI for same as above

w
or

QQ I_ name for last three elements of array stored in

labeled common /EX/. Used in main program to prevent

changing values that are stored there

QT Total q = qa + qn' (ENCKE)

22



R Mean equatorial radius (n. mi.)

I
FORTRAN symbol for non-dimensional radius vector = u' (ENCKE)

Radius to satellite (non-dimensional with respect to R)

RAD Conversion factor from degrees to radians. (MAIN)

RD Dimensional r in subroutine EXPERT, (km)

REST

RK

Dummy name for last 12 elements in labeled common array

/APS/. Used in main program to prevent changing values that

are stored in that part of the array

/--
2_ I or CKo+K I in subroutine CONST depending on

perigee case number IC

RK1

RK2

RKS

RKINC

RMK

Arrays of 6 which represent the Runge-Kutta parameters for

each of the six dependent variables

Array of 6 to compute the common increment used in HAH

and SR

KI--KI, quantity needed for case 3 perigee calculations,

(CONST)

RR

RUM

RX

Dummy storage array of dimension

run usage in main program

(125) for reference

F
DENOM '

n+2
Array of r

RX(9) maximum

(non-dimensional) in subroutine GPOT.

23



R2

d d¢
r 1 Used to approximate _ (dr),

d
r 2 Used to approximate _ (dr),

S Array of i_ in which values of dependent variables, their

derivatives, the time, and @ are saved for ordinary

Runge-Kutta use, or two-dimensional array (6 x 6) of

coefficients in computation of complete potential, (GPOT)

S
run

C_ffir_nt_ for computation of tesserals and sectorials of

the earth's potential-, used in subroutine GPOT

SBE Array of sin (n ' _) in subroutine GP_. SBE(6) max-

imum

SC

SI

S12

Two-dimensional array (6 x 6)

tation of complete potential,

sin i , (CONST), or sin i,
OO

• 2. (CONST) or sin2i,sln i ,
oo

of coefficients in compu-

(GPOT)

(ENCKE, EXPERT)

(mc )

SINP sin (PHIS(I-I)), (ELI)

SIOC sin ioc, (APSOL)

SN Elliptic function sn, (APSOL)

SNVE Quantity used recursively to find sn, (ELIF)

SOK

SP

S
O

$

sin @,

(CONST)

(APSOL)

24



SPMW
sin (el-W) in subroutine CONST or sin (C-w) in sub-

routine APSOL

SPPW sin ($+w), (APSOL)

sQ /%-KlCOS 2w , (APSOL) or sin q, (EXPERT)

SQ1 (APSOL)

SR Runge-Kutta increments over two complete computing inter-

vals;sR(6)

SS Array of 14 in which values of dependent variables, their

derivatives, the time, and _ are saved for Simpson's rule

use and in case of computing interval selection failure

ST sin 8

SVE sin (VE0), (ELIF)

SW sin (w), (CONST)

SXW sin

SOB

SOBS

SL, (A.20)

_o' (C0NST)

SI sl, (25)

SIP s{, (24)
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2 (CONST)
SIS S1 ,

S2P sin 2 ¢, (APSOL)

S2PMW sin 2 (¢-_), (APSOL)

S2T sin 28, (ENCKE)

S2XW sin 2_

S3PMW sin (3¢-_), (APSOL)

ShPMW sin (h¢-2_), (APSOL)

t Time (non-dimensional with respect to

T Total time since 1950.0 equinox = t a + tn, (ENCKE),

also the dummy name for the independent variable in

subroutine RKTOM

t
a

Approximate analytic time

t
n

Numerical correction to the time

TA t = approximate solution for time
a

(APSOL)

(non-dimensional),

TAB1 Tape control array to read data from JPL ephemeris tapes,

(EXPERT)

TAB2 Tape control array to read data from JPL ephemeris tapes,

(EXPERT)
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TANG Value of tan-I expression for time constant in subroutine

CONST(rad), or value of tan-I expression for t in
a

subroutine APSOL

TD

TF

Dimensional time in subroutine EXPERT (hours)

Dummy variable in input array of subroutine RKTOM which

represents the maximum desired value of the independent

variable

THETA

TI

TILT

TN

TOTE

TS

TSI

TS2

TWON

TWOPI

TW2

FORTRAN symbol for e

tan ioo , (CONST), or tan i, (ENCKE)

Dummy variable for inclination in subroutine EXPERT

"Next time" after Runge-Kutta step would be completed

Total energy which is computed and printed when only

J and D perturbations are considered

Place to accumulate double sum of tesserals and sectorials

for af in subroutine GPOT.

Place to accumulate double sum of tesserals and sectorials

for a in subroutine GPOT
g

Place to accumulate double sum of tesserals and sectorials

for ah in subroutine GPOT.

2n accumulation in subroutine ELI

2w, (CONST)

w

tang, (CONST)
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TO

TOI

Initial time (non-dimensional)

Constant used in approximation for time,

(non-dimens ional)

(CONST),

U Earth's potential (non-dimensionalized), or in FORTRAN

a symbol for u = reciprocal of non-dimensionalized radius

(divided by R), or dummy angular variable in subprogram

ELIF which is the argument of sn (rad), or two-dimen-

sional array of coefficients for perturbative acceler-

ations in subroutine GPOT. U(6, 6) maximum

U
nm

UI

sec ¢ • p_, (GPOT)

Small terms in the radial acceleration

(96)

(non-dimensional),

UA = approximate u (non-dimensional), u = u + u
Ua a n

UN u = numerical correction to u
n

U= U + U
a n

(non-dimensional),

+ u , (ENCKE)UT Total u = ua n

UOO Uo, (APSOL)

UOI Quantity to store zero in the location for zero index in

array U in subroutine GPOT

Ul eUl, (APSOL)

2 (ENCKE )
U2 ut,

U3 u_, (ENCKE)
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U5

V
o

V1

V 3

VE0

VU2

V0

_, (_c_)

All small terms in _ (non-dimensional), (87)

d d_ (non_dlmens ional) (88) and (89)
All small terms in _ (dt)

Small terms in _ (non-dimensional), (9"() and (98)

U = last reduced argument, (ELIF)
PR

V

02, (_CKE)
AlU

vo, (_cE)

V02

V1

V22

V3P

VU2 (2 + VU2), (ENCKE)

vI, (ENCKE)

V 2

(i + --o 2 ) , (ENCKE)

AlU

V_, (ENCKE)

W

W
nm

Dummy variable in subroutine CONST for w* = w = initial angle

of perigee (rad), or dummy variable for angle which deter-

mines the quadrant in subprogram QUAD1, or two dimensional

i6 x 6) array for the Wnm in subroutine GPOT

m !

cos @ • On , (GPOT)

W02
w
_, (CONST )

XI i = inclination (rad) = i = i* in subroutine CONST
O0 O0

XIA ia = approximate inclination, i = ia + in, (rad)
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XIN = numerical correction to inclination i = i + i (rad)
in a n'

XINCI

XIT

Initial value of the inclination in degrees,

+ i (ENCKE)Total inclination = ia n'

(APSOL)

XITD Total inclination in degrees for output, (MAIN)

XIOC (APSOL)
ioc'

XII

XII2

XLO

ell, (APSOL)

ioi12, (APS0L)

L (constant related to
O

L ° + B1/2 in subroutine

_. ) when input, changed to
i

APSOL to make initial L = _.
O I

XMOD Modulus of elliptic functions and integrals = kI or k2

depending on perigee case number IC. (CONST)

XNODEI Initial value of ascending node in degrees, (APSOL)

XW

Z

Analytic value for the osculating argument of perigee, (rad),

(APSOL or CONST)

NI J
V

n ) Pn'Place to accumulate the sum A (--Ji-6_o
n=2 r

Also name of input array of dimension (125)

in subroutine GPOT

in main program

Zl

Zl

Dummy angular variable in subprogram QUAD2 used to determine

the quadrant of the first argument

Place to accumulate the sum

GPOT

N1 J
n

[ (n+l) (--_-_) Pn in subroutine
n=2 r

so



zI

z2

Z2

ZD

Y1

I

K
O

_i and K_

_G

kOG

Angle used to find quadrant of m, (rad), (53)

/_o+K1 (¢-¢o) angle used to find the quadrant of

z2, (APSOL)

l+cos (el-W) in subroutine CONST or l+cos (C-m)

routine APSOL

Constant defined in (h8), (non-dimensional)

_, (rad)

in sub-

Coefficient of the second zonal harmonic of the earth's poten-

tial, (non-dimensional)

Complement of the latitude, (rad)

Constant defined in (A.21)

Constants defined in (28) and (29)

Instantaneous East longitude of the satellite measured from

Greenwich (FORTRAN symbol EW)

Instantaneous longitude of Greenwich measured for equinox of

1950.0 (FORTRAN symbol EWOG)

Longitude of Greenwich measured from equinox of 1950.0 at

t=0

• 3

(n.ml._)
GMearth hr.2
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m !

Pn' On' Pn' etc Coefficients used for calculation of the complete potential

in subroutine GPOT. Defined in (iii) ff

¢ Angle from ascending node to satellite, (rad)

m

¢ ¢312 ¢, "slow variable", (rad)

Constant of integration defined by (51) or (59)

Angle used to find constant of integration for w solution,

(52)

X2 Angle used to find constant of integration for w solution,

(60)

n

tO

Longitude (rad)

Longitude of the ascending node (rad) measured from equinox

of 1950.0

Argument of perigee, (rad)

Mean rotation rate of the earth, (non-dimensional)

SUBSCRIPTS

a Approximate

n Numerical

f

t or T Total

o, 0 1/2, O0

i, 1.2, OC Denote various orders of the approximate solution
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Section 3

SOURCES OF EQUATIONS

3.1 FORMULATION OF THE PROBLD4 AND THE APPROXIMATE SOLUTION

In general, it is the purpose of this program to solve a set of simul-

taneous differential equations by a combination of numerical and analytical

methods which might be called a modified-Encke solution. Thus, for the

_roblem:

= f(X,t),

Xn = f(Xa + Xn't) - Xa'

where Xa is an approximate solution, Xn is the correction obtained by

solving the latter differential equation numerically, and the complete solu-

tion is then X = Xa + Xn. In the normal Encke method, the approximate solu-

tion is taken as the two-body solution (a fixed Keplerian ellipse). In the

modified-Encke approach, the approximate solution will be a solution of the

oblateness problem considering the first, second, and fourth zonal harmonics

of the potential. The approximate solution differs from reality for two

reasons. First, the mathematical model is necessarily simplified from the

actual physical case, and second, the solution only approximates the true

solution of the simplified problem. The numerical solution accounts for both

of these discrepancies. For this program, the complete model will include

zonal, tesseral, and sectorial harmonics of the potential up to and including

the coefficients C66 and $66 , in addition to luni-solar perturbations.

The general equations of motion, nomenclature, and approximate solution

to the oblateness problem as described in reference i are used as a framework

for this program. For convenience, all equations taken directly from this

reference will be given the original numbering at the left in addition to con-

secutive numbering for this report on the right.
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The complete set of differential equations is given in equation (3.5) of

the reference and consists of four first-order equations and one second-order

equation. In this formulation, the independent variable is the angle ¢

between the ascending node and the radius vector, and the dependent variables

are p (component of angular momentum along the polar axis), _ (argument

of the ascending node), i (instantaneous inclination of the orbital plane),

u (reciprocal of the radius), and t (time). These equations are:

_U

_._,,_...= _ (i)

(3.5a) d¢ pu+2 cos31 cos e F '

cos i p sin2i sin e

d_ - cos3i cos e F (2)
n= 22 4. '

(3.5b) de p u sin2i sin e + cos i cos 8 F

di - sin2i cos3i cos @ F (3)

_= 2 2 2i h. '(3.5C) de p u sin sin 8 + cos i cos 8 F

2 _U
du d p2u5 + u _-_

(_.Sd) --d2u_ 2 (du)2 _ _ (_t) = - cos2i , (_)

d¢2 u _ + dCdt (_t)2

-1

dt pu+2 cos3i cos e F] , (5)

(3.5g) _= [cos i p sin2i sin e

where the co-latitude e is related to i and $ by

(3.5h) cos e = sin i sin ¢ , (6)

2sin e = + 1 - cos e , (7)*

Since 0 • ¢ < 180 °



where U is the potential of the central body, and

_U cos ¢ _U

F --_ + tan i sin e _ " (8)

These equations of motion are exact for any satellite orbiting around

a central body of potential U. To consider additional perturbations, the

equations can be kept unaltered by including the appropriate components of the

BU BU

perturbative accelerations in the quantities S-_ ' S-_ ' and F. The equations

would then still be exact.

Defining the accelerations af, ag, and ah

with ah outward along the geocentric vertical,

directed east:

in a local orthogonal frame

af directed south, and ag

i SU
af = r B--_ ' (9)

i _U
a : (lO)
g r sin e _¢ '

and

_U
a h : B-_ • (ll)

Then, from equations (8), (9), and (i0):

F : BU+ tan i cos ¢ SU
Be sin 8 S_

i
: - (af + tan i cos ¢ a ).u g

(12)

The analytical solution of reference i only includes the first, second,

and fourth zonal harmonics of the earth's potential. To include more terms

of the potential, the af, ag, and ah accelerations will be used directly

from reference 2, pages h-97 and 4-98. (Repeated in this report, equations

108, 109, and llO.)

F
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It is also desirable to change the original equations of motion into six

first-order equations rather than having one second-order equation. Equation

(h) then is replaced by the following two equations:

and

du _ (13)
_=q,

2 SU
d d_A 2u2_--5÷ u _-_

dE = 2 2 q d"$" (dt) c°s2i (lh)

de _ q - d_ " 2 "

dt (dt)

These two equations need special consideration when finding the numerical

differential equations. Using subscripts a and n for approximate and

numerical solutions and defining the right side of equation (14) as the function

G(p, q, u, i, _) leads to:

dqn d2u

= + i + in' ¢) _____a (15)
G (Pa + Pn' qa + qn' Ua Un' a d¢2

and

du du

a (16)
d_ = °n' _ = qa •

Now the appropriate approximate solutions will be selected from

reference 1. From equation (3.6a):

Pa = const. = initial p.
(17)

From equations (3.71), (3.73), and (3.76):

O0

= + noa _ 112
E

+ e R312 + Lo"
(18)
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Before writing the expressions for _ etc., it should be mentioned
OO '

that some numerical difficulties would be experienced by using the results of

reference 1 exactly as written. The results of the reference are algebraically

correct and pose no analytical ambiguities. However, in certain cases there

are apparent Indeterminacies which a computer cannot handle. Most of these

can be eliminated by minor modifications of constants, but several quantities

will still require two or more different forms for accurate and correct numer-

ical evaluation.

Let A _ P (19)
cos i

O0

designate the total initial angular momentum.

From equation (A.II), define:

' 1 1

B2"= - c)(1- eo2)

+ cos 2.1oo [(i - eo2) 12c - _ + _4 eo2]

• 21 2) _ 2h [- -_ c (i - e + (5 - e )]}, (20)+ COS i00 0 0

SO

!

B2* = eo B2* . (21)

Equation (20) uses equation (3.38), i.e.,

* = i , e * = e w* = w.ioo oo o o'

From equation (A.Ih), define:

' 1
(22)
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so

!

2 sin i . (23)
c2" - eo cos ioo oo C2"

From equation (A.18), define:

so

Sl, = _i (2 - 15 coS2ioo ),

S I _ tan ioo SI'.

(2_,)

(25)

-- i coS2ioo )
- ¢1/2 A 4 (i - 5 • (26)(A.20) S° 2

(A.21) [o = _o2 + KI cos 2w. (27)

Equation (27) assumes Jl/2 * = 0. In reference i it is assumed that constants

of integration can be expressed in series form. For the program, the leading

term will be taken as accurately as desired, and all the higher order terms

will then be zero except for LI/2. To make the constant L ° approximately

equal to the initial value of the ascending node, the LI/2 constant is

chosen to make flol/2 = 0 initially.

From equation (A.22), define:

! t !

K I = S I C2" ,

so

2 sin2i KI'KI = eo O0 "

(28)

(29)

From equation (A.23):

Eli 2 -

B2* S'o B2*' SL
= - . (30)

K 1 sin21
eo oo K1 '

38



Now we can return to writing the approximate expressions.

(3.79) n = -
OO

cos i
O0

Ag *.
(31)

(3.82)
5 cos i

= - oo [SO ¢ - _° ] + LI/2nol/2 A 4
S1 '

(32)

cos i

OO sin 25 sin (¢- m )
(3.80) n3/2 = - Ah [- 2 + eo o

e e
o o

- --_ sin (¢ + _o ) ---_ sin (38 - mo )]

As stated in equation (18),

(3.43) and (3.h8b):

O0

a = _ + _oi/2 + e _3/2 + Lo.
g

(33)

From equations

= i + cI/2 i * + e iIia oo o 1/2 '
(34)

since il/2 = 0 from reference i, page 27.

i = initial inclination to order c.
OO

(35)

The equation for io 1/2" is given in equation (3.33) but two forms are

required for the numerical evaluation.

When 62 ° < i < 65 ° (Limit on i
-- O0 -- O0

use:

satisfied when Ii - 5 coS2ioo I _ 0.i06),

-- _ - _ 2_)1/2
(3.33) io 1/2" = SII [+ (_o KI cos - _o ]"

(36)*

* The sign of the square root must agree with the sign of the numerical

value of SO .
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Otherwise, use the form:

io 1/2" = C2"
Icos 2w* - cos 2_]

_o +/_ - _i cos 2_
-- O

(37)*

Equations (36) and (37) are algebraically equivalent with equation (37)

coming from equation (36) by multiplying and dividing by [/[ - KI cos 2m
O

+ _ ] and by using equations (A.21) and (A.22) for [ and and
o o KI'

equations (23) and (25) for C2" and SI.

The final expression required for i is then:
a

cos i sin i

(3.15a) il = oo oo [cos 2¢ + e cos (¢ + _)
2 A 4 o

e
o

+ -_ cos (3, - ,.,)]. (38)

Since the differential equation for u was changed from one second-order

du

equation to two first-order equations in u and d-_' the approximate

values for both these quantities are required.

Repeating the equation from reference i:

,

COS i

(3.48a) u = oc
a 2 [i + ea

P

(since Ul/2 = 0

cos ($ - m)] + a Ul,

from reference i, page 27).

(39)

From equation (3.h3):

i = i . + I/2 i *
oc oo o 1/2 "

(ho)

* The sign of the square root must agree with the sign of the numerical
value of S .

O



To compute ua, the expressions ea, w, and uI are needed.

From equation (3.41):

cI * (_1)
e a = eo* + /2 el/2

e * = constant, = initial e. (42)
O

The variable ei/2* is given in equation (3.35), but again different forms

are required for numerical evaluation by computer. As in the development

of i* if i is not between 62 ° and 65 ° , use:
o 1/2' oo

el/2* =

B2* (cos 2w* - cos 2=)

- + /_ - <i cos 2=So -- o

(43)*

If 62 ° < i < 65 °,
-- O0 --

--2

providing S° <_ E1.

then use:

m

S

u m

el/2* = Y1 [+ K1 cos 2= ._o]- /r;

Otherwise, use:

(44)*

% +/
(cos 2v* - cos 2=)

K1
i + _ (cos 2w* - cos 2=)

S
O

(45)

Again, all these formulas are mathematically identical, but they are required

because of possible ambiguities in computer calculations. In equations (44)

and (45), the quantity Y1 is defined by:

* The sign of the square root must agree with the sign of the numerical

value of S .
O
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Tl =-

!

B2*

sin ioo

The solution for w also requires three forms, given as three cases in

reference 1 depending upon the relative values of K and K1.O

(46)

<
For case 1 when --K1 < K° KI:

(3.55)

i

- K 1/2
m. = _+ tan-I {KI _O (I + tn 2 [2_K 1 (_--_-O)])}

K1 + Ko

1/2

[K1 - %]= ! tan-i { _ "

K1 + Ko

1

cn [ 2,_"_K 1 ("_'-- L)]

where the modulus of tn or cn is kI and

(3.54c ) kI =

l/2

+ KI][o
2 K1

(47)

(48)

From equations (3.54a) and (3.54b):

(+ same sign as

_i - _o - + (2 _x)-x/2F (xx ,kx)

which is sign of d__m at m = w)
o d#

(h9)

and

m

, [KI + K 111/2XI = + tan-I --° tan 2 w* - ,

K1- <o

(50)
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and the sign is chosen so w* and ×i* are in the same quadrant. In these

expressions, F(Xl* , kl) is an elliptic integral of the first kind and tn

and cn are elliptic functions. To determine the quadrant of m* from

equation (h7), a new angle and K (the quarter-period of the elliptic func-

tions cn or tn) are used. Let

(;- I (51)

now the quadrant of m* can be related to the quadrant (defined by K) of

zI •

zI m* m*
(when w* nearer _/2) (when w* nearer 3_/2)

0 - K 0 - _/2 _ - 3_/2

K - 2K
- _ 3_/2 - 2_

2K - 3K
- _ 3_/2 - 2_

3K - hK 0
- _ _ - 3_/2

hK - 5K 0
- _ _ - 3_/2

etc.

m

For case 2, when _o = <l'

_, then m* always equals 0

given by the formula:

there are two possibilities. If w* = 0 or

or _. If w* has any other value, m* is

tan _-- = e tan _- • (52)

Here the _ sign is determined from the sign of the quantity,

+ SI "*o iol/2 , since
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(3.27c) d_" _-_ + Sl i, (53)
d¥ o ol/2

(Can use only _ since derivative always has the same sign in this case.)
O _,

Also the quadrant of _ is determined by the fact that the quadrant of _-
w_

is the same as the quadrant of _- . Physically this means that for this

case, the perigee either starts at 0 or w and remains there or approaches

one of these values as the time becomes very large. The limit to which the

perigee travels is not determined by the nearest of the two values, but by the

sign of the derivative given in equation (53). Equation (52) replaces equation

(3.59) of reference i. This is done because the integral (3.58) should read

dc

o (2Kl)i/2sin E

rather than with cos c replacing sin c as shown in the reference.

Case 3 occurs when
m

K > KI. In this case,O

(3.65)
_ K1 112 112

_. : tan-l{[_o ] tn[(_-° + K1 ) (;_ ;O)] }

Ko + K1

112 112 112
- {I - cn2[(_ + KI) (_-- TO)]}

= tan-l{[ O KI,] O },

KO + K1 cn [(_o + KI)I/2(_ --TO)]

(5_)
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where tn and cn are elliptic functions with modulus k 2 and

2_ 1 1/2

k 2 = [ _ ] • (55)
K1 + Ko

This is the correct modulus and replaces the k2 given in equation

(3.6hb) of reference 1.

As in case l, the quadrant of

by K,

i.e.,

z2 = (Ki + KI)II2( T - TO) , determined

provides the quadrant of m*. In this case, the quadrants are equal,

Z 2 m*

0-K 0-_/2

K-2K _/2 -

etc.

The quantity

of reference i:

(3.64a)

To must be determined from equation (3.6&a) and (3.6hc)

-1/2

T i - To = +_.(_ + _:1 ) FCx2,k2), (56)

(+ same sign as _ )
-- O

(B.64c)

+ 112

X2 = _ tan-l{[_9 KI] tan w*} .

KO -- K1

(57)

In equation (57), the sign and quadrant are chosen such that X2 and w*

are in the same quadrant.

Finally, all that is required for u
a

comes directly from reference 1.

is the expression for uI. This
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(3.15b)

2
= 1 2. eo

u I -- {- 1 + 3 cos z -- (i - 5 cos2i )
2 A6 oo 2 oo

2 2

e i e° + _ e 2 sin2i+ + (I - 3 coS2ioo ) cos 2_ - (_ sin2ioo - -_- o oo ) " cos 2¢

2
e e

- o (5 - ii cos2i ) • cos(3$ - _)+--_ (i - 9 coS2ioo) cos 2 (¢ - =) i'-{ oo

2
e

o coS2ioo )-l-F" (I - 3 cos (_¢ - 2=)}. (58)

Now 9

du
a

qa _ de
(59)

From equations (39) and (h0) :

2 COS ioc sin ioc [i + e cos (¢ - _)]e I12 di:ll2
qa = " 2 a de

P

coS2ioc de du 1

[d--_ cos (¢ - m) - e (i - _) sin (¢ - m)] + e _-- (60)+ 2 a "
P

All these derivatives will be given in the following section.

3.2 DERIVATIVES REQUIRED FOR THE GENERALIZED ENCKE SOLUTION

Derivatives of all the approximate solutions must be taken to find the

differential equations to be numerically integrated. These derivatives are

taken rather than using the original derivatives of the theory since in some

cases approximations are made to carry out the integration.
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From equation (3.6a),

dP a

_ 0 .

d,
(61)

From equation (18),

d_a i d_oo 1/2 dRol/2

d-T-: d,
+ E3/2 d_3/2] .

d,
(62)

From equation (3.79)

dnoo dnoo d[ cos ioo E3/2 )

d---_-= d_ d*= A h (

From (3.82) and (25):

d_o 1/2 5 e3/2 (So " d_).
d* = - A--_S_ cos ioo d_

Equation (3.27c) will always be used for dm-- , i.e.,

(3.27c) d--9-_= _ + S I i*
o o i/2

Then from equations (64), (65), and (25)

d_o 1/2 5 c3/2

=Tsin id, oo 0 1/2 "

From equation (3.80):

d _3/2 cos ioo

d$ = - Ah {- cos 2, + e° cos (, - _) (i - m')

e e
o o

---_COS (* + m) (i + m') - --_cos (3' - m) (3 - m')}.

(63)

(6_)

(65)

(66)

(67)
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where from equation (3.21c) :

w

de de de de

and dm is given in equation (65).

de

Next the derivatives of i will be given from equation (34):
a

(68)

dia El�2 di*i/2 di1
d-;--- d, + _ d--_-' (69)

di
O0

since --= 0.
de

From equations (3.33), (3.34), and (A.22):

di_I/2 e3/2
de = C_ sin 2_. (70)

This agrees with equation (3.29a), so that (3.29a) was integrated exactly.

di_1/2
Also note that there is only one form for de while i_i/2 required two

different algebraic forms for computation.

From equation (3.15a) :

diI

de

cos i sin i

oo oo [2 sin 2¢ + e
2 Ah o

(i + (_') sin (@ + m)

e

+ _ (3 - _') sin (3¢ - _)]
(71)
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Equation (63) gave an expression for qa'
and they will be formed here.

but somederivatives were required

From equation (3.hl):

de___a= i/2 de_/2
de de

(72)

de*l/2 c3/2
d---_ = B_ sin 2_, (73)

Thus, equation (3.29b) was integrated exactly, and no special cases are

required for the derivative of *
el/2 •

Now the derivative of u I is needed. From equation (3.15b):

2

e o

dUl i {____ m' (i - 3 cos2i
d-_-= 2 A 6 oo

) sin 2e

2
sin2i e 2 5 e sin2i

oo o + o oo) sin 2¢+ 2 (, 3 3 6

2
e

- _ (i - 9 cos2i ) (i - _') sin 2 (¢ - _)
3 oo

e
o

+ _ (5 - ii coS2ioo ) (3 - m') sin (3¢ - _)

2
e

o ) (h - 2_') sin (4¢ - 2e)}+ i-_- (i - 3 coS2ioo (74)

dq a

This completes qa and now d-_- is required. The form for this derivative

will be chosen to allow analytic cancellation of the terms of order unity

when forming the modified-Encke equations of motion. If this were not done,

accuracy would be lost trying to find numerically the small difference between

two large numbers. Define:
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where

dq a _ dqo dq I

d_- d_ *CdT'

du o du 1

qo = dT ' ql = d_--
(75)

qo can be found from equation (60) and ql from equation (7h). From

equation (60) by differentiation:

dq o coZ2ioc
_=-U + +H
d@ o 2 '

Pa

where

H ---- m

2 u
o

cos2i
OC

2
d i*

[c ( o112) cos21
d_ oc

el/2 d2 iol/2

2i, d, 2

sin 2i
OC

+

cos i di

oc {_ h oc de
2 d_ d_ sin ioc

Pa

cos (_ - =)

di

+ 2 [e o_.__ccsin i
a d_ oc

de

...._a] (1 - u') sin (_ - =)- cos ioc d_

(76)

d2e

+ [cos i _ + e

oc d_2 a

cos i
OC

=' (2 - =')] cos (_ - =)

+ e cOS i =" sin (_ - =)),
a oc

(77)

and from equations (72) and (73):

d2e

-----Ea 2 ¢2
d$2 = B2*

_' cos 2_ , (78)



from equations (65), (68), and (70):

di* •
=_ oll_____&2= c3

_" d2_ = c3/2 S1 de K1
de 2

from equation (70):

d2io1/2

de 2
= 2 6 3/2 C_ (cos 2e) _'

dq a dqI d2Ul

-- =-- is required
Then to compute de ' _ d¢2

sin 2¢o, (79)

(80)

From equation (7h):

d2Ul 2
= 1 eo ) (_" sin 2m + 2_'

de 2 2----6A {---_- (i - 3 coS2ioo

+4 (
sin2i e 2 5eo2Sin2io °

oo o + 6 ) cos 2¢3 3

2
cos 2_)

2
-e 2

- 9 coS2ioo)[2(l - e') cos 2(¢ - e) - e"sin 2(¢ - _)]
__£_o (i

3

+e 2

- ii coS2ioo)[(3 - m') COS (3¢ - m) - _" sin (3¢ - e)](5
12

2
+e
__2_o 2

- 3 cos ioo)[(h - 2m')2cos" (he - 2_) - 2m" sin (he - 2_)](i
12

(81)

d de
Before finding the modified-Encke equations, the quantity _ (_K) must

be developed in an ordered fashion.

From equations (3.5g) and (8):

2 3.

d__ = pU + cos I cos e AlU2
dt cos i 2i F = + V . (82)p sin sin e o
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Differentiating:

d d¢ 2AlU q + u2 dAld-_ (dt) = d-_-+ VI'
(83)

where

cot2i

A_dAIVl = cot 8 [a__- F( --+
A1 d$

2 di

sin i cos i d,
1 de)] (84)

cos e sin 8 d* '

and from equation (6):

didS= - [cos i sin ¢ _+ cos , sin i],d¢ s e
(85)

From equation (83):

aAz d 1 dp +
d-¢'-: d-_ (_) = cos i d*

from equation (12):

dF = d {! [af + tan i cos ¢ a ]} = -F du
d, d* u g u d,

sin i di (86)

cos2i d,

i daf da

m m+ _ [d--_--+ tan i cos ¢ d_

(cos*di
+ ag cos2 i d-_- tan i sin ,)]. (87)

Since the af and ag are quite complex for the general problem, the

derivatives of af and a will be approximated for perturbations otherg

than the analytical model by the quantities

-- a - a

daf _ af 2 af I da g2 gl

d-_-% ¢2 - ¢i and d$--$-_ ¢2 - ¢i '
(88)

where

of ,

when

as a function of ¢2' _' i, t, and u 2 where _, i,

when ¢ = 30°' *2 is 31 ° , and u 2 is given by:

¢2 and ¢i are values of ¢ close to and on each side of the value

daf

at which the derivative is required. For example, if d-_- is desired

= = . af2 will be found¢ = 30° , take ¢2 31°' ¢i 29 ° Then and ag 2

and t are the values
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du
u2 _ u + _A_,

where u is the total reciprocal radius at ¢ = 30 °

the qa at ¢ = 30 ° .

(89)

du
and _ is taken as

3.3 ADDITIONAL DEVELOPMENTS

In addition to the straightforward development to this point, a number

of less obvious considerations were necessary before formulation of the com-

puter code. These topics are the elimination of taking differences between

two large, nearly equal numbers (with a resultant loss of accuracy) in finding
dqn

the d-¢'- equations, the orientation of the rotating earth beneath the

satellite, the treatment of the time, the formulation of the disturbances

from the complete potential, the formulation of the disturbances due to luni-

solar effects, and the development of the Runge-Kutta formulation.

3.3.1 Elimination of Large Quantities from the Encke Equation for qn

Substituting the expressions for d_J[dtand _d (dt)_ from equations (82)

and (83) into the differential equation for q in equation (14), and

multiplying by (_t)2 yields:

2 2
(d_ - u q )[AI 2uh + 2AI u2 Vo

dA1 2

+ Vo2 ] + q(Al u2 + Vo)[2AlU q + _ u + VI]

= -Al2U 5 + (u2 + UI) u 2 (90)

where

Ul = -(u2 +_rSU) = cuh(l - 3 cos2e) + cE2u6(35 coshe - 30 cos2e + 3) + ar (91)

(a represents accelerations in the outward radial direction in addition to
r

those given in the analytical model).
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Using the abbreviation:

V V
= 0 0 2[2_.k + .2---_]+[2 _ q

V3 -Vo de AlU2 A 1 u AlU3

V

__2_o)÷
vlq dAl A_] (1 + u2Ul- --_ -q d-_-
AlU AIu2

(92)

24
one obtains after dividing equation (90) by A 1 u :

dq -u + 1
d_ = 7-_ + V3"

hI

(93)

Using the expression for
d%

tracting d-_- gives:

dq o

d--_--from equation (76) and adding and sub-

d%
de

d_ dqo dqo dqa cos2i
m D _ ÷ _ m

d¢ dT÷ dT d-_ -u + u 0 2 2
P Pa

cos2i
OC

+V 3 -H

dq o dq a
(9_)

Note that

1 1 Pa +p

_'---_= 2 2

P Pa P Pa

Pn

(Pa - p) = - 2 2 (Pa + p)

P Pa

(95)

and from reference 4, equation (401.13):

cos2i - coS2ioc = -sin (i + i ) sin (i - ioc)
OC

= -sin (i + ioc) sin (in + eil). (96)
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After substitution, the result is then:

dqn cos2i coS2ioc coS2ioc

d-¢"-= "Un - EUl + 2 2 + 2
P P P

dq I

+ V3- H" ¢ d--_-

cos2i
OC

2

Pa

1
sin(t + ioc) sin(i= -Un - EUl "--2 n

P
+ ci I)

Pa + p dql

-c°S2ioc 2 2 Pn + V3 - H - _ d-_-

Pap

(97)

du
n

aT =% (98)

All terms occurring in these equations are numerically small.

this is not the completed form, since VB contains the term d__.

However,

Then

From equation (92), let

v dqn V
v3 _ - o (2 +---%°2) +2 de V3'

AlU AlU

V V V ° 2Voq
o dqa __o_o)

AlU2 de (2 + + q(l +----_)[----_A1u2 AlU _u

(99)

Vl I dAl UI

AI uz AI_ ] +_ A12u2"

(zoo)
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Note that UI = -ah if the coefficient of the leading term of the potential

is zeroed. From these two equations and equation (97)_ the final form for

dq n is :

dqn i sin(i + i ) sin(i + Ei I)d-T-= [-Un - eUl --_ oc n
P

-2

2" Pa+P dql 4-cos loc 2 2 Pn + V3' - H - c I • (1 + )de J
Pa P AlU

(lOl)

3.3.2 Orientation of the Earth Beneath the Satellite

To find the effects of the tesseral and sectorial harmonics of the

potential, the longitude of the satellite above the rotating earth must be

known. Denoting the east longitude of the satellite as _:

where

and

: _ + b - _G'

_G = _oG + mE (t - t o )

_oG : longitude of Greenwich measured from

the equinox of 1950 at t .
O

(lO2)

(lO3)

mE = mean rational rate of the earth

= longitude of the node measured from the

equinox of 1950.

b is given by the following sketch

b

(90 - e)
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From spherical trigonometry:

cos b = c°s-a_-%
sin e

and b is in the same quadrant as ¢ except when

b = 0 always.

i = 90 °.

(lO4)

In that case

3.3.3 Treatment of Time

The only reason that time is calculated in this program is to find the

orientation of the rotating earth and the location of the sun and moon. There-

fore, extreme accuracy in the time is not required. A simple approximate

solution which includes the predominant effects will be used so that the

numerical differential equation for time will be of the same order as those

for the other parameters. This is done to keep the computing interval as

large as possible for the complete system of equations. Since great accuracy

is not necessary, no attempt will be made to analytically cancel the terms of

order unity in the numerical differential equation.

The approximate solution chosen for the time is:

p3 -e sin (¢ - _)= O

ta coS3ioo( I . eo2 ) { (i + eO cos(¢ - _)

l_e
O

l_e

o tan (#P - (_)]}
tan'l [ i +-----e- 2 + tol

O

where the tan -I [ ] is in the same quadrant as ($ - _)
2 "

(lO5)

The derivative of the approximate solution is simply:

dt p3 (i _')

d¢ cos3i [I + e cos (¢ - _)]2"
OO O

(lO6)
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Now tol is given by:

tol =
,p3 e° sin (¢i " w)

coS3ioo( 1 - eo2 ) {i + e° cos (¢i " w)

/i - eo 2 ¢i " w
tan ( )} + t (107)-2 t an-i [ i + e 2 o

l_e o
o

3.3.4 Development of the Perturbative Accelerations Due to the Complete
Potential

This description determines the perturbative gravitational acceleration

of a spacecraft by means of the zonal, sectorial, and tesseral harmonic equa-

tions found in reference 2 (pages 4-97, 4-98). These equations are as follows:

N1

af = cos ¢ Z (Jnr-n-2)pn +
n=2

N2

m
Z mr-m'2sin ¢ (sec ¢ Om)(Cmm cos mk + S sin mX)

m=2 mm

N3 N3

- Z Z r-n-2(cos ¢

m=l n--m+l

m !

On ) (Cnm cos mX + Snm sin mX) (108)

N2

a = _ F

g m=2

-m-2 m
mr (sec$ pm ) (Cmm sin ml - Smm cos m_)

N3 N3

-n-2 m

- Z m _-r (sec ¢ pn) (C sin m_ - S
m=l n=m+l nm nm

cos m_) (lO9)
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N1

ah= T.
n=2

-n-2
(n+l)(Jnr )Pn - cos

N2

(m÷l)r'm'2(sec ¢ Pm)(CmmC°Sm mA + S sin m_)_[ Z

m--2 mm

N1 N3

(n+l)r -n-2 (sec ¢ P_)n (Cnm cos ml + S
+ Z E

m=l n=m+l nm
sin mA)] (Ii0)

where:

Pn = [(2n - i) sin ¢ Pn-i - (n - I) Pn_2]/n

Po = z (111)

Pl = sin

Pn' = sin ¢ P'n-i + nPn-i

PI' = I

(112)

m-i
(see ¢ pm) = (2m _- i) cos ¢ (sec ¢ Pm_l )

(sec ¢ pl) = i

m )]/(n-m)(sec ¢ pmn) = [(2n - i) sin ¢ (sec ¢ pn_ml) - (n + m - i) (sec ¢ Pn-2

m

(sec ¢ Pm.l ) = 0 (i13)

(cos ¢ p_'

m !

(COS ¢ Pm ) = - m sin # (sea ¢ pm)
m

m

) = - n sin ¢ (sec ¢ pm) + (n + m) (sea ¢ Pn_l )

(zlh)
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It is noted that the components of the acceleration are non-dimensional

and in a local rectangular system (f, g, h) with h along the outward geo-

centric vertical, f directed south, and g directed east. Also, the

recursion equations may be recognized as the Legendre polynomials, the rhos

being the zonal set, and the secant rho and cosine rho comprising the sectorial

and tesseral set.

The equations may be written in a more convenient form by substituting
m t

Unto for (sec _ p_)_, Wnm for (cos ¢ On ),and Vmm for (sec ¢ p_); also

m I

m sin ¢ (sec ¢ p_) may be replaced by,cos ¢ 0m ) in the sectorial term of

af. Finally, if the degree of the highest sectorial harmonic (N2) is taken

equal to the degree of the highest tesseral harmonic (N3), the sectorial and

tesseral terms may be combined with the summation scheme being set at:

N2 n

Z Z . The equations may then be written:
n=2 m=l

NI N2 n
J

n ' - n+-'-'_lWnm (Cnm cos mA + Sa_ = cos ¢ Z (_'-CIS-)_n_T_ _ r_n
n=2 r n=2 m=l r

sin m_) (115)

a
g

N2 n

m cos m_) (116)= - Z ?. -_ Unm (Cnm sin m_ - Snm
n=2 m=l r

NI N2 n
J
n cos m_ + S sin m_)ah = Z (n + I) (-_) 0n cos ¢ Z Z n + i- n+2 Unm (Cnm nm

n=2 r n=2 m=l r
(117)

where the Pn'S and s''s are given in equations (iii) and (112) and:-n

Umm = (2m - i) cos ¢ Urn_l, m-i

Ull = 1 (I18)
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l [(2n - i) sin _ Un_l, m - (n ÷ m I) Un. 2 ]
ms _

Ur_ n-m • m

-1 ,m '_ 0

W = - m sin _ U
rim1 mm

(119)

Wnm = - n sin _ Unto + (n + m) Un_l, m

3.3.5 Development of Luni-Solar Perturbations

The most difficult part of obtaining luni-solar perturbations would

normally be encountered in obtaining the relative positions of the earth,

moon, sun, and satellite at any particular time. This problem has been

circumvented by utilizing the JPL Ephemeris Tapes and their associated tape-

reading routines to determine the positions of the earth, moon, and sun.

These routines are described in detail in reference 5, and will not be dis-

cussed here.

The remaining problem is that of expressing the perturbative accelera-

tions in the af, ag, ah reference frame adopted for the earth potential

perturbations.

3.3.6 Development of Runge-Kutta Equations and Self-Computing Interval Scheme

The Runge-Kutta method is used for the numerical solution of the differ-

ential equations. The method is a simple extension of the methods for second-

order and first-order simultaneous equations given by Hildebrand (ref. 6,

page 237) which are:

Given the simultaneous first-order equations:

(6.16.7)* dy = F(x,y,u)
dx

du = G(x,y,u) (120)
dx

* These numbers are equation numbers from Hildebrand.
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the solution maybe written as:

(6.16.8) Yn+l = Yn + _ (k0 + 2kl

= + _ (m0+ 2m1Un+1 un

+ 2k 2 + k3) + O(h 5)

+ 2m 2 + m 3) + O(h 5)

(121)

where

(6.16.9) k 0 = hF(xn,Yn,Un) ,

1 1 1
kI = hF(x n + _ h, Yn + _ k0' Un + _m0)'

1 1 1
k2 = hF(x n + _ h, Yn + _ kl' Un + _ml)'

= , + m2),k 3 hF(x n + h, Yn + k2 Un

(122)

and

(6.16.10) m 0 = hG(xn,Yn,Un).

1 1 + 1 m0 )m I = hG(x n + _ h, Yn + _ k0' Un _ '

1 1 1
m 2 = hG(x n + _ h, Yn + _ kl' Un + _ml)'

= + m2).m 3 hG(x n + h, Yn + k2' Un

(123)

Given the second-order equation:

(6.16.11) d2Y = G(x,y,y' )

dx 2

( 12h )

The above equation can be written as two simultaneous first-order differential

equations as:

dy= u (125)
dx

and

d__u= G(x,y,u) (126)
dx
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Then equation (6.16.9) gives:

, h h
k0 -- hYn, kI = hyn + _mo, k2 = hyn + _m I,

and hence equations (6.16.8) and (6.16.10) give:

k3 - hyn + hm2,

(6.16.12) Yn+l -- Yn + hYn + _ (mo

I
, = , + @ (m0Yn+l Yn

+
2m 1b

+ m I + m 2) + O(h5),

+ 2m2 +m B) + 0(h5),

(127 )

where

(6.16.13)
mo = hG(xn'Yn'Yn )'

1 lh , , +l
m I = hG(x n + _h, Yn + _ Yn' Yn _m0)'

i i _ , im 2 = hG(x n + _ h, Yn + _ hYn + hmo' Yn + _ml)' (128)

1
m 3 = hG(x n + h, Yn + hYn + _ hml' Yn + m2)"

After integration over two intervals of equal size, the results for the

velocity components are compared with an integration over the same intervals

using Simpson's rule which is also of fourth order accuracy. Simpson's rule

is given on page 73 of reference 6 as:

x 2
h h5fIV(_)

f f(xldx = _ (fo + hfl + f2 ) - 90
X
0

(129)

where x < _ < x_,
0

h

fo = f(Xo)' fl - f(Xo + _)' and f2 = f(x2)
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By virtue of the c_nparison between the two integrated results, decisions
are madeby the program concerning the accuracy of the integration, and the

c_aputing interval for the next two intervals is chosen. The logic underlying

these program decisions will nowbe explained using one flrst-order differ-

ential equation as an example.

Let the differential equation to be solved be of the form:

= x(t, x) (130)

If this equation is integrated over an interval, h, by Runge-Kutta methods of

fourth order, then the numerical value of that function corresponds to a
Taylor series expansion with an error term of 0(h5), i.e.:

h2 _ h3 xIVh4
+ x h + x +--+ + 0(h5) (131)

Xn+l = Xn n n_'[ 31

The complete functional form of the coefficient of the error term is unknown,

but it is known to contain xV. For the purposes of this program, the coef-

ficient of the fifth order term is assumed to be the next term in the Taylor

x xv is assumed to be a slowly varying function. The coef-
series _ and

V
X

ficient of the fifth order term in Simpson's rule is knownto be - _ . Thus,

if we let x be the correct value of x at the end of the two equal
c

intervals, and let XRK and XSR be the Runge-Kutta and Simpson's rule

integrated values respectively, we may write:

X
C

xVh 5

= XRK ÷ 2(-5y-)
(132)

Eliminating x
C

xVh5
Xc : xSR - 9-'-6-- (133)

between these two equations and solving for
V

x results in:

V 36(XsR - XRK)
x = (13 )

h5
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From equations (132) through (ISh) the error in the Runge-Kutta solution is
estimated to be:

B
6x = K (xSR - XRK) (135)

A factor of _ is dropped in the use of this equation because 8/I arbitrary

constant is introduced at this point.

Letting Ax, Ay, Az be the changes in the x, y, z values over the double

interval, then what is required in the program is that:

E- maximum(16xJ,16yl,16zl)< EalI = maximum(Jw8JCmax),

lO-9m_=imum(1_1. I_,1, I_-I)

(136)

where

cax =max_um(IAxl,IAgl, IAC_l) (137)

and W 8 is an input number designed to require a series truncation greater

than number truncation but as small as possible. An error which is less than

10 -9 of the maximum of the absolute values of x, y, and _ is always

acceptable since it will be lost in the first addition anyway because of the

limits of machine word length.

If E _ Eall, the computation proceeds.

steps are done over.

If E > Eall, the last two

If E is greater than an input minimum error Emi n • Cmax, then At is

computed by:

(E .25= FDT • At ll) (138)
Atnew old

If it assumed that Eall = W2Cmaxv = KAt where K is some constant (since

is roughly proportional to At and C is normally proportional to Ax)
max

x
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and FDT = i, then by equations (132), (135), and (136), At would result
new

in an error of exactly Eal I. FDT is an input number • I to prevent Atnew

from resulting in an error E > Eal I due to number truncatio_ or changes of

xV over the two new intervals as compared to the xV of the previous two

intervals.

If E • Emi n • Cmax, then it is assumed that the error in XRK is

primarily due to number truncation in the computations. In this case equation

(iS2) does not apply. The new computing interval is then computed by:

Atnew = Atmin • Atold (139)

where Atmi n isan input quantity > i.
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Section h

BLOCK FLOW CHART

I

Input Gravitational Parameters, Initial

Conditions, and Program Control Quantities

III

Compute Constants Required

for Approximate Solution

(COAST )

L
,_III

Evaluate Approximate Solutions and I

JTheir Derivatives for Desired Angle $

(_SOL)

' LSum Approximate and

Numerical Solutions

Iv
Evaluate Encke Equations of Motion

(ENCKE)

[_nto_r_t__.no__,qu_t_on_(_0_{

I VIA

_n d of This Case? 9

Yes

IX

IReturnforNew CaseI

NO

NO YES
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Section 5

EQUATIONS IN ORDER OF SOLUTION, DETAIL FLOW CHARTS, AND PROGRAM LISTING

5.0 GENERAL

In the following sections, certain equations will not be repeated in the

equations in order of solution due to their length. In this event, the equa-

tion number for the expression in Section 3, Sources of Equations, will be

given. This avoids lengthy repetition and also links Sections 3 and 5.

In order to relate the FORTRAN coding and the analytical formalism, both

the FORTRAN variable name and the equivalent algebraic expression are presented

throughout Section 5. In some cases indices of an array are also used in the

FORTRAN style using parentheses, i.e. A(1) = AI, A(1) = Ai, etc.

5.1 MAIN PROGRAM

The main program serves mainly as a control program to convert input

quantities to non-dimensional units for internal purposes, to control the flow

to and from subroutines, and to print the results in the desired dimensions.

5.1.1 Equations in Order of Solutio n

I. Call Input Data, Store, and Modify for Internal Computation.

A. Non-dimensionalize input quantities and store necessary constants.

Start clock to time the case (call TIKTOK). Read input array into

storage using INPUT 1 routine with reference run capability. Store

J2 and J4 in AJ2 and AJh for permanent use. Store non-

dimensional values of w, ST, ioo , Lo, Sstop , AS, longitude of

Greenwich, to and mE = EROT. Compute

Compute

c = --F-( )
J2

el�2 = /_J2
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II.

III.

IV.

S.

Ce

Place the coefficients of the potential in comon by filling the array

COEFF. Set the initial conditions of the numerical solution equal to

zero. (HAH(i) = 0, i - i, 6). Save the initial time in DTSAVE.

Print the input array and the format heading for the regular output

during operation.

Set initial values of flags.

Set Runge-Kutta flag = 1 for first cycle of Runge-Kutta.

Set IP = 1 for the first point of the trajectory.

Set KHALT -- 1 to show no halt.

Set IPRINT = 2 to initialize print flag.

Compute the Constants Required for the Approximate Solution and Its

Derivatives.

Store the computed constants in labeled common /CON/ by calling sub-

routine CONST. Compute

_i = ¢312 _i'

DENK(1) = 2e,

DENK(2) = 2ac,

DENK(3) = 2e2c

Evaluate the Approximate Solutions and Their Derivatives for the Current

Value of _.

Store the approximate solutions as the array AS(6) and the derivatives

of the approximate solutions as the array AD(6) in labeled common

/APS/ by calling subroutine APSOL.

Sum Numerical and Approximate Solutions and Find the Change in Time.

Store the sums of the numerical and approximate solutions for the six

dependent variables in the array DVT(6).
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Find

DT - tT - DTSAVE

Save the total time in DTSAVE.

Vt Evaluate the Encke Equations of Motion and Test for Print

Store the values of the differential equations of motion in the array

ENK(6) by calling subroutine ENCKE.

A. If the Runge-Kutta flag (KR) is i, go to VB, otherwise, call the

Runge-Kutta routine at VI.

B. If the halt flag (KHALT) is 3, go to VC for print computations and

print, otherwise call the Runge-Kutta routine at VI.

C. Compute ST' iT' _T' in degrees. Compute tT in hours and rT

in kilometers.

D. Check if energy print is desired.

If KDER is 2, go to VF; otherwise go to VE.

E. Calculate the total energy and print.

2

TOTE = -u (2 - p u) 2
2. -_ ¢u3 (i - 3 cos2e)

COS I

d_12
-c¢2u 5 [cos2e(l_ cos2e - 12) + 1.2] + [_ dt"

U

Print in three rows of six columns the approximate solutions AS(6),

the numerical solutions HAH(6), the _TOTAL (deg), time (hours),

radius (kin), _ (deg), i (deg), total energy (non-dimensional),

and m (non-dimensional). Go to VG.
ea' a

Fo Print in three rows of six columns, the approximate solutions AS(6),

the numerical solutions HAH(6), and the dimensional values of @T'

, (non-dimensional)tT' rT' _T' iT' and the values ea and _a

%
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S.

H.

Test halt flag.

If the halt flag (KHALT) is i or 2, go to VI.

If the halt flag is B, go to I to start a new case.

Test print flag.

If the print flag (IPRINT)

VC for print computation.

is I, set it equal to 2 and proceed to

If the print flag (IPRINT) is 2, set it equal to i and proceed as

in VG.

Vl. Call Runge-Kutta Routine and Test for Direction after Exit.

Find new values of the numerical solution and the independent variable,

by calling the Runge-Kutta routine RKTOM.

After exit :

A. If the Runge-Kutta flag (KR)

If the Runge-Kutta flag (KR)

If the Runge-Kutta flag (KR)

If the Runge-Kutta flag (KR)

is i, go to VII.

is 2 or 4, go to IIl.

is B, go to IV.

is 5, go to VH.

VII. If the Halt Flag (KHALT) is 2, start a new case by going to I. Other-

wise, continue by going to IV.
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5.1.2 Detail Flow Chart

IA-IC

Start Clock to Time Case, Call Input Data _@

Modify, Print Input Plus Heading for Out-

put, Set Initial Values of Flags.

II

Cmmpute Constants Required

for Approximate Solutions

(CONST )

III

iEvaluate Approximate Solutions (APSOL) I

IV

Sum Approximate and Numerical Solutions_

Find Time Change DT Since Last Entry_,
and Save Total Time for Next Calculation

MI_ = 2 or q

hor 5

_V

I Evaluate Encke Equationsof Motion (ENCKE)

FI KR

ER=]

7S



V_ Dimensionalize Quantities

r_ for Print

0

RK=2

or

ICalculate Energy andl

ludingit J

ICall Runge-Kutta(m_OM)

RK=5 I

YEs¼

VII

RK=I

RK=3

Go to I

Go to

IV

=2?

YES I

i'End of Case,_

Go to I _j'

NO

Reset_rlntFi_to i ....

IPRINT

=2

isFrint>

IPRINT

=i

Reset _rint Flag 1to 2
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Section 5.1.3 Pro6ram Listing

The following pages give the listing of the MAIN program.
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C PROGRAM TO COMPUTE SATELLITE MOTION ABOLIT A NON-SPHFRICAL CENTRAL
C BODY INCLUDING LUNI-SOLAR PERTURBATIONS, MODIFIED FNCKE APPROACH

C USING KEVORKIAN OBLATE PLANET SOLUTION AS THE REFERENCE ORBIT.

DIMENSION Z(125),RR(125)gFNK(6),HAH(12},DVT(6)
EQUIVALENCE (Z(84),P),(ZI85),E),IZ(93),MFAIL),IZ(Q_},FMAX),

I(ZIQS),EMIN),(Z(96),DTM},(z(Qg),LS),(Z(lOO)tKlOR3),(ENK,HAH(?}I

2p(Z(IOI),FDT),(Z(82),NI),(Z(83)*N2} ,(Z(IO2},KDFR)
COMMON /CON/ CI,CI2_CI_,SI,SI2,CS,TI,E2*E2C,EM2*P4*AB

1,CRD,C2WtEPS32,EPS2,EPS3,CI31,EO2,EO6,FO3*AM_,AC*AES,A

2 CS32,AC32,GO_G1,G2,G3,G4,GS,C2SP,C2S,B2SP,B2S,SIP*S1*

3SOBgGAP1PgGAP1,GAPOB,C2E,B2E,B2E2,E3K,C22E,PI,TWOPI"
4PIO2,IEtRK,XMOD,AMP,CW,QPER,PHIO,TW2,RMK,IE*GAMI*GOK,

5SOKtOSK2tOSK,EI2,SIStSOBS ,ACSS _C4EgA_,EPS

6,AC_2,EM22,EM212,FF,A3F,TO1_P2,ACC,A69XW,IWC*W02

COMMON/CPOT/COEFF(BI},NI,N2/APS/AS(6),REST(12}

COMMON/EX/QQ(3}gEWOGgFPOT*PP(3)
COMMON/ENFRG/EE(6 ) /_ERIV/_NK(3}

C I CALL INPUT DATA, STORE AND MODIFY FOR INTERNAL COMPUTATIONS
C IA NON DIM INPUT QUANTITIES AND FORM NECESSARY CONSTS.

I CALL TIKTOK
CALL INPUT1(Z,Z(125),RR)

AJ2=Z(2)
AJ4=Z(4)

RAD=.17453293 E-01
W=Z(B6}*RAD

PHI=Z(BB)*RAD

PHIT=PHI
XI=Z(BQ)*RAD

XLO=Z(QO)*RAD
PHISTP=Z(91)_RAD

DELPHI=Z(Q2)*RAD

EWOG=ZI97)_RAD

TO=Z(87)/,22411493

EROT=Z(98)*,22411493
C=-.27777777*Z(4|/(ZI2)*Z(2)}
EPSI2=SQRT(IoS*Z(2))

DO 10 I=1,81

10 COEFF(1)=Z(1)

DO 21 I=I,6

21 HAH(1)=O,O

DTSAVE=TO
C IB PRINT INPUT ARRAY AND OUTPUT HEADING

WRITE (6,11}Z

11 FORMAT(SEt9.8)
WRITE(6,12)

12 FORMAT( 21H OUTPUT FORMAT //
140H APPROX. SOLUTIONS AS(6) (NON-DIM) I

240H NUMERICAL SOLUTIONS HAH(6)(NON-DIM) I

348H TOTAL PHI(DEG) T(HRS) RIKM) NO_F(D_G) INC(DFG) )

£ IC SET INITIAL VALUFS OF FLAGS

20 KR=I
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IP=]

KHALT=I

IPRINT=2

C II COMPUTE CONSTANTS REORD. FOR APPROX. SOL.

CALL CONST(E_P,XI,C,EPS12,W,PHItTO,LS)
PHIIB=PHI*EPS32

DENK(1) = 2._EPS

DENK(2)=DENK(1)_C

DFNK{3)= _ENK(2I_FPS

C Ill EVALUATE APPROX. SOLS.

30 CALL APSOL(PHIgPHIT,IP,

C IV SUM NUM, AND APPROX. SOLS.
40 DO 41 I=1.6

41DVT{I)=HAH(II+AS(II

DT=DVT(6)-DTSAVE

DTSAVE=DVT(6)

C V EVALUATE ENCKF EQS. OF MOTION

CVD

C VE

57

53
C VF

58
CVG

5')
C VI

60

AND DERIVATIVES

AND THEIR DERIVATIVES FOR PHI

XI,XLO,TOtW_FtK10R3oPHIIBoFPS12)

AND FIND nT

50 CALL ENCKE(DVT(II,DVT(2ItDVT(3I,DVT(4),DVT{5),DVT(6)t

1 PHIgLStDT_N2_HAH(3)tHAHI])gHAH(5)tP2_P,HAH(4}tENK,AJ2 _AJ4 ,KDER}

C VA TEST RUNGE-KUTTA FLAG

GO TO(5],60t60t60,60)_KR

C VB TEST HALT FLAG

51 GO TO (60t60,52},KHALT

C VH CHffCK PRINT fLAG

54 GO TO(559581,IPRINT
55 IPRINT=2

C VC COMPUTATION FOR PRINT AND PRINT
C CONVERT TO DIMENSIONAL OUANTITIES

52 PHITD=PHIT/RAD
XITD=DVT(3)IRAD

OTD=DVT(2)/RAD

TD=DVT(61_o22411493

RD= 6378.]5211DVT(q)
CHECK IF ENERGY PRINT IS _FSIRFD

GO TO (S7,58)tKDER
CALCULATE ENERGY AND PRINT INCLUDING ENERGY
TOTE=-DMT(5)w(2,-R2_DVT(5)/EEI1}}-,66666667_EPS_

1EE(2)_(1,-3,_EE(3))-EPS2_CWEE(_}_(FE(3)_(14._EE(3)-12,
2)+I.2)+IDVT(k}*EE(SI/FEI6))m_2

WRITE(6,53) AS,(HAH(II,I=I,6),PHITD,TD,RD,OTD,XITD ,TOTE
1,REST(I2)tXW

GO TO 5g

FORMAT(6EIS.8}

PRINT WITHOUT ENERGY

WRITE(6_53) AS_(HAH{II,I=],6),PHITD,TD,RD,OTD,XITD,REST{12}_XW

TEST HALT FLAG

GO TO (60960,1),KHALT
RUNGE-KUTTA

CALL RKTOM(KRtIP,KHALT,PHISTP,HAH_EMIN,EMAXtMFAIL,FDT,DTM,DFLPHI,

IRHITt PHIl

C TEST RUNGE-KUTTA FLAG
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GO TO (70930,40,30t54),KR
C VII TEST HALT FLAG

70 GO TO (_Oel_40)eKHALT

56 IPRINT=]
GO TO (60,6_,I),KHALT

END
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5.2 SUBROUTINE CONST (E, P, XI, C, EPSI2, W, PHI, TO, LS)

Calculates constants which depend only on initial conditions and stores

them in labeled conon /CON/. Inputs are eo, p, ioo I c, z 1/2, w*, $o'

t o,_ and LS.

5.2.1 Equations in Order of Solution

le Calculate Combinations of Constants Needed Frequently.

A. Ph = p C2W = cos 2w

Cl = cos i EPS = ¢
OO

SI = sin i
OO

EPS32 = ¢3/2

2

cos_ i EPS2 = ¢
OO

AMh
EPS3 ffi ¢_

P

O0
C12 = cos2i

CIh = coshi
oo

cosSi
OO

_= 8
2p

S12 = sin2i

2
E2=ec

O

OO

CS ffi cos i sin i
O0 O0

TI =tan i
OO

.

CRD= i - 5 cos x
OO

PHIB = _i

C131 = i - 3 cos2i
OO

e
o

E02 ffi-
2

e
o

 .o6= ==6

e
o

E03 ffi--
3

cosSi
OO

AC = 4
P

cosSi sin i
O0 O0

ACS =

2p 5

2
EM2= l-e

O
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coshl
5¢ 3[2sln ioo oo

ACS32 = -- h
P

e3/2¢oS5ioo

AC32 = p5

2

e 2 °° )2. o •
GO =- 1+3 cos loo --_ (1-5 cos i

2

e 2ioo )O
G1 = --_(I- 3 cos

2

 t ioo ÷ 2too2

G2=- ( 3 " 3 o

2

eO 2. )
G3 ='_ (I - 9 cos 1oo

eo eoS2ioo )

2

eo coS2ioo )G5 =_ l_ (_- 3

ACS2 = ACS'P

C2SP = C_'

C2S = C_

SIP = S{

SI = SI

B2SP = B_'

B2S = B_

S0B =
o

GAPIP = K_

GAPI = _i

El2 = Eli 2

2

SIS = S I

SOBS = _2
O

GAPOB =
O

C2E = _2C_

2
B2E = ¢ B 2

2
B2E2 = 2e B 2

E3K = ¢3K I

2
P2 = P

2¢2C_

C22E ='---"2
P

pl=_

TWOPI = 2_

5cos ioo
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2
EM212 =

O

EF = l+e"
O

3

A3E = P

coS3ioo (l-e2.)

ACSS = -

¢coSSioo sin ioo

2p

C_E = {c2_) 2

A3 = p3/coS3ioo

B.

Calculate constants for time approximation.

3
P

T01 = tol = COS3 i
OO

e sin (*i-w)
O

cos (_ -_)
(l-e_) {i%e° i

-2 _tan -I [_tan ( )]} + to

o
0

where
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The tan "I is taken as the positive principal value and corrected

_i-w

to be in the same quadrant as _ by subprogram QUADI.

W

If l+cos (¢l-W) = 0, tan -I is set equal to _ and corrected for

quadrant by subprogram QUADI.

Ce If luni-solar perturbations are to be considered, set tape control

arrays.

If LS = i, set TAB1, TAB2, and GM arrays, and continue.

If LS = 2, go to If.

II. Check Case Number for Perigee Calculation.

If -_I < _o < KI' go to IIIA.

If K1 " _o' go to IIIB.

If Ko > KI' go to IIIC.

III. Set Case Flag for Perigee Calculation and Evaluate Necessary Constants

for Case in Question.

A. Set IC = i

Calculate

RK--

XMOD = kI = 2K1

cw = cos(w)
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If cos w = O, set CEllS = w, and go to A.2. Otherwise, continue.

i@

- 1/2
CHII = tan-I [Kl'_° tan2w-l]

_l+_o

CHIIS = X_ = CEll adjusted for quadrant

(function QUADI)

o QPER = K (quarter-period of elliptic function)

F(q,kI)
_o--_o:÷. ÷_

(sign is chosen opposite sign of SL)

Go to IV.

B. Set IC = 2

If w = 0 or w, w = const. = w, and was stored in subroutine

CONST, set flag IWC = I and go to IV. Otherwise,

calculate

RK

I sin w I
TW2 = Itan _I = 'l+cosw'

Set flag W

IWC = 2, W02 -

Go to IV.
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CO Set

Calculate

IC=3

RK:

XMOD = k2

1/2

KI+_o

RMK=_

AMP = [K_°_] I12

Ko+_ I

@

If cos w = O, set CHI2S = w, and

go to C.2. Otherwise, continue.

-- 1/2

CHI2 = tan -I [(K°+_l)

_o-Kl

tan w]

CHI2S = X2 = CHI2 adjusted for quadrant

(function QUADI)

@ QPER = K (quarter-period of elliptic function)

(function ELIPE)

-1/2

PHIO = TO - +_..(_o+_i) F (X2,k 2) + T i

(sign chosen opposite sign of_ o)
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IV. Determine Which Form Will Be Used to Find e .
a

Necessary Constants.

Set Flag and Evaluate

A. If ll-ScoS2ioo I __ 0.106, go to IVC; otherwise go to IVB.

B. Set flag to use first form for e
a

Go to V.

(IE = 1).

C. Calculate
B_'

GAMI = 71 - sin ioo

D. If S_oo<_ _I' continue; otherwise go to IVF.

E. Set flag to use second form for ea (IE = 2).

Calculate
m

K
O

G0K = --

Go to V.

m

S
O

SOK = --

F. Set flag to use third form for ea (IE = 3).

Calculate

0SK2 = OSK = --

0 0

V. Return to Main Program.
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5.2.2 Detail Flow Chart
JJ Has transfer for w=0 or _,

then _=w=Const.

s_o=I_ coNsTICalculate co_Ainations of J IB ._alculate Constants for" I

IConstants Used Frequently_-'---_ Time Approximation _ Perturba- /

NO y

IIA
!r

'SetI_-: I
Calculate Constants I

Needed for Case 1 I
Perigee Calculations I

l

IC=2

Calculate Constants

Needed for Case 2

Calculations

*Set IC=3

Calculate Constants

Needed for Case 3

Perigee Calculations

L

IS

I YES <--io° _

< 6,

VC

Calculate 7. o

NO

VE

IThIndicate 2nd Form of

e a (IE=2).

Calculate Constants for

is Case

I v
T

N Has Transfer for Arctan (_) =

NO

Indicate ist I
Form of e |

(IE=I) a I

Indicate 3rd Form of i

e a (IE=3). }

Calculate Constants for

This Case
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Section 5.2.3 Pro6ram Listin5

The following pages give the listing of subroutine CONST.
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C IA

SUBROUTINE CONST(E,PtXIoC_EPSI2tWgPHI,TOtLS)
COMMON/CON/ CI,CI21CI_tSI_SI2_CS_TIoF2_E2C_M29P4tAB

ItCRDtC2WtEPS32tEPS2tEPS3tCI31tEO2tEO6,EO3,AM_tACtACStA

2 CS32,AC32tGO_G1tG2,G3gG4tGS_C2SP_C2StB2SPgB2S_S1PtSIt

3SOBtGAPlPgGAP1oGAPOB_C2EtB2E_B2E2tE3KgC22EtPIgTWOPlt

4PIO2tIC_RK_XMODtAMPICWoOPFR_PHIOgTW2_RMKtIE_GAMI_GOK_
5SOKtOSK2_OSK_E12tSISgSOBS _ACSS tC4FtA3_EPS

6tACS2tEM22_FM212tEF_A3EtTOI_P2,ACCgA6tXW,IWCoW02

COMMON /TABLE/ TABI(36)tTAB2(]3)tGP(Bt2)tGM(2)

COMMON /APS/AS(6)gAD(6)_C21OC_UI_XIOC_DQI_XII

STORE CONSTANTS USED FRFOU_NTLY

P4 = P** 4

CI = COS (XI)
SI = SIN (XI)

CI2 = CI*CI

CI4 = CI2* CI2

AM4 = CI_ /P4

AB = 05* AM_*AM4

S12 = SI*SI

E2C :F2*C
CS : CI * SI
TI = SI/CI

CRD = 1, -5,* CI2

EM2= 1,- E2

C2W = COS (2,*W)
EPS=EPS12*EPS12

EPS32= EPS]2**3

EPS2= EPS32* EPS12

EPS3= EPS32* EPS32
PHIB=PHI*EPS32

F02 = F/2,
E06 : El6,

EO3: El3,
AC = CI * AM
ACS = .5 _ SI*AC/P

ACS32 : 5,*EPS32" AM4*SI

AC32 : EPS32 *ACIP

GO = -CI31-E2*CRD*.5

GI = ,25" E2* CI31

62 =(E2-SI2I/3, -,833_3_* F2*SI2
G3 = E2"(,16666666-1,5"CI2)
6a = E *(11,* el2 -5.1112,

G5 = - E2* C131112,

ACS2 = ACS_

C2SP =AB*(I.5*C-_B3333333F-O] +(],?S-]O.5*C}*CI_}
C2S = E2* CS* C2SP

SIP=AMa*(I,-7,5*CI2!

$I = TI _ SIP

B2SP = AB*II,B3333333E-l-l,SwC)*EM2 + C12"(EM2"12,*C
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1-2,3333333 +1.3333333" E2I +(I4*l -10,5"C* EM2 + 1.25

2"( 5,- E2))l
B2S : E* R2SP
SOB = - CRD* AM4/(2,eEPS]2)

GAP1P = SlP* C2SP
GAP1 = E2* SI2 *GAPlP
E12 = -B2SeSOBIGAPl

SIS = 51*$1
SOBS : SOBe SOB
GAPOB : SOBS + GAP1 e C2W

C2E : EPS 2 eC2S

B2E : ?PS 2 eB2S
B2E2 = 2, e B2E

F3K = FPS_e GAP]

P2 =pep
C22E = 2,*C2E /P2
PI : 3o1415927

TWOPl :6,2831853
PI02 =1.5707963

ACC : 5,*ACIS1P

A6 = ,SeCI*AC/P2
EM22 : SORT(EM2)

EM212= 2.1EM22
EF = EM221(1,+ E)

A3E = CI21(ACePeFM2)

ACSS=-FPS*ACSeP

C4F=C2FeC?F
A3=P2ePI(CI2eCI)

C IB CALCULATION OF CONST, FOR TIME APPROXIMATION

C CHECK IF ARC TAN IS Pll2

CPMW = COS(PHI -W)

SPMW = SIN(PHI-W)

ZD = 1, + CPMW
IF (ZD) lt211

2 TANG : PlO2
GO TO 3

I TANG : ATANf_FeABS(SPMW)/Z_ )

3 ANG2 = ,5*(PHI -W)
TANG = OUADI(TANG_ANG2_PIO2_PItTWOPl )

TO1 =A3Ee( Ee SPMW/(1,+E *CPMW) -EM212- TANG)+ TO
C IC IF LUNI-SOLAR PERT, CONSIDERED, SET TAPE CONTROL ARRAYS

GO TO (4t20)tLS

C GLOSSARY

C TAB1(7) : GM(FARTH) ]N KM*_IS_C**2

C TAB1(21)= GM(SUN) 1N KM**3/SEC**2
C TABI(23)= GM(MOON) 1N KMWe3/SEC**2

C TAB1(25) = A,U, 1N KM

C TAB1(27)= CONY,FACTOR FOR LUNAR COOPDS,(KH) (FICT,FARTH RADIUS)

C TAB1(33) = SECONDS/ MEAN SOLAR DAY

C (TAB2 CONTAINS FPHEM,TAPF OUTPUT CONTROL FLAGS)

DO 100 K = lt36
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i00 TABI(K} : O,
TAB1(7) = 998603,2

TA81(21): 1,3271544 Ell

TAB1(23)= 4902,7779

TAR1(25)= 1,49599 F8
TAB((27)= 6378,327
TAB1(33) = 86400,

DO 101 K = 1,13

10] TAR?(K) = O.
TAB2(3) = 1,

TAB2(IO)= I,

TAB2(I]) = I,

GM(I} = TAB(f21)
GM(2} = TABI(23)

C II CHECK CASE NO, FOR PERIGEE CALC,

20 IF (GAPl- GAPOB} 32,31,30

C IlIA COMPUTF CONSTANTS FOR CASE 1

30 IC =1
RK : SQRT(2,_ GAPl)

XMOD = SQRT(GAPl +6APOnI/RK

AMP = SORT(IGAPl-GAPOR)/IGAPl+GAPOR))

CW = COSIW)

IFICW) 3_t339_4
33 CHIIS= W

GO TO 35
C Ill AI

34 CHII= ATAN(SQRT(ISIN(W}/(AMP_CWII_w2 -I,))
CHIIS = QUADI(CHII,W,PlO2,PIgTWOPl}

C Ill A2
35 OPER : ELI'UE (XMOD)

PHIO = - ELIICHIIS,

IWC= 2

GO TO _0
C (fIR COMPUTF CONSTANT_ _OP

31 IC = 2
C IF PERIGEE INITIALLY

SW = SIN(W)

IF ISW) 311,310,311

310 XW = W

IWC = 1
GO TO 40

311 RK = SQRT(2,_GAPl)
TW2=A_SISW/(I,+COS(W)))

W02 : WI2,

GO TO 40

C IIIC COMPUTF CONSTANTS fOR CAqR

32 IC = 3
RK = SORT(GAPOB+GAPl)
XMOD= SQRT(2,WGAPl)/RK

RMK = SQRT(GAPOR- GAPl)

AMP= RMK/RK

OPER)/SIGN(RK,SOB)+PHIB

CA_ 2

0 OR Pl, IT IS CONSTANT
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CW = COS(W)

IF (CW)_7,_6,97

C Ill C]

_& CHI2S = W

GO TO _8

_7 CHI2 =ATAN( ARS(SIN(W)/(AMP*CW)))

CHI2S = QUADI(CHI2,W,PIO2,PI,TWOPl)
C Ill C2

38 QPFP = FLIPE (X_OD)

PHIO = -ELI (CHI2S, OPER)/ SIGN(RK,SOB) +PHIB
C IV DETERMINE FORM FOR FA,EVALUATE CONSTANTS
C IV A

40 IF (ABS(CRD)-,I06) 42,42,41
C IV B

41 IE :1
GO TO 50

C IV C

42 GAMI: B2SP/(SI *SORT(GAPlP)}
C IV D

IF ISOBS- GAPl) 43,43,4A
C IV E

43 IE = 2
GOK = GAPOB/GAPI

SOK = SOR/SORTIGAP])
GO TO 50

C IV F
44 IE = 3

OSK2 = GAPl/SOBS

OSK = SORT(OSK2)
C V

C STORE APPROX, SOL, AND DFRIV, FOR P

50 ASI1)=P

AD(1)=O,O
RETURN

FND
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5.3 SUBROUTINE APSOL (PHI, PHIT, IP, XIO, XL0, TO, W, E, KIOR3, PHIIB, EPSI2)

Calculates approximate solutions and necessary derivatives for the desired

angle ¢. Inputs are ¢ (modded to 27 each time it is stepped), ST (total

$ unmodded), 1st point flag (= 1 if 1st point = 2, otherwise); initial values

of p, ioo, Lo, t, _, and e; flag to determine perigee center of oscillation,

_i' and eI/2. Outputs are in common /AP8/ as arrays AS(6), AD(6) for

approximate solutions and derivatives. AS(l) = Pa' AS(2) = fla' AS(3) = ia,

As(h) = qa' AS(5) = Ua, AS(6) = t a.

dq a dt a

= = H, AO(6)= d-%--"

dn di

AD(1) dPa AD(2) = _-_ AD(3) =
a

.

Other outputs are C210C = cos Ioc ,

edq I

XII = oil, UI = CUl, XIOC = ioc. DQI = --_-. Uses as input labeled common

/CON/ to provide all the constants obtained in CONST.

5.3.1 Equations in Order of Solution

Calculate
m

PHIB = ¢

PHIBT = _T

I. Determine if This is the First Point of the Trajectory.

A. If this i= the first point o, the trajectory (IP = i), go to I B;

otherwise (IP = 2) go to II.

B. Set some of the approximate solutions equal to the initial conditions.

t = ti iol = O, = O, m = w.a ' /2 el/2

Combine L° and LI/2 constants and store in L ° location.

Go to III.
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II. Determine the Case Number for Calculating the Perigee

(IC is the Case Number).

If IC = i, go to IIA.

If IC = 2, go to liB.

If IC = 3, go to llC.

A@ Calculate m from case i formula.

W

If cn = 0, set _ = _ and go to QUAD2; otherwise,

K _" l/:2
XW = ,,, = tan -1 {["1-"o] 1 , }

ont 

Adjust this m to the proper quadrant by using QUAD2.

Go to III.

m = QUAD2 (m, Zl, K, KIOR3, w)

B. If w - 0 or _, (IWC = 0); go to III. Otherwise, calculate m from

case 2 formula.

XW = m = 2 tan-l{e tan 2 )

Adjust the quadrant of m using QUADI.

(_ w _ 2',,)= 2 QUADI ' 2' 2' _'

Go to Ill.
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w
C. Calculate m from case 3 formula. If cn = 0, set w = _ and

skip calculation. Otherwise, calculate

l/2
Ko- 112 [l_cn2(z2 )]

m = tan-l{['_ _i] cn (z2)
K + KI0

Adjust w to correct quadrant using QUADI

function quarter-period K.

and the elliptic

w = QUADI (_, z2, K, w, 2_)

Reduction of Entries to Trig Functions for Approximate Solutions

and Derivatives.

CP = cos ¢

SP = sin ¢

CXW = cos

SXW = sin

S2P = sin 2¢ = 2(CP)(SP)

C2P = cos 2¢ = 2(Cp)2-I

S2XW = sin 2_ = 2(CXW)(SXW)

C2XW = cos 2_ = 2(CXW)2-1

cPPw = cos(_+_)= (cP)(CX_)- (sP)(SXW)

SPPW = sin(¢+_) = (SP)(CXW) + (CP)(SXW)

cPMw = cos(_-_)= (cp)(cxw)+ (sP)(SXW)

SPMW = sin(C-w) = (SP)(CXW) - (CP)(SXW)

C2PMW = cos 2($-_) = 2 cos2(¢-_)-i = 2(CPMW)2-1

S2PMW = sin 2(¢-m) = 2 sin(¢-_) cos (C-m) = 2(CPMW)(SPMW)

C3PMW = cos (3¢-m) = cos 2¢ cos (¢-_)- sin 2¢ sin (C-m)

= (C2P)(CPMW) - (S2P)SPMW)

S3PMW = sin (3¢-_) = sin 2¢ cos (¢-_)+ cos 2¢ sin (¢-_)

= (S2P)(CPMW) + (C2P)(SPMW)
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ChPMW = cos (_-2_)

= COS (3_-_) COS (_--_) - sin (3_-_) sin (_-_)

= (C3PMW) (CPMW) - (S3PMW)(SPMW)

ShPMW = sin (4¢-2_)

= sin (3_-_) cos (_-2_) + cos (3_-2_) sin (_-_)

= (S3PMW) (CPMW) + (C3PMW) (SPMW)

III. Calculate approximate nodal solution.

0MEO0 =
oo

OME012 =
o 1/2

OME32 = n3/2

(31)

(32)

(33)

1

na = i--7_[noo
+ el/2 c3/2

flol/2 + n3/2] + Lo

Calculate

and

XII = EiI

U1 = £u I

(38)

(58)

Calculate

TA = t
a

3 -e sin (_--_)

p { o 2 _)
= coS3ioo(l_e2o -'------ [l+e

) l+e ° cos(%-_) + tan -I _ tan( ] + tolo
o

providing tan ( ) # ®. If it does, take tan -I (-) _.

Take the positive principal tan "I and find correct quadrant using

QUADI. Save the number of complete revolutions and add this to the QUADI

result.
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IV. Decide Which Equations Will be Used to Calculate i ando 1/2 ell2"

If IE = i, go to IVA.

If IE = 2, go to IVB.

If IE = 3, go to IVC.

A. Calculate

AA _-
Icos2w - cos2_]

_o + sign (_o)/_ - K1 cos2_

then

ESI2--%/2- B_.AA

xn2 - i° 1/2--C_.AA

Go to V.

B. Calculate

1 [_ig_(_o)- _lOOS2-)I/2 _o]
io 1/2 = S-_ (KO - -

m

S

ell 2 = TI [sign (_o) <i cos2c_ __--_°]

Go to V.

C. Calculate

io 112 = S-_I[sign (_o) (_'o - '_ic°s2m)ll2 - _o ]
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(cos2w- cos 2_)

el/2 = VIs 2'I --

i + + _ (eos2w - cos2_)
0

V. Calculate

= i + cI/2 i
XlOC = ioc oo o 1/2

= i + ciIXIA = ia oc

= e + cI12 ell 2EA = e a o

-- U + CU 1UA = u a o

Vl. Calculate the Derivatives and Second-Derivatives of the Approximate

Solutions Which are Necessary to Find the Modified-Encke Equations.

These are:

dn
i oo

DOMEO = i-_7_ d@
E

d_
DWB = --

DW = d--2-_=c3"2! d_9._

a_
d,

DOMEI2 =

d_
o 112
d$

(63)

(65)

(66)

d_3/2
DOME32 = --

d,
(67)
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d_
a

AD(2) = aT
(62)

di

AD(3) = d_
(69),(70),(71)

de
a

DEA =--
d_

(72),(73)

du I
DUI =

d0
(?h)

d2m
D2W = --

d4#2

(79)

d2e
a

D2EA =

dO 2

(78)

2i*

EPD210 = 112 d o 112

d@ 2

(80)

AS(h) = qa
(60)

(81)

di di 1/2
DSIOC = sin i o.__c= ci/2 sin i o

oc d0 oc d0
(70)

H=H (TT)

dt
a

DTA =-
dO

(lO6)

dq o

DQO = d-_-
(76)

If this is first point of trajectory (IP = i), print initial values

of _ (deg), i (deg), u, and q and return.

If this is not the first point (IP = 2), skip the print and return.
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5.3.2 Detail Flow Chart

SUBROUTINE APSOL

Set ta=ti, _ IB YES
= w, and IP = i

ioi/2=ei/2 =0" NO II = 2 3

Combine L° & LI/2

1
1

_ IIA

Calculate

Using Case i

E_uations If w=0 or w

I Go to IIl,

Otherwise

i

Calculate ioi/2 from (37)

Calculate ell 2 from (h5)

* Includes Transfer

W

to Obtain _ for

tan "I (-)

$IIC

* Calculate _
Using Case 3

Equat ions

Calculate m

Using Case 2

Equations

-_ell I

Calcu/a_e Trig

Terms, _a'

il, Ul, t *
a

3

ioi/2I 2 Calculate from (36)

2 Calculate eI 12 from (_7)IVB
|

Calculate ioi/2 from (36)

Calculate el/2 from (':6)

99



' V

Calculate ia, ea, ioc,

and u
a

VI

YES

J (IP=-I)60

Print Initial I
Values of _, i,

u, andq.

_Calculate Derivatives and

2na Derivatives of Approximate

Solutions. Calculate qa

dq I dq a
H,E de ' de

NO

(IP=2)
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Section 5.3.3 Pro6ram Listin5

The following pages give the listing of subroutine APSOL.
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SUBROUTINE APSOL(PHItPHITtlP,XIO,XLOoTOtWtFoKIOR3,PHII_trPS]?)

COMMON /CON/ CI,CI29CI_,SI,SI2,CS,TItF2,E2CtFM2,P_tAR

1,CRDtC2WtEPS32tEPS2,EPS3,CI3]_EO2tFO6tFO3,AM_,AC,ACStA

2 CS32,AC32_GOtG1,G2,G3,G_eG5oC2SP,C2S,B2SPtB2StS1P,S1,

3SOB,GAPIPtGAP1tGAPOB,C2EtB2E,B2E29E3KtC22E,PI,TWOPI,

4PIO2,1C_RKtXMODtAMP,CWtQPER,PHIO,TW2,RNKtIE,GAMItGOK_

5SOKtOSK2,OSK,EI2,SIS,SOBS ,ACSS ,C4E,A3,EPS

6,ACS2,EM22tEM212_EF,A3E,TO1,P2,ACC,A6,XWtIWCtWO2

COMMON /APS/AS(6)eAD(6)_C21OC,UItXIOCtDQltXII,EA

PHIB = PHI* EPS_2

PHIRT = PHIT lFPS32

C I IS THIS 1ST POINT

GO TO (IO,20 )_IP

C IB SET APPROXo SOLS.= INITIAL CONDITIONS

10 TA = TO

XIl2=O.O

ES12=0.O

XW=W

C COMBINE LO AND LI/2 CONSTANTS

XL0=XL0+ACC_(SOB_PHIBT-XW)

GO TO 30

CII DETERMINE PERIGEE CASE NOo (IC)

20 GO TO (21t25,28), IC

C IIA CALCULATE PERIGEE BY CASE i FORMULAS

21 ANG = RK* (PHIBT-PHIO)

CN = SORT(]. -(FLIF(ANG )}**2)

IF (CN) 23922t23

C IF PERIGEE SHOULD BE Pl/2 t FLTMINATr ARC TAN

22 XW = PIO2

GO TO 24

23 XW = ATAN( AMP/CN)

2_ XW = QUAD2(XW,ANG,QPER,KIOR3,Pl)

GO TO 30

C lIB CALCULATE PERIGEE BY CASE 2 FORMULAS

C CHECK IWC TO SEE IF PFRTG_ IS CONSTANT

25 GO TO (_0_?6),TWC

26 ANG = RK_(PHIBT -PNII_)

XW = ATAN( TW2 _FXP(STGN(ANG_SO_))}

XW = 2.-QUADI(XW,WO2,PIO2_PI,TWOPl)

GO TO _0

C TIC CALCULATE PERIGEE BY CASE 3 FORMULAS

28 Z2 = RK_(PHIBT-PHI0)

SN = ABS(ELIF(Z2))

CN = SORT(I. - SNWSN)

C IF PERIGEE SHOULD BE Pl/2 ,ELIMINATE ARC TAN

IF (CN)290,2g,290

29 XW = PIO2

GO TO 28n

?q0 XW = ATAN( AMP_SN/CN)

280 XW = QUA_I(XW,Z2,OPFP,PI_TWOPI)

C Ill
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C CALCULATE TRIG TERMS FOR SOLSe AND DERIVATIVES
30 SP = SIN(PHIl

CP= COS(PHIl
CXW = COSIXW)

SXW = SIN(XW)

S2P=2._CP*SP

C2P= 25_ CP_CP -I,

S2XW = 2,*5XW_C×W
C2XW =.2.*CXW*CXW-1.

CPPW =(CPwCXW}-(SP*SXW)

SPPW =(SP*CXW)+(CP _ SX!_)

CPMW = (CP* CXWI+(SP_SXW)

SPMW =(SP*CXW)-{CP*SXW)

C2PMW = 2, W CPMW*CPMW-I°

S2PMW = 2,*CPMW *SPMW

C3PMW = C2P*CPMW - S2P*SPMW

S3PMW = S2P*CPMW +C2P* SPMW

C4PMW = C3PMW*CPMW -S3PMW #SPMW

S4PMW = S3PMW mCPMW +C3_MW *SPMW

C CALCULATE APPROX, NODAL SOLUTION

OMFO0 = - AC*PHIBT

OMEOI2= -ACC_(SOB _ PHIBT-XW)

ONE32 =-AC_I-.5*S2P+FiS_MW-FO2*SPPW -F06*S _PMW)
OMEGA = OMEOO/EPS12 +OME012 +EPS*OMF32+XLO

C CALCULATE Ii APPROXIMATION

XI1 = ACS2*(C2P+EwCPPW +CO3* C3PMW)WFPS

C CALCULATE U1 APPROXIMATION
UI=A6*(GO+GI*C2XW+G2*C2P+G3_C2PMW+Ga*C3PNW+GS*CaPMW)

1 *EPS

GO TO (50o300)$IP

C CALCULATE APPROX, TIMF ,TA

C CHECK FOR Z_RO DIVISOR IN ARt TAN
300 ZD = l,+ CPMW

IF IZDI _1_32_31
32 TANG = PlO2

GO TO 33
31 TANG = ATAN(EFt ABSISPMWltZD)
33 ANG2 =(PHIT-XW)/2.

ANG3=ANG2
TANG = AINTIANG31TWOPl]_TWOPl +QUADl(TANGtANG2,PIO29

IRItTWOPI)
TA =A3E_I-E*SPMWIII,+F*CPMW)+EM212*TANG )+ TO]

C IV CHFCK FORM O_ F AND I FOUATIONS

SO = SQRTIGAPOB- GAPI*C2XW}

GO TO (&Ot41t42tt IF
C IVA CASE I

40 AA = (C2W - C2XWIIISOB÷SIGNISQgSOBI)

ES12= B2Sm AA

XI12= C2S* AA
GO TO 50

C IBV CASE 2

103



4I SQ]= SORT{GOK mC2XW !

XII2 =(SIGN(SQtSOB)-SOBIISI

FSI2 = GAMI_ISIGN(SO]tSOB)- SOK)
GO TO 50

C IVC CASE 3
42 XII2 =(SIGNISQoSOB)- SOB)/S1

CMC = C2W - C2XW
ES12= GAMlmOSK_CMC/(1.+SQRT(lo+OSK2_CMC))

CV
50 XIOC = XIO +EPSI2 _XI12

XIA = XIOC +XII
EA = E + EPS12* ES12

CIOC = COS(XIOCl

SIOC = SIN(XIOC)

C210C = CIOCW CIOC

UO0= C2IOC _(],÷FA_ CPMW)/P2
UA = UOO+U]

C Vl CALCULATE DERIVATIVES
DOMEO = -AC_ EPS

DWB = SOB + $I_X112
DW = EPS32_ DWB

DONE12 : ACS32" XI12

DOME32 = -AC# (-C2P+E_(I,- DW)_CPMW -602_ (Io+DW)mCPPW

1- FO6m(_,-DW)_C3PMW)

AD(2)= DOMEO + DOME12 +FPS _DOME_2

AD(3)= C2E _ S2XW +ACSS_t2,_S2P +F#(],÷DW)_SPPW +_O_ _

1(3,- DW)_S_PMW)

DFA = _2F_ _2XW

DUI= A6_( ( GI_DW_S2XW + G2*S2P +G_(I,-DW)*S2PMW)
I_(-2,)- G4_(3,-DW)* S3PMW -2,_G5"(2,- _W)*S4PMW)

D2W = E3K* S2XW

D2EA= B2E2* DW_ C2XW

FPD210 * 2,*C2F*DWIC2XW
AS(4)=- C22E*SZXW*CIOC*SIOC*(I,+ EA* CPMW) +C210C

i _(DEAWCPMW -EA*(1,-DW)*SPMW)/P2 + FPS*DUI

DO( = A6*( -2o*G1*! D2W* S2XW+ 2,_DW*DW*C2XW)-4,*G2

1"C2P -2,*G3*(2,*C2PNW*IIo-DW)**2 -D2W*S2P_W)- G4*(

2CgPMW*(3,-DW)**2 - D2W*S3PWW )- AS*(C_PMW*4,*(?, -

_DW)**2 -2,*D2W*S_P_W))WFP_

DSIOC= C2F*S2XW*SIOC

H - -2.*UOO*IC_F *S2XW*S2XWW(P.*CPIOC-],)+ SIOC*CI_C*
IEPD210)IC21OC+CIOCW(-4,*DSIOC *_FA *CP_Z +2,

2_(EA_ DSIOC -CIOCWDFA)_(I,-DW)*SDMW +CIOCW(D2FA +FAwDW

3_(2,-DW))*CPMW+ FA_CIOC_F,2WW_PMW )/P?

DTA = A3*(1,-DW)/(I,+F*CPMW)*W2
DO0=-UOO+C210C/P2÷H

AD(6) = DTA

AD(4}= DQI+DO0

AD(5)= H

AS(2)= OMEGA

AS(_}= XIA
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AS(5): UA

ASI6): TA

GO TO (60,70 ),IP
60 XNODE I =OMEGA/. 174532931E-O 1

XINCI=XIA /, 17453293E-01

VEL=AS( I )*UA'7,90535872/COS( X IA 1

WRITE (6,61) XNODE I ,X INCI ,UA,AS(4) ,VFL

61 FORMAT(32H INITIAL VALUFS OF NODF,INC,,U,Q //4F]8,8)

70 RETURN

F'ND
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5.4 SUBROUTINE EXPERT (LS, OMEGA, TILT, PHI, R, T, DT, AF, AG, AH, N2)

Subroutine EXPERT calculates the nondimensional accelerations af, ag,

and ah due to the earth's potential and due to the sun and moon if the

luni-solar flag LS = I. Other inputs are _, i, @, r, t, At, and N2.

(At is the difference in time since the last entry to this routine).

5.4.1 Eguations in Order of Solution

Store quantities needed for SOLUN and GPOT routines.

SP = sin @, CP = cos _, SI = sin i,

CT = cos e, ST = sin e.

Check if longitude is required.

If N2 = 0 (no tesseral or sectorial harmonics),

longitude not needed, go to lB.

If N2 # 0, longitude needed; go to I.

I. Find longitude (1) of the Satellite.

compute cos b =_-_ and
sin e

b = cos-1 (cos b).

This gives the principal value. To find desired angle, check cos e.

If cos e • O, principal value is correct, go to IA.

If cos e < 0, replace b with 2w - b and continue.

A. Find longitude of Greenwich at this time by replacing previous

value with the previous value plus amount the earth has rotated. If

the longitude of Greenwich exceeds 2w, reduce it by 2w.
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Calculate longitude of satellite:

=_+b-_ G

B. Find accelerations due to the earth.

Call subroutine GPOT.

II. Consider Luni-Solar Perturbations.

If luni-solar flag (LS) is i, go to III and prepare to calculate

luni-solar perturbations.

If LS is 2, return to the calling program.

III. Convert R to km and T to Hours Before Entering Luni-Solar Routine.

Calculate accelerations due to moon and sun (subroutine SOLUN).

Sum lunar and solar contributions. Convert accelerations from km/sec 2

to nondimensional units.

A. Rotate these accelerations into the desired AF, AG, and AH frame.

Compute necessary trig functions for the rotations.

SQ = sin q = sin i cos b

CQ = cos q = + /i - sin2q (since q I 900)

af = GP (I, J) cos q - GP (2, J) sin q

a = GP (1, J) sin q + GP (2, J) cos q
g

ah = GP (3, J)

B. Sum lunar, solar, and earth's potential contributions and return.
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5.4.2 Detail Flow Chart

SUBROUTINE EXPERT

I IStore sin _, cos $, sin i, cos 8, sin 8

YES. ,_ NO
I 1 70 "(N2#o) (N2=o)

Compute cos b I

_d b 1 YES 10 _|Replace b I

::0 7 Witl 2_-b]I

IFind Longitude 1

/_ of Greenwich

_S-C

13

byReduce2_Longitude I

NO [ i Calculate

Longitude

12 of Satellite

IB $ 80

ICalculate af, _, _ _e to E_th ISubroutine (GPOT)

_i_-TIIIA&B V "'(LS = 2)_', i , #

Prep_e Input_ to L_i-Solar Routine. Dete_ine L_i-SoI_ Pert_batlons I

(SOL_). Convert O_put Into Nond_ensional Units and Rotate to Desired Fr_e._

C_bine _th Accelerations _e to the Earth. ....... |



Section 5.4.3 Program Listin5

The following page gives the listing of subroutine EXPERT.
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SUBROUTINE EXPERT(LS,OMEGApTILTpPHIoRoT�DTtAF_AGtAHPN2
1)

DIMENSION A(3)
COMMON /TABLE/ TABl(36)tTAR2(13)tGPf_t2)oGM(?)
COMMON IEX/ CBtCTtSTtFWOGtFROT,SPtCPtSI

C STORE QUANTITIES NFFDFD FOR SOLUN AND GPOT
SP = SIN(PHI)

CP= COS(PHI)

ST = SIN(TILT)
CT = SIW SP
ST = SQRT(], -CTI CT)

C CH_CK IF LONGITUDF N_FDFfl
IF(N2) 70_80970

C I FIND EARTH LONGITUDF OF SATELLITE
70 CB =CP/ST

B = ACOS (CR}

IF (CT) 10,11,11
10 B = 6*2831853 - B

£ IA
II EWOG = FWOG + FROT _ DT

IF (EWOG -6,3) 12,13,13
13 EWOG = EWOG - 6,2831853

12 EW = OMEGA +B - EWOG
C IB FIND ACCELERATIONS DUE TO THE EARTH

80 CALL GPOT(ST,CT,EW�R,AF,AGtAH)

C IT CONSIDER LUNI-SOLAR PERTURBATIONS

GO TO (30,20),LS

C liT PREPARE FOR LUNI-SOLAR ROUTINE

C FIND DIMENSIONAL R AND T

C
C
C

C IlIA ROTATE ACCELERATIONS TO

SO = SI_ CB

CO = SORT(I,- SO_ SO!

AF = AF + A(1)_CQ- h(2)wSO

AG = AG + Af])_SO +h(2)_ CQ

AH = AH + A(3)

?0 RFTtJRN

FND

30 RD = R _ 6_78,1521

TO = T * ,22411493

CALL SOLUN (OMFGA,TILT,PHI,RD,T_)

SUM Lt}NAR AND SOLAR PERT, AN_ NON-_YM,
GP(K,I),K=I,3,ARE THE PERT,ACCELS,DtJF TO THE SUN (KM3/SFC2)

GP(K,2),K=I,3,ARE THE PERT,ACCELS,DUE TO THE aOON(KM3/SEC2}

DO 31 I=1,3
31 At1) =(GPtI,I)+GP(I,2)!/,97983068 F-02

AF9 AG_ AH FRAME AND SUM
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5-5 SUBROUTINE ENCKE (PT, OMEGT, XlT, QT, UT, T, PHI, LS, DT, N2, XIN, PN,

• [IN, P2, PA, QN, E, AJ2, AJh, KDER)

Subroutine ENCKE evaluates Encke equations of motion for the Runge-Kutta

subroutine. Inputs to ENCKE are p, £, i, q, u, t, ¢, LS, DT, N2, i , Pn' Un'
2 n

Pa' Pa' qn' J2' J4' and KDER. Other inputs come from subroutine APSOL

through labeled common /APS/. Output is the array E(6) where:

dn di dqn
dPn E(2) - n n

E(1) = -_, -_, E(3) = -_, E(4) = d---_'

du dt
n

E(5) =-_¢, sad E(6) =-_.

5.5.1 Equations in Order of Solution

I. Compute and Store Useful Quantities.

Find r, cos i, sin i, tan i, cos2i, sin2i, cos3i, cos4i, A 1, u 2

2 u 5, and sin ep , sin ¢, cos ¢, cos e,

II. Find Perturbative Acceleration J, af, ag, ah (EXPERT).

Calculate

dt dpde (5) (1).B__U (i0) F (8), , --
_ ' dt de' d¢

Calculate

DENOM = p2u2sin2i sin e + F coshi cos e

F

Calculate

(2)
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A. Zero J2 and J4 since they have already been accounted for.

DPHI = i ° in radians

¢i = ¢ - DPHI-

¢2 = ¢ + DPHI

am

DELU = AU =---_a DPHI
d,

1
RI =--

u-Au

Find , ahl ,afI agI'

i
R2 =--

u+Au

_nd , %2 (EXPERt).af2 ag2'

Calculate:

daf

DAFAP = d-_-approximate

da

DAGAP = --_ approximate
d_

(88)

Set the total derivatives equal to the sum of the exact portion

and the approximate portion.

Restore the values of J2 and Jh in the working array for

subroutine GPOT.

IV. Complete the Evaluation of the Encke Equations.

Compute : dF
DFDPHI =-

d,
(87)
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V1 = V1
(8_)

AU2 = AIu2, VU2

V

0 V02 = VU2 (2 + VU2)
= AU-_'

V3P = V_
(1oo)

V22 = (i + VU2) 2

Calculate

(1oi)

E(5) = %

E(1) = --dPn= dp
de dO

dn dn
n d_ a

E(2) =--=
de d# de

di di
n di a

E(3) =--=
de de de

dt dt
_.__n= dt a

E(6)= a_ a'7- d'T-"

Return
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5.5.2 Detail Flow Chart

SUBROUTINE ENCKE

I

I
Ccmpute and Store Useful I

Quantities I

Find Perturbative Acceleratlons

(EXPERT) and Evaluate the Ex-

pressions for

dt dp d_ di daf

d-_' d$' d-_' d-_' d-_-analytic

YES

IIIA

Calculate Approx.

Derivatives Using

_i' #2' rl' r2 and

Subroutine EXPERT

III

QDeriv_

NO

D-

iv i
'r

C_nplete Evaluation

of Encke Equations

and Store in Array

E(6)
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Section 5.5.3 Program Listing

The following pages give the listing of subroutine ENCKE.
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SUBROUTINE ENCKE(PT,OMEGTtXITgQTgUTgT,PHItLStDT,N2

I_XIN,PNtUNgP2,PA,QN_E,AJ2tAJ4_KDER)

DIMENSION E(6)

COMMON /APS/AS(6),ADI6)_C2IOC,UItXIOC,DQI_XII/DERIV/DENK(3)

COMMON/ENERG/ CI2,U3,CT2,US,DPHIDT9 U2/CPOT/COEFF(83)

C I COMPUTE AND STORF USEFUL QUANTITIES

R= I./UT

C( = COSIXIT)

ST = SIN(XIT)

T( = SIICI

CI2= C( _ C(

ST2= ST _ ST

CI3= CI2 _ C(

£I4 = CI3* CI

AI = PTICI

U2= UTiUT

PT2 = pTI PT

US= UT_ 5

SP= SIN(PHI)

CP= COS(PHI)

CT = SI_ SP

ST = SORT(I.-CT_CT)

C IT FIND PERTURBATIVE ACCFLFRATIONS

CALL EXPERT (LS,OMEGT,XIT,PHI,RtT,DT,AF,AG,AH,N2}

DUDSI = R# STe AG

F = R_ AF + TI _ CP#D'.IDSI/ST

DPHIDT = PT# U2/CI +F_CI3#CT/(PT # SI2_ST)

DTDPHI = I./DPHIDT

DPDPHI = DUDS(/ DPHIDT

DFNOM = PT2 _ U2_SI21ST + CI4_CT_ F

RUM = F/_FNOM

DODPHI = -CI3 ICTIRUM

DIDPHI = -SI2_CI3_CP_ PUM

VO = F_CI3_CTI(PT_SI2_ST)

DAIPHI =(DPDPHI +TI_DIDPHI)ICI

DTHETP = -(CI_SPWDIDPHI +CP_SI)/ST

CT2=CT_CT

C2T=2._CT2-1.

S2T=2._ST_CT

CC?=3.-7,_CT2

U3=UT_U2

DAEDPH=DENK(1) _U3_(UT_C2T_DTHFTP+2,_QT_

IS2T}*(I.+DENK(2)_U2_CC?)+_FNK(3) _U5*S2T*(2e_

2CC?+?.*UT*S?T*DTHFTP)

DAGDPH=O,O
C Ill CHECK IF APPROX. VALUES FOR DAF + DAG ARE REQUIRED

GO TO (20,211,KDER

C Ill A tALC. APPROX. VALUES FOR nERIVATIVFS

21 COEFF(2) = 0.0

COEFF(4) = 0.0

DPHI : .17_53293 E-Of
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PHIl = PHI -OPHI

PHI_ • PHI +OPH!

OELt! = A5|4)* DPHI

RI = I,/( UT - 0FLUI

R2 = I,/(UT + OKLU)

CALL EXPERT (LS, OMEGT,XIT ,PHI1,R],T,O,
1 AF1, AGlt AHI* N2)

CALL EXPERT (LS_ OMEGT, XITo PH72_ R2,T,O

ItAF2, AG2* AH2t N2I

DAFAP = ( AF2 - AFI}/ ,_4906586E -01

DAGAP = ( AG2 - AG1)/ e_4906586 F-01

DAF_PH = OAFDPH +_AFAP

DAGDPH = OAGAP

COERF(2) = AJ2

COEFF(4) = AJ4

C IV COMPLETE TH_ FVALUATYON OF FNCHF FOS,

20 DFDPHI ={- FiQT + _AF_PH + _A_PH _eP * TT
1 + AG * (CP*DIDPHI/CI2 - TI *SPI)/UT

Vl = CT*IDFDPHI - F*(DAIPHI/AI +2,*DIDPHII(SI*CI)

I+DTHETP/(CT*STIII/(AI*ST*TI*TI)

AU2 = At*U2

VU2 = V0/AU2

V02 = VU2*(2,+ VU2)

V3P=-(VO2*AD(4)+AHI(AI*AU2I)+QTm(],+VU2)_(Ze_OT*VU2/UT-V1/AU2-

1DA1PHItA1)

V22=(1,+VU2)**2

E(4)=(- UN - U1 -SIN(XIT+XIOC)_SINfXIN÷XI1)/PT2

1- C2IOC*PN_tPA+PT)/(P2*PT2) +V3P -AD(5)- DOll/V2?

E(5}= QN

F(1): DP_PHI

E(2) = DODPHI -AD(?)

E(3) = DIDPHI - ADI3)

El6) =DTOPHI - AD(6)

RETURN
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5.6

5.6.1

SUBROUTINE RKTOM (KR, IP, KKALT, TF, HAH, EMIN, EMAX, MFAIL, FDT, DTM,

DT, T, PHI)

Subroutine RKTOM Calling Statement

KR

IP

KHALT

TF

HAH

EMIN

EMAX

MFAIL

FDT

DTM

DT

T

PHI

Runge-Kutt a flag

Initial point flag

Halt flag

Run stop time

Array of dependent variables and their derivatives;

HAH(1) through HAH(6) are dependent variables

HAH(7) through HAH(12) are their derivatives

Input minimum error allowed

Input maximum error allowed

Maximum failures allowed

Multiplier to decrease computing interval

Multiplier to increase computing interval

Current value of computing interval

Current value of independent variable

Current value of the angle $ which is always kept <

Equations in Order of Solution

Test Runge-Kutta flag, KR.

If KR = i, continue below.

If KR = 2, go to IV.

If KR = 3, go to V.

If KR = h, go to VI.

If KR = 5, go to lB.

I. Test Initial Point Flag, IP.

If IP = i, continue below.

If IP = 2, go to IC.

2W,

I_ ¸



A. Initial point calculations.

Be

IP=2

KHALT = i

KC=I

KF= 0

KFAIL = 0

SR(i) = 0

i = 1,2,..6

Increment initial point flag

Set halt flag to continue run

Set Simpson's rule flag to signal

first cycle computations

Set intermediate and total

failure counters to zero

Set Runge-Kutta increments to zero

Save quantities for Simpson's rule calculations and for use if

computing interval selection fails.

Set

Go to ID.

ss(13) = T

SS(lh) =

SS(i) = _AH(i)

for i = 1,2, .... 12

C. Test Simpson's rule flag, KC.

De

If KC = i, set KC = 2 and continue below.

If KC = 2, go to III.

Save quantities for ordinary Runge-Kutta use.

Set

s(1s) = T

S(lh) =

S(i) = HAH(i)

for i = i, 2, .... 12



E. Compute the next value of time and determine if it exceeds run

stop time.

T =S(I3) ÷ aT
n

If T
n

> TF, continue below.

If T
n

If T
n

= TF, go to IG.

< TF, go to IH.

F. Set AT = TF - S(13).

G. Set halt flag.

KHALT = 3

H. Complete first pass of Runge-Kutta.

Compute

AT2 = AT/2

T = S(13) + AT 2

Compute Runge-Kutta parameters.

Rm(i) = AT • S(i+6)

for i = i, 2, .... 6

Compute new values for quantities.

HAH(i) = S(i) + 1/2 Rn(1)

for i = I, 2, .... 6

Increment Runge-Kutta flag.

KR= 2
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II. Exit from Subroutine (Return).

III. Perform Accuracy Tests on Integrated Values.

Reset Simpson's rule flag.

KC = 1

Compute

Set

AT 3 = AT/3

HS(i) = AT3[SS(i+6)+hS(i+6) +KAH(i+6)]

for i = i, 2, .... 6

Compute estimated and allowable errors.

c = Maxi_m o_ IsR(i)l,i = 1, 2, ....5
msx

Ees t = Maximum of ISR(i)-HS(i)I, i = i, 2, .... 5

Set Runge-Kutta increments to zero.

SR(i)= O,

E_I- M=im_ o_ [_= Cax

i = i, .... 6

or 10 -9 times the maximum HAH(i)]

i = i, 2, ..... 5

Ermin = Emi n Cmax

Print the values of T, AT, number of intermediate failures,

Eal I, Ees t , and Ermin.

122



Test estimated error versus maximum allowable error.

If Ees t • Eall, continue below.

If Ees t _Eall, go to III D.

A. Increment total failure counter.

KFAIL = KFAIL + i

Test total failures against maximum allowed.

If KFAIL _MFAIL, continue below.

If KFAIL < MFAIL, go to III C.

B. Set halt flag to stop run.

KHALT = 2

Write "computing interval selection fails," exit subroutine at II.

C. Increment intermediate failure counter.

KF = KF+I

Set halt flag to i.

KHALT = I

Go to III H.

D. Test estimated error against minimum allowed.

If Ees t _ Ermin , continue below.

If Ees t > Ermin , go to'IIl G.
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E. Increment total failure counter, KFAIL.

KFAIL - KFAIL + 1

Test total failures against maximum allowed.

If KFAIL _ MFAIL,

If KFAIL < MFAIL,

go to IIIB.

continue below.

F. Increment intermediate failure counter.

KF=KF+I

Set halt flag to i.

KHALT = i

Increase AT by input multiplier.

AT = DTM ' AT
new old

Restore values saved at IB to the ordinary Runge-Kutta values.

S(i) = SS(i), i = l, 2, .... lh

Go to IE.

G. Set intermediate failure counter to zero.

H9 Cc_pute new allowable c_nputing interval.

ATne w = (FDT)(ATold)[EalIIEest 1114
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AT 10-8.
Test _- against

If AT/T _i0 -8, print "Computing interval = (AT),"

and go to llI B.

If AT/T > i0 -8, continue below.

J. Test intermediate failure counter, KF.

If KF < 0,

If KF • 0,

continue below.

go to III L.

K. Set KR = 5, and exit to print at II.

L. Restore values saved at IB to ordinary Runge-Kutta values.

s(1) =ss(i), i=l, 2, .... 1B

GO to IH.

IV9 Second Pass of Runge-Kutta.

Increment Runge-Kutta flag.

KR=B

Compute Runge-Kutta parameters and new values of dependent variables.

RK2(i) = (AT)(HAH(i+6))

HAH(i) = S(i) + 1/2 RK2(i)

i = i, 2, .... 6.

Exit subroutine at II.



Vo

VI.

Third Pass of Runge-Kutta.

Increment Runge-Kutta flag.

Compute new time.

KR=_

T = S(13) + AT

= mod(S(lh)+ A,, 2 )

Compute Runge-Kutta parameters and new values of dependent variables.

RK3(i) = CAT) (HAH(i+6))

HAHCi) = sCi) + RK3(i)

i = i, 2, .... 6

Fourth Pass of Runge-Kutta.

Rese% Runge-Kutta flag.

KR=I

Compute Runge-Kutta integrated values and increments.

RKINC(i) = (RKI(i)+2[RK2(i)+RK3(i)] + (AT)[HAH(i+6)]}/6

SR(i)ne w = SR(i)ol d + RKINC(i)

HAH(i) = S(i) + RKINC(i)

for i = i, 2, .... 6

Exit subroutine at II.
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5.6.2 Detail Flow Chart

Subroutine RKTOM

5

What

Rung

Ist Po_

Flag

hO IA

ist Point Calcula-

tions; SetFlags &

Zero the SR Array.

6O

SaveQuantities for

Computing Selection

Failure (SS)

IP=2

IV

i

KC=I

30

Set KC=2

IE 'i00

C_nput e Next

T_e (_)

4th Pass R-K. Restore

390 to i. Compute

VI at this Step &

Save in SR.

3rd Pass R-K. Set Flag I f \
to .. C=puteT_e, R-K I'_ _T_N
Parameter, and Values. I

2nd Pass R-K. Set Flag toI' I
i

3. Compute R-K Parameter • I

and Values. I

KC=2

IH 130

ist Pass R-K. Set Flag

to 2. Compute Time, R-K

Parameter, and Values

ID 80

Save Quantities for IR-K use (S)

II 150

Next

Time (TN)with

Time (TF

120

IIIYJ
Perform Accuracy Tests I

1601 !

<Go to *IIID)

*(Next page) LGo to *IIIA_

TN>IF
I

IF.] Change DT to Arrive

ll0 7 at Final Time

I
120 IG

!

Set Halt Flag to Show Run is I

Cumplete (KHALT=3) I

RETURN
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IIID _ 230

YES

Increase Total IFailure Counter

L

NO

Increase Inter.

Failure Counter.

Set Halt Flag=l.

Ccmpute Bigger

DT. Restore

R-K Values S(lh)

by Using SS(I_),
Preparing for

Another Try.

r

Ret_ 'n to_
IE to see--

if New DT

Exceeds

NO

_S

IIIG

270 v

IIIH _80

[ Cumpute DT I

Reset Inter. Failure ICounter KF=O

NO

lllC 1 220

Increase Inter. Failure

Counter KF, Set Halt

Flag=l

IliA _ 200

I IncreasecOunterTotal Failure]

_210
IIIB 1

I Prepare for Error

Halt, Print Fail-
ure

NO

_o to YH (ist R-K_

k._ Cycle) J

lllJ _I0

n/ter.r_ail_% _ IIIK! Set R-K Flag=51Is YES to Show 2 Cam- I

L plete Steps I

_ounter (KF)/f 320-

_I_ 330

_ Restore R-K Values S(lh) by
Using SS(14), Preparing for

Another Try.



Section 5.6.3 Program Listing

The following pages give the listing of subroutine RKTOM.
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SUBROUTINE RKTOM (KR, IPt KHALT, TFt HAH, PM-INt FMAX,

I MFAILt FDTt DIM, DT, T, PHI)
DIMENSION HAH(121, Sl14), SS(14), SR(6), HS(6), RKI(6IoRKINC(6)

1,RK2(6), RE3(6;

C TEST RUNGE-KUTTA FLAG

GO TO (10, 350, 3709 390, 60), KR

C I TEST FIRST POINT FLAG

10 GO TO ( 40, 20), IP

C IC TEST SIMPSONS RULE FLAG
20 GO TO (30, 160), KC

30 KC = 2
GO TO BO

C IA FIRST POINT CALCULATIONS

40 IP = 2

KHALT = 1
KC = I

KF = 0
KFAIL = 0

DO 50 I = I, 6

50 SR(1) = O.
C IB SAVE QUANTITIES USED IF COMP INT SELECTION FAILS

60 SS(13) = T
SS(14) =PHI
DO 70 I = 1, 12

70 SS|I) = HAH(I|

C ID SAVE QUANTITIES FOR ORDINARY RUNGF_K(ITTA USE

80 S(13) = T

S(14)=PHI

DO go I = 1, 12

gO Sill = HAH(II

C IE COMPUTE NEXT TIME AND DETFRMINE IF IT FXCFFDS STOP TIM_

100 TN = S(13) + DT

IF (TN - TF) 130, ]20, l]O

C IF

110 DT = TF - S(13)
C IG

120 KHALT = 3
C IH COMPLETE IST R-K PASS, COMPUTE N_W TIMF AND POSITIONS

130 DT2 = DT / 2,
T = S(13) + DT2

PHI=S( 14)+DT2

00 140 I = 1, 6
RKI(1) = DT * S (I+61

l&O HAH(I) = S(I) + ,5 * RK](1)

KR = 2

C I)

150 RFTURN
C Ill PERFORM ACCURACY TESTS ON INTFGRATFD VALLIFS

160 KC = 1
DT3 = DT / _.

C COMPUTE SIMPSONS RULE INTFGRATED VALUES
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DO 170 I = I* 6
170 HSII} = DT3 _ (SS(I+6} + _. * SII+6! + HAH(I+6t)

C COMPUTE ESTI.'qATED AND ALLOWABLE ERRORS

{MAX = AMAXI (ABS (SR(1)), ABS (SR(2)), ABS (SR(3}},

1 ABS (SR(4))_ ABS ISR(5I))

ESTER = AMAX1 (ABS (SR(1) -HS(])), ABS (SR(2) -HS(2)
I ), ABS (SR(3) -HS(3)), ABS (SR(4) -HS(I_)t,

2 ABS (SR(5) - HS(5)I)

I000 DO 180 I = I, 6

IBO SR(1) "" 0,.

EALL = AMAX1 (EMAX _ CMAX, l.E-g _ AMAX1 (ABS (HAH(I)}
1,ABS (HAH{2))9 ABS (HAH(3)), ABS (HAH(4))*

2 ABS {HAH(5)))}

ERMIN - EMIN _ CMAX

WRITE (6, 190) S(13),r_T* KF, FALLt FSTFR, FRMIN
190 FORMAT (1H 2E20.8, I12t E27,89 2E20,8)

IF (ESTER- FALL} 2309 2_0, 200

C IlIA

200 KFAIL = K_AIL + I

IF (KFAIL- MFATL) 2209 ?109 210

C Ill B FXIT TO HALT RUN

210 KHALT = 2

WRITE (69 215)
215 FORMAT (1HO,35H COMPUTING INTERVAL SELECTION FAILS)

GO TO 150

C IIIC

220 KF = KF + ]

KMALT = I

GO TO 280
C IIID

230 IF (F_STF_R- FRMIN) 240, 240, 270

C IIIF

240 KFAIL _ KFAIL + 1
IF (KFAIL- MFAILI 250, 210, 210

C IIIF
250 KF = KF + 1

KHALT = 1
DT = DTM _ DT

DO 260 I = I, 14

260 SIlt = SS(I)

GO TO 100

C IIIG

270 KF = 0

C lit H COMPUTF NEW ALLOWABLE COMPUTING INTERVAL

280 OT " FDT _' r)T _ (EALL I FSTF_) _¢ 0,2_
IF (DT / T- 1.E-8) 2909 2909 310

290 WRITE (6, _00) DT
300 FORMAT(IHO,16H COMP INTERVAL " E17,8)

GO TO 210
C IIIJ

310 IF (KF) 3209 320, 330
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C. III K FXIT TO PRINT

_.?0 KR = 5
GO TO 150

C IIIl
330 DO 340 I : 1_ 14

340 S(I) : SS(I)
GO TO 130

C IV 2ND PASS OF RUNGE-KUTTA

350 KR = "_
DO 360 I : I, 6

RK2{!) : f)T * HAH(!+6)

360 HAH{I) = S(1) + ,5 * RK2(1)

GO TO 1_0
C V 3RD PASS OF RUNGF-KUTTA

3?0 KR :
T : S(13} + DT

PHI =AMOD (S (14) +DT,6,2831853 )

DO 380 I : ], 6
RK3ll) = DT _ HAH(I+6)

380 HAHII} " SII! ÷ RK3lll

GO TO 150

C Vl 4TH PASS OF RUNGE-KUTTA

390 KR = 1
DO 400 I = I, 6

RKINC(1)=(RKI(1)+2,*(RK2{ I)÷RK3(1)]÷DT*HAH{I+6])/6,

HAH( I )=S( I)+RKINC (I )

400 SRII)-SR( I}÷RKIN((I )
GO TO 150
END



5.7 FUNCTION ELIPE

5.7.1 E_uations in Order of Solution

The quarter-period K of the elliptic integral F($,k) is evaluated by

sucessive application of the decreasing Landen Transformation. From

reference 3, equation 17.5.7 and 17.5.1:

m

i
K= w H (l+k s)

s=l

k 2

ks+l = (....s )

i÷ 2
s

where sin a s in reference 3 is replaced by k s . The ks are decreasing very

rapidly. Even for ko = .99995, seven steps are sufficient to make k7

less than 10-8 . Therefore a maximum of i0 steps is suggested. The ks,

Nt

k's = l-/_ks2' Pr = H (l+ks)' and Nt are stored in COMMON because they will
s=l

be needed in the computation of the elliptic integral F(¢,k). (Nt = Number

of transformations.)
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5.7.2 Detail Flow Chart

FUNCTION ELIPE (k)

IProvide Space in COMMON

for the ks, kA, Pr' Nt

i! i
Ccmpute Next Value

of ks, k_, Pr' Nt c

IYES

NO

F

iCompute KI

RE_URN



Section 5.7.3 Pro6ram Listing

The following page gives the listing of function subprogram ELIPE.
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FUNCTION FLIPF ( CAY)
C FUNCTION ELIPE TO COMPUTr TH_ OtlARTFR PFRIOD

COMMON /QUART/ CAP (IO)gPRgNOTtCA(]O)
PR = ]o

NOT =2

CA( ] ) = CAY

DO 300 I = 2riO
NOT = I

IMI = I - 1

CAPIIMI) = SORT (1° - CA(TMI)_ CA (IMI))

CA (1) = (CA(IMI) / ( ]. + CAP (IM])}) m_
PR=PR+PRICA(1)

C TF_T LAST FACTOR OF TH_ PRODUCT
IF (CAil)-olE-O?) 400,400,300

300 CONTINUE

400 ELIPE = Io5707967 _ PR
RETURN

END



5.8 FUNCTION ELI

5.8.1 Equations in Order of Solution

The eliptic integral F(S,k) is evaluated by successive application of

Landen's decreasing transformation. From reference 3, equations 17.5.8,

17.5.6, and 17.5.2:

Sn
F(S,k) = [ .K.lim--

w n-_ 2n

¢n+l = ¢n + arctan (l+_k2n .tan ¢n)

The k are stored in COMMON and K is known from function ELIPE.
n

The quantity AS = *n+l " ¢n = arctan (l+_k2n .tan ¢n) is computed at

each step and added to ¢n. The quadrant of AS is the same as the quadrant

of ¢n. To accomplish this, AS is written as

= + AiAS A s

where Ai is 2w-tlmes the number of revolutions completed by

is the remainder, determined by QUADI so that

tan AS = _tan Sn

¢n , and As

After adding this value of AS to ¢n , the total is modded with 2w giving

¢si which preserves small arguments for the next step.

when

According to the above limit approach, the iteration process is halted

¢n+l = 2Sn

or when

DS = ISn+I/2¢nl - 1 = O.
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5.8.2 Detail Flow Chart

FUNCTION ELI (¢, K)

I Set 2i = i, _i = $
@k = Number of Revolutions

of _ Times 2w; #s = _ - #k

I

Compute cos @i-l' sin #i-i :_

s cos #i-i = 0?

YES

Compute A_



Section 5.8.3 Prp6ram Listin 6

The following page gives the listing of function subprogram ELI.
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C

C

FUNCTION _LT ( PHI 90P }
FUNCTION ELI TO COMPUTE THE VALUE OF THE ELLIPTIC

TNTF_GRAL

DIMENSION PHILT (10] , mHIS(IO)

COMMON/QUART/CAPf!O) 9PR_NOT_CA(!O)

T_'OP T =6,28_185_
PlOP = l,qTO'tQ6_

Pl =3, lt+lSq27

NPTWO = 1

PHILT(1) = PHI

PHIK =AINT(PHI/TWOPl }*T'J4OP I

PHIl(1) -- PHI - PH]K

DO 600 I=2*NOT

IMI 1 = I-I

COSP = COS (PHIS (IMTI))
SINP = SIN (PHIS (IMII})

IF{COSP) 580_5909580

590 DELPHO = PI02

60 TO 550

580 DELPH0 = ATANIAF3S(("AP(TMT]}* (SINP I COSP ))}

550 DELl = AINT (PHILTIIMI])/ TWOPI) * TWOPI

DELS = QUADI( DELPHO , PHTLT(I_IIt, PIO2 tPI,TWOI_T)

PHILT(1) = PHILT{IMII} + nCLq + r_LI

PHIS(1) - PHIS(I_I]} + DFLS

PHIS(I} = PHIS(1) -AINT(PHIS(II/TWOPI}*TWOPI

NPTWO= NPTWC) * 2

DPH = ABS (PHILT(1) I(RI-41LT(IMII} * 2,)1

IF (DRH - l,} 600 , 500 , SO0

600 CONT INUF

500 TWON = NPT_t,r)

N=I_II+I

EL T=PH ILT fN)*OP*,,63661977/TVrON

RETURN

END



5.9 FUNCTIONELIF

5.9.1 Equations in Order of Solution

The evaluation of the elliptic function sn(u,k) is accomplished by the

use of formulae (16.12.1) and (16.12.2) of reference 3:

sn(u.m) = (,I+ul/2) sn(v,.)

1+, 1/2 sn2(v.B)

.-- (i- )2= ( k ) . v-- u
i+1_J_-_k2 i+1_/_k2 1+.-?j_

The above transformation from v,, to u,m is repeated until the modulus

is zero. Thus, we have in general:

sn(Un_ I, kn_ I) =

(l+k n) sn(un.k n)

l+k n sn2 (un .kn)

, n = l, 2, ....

where the modulus k is used rather than m (k2--m)

U
o

U =
n @o

H (l+k i)
i=l

and the k. have been calculated in function ELIPE and are stored in COMMON.
i

The procedure of computing sn(uo,k o) is as follows.

The number of transformations (NOT) is chosen such that

sufficiently small to permit the approximation:

k is
n

Un.k n i _( - sin u cos u ) cos usn( ) = sin un - [ k un n n n

(equation 16.13.1, reference 3)

Then starting with sn(un,kn) , the recursive formula is applied n-tlmes.

After the nth step, the value of sn(uo,k o) = sn(u,k) is obtained.
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5.9.2 Detail Flow Chart

FUNCTION ELIF (u)

IENTER I

Call k' ks' Pr NtS I •

From COMMON

Compute Sn(Un, kn)

Apply the Landen Transformation

n-times to Obtain Sn(Uo, ko)
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Section 5.9.3 Program Listing

The following page gives the listing of function subprogram ELIF.
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C

FUNCTION FLIF ( U }

FUNCTION ELIF TO CALCULATE THE ELLIPTIC FUN£TION SN
COMMON / QUART/CAP(tO) ,PR 9 NOT ,£A(]O)
FM = CA(NOTI**2

VEO - U/PR

SVF - SIN(V_O)

CVF = COS(V_O)

SNVF : SVE -,,?5 * F_,
NOT2 : NOT +2
r)o 150 I= 2 , NOT

IR -- NOT2 -I
CAS = CA(IR}* SNVE

150 SNVE = (SNVE +CAS|/(I,+ CAS*SNVFI

ELIF = SNVF_
RFTURN

FNr}

*(VFO -SVF *CV_)*CV_

]44



5.10 SUBROUTINE GPOT (Q, CT, EW, R, AF, AG, AH)

This subroutine calculates perturbative accelerations af, ag, and ah due

to the earth's potential. The inputs are sin e, cos e, longitude of satel-

lite, and non-dimensional radius. The subroutine obtains coefficients of the

potential from labeled common /CPOT/.

5.10.1 Equations in Order of Solution

I. Set Original Recursion Values.

p(1)= = i

DP(2) = p{ = I

UOI = 0 [Stores zero before array U to become U(O,I)]

U(l,l) = UII = 1

RX(1) = r3

P(2) = oI = cos e

II. Set Sum Limits and Zero Original Sum Quantities.

NNI = NI + i

Zero locations to gather sums of zonal coefficients for af, zonal

coefficients for ah, tesseral and sectorial contribution to af, tesseral

and sectorial contribution to ag, and tesseral and sectorial contribution

to ah. These are, respectively, Z = O, ZI = 0, TS = 0, TSI = O, and TS2 = 0.

Calculate the arrays for Pn and P'n (P and DP).



Calculate the array of r(n+2), (RX).

Calculate the ratio-array

J
n

(AOR).

Find the sum:

Z ..

NI J

n=2 r

and

Z1 =

NI J

n)[ (n+l) (--_-_ On
n=2 r

III. Are Tesserals Required?

If the limit on the tesserals (N2) is less than 2, tesserals are not

required, go to VI; otherwise, continue.

IV. Calculate Quantities for Tesseral and Sectorial Sums.

Calculate arrays for sine and cosine of n • longitude (SBE and CBE).

Calculate and store the arrays for U and Wnm nm"

V. Sum Appropriate Tesserals and Sectorials.

Calculate and store arrays for:

Find the sums :

cos(m l) _ CCCC(N,M) = Cnm nm

sin(m _) _ CSCS(N,M) = Cnm nm

SC(N,M) = Snm cos(m l) - SCnm

SS(N,M) = Snm sln(m l) - SSnm

N2 n W

TS = -[ _ n_.__m(CC
n+2 nm

n=2 m=l r
+ SSnm)
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TSI =
N2 n

n+--'-2Unto (CSnm
n=2 m=l r

- sCrim)

TS2 =

N2 n

n÷in+2 Unm (CCnm
n=2 m=l r

+ SSnm)

VI. Calculate perturbative accelerations.

af = AF = Z cos e + TS

a = -TS1 = AG
g

Return.

ah = AH = Zl + cos e TS2
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5.10.2 Detail Flow Chart

SUBROUTINE GPOT

J Set Original Recursion Values I

Set Sum Limits, Zero Original Sum Quantities.l
Sum Zonal Perturbations I

NO

YES I (N2 L 2)

T IV
I

Calculate Quantities for Tesseral

and Sectorial Sums J

Iv
Sum Appropriate Tesserals I

and Sectorials

Calculate Pertubative

Accelerations

1,18



Section 5.10.3 Program Listing

The following pages give the listing of subroutine GPOT.
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SUBROUTINF GPOT(O ,eTeFW eR ,AF,Ar_AI-I)

C SUBROUTINF. GPOT TO COMPUTF THE A('CFLFRATIONS r_UF TO

C THE HIGHFR HARMONICS 9TESSPRALS AND SFCTORIALS OF THF

C FARTHS POT_'NTIAL

COMMON / CPOT/ AJ(Q)tCl6t6), S(6t6), NI_N2

I /G/UOItU(6,6)
DIMENSION P(IO) _DP(IO) tCRE(6) t W(6,6), CC(6,6)t

1CS(696)_ SCt6_6}t SSl6,6)9SBE(6) tRX(9)gAOR(9)

( I

C SET ORIGINAL RFCURSION VALUES

PC1) -- I,

DP(?) = 1,

U01=O.O

UII,]) : ],

P(2)=CT

( II

C SFT StlM LIMIT._ AND Z_FRO OPIGINAL SUM OUANTITI_S

NN] = NI + l

14_ Z = O,

ZI= O,

TS = O,

TSI= O,

TS2= O,

C CALC, RHO,RHO- AND ZONAL SUMS

DO 125 N - "_,NNI

r) = N

L = N - I

A -- L

PIN) = ((2o_A-1,)_PI2)wP{L)-(A-I,)_p(N-2})/A

DP(N) = P(2)_r)P(L) + A_I_(L)

RX(L)=RX(L-I)*R

AORIL )=AJ (L) IRX (L)

Z=Z+ AOR (L) _DP (N )

125 Z]:Z,I+D*AOR( L)_P (N)

C Ill ARF TFSSFRALS R_'OIJIR_'r_

IF(N2-] )30,30,40

C IV CALCULATE OIIANTITIES FOR TF._,_FRAL AND SFCTORIAL _tJMS

40 SBE'(I )=SIN(FW}

CBEI I )=COS(FW)

DO 126 N=29N2

K=N-I

r_=N

BEW=D_EW

CBE(N) =COS (BEW}

]0 SBF(N)=SIN(B_W)

UIN,N) = (2,_D-I°)'_Ù_!)(IC_)

U(K_N) = (_,

W(NiN) = -r)_P(2)'_U(NiN)

DMI-D-] ,

r)T 121 --(2°*D-I, )'_D (2)



CV

C_

DTIP2=D_P(2)

DO 126 M=],K

B=M

U(N,M)=(DTI21_U(KgM)-(DM]+R)_U(N-29M))/(_-R)

= -DTIP2 _U(N,M) +(P+_)* UIK,M)

ALS AND SE'CTORIALS

N=2,N2

M= ] 91kl

126 W(N,M}

SUM TE'SSER

DO 242

D = N

DO 242

p = M

228

232

242

VI

3O

£CINgM) = CIN,M} _ CR_{_)

£SIN,M) = C(N,M) _ SR_ (M)

SCIN_M) = SINgM) _ CB_(M}

135 SS(NtM) = S(N,M) i SBF(M)

TS = TS-(W(N_M)/RX(N) )I(CC(N_M)+SS(N,M))

TSI=TS]+(_/RX(N) )IU(N_M)_ICSIN_M)-SC(Nt_))

TS2=TS2- ((D+Io)/RX(N) )_UINgM)_(CC(N_M)+SS(N_M))

CALCULATE- PFRTURRATIVF ACCFL_RATIONS

AF =Z_Q+ TS

AG = -TSI

Aft = Z]+ TS?*O

RETURN

END
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5.11 FUNCTION QUADI (OMEGA, W, QPER, PI, TWOPI)

QUADI is the angle which is in the same quadrant as W (with respect

to QPER) and Itan (QUADI)I = tan (OMEGA). All inputs and outputs in radian:_.

5.11.1 E_uations in Order of Solution

I. Adjust W so -4.QPER<_W<_4"QPER.

(Mod W with h.QPER)

II. If W is negative, go to IIA; otherwise go to liB.

A. Make W the equivalent positive angle by adding the total

period h.QPER.

B. Find IW, which is the quadrant of W with respect to

QPER.

W

IW = Integer part of (Q-_) + I

IW is then I, 2, 3, or h.

III. If W is in the first quadrant (IW = i), go to IliA.

If W is in the second quadrant (IW = 2), go to IIIB.

If W is in the third quadrant (IW = 3), go to IIIC.

If W is in the fourth quadrant (IW = 4), go to IIID.

A. Set QUADI = OMEGA, and return.
I

B. Set QUADI = w - OMEGA, and return.

C. Set QUADI = _ + OMEGA, and return.

D. Set QUADI = 2w - OMEGA, and return.



5.11.2 Detail Flow Chart

FUNCTION QUADI

I Adjust W so 1-h • QPER !W <__h • QPER

II

YES IIA

_-I Replace W with W + 4 • QPER I

IIB

Find IW (Quadrant of W with Respect to QPER_
I

IIIA

IQUADI is _OMEGA

III

IIIB i2_

IQU_I is _-OMEGA I IQUADI is _+O_GA 1

, ,

4 IIID

IQUADI is.2w-OMEGA
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Section 5.11.3 Pro6ram Listin 6

The following page gives the listing of function subprogram QUADI.
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FUNCTION QUADI{OMEGA,W,OP_.PI,TW_Pl)

C I ADJUST W

W = AMOD (W.(A._QPFR))

C II CHFCK W SIGN

IF {W) 20,21,21

C IIA MAKE W EQUIVALENT POSITIVE ANGLE

20 W = W +(_,_OPER)

C lIB FIND QUADRANT OF W

21 lW = IFIX (W/OPER} +I

C Ill CHFCK QUADRANT

GO TO (31,32,33,3_l,IW

£ IlIA

3] OUAD]= OMFGA

PETUPN

C IIIB

32 OUAD]= Pl- OMEGA

RETURN

C IIIC

33 OUADI= PI+ OMEGA

RETURN

C IIID

34 OUAD] = TWOPl -OMEGA

RETURN

FND
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5.12 FUNCTION QUAD2 (XW,ZI,K,K10R3,PI) - AdjustS the Quadrant of XW to

Agree with the Conditions of Case 1 for the Perigee Calculation

Inputs are m, angle Zl, quarter-period K, flag that indicates
w 3_

whether m oscillates around _ or _--, and _. All angles are in radians.

5.12.1 Equations in Order of Solution

I. Adjust zI so -hK _ zI _ hK.

(Mod zI with hK)

II. If zI is then negative, go to IIA; otherwise go to liB.

A. Make zI the equivalent positive angle by adding the total

period hK.

B. Find L, which is the quadrant of zI with respect to K.

z1

L = Integer part of (_) + 1

L is then i, 2, 3, or 4.

III. If L=I or 4, no change is necessary in m; go to IIIB.

If L=2 or 3, go to IIIA.

A. Place m in the second quadrant by replacing _ with _-_,

since the magnitudes of the tangents of the two angles must

be equal.

B. The input quantity KIOR3 determines if _ oscillates

3_ (KIOR3 = i or 2, respectively).around _ or _-.

W

If _ is the oscillation point, go to V.

3w

If _-- is the oscillation point, go to IV.

3w

IV. Replace m by w + m so the oscillation will be around _-.

V. Set QUAD2 = _.

Return.



5.12.2 Detail Flow Chart

IIIA_

iReplace m With _-_]

i

FUNCTION QUAD2

Adjust zI so

-_K i zI i _K

"_ NO

nB f"

iFind L (Quadrant of ZlWith Respect to Kil

YES

NO

I
NO IV

(KIOR3=2)

YES

(KIOR3=I)

$IIA

Replace zI With

zI + _K

Replace m IIWit h m +



Section 5.12.3 Program Listing

The following page gives the listing of function subprogram QUAD2.

• i
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FUNCTION OUAD2(XW,ZI,OPFRgKIOR_,Pl)
C I ADJUST Zl

Z]=AMOD {ZI,(4,*QPER))

C II CHECK ZI SIGN

IF (ZI)" 20t21t21

C II A MAKE Z1EQUIVALFNT POSITIVE ANGLE

20 ZI = Z1 + (4,_ QPER)
C II B FIND QUADRANT OF ZI

21 L= IFIXIZ]/QPER) + 1

C III CHFCK QUADRANT

GO TO (_l,_O,_O,_l)t L

C III A PLACF OMFGA TN QuAnRANT 2

_0 XW = Pl - XW

C Ill B CHECK OSCILLATION POINT
31 GO TO (50,40),K10R3

C IV MAKF OMFGA OSCTLLATF AROUND _PT/2

40 XW = XW + Pl

C V PREPARE FOR RETURN

50 QUAD2 : XW

RETURN

FND
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5.13 MODES OF INPUT AND OUTPUT

5.13.1

This program has only load sheet input through subroutine INPUT i.

card format is :

The

column 1 - a one

columns 2 through 6 - location number of piece of data

columns 7 through 15 - input number

columns 16 and 17 - location of decimal place from beginning of field

positive if to the right

Three other pieces of data may be entered on the card. The location num-

bers are punched in columns 18-22, 3h-38, and 50-54. The data are punched in

columns 23-31, 39-47, and 55-63. The exponents, as explained above, are

punched in columns 32-33, 48-49, and 64-65, respectively. The remaining infor-

mation required is:

columns 66-68, zeros

columns 69-70, reference run number

columns 71-73, case number.

This routine allows identification on the card of each piece of input data

by relative location number; only-non-zero numbers need be entered. It has a

"Reference Run," "Case" setup. If the case number (card columns 71 to 73) is

non-zero, but the reference run number (card columns 69, 70) is zero, then the

data on the load sheet are assumed to be sufficient and the case is computed.

If the case number is zero and the reference run number is non-zero, the data

are stored in array RR and no case is attempted. If the following load sheets

with non-zero case numbers have also the reference run number of the stored

array, then a case is run using the input of array RR as modified by the new

load sheet.
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The order of stacking cases is then:

i. All cases with zero reference run number

2. First reference run (zero case number)

3. AI] cases with first reference run number and non-zero case number

h. Second reference run (zero case number)

The total input array utilizes 102 locations. The locations and quantities

are listed below. All input quantities are non-dimensional unless otherwise

noted.

Location Quantity Remarks

I - 9 Jn Leave Jl = 0

10-45 C
m,n

Arranged in column-sort

in 6x6 array

46-81 S
m,n

Arranged in column-sort

in 6x6 array

82 No. of zonals, NI Integer, O<NI<9

83 No. of tesserals, N2 Integer, 0<N2<6, If set = 0

or i, no tesserals or

sectorials are considered

84

85

Initial value of

polar component

of angular momentum, p

Initial eccentricity, e
0

161



162

86

87

88

89

91

92

93

94

95

96

97

Initial argument of

perigee, w

Initial time, t
0

Initial ¢

Approximate initial

inclination, i
OO

Approximate initial

argument of node, L°

Total _ desired

Initial guess at

computing interval,

DELPHI

Maximum failures allowed

for computing interval

selection, MFAIL

Maximum error allowable,

Minim_ error allowable,

Factor to increase

computing interval, DTM

Longitude of Greenwich

with respect to 1950.0

equinox at initial time,

E_OG

In degrees

In hours

In degrees

In degrees

In degrees

In degrees

In degrees

Positive integer

In degrees



98

99

i00

I01

102

Rotation rate of

the earth, EROT

Luni-solar flag, LS

Perigee flag, KIOR3

Multiplier to

compute new com-

puting interval, FDT

Derivative flag,

5.13.2 Output

Integer; if = i, consider

luni-solar; if = 2, omit

Integer, set = i if initial

W

perigee closest to _ or = 2
3_

if closest to _-

Integer; set = i if J2 and

J4 are the only perturba-

tions; otherwise, set = 2

At the beginning of each case, the entire input array is printed in

floating point. There are 25 rows of 5 columns, with locations i through

5 printed in the first row, etc.

The next printed values are the initial values of:

n (deg.) i (deg.) u (non-dim.) q (non-dim.) velocity (non-dim.)

At the attempted completion of each two computing steps, the following

information is printed from the Runge-Kutta routine:

Intermediate Maximum Minimum

Total _ Computing Interval Failure Allowable Estimated Allowable

(rad) (rad) Counter (Integer) Error Error Error

At the completion of each four successful computing steps, either Format i

or Format 2 is printed.
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Format i

Pa _a ia Ua qa ta

Pn _ i u tn n n qn n

(All non-dlm.)

¢(deg) t(hrs) r(ka) _(deg) i(deg) Energy (non-dim.)

ea _a (tad)

Format 2 differs only in that the energy is not printed and the approxi-

mate eccentricity is printed in its place, and the approximate argument of

perigee then appears in the first column.

Format i is printed if the only perturbations are J2 and J_. If any

other perturbations are considered, Format 2 is used.

After a case has been completed successfully, a start time, stop time,

and total time for reading the input data and doing all the computations are

printed in minutes.

Error Prints

If the computing interval becomes too small, it is printed along with

the comment - COMPUTING INTERVAL SELECTION FAILS, and the case halts.

If the number of computing interval selection failures exceeds the

maximum value which is input, the case halts with the comment the same as

above.

164



Section 6

DISCUSSION OF RESULTS

In order to evaluate the effectiveness of the modified Encke approach,

comparisons were made between three programs. These programs were the

modified Encke program described here, and two existing programs based on a

Cowell formulation of the problem and using Runge-Kutta integration. The

two Cowell programs were essentially the same except that one performed

operations using single-precision arithmetic, and the other used double-

precision. The modified Encke program used single-precision arithmetic ex-

clus ively.

Three representative orbits were chosen for comparison. These were:

Orbit i: A low altitude, moderate eccentricity orbit which considered the

same perturbations as the analytic model (second and fourth zonal

harmonics only). The initial osculating elements were 30 ° inclina-

tion, 0 ° argument of perigee, .03117 eccentricity, and 6928.2255

kilometers for the semi-major axis. This orbit was chosen so that

known integrals of the motion could be used as indications of the

accuracies of the three programs.

Orbit 2: A very high altitude, low inclination, nearly circular orbit which

considered the second and fourth zonal harmonics of the potential

in addition to luni-solar perturbations. The initial osculating

elements were 5° inclination, 0 ° argument of perigee, .0001 eccen-

tricity, and 41,138.154 kilometers for the semi-major axis. This

orbit was chosen because orbits of this type are of interest for

communications networks for example, and because luni-solar pertur-

bations are significant at these altitudes.

Orbit 3: A highly eccentric, low inclination orbit considering the second

and fourth zonal harmonics of the potential in addition to luni-

solar perturbations. The initial osculating elements were 5°

inclination, 0° argument of perigee, .723 eccentricity,
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and 23,963.206 kilometers for the semi-major axis. This orbit was chosen

because orbits of this type are of interest for environment sampling, and

because the oblateness perturbations predominate at perigee while the

luni-solar perturbations become significant at apogee.

Figure i shows the variation in the polar component of angular momen-

tum (p) for orbit i for 20 revolutions of ¢. This is plotted non-dimension-

(P-Pi)
alized as . In this case, p should remain constant or Ap should be

Pi

zero. The modified Encke program satisfies this condition identically, since

p is one of the dependent variables, however, the error is shown on the plot

as 10 -9 • It can be seen from Figure i, that the single precision Cowell

solution drifts off monotonically with increasing angle until the error is

greater than 10 -5 after 20 revolutions of the angle ¢. The double precision

Cowell solution oscillates, but the error is never as large as 10-7.

Figure 2 shows the variation in the total energy for orbit i for 20

revolutions of $. This is also plotted non-dimensionally as

Energy-Energy (initial)
Energy (initial) . Again this quantity should be constant and zero, but

it can be seen that the single precision Cowell solution builds up the error

monotonically to approximately .5 x l0 -5 after $ reaches 7200 degrees. The

errors for the double precision Cowell solution and for the modified Encke

solution undergo oscillations with the double precision results varying

between l0 -7 and lO -9 and the modified Encke results not exceeding .5 x lO -7.

This clearly shows that the modified Ecnke approach can improve accuracy

while using only single precision arithmetic. A further improvement in

accuracy could be achieved by analytic cancellation of all terms of order

epsilon when forming the Encke equations of motion. This is theoretically

possible and allows the maximum accuracy available with this approach, but it

was not deemed feasible within the limits of the present study.

Finally, the positional error was analyzed for all three representative

orbits. This was done by taking the double precision r-$ history as correct

and plotting r-r (double precision)
r (double precision) vs. a function of _ during the 20th

166



-I
C)

r_

O

,,:=:
...J

10-4(

10"5

104

10"7

10"8

10-9_

k &A A • • A _ A&

& & •

2 4

I

o MODIFIED ENCKE

• DOUBLE PRECISION

AA A •

6 8

COWELL

10

ARGUMENT OF LATITUDE, _ (103 DEG)

Figure 1. Angular Momentum Error vs. Argument of Latitude

a -. 6928 kin., e _ .03, i _ 30°, J2 and J4 Perturbations Only

167



.i
>-

Z
IJJ

LIJ

Z
LLI

0

,-.,..

>-

ILl

Z
L_

,m

ILl
Z

ILl

104

10"5

10.6

10.7

,o%

10.8

10-9, _ . .
0

Q

0

Q

A

I

Q 0
O

0

& A & A A A

e MODIFIEDENCKE
A DOUBLEPRECISIONCOWELL m

2 4 6 8 I0

ARGUMENTOF LATITUDE,_(103 DEGREES)

Figure 2. Energy Error vs. Argument of Latitude

a = 6928 km., e -_.03, i _ 30°. J2 and J4 Perturbations Only

168



revolution of ¢ and comparing the single precision Cowell results and the

modified Encke results for all three representative orbits. Figure 3 shows

this result for orbit I, while Figures 4 and 5 represent orbit 2 and orbit 3,

respectively.

Figure 3 shows that both the modified Encke and the single precision

Cowell solution show reduced errors in the radius near the apogee during the

20th revolution. In general the radius error follows the trend of the error

in energy plotted in Figure 2. That is that the single precision Cowell error

is nearly 2 orders of magnitude larger.

Figure 4 presents the non-dimensionalized error in radius for the high

altitude, nearly circular orbit. The single precision Cowell solution exhi-

bits a smaller error at apogee with a high error near perigee. The error

from the modified Encke solution is somewhat erratic, but it remains nearly

two orders of magintude below the single precision Cowell solution near peri-

gee. In general the modified Encke solution would have shown a bigger

improvement if rectification was included, since oblateness perturbations

and luni-solar perturbations are of equal magnitudes at this altitude.

Figure 5 represents the largest error for both the single precision

C0well solution and the modified Encke solution. It can be seen that the

modified Encke error is nearly constant and generally below the single pre-

cision Cowell error. However, the single precision Cowell error drops very

low around the apogee. This can be interpreted to mean that the modified

Encke solution should have been rectified before this time, since the luni-

solar perturbations are significant and are not included in the analytic

model. It also shows that the error in the single precision Cowell solution

is due mainly to an error in the time-history of the angle ¢, and the

radius is not sensitive to small time errors in the vicinity of apogee.

In conclusion it can be stated that the modified Encke approach can be

used to increase the accuracy of solutions without resorting to double

precision arithmetic. In the comparisons made, the more lengthy calculations
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per step were offset by the larger allowable step-size, so that running

time was reduced by nearly a factor of four over the double precision

Cowell program and was essentially the same as the single precision Cowell

program. To achieve the utmost accuracy from such a program for production

purposes, the analytic solution should be cancelled analytically to order

epsilon when forming the Encke equations, or this portion of the calculation

should be done in double precision. Furthermore, for long time predictions

a rectification capability would be a necessity.
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