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ABSTRACT

The purpose of this report is to demonstrate a new method of numerical
residual perturbation solution as applied to the problem of an earth
satellite including luni-solar effects. Cowell demonstrated a method

of numerically solving the total differential equations of motion of

an orbiting object. The variation of parameters and Encke's methods
take advantage of the known analytic solution to the two-body problem
and numerically handle only the perturbations to the orbit. This

report demonstrates the use of an analytic series perturbation solution
of the oblateness problem as a reference orbit (rather then using conics
as a reference) with numerical solution of the residual perturbation
equations of motion including neglected higher order effects as well

as perturbations not included in the analytic model. Results obtained
from this demonstration program were compared with both single precision
and double precision Cowell programs, and showed significant accuracy
improvements over the single precision program as well as reducing
computing time by a factor of four over the double precision program.
Further refinements were suggested in order to obtain the maximum
benefit from the technique for - production program. This work was

supported by contract NASw-90l.
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Section 1

INTRODUCTION

This program was developed primarily as a research program to investigate
the practicality of a generalized Encke-type solution to the motion of an earth
satellite, in satisfaction of portions of research contract NASw-90l. The pro=-
gram uses an approximate analytic solution of the oblateness problem (ref, 1)
for a reference orbit, and numerically integrates using the Runge-Kutta method
to find the contribution of the neglected higher-order analytic terms as well
as other perturbations not included in the analytical model. The analytical
model considers only the perturbations of the second and fourth zonal harmonics
of the potential, The program is designed to consider additional zonal, tes-
seral, and sectorial harmonics up to and including the coefficients C66 and
566’ and to also consider lunar and solar perturbations if desired.



NOTE:

Section 2
SYMBOLS

In the definition of symbols, the numbers in parentheses represent the
numbers assigned to equations throughout the rest of the report; the
names or letters in parentheses represent the titles of specific

subroutines.

p

%os 1 initial total angular momentum (non-
00

Symbol for

dimensional), or array of dimension 3 in subroutine EXPERT

to store the sum of the sun and moon accelerations (non-
dimensional) or FORTRAN floating point variable for L = N-1
in subroutine GPOT

ESE—I-= total angular momentum at any time (non-dimensional),

(FORTRAN symbol Al)

Acceleration in local geocentric south direction (non-
dimensional with respect to g),(FORTRAN symbol AF)

cos 2w -~ cos 2w

, (APSOL)
8, + 51gn(So) % K, = Ky €os 2w
8.
cOs 100
3 (CONST)
2p

Acceleration in local geocentric east direction (non-

dimensional with respect to g),(FORTRAN symbol AG)

Acceleration outward along the local geocentric vertical (non-

dimensional with respect to g),(FORTRAN symbol AH)



AC

ACC

ACS

ACSS

ACS2

ACS32

AC32

AFl

AF2

Accelerations in the outward radial direction not considered

in original analytical model (non-dimensional) (96)

cossioo
— (coNsT)
P
S cos ioo
S TR (coNsT)
A S
1
cossi sin ioo
5 , (CONST)
2p
-€ cossioo sin ioo
, (CONST)
2p
5
cos ioo sin ioo
, (CONST)
2ph
5 3/2 coshiOO sin ioo
n , (CcoNsT)
P
53/2 cossioo
5 , (CONST)

p

Array of derivatives of the approximate solutions in subroutine
APSOL,

dp, aa_ ai, da,
AD(1) = 7= = 0, AD(2) = 7=, AD(3) = F3™ AD(W) = 3=
dt
= H = —2
aD(5) = K, AD(6) =
s
a
fl
s




AG a

g
AGl a
&
AG2 a
€>
A *n
AH1
ahl
AH?
ah2
AJ2 The J2 zonal coefficient of the potential, (MAIN)
AJL The J) zonal coefficient of the potential, (MAIN)
AMP depending on perigee case number IC,
coshioo
AMY —— » (consT)
Y
ANG /2:1 (?T-To'o) or /2.<1 ¢p » euxiliary angle to find w
¢p = total ¢ (not modded), (APSOL)
¢i.w
ANG2 —= angle to determine quadrant of TANG in subroutine
CONST (rad) or = 2%£-= angle to determine quadrant of
TANG in subroutine APSOL
J
AOR Array of in subroutine GPOT. AOR(9) maximum

n
+2
&



AS Array of approximate solutions in subroutine APSOL. As(1) = p_,

as(2) = g, As(3) = i, As(k) = q_, AS(5) = u_, N
AS(6) = a
A
AU2 %> (ENCKE)
u
= 2
Al A= e T (ENCKE)
3
A3 -——{%———, (CONST)
cos™ i
00
3
A3E B , (consT)
3. 2
cos”i  (1-e%)
o]0] (o]
26 —37;, (CONST)
2A o
b Angle measured from ascending node to satellite's meridian
along the equator (rad), (104). FORTRAN symbol B, (EXPERT)
B b, (EXPERT)
B M, (GPoOT)
BEW Integer multiples of the longitude, (GPOT)
2 *
B2E2 2e"BY, (consT)
B2E 2px
e"B%, (consT)
B2S B¥*, (21)

2,




B2SP

CA

CAP

CAS

CAL

CBE

cC

CCT

CHI1

B, (20)

¢ = ratio of 25 vhere D and J are coefficients of the

J
second and first zonals of the potential, respectively.

c = /7
Two-dimensional array (6 x 6) for the Com® (cPOT)

Coefficients for computation of tesserals and sectorials of
the earth's potential, used in subroutine GPOT

Array of reduced moduli k obtained by decreasing Landen
transformation in subprogram ELIPE

Array of reduced modified moduli k' obtained by descending

Landen transformation in subprogram ELIPE

k' = V1-k°

k,. * SNVE, (ELIF)
k = dummy variable for the modulus, (ELIPE)
cos b, (EXPERT)

Array of cos(n * EW) in subroutine GPOT. CBE(6) maximum

Two-dimensional array (6 x 6) of coefficients used in com-

putation of complete potential, (GPOT)
(3-7 cos26), (ENCKE)

Intermediate angle needed to find CHI1S



CHI1S

CHI2

CHIZ2S

CI

CI2

CI3

CI3l

CIk

CIoC

CMAX

cMC

COEFF

COSsP

Cp

CPMW

x{ = angle used to find 3; in subroutine CONST, case 1
Intermediate angle to find CHIZ2S

Xp = angle used to find $; in subroutine CONST, case 3

cos i in subroutine ENCKE, or cos ioo in subroutine CONST
coszi in subroutine ENCKE, or coszioo in subroutine CONST
cos3i in subroutine ENCKE

1-3 coszioo in subroutine CONST

coshi in subroutine ENCKE, or coshioo in subroutine CONST

cos i, (APSOL)

Maximum value of the sbsolute value of the Runge-Kutta

increments over two complete steps.
cos2w - cos2w , (APSOL)
Elliptic function cn, (APSOL)

Array of coefficients for the potential. Contains Jo > J8’
Cl,l g C6’6, Sl,l hd 86,6’ N1l and N2

cos(PHIS(I-1)), (ELI)
cos ¢

cos(¢i-w), (CONST)
cos(¢-w), (APSOL)




CPPW cos(¢+w), (APSOL)
cQ cos q, (EXPERT)

CRD "Critical divisor term"
2.
1-5 cos'i (coNST)
cs cos i sin i, (CONST), or /
two-dimensional array (6 x 6) of coefficients in

computation of complete potential, (GPOT)

CT cos 6

CT2 cos26, (ENCKE)
CVE cos (VEO), (ELIF)
CW cos w, (CONST)
CXw cos w

c210C coszioc, (APSOL)
c2p cos2¢

c2s cs, (23)

casp cs', (22)

C2E eacg,(CONST)
C2PMW c082(¢-w)

caT cos26, (ENCKE)



10

Caw

C2XW

C22E

C3PMW

CLE

clhpMw

DAFDPH

DAGDPH

DA1PHI

DEA

DELI

DELPHI

DELPHO

DELS

DELU

cos2w¥*, (CONST)

cos2w

2~
2¢e 02
2

P

, (CONST)

cos(3¢-w)

4 2
€ (c;) , (CONsT)

cos( hé-2w)

N, (GPOT)

da.f

TR (ENCKE)
da
_£g

TR (ENCKE)

dAy
T , (ENCKE)

de
a

Tk (APSOL)

Angle representing the total even number of revolutions of

PHILT in radians. (ELI)

Original guess at computing interval, input in degrees used

internally in radians. (MAIN)
Angle used to find A¢ in ELI

Modded change in ¢, (ELI)

4

d
& (@, ()

Au used to approximate




DENK

DENOM

DFDPHI

DIDPHI

M1

DODPHI

DOMEO

DOME12

DOME32

DP

DPDPHI

DPH

DPHI

DPHIDT

DQO

R’

Array of three coefficients used to compute the total
energy

~

peudsinzi sin 8 + coshi cos 8 F, (ENCKE)

4ar
a';’ ’ (ENCKE)

di  (ENCKE)

D-1, (GPOT)

an
i (ENCKE)

1 dnoo
e1/2 d¢

, (APSOL)

an
__33_142_ , (APSOL)

dQ3/2
d¢

, (APSOL)

Array of coefficients in subroutine GPOT, DP(10)

dp
3¢ ° (ENCKE)

¢

Test ratio to determine when the limit of —%— has been
reached (ELI) 2

A¢ used to find approximation for Q__(Ei (ENCKE)

de ‘at’’
a¢
It (ENCKE)
dq
9 . (APSOL)

as

n
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DSI0C

DT

DTA

DTDPHI

DTHETP

DTIP2

DTI21

DTSAVE

DT2

DT3

DUDSI

DUl

T (aPsoL)
(o] .
o sin i, (APSOL)

Change in time since entering subroutine EXPERT
(initially = 0). Also used as the step size in
subroutine RKTOM

at

-d—¢_ , (APSOL)
dt

T (ENCKE)
de

O’ (ENCKE)

np,, (cpoOT)
(2n-1)o,, (GporT)

Multiplicative input parameter to increase the step size

if the estimated computing error is too small

Saved value of time to compute change in time since

entering subroutine ENCKE, (MAIN)
Half the step-size in subroutine RKTOM

Step-size over 3 in subroutine RKTOM

5; , (ENCKE)
dul
Ez— , (APSOL)




Dvr

Dw

DWB

D2EA

D2W

EALL

EE

EF

EM

Array of 6 which represents the sum of the approximate
numerical values of the dependent variables at any
time. (MAIN)

33-= w', (APSOL) -
4w (apsoL)
d¢
d2e
——-g , (APSOL)
dé
2
g_g_ , (APSOL)
da¢

e, or e; in subroutine CONST, or dummy output

array of (6) giving evaluation of the derivatives for

dp an
numerical integration (ENCKE) E(1) = -d-—&, E(2) = —,
¢ dé
din dqn dun dtn
E(3) = e E(4) = TR E(5) = T E(6) = T
e, (APSOL)

Allowable error computed in subroutine RKTOM

Dummy name for the array of 6 stored in labeled common
/ENERG/. Used in main program to obtain quantities to

compute the total energy

14 l—e2

O

e (CcoNsT)
0O

ki where k_is the last reduced modulus, (ELIF)

13



u

EMIN

EM2

212

EM22

EO2

E06

EO3

EPD2I0

EPS

EPS12

EPS2

Input value to program and to subroutine RKTOM
vhich is a measure of the maximum allowable accuracy

desired
Input value to program and to subroutine RKTOM,
which is & measure of the minimum allowable accuracy

desired

(1—e§), (CONST)

2
s (consT)

l-ea
o

Y 1-e§, (coNsT)
dp. a0 di  dq du At
dg * d¢ * d¢ > d¢ * dé¢ * 4¢

Array of 6 which is

e
59 , (coNsT)

1]

z> , (consT)

[¢]
=— , (CONST)

€ —== [ (APSOL)

€ = J = non-dimensional coefficient of the second zonal
harmonic of the potential = 1.623 x 1073

/2. (comst)

€2, (CONST)




EPS3

EPS32

ERMIN

EROT

ESTER

ES12

EWOG

El2

E2

E2C

E3K

e3, (const)

53/2, (CONST)
Minimum allowable error computed in subroutine RKTOM

Input rotation rate of the earth in rad/hour, but used inter-

nally as a non-dimensional rate. (EXPERT)
Estimated computing error in subroutine RKTOM

ef/a’ (APSOL)

East earth longitude of the satellite, (EXPERT)

Longitude of Greenwich measured from 1950.0 equinox at any

time., O < EWOG < 27, Initielly input as the value at ti

E) /o (A.23)
2
e s (consT)

eic, (consT)

€3K (CONST)

l’

3y cos ¢ 3U
Symbol for the term 29 + tan i sin ¢ 3y

same in FORTRAN, (ENCKE)

(non-dimensional)

Multiplying input factor used in selecting the optimum com-
puting interval

15



GAM1

GAPOB

GAP1

GAP1P

GOK

GP(I,J)

Gl

G2

G3

G4

16

Symbol for Yl = constant for cases 2 and 3 eccentricity
calculations, (CONST)

E;, (CcoNsT) (27)
xy» (CONST) (29)
k1, (CONST) (28)
3
Array of 2 where GM(1) = GM (=),
sun sec
3
GM(2) = GMmoon( 2), (EXPERT)
sec
'3
, (CONsST)

o

Two-dimensional array storing perturbative accelerations of
the sun and moon. I =1, 2, 3,3 J =1 (sun), J = 2 (moon)
(km3/sec2), (EXPERT)

2
e

-(1 -3 coszioo) - 52— (1 -5 cos2ioo), coefficient in u
(CoNsT)

ei 2
T (1 - 3 cos ioo)’ coefficient in u

sin2100 ei 5 2 5

-(-——5——— -3-+ge, sin i ,)s coefficient in wu,, (coNsT)
2

eo 2 .

z (1 - 9 cos ioo)’ coefficient in u

1’

10 (CONST)

1 (CONST)

o 2 . .
-5 (5-11 cos ioo), coefficient in u (coNST)

l!




2
e
o) 2 .
G5 -1 (1-3 cos ioo)’ coefficient in u,, (CcoNsT)
dqo
H All small terms in Ty (non-dimensional), (81) and (82),
(FORTRAN symbol = H)
H FORTRAN symbol for theoretical H, (APSOL)
HAH Array of dependent variables and their derivatives HAH(12).
(MAIN)
HS Array of six values of the Simpson's rule increments over
two complete computing intervals
i Inclination (rad)
IC Flag which gives the case number for perigee calculation
ICc =1, 2, or 3, (CONST)
IE Flag to determine case number for eI/z calculations
IE =1, 2, or 3, (CONST)
IMI1 Counter for 1I-1, (ELI)
IMI I-1, (ELIPE)
IP Initial point flag = 1 for first point, = 2 thereafter, (MAIN)
IPRINT Print flag - calculations for print only and printing are
done if IPRINT = 1; if IPRINT = 2, this is suppressed.
(MAIN)
IR NOT2 - I, wused to determine last k value to be used in com-

puting the elliptic function in subprogram ELIF



Iw

IWC

KC

KDER

KFAIL

KHALT

18

Quedrant of the angle W in subprogram QUAD1.
IW=1,2, 3or b4

Flag which tells if w = constant in case 2 perigee calculation.
If IWC =1, w=w. If IWC =2, wis a variable, (CcONST)

Quarter-period of the elliptic integral F(¢,k) in subroutine
(CONST) or = N-1 in subroutine GPOT

Modulus of elliptic function (non-dimensional), (50)

Modulus of elliptic function (non-dimensional), (58)

Simpson's rule flag in subroutine RKTOM; when KC = 1,
no Simpson's rule calculation is made; when KXC = 2 (two
complete steps of Runge-Kutta have been completed), the

Simpson's rule calculation is made to check the accuracy

Input flag that indicates the model considered. Input
KDER = 1 if the model is the same as the analytical model
(J and D terms only and no sun or moon). Input KDER = 2 if

any other perturbations are considered

Intermediate failure counter in subroutine RKTOM

Total failure counter in subroutine RKTOM

Halt flag. KHALT = 3 is normal halt upon completion;
KHALT = 2 is halt due to failure of computing interval
selection. (MAIN)

Runge-Kutta flag indicating the Runge-Kutta cycle. (KR =5

indicates two complete integration steps have been completed).
(MAIN)




K10R3

MFAIL

NN1

NOT

NOT2

NPTWO

Nl

N2

Flag to determine point about which perigee oscillates.

Input Quantity =1 if w closer to z , or 2 if w

3n 2
closer to 5

Quadrant of angle Zl1 in subprogram QUAD2. L =1, 2, 3, or k;
L = N-1, in subroutine GPOT

Initial angle of the ascending node te order ¢ (rad)

Luni-solar flag. LS =1 means consider luni-solar perturbation.

LS = 2 means ignore luni-solar perturbation

Maximum number of failures in computing interval selection

input to the program and to subroutine RKTOM

Counter in subprogram ELI which equals the last value of I
done in the loop

N1+1, (GPOT)

Varisble that counts the number of times the Landen trans-
formation is used in subprogram ELIPE, also gives the index
of the last calculated member of the arrays CA and CAP

NOT + 2

(i-1) in subprogram ELI

Used to generate 2

Degree of highest zonal harmonic to be considered, N1 < 9

Degree of highest tesseral harmonic to be considered; N2 5_6

19



OMEG

OMEGA

OMEGN

OMEGT

OMEOO

OMEO12

OME32

OSK

O0SK2

OTD

PA

PHI

Q = longitude of ascending node (rad)

a
a

or = dumny variable for £ in subroutine EXPERT

approximate 2 (Q = a, + ﬂn), (rad)

or = dummy angular variable in subprogram QUAD1 which
represents the angle that is to be placed in the proper
quadrant

@, = numerical correction to @ (rad)

=40 +8
a8 n

Q=9 + 8, (ENCKE)
a n

Q (APSOL)

oo?

901/2, (APSOL)

93/2, (APSOL)

/x.

1 (coNsT)

- b ]

S

[o]
1
3> (CONsT)
So
Dimensional Qpopar, for output, (degrees), (MAIN)

p = component of angular momentum along the polar axis
(non-dimensional) or array of coefficients p_ ~ in subroutine
GPOT, P(10)

p, = epproximate solution for p, (APSOL)

¢ = independent variable, angle from node to satellite, (rad)




PHIB

PHIBT

PHIIB

PHIK

PHILT

PHIO

PHIS

PHISTP

PHIT

PHITD

PHI1

PHI2

PI

PIO2

3 =¢324, (apsoL)

3/

2
SmoTAL (APSOL)

Sorar =

%

Angle which is the number of complete revolutions of ¢
multiplied by 2w, (ELI)

Array of angles ¢ wused in decreasing Landen transformation.
(ELI). Maximum dimension (10). Total angle not modded (rad)

¢o = constant angle needed to calculate approximate perigee

in case 1 or case 3. (CONST)

Array of modded angles ¢ in subprogram ELI, maximum
dimension (10). (rad)

Stopping condition for ¢, input in degrz2es, used internally
in radians. (MAIN)

¢ = total accumulated angle to compute secular terms,
TOTAL
(MAIN)

Total ¢ in degrees for output. (MAIN)

mate & (40
¢, used to approximate T (dt)’ (ENCKE)

nate L (20
¢, used to approximate T (dt)’ ( ENCKE)
n, (CONST)

%, (CONST)

21



PN

PP

PR

PT2

P2

Pk

QPER

QQ

P, (ENCKE)

Dummy name for first three elements of labeled common array

/EX/. Used in main program to eliminate changing values
Variable used to accumulate the product in subprogram ELIPE
Total p = P, * P> (ENCKE)

2
o, (ENCKE)
p2, (CONST)

a’

4

P> (CcoNsT)

%% (non-dimensional) used to change second-order differen-
tial equation to two first-order differential equations
Dummy variable for sin 6, (GPOT)

q,, (APSOL)

Q. (ENCKE)

Quarter-period of elliptic functions or integrals with

modulus k or k in subroutine CONST

1 2
Dummy variable in subprogam QUAD1 for same as above
L]
Orz

Dummy name for last three elements of array stored in
labeled common /EX/. Used in main program to prevent

changing values that are stored there

Total q = q, + Q. (ENCKE)




RD

REST

RK1
RK2
RK3
RKINC

RUM

Mean equatorial radius (n. mi.)

FORTRAN symbol for non-dimensional radius vector = %; (ENCKE)

Radius to satellite (non-dimensional with respect to R)
Conversion factor from degrees to radians, (MAIN)
Dimensional r in subroutine EXPERT, (km)

Dummy name for last 12 elements in labeled common array
/APS/. Used in main program to prevent changing values that

are stored in that part of the array

¢2Kl or E;+Kl in subroutine CONST depending on

perigee case number IC

Arrays of 6 which represent the Runge-Kutta parameters for

each of the six dependent variables

Array of 6 to compute the common increment used in HAH
and SR

v ;;—xl, quantity needed for case 3 perigee calculations,
(CONST)

Dummy storage array of dimension (125) for reference

run usage in main program

F
DENoM »  (ENCKE)

Array of rn+2 (non-dimensional) in subroutine GPOT.
RX(9) maximum

23



24

R2

n

SBE

sC

51

SI2

SINP

sIocC

SN

SNVE

S0K

SP

4 (4
r) Used to spproximate o 3t (ENCKE)
r, Used to approximate (—24 (ENCKE)

Array of 14 in which values of dependent variables, their
derivatives, the time, and ¢ are saved for ordinary
Runge-Kutta use, or two-dimensional array (6 x 6) of
coefficients in computation of complete potential, (GPOT)

Coefficients for computation of tesserals and sectorials of
the earth's potential, used in subroutine GPOT

Array of sin (n ¢ EW) in subroutine GPOT. SBE(6) max-

imum

Two-dimensional array (6 x 6) of coefficients in compu-
tation of complete potential, (GPOT)

sin i_ , (CONST), or sin i, (ENCKE, EXPERT)
. 2, , 2

sin"i_ , (CONST), or sin“i, (ENCKE)

sin (PHIS(I-1)), (ELI)

sin i__, (APSOL)

Elliptic function sn, (APSOL)

Quantity used recursively to find sn, (ELIF)

s
o)

—— , (CONSsT)
a

sin ¢, (APSOL)




SPMW

SPPW

SQ

sal

SR

85

ST

SVE

SW

SXW

S0B

S0BS

s1

S1pP

sin (¢1-w) in subroutine CONST or sin (¢-w) in sub-
routine APSOL

sin (¢+w), (APSOL)

v/ E;-n cos 2w , (APSOL) or sin q, (EXPERT)

1l

v cos 2w , (APSOL)

1l

7 o™

Runge-Kutta increments over two complete computing inter-
vals; SR(6)

Array of 14 in which values of dependent variables, their
derivatives, the time, and ¢ are saved for Simpson's rule
use and in case of computing interval selection failure
sin 6

sin (VEO), (ELIF)

sin (w), (CONST)

sin w
s , (A.20)
o]
§2, (CoNST)
(o]
5., (25)
Si, (2k4)
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S1s

52P

S2PMW

s2T

S2XW

S3PMW

SLpMW

TA

TABl

TAB2

26

S (coNsT)

sin 2 ¢, (APSOL)

sin 2 (¢-w), (APSOL)
sin 26, (ENCKE)

sin 2uw

sin (3¢-w), (APSOL)

sin (4¢-2w), (APSOL)

Time (non-dimensional with respect to =)

Total time since 1950.0 equinox = ta + tn’ (ENCKE) ,
also the dummy name for the independent variable in
subroutine RKTOM

Approximate analytic time

Numerical correction to the time

ta = approximate solution for time (non-dimensional),
(APSOL)

Tape control arrasy to read deata from JPL ephemeris tapes,
( EXPERT)

Tape control array to read data from JPL ephemeris tapes,
( EXPERT)




TANG

TD

TF

THETA

TI

TILT

TOTE

TSl

TS2

TWON

TWOPI

TW2

Value of tan_l expression for time constant in subroutine
CONST (rad), or value of tan * expression for t_ in
subroutine APSOL

Dimensional time in subroutine EXPERT (hours)

Dummy variable in input array of subroutine RKTOM which
represents the maximum desired value of the independent

variable

FORTRAN symbol for 6

tan i, (CONST), or tan i, (ENCKE)

Dummy variable for inclination in subroutine EXPERT
"Next time" after Runge-Kutta step would be completed

Total energy which is computed and printed when only

J and D perturbations are considered

Place to accumulate double sum of tesserals and sectorials
for a, in subroutine GPOT.
Place to accumulate double sum of tesserals and sectorials

for a,g in subroutine GPOT

Place to accumulate double sum of tesserals and sectorials

for ah in subroutine GPOT.
2n accumulation in subroutine ELI

2w, (CONST)

w

tan 5

(CONST)
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TOl

UA

Uoo

uol

Ul

U2

U3

Initial time (non-dimensional)

Constant used in approximation for time, (CONST),

(non-dimensional)

Earth's potential (non-dimensionalized), or in FORTRAN
a symbol for u = reciprocal of non-dimensionalized radius
(divided by R), or dnmmv'angular variable in subprogram
ELIF which is the argument of sn (rad), or two-dimen-
sional array of coefficients for perturbative acceler-

ations in subroutine GPOT. U(6, 6) maximum
sec ¢ + p_, (GPOT)

Small terms in the radial acceleration (non-dimensional),

(96)

(]
1

approximate u (non-dimensional), u = u, + u,

numerical correction to u (non-dimensional),

u
n
u=u +u

a n

Total u=u_ + u_, (ENCKE)
a n

u s (APSOL)

Quantity to store zero in the location for zero index in

array U in subroutine GPOT

euy , (APSOL)
u2, (ENCKE)
t
3
u;, (ENCKE)




U5

VEO

vu2

Vo

voz2

V1

vaz2

v3p

wo2

X1

XIA

o

W (ENCKE)

All small terms in %% (non-dimensional), (8T)

A1l small terms in %3'(%£9 (non-dimensional), (88) and (89)

Small terms in dgq (non-dimensional), (9¢) and (98)

d¢
u_ .
Py = last reduced argument, (ELIF)
o
5> (ENCKE)
Alu
Vv, (ENCKE)

vu2 (2 + vu2), (ENCKE)

Vs (ENCKE)
vV 2

(1 + °2) , (ENCKE)
Alu

Vi, (ENCKE)

Dummy variable in subroutine CONST for w* = w = initial angle
of perigee (rad), or dummy variable for angle which deter-
mines the quadrant in subprogram QUADl, or two dimensional
(6 x 6) array for the W . in subroutine GPOT

1
cos ¢ ° pz , (GPOT)
%> (const)

i = inclination (rad) =1i = igo in subroutine CONST

i, = approximate inclination, 1 =1 +1i, (rad)



XIN

XINCI

XIT

XITD

X1ocC

X1l

X112

X1LO

XMOD

XNODEI

yA R

71

in = numerical correction to inclination i = ia + i (rad)

n’

Initial value of the inclination in degrees, (APSOL)
Total inclination =i + i, (ENCKE)

Total inclination in degrees for output, (MAIN)

1o (APSOL)

ei (APSOL)

l’

*

101/2 , (APSOL)

L, (constant related to Qi) when input, changed to

Lo + Ll/2 in subroutine APSOL to make initial Lo = Qi v

Modulus of elliptic functions and integrals = kl or k2 .
depending on perigee case number IC. (CONST)

Initial value of ascending node in degrees, (APSOL)

Analytic value for the osculating argument of perigee, (rad),
(APSOL or CONST)

Nl J
Place to accumulate the sum )  (

n=2
Also name of input array of dimension (125) in main program

n '
rn+2) oy in subroutine GPOT

Dummy angular variable in subprogram QUAD2 used to determine
the quadrant of the first argument

Nl J
Place to accumulate the sum ] (n+l) (—
GPOT n=2 d

n .
+2) p, in subroutine




z2

ZD

Angle used to find quadrant of w, (rad), (53)

v ;;+Kl (3135) angle used to find the quadrant of w, (rad)

z (APSOL)

2’

1+cos (¢.-w) in subroutine CONST or 1l+cos (¢-w) in sub-
i

routine APSOL

Constant defined in (48), (non-dimensional)

Coefficient of the second zonal harmonic of the earth's poten-

tial, (non-dimensional)

Complement of the latitude, (rad)
Constant defined in (A.21)
Constants defined in (28) and (29)

Instantaneous East longitude of the satellite measured from
Greenwich (FORTRAN symbol EW)

Instantaneous longitude of Greenwich measured for equinox of
1950.0 (FORTRAN symbol EWOG)

Longitude of Greenwich measured from equinox of 1950.0 at
t =0

(n.mi.3)
hr.2

GMearth

X))
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Ppo pz, pé, etc Coefficients used for calculation of the complete potential

“E

SUBSCRIPTS

torT

o, 0 1/2, oo
1, 1.2, oc

in subroutine GPOT. Defined in (111) ff

Angle from ascending node to satellite, (rad)

53/2 ¢, "slow varisble", (rad)

Constant of integration defined by (51) or (59)

Angle used to find constant of integration for w solution,
(52)

Angle used to find constant of integration for w solution,

(60)

Longitude (rad)

Longitude of the ascending node (rad) measured from equinox
of 1950.0

Argument of perigee, (rad)

Mean rotation rate of the earth, (non-dimensional)

Approximate
Numerical

Total

Denote various orders of the approximate solution




Section 3

SOURCES OF EQUATIONS

3.1 FORMULATION OF THE PROBLEM AND THE APPROXIMATE SOLUTION

In general, it is the purpose of this program to solve a set of simul-
taneous differential equations by a combination of numerical and analytical
methods which might be called a modified-Encke solution. Thus, for the
problem:

% = £(x,t),

X = £(X, + X ,t) - ia,
vhere Xa is an approximate solution, Xn is the correction obtained by
solving the latter differential equation numerically, and the complete solu-
tion is then X = Xa + Xn. In the normal Encke method, the approximate solu-
tion is taken as the two-body solution (a fixed Keplerian ellipse). 1In the
modified-Encke approach, the approximate solution will be a solution of the
oblaféness problem considering the first, second, and fourth zonal harmonics
of the potential. The approximate solution differs from reality for two
reasons. First, the mathematical model is necessarily simplified from the
actual physical case, and second, the solution only approximates the true
solution of the simplified problem. The numerical solution accounts for both
of these discrepancies. For this program, the complete model will include
zonal, tesseral, and sectorial harmonics of the potential up to and including
the coefficients C66 and S66’ in addition to luni-solar perturbations,

The general equations of motion, nomenclature, and approximate solution
to the oblateness problem as described in reference 1 are used as a framework
for this program. For convenience, all equations taken directly from this
reference will be given the original numbering at the left in addition to con-

secutive numbering for this report on the right.
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The complete set of differential equations is given in equation (3.5) of
the reference and consists of four first-order equations and one second-order
equation. In this formulation, the independent variable is the angle ¢
between the ascending node and the radius vector, and the dependent variables
are p (component of angular momentum along the polar axis), & (argument
of the ascending node), i (instantaneous inclination of the orbital plane),

u (reciprocal of the radius), and t (time). These equations are:

U
(3.58) E-— o : (1)
pu__ cos”1 cos © F
cos i . 2 R
p sin'i sin 6
3,
an _ - cos”i cos 6 F
(3.50) W - 22 .2, . L, ’ (2)
pu sini sin 6 + cos i cos 6 F
. . 2, 3.
ai _ - sin i cos”i cos ¢ F
(3.5¢) - 22 .2, . T, ’ (3)
pu sini sin 6 + cos i cos 6 F
25
2 p Qud (g9 e o
(3.54) du _2 (Quy ,dpde dt _ _cosd (%)
* d¢2 u ‘dé¢ dé s 2 ’
at ()
2 3 -1
t .
(3.5g) %3 = [cgz -+ cos”i cos 6 F] , (5)

P sin2i sin 6
vhere the co-latitude 6 is related to i and ¢ by

(3.5h) cos 8 = gin i sin ¢ , (6)

sin 8 = + V1 - cos2e . (7)*

*
Since 0 < ¢ < 180°




where U 1is the potential of the central body, and

- ou . cos ¢ 3U
F =g+ tani Sin® 3y ° (8)

These equations of motion are exact for any satellite orbiting around
a central body of potential U. To consider additional perturbations, the

equations can be kept unaltered by including the appropriate components of the
perturbative accelerations in the quantities 3y 3y and F, The equations

oy ? ar ?
would then still be exact.

Defining the accelerations ey ag, and &, in a local orthogonal frame

with outward along the geocentric vertical, a_, directed south, and a
% f g

directed east:

_Lau
% T30 ° (9)
1 U
ag r sin 6 Yy ° (10)
and
_3u
% % ° (11)
Then, from equations (8), (9), and (10):
_ U . cos ¢ 3U
F= 08 *+ tan 1 sin 6 3y
- 1 .
== (af + tan i cos ¢ ag). (12)

The analytical solution of reference 1 only includes the first, second,
and fourth zonal harmonics of the earth's potential. To include more terms
of the potential, the sy ag, and 2y accelerations will be used directly
from reference 2, pages 4-97 and 4-98, (Repeated in this report, equations
108, 109, and 110.)
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It is also desirable to change the original equations of motion into six
first-order equations rather than having one second-order equation. Equation
(4) then is replaced by the following two equations:

du _
-dTJ = q » (13)
mnd 22u5 2 3U
L (&Y 5-tu 57
dg _ 2 2 d¢ dt  _cos i (14)
@ ul "7 4 6.2
a )

These two equations need special consideration when finding the numerical
differential equations. Using subscripts a and n for approximate and
numerical solutions and defining the right side of equation (14) as the function
G(p, q, u, i, ¢) 1leads to:

2

dqn dua
as =G (pa *Pps Qg YU Yy YU g + in’ 4) - d¢2 (15)
and
dun dua
Fraal el N (16)

Now the appropriate approximate solutions will be selected from

reference 1. From equation (3.6a):
p, = const. = initial p. (17)

From equations (3.71), (3.73), and (3.76):

Q

= 90
a, 21/2 + 9 1/2 + € 03/2 + L. (18)




Before writing the expressions for Qoo’ etc., it should be mentioned
that some numerical difficulties would be experienced by using the results of
reference 1 exactly as written., The results of the reference are algebraically
correct and pose no analytical ambiguities. However, in certain cases there
are apparent indeterminacies which a computer cannot handle. Most of these
can be eliminated by minor modifications of constants, but several quantities
will still require two or more different forms for accurate and correct numer-

ical evaluation.

s 1 (29)
00

Let A P

designate the total initial angular momentum.

From equation (A.1ll), define:

o1 1 3 2
| B2*- j{(ﬁ-gc)(l-eo)
24
) 2, 2 7,4 2
+ cos™i [(1 - e, ) 12¢ - 3+ 3 e ]
teos'i [-Fe(1-e?) +2(5-e2, (20)
SO
t
Be* = e, 132* . (21)

Equation (20) uses equation (3.38), i.e.,

i *¥=431 ,e¥=¢e,wt=w,
00 oo’ "o o

From equation (A.lL), define:

R S S 2 2,
' C* = " [« Z+ 3+ (2 -~ 21c) cos 1001, (22)
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SO

2 !
* = s $ *
02 = eo cos ioo sin 1oo 02 .

From equation (A.18), define:

1 2
' = -
s, =5 (2 = 15 cos ioo)’
2A
80
= : ]
Sl = tan 1oo Sl .
- 1 2.
(A.20) So z -;;:375-25 (1L - 5 cos 100).
- =2
{A.21) Ky = So + x, cos 2w.

Equation (27) assumes 31/2* = 0,

of integration can be expressed in series form.

(23)

(24)

(25)

(26)

(27)

In reference 1 it is assumed that constants

For the program, the leading

term will be taken as accurately as desired, and all the higher order terms

will then be zero except for Ll/2' To make the constant Lo approximetely

equal to the initial value of the ascending node, the Ll/2 constant is
chosen to make 901/2 = 0 initially.
From equation (A.22), define:
L} ] ]
= *
Ky 5, C*» (28)
so
2 2 '
k) = e~ sin ioo Ky o (29)
From equation (A.23):
* g ' 3
B2 So B2 So
E 2 - = - . (30)
1/2 K 2 '
1 e sini K
o oo 1




Now we can return to writing the approximate expressions.

cos 1
(3.79) 2, = - T 9. (31)
A
5 cos ioo _
(3.82) 901/2 T - -—ZET [So ¢ - wo] + Ll/2° (32)
1
cos ioo sin 2¢
(3.80) 93/2 = - Ah (- > + e sin (¢ - mo)
e e,
- —% sin (¢ + wo) - — sin (3¢ - mo)] (33)
Qoo
As stated in equation (18), Qa = ;175 + Qol/2 + € Q3/2 + Lo. From equations
(3.43) and (3.48b):
o 1/2 ., .
ig=di +e i*1/2 +ei,, (34)
since 11/2 = 0 from reference 1, page 27.
i, = initial inclination to order e. (35)
The equation for io 1/2* is given in equation (3.33) but two forms are

required for the numerical evaluation.

2
Q ) [o] 3 2 2 ) -
When 62 i < 65° (Limit on i, setisfied when |1 = 5 cos ioo‘ < 0.106),
use:

(3.33) i 1/2* = 5;— (+ (E; -k, cos 2w)l/2 - §;]. (36)#

1

* The sign of the square root must agree with the sign of the numerical
value of So'



Otherwise, use the form:

= o _lcos 2v* - cos 2u]

2
S +/x =k, cos 2w
o— © 1

i 1/2* . (37)%

Equations (36) and (37) are algebraically equivalent with equation (37)

coming from equation (36) by multiplying and dividing by [/[;; - K, cos 2w

+ §;] and by using equations (A.21) and (A.22) for ;; and Ky and
equations (23) and (25) for 02* and Sl'
The final expression required for ia is then:
cos ioo sin ioo
(3.15a) i, = [cos 2¢ + e cos (¢ + w)
1 s L o
A
s
+ —5 cos (3¢ = w)]. (38)

Since the differential equation for u was changed from one second-order

equation to two first-order equations in u and %%, the approximate
values for both these quantities are required.
Repeating the equation from reference 1l:
2,
cos i,
(3.48a) u = 1+ e, cos (6 = w)] + ¢ U, (39)
P
(since ul/2 = 0 from reference 1, page 27).
From equation (3.43):
. 1/2
= * i * 4o
io=1i *+¢ i 1/2 (ko)

* The sign of the square root must agree with the sign of the numerical
value of So'




To compute U, the expressions e, s and u, are needed,
From equation (3.41):

) 1/2
e, = eo* +c el/2*’ (41)

eo* = constant, = initial e. (42)

The variable el/2* is given in equation (3.35), but again different forms
are required for numerical evaluation by computer. As in the development

* ) o ° .
of i* 1/23 if i, 1s not betwegn 62° and 65°, use:

Be* (cos 2w* = cos 2w)
e

et : (43)¥

So + Ko - Kl cos 2w

If 62° :-ioo < 65°, then use:

/%, s
*=v [+ — - cos 2w - =] (Ll )*

2 /e

€1/2

providing So <K Otherwise, use:

l.

s

2w* o 2
el/z* = v, :%_ (cos cos 2w) . (45)
So //> K
1+ 1+ =5 (cos 2w* - cos 2w)

1
S
o
Again, all these formulas are mathematically identical, but they are required

because of possible ambiguities in computer calculations. In equations (Lb)

and (45), the quantity Y, is defined by:

* The sign of the square root must agree with the sign of the numerical
value of So'
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sin i Y k!
00

The solution for w also reguires three forms, given as three cases in

reference 1 depending upon the relative values of :o and Sk

For case 1 wvhen -k, < k_ < K,

1l o 1
1.9 -:o - _ 1/2
(3.55) w* = + tan” {———— (1 + tn“ [/2 S (¢ - ¢o)])}
K. + K
1 o)
_ 1/
1,51 °" 1
= + tan~ "~ {[——2] ———}
Ky + K en [v/—é—?l- (¢ - ¢°)]
where the modulus of tn or c¢n is kl and
_ 1/2
Ko * Ky
(305hc) kl = [T—] .
1
From equations (3.54a) and (3.5kb):
- i -1/2
0; = ¢ = 2 (2 x,) F(xy » k)
(+ seme sign as §o wvhich is sign of -g% at w=w)
and
N L, K+ K
X, = * tan 1 [ 1 __° tan® w* 111/2’
K, = K
1 o]

(k6)

(b7)

(48)

(49)

(50)



and the sign is chosen so w¥ and xl* are in the same quadrant. In these
expressions, F(xl*, kl) is an elliptic integral of the first kind and tn
and cn are elliptic functions. To determine the quadrant of w¥* from

equation (47), a new angle and K (the quarter-period of the elliptic func-

tions cn or tn) are used. Let

z) = /2.<1 (3-30), (51)

now the quadrant of w* can be related to the quadrant (defined by X) of

l.
zl w¥ w*
(when w* nearer n/2) (when w* nearer 3m/2)

0 «-K 0 - n/2 T - 3n/2
K - 2K -g—-vr 3In/2 - 2%
2K - 3K %-- m 3n/2 - 27
3K - UK o-% m - 3n/2
kK - 5K 0 - g— T - 3n/2
etc,

For case 2, when E; =« there are two possibilities. If w*¥ = 0 or

l’
T, then w* always equals O or =. If w¥ has any other value, w* is

given by the formula:

2 (§-3,) x

*
tan'g— = e tan g— . (52)

Here the + sign is determined from the sign of the quantity,

r *
" . R
So Sl 101/2, since
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(3.27c) —_ = §° + S, i* (53)

(Can use only 55 since derivative slways has the same sign in this case,)

*
Also the quadrant of w* is determined by the fact that the quadrant of -

is the same as the quadrant of g: . Physically this means that for this

case, the perigee either starts at O or = and remains there or approaches
one of these values as the time becomes very large, The limit to which the
perigee travels is not determined by the nearest of the two values, but by the
sign of the derivative given in equation (53). Equation (52) replaces equation

(3.59) of reference 1. This is done because the integral (3.58) should read

*

- - de
¢ -¢_ = [
o (2x1)l/2$in €

rather than with cos € replacing sin € as shown in the reference.

Case 3 occurs when Ko > Kqe In this case,

1 ?o- K 1/2 _ 1/2 . _
(3.65) w* = tan ~{[—=] tn[(x_ + Kl) (6 - ¢ )1}
<+ K o o
3 Ve 2l e e
K =K {1 = en"[(x +«x ¢ -9
= tan™T{[2—21] —o b, (%)
Ko+ Ky en [(x  + Kl) (¢ - ¢o)]
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where tn and cn are elliptic functions with modulus k2 and

1/2
o —_ . (55)

This is the correct modulus and replaces the k2 given in equation
(3.64b) of reference 1.

As in case 1, the quadrant of z, = (E; + Kl)l/Q(E-_ $;), determined
by K, provides the quadrant of w¥, In this case, the quadrants are equal,
i.e.,

z, w*
0-K 0-m/2
K-2K /2 -7
ete.

The quantity E; must be determined from equation (3.6l4a) and (3.6kc)

of reference 1l:

_ _ _ =1/2
(3.6k4a) 0; = 9, = :ﬂxo + Kl) F(x2,k2), (56)
(+ same sign as §;)
1 K+ K 1/2
(3.6kc) X5 = + tan"{[=—=] tan w*} . (57)
Ko = Ky

In equation (57), the sign and quadrant are chosen such that Xo and w¥*
are in the same quadrant.

Finally, all that is required for u, is the expression for u This

10
comes directly from reference 1.
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1 2 s 2
(3.15b) u, =~ {~ 1+ 3 cos 1oo - = (1 -5 cos 100)
2 A
2 2
s 2 l .2 i 5 2 . 2 ) 5
+ 1 (1 - 3 cos ioo) cos 2w - (3-31n 1o~ = t*%e, sin 1,) * cos 2¢
2
e e

+ —%— (1-9 coszioo) cogs 2 (¢ - w) = i% (s - 11 coseioo) e cos(3¢ - w)

2
e,

- IE— (1 - 3 cos 1 ) cos (Lo - 2w)}. (58)

Now,
dua
qaz F ° (59)
From equations (39) and (40):
2 cos i sin 1
q = - oc oc [1+e cos (¢ - 1/2 ol[
8 2 a
P
coszi de dul
+ onc [d¢a cos (¢ = w) - e, (1 - -—J sin (¢ = w)] + ¢ e (60)

All these derivatives will be given in the following section.

3.2 DERIVATIVES REQUIRED FOR THE GENERALIZED ENCKE SOLUTION

Derivatives of all the approximate solutions must be taken to find the
differential equations to be numerically integrated. These derivatives are
taken rather than using the original derivatives of the theory since in some

cases approximations are made to carry out the integration.




From equation (3.6a),

From equation (18),

an dqQ
a

d¢ e1/2

From equation (3.79)

00 _ 00 d¢ _
dé as
From (3.82) and (25):
da, 1/2 _ 5
d¢ -7 Ah

aQ an
€1/2 ol/2 + 3/2 3/2] .

Equation (3.27c) will always be used for Qﬂ_, i.e.,

(3.27¢) dw
dé

= =5,

de € de
cos i
- 22 (33

A

cos io 53/2 (s - 9%9.

d¢

d¢

+ Sl ig 1/2 °

Then from equations (6u4), (65), and (25)

an 3/2
ol/2 _5¢ N :
o - n o siniif
From equation (3.80):
a Q cos i
——E%Zg——= - —~;E—92- {- cos 2¢ + e, cos (¢ - w) (1 - w*)

e

e
[¢]

- —2cos (¢ +w) (1 +w') - —g cos (3¢ - w) (3 - w')},

2

(61)

(62)

(63)

(64)

(65)

(66)

(67)
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where from equation (3.2lc):

o' =W

and g%: is given in equation
d¢

(65).

Next the derivatives of ia

s #*
a _ e1/2 dl01/2 .
do d¢ €
di
since 0 - 0.
d¢

From equations (3.33), (3.34), and (A.22)

A2 372

= * i
a9 € C* sin 2w.

2

This agrees with equation (3.29a), so that (3.29a) was integrated exactly.

Also note that there is only one form for

dé
different algebraic forms for computation.
From equation (3.15a):

di cos i sin i
1l _ 00

_ o
d¢ o Ah

eO
+ —

_dwdd _ 3/2dw
d¢ d$'d¢ a%

s %
dl01/2

3 (3 = w') sin (3¢ - w)]

b

s %
1ol/2

will be given from equation (34):

© [2 sin 2¢ + e, (1 + w') sin (¢ + w)

required two

(68)

(69)



Equation (63) gave an expression for q,> but some derivatives were required

and they will be formed here.

From equation (3.41):

—a_ 12 ___JL.

= (72)
de¥*

éég = 53/2 BE sin 2w, (73)

Thus, equation (3.29b) was integrated exactly, and no special cases are

required for the derivative of eI/z.

Now the derivative of u. is needed. From equation (3,15b):

1
2
du e
1 1 0o 2
= {- w' (1 - 3 cos“i_ ) sin 2w
dé > A6 2 oo
sinzioo eo2 5 eo2 singioo
- + 2
+ 2 ( 3 3 Z ) sin 2¢
2
- 2 ') sin 2 (¢ - w)
-3 (1 -9 cos 100) (1 -w') sin 2 (¢ - w
€ 2,
+ i% (5 = 11 cos i ) (3 ~ w') sin (3¢ - w)
2
e,
+ 55— (1 - 3 cos 1 ) (b = 20') sin (4¢ - 2w)} (74)
dq
This completes q and now 335 is required., The form for this derivative

will be chosen to allow analytic cancellation of the terms of order unity
wvhen forming the modified-Encke equations of motion. If this were not done,
accuracy would be lost trying to find numerically the small difference between

two large numbers. Define:
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a _ 0
% - a 3
where
duo dul (
q, = % q = Tl 75)
q, can be found from equation (60) and q, from equation (T4). From
equation (60) by differentiation:
2
dq cos i
o _ oc
'dT—-uo"'———z +H, (76)
Py
where
2 2
2 u d i¥* 1/2 4~ i*
HE o — (e (—01/2-) coszi + £ ol/2 sin 21 ]
2 - dé oc 2 2 oc
cos i ! dé
oc
cos ioc dioc de
+ S {- 4 T a5 sin i_ cos (¢ - w)
Py
dioc dea
e _a I _
+2 [ea 35 Sin 1y, - cos ie 1) ] (1 - w') sin (¢ - w)
d2ea
+ 3 | - ! -
{[cos i. "3 *e, cos i. @ (2 = w')] cos (¢ - w)
d¢
2 ”"
te cosi w sin (¢ - w)}, (77)
and from equations (72) and (73):
dzea 2
5 = 2 ¢ B,* w' cos 2w , (78)




from equations (65), (68), and (70):

d2m 3/2 digl/Q 3
w" = ——2- = g Sl r = € l(l sin 2(0, (79)
d¢
from equation (70):
d i%*
___2%[2 2 23/2 Cg (cos 2w) w' , (80)
dé
dq dql d2u1
Then to compute & , = is required.
d¢ a¢ 2
d¢
From equation (74):
2 2
du e
21 = 16 {= g (1 -3 cosei ) (" sin 2w + 2w'2 cos 2w)
dé 2 A 0
sin2i00 e02 Seozsinzioo
I -
. +4 ( 3 3 * Z ) cos 2¢
-e, e 2
3 )[2(1 -u') cos 2(¢p = w) - w"sin 2(¢ - w)]
te 2

(5 - 11 cos 1 )[(3 - w') cos (3¢ = w) - w" sin (3¢ = w)]

+82

12 (1 -3 cos® i )[(h - 2w' ) cos (4o - 2w) - 2w" sin (4¢ - 20)] (81)

Before finding the modified-Encke equations, the quantity 33 (d¢) must

be developed in an ordered fashion.

From equations (3.5g) and (8):

2 3.
d¢ _ _pu _ 4+ cos”i cos 8O F=A u2 + V. (82)
dt cos i 1 o

L2, .
p sin i sin 6

S
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Differentiating:

dA
4 (d¢y _ 2 _1
Ty (dt) 2A,uq + u 5% + V., (83)
where
V. = COt2i cot 6 [g- F(L dAl + 2 di 1 )] (8]4)
1 A dé A, d¢  sin i cos i d¢ cos 6 sin 6 d¢

and from equation (6):

de - ai
3 " 5in [cos i sin ¢ 3g * o3 ¢ sin 1], (85)
From equation (83):
da
T ED il (86)
¢ cos cos cos°i
from equation (12):
&F _d_ _F du . 1 % da

= - au I £
%- 0 { [a + tan i cos ¢ ag]} S T += [ & * tan i cos ¢ %

+ 8 (9-95—i di _ tan i sin ¢)]. (87)
& cos i d¢

Since the ac and ag are quite complex for the general problem, the

derivatives of e and ag will be approximated for perturbations other

than the analytical model by the quantities

(88)

where ¢2 and ¢1 are values of ¢ close to and on each side of the value
da

of ¢ at which the derivative is required. For example, if T is desired

vhen ¢ = 30°, take ¢, = 31°, ¢, = 29°, Then a, and a_ will be found
2 1 £, &5

as a function of ¢,, 2, i, t, and u, where @, i, and t are the values

when ¢ = 30°, ¢, is 31°, and u, is given by:




. du
up Uty ad, (89)
where u is the total reciprocal radius at ¢ = 30° and %% is taken as

the q, 8t ¢ = 30°.

3.3 ADDITIONAL DEVELOPMENTS

In addition to the straightforward development to this point, a number
of less obvious considerations were necessary before formulation of the com-
puter code. These topics are the elimination of taking differences between
two lggge, nearly equal numbers (with a resultant loss of accuracy) in finding
the E$& equations, the orientation of the rotating earth beneath the
satellite, the treatment of the time, the formulation of the disturbances
from the complete potential, the formulation of the disturbances due to luni-

solar effects, and the development of the Runge-Kutta formulation,

3.3.1 Elimination of Large Quantities from the Encke Equation for Q,

Substituting the expressions for %%- and %$ (%%) from equations (82)

and (83) into the differential equation for q in equation (1k), and
2
multiplying by (%%) yields:

dA
(d¢ -z ¢ )[Al u + 2Alu Vo + Vo ] + q(Alu + Vo)[2Aluq + 3 u< + Vl]
- 25 2 2
=AW+ (90)
where
Uy = _(u2 + %% = euu(l -3 cosee) + c22u6(35 coshe - 30 cosS0 + 3) + 8 (91)

(a.r represents accelerations in the outward radial direction in addition to
those given in the analytical model).
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Using the abbreviation:

\'J V.q dA u,U
2°1
V3= -7, %% [ + —gglHl2 54" - =5 - d¢l FIQ =2 + —5
Alu Al u Alu Alu A Alu Al u
(92)
. Cs s . 2L
one obtains after dividing equation (90) by Al u:
da _ 4o+ A
3¢ = ~u+t 2 + Vs (93)
1
dq0
Usingdthe expression for T from equation (76) and adding and sub-

tracting E%2 gives:

2
dqn . dg dg dq dqa G weu s cosei cos 1 vy -
d¢ d¢ ~ d¢ d¢é d¢ - 2 ) 3
r P,
dgq q
el ralt (om)
Note that
p_+Dp p
1 1 a n
S-"%=% 75 (pg-p)=~-—575(p, +p) (95)
P Py PP, P Py

and from reference 4, equation (L01.13):

. 2 . . . .
cos i -cos’i =a-sin (i +3i )sin(i-3i )
oc oc oc

-sin (i + ioc) sin (in + eil). (96)




After substitution, the result is then:

2 2 2
dq_n N cos2i ) cos ioc . cos ioc ) cos ioc
d6 ~ "Yp T Y 2 3 2 2

2 P P 1
dg
1
+ V3 -He¢€ W—

1 . . .
=-u - ey -3 sin(i + 1°c) sin(ln + eil)

P
P, *P da,
=COS ioc—-2—2—pn+V3-H-€E$— (97)
Pg P
dun
T "% (98)

All terms occurring in these equations are numerically small. However,

this 1s not the completed form, since V3 contains the term %—%.
From equation (92), let
vV ad v
V, % - °—%—1(2+ 2-) + Vv, (99)
3 A u2 d¢ A u2 3
1 1
Then Vv, dq, v v, 2Va
' = o — —
V3 i Au2d¢ (2+Au2)+Q(l+Au2)[ u3
1 1 1 Al
- Vz-i—::l]+ Ué 5. (100)
Alu 1 Al u
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Note that Ul = -8, if the coefficient of the leading term of the potential

is zeroed. From these two equations and equation (97), the final form for

dqn is:

dqn 1
T = [-un - euy - ;E sin(i + ioc) sin(ln + eil)
-2
p_+0D dq v
2, a ' 1, . (o]
~cos"i  —5—5 P, * V3 -H-c¢ EE_] (1 + 2) (101)
Pa P Alu

3.3.2 Orientation of the Earth Beneath the Satellite

To find the effects of the tesseral and sectorial harmonics of the
potential, the longitude of the satellite above the rotating earth must be
known. Denoting the east longitude of the satellite as A:

A=Q+Db - A (102)

G’
where

Ag = Ay * g (t - to) (103)

and

>
1]

longitude of Greenwich measured from
the equinox of 1950 at to.

oG

w

E mean rational rate of the earth

. = longitude of the node measured from the

equinox of 19%0.

b 1is given by the following sketch

¢ (90 - o)




From spherical trigonometry:

cos b = §§§—%. (104)

and b 1s in the same quadrant as ¢ except when i = 90°, 1In that case
b = 0 always.

3.3.3 Treatment of Time

The only reason that time is calculated in this progrem is to find the
orientation of the rotating earth and the location of the sun and moon. There-
fore, extreme accuracy in the time is not required. A simple approximate
solution which includes the predominant effects will be used so that the
numerical differential equation for time will be of the same order as those
for the other parameters. This is done to keep the computing interval as
large as possible for the complete system of equations. Since great accuracy
is not necessary, no attempt will be made to analytically cancel the terms of

order unity in the numerical differential equation.

The approximate solution chosen for the time is:

. = 4p3 -e_ sin (¢ = w)
a

{
cos3i (1L - e 2) (1 + e, cos(¢ - w)
o0 0

V1l =€ 2

2 -1 [ tan (¢ = w)

/{—t:j;—g 1 + e° 2

where the tan™t [ 1 is in the same quadrant as iﬁLé%J&l.

1} + tog (105)

The derivative of the approximate solution is simply:

dat 3
a _ p° (1 - w')
a¢ 3 (106)

2.
cos™i_ [1+ e, cos (¢ = w)]
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Now to is given by:

1

e - 44p3 { e, sin (¢i - W)

ol 2) 1+e  cos (¢i - W)

cos3i (1L ~-e
00 o

)} o+t (107)
[o]

3.3.4 Development of the Perturbative Accelerations Due to the Complete
Potential

This description determines the perturbative gravitational acceleration
of a spacecraft by means of the zonal, sectorial, and tesseral harmonic equa-

tions found in reference 2 (pages 4-97, 4-98). These equations are as follows:

N1 N2
_ -n-2y , =2 m
&, = cos ¢ I (Jnr )pn + I mr sin ¢ (sec ¢ pm)(Cmm cos mi + Smmsin m\)
n= m=2
N3 N3
Y] ow ]
- ¢ ¢ 2(cos ¢ pg ) (C cosm\ + S sin m)) (108)
m=1 n=m+l nm nm
N2
- -me-2 m
ag = - E mr (sec ¢ pm) (Cmm sin mA - S cos mA)
m=2
N3 N3
-Im I r-n-2 (sec ¢ p7) (C_ sin mA = S__ cos mA) (109)
n nm nm

n=1 n=m+l




N1l N2

P e =2 m |
& = n§2 (n+1)(Jnr )pn - cos ¢[m£2(m+l)r (sec ¢ pm)(Cmmcos m\ + 8 ,fin mh)

N1 N3

+I I (n+l)r-n-2 (sec ¢ p=) (C_ cos mh + S sin mi)] (110)
n nm nm
m=1l n=m+l

where:
p, = [(2n = 1) sin ¢ Py ~ (0 =1) p,_ol/n
P =1 (111)
pp = sin ¢
't = 1
pn sin ¢ p 1 + npn_l
(112)
pl' =1
m mel
(sec ¢ pm) = (2m ~ 1) cos ¢ (sec ¢ pm-l)

(sec ¢ pi) = 1
(sec ¢ pﬁ) = [(2n - 1) sin ¢ (sec ¢ onfl) -(n+ma=1) (sec ¢ pnfe)]/(n-m)

(sec ¢ pmfl) =0 (113)

(cos ¢ pﬁ') = «msin ¢ (sec ¢ 92)

(114)

(cos ¢ pﬁ') = - n gin ¢ (sec ¢ pi) + (n +m) (sec ¢ pnfl)



It is noted that the components of the acceleration are non-dimensional
and in a local rectangular system (f, g, h) with h along the outward geo-
centric vertical, f directed south, and g directed east, Also, the
recursion equations may be recognized as the Legendre polynomials, the rhos
being the zonal set,and the secant rho and cosine rho comprising the sectorial
and tesseral set,

The equations may be written in a more convenient form by substituting

m m' m
U, for (sec ¢ pn), Whm for (cos ¢ Py )» and v, for (sec ¢ py); also

m sin ¢ (sec ¢ p:) may be replaced by~{cos ¢ pE') in the sectorial term of

a,. Finally, if the degree of the highest sectorial harmonic (N2) is taken

equal to the degree of the highest tesseral harmonic (N3), the sectorial and
tesseral terms may be combined with the summation scheme being set at:

N2 n
z Z . The equations may then be written:

n=2 n=l
N1 J N2 n
a =cos ¢ £ (—B)p'- I I —==wW_ (C_ cosm +S_ sinm\) (115)
f _ n+2 ‘"n n+2 nm | nm nm
n=2 r n=2 m=l r
N2 n
_ m .
8, = - I —=sUu_ (Cnm sin mA - §_ cos mA) (116)
n=2 m=l r
N1 J N2 n
By = I (n+1)( n22) P, = cos ¢ I I nnigl U (Cnm cos m\ + Snmsin m\)
n=2 r n=2 m=l r
(117)
where the pn's and p;'s are given in equations (111) and (112) and:
U = (2m «
I m ( 1) cos ¢ Uﬁ-l, nel
U.. =1 (118)
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~(n+m=-1)U ]

1
U = [(2n - 1) sin ¢ Un_l'm ne2, m

nm
m-1,m =0

(119)
W =-msing¢ U
mm mm

W _=-nsin ¢ Unm + (n + m) Un

nm -1l,m

3.3.5 Development of Luni-Solar Perturbations

The most difficult part of obtaining luni-solar perturbations would
normally be encountered in obtaining the relative positions of the earth,
moon, sun, and satellite at any particular time. This problem has been
circumvented by utilizing the JPL Ephemeris Tapes and their associated tape-
reading routines to determine the positions of the earth, moon, end sun.
These routines are described in detail in reference 5, and will not be dis-

cussed here,

The remaining problem is that of expressing the perturbative accelersa-
tions in the 8y as, a, reference frame adopted for the earth potential
perturbations.

3.3.6 Development of Runge-Kutta Equations and Self-Computing Interval Scheme

The Runge-Kutta method is used for the numerical solution of the differ-
ential equations. The method is a simple extension of the methods for second-
order and first-order simultaneous equations given by Hildebrand (ref. 6
page 237) which are:

L]

Given the simultaneous first-order equations:

(6.16.7)% & = Flx,y,u),
du - G(
= X,y ,u) (120)

* These numbers are equation numbers from Hildebrand.
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the solution may be written as:

(6.16.8)

where

(6.16.9)

and

(6.16.10)

Given the second-order equation:

(6.16.11)

= 1 5
Yoy = T * T (kg + 2k + 2k + ky) + 0(n”)
1 5 (121)
un+l=un+g(mo+2ml+2m2+m3) + 0(n’)
ky = hF(xn,yn,un),
- 1 1 1
k) = BF(x + 3 h, y  +3Zky u +3Fmg), (122)
- 1 1 1
ky = WF(x  +Zh, ¥y + 3k, u +5m),
k3 = hF(xn +h, y, +ky,u + m2),
m, = hG(xn,yn,un).
1 1 1
m, =hG(x_ +=h,y +Zk.,u +=m.),
- 1 1 1
m, = hG(x) +Zh, y) + 3k, u, +35m),
m, = hG(xn +h,y +ky,u + m2).
&2
£ = olxyy), (128)
dx

The above equation can be written as two simultaneous first-order differential

equations as:

and
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= u (125)

gl

du

e G(x,y,u) (126)




Then equation (6.16,9) gives:
kK. =hy', k. =hy' +&m., k. =nhy' +%m k, = hy
0 n* f1° Wp T2 M Ko T Wyt TMy, 3

and hence equations (6.16.8) and (6.16,10) give:

(6,16.12) Ypar =¥y * hy! + % (m0 +m, + m2) + O(hS)’
T £ >
Yoel = V5 * 3 (mg + 2 + 20, + my) + 0(n%),
vhere
(6.16.13) my = hG(x ,y ,¥!),
m, = he(x_+ 2, Y, * %hy,'l, yh+3m),

= 1 L R
me'hG(xn"'zh’yn+2hyn+h'hm0’yn+2ml)’

my = hG(x_ + h, y_+hy! + 2 hmy, y! o+ my).

?
a + hme,

(127)

(128)

After integration over two intervals of equal size, the results for the

velocity components are compared with an integration over the same intervals

using Simpson's rule which is also of fourth order accuracy. Simpson's rule

is given on page 73 of reference 6 as:

X
2 5,IV
. e (8)
x[ f(x)ax = 3 (£ +bf) +£,) - 50
o]

wiw

where x < < X
o & 2°

h =
£, = f(xo), fl = f(xo + 5), and f, = f(x2)

(129)
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By virtue of the comparison between the two integrated results, decisions
are made by the program concerning the accuracy of the integration, and the
computing interval for the next two intervals is chosen., The logic underlying
these program decisions will now be explained using one first-order differ-

ential equation as an example.
Let the differential equation to be solved be of the form:
x = x(t, x) (130)

If this equation is integrated over an interval, h, by Runge-Kutta methods of
fourth order, then the numerical value of that function corresponds to a

Taylor series expansion with an error term of O(hs), i,e.:

2 » .3 IV k4
* « h xh X h
Xl X PR ST YT

+ 0(n’) (131)

The complete functional form of the coefficient of the error term is unknown,
but it is known to contain xv. For the purposes of this program, the coef-
ficient of the fifth order term is assumed to be the next term in the Taylor

series %T and xV is assumed to be a slowly varying function. The coef-

\'4
ficient of the fifth order term in Simpson's rule isknown to be = %6 + Thus,
if we let xc be the correct value of x at the end of the two equal
intervals, and let XpK and Xop be the Runge-Kutta and Simpson's rule
integrated values respectively, we may write:
V. 5
- x h
X, = Xp + 2( 5 ) (132)
V.5
x =x. == h (133)

c SR 90

Elimineting X, between these two equations and solving for xv results in:

36( -
xV - xSR xRK) (134)
h5




From equations (132) through (134) the error in the Runge-Kutta solution is
estimated to be:

-x_) (135)

= 3
8x = 5 (xgp = Xp¢

A factor of '% is dropped in the use of this equation because an arbitrary
constant is introduced at this point.

Letting Ai, Ai, Az be the changes in the i, &, z values over the double

interval, then what is required in the program is that:

E = maximum (|6x|, |éy|, |6z]) < E,qq = maximum (|w8lcmax)’ (136)

2])

10-9 max imum (|;(|o I&l:

where

C__ = maximum (|ax|, |ay|, |az]) (137)

max
and W8 is an input number designed to require a series truncation greater
than number truncation but as small as possible. An error which is less than
10-9 of the maximum of the absolute values of i, i, and z is always
acceptable since it will be lost in the first addition anyway because of the
limits of machine word length.

the last two

If E<E the computation proceeds, If E > Ea

all’ 11°

steps are done over,

If E is greater than an input minimum error E e C , then At is
min max

computed by:

Mt . = FDT o 8t 1, ally (138)

new 1ld

If it assumed that E = KAt where K is some constant (since x

= W,C
all 8 ‘max
is roughly proporticnal to At and Cmax is normally proportional to Ax)
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end FDT = 1, then by equations (132), (135), and (136), At ., would result

in an error of exactly E FDT is an input number < 1 to prevent Atn

all’ ew
from resulting in an error E > Eall due to number truncation or changes of
xv over the two new intervals as compared to the xv of the previous two

intervals.

If E < Emin . Cmax’ then it is assumed that the error in Xpp 18
primarily due to number truncation in the computations. In this case equation

(132) does not apply. The new computing interval is then computed by:

Bty = AbL 0Bt L (139)

where Atmin is an input quantity > 1.




Section 4

BLOCK FLOW CHART

— |

Input Gravitational Parameters, Initial

Conditions, and Program Control Quantities

II

Compute Constants Required

for Approximate Solution
(consT)

yII1

Evaluate Approximate Solutions and

Their Derivatives for Desired Angle ¢
(APSOL)

v
" Sum Approximate and

Numerical Solutions

A

Evaluate Encke Equations of Motion
(ENCKE)

VI
Integrate Encke Equations (RKTOM)

VIA o

~
?

(gPd of This Casegg)

Yes
IX

Return for New Case

NO

Has ¢
Changed?

YES
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Section 5

EQUATIONS IN ORDER OF SOLUTION, DETAIL FLOW CHARTS, AND PROGRAM LISTING

5.0 GENERAL

In the following sections, certain equations will not be repeated in the
equations in order of solution due to their length. In this event, the equa-
tion number for the expression in Section 3, Sources of Equations, will be

given. This avoids lengthy repetition and also links Sections 3 and 5.

In order to relate the FORTRAN coding and the analytical formalism, both
the FORTRAN variable name and the equivalent algebraic expression are presented
throughout Section 5. In some cases indices of an array are also used in the

FORTRAN style using parentheses, i.e. A(l) = A, A(I) = A, ete.
5.1 MAIN PROGRAM

The main program serves mainly as a control program to convert input
quantities to non-dimensional units for internal purposes, to control the flow

to and from subroutines, and to print the results in the desired dimensions.

5.1.1 Equations in Order of Solution

I. Call Input Data, Store, and Modify for Internal Computation.

A. Non-dimensionalize input quantities and store necessary constants.
Start clock to time the case (call TIKTOK). Read input array into
storage using INPUT 1 routine with reference run capability. Store
o

dimensional values of w, ¢T’

and Jh in AJ2 and AJ4 for permanent use. Store non-

ioo’ Lo’ ¢ A¢d, longitude of
EROT. Compute

stop’

Greenwich, t and w
o] E .

Compute
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II.

III.

Iv.

B,

c.

Place the coefficients of the potential in common by filling the array
COEFF, Set the initial conditions of the numerical solution equal to

Zero.,

(HAH(i) = 0,1 = 1, 6). Save the initial time in DTSAVE,

Print the input array and the format heading for the regular output

during operation.

Set initial values of flags.

Set
Set
Set
Set

Runge-Kutta flag = 1 for first cycle of Runge-Kutta.
IP =1 for the first point of the trajectory.

KHALT = 1 to show no halt,

IPRINT = 2 to initialize print flag.

Compute the Constants Required for the Approximate Solution and Its

Derivatives.

Store the computed constants in labeled common /CON/ by calling sub-
routine CONST. Compute

- _ 3/2

¢i = € ¢i!
DENK(1) = 2¢,
DENK(2) = 2ec,
DENK(3) = 2¢°c

Evaluate the Approximate Solutions and Their Derivatives for the Current
Value of ¢.

Store the approximate solutions as the array AS(6) and the derivatives

of the approximate solutions as the array AD(6) in labeled common
/APS/ by calling subroutine APSOL.

Sum Numerical and Approximate Solutions and Find the Change in Time.

Store the sums of the numerical and approximate solutions for the six

dependent variables in the array DVT(6).




Find
DT = tT - DTSAVE

Save the total time in DTSAVE.

Evaluate the Encke Equations of Motion and Test for Print
Store the values of the differential equations of motion in the array
ENK(6) by calling subroutine ENCKE.

A. If the Runge-Kutta flag (KR) is 1, go to VB, otherwise, call the

Runge-Kutta routine at VI,

B. If the halt flag (KHALT) is 3, go to VC for print computations and

print, otherwise call the Runge-Kutta routine at VI.

C. Compute ¢T’ iT’ QT’ in degrees. Compute tT in hours and T

in kilometers.
D. Check if energy print is desired.
If KDER is 2, go to VF; otherwise go to VE.

E. Calculate the total energy and print.

2u 2 3 2
TOTE=-u(2-—%)-§eu (1 - 3 cos“0)
cos 1

2

-cezu5 [cosze(lh cos“® - 12) + 1.2] + [35-%%32
u

Print in three rows of six columns the approximate solutions AS(6),
the numerical solutions HAH(6), the SroTAL (deg), time (hours),
radius (km), @ (deg), i (deg), total energy (non-dimensional),

e,» and w_ (non-dimensional). Go to VG.

F. Print in three rows of six columns, the approximate solutions AS(6),
the numerical solutions HAH(6), and the dimensional values of >

tT, Tms QT’ iT’ and the values ea, and W, (non-dimensional).

AY

n
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G. Test halt flag.

If the halt flag (KHALT)

H. Test print flag.

is 1 or 2, go to VI,
If the halt flag is 3, go to I to start a new case,

If the print flag (IPRINT)

VC for print computation.

If the print flag (IPRINT)

in VG.

VI. Call Runge-Kutta Routine and Test for Direction after Exit.

is 1, set it equal to 2 and proceed to

is 2, set it equal to 1 and proceed as

Find new values of the numerical solution and the independent variable, ¢,

by calling the Runge-Kutta routine RKTOM.,

After exit:

A, If the Runge-Kutta flag
If the Runge-~Kutta flag
If the Runge-Kutta flag
If the Runge-Kutta flag

VII. If the Halt Flag (KHALT)

(KR)
(KR)
(KR)
(KR)

wise, continue by going to 1V,

is
is
is

is

1, go to VII.
2 or b, go to III.
3, g0 to IV,
5, go to VH,

is 2, start a new case by going to I.

Other=



5.1,2 Detail

Flow Chart

IA-IC

Start Clock to Time Case, Call Input Data and
Modify, Print Input Plus Heading for Out-
put, Set Initial Values of Flags.

II

Compute Constants Required
for Approximate Solutions
(consT)

II1

Evaluate Approximate Solutions (APSOL)

&IV

Sun Approximate and Numerical Solutiomns,
Find Time Change DT Since Last Entry,
and Save Total Time for Next Calculation

v

Evaluate Encke Equations
of Motion (ENCKE)

Test
Runge-Kutta

4 or 5 Flag (KR

Go to VB
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Ve

Is

VF

Halt Flag

= 37

Print Without

Energy

Call Runge-Kutta
(RKTOM)

Dimensionalize Quantities
I for Print

End of Case,
\.Gotol

i End of Case
‘ Go to I

Calculate Energy and
Print Including it

YES

to 1

Reset Print Flag

|

IPRINT
=2

What
is Print
Flag?

IPRINT
=1

Reset Print Flag
to 2




Section 5.1.3 Program Listing

The following pages give the listing of the MAIN program.
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C PROGRAM TO COMPUTE SATELLITF MOTION ABOUT A NON-SPHFRICAL CFNTRAL
C BODY INCLUDING LUNI~-SOLAR PERTURRATIONS, MODIFIED FNCKE APPROACH
C USING KFVORKIAN OBLATE PLANFT SOLUTION AS THE REFFRFENCE ORRIT.

DIMENSION Z(125)sRR(125)4FNK(6)sHAH(12)sDVT(6)

EQUIVALENCE (Z(84)sP)s(Z2(85)9F)slZ(93)sMFAIL)(Z(94) sFMAX)
1(2(95) sEMIN) 9 (2(96) sDTM) 3 (Z(99) oL S) s{Z(100)sK10R3) o (ENKyHAH(T)
29021101 ) sFDTI 9 (Z(8B2)sN1)»(2(83)9N2) +(Z(102) sKDFR)

COMMON /CON/ CIoCI23CltyST9S129CSsTISE2+E2CoEM29P4LAB
19CRDsC2WoEPS324EPS29EPS34CI315E029E069F039AML3ACIACSHA
2 CS329AC329G09G19G2eG39G4sG59C2SPsC25eB2SP9B2S59S1PsS1y
350B9yGAP1P sGAP1 9GAPOB s C2E+B2E sB2E2+E3KsC22E+sPI1sTWOPT»
4P1029s1C9RK o XMOD9sAMP sCWosQPERPHIO s TW2 sRMK s TE9GAM1 oGOK s
5SOKs0SK290SKsE129S51S9SORS 9ACSS sC4F A3 9EPS
69ACS2 9EM229FM2124FFsA3F9TO19P29ACCIAEsXWsIWCoWO2

COMMON/CPOT/COEFF(R1) ¢yN14N2/APS/AS(E) sREST(12)

COMMON/ZEX/QQ(3) sEWOGIFPOT PP (3)

COMMON/ENFRG/EE(6 ) /DERIV/DFNK(3)

C 1 CALL INPUT DATAs STORF AND MODIFY FOR INTERNAL COMPUTATIONS
C IA NON DIM INPUT QUANTITIFS AND FORM NECFSSARY CONSTS.
1 CALL TIKTOK
CALL INPUT1(Z+Z(125)sRR)

AJ2=212)

AJ4=21(4)

RAD=,17453293 E~01

W=2{(86)%RAD

PHI=Z (88) *RAD

PHIT=PHI

XI1=2(89)%RAD

XL0=Z(90)*RAD

PHISTP=Z2(91)*RAD

DELPHI=Z2(92)*RAD

EW0G=Z (97 ) *#RAD

TO0=2(87)/422411493

EROT=2(98)%#22411493
== g2 TTTTTTTIHZ(4Y/0Z12)%2(2))
EPS12=SQRT(1,5%2(2))
DO 10 1=1,81
10 COEFF(I1=2(1)
DO 21 I=146
21 HAH(11=0.0
DTSAVE=TO
C IB PRINT INPUT ARRAY AND OUTPUT HFEADING
WRITE (691102
11 FORMAT(5E19.8)

WRITE(6912)

12 FORMAT( 21H OUTPUT FORMAT //
140H APPROXs SOLUTIONS AS(6) (NON-DIM) /
240H NUMERICAL SOLUTIONS HAH(6) (NON=-DIM) /

348H TOTAL PHI(DEG) T(HRS) R(KM) NODPFI(DFG) INCI(DFG) )
C 1C SET INITIAL VALUFS OF FLAGS
20 KR=1




I1P=1
KHALT=1
IPRINT=2
C Il COMPUTE CONSTANTS REQRD. FOR APPROX. SOLe AND DERIVATIVES
CALL CONST(EsPoXI9CoaEPS129WsPHI»TOHLS)
PHIIB=PHI *EPS32
DENK(1)= 24%EPS
DENK{2)=DENK(1)%*C
DENK(3)= NDENK(2)%FPS
C II! EVALUATE APPROXe SOLSe AND THEIR DERIVATIVES FOR PHI
30 CALL APSOL{PHIPHITsIPs XIsXLOsTOsWsFsKIOR3sPHIIBFPS1?)
C 1V SUM NUM, AND APPROX. SOLSe AND FIND DT
40 DO 41 1=1,46
41 DVT(I)=HAH{TI)+AS(1)
DT=DVT(6)-DTSAVE
DTSAVE=DVT(s6)
C V EVALUATFE ENCKF FQSe OF MOTION
50 CALL ENCKE(DVT(1)sDVT(2)9DVT(3)sDVT(4)sDVT(5)sDVTIE)
1 PHISLSoDTsN29HAH({3) sHAH{1) sHAH(S5) sP24PsHAH(G4) sENKoAJ2 sAJL o+KDER)
C VA TEST RUNGE-KUTTA FLAG
GO TO(51+60960960960) KR
C VB TEST HALT FLAG
. 51 GO TO (60+60+52) sKHALT
C VH CHFCK PRINT FLAG
54 GO TO(55+56)91PRINT
55 IPRINT=2
VC COMPUTATION FOR PRINT AND PRINT
CONVERT TO DIMENSIONAL QUANTITIFES
52 PHITD=PHIT/RAD
XITD=DVT(3)/RAD
OTD=DVT(2)/RAD
TD=DVT(6)%422411493
RD= 637841521/DVTI(5)
cvD CHECK IF FENFRGY PRINT 1S DFSIRFD
GO TO {(57+58)+KDFR
C VE CALCULATE ENERGY AND PRINT INCLUDPING FNFRGY
57 TOTE=-DVT(5)%(2,-P2%¥DVT(5)/EF(1))~eb6666666T*FPSH
IEE(2) % (1a=3,%EE(3))—EPS2#C*EE(4)*(FE(3)*(144%FEF{3)~12,
2)+1 42 )+ {DVT(4IXEE(S)/FE(E) ) #%2
WRITE(6953) ASes{(HAH(1)sI=16)sPHITDsTDsRDsOTDsXITD »TOTE
1oRESTI{12) o XW
GO TO 59
53 FORMAT(6E15,8)
C VF  PRINT WITHOUT FENERGY
58 WRITE(6953) ASs{HAH{T)s1=146)9sPHITDsTDsRNDsOTNDeXTITNSRESTI12) oXW
CVG TEST HALT FLAG
59 GO TO (60+6031) 9sKHALT
C VI RUNGF-KUTTA
60 CALL RKTOM(KRoIPoKHALTsPHISTP sHAHSEMINGEMAX G MFATLSFDToNTMyDFLPHI,
1PHIT, PHI)
C TEST RUNGE-KUTTA FLAG

aXa!
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GO TO (70+¢30+40+30954) KR
C VIT TEST HALT FLAG
70 GO TO (4091440) s KHALT
56 IPRINT=1
GO TO (60+60s1) oKHALT
END




5.2 SUBROUTINE CONST (E, P, XI, C, EPS12, W, PHI, TO, LS)

Calculates constants which depend only on initial conditions and stores
them in lsbeled common /CON/. Inputs are e, p, 1 2 . e,

Cs
o
toﬁ and LS.

oo?

5.2.1 Equations in Order of Solution

I. Calculate Combinations of Constants Needed Frequently.

_ .k
A. Ph=p CoW = cos 2w
CI =cos i EPS = ¢
3/2
ST = sin i EPS32 = ¢ /
00
L EPS2 = €2
cos ioo
AMY = ——p— EPS3 = €3
p
PHIB = ¢
CI2 = cosi A1
00 ”
Cl31 =1 -3 cos i
CILk = coshi oo
oo
00881 EO2 =
00
AB = ——5—
2p

e
-
2
eO
E06 = Z
SI2 = sin’i .
00 o
3

EO3 =
B2 = e2c
o] 5-
cos”i
= 1 AC = 20
CS = cos ioosin i, T
TI = tan i cos’i sin i
ACS = o o0
2. 2 5
CRD=1- 5cos i P
00
EM2 =1 - e
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3/

5¢ gsin ioocoshi -
ACS32 = n 20 SOB = 3
o
p
GAP1P = Ki
53/2cossioo
AC32 = GAPl = «
5 1l
o)
5 El2 = E1/2
2 eO (1 5 2 )
GO = - 143 cos 1 - == (1=5 cos i
00 2 oo S1S = Sz
1
2
eo 2 =2
Gl = - (1 - 3 cos 100) SOBS = §_
sini 2 GAPOB = x
Ge = - (_52 - -% * % ei sin2i°°)
CoF = 6205
2
eo 2 2
= - 1 = #*
G3 < (1 - 9 cos 100) B2E = € 32
e 2
___©° 2 B2E2 = 2¢ B*
Gh-—12 (5 = 11 cos ioo) 2
2 E3K = E3K
eO ( 2 ) 1
G5 === (1~ 3cosi
12 oo P2 = p2
ACS2 = ACS-P 28203
C22E = 5
C2sP = C4! )
c2s = c3 PL ==
TWOPTI = 27
S1P = Si .
PI02 = >
S1 = S1 Scos i
ACC = _.5__92
B2SP = B*! A'S!
2 1
B2S B#*
25 = B3 A6

[}
2
> |~




B.

EM22 = ¢ 1-ei

EM212 = 2
v 1-e2
o
v l-ei
EF = =%
o
3
A3E = 34 5
cos”i  (1l-e?)
00 o
5 .
€£Cos ioosin i
ACSS = = T
2p
CLE = (czﬁ:)2
.3 3.
A3 = p~/cos io

Calculate constants for time approximation.

3 eosin (¢i-w)

ez) 1+e_cos (¢i-w)

l-e o, =-w
-2 -1 0 1
tan -~ [ Tve tan (-5-)]} tE
2 (o}
l-e
o
where
ton (¢i-w) _ sin (¢i-w)
2 1+cos (¢i-w)
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1

The tan — is taken as the positive principal value and corrected
$s-w
t0 be in the same quadrant as 5 by subprogram QUAD1.

-1

If 1l+cos (¢1-w) = 0, tan is set equal to and corrected for

Lo
2
quadrant by subprogram QUAD1.

C. TIf luni-solar perturbations are to be considered, set tape control
arrays.

If 1S =1, set TABl, TAB2, and GM arrays, and continue.
If 1S = 2, go to II,

II. Check Case Number for Perigee Calculation.

If -, < :; <k go to IIIA,

1 )

If k= E;, go to IIIB,

I E; > k,, 80 to ITIC.
TII. Set Case Flag for Perigee Calculation and Evaluate Necessary Constants

for Case in Question,

A, Set IC=1
Calculate
RK = ¢2Kl
K +K
XMOD = k, = ¥ —2—3
1 2x
1
K. =K
AMP = 2
Kl'mo
CW = cos(w)




If cos w=0, set CHI1S = w, and go to A.2. Otherwise, continue,

K =K
1[1—0

K, *+x
1l o

1/2

1. CHI1 = tan~ tan2w-1]

CHI1S = xI = CHI1l adjusted for quadrant

(function QUAD1)

2. QPER = K (quarter-period of elliptic function)

- F(x$, ky)
PEIO = §_= # +o,
/2&1

(sign is chosen opposite sign of 5;)

Go to IV,

B. Set IC=2

If w=0 or =®, w = const.
CONST, set flag IWC

w, and was stored in subroutine
1 and go to IV, Otherwise,

calculate
RK = J2xl
™2 = |tan !l = |__Si!_l_i
2 l+cosw
Set flag w
IWC = 2, W02 = >
Go to IV,
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C. Set

Calculate
RK = ¢ K°+K

1/2

RMK = vV k_—k
o1

- 1/2

Ko~¥1
AMP = [::——-—]

KO+K1

If cos w = 0, set CHI2S = w, and

go to C.,2. Otherwise, continue.

41 o™ L2
1. CHI2 = tan ~ [(=—) tan w])
Ko™ 1
CHIZ2S = x2 = CHI2 adjusted for quadrant

(function QUADI)

2, QPER = K (quarter-period of elliptic function)
(function ELIPE)
- - -1/2 -
PHIO = ¢_ = * (x_*x;) F (xy0k,) + ¢4

(sign chosen opposite sign of §;)




IV, Determine Which Form Will Be Used to Find e, Set Flag and Evaluate

Necessary Constants.
A. It |1-5coszi°°| < 0.106, go to IVC; otherwise go to IVB,

B, Set flag to use first form for e, (1E = 1),

Go to V.

C. Calculate

B
caML = v, = 2
sin ioo JKJ'_

D. If Eg £ Ky continue; otherwise go to IVF,

! E. Set flag to use second form for e (IE = 2),

Calculate -
%o
GOK = =

1l

-S-o
SOK = ——

"1

Go to V,

F. Set flag to use third form for e (IE = 3).

Calculate

V. Return to Main Program,
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5.2,2 Detall Flow Chart
#% Has transfer for w=0 or w,
then w=w=Const.

SUBROUTINE CONST

IA
IB

Calculate Combinations of Calculate Constants for?®
Constants Used Frequently| ™  Time Approximation

LJ Set Tape (§§§1)
Arrays

TIIA ITIC
#Set IC=1 ##Set IC=2 *Set IC=3
Calculate Constants Calculate Constants Calculate Constants
Needed for Case 1 Needed for Case 2 Needed for Case 3
Perigee Calculations Perigee Calculations Perigee Calculations
VA
IS
15 62° < i < 65 No
- “00
?
vC VB
Calculate Yl 8 §§ > YES ~ |Indicate 1lst
? Form of e
(1E=1)
‘ NO
#VE IVF
Indicate 2nd Form of Indicate 3rd Form of
e, (IE=2). € (1E=3).
Calculate Constants for Calculate Constants for
This Case This Case
v Y
RETURN

* Hag Transfer for Arctan («) ='%




Section 5.2.3 Program Listing

The following pages give the listing of subroutine

CONST.
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SUBROUTINE CONST(E sPsX19CoEPS12sWsPHI 9 TOWLS)

COMMON /CON/ CIOCIZQCIQ’SXQSIZ!CSOTIOFZtEZCOEMZQPQOAB
19CRD¢C2W0EPS329EPSZ!EPS39C1319EOZQEO6;FO3’AM49ACQACSQA
2 CS329AC32'GOQGlgGZiG3’GQQG50CZSP'CZSQBZSPQBZS’S1P951’
3SOB’GAPIPQGAP1oGAPOB,CZEOB?E;BZEZ0E3K9C22E'PI’TNOPIo
491029IC;RKQXMOD9AMP’CNQOPER’PHIO'TWZORMK’IE)GAMIoGOK'
550K s0SK23s0SKsFE1295159S0BS »ACSS 2vC4F sA3EPS
6QAC52’EM22’FM212OEF’A3E’T019p29ACC9A6’XW’XWC’W02

COMMON /TABLE/ TAB1(36)sTAR2(13),GP(342)sGM(2)

COMMON JAPS/AS(6) 9AD(6) sC210C,U19XI0CsDQ1yXI1

STORE CONSTANTS USED FRFQUENTLY
Py = Px¥® 4
Cl = CO0S (X1
S = SIN (XD
Cl2 = CI*Cl
Clg = CI2* C12
AM4 = Cl4 /P4
AB = o5% AM4RAMY
S12 = SI*S]
£2 = E%*E
E2C =F2%*C
CS = C1 * ST

T1I = S1/ClI
CRD = le¢ =5¢% CI2
EM2= 1le- E2

C2W = COS (2e%W)
EPS=EPS12*EPS12
EPS32= EPS12%#%3
EPS2= EPS32% EPS12
FPS3= EPS32% EPS32
PHIB=PHI*EPS32
CI31 = le- 3e#CI2

FO2 = F/2
EOC6 = E/6e
€E03= E/3.

AC = Cl % AM 4

ACS = +5% SI®AC/P

ACS32 = B #EPS32% AM4%S]
AC32 = EPS32 *AC/P

GO = =C131-E2%CRD%*45

Gl = +25% E2% CI31

G2 =(E2-5121/3s =-e83333333% F2%512
G3 = E2%(416666666-1,45%C12)

G4 = F #(11e% CI2 =54)/12

GS = - E2% CI31/12.

ACS2 = ACS®P

C25P =AB*(1,5%#C-483333333F-01 +(1425-10,5%C)*C12)
C25 = E2% CS#* C25P

S1P=AM4¥ (14=T45%C12)

S1 = Tl * S1P

B2SP = AB*((e83333333F~1-1,5%C)*EM2 + CI2*(EM2¥124%C




1-2¢3333333 +143333333% E2) +Cl4%( =10,5%#C% EM2 + 1,25
2%( S~ E2)))
B2S = F* R25P
SOB = — CRD%® AM4/(2.%EPS12)
GAP1P = S1P® C25P
GAP1 = E2% S12 *GAP1P
El2 = ~-B2S*SOB/GAP1
S1S = S1#%S1
S0BS = SOB#* S0OB
GAPOB = SOBS + GAP1* (C2W
= EPS 2 *(C2S
B2F = FPS 2 *B2S
B2FE?2 = 2% B2E
F3XK = EPS3% GAP]
P2 =p%p
C22FE = 2.%C2E /P2
PI = 341415927
TWOP! =62831853
PI102 =145707963
ACC = 54%AC/S1P
A6 = (SHECI*AC/P2
EM22 = SQRTIEM2)
EM212= 24/EM22
EF = EM22/(1e+ E)
A3F = Cl2/(ACHPREM2)
ACSS==FPS#ACS*P
C4F=Co2F®*COF
A3=P2#P/(C12%C1)

C IB CALCULATION OF CONST, FOR TIME APPROXIMATION
C CHECK IF ARC TAN IS P17/2
CPMW COS(PHI -=-W)

SPMW = SIN{PHI-W)
2D = le + CPMW
IF (2D) 19291

2 TANG = P10?2

a]

N

m
i

GO T0 3
1 TANG = ATAN(FF®ABS(SPMW)/ZD )
3 ANG? = oS5*{PHI =W)
TANG = QUADI(TANGsANG?2sP102sPIsTWOPT )

TO1 =A3E*( E* SPMW/(1.,+F *CPMW) -~-EM212% TANG)+ TO

C IC IF LUNI-SOLAR PERT. CONSINDEREDs SET TAPE CONTROL ARRAYS
GO TO (49201 LS
C GLOSSARY
C TABl(7) = GM(FARTH) 1N KMX¥3/SEC**2
C TAB1(21)= GM(SUN) IN KM*%3 /SEC*%2
C TAB1(233= GM(MOON) 1IN KM%®3/SEC*¥2
C TAB1(25)= A.U. 1IN KM
C TAB1(27)= CONV.FACTOR FOR LUNAR COORDS.(KM) (FICT,FARTH RADIUS)
C TAB1{(33)= SECONDS/ MFAN SOLAR DAY
C (TAB2 CONTAINS FPHEMJ.TAPF OUTPUT CONTROL FLAGS)

4 DO 100 K = 1936
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100 TAB1l(K) Oe

TABL(T) 39860342
TAB1{21)= 143271544 E11
TAB1(23)= 4902,7779
TAB1(25)= 1,49599 £8
TABL(27)= 63784327
TAB1(33)= 86400,

NO 101 K = 1913

101 TAB2(K) = O,
TAB2(3) = 1.
TAB2(10)= 1.

TAB2{11)= 1.
GM(1) = TAB1(21)
GM(2) = TAB1(23)

C 11 CHECK CASE NO. FOR PERIGEE CALC,

20 IF (GAP1~- GAPOB) 32+31,30

C I11A COMPUTE CONSTANTS FOR CASE 1

30 IC =1
RK = SQRT(2.% GAP1)
XMOD = SQRT(GAP1 +GAPOR)/RK
AMP = SORT((GAP1-GAPOR)/(GAP1+GAPOR))
CW = COS(W)
IF(CW) 34933934
33 CHI1S= W
GO TO 35

C 111 Al

34 CHIl= ATAN(SQRTU(SIN(W)/(AMPXCW) ) #%#2 ~1,))
CHI1S = QUADL(CHI1sWsP102sPIsTWOPI)

C 111 A2
35 QPER = ELI™E (XMOD)
PHIO = = ELIICHIL1S, QPER)/SIGN(RKsSOB)+PHIB
Iwc= 2
GO TO 40
C 1TIR COMPUTF CONSTANTS FOR CASF 2
31 1C = 2
C IF PERIGEE INITIALLY O OR Pls IT IS CONSTANT

SW = SIN(W)
IF (SW) 311+310,311

310 XW = W
IWC = 1
GO 70 40

311 RK = SQRT(2.*GAP1)
TW2=ARS(SW/{1,+COS(W})))
W02 = W/2s
GO TO 40
C 111C COMPUTF CONSTANTS FOR CASF 13
32 1C =3
RK = SQORT(GAPOB+GAP1)
XMOD= SQRT(2.%GAP1)/RK
RMK = SQRT(GAPNB~ GAP1)
AMP= RMK/RK




C

111
36

37

11l
38

Iv
IV A
40
Iv B
41

Iv C
42
Iv D

IV E
43

Iv F
44

v

CW = COS{wW)
IF (CW)137936937

Cc1
CHI?S = W
GO T0 138

CHI2 =ATAN( ABRS(SIN(W)/ (AMP*CW)))

CHI2S = QUADI(CHIZ2sW4sPIO2,P1,TWOPI)

c2

QPER = FLIPE (XMOD)

PHIO = -ELI (CHI2S» QPER)/ SIGN(RK,sS0B)
DETERMINE FORM FOR FAZFVALUATFE CONSTANTS

IF (ARS({CRD)=-¢106) 42+42441
1€ =1
GO 10 50

GAM1= B2SP/(SI *SQRT(GAP1P))
IF (SOBS~ GAPl) 43,543,44
IE = 2

GOK = GAPOB/GAP1
SOK = SOR/SQRT(GAP1)

GO 70 50
IE = 3
0SK2 = GAP1/50BS

OSK = SQRT(0S5K2)

STORE APPROXes SOL, AND DFRIV, FOR P

50

AS(1)=P
AD(1)=0.0
RETURN
FND

+PHIB
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5.3 SUBROUTINE APSOL (PHI, PHIT, IP, XIO, XILO, T0, W, E, K10R3, PHIIB, EPS12)

Calculates approximate solutions and necessary derivatives for the desired
¢y (totel
¢ unmodded), 1lst point flag (= 1 if 1lst point = 2, otherwise); initial values

oo? L

;;, and 61/2. Outputs are in common /APS/ as arrays AS(6), AD(6) for

angle ¢. Inputs are ¢ (modded to 2m each time it is stepped) ,

of p, i t, w, and e; flag to determine perigee center of oscillation,

09

approximate solutions snd derivatives. AS(1l) = P AS(2) = Qs AS(3) = i,

dp, an_ di_
AS(L) = q_, AS(5) = u_, As(6) =t . AD(1) = T AD(2) = Tt AD(3) = TS
dqa dta 2
AD(L) = T AD(5) = H, AD(6) = Y Other outputs are C2IOC = cos™ 1,
edq.
XI1 = eiy, Ul = €Uy , XI0oC = 1ee D1 =-7;F-. Uses as input labeled common

/CON/ to provide all the constants obtained in CONST.

5.3.1 Equations in Order of Solution

Calculate

]
<

PHIB

PHIBT

0
©
H

I. Determine if This is the First Point of the Trajectory.

A. If this is the first point o. the trajectory (IP =1), go to I B;
otherwise (IP = 2) go to II.

B. Set some of the approximate solutions equal to the initial conditions.

ta = ti’ l01/2 =

Combine Lo and L

1/2 constants and store in Lo location.

Go to TII,




II. Determine the Case Number for

(IC is the Case Number).

A,

If IC =1, go to IIA,
If IC = 2, go to IIB.
If IC = 3, go to IIC.

Calculate w from case 1 formula,

If cn = 0, set

W =ow

Adjust this w to the proper quadrant by using QUAD2,

Go to III,

If w=0orn,

case 2 formula.

Calculating the Perigee

w = %-and go to QUAD2; otherwise,
- 1/2
K, =K
= tan™t ([-1=2] L
K+ cn[¢2nl (¢—¢o)]

w = QUAD2 (w, z., K, K1OR3, )

l’

(IWC = 0); go to III., Otherwise, calculate

sign (gg) /5;; (3;3;)

XW=gw=2 tan-l{e

Adjust the quadrant of w wusing QUAD].

Go to III.

w W ™
w = 2 QUAD1 (5, 23 Ty 2m)

tan ;—I}

w from
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C.

Calculate w from case 3 formula, If cn =0, set w = %- and
skip calculation. Otherwise, calculate
1/2

X - K 1/2 [l-cnz(z2)]

cn (z2)

Adjust w to correct quedrant using QUADL and the elliptice
function quarter-period K.

w = QUADL (w, Z,s Ky 7, 2n)

Reduction of Entries to Trig Functions for Approximate Solutions

and Derivatives.

CP = cos ¢
SP = sin ¢
CXW = cos w
SXW = sin w
S2P = sin 2¢ = 2(CP)(SP)
C2P = cos 2¢ = 2(CP)2-1
S2XW = sin 2w = 2(CXW)(SXW)
CoXW = cos 2w = 2(CXW)2-1
CPPW = cos(¢+w) = (CP)(CXW) - (SP)(SXW)
SPPW = sin(¢+w) = (SP)(CxW) + (CP)(SXW)
CPMW = cos(¢-w) = (CP)(CXW) + (SP)(SXW)
SPMW = sin(¢-w) = (SP)(CXW) ~ (CP)(SXW)

CoPMW = cos 2(¢-w) = 2 cos2(¢-w)-l = 2(CPMW)2-1
S2PMW = sin 2(¢-w) = 2 sin(¢-w) cos (¢-w) = 2(CPMW)(SPMW)
C3PMW = cos (3¢-w) = cos 2¢ cos (¢-w)- sin 2¢ sin (¢-w)
= (C2P) (CPMW) - (S2P)SPMW)

S3PMW = sin (3¢-w) = sin 2¢ cos (¢-w)+ cos 2¢ sin (¢-w)
= (S2P)(CPMW) + (C2P)(SPMW)




CLPMW = cos (4¢-2w)
cos (3¢-w) cos (¢-w) - sin (3¢-w) sin (¢~w)
= (C3PMW) (CPMW) - (S3PMW)(SPMW)
SUPMW = sin (L¢-2w)
sin (3¢-w) cos (¢-2w) + cos (3¢-2w) sin (¢-w)
= (S3PMW) (CPMW) + (C3PMW)(SPMW)

IITI. Calculate approximate nodal solution.

OMEQO = @
oo
OMEO12 = Qo 1/2
OME32 = 93/2
_ 1 1/2 3/2
e, = 5172 [Qoo te Q01/2 te 93/2] + Lo
Calculate
XTIl = 811
and
Ul = eul
Calculate
3 -e, sin (¢~w) 5 -1 ¢1-e§ et
TA=t = D [ tan(557)] + &

{ + tan
a 3 2, 1l+e_cos(¢-w) 1+e
cos ioo(l-eo) o /l_ei o

providing tan (2529 # =, If it does, take tan ™t (=) = %u

Take the positive principal tan-l and find correct quadrant using

(31)
(32)

(33)

(38)

(58)

1

QUAD1., Save the number of complete revolutions and add this to the QUAD1

result,
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IV. Decide Which Equations Will be Used to Calculate i

0 1/2 and el/2.
If IE = 1, go to IVA,
If IE = 2, go to IVB.
If IE = 3, go to IVC.
A, Calculate
AA = [cos2w = cos2uw]
— + . Ll — -
S, + sien (So)/Ko K, cOs2w
then
=3 = *l
ES12 61/2 32 AA
= - *e
XI12 = 1, 1), = C3°AA
Go to V,
B, Calculate
i =1 [sign (S) (k_ -« cost)l/2 -5
o1l/2 " 8 o o 1 °
— ’-K-o §-O
e =y [sign (s )Y = cos2w - _]
1/2 1 o' v, ',-K—l
Go to V,
C., Calculate
=L 5) (% /2 _3
1 1/2 = 5 [sign (SO) (ro - K1c082w) - So]




o 1 (cos2w - cos 2uw)
/2" 13 —
. [ =
1+ vl + = (cos2w - cos2u)
g2
o
V. Calculate
=1 = 1/2 .
XI0C = 1 = iOo + € 1° 1/2
XTIA=1 =1 + el
a oc 1
_ - 1/2
EA = ea = e +¢€ el/2

UA = ua = uo + eul

VI. Calculate the Derivatives and Second-Derivatives of the Approximate

Solutions Which are Necessary to Find the Modified-Encke Equations.

These are:

DOME12 =

DOME32

(63)

(65)

(66)

(67)
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= (62)
Ap(2) = 5=
ai
(71
AD(3) = a,i (69),(70),(T1)
de
= == (12),(13)
DEA = F
du
= o (74)
DUl = a‘r
2
DoV = 9—% (19)
dé
d2e
D2FA = 2a (78)
dé
1/2 a2it 1/2 (80)
EPD2I0 = ¢ —
d¢
60)
AS(k) = a, (
2a 81
DQl = ¢ E$l (81)
diOC 1/2 . i diO 1!2 (70)
DSIOC = sin ioc 39 = ¢ sin o Y,
H=H (17)
at
2 (106)
DTA = E¢—
- 3% (76)
DO = 35~

= i 1 values
If this is first point of trajectory (IP = 1), print initial va
of Q (deg), i (deg), u, and q and return.

{ d return.
If this is not the first point (IP = 2), skip the print an

98




5.3.2 Detail Flow Chart

Set tagti'

w=w, and
101/2781/270"

Combine L° & L1/2

% Includes Transfer

l 1IA

*
Calculate w
Using Case 1

Equations

to Obtain %- for
tan™t (w)
SUBROUTINE APSOL
1IIC
Calculate w
Using Case 3
It wOor «w Equations
Go to III,
Otherwise
Calculate w
Using Case 2
Equations

[} ad

e

Calculate Trig
Terms, Qa,

i

*
10 Yo by
v

Which Form

?

m

from (37)
from (L45)

Calculate 101/2
Calculate el/2

of i and e
o

1/2

(¥ V]

l IVC

1/2 from (36)
Calculate el/2 from (47)

Calculate io

Calculate iol/2 from (36)
Calculate el/2 from (.6)
Go to V
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v
Calculate i , e , i
a’ "a

oc’?
and u
a

VI

2nd

Calculate Derivatives and

Derivatives of Approximate

Solutions. Calculate qa
dql dqa

DG T

Print Initial

Values of Q, i,

u, and q.




Section 5.3.3 Program Listing

The following pages give the listing of subroutine APSOL.
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SUBROUTINE APSOL(PHI ¢PHIT 1P XT0¢XLOsTOsWsFsK10R34PHITR,FPS12)
COMMON /CON/ Cl1eCI29C149S519S129CSsT1eF24F2CeFM29P49AR
13CRDsC2WIEPS329EPS24EPS34C1314E02eF069F039AMLUSACIACSHA
2 CS32+AC329G09G1eG2sG39G4sG59C2S5P9sC2S59B2SPeB2S9S1PsS1,
3S0BsGAP 1P 9GAP1 ¢ GAPOByC2E,B2E9yB2E29E3K4C22EsPIsTWCPI o
4PI029s1CsRKeXMODsAMP sCWsQPERSPHIO s TW29RMK s IE 9 GAM] +GOK »
5SOKs0SK290SKsE12+S1S9S0BS sACSS sCUESA3LEPS
69ACS2¢EM229EM212EFsA3ESsTOL19P29sACCrAGIXWe IWC W02
COMMON /APS/AS(6)3sAD(6)sC210CsUY o XI0CINQ1sXI1HsEA
PHIB = PHI* EPS32
PHIBT = PHIT #FPS3?2
c1 IS THIS 1ST POINT
GO TO (10420 )o1P
C IB SET APPROXe SOLSe= INITIAL CONNDITIONS
10 TA = T0
X112=060
ES12=060
XW=W
C COMBINE LO AND L1/2 CONSTANTS
XLO=XLO+ACC*(SOB*PHIRT-XW)
GO TO 30
cl1 DETERMINE PERIGEE CASF NOs (1ICQ)
20 GO TO (21925928)e 1IC
C I1A CALCULATF PFRIGEF RY CASF 1 FORMULAS
21 ANG = RK¥ (PHIBT-PHIO)
CN = SQRT(1. =(FLIF({ANG IRE AV
IF (CN) 23422923
C IF PERIGEE SHOULD BE PI1/2 4 FLIMINATF ARC TAN
22 XW = PIO2
GO 10 24
23 XW = ATAN({ AMP/CN)
24 XW = QUAD2(XWesANGsQPERSKIOR3sP1)
GO 7O 30
C 11B CALCULATE PFERIGFF BY CASF 2 FORMULAS
C CHECK IWC TO SFF IF PFRIGFF IS CONSTANT
25 GO TO (30s26)s1WC

26 ANG = RK#*(PHIBT -PHIIR)
XW = ATAN( TW2 *FXP(STGN{ANGsSOR) )
XW = 2¢xQUADLIIXWsWO2sP102+sP1,4TWOPI)
GO TO 30

C 1I1C CALCULATE PERIGEE BY CASE 3 FORMULAS

28 22 = RK¥(PHIBT-PHIO)
SN = ABSI(ELIF(Z2))
CN = SQRT(1e — SN*SN)

C IF PERIGEE SHOULD BE PI/2 SELIMINATE ARC TAN
IF (CNY1290929+290
29 XW = P102
GO TO 280

290 XW = ATAN( AMP®SN/CN)
280 XW = QUADI(XWeZ2+sQPFRWPLsTWOPI)
C 111
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C

C

C

C

C
C

CALCULATE TRIG TERMS FOR SOLSe AND DERIVATIVES
30 SP = SIN(PHI)

CP= COS(PHI)

CXW COS{XwW)

SXw SIN(XW)

S2P=2.#(P*5P

C2P= 24% CP®CP =1,

S2XW = 2e%#SXWH*CXW
C2XW = 2% CXWHCXW=1a
CPPW =(CP*CXW)~(SP*SXW)

SPPW =(SP*CXW)+(CP¥* SXW)
CPMW = (CP® CXW)+(SP*SXW)
SPMW ={SP*CXW)={CP*SXW)

C2PMW = 24% CPMW*CPMW-1,

S2PMW = 24%CPMW *SPMW

C3PMW = C2P*CPMW - S2P*SPMW
S3PMW = S2P*CPMW +C2P¥* SPMW
C4PMW = C3PMWXCPMW -S3PMy #SPMW
S4PMW = S3PMW #CPMW +C3PMW %SPMW

CALCULATE APPROXe NODAL SOLUTION
OMFO0 = - AC*¥PHIRT
OMF012= ~ACCH*(SOB* PHIRT-XW)
OME32 ==ACH (= o5%#S2P+F#SPMW~FO2%*SPPW —FO6%S APMW)
OMEGA = OMEOO/EPS12 +OMEO12 +EPS*OME32+XLO
CALCULATE I1 APPROXIMATION
XI1 = ACS2#(C2P+E*CPPW +F03% C3PMW)*FPS
CALCULATE Ul APPROXIMATION
Ul=A6% (GO+G1%#C2XW+G2%#C2P+G3*C2PMW+G4 #CAPMW+GS*C4PMW )
1 *EPS
GO TO (504300)41P
CALCULATE APPROXe TIMF oTA
CHFCK FOR ZFRO DIVISCR IN ARC TAN

300 ZD = le+ CPMW

IF (2D) 31432431
32 TANG = PIO2

GO T0 33
31 TANG = ATAN(EF%* ABS(SPMW)/ZD)
33 ANG2 =(PHIT=XW)/2,

ANG3=ANG2

TANG = AINT(ANG3/TWOPI1)*TWOPI +QUAD1(TANGsANG2sP102s

1PI+TWOPI)

TA =A3E*(~E#SPMW/ (1e+F*CPMW)+EM212%TANG)+ TO1

IV CHFECK FORM OF F AND I FQUATIONS

SQ = SQRT(GAPOB- GAPI*#C2XW)
GO TO (40e441942)y IF

C IVA CASE 1

40 AA = (C2W =~ C2XW)/(SOB+SIGNISQsSOBY)
ES12= B2S%* AA
X112= C25% AA
GO TO 50

C I8V CASE 2
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41

C 1vC
42

50

SQ1= SQRT(GOK #*C2XW )

X112 ={SIGN{SQeSOB)=-SOR}/S1

FS12 = GAMI®#{SIGN(SO1+50R)~ SOK)

GO To 50

CASE 3

X112 =(SIGN(SQsS0B)~ SOB)/S1

CMC = C2W - C2XW

ES12= GAM1#OSK#CMC/{14+SQRT(1e+0SK2¥CMC))

xXIoC = XI0 +EPS12 *XI112

XIA = XIOC +XI1

EA = E + EPS12% ES12

cl1oc = COS{X!1oC)

s10C = SIN(XIOCQ)

c210C = C10C* Cl10C

voo= (C210C #(144FA* CPMW)/P?2

UA = U00+Ul

CALCULATE DERIVATIVES
DOMEO = =AC®» EPS
DWB = SOB + S1%#XI12
DW = EPS32% DWB
DOME12 = ACS32% X112
DOME32 = ~AC* (-C2P+E*(14~ DW)*CPMW -EO2¥ {1¢+DW)*CPPW
1= EO6*(3¢=DW)*C3PMW)
AD(2)= DOMEO + DOME12 +FPS *DOME32

AD(3)= C2F #* S2XW +ACSSH(2,%S2P +F¥*(]144DW)*SPPW +FO3*
1(34= DW)*S3PMW)
PDEA = R2F# S2XW
DU1l= A6*( ( Gl%DW*S2XW + G2¥*S2P +G3% (] a=DW) *S2PMW)
1%(=24) = G4*(3e~DW)* S3PMW =2,%G5%(2.~ DW) ¥S4PMW)
N2W = E3K* S2XW
D2EA= B2E2% DW¥ C2XW

FPD210 = 24*C2FE*DW¥*C2XW
AS(4) == C22E*S2XW*CIOC*SI10C*(le+ EA* CPMW) +C210C
1 % (DEA*CPMW —EA*(1,~-NDW)*SPMW) /P2 + FPS¥DU1
DQl = A6*( =24#G1%( D2W® S2XW+ 2 #¥DWADWHC2XW) =4¢%G2
1%#C2P =24%G3%{24%C2PMW*(14-DW)*¥2 —NOWXS2PMW) = G4 ¥{
2C3PMW (3¢-DW) %%#2 ~ D2W*S3PMW )= GSX (C4PMWRAG* (P4 =
INWIHH2 =2 g RD2WHSLPMW) ) #FPS

NSI10C= C2F*#S2XW#*S10C

H 3 =24%U00%(C4F %S2XWESOXWR (24%¥C?210C-140+4 S10C*CIOCH
1EPD210)/C210C+CI0C* (=44%#DSI0C *DFA ¥CPMW +2,
2% (EA* DSIOC =CIOC%DFA)*(1e—NW)%¥SPMW +CTOC*(D2FA +FAXDW
3% (2,~DW) ) ¥CPMW+ FAXCTIOC*N?2W*SPMW ) /P2

DTA = A3%(14-DW)/(1e+F*¥CPMW) X¥?

DQO=-U00+C210C/P2+H

AD(6)= DTA
AD(4)= DQ1+DQO
AD(5)= H
AS{2)= OMEGA
AS(3)= XIA




60

61
70

AS(5)= UA

ASL6)= TA

GO TO (60970 ) slIP

XNODEI=OMEGA/e174532933F~01

XINCI=XIA /¢17453293F~01
VEL=AS(1)%UA*T7,50535872/COS{XTIA)
WRITE(6961)XNODET ¢ XINCI»UUAWAS{4) oVFL

FORMAT(32H INITIAL VALUFS OF NODFsINCesUsQ //4F18,.8)
RETURN

FND
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5.4 SUBROUTINE EXPERT (LS, OMEGA, TILT, PHI, R, T, DT, AF, AG, AH, N2)

Subroutine EXPERT calculates the nondimensional accelerations 85y ag,
and &, due to the earth's potential and due to the sun and moon if the
luni-solar flag LS = 1. Other inputs are @, i, ¢, r, t, At, and N2,
(At is the difference in time since the last entry to this routine),

5.4,1 Equations in Order of Solution

Store quantities needed for SOLUN and GPOT routines.

SP = sin ¢, CP = cos ¢, SI = sin i,
CT = cos 6, ST = sin 6,
Check if longitude is required.
If N2 = 0 (no tesseral or sectorial harmonics),
longitude not needed, go to IB.
If N2 # 0, longitude needed; go to I.

I. Find longitude (A) of the Satellite.

compute cos b = cos ¢ and
sin ©

b= cos™+ (cos b).

This gives the principal value. To find desired angle, check cos 6.
If cos 6 > 0, principal value is correct, go to IA.
If cos 6 < 0, replace b with 27 - b and continue.

A. Find longitude of Greenwich at this time by replacing previous

value with the previous value plus amount the earth has rotated. If
the longitude of Greenwich exceeds 2m, reduce it by 2.




Calculate longitude of satellite:

A =Q+b-)\G

B, Find accelerations due to the earth.
Call subroutine GPOT.

II. Consider Luni-Solar Perturbations.

If luni-solar flag (LS) is 1, go to III and prepare to calculate

luni-solar perturbations.

If LS is 2, return to the calling program,

III., Convert R to km and T to Hours Before Entering Luni-Solar Routine.

Calculate accelerations due to moon and sun (subroutine SOLUN).

Sum lunar and solar contributions. Convert accelerations from km/sec

to nondimensional units.

A. Rotate these accelerations into the desired AF, AG, and

Compute necessary trig functions for the rotations,

8@ = sin q =sin i cos b

CQ=cosg=+VvV1- sin2q (since q :_90°)

o
i

GP (1, J) cos q - GP (2, J) sin q

GP (1, J) sin ¢ + GP (2, J) cos q

o
1]

ah=GP (3: J)

2

AR frame,

B. Sum lunar, solar, and earth's potential contributions and return.
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5.4.,2 Detail Flow Chart

SUBROUTINE EXPERT

i

Store sin ¢, cos ¢, sin i, cos 6, sin 8

Is
Longitude (o)

Il N2#0) “\\\E:ij:ig,/" (N2=0)
10

Compute cos b

and b YES 1041. Replace b
With 27-b
Is
cos O NO
<07
IA 11

Find Longitude
of Greenwich

Is

56~ Longitude Calculate
> 2n? Longitude
13

12 of Satellite

Reduce Longitude
by 2n

IB 180

Calculate o5 ag, & Due to Earth
Subroutine (GPOT)

Luni-Solar

(Ls = 2)

(Ls = 1)

IIT A&B

Prepare Inputs to Luni-Solar Routine. Determine Luni-Solar Perturbations

(SOLUN). Convert Jutput Into Nondimensional Units and Rotate to Desired Frame,
Combine with Accelerations Due to the Earth.
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Section 5.4.3 Program Listing

The following page gives the listing of subroutine EXPERT.
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SUBROUTINE EXPERT(LS+OMEGAsTILTsPHI sRsTeDTsAFsAGsAHIN2
1)
DIMENSION A(3)
COMMON /TABLE/ TAB1(36)sTAR2(13)+sGP(392)sGM(2)
COMMON /EX/ CBsCTsSTsFWOGsFROTsSPsCPsSI
C STORE QUANTITIES NEEDFD FOR SOLUN AND GPOT
SP = SIN(PHI)
CP=  (COS(PHI)
ST = SIN(TILT)

CT = SI* SP
ST = SQRT(1, =CT* CT)
C CHECK 1F LONGITUDF NEFDFD

IF(N2) 70480470
C I FIND EARTH LONGITUDF OF SATELLITE
70 CB =CP/ST
B = ACOS (CR)
IF (CT) 1051111
10 B = 642831853 - B
C IA
11 EWOG = FWOG + FROT # nT
IF {(FWOG ~643) 12913513
13 EWOG = EWOG - 6.2831853
12 EW = OMEGA +B -~ FWOG
IB FIND ACCELERATIONS DUE TO THE EARTH
80 CALL GPOT(STsCT+EWsRIAFIAGsAH)
11 CONSIDER LUNI-SOLAR PERTURBATIONS
GO TO (304201 LS
111  PREPARE FOR LUNI=-SOLAR ROUTINE
FIND DIMENSIONAL R AND T
30 RD = R * 637841521
TD = T #* ,22411493
CALL SOLUN (OMFGASTILTsPHI RN TN)
SUM LUNAR AND SOLAR PFRT. AND NON-NTM,
GP (K1) sK=1934ARE THE PERTACCFLSDUF TO THE SUN (KM3/SFC2)
GP(Ks2) 9K=193,ARE THE PERTLACCELSeDUE TO THE MOON(KM3/SEC2)
DO 31 1I=1,3
31 AfI) =(GP(I141)+GP(1+2))/,97983068 F-02
C 1I1A ROTATE ACCELERATIONS TO AF, AGs AH FRAME AND SUM

N

n

alal

aNaXs!

SQ = SI* CB
CQ = SQRT(1le- SO* sSQ)
AF = AF + A(1)*CQ- A(2)%SQ
AG = AG + A(1)%5Q +A(2)% CQ
AH = AH + A(3)

2?0 RFTURN

FND
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5.5 SUBROUTINE ENCKE (PT, OMEGT, XIT, QT, UT, T, PHI, LS, DT, N2, XIN, PN,
' UN, P2, PA, QN, E, AJ2, AJ4, KDER)

Subroutine ENCKE evaluates Encke equations of motion for the Runge-Kutta

subroutine. Inputs to ENCKE are p, @, i, q, u, t, ¢, LS, DT, N2, i , p , u ,
Pgs Pgs Qs J2, Jh' and KDER. Other inputs come from subroutine APSOL

through labeled common /APS/, Output is the array E(6) where:

ap_ an_ at_ dq_
E(1) = 3 E(2) = Tyl E(3) = Y E(L) = Ty
dun dtn
E(5) = Ty and E(6) = Ty

5.5.1 Equations in Order of Solution

I. Compute and Store Useful Quantities.

Find r, cos i, sin i, tan i, c05213 sin?i,‘cos3i. coshi, Al‘ u2,
p2, uS, sin ¢, cos ¢, cos 6, and sin 6,
II. Find Perturbative Accelerations, &, ags &, (EXPERT).
Calculate
o, r@®, 06, FHEF .
Calculate -
) 9E§9§_é p2u2sin21 sin 6+ F coshi cos ©
e N B R TIer PR RUM =5E_§_Cm o
Calculate te

m



A. Zero J2 and Jh since they have already been accounted for.

DPHI = 1° in radians

¢l ¢ - DPHI —

¢2 ¢ + DPHI

du

Ay = B
DELU = Au = 7= DPHI

Rl

u=Au

R2 =

ut+iAu

Find a, , agl, ahl, and a, , agz, ah2 (EXPERT),

1 2
Calculate:
da
DAFAP = 53_ approximate
da (88)
DAGAP = EE& approximate
Set the total derivatives equal to the sum of the exact portion
and the approximate portion.
Restore the values of J2 and Jh in the working array for
subroutine GPOT.
IV, Complete the Evaluation of the Encke Equations,
Compute: qF
DFDPHI = — (87)

d¢

13
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V1l

"
<

5 Vv

AUZ = Aju, VU2 = 52, VO2 = VU2 (2 + VU2),

V3P =V

W=

vz = (1 + vuz)2

Calculate
a
E(4) = E%Eu
E(5) = Q
dp,
E(1) = dTn' = %ﬁ'
an an
s n_4de__ e
B2 = -~ T
ai ai
=n_41 e
at at
B6) = —2=3_ 2

dé ae ~ d¢ °

Return

(8k)

(100)

(101)




5.5.2 Detail Flow Chart

SUBROUTINE ENCKE

I

Compute and Store Useful
Quantities

II

Find Perturbative Accelerations
(EXPERT) and Evaluate the Ex-
pressions for

at ap an a1 dee

ag* d¢* dgr ap dg e

YES

-3

III A

Calculate Approx.
Derivatives Using

¢l' ¢2’ rl’ r2 a.nd
Subroutine EXPERT

v
Y

Complete Evaluation
of Encke Equations
and Store in Array

E(6)

RETURN

ns



Section 5.5.3 Program Listing

The following pages give the listing of subroutine ENCKE.
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c 1
Cc 1II
C II1
c 111
21

SUBROUTINE ENCKE(PT,OMEGTeXITeQTsUTsTsPHISLSsDTeN2

19 XINsPNosUN9P2sPAJQNSEsAJ29AJ4sKDER)

DIMENSION E(6)

COMMON /APS/AS(6)sADI6) sC210CsUY1sXIO0CsDQL1eXI1/DERIV/DENK(3)
COMMON/ENERG/ Cl12oU34CT2:USDPHIDTs U2/CPOT/COFFF(83)
COMPUTE AND STORF USEFUL QUANTITIES

R= 1./UT

C1 cosSixXIT)

Sl SIN(XIT)

TI St1/C1

Cl2= C1% CI

Sl2= Si* S1

CI3= ClI2% (I

Cl4 = CI3% (I

Al = PT/CI
U2= UT#UT
PT2 = PT* PT
US= UT#* 5

SP= SIN(PHI)
CP= COS(PHIN
CT = SI* Sp
ST = SQRT(1.,-CT*#CT)
FIND PERTURBATIVE ACCFLFRATIONS
CALL EXPERT (LSsOMEGToXITsPHIsRsTsDTsAFsAGsAHIN2)
DUDSI = R¥* ST#* AG
F = R® AF + TI® CP*D'IDSI/ST

DPHIDT = PT# U2/C1 +F®CI3*CT/(PT* SI2#%ST)
DTDPHI = 1,/DPHIDT
DPDPHI = DUDSI/ DPHIDY

DENOM = PT2% U2#SI2#ST + Cl4%*CT* F
RUM = F/DFNOM

DODPHI = =~CI13 %#CT*RUM

DIDPHI = ~SI2#CI3*CP* RUM

VO = FRCIZXCT/(PT#SI2%ST)

DA1PHI =(DPDPHI +TI®DIDPHIY /C1
DTHETP = —(CI%SP*DIDPHI +(CP%SI)/ST
CT2=CT*CT

C2T=2.%CT2~1.,
S2T=24#STHCT
CCT=3e~Te*CT2

U3=UT*U2

DAFDPH=DENK (1) *UBR(UTRC2TRDTHETP 42 %QT*
1S2T)#(1.+DENK(2)#U2%CCTI+NFNK(3) XUSRSO2TH(24%
2CCT+ 7« *UTXSOTADTHFTP)

DAGNPH=040

CHECK IF APPROX. VALUFS FOR DAF + DAG ARE REQUIRED
GO TO (20+21)+KDER

A CALC, APPROX, VALUFS FOR NFRIVATIVFS

COEFFI(2) = 0.0

COEFF(4) = 0.0

DPHI = 417453293 E-01

1z
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C Iv

PH11 = PH! -DPHI
PHI? = PHI +DPHI
DELYU = AS(4)# DPHI

R1 = le/( UT = DELD)
R2 = l4/(UT + DELU)

CALL EXPERT (LSs OMEGToXIT sPHI1eR19Ts0o
1 AF1y AGle AHls N2)
CALL EXPERT (LSy OMEGTs X1Ts PHI2» R2+T40

1sAF2s AG2s AH2s N2)

DAFAP = ( AF2 - AF11/ +34906586E -01
DAGAP = ( AG2 - AGl)/ 434906586 F-01
DAFDPH = DAFDPH +DAFAP

DAGDPH = DAGAP

COFEFF(2) = AJ2

COEFF(4) = AJL
COMPLETE THF FVALUATION OF FNCHF FQSe

20 DFDPHI =(- F*QT + DAFNPH + DAGNPH *CP % Tt

1 + AG * (CP*DIDPHI/CI2 = TI1 #SP))/UT
V1l = CT#(DFDPHI = F*(DAIPHI/A1l +2+*DIDPHI/(SI*CT)
14DTHETP/Z{CT®ST) ) )/ (AL%STRTI*TI)

AU2 = Al*U2
vu2 = v0/AU2
V02 = VU2#¥(2.+ VU2)

V3P=-(V02*AD(4)+AH/(A1*AU2))+QT'(l.+VU2’*(2.*0T*VU2/UT-V1/AU2-
1 DAl PHI/AY)
V22=(1e+VU2) #%2
Ela)=({— UN = Ul =SIN(XIT+XIOC)I*SINIXIN+X11)/PT2
1- C210CH*PN*(PA+PT)/{P2%PT2) +V3P -AD(5)- DQ1}/V22

E(S)= QN

F(1)= DPNPHI

E(2) = DODPHI =AD(2)
E(3) = DIDPHI - ADI(3)
E(6) =DTOPHI -~ AD(6)
RETURN

FND




5.6 SUBROUTINE RKTOM (KR, IP, KHALT, TF, HAH, EMIN, EMAX, MFAIL, FDT, DTM,
DT, T, PHI)

Subroutine RKTOM Calling Statement

KR
IP
KHALT
TF
HAH

EMIN
EMAX
MFAIL

PHI

Runge-Kutta flag

Initial point flag

Halt flag

Run stop time

Array of dependent variables and their derivatives;
HAH(1) through HAH(6) are dependent variables
HAH(T) through HAH(12) are their derivatives

Input minimum error allowed

Input maximum error allowed

Maximum failures allowed

Multiplier to decrease computing interval
Multiplier to increase computing interval

Current value of computing interval

Current value of independent variable

Current value of the angle ¢ which is always kept

5.6.1 Equations in Order of Solution

Test Runge-Kutta flag, KR,
If KR = 1, continue below.
If XR=2, go to IV,
IfKR=3, gotoV,
IfKR=1L4, go to VI,
If KR=5, go to IB.

I. Test Initial Point Flag, IP.

Irf IP =1, continue below,
Ir IP = 2, go to IC.

<

2n.
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A.

B.

C.

D.

Initial point calculations,

IP = 2 Increment initial point flag

KHALT = 1 Set halt flag to continue run

KC =1 Set Simpson's rule flag to signal
first cycle computations

KF =0 Set intermediate and total

KFAIL = O failure counters to zero

SR(i) = 0 Set Runge-Kutta increments to zero

i=1,2,..6

Save quantities for Simpson's rule calculations and for use if

computing interval selection fails.

Set
ss(13) = T
ss(1k) = ¢
ss{i) = HAH(1)
fOI' i = 1’2’ 000012 4
Go to ID.

Test Simpson's rule flag, KC.

If KC = 1, set KC = 2 and continue below,
If KC = 2, go to III.

Save quantities for ordinary Runge-Kutta use,
Set

S(13) T
S(14) = ¢
S(1) = HAH(1)
for 1 = 1, 2, s.e0 12 .




Compute the next value of time and determine if it exceeds run

stop time,
Tn = S(13) + AT

If Tn > TF, continue below,

If T
n

", go to IG.

Ir T
n

A

", go to IH,

Set AT = TF - S(13).

Set halt flag.

KHALT = 3

Complete first pass of Runge-Kutta,
Compute

AT2 = AT/2

T = S(13) + AT2

Compute Runge-Kutta parsameters,

RK1(i) = AT + §S(i+6)

for 1 =1, 2, «ues 6

Compute new values for quantities.

HAH(i) = S(i) + 1/2 RK1(i)

for i = 1, 2, eeee 6

9

Increment Runge-Kutta flag.

KR = 2

21
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III.

Exit from Subroutine (Return).

Perform Accuracy Tests on Integrated Values.
Reset Simpson's rule flag.

KC =1

Compute

AT3 = AT/3

Set
HS(i) = AT3[ss(i+6)+hs(1+6) +HAH(1+6) ]

for 1 =1, 2, cvee 6
Compute estimated and allowable errors.
Cpay = Maximm of |sR(i)], 1 =1, 2, «4ee 5
E gy = Maximum of |SR(1)-HS(i)], i =1, 2, ¢eee 5

Set Runge-Kutta increments to zero.
SR(1) =0, i =1, «cus 6

E = Maximum of [E o or 1072 times the maximum HAH(i)]
all max max

121, 2, ceeee 5

Ermin = Emin Cmax

Print the values of T, AT, number of intermediate falilures,

Eg112 Fegyr and B




Test estimated error versus maximum allowable error.

If Eest > Eall’ continue below.

If E go to III D,

est = Eall’

A, Increment total failure counter,
KFAIL = KFAIL + 1
Test total failures against meximum allowed.

If KFAIL > MFAIL, continue below.

If KFAIL < MFAIL, go to III C.

B. Set halt flag to stop run.
KHALT = 2

Write "computing interval selection fails,"

C. Increment intermediate failure counter.
KF = KF+l
Set halt flag to 1.

KHALT = 1
Go to III H.

D. Test estimated error against minimum allowed.

Ir Eest 2LE min’ continue below.

It E >E

est rmin’ go to III G,

exit subroutine at II.

<
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E.

F,

G,

H,

Increment total failure counter, KFAIL.
KFAIL = KFAIL + 1
Test total failures against maximum allowed.

If KFAIL > MFAIL, go to IIIB.

If KFAIL < MFAIL, continue below.
Increment intermediate failure counter.
KF=KF +1
Set halt flag to 1.
KHALT = 1
Increase AT by input multiplier,

ATnew = DTM ATold

Restore values saved at IB to the ordinary Runge-Kutta values.

s(i1) =sS(i), i =1, 2, «... 1b
Go to IE,
Set intermediate failure counter to zero,
Compute new allowable computing interval,

E

1/4
all/ est]

AT . = (FDT)(ATOld)[E



Test =- against 10-8.

Ir AT/T 5'10-8, print "Computing interval = (AT),"
and go to III B,
It AT/T > 10'8, continue below.

J. Test intermediate failure counter, KF,

If KF < 0, continue below.

If KF > 0, go to IIT L,
K, Set KR = 5, and exit to print at II.
L., Restore values saved at IB to ordinary Runge-Kutta values,
(1) = s8s8(i), i=1, 2, ve.. 13
Go to IH,

IV, Second Pass of Runge-Kutta.

Increment Runge-Kutta flag.
KR =3
Compute Runge-Kutta parameters and new vaelues of dependent variables.
RK2(i) = (AT)(HAH(1+6))

HAH(i) = s(i) + 1/2 RK2(1i)

i = l’ 2’ LI N 6.

Exit subroutine at II.
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V. Third Pass of Runge-Kutta.

Increment Runge-Kutta flag.

KR = L

Compute new time,
T = S(13) + AT
¢ = mod(S(1k) + a4, 2 )
Compute Runge~-Kutte parameters and new values of dependent variables,

RK3(i) = (AT) (HAH(i+6))

HAH(1) = S(1) + RK3(i)
1=1, 2, «o.. 6

VI. Fourth Pass of Runge-Kutta,

Reset Runge-Kutta flag.
KR = 1
Compute Runge-Kutta integrated values and increments.
RKINC(1i) = {RK1(1)+2[RK2(i)+RK3(1)] + (AT)[HAH(1+6)]}/6

SR(i)new = SR(i)old + RKINC(1)
HAH(1) = s(4i) + RKINC(i)

for 1 =1, 2, 4ees 6

Exit subroutine at II.




5.6.2 Detail Flow Chart

- Subroutine

RKTOM

1st Point Calcula-
tions; Set Flags &
Zero the SR Array.

. 60 @B

Save Quantities for

Failure (SS)

Computing Selection

390

4th Pass R-K.
Flag to 1.

Restore
Compute

=
VI |Values at this Step &

Save in SR.

3 V370

to k4,
Parameter, and Values.

3rd Pass R-K, ©Set Flag
Compute Time, R-K

2nd Pass R-K.

and Values.

Set Flag to
3, Compute R=K Parameter |

II 150

254

Perform Accuracy Tests

160

NO

Set KC=2
l —
ID ¢80 Go to *IIID ]

R-K use (s)
IE 9100

cnpare Next
Time (TN) with
inal Time (TF

Compute Next
Time (TN)

IH 130

Save Quantities for

*(Next page)

TN«

Go to *IIIA

TN>IF IF

Change DT to Arrive
at Final Time

1lst Pass R-K,
to 2.

Parsmeter, and Values

Set Flag
Compute Time, R«K

120

-
g 120 IG

II §150

. m

Set Halt Flag to Show Run is
Complete (KHALT=3)
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ITID ‘ 230

too Small?

Increase Total
Failure Counter

Many
\Failures?

IIIA.l2OO

Reset Inter. Failure Increase Total Failure
Counter KF=0 Counter

NO IIIG

{lany Failures)

IIIC | 220 YES

Increase Inter. Failure

g—] Counter KF, Set Halt IIIB

Prepare for Error
Halt, Print Fail-

IITH fao Flag=1

Canpute DT

Is

too Smal 290

D

YES

Increase Inter.
Failure Counter,
Set Halt Flag=l,
Compute Bigger
DT, Restore
R-K Values 5(1h)
by Using SS(1k),
Preparing for
Another Try.

o to TH (1st R-K
Cycle)
ﬁ IITIK | Set R=K Flag=5

i to Show 2 Com-
plete Steps

Exceeds

Final

Restore R-K Values S(1k) by
Using SS(1k4), Preparing for
Another Try.




Section 5.6.3 Program Listing

The following pages give the listing of subroutine

RKTOM.
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10
I1C

20

30

TA
40

50
18

70
1D
80

90
IE
100

IF
110
1G
120
IH
130

140

11

150
11t
160

SUBROUTINE RKTOM (KRs 1Py KHALTs TFy HAHs FMINs FMAX,
1 MFATL, FDTs DTM, DTy T, PHT) '
DIMENSION HAH(12), S{14)s SS(14)y SR(6)s HS(6)s RK1(6)sRKINCI(6)
15RK2(6)s RK3L6)

TEST RUNGE=-KUTTA FLAG

GO TO (10, 350s 370, 390, 60)s KR

TEST FIRST POINT FLAG

GO TO ( 40s 20)y IP

TEST SIMPSONS RULF FLAG

GO TO (30, 160)s KC

KC = 2

GO TO 80

FIRST POINT CALCULATIONS

1P = 2

KHALT = 1

KC = 1

KF = 0

KFAIL = O

DO SO I = 1y 6

SR(1) = O,

SAVE QUANTITIES USED I1f COMP INT SFLFCTION FAILS
$S(13) = 7T

$S{14)=PH!

DO 70 1 = 1,y 12 .
SS{1) = HAHI(I)

SAVE QUANTITIFS FOR ORNDINARY RUNGF«KUTTA USF

S(13) = T

S{14)=PHI

DO SO I = 1,y 12

S(1) = HAH(T)

COMPUTE NEXT TIME AND DETFRMINE IF 1T EXCFEDS STOP TIMF
TN = S(13) + DT

IF (TN = TF) 130y 120, 110

DT = TF = S(13)

KHALT = 3

COMPLFTE 1ST R-K PASS, COMPUTE NFW TIMF AND POSTTIONS
DT2 = DY / 2

T = S(13) + DT2

PHI=S(14)+DT2

DO 140 1 = 19 6

RK1(!) = DT # S (1+46)

HAH(TI) = S(T) 4+ o5 # RK1(1)}

KR = 2

RETURN

PERFORM ACCURACY TESTS ON INTEGRATFEFD VALUFS
KC = 1

DT3 = DT /7 3.
COMPUTE SIMPSONS RULE INTFGRATED VALUES




DO 170 I = 1s 6
170 HS(1) = DT3 * (SS{I+6) + 4, * S(146) + HAH(I+6))

C COMPUTE ESTIMATED AND ALLOWABLE ERRORS
CMAX = AMAX1 (ABS (SR(1))s ABS (SR(2))s ABS (SR(3})y
1 ABS (SR{4))y ABS {SR(5)))

FSTER = AMAX1 (ABS (SR({1) = HS(1}))s ARS (SR({2) - HS(2)
1 )9 ABS (SR{3) = HS{3))s ARS (SR(4) — HS(4))»
2 ABS (SR(5) —~ HS(5)))
1000 DO 180 I = 1y 6
180 SR(1) = O,
FALL = AMAX1 (EMAX # CMAX»s 1,FE-9 % AMAX1 (ABS (HAH(1))
15ABS (HAH{2))s ABS (HAH(3))s ARS (HAM({4)),
2 ABS (HAHI(51)))
ERMIN = EMIN % CMAX
WRITE (6s 190) S{13)sDTs KFy FALLs FSTFRy FRMIN
190 FORMAT (1H 2E20e89s 1124 E27e8y 2E20.8)
IF (ESTER = FALL) 2304 230,y 200
C I11A
200 KFAIL = KFAIL + 1
IF (KFAIL = MFATILY 220s 210y 210
C 111 B FEXIT TO HALT RUN
210 KHALTY = 2
WRITE (69 215)
215 FORMAT (1HOs35H COMPUTING INTERVAL SFLECTION FAILS)
GO TO 150
C IIIC
220 KF = KF + 1
KHALT = 1}
GO TO 280
C I11D
230 1F (FESTFR = FRMIN) 240, 240s 270
C 111F
240 KFAIL = KFAIL + 1
IF (KFAIL = MFAIL) 250, 210s 210
C I11F
250 KF = KF + 1
KHALT = 1
DT = DTM * DT
DO 260 1 = 1y 14
260 S(1y = SS(1)
GO TO 100
C 1116
270 KF = 0
C I H COMPUTE NEW ALLOWABLF COMPUTING INTERVAL
280 DT = FDT % DT # (FALL / FSTFR) #% 0,25
IF (DT /7 T = 1,E~8) 290, 290, 310
290 WRITE (6+ 300) DT
300 FORMAT(1HO,16H COMP INTERVAL = E17.8)
GO TO 210
cC 111y
310 IF (KF) 320+ 320s 330

m
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111
320

T11L
330
340
1v
350
360

v
370

380

At
390

400

K EXIT TO PRINT
KR = &
GO TO 150

DO 340 1 = 1y 14
St1y = SS(I

GO TO 1130

2ND PASS OF RUNGE=-KUTTA
KR = 3

DO 360 = 1s 6

1
RK2(1) = DT * HAH(1+6)

HAH(T) S(I) + 5 % RK2(1)
GO TO 150

3RD PASS OF RUNGF-KUTTA

KR = &4

T = 5(13) + DT
PHI=AMOD(S(14)+4DT+6,2831853)

PO 380 1 = 19 6

RK3(1) = DT * HAH(I146)

HAHIT) = S(I) + RK3{I)

GO 10 150

4TH PASS OF RUNGE-KUTTA

KR = 1

DO 400 I = 19 6

RKINC(I)=(RKI(T)42e%(RK2(1)+RK3( 1)) +DTHHAHITI+6)) /6.

HAH(T)=S(T)+RKINCI(T)
SR{T)=SR(T)1+RKINCI(T)

GO TO 150

END




5.7 FUNCTION ELIPE

5.T.1 Equations in Order of Solution
The quarter-period K of the elliptic integral F(¢,k) is evaluated by

sucessive application of the decreasing Landen Transformation. From

reference 3, equation 1T.5.7 and 17.5.1:

_1_
K = > z (1 + ks)

where sin a in reference 3 is replaced by ks. The kS are decreasing very
rapidly., Even for ko = ,99995, seven steps are sufficient to make kT
less than 10‘8. Therefore a maximum of 10 steps is suggested., The ks,

N

k! = 1-k§, Pr= 1 (1+ks), and N are stored in COMMON because they will
s=1

be needed in the computation of the elliptic integral F(¢,k). (Nt = Number

of transformations.)
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5.7.2

Detail Flow Chart

FUNCTION ELIPE (k)

ENTER

l

Provide Space in COMMON
for the ks, k', P, N

Ky

1

Set P =1, N =2,k =k

l

Compute Next Value
of ks, k;, P

r* 't

Compute K

l

RETURN

N [




Section 5.7.3 Program Listing
The following page gives the listing of function subprogram ELIPE.
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300
400

FUNCTION FLIPF ( CAY)
FUNCTION FLIPE TO COMPUTF THF QUARTFR PFRIOD
COMMON /QUART/ CAP (10)4PRsNOTsCA(10)
PR-- 1‘
NOT =2
CAl1) = CAY
DO 300 ! = 2,10
NOT = 1
iMI = I -1
CAP{IM]1) = SQRT (1ls = CA(IMI)* CA (IM1))
CA (1) = ( CAUIMYY /7 ( 1,4 + CAP (IM1))) #% 2
PR=PR+PR¥CA( 1)
TEST LAST FACTOR OF THF PRODUCY
IF (CA(I)=o1E~07) 400,4004+300
CONTINUE
ELIPE = 15707963 * PR
RETURN
END




5.8 FUNCTION ELI

5.8.1 Equations in Order of Solution

The eliptic integral F(¢,k) is evaluated by successive application of
Landen's decreasing transformation. From reference 3, equations 17.5.8,
17.5.6, and 17.5.2:

¢

k.

2
F(é,k) = - 'Kelim —

e 2
f..2
41 = ¢, * erctan (Yl+k <tan ¢ )

The kn are stored in COMMON and K is known from function ELIPE,

The quantity A¢ =& .. - ¢ = arctan (/1+ki etan ¢n) is computed at
each step and added to ¢n. The quadrant of A¢ is the same as the quadrant

of ¢n. To accomplish this, A¢ is written as
aAd = As + Ai

where Ai is 2w-times the number of revolutions completed by ¢n’ and As
is the remainder, determined by QUAD1 so that

tan A¢ = l--k2 tan ¢n

After adding this value of A¢ to ¢n’ the total is modded with 27 giving

¢si wvhich preserves small arguments for the next step.

According to the above limit approach, the iteration process is halted
when

¢n+l = 2¢n

or when

D¢ = |o,,/28 | -1 =0.

37



5.8.2 Detail Flow Chart

FUNCTION ELI (¢, X)

ENTER

3

Call k;, ks’ Pr’ Nt’
from COMMON

7
Set 21 =1, ¢1 = ¢
¢k = Number of Revolutions
of ¢ Times 2m; ¢s 2 ¢ - ¢k

¢

Compute cos ¢i—l’ sin ¢i-1 L&

<Is cos ¢i-l = 07 >__Nﬂ.
lYES

L
A = 5

Campute A¢ el

'

Compute Ai’ As’ ¢i

i -
¢Si’ 2 ’ D¢ = ¢i/2¢i—l

v
(IS |ps| > 12 >-—ms—

lno

lCompute F(¢, k)




Section 5.8.3 Program Listing

The following page gives the listing of function subprogram ELI.
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NN

590

580
550

600
500

FUNCTION FLT ( PHI s QP )

FUNCTION ELI TO COMPUTE THE VALUE OF THE ELLIPTIC
INTEGRAL

DIMENSION PHILT (10) o PHIS(10)
COMMON/QUART/CAP(10),PRsNOTCA(10)

TWOP! =6,.,2831853

PINY? = 157N79673

Pl =341415927

NPTWO = 1
PHILTI(1) = PHI1
PHIK =AINT(PHI/TWOPI)*TWOP!

PHIS(1) = PHI - PHIK
DO 600 I1=2sNOT

IMI1 = I-1

COSP = COS (PHIS (IMI1))
SINP = SIN (PHIS (IMI1))
IFCOSP) 58045904580
DFLPHO p102

GO TO 0

DELT NT (PHILT(IMI1)/ TWOPI) * TWOPI

5%
DELPHO = ATAN(ABS(CAP(TMI1)* (SINP / COSP }))
Al
DELS QUAD1( DELPHO s PHILT(IMIl),s P102 sP1,TWOPT)

PHILT(T) PHILT(IMI1) 4+ DFLS + NFLI
PHIS(1) PHIS(IMI1) + DFLS
PHIS(I) = PHIS(I) —AINT(PHIS(I)/TWOPI)*TWOPI
NPTWO= NPTWO * 2
DPH = ABS (PHILTI(T) /Z(PHILT(IMI1) * 2,))
IF (DPH - 1,) 600 s 500 s 00
CONTINUF
TWON = NPTWO
N=IMI1+1
ELT=PHILT(N)*QP*,63661977/TWON
RETURN
END




5.9 FUNCTION ELIF

5.9.1 Equations in Order of Solution

The evaluation of the elliptic function sn(u,k) ig accomplished by the
use of formulae (16.12.1) and (16.12.2) of reference 3:

(l+ul/2) sn(v,u)
l+u1/2

sn(u,m) =
sn2(v,u)

2 Y
PR E T - N S u

- vt
1+/1-k° 1+/1-k° T+u

The above transformation from wv,n to u,m is repeated until the modulus

is zero, Thus, we have in general:

(l+kn) sn(un,kn)
) = > s N =1, 2, euus
1+k_ sn“(u_,k )
n n"n

sn(un , k

-1 n-1

where the modulus k is used rather than n (k2=m)

[¢]

)| (1+ki)
i=1

and the ki have been calculated in function ELIPE and are stored in COMMON,

The procedure of computing sn(uo,ko) is as follows,

The number of transformations (NOT) is chosen such that k is

sufficiently small to permit the approximation:
sn(u ,k ) = sinu_ - L ka(u - sinu cosu ) cosu
n’n n~ & ‘n'n n n n
(equation 16,13.1, reference 3)

Then starting with sn(un,kn), the recursive formula is applied n-times.

After the n°® step, the value of sn(uo,ko) = sn(u,k) 1is obtained.
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5.9.2 Detail Flow Chart

FUNCTION ELIF (u)

ENTER

'
Call ks’ ks’ Pr’ Nt
From COMMON

Compute Sn(un . kn)

Apply the Landen Transformation
n-times to Obtain sn(uo, ko)

RETURN



Section 5.9.3 Program Listing

The following page gives the listing of function subprogram ELIF,
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150

FUNCTION FLIF ( U

FUNCTI
COMMON
EM = C
VEO =
SVE
CVE
SNVF
NOT?
Nno 150
IR = N
CAS =
SNVE =
ELIF
RETURN
END

ON ELIF TO CALCULATF
/ QUART/CAP(10) ,4PR
A(NOT ) %%2
U/pPR
SIN(VFO)
COS(VFO)
SVE —e?25 % FM
NOT +2
1= 2 s+ NOT
0712 -1
CA{IR)Y* SNVE

THE ELLIPTIC FUNCTION SN

NOT »CA(10)

*#(VFO =SVF *CVF)¥*CVF

{SNVE +CAS)/(1,+ CASHSNVE)

= SNVE




5.10 SUBROUTINE GPOT (Q, CT, EW, R, AF, AG, AH)

This subroutine calculates perturbative accelerations 8as ag, and ay due
to the earth's potential., The inputs are sin 6, cos 6, longitude of satel-
lite, and non-dimensional radius, The subroutine obtains coefficients of the
potential from labeled common /CPOT/.

5.10.1 Equations in Order of Solution

I. Set Original Recursion Values.
P(1) = Py =1
DP(2) = e =1
U0l = 0 [Stores zero before array U to become U(0,1)]
U(1,1) = U, =1

RX(1) = 3

P(2) = P, = cos )

II. Set Sum Limits and Zero Original Sum Quantities,

NNl =0N1 +1
Zero locations to gather sums of zonal coefficients for LY zonal
coefficients for a5 tesseral and sectorial contridution to a tesseral

f!
and sectorial contribution to ag, and tesseral and sectorial contribution

to 8 « These are, respectively, Z =0, Z1 =0, TS = 0, TS1 = 0, and TS2 = O,

Calculate the arrays for p, and p'h (P and DP).
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Calculate the array of r(n+2), (RX).

J
Calculate the ratio-array -TEEET , (AOR).
r

Find the sum:

N% Jn
Z = ( ) o !
n=2 rn+2 n-.
and
N1 Jn
z1 = ) (n+l) (—5) o,
n=2 r

III. Are Tesserals Required?

If the limit on the tesserals (N2) is less than 2, tesserals are not

required, go to VI; otherwise, continue.

IV. Calculate Quantities for Tesseral and Sectorial Sums,

Calculate arrays for sine and cosine of n °* longitude (SBE and CBE).

Calculate and store the arrays for U and W __,
nm nm

V. Sum Appropriate Tesserals and Sectorials.

Calculate and store arrays for:

CC(N,M) = Com cos(m A) = cC .
cs(N,M) = Com sin(m 1) = CS .
SC(N,M) = Som cos(m 1) = SCm
SS(N,M) = S m sin(m 1) = SS. .,

Find the sums:

N2 n W

_ nm
TS = '2 z n+2 (Ccnm M Ssnm)




TSL = ) ) 2=u_ (cs

TS2 =

% 3

n=2 m=l rn+2 nm

VI. Calculate perturbative accelerations.
a, = AF =2 cos 0 + TS

f

= -TS1 = AG

[
[

ah = AH = Z1 + cos O TS2

Return,

U (cc_ +
nm

S8

nm

)
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5.,10.2 Detail Flow Chart

SUBROUTINE GPOT

I

Set Original Recursion Values

b

Set Sum Limits, Zero Original Sum Quantities.
Sum Zonal Perturbations

y Iv

Calculate Quantities for Tesseral
and Sectorial Sums

B

Sum Appropriate Tesserals
and Sectorials

[

Calculate Pertubative
Accelerations




Section 5.10.3 Program Listing

The following pages give the listing of subroutine GPOT.
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SURROUTINF  GPOT(Q +CTsFW sR sAFsAGsAH)
C SUBROUTINF GPOT TO COMPUTF THF ACCFLFRATIONS DUF TO
C THE HIGHFR HARMONICS oTESSFRALS AND SFCTORTALS OF THF
C FARTHS POTFNTIAL
COMMON / CPOT/ AJ(9)14Cl6s6)s S(69s6)s N1oN2
1 /G7U0192U(646)
DIMENSION P(10)+sDPL10)sCREI6) W(6s6)e CCLEIE)
1CS1696)s SClE96)s SSUE96)9SBE(E) sRX(9)9AOR(9)
C 1
C SET ORIGINAL RECURSION VALUES
P(1y = 1.
DPI2) = 1.
U01=0.0
Ullsl) = 1o
RX(])=R#%3
Pt2y=CY
c 11
C SET SUM LIMITS AND ZFRO ORIGINAL SUM QUANTITIFS
NN1 = N1 + 1
143 2 = Oe
Z21= Oo
TS = 00
TS1= 0O,
T52= O.

C CALCs RHOsRHO=- AND ZONAL SUMS
DO 125 N = 3,NN1

n =N

L =N-1

A =1L

PIN) = ((24%A-1,)%P(2)%P(L)=(A-1,)%*P(N=-2))/A

DPIN) = P(2)%*DP(L) + A%P(L)
RX(L)=RX(L-1)%*R
AOR(L Y =AJ (L) /RX{L)
Z=Z+ AOR(L)*DP(N)
125 Z1=Z14D*AOR(L)*P(N)
€ 111 ARF TFSSFRALS RFQUIREN
1F(N2-1130,3040
C 1V CALCULATE QUANTITIES FOR TFSSFRAL AND SFCTORTAL
40 SBE(1)=SIN(FW)
CBE{1)=COS(FW)
DO 126 N=2sN2
K=N-1
P=N
BEW=D*EW
CBE(N)=COS (BEW)
10 SBF(N)=SIN(BFW)

UCNIN) = (2.%¥D=1,)1%O0%1)(K4K)
UK 4N) = 0O,

WININ) = =D*P(2)*¥U(NIN)
DM1=N=1,

DTI?21=(2%N=14)%#P(2)

SUMS



126

DYIP2=D*P(2)
DO 126 M=1,K

B =M
UNsM)I=(DTI21*%U(KsMI=(DMI4R)XU(N~24M)} )/ ({D=~R)
WiNsM) = ~DTIP2 ®U(NsM) +(R+DI* UK M)

CV SUM TESSERALS AND SECTORTALS

135
228
232
242

30

DO 242 N=2sN2

D =N

DO 242 M=1sN

R = wm

CCINsM) = C{NyM) » CRF (M)

CS{NsM) = C(NeM) ¥ SRF (M)

SCINsMY = S{NeM}) * CBF (M)

SS(NeM)Y = S(NsM) * SBRF (M)

TS = TS—={W(NsM)/RXI(N) YR(CCI{NIMIESSINIM))
TS1=TS1+(R/RX(N) YRUINsMIRICSINIMI=SC{NsM))
T52=TS2- {({(D+14)}/RX(N) JRXU(NsM) X (CCINsM)I+SSINeMY)

CALCULATE PFRTURBATIVF ACCFLFRATIONS
AF =2%Q+ TS

AG = -TS1
AH = Z1+ TS2*Q
RETURN

END
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5,11 FUNCTION QUAD1 (OMEGA, W, QPER, PI, TWOPI)

QUAD1 is the angle which is in the same quadrant as W (with respect
to QPER) and |tan (QUAD1)| = tan (OMEGA). All inputs and outputs in radians.

5.11.1 Equations in Order of Solution

I. Adjust W so ~-4sQPER<W<LeQPER.
(Mod W with L4<QPER)

II. If W is negative, go to ITA; otherwise go to IIB,
A. Make W +the equivalent positive angle by adding the total
period 4<QPER,

B. Find IW, which is the quadrant of W with respect to
QPER.

IW = Integer part of (agiﬁ) +1

IW is then 1, 2, 3, or L,

III, If W is in the first quadrant (IW = 1), go to IIIA.
If W is in the second quadrant (IW = 2), go to IIIB.
If W is in the third quadrant (IW = 3), go to IIIC.
If W is in the fourth quadrant (IW = 4), go to IIID.

A. Set QUAD1

OMEGA, and return.

B. Set QUAD1 ® - OMEGA, and return.

C. Set QUAD1

m + OMEGA, and return.

D. Set QUAD1

27 - OMEGA, and return.
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5.11.2 Detail Flow Chart

FUNCTION QUAD1

;

Adjust W so
-h-QPER_<_W_<_h-QPER

II

YES IIA
| Replace W with W + 4 « QPER]

Negative?

1IB
Find IW (Quadrant of W with Respect to QPER)

ITIT
IIIA
1 What 4 TIID |[QuUAD1 is
QUADL is j= is | 21-OMEGA
OMEGA Iw?
2 3
IIIB ITIC
QUAD1 is w-OMEGA QUAD1 is w+OMEGA
] Y

RETURN
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Section 5.11.3 Program Listing

The following page gives the listing of function subprogram QUADI.
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FUNCTION QUADI(OMEGAsWIOPFR4PTIsTWOPT)
1 ADJUST W
W = AMOD (Wel4*QPFRY)
I1T CHFCK W SIGN
IF (W) 20921521
1IA MAKE W EQUIVALENT POSITIVE ANGLF
20 W = W +(4,%QPFR)
TIB FIND QUADRANT OF W
21 IW = IFIX (W/QPER)Y +1
111 CHFCK QUADRANT
GO TO (314932933,34),1W
ITIA
31 QUAD1= OMFGA
REFTURN
111R
32 QUAD1= PI- OMEGA
RETURN
I111C
33 QUAD1= Pl+ OMEGA
RETURN
I1TID
34 QUADYI= TWOP! -OMFGA
RETURN
FND
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5.12 FUNCTION QUAD2 (Xw,Zl,K,K10R3,PI) - Adjusts the Quadrant of XW to
Agree with the Conditions of Case 1 for the Perigee Calculation

Inputs are

quarter-period K, flag that indicates
3w

w, angle Z1»

whether w oscillates around = or =, and 7. All angles are in radians.

2 2

5.12.1 Equations in Order of Solution

I.

II.

IIT.

Iv.

V.

Adjust z, so -bK <z, < kK.
(Mod 2z, with LK)
Ir is then negative, go to IIA; otherwise go to IIB.
A. Make zl the equivalent positive angle by adding the total
period LK.
B, Find L, which is the quadrant of zZ) with respect to K.
%
L = Integer part of (K—J + 1
L is then 1, 2, 3, or L.

If L=1 or 4, no change is necessary in w; go to IIIB.

If 1=2 or 3, go to IIIA.

A. Place w in the second quadrant by replacing w with w-w,
since the magnitudes of the tangents of the two angles must
be equal.

B. The input quantity K1OR3 determines if w oscillates

HH

=
H

3n

around %- or 5. (K1OR3 = 1 or 2, respectively).

is the oscillation point, go to V.

mr» IV E]
E |

is the oscillation point, go to IV.

3

Replace w by w7 + w so the oscillation will be around G

Set QUAD2 = w.

Return.




5.12.2 Detail Flow Chart

FUNCTION QUAD2

'

Adjust z, so

=LK <z 8 LK
ot
Negative ; TIA
? Replace zy With
2, + LK
Find L (Quadrant of z, With Respect to K)
YES L Either
IIIAY 2 or 3?
Replace w With m-w
T
Replace w

lWith W+

(K10R3=1)

Set QUAD2 = w
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Section 5.12.3 Program Listing

The following page gives the listing of function subprogram QUADZ2.




20

21

30
31
40

50

FUNCTION QUAD2(XWsZ1+sOPFRIKIOR3,4PT)
I ADJUST 21

Z1=AMOD (Z21+(44*QPER) Y

Il CHECK 21 SIGN

IF (21) - 20921421

1T A MAKE Z1 EQUIVALENT POSITIVE ANGLE
21 = 21 + (4% QPER)

11 B FIND QUADRANT OF 21

L= JFIX(21/QPER) + 1

11y CHFCK QUADRANT

GO TO (31+230930s31), L

111 A PLACF OMFGA TN QUANRANT 2
XW = P1 = XW

IT1T B CHECK OSCILLATION POINT

GO TO (50440),K10R3

v MAKF OMFGA OSCTYLLATF AROUND 3P1/2
XW = XW + P!}

v PREPARE FOR RETURN

QUAD2 = XW

RETURN

END
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5«13 MODES OF INPUT AND OUTPUT

5.1301 I._l_'lj!e_t_

This program has only load sheet input through subroutine INPUT 1. The
card format is:

column 1 - a one

columns 2 through 6 - location number of piece of data

columns T through 15 - input number

columns 16 and 17 - location of decimal place from beginning of field
positive if to the right

Three other pieces of data may be entered on the card. The location num-
bers are punched in columns 18-22, 34-38, and 50-54, The data are punched in
columns 23-31, 39-47, and 55-63. The exponents, as explained above, are
punched in columns 32-33, 48-49, and 64-65, respectively. The remaining infor-

mation required is:

columns 66-68, zeros
columns 69-70, reference run number

columns T1=73, case number,

This routine allows identification on the card of each piece of input data
by relative location number; only-non~-zero numbers need be entered. It has a
"Reference Run," "Case" setup. If the case number (card columns Tl to 73) is
non-zero, but the reference run number (card columns 69, 70) is zero, then the
data on the load sheet are assumed to be sufficient and the case is computed.
If the case number is zero and the reference run number is non-zero, the data
are stored in array RR and no case is attempted. If the following load sheets
with non-zero case numbers have also the reference run number of the stored

array, then a case is run using the input of array RR as modified by the new
load sheet.




The order of stacking cases is then:

1.
2,
3.
L,

All cases with zero reference run number

First reference run (zero case number)

Al) cases with first reference run number and non-gzero case number
Second reference run (zero case number)

.

.

The total input array utilizes 102 locations. The locations and quantities

are listed below, All input quentities are non-dimensional unless otherwise
noted.

Location

1-9

10=k45

L6-81

82

83

8k

85

Quantity Remarks

J Leave J, = 0

n 1

C Arranged in column-sort
m,n

in 6x6 array

S Arranged in column-sort

in 6x6 array
No. of zonals, N1 Integer, 0<N1<9

No. of tesserals, N2 Integer, 0<N2<6, If set = 0
or 1, no tesserals or

sectorials are considered

Initial value of
polar component

of angular momentum, p

Initial ec~~ntricity, e°
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86

87

88

89

91

92

93

9L

95

96

97

162

Initial argument of

pefigee, v
Initial time, to
Initial ¢

Approximate initial
inclination, ioo
Approximate initial

argument of node, L°
Total ¢ desired

Initial guess at
computing interval,
DELPHI

Maximum failures allowed
for computing interval
selection, MFAIL

Maximum error allowable,
EMAX

Minimum error allowable,
EMIN

Factor to increase

computing interval, DTM

Longitude of Greenwich
with respect to 1950,0
equinox at initial time,
EWOG

In degrees

In hours

In degrees

In degrees

In degrees

In degrees

In degrees

Positive integer

In degrees



98 Rotation rate of In
the earth, EROT

99 Luni-solar flag, LS Integer; if = 1, consider
. luni-solar; if = 2, omit
100 Perigee flag, K10R3 Integer, set = 1 if initial
perigee closest to %-or =2
if closest to %1
101 Multiplier to
compute new com-
puting interval, FDT
102 Derivative flag, Integer; set = 1 if J, and

2
Jh are the only perturba-

tions; otherwise, set = 2

5.13.2 Output

‘ At the beginning of each case, the entire input array is printed in
floating point. There are 25 rows of 5 columns, with locations 1 through

5 printed in the first row, etc.
The next printed values are the initial values of:
Q (deg.) i (deg.) u (non-dim,) q (non-dim,) velocity (non-dim.)

At the attempted completion of each two computing steps, the following

information is printed from the Runge-Kutta routine:

Intermediate Maximum Minimum
Total ¢ Computing Interval Failure Allowable Estimated Allowable
(rad) (rad) Counter (Integer) Error Error Error

At the completion of each four successful computing steps, either Format 1
or Format 2 is printed.
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Format 1

(A1l non-dim.)

P Q i u Q, tn

¢ (deg) t(hrs) r(km) 0(deg) i(deg) Energy (non-dim.)
e wa(rad)

Format 2 differs only in that the energy is not printed and the approxi-
mate eccentricity is printed in its place, and the approximate argument of

perigee then appears in the first column,

Format 1 is printed if the only perturbations are J2 and Jh’ If any
other perturbations are considered, Format 2 is used.

After a case has been completed successfully, a start time, stop time,
and total time for reading the input data and doing all the computations are

printed in minutes,

Error Prints

If the computing interval becomes too small, it is printed along with
the comment - COMPUTING INTERVAL SELECTION FATLS, and the case halts.,

If the number of computing interval selection failures exceeds the
maximum value which is input, the case halts with the comment the same as

above.




Section 6

DISCUSSION OF RESULTS

In order to evaluate the effectiveness of the modified Encke approach,
comparisons were made between three programs. These programs were the
modified Encke program described here, and two existing programs based on a
Cowell formulation of the problem and using Runge-Kutta integration. The
two Cowell programs were essentially the same except that one performed
operations using single-precision arithmetic, and the other used double-
precision. The modified Encke program used single-precision arithmetic ex-

clusively.

Three representative orbits were chosen for comparison. These were:

Orbit 1: A low altitude, moderate eccentricity orbit which considered the
same perturbations as the analytic model (second and fourth zonal
harmonies only). The initial osculating elements were 30° inclina-
tion, 0° argument of perigee, .03117 eccentricity, and 6928.2255
kilometers for the semi-major axis. This orbit was chosen so that
known integrals of the motion could be used as indications of the

accuracies of the three programs.

Orbit 2: A very high altitude, low inclination, nearly circular orbit which
considered the second and fourth zonal harmonics of the potential
in addition to luni-solar perturbations. The initial osculating
elements were 5° inclination, 0° argument of perigee, .0001 eccen-
tricity, and 41,138.154 kilometers for the semi-major axis. This
orbit was chosen because orbits of this type are of interest for
communications networks for example, and because luni-solar pertur-

bations are significant at these altitudes.

Orbit 3: A highly eccentric, low inclination orbit considering the second
and fourth zonal harmonics of the potential in addition to luni-
solar perturbations. The initial osculating elements were 5°

inclination, 0° argument of perigee, .723 eccentricity,
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and 23,963.206 kilometers for the semi-major axis. This orbit was chosen
because orbits of this type are of interest for environment sampling, and
because the oblateness perturbations predominate at perigee while the

luni-solar perturbations become significant at apogee.

Figure 1 shows the variation in the polar component of angular momen-

tum (p) for orbit 1 for 20 revolutions of ¢. This is plotted non-dimension-

(p-p,)
alized as ——Eré;-. In this case, p should remain constant or Ap should be
i
zero. The modified Encke program satisfies this condition identically, since
p 1is one of the dependent variables, however, the error is shown on the plot
as 10_9. It can be seen from Figure 1, that the single precision Cowell
solution drifts off monotonically with increasing angle until the error is

5

greater than 10~7 after 20 revolutions of the angle ¢. The double precision

T

Cowell solution oscillates, but the error is never as large as 107",

Figure 2 shows the variation in the total energy for orbit 1 for 20
revolutions of ¢. This is also plotted non-dimensionally as

Energy-Energy (initial)
Energy (initial)

. Again this quantity should be constant and zero, but

it can be seen that the single precision Cowell solution builds up the error

5 after ¢ reaches T200 degrees. The

monotonically to approximately .5 x 10~
errors for the double precision Cowell solution and for the modified Encke
solution undergo oscillations with the double precision results varying

between 10-7 T

and 10-9 and the modified Encke results not exceeding .5 x 10 .
This clearly shows that the modified Ecnke approach can improve accuracy
while using only single precision arithmetic. A further improvement in
accuracy could be achieved by analytic cancellation of all terms of order
epsilon when forming the Encke equations of motion. This is theoretically
possible and allows the maximum accuracy available with this approach, but it

was not deemed feasible within the limits of the present study.

Finally, the positional error was analyzed for all three representative
orbits. This was done by taking the double precision r-¢ history as correct

r-r (double precision)
r (double precision)

and plotting vs. a function of ¢ during the 20th
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revolution of ¢ and comparing the single precision Cowell results and the
modified Encke results for all three representative orbits. Figure 3 shows
this result for orbit 1, while Figures 4 and 5 represent orbit 2 and orbit 3,

respectively.

Figure 3 shows that both the modified Encke and the single precision
Cowell solution show reduced errors in the radius near the apogee during the
20th revolution. In general the radius error follows the trend of the error
in energy plotted in Figure 2. That is that the single precision Cowell error

is nearly 2 orders of magnitude larger,

Figure 4 presents the non-dimensionalized error in radius for the high
altitude, nearly circular orbit. The single precision Cowell solution exhi-
bits a smaller error at apogee with a high error near perigee. The error
from the modified Encke solution is somewhat erratic, but it remains nearly
two orders of magintude below the single precision Cowell solution near peri-
gee. In general the modified Encke solution would have shown a bigger
improvement if rectification was included, since oblateness perturbations

and luni-solar perturbations are of equal magnitudes at this altitude.

Figure 5 represents the largest error for both the single precision
Cowell solution and the modified Encke solution. It can be seen that the
modified Encke error is nearly constant and generally below the single pre-
cision Cowell error. However, the single precision Cowell error drops very
low around the apogee. This can be interpreted to mean that the modified
Encke solution should have been rectified before this time, since the luni-
solar perturbations are significant and are not included in the analytic
model. It also shows that the error in the single precision Cowell solution
is due mainly to an error in the time-history of the angle ¢, and the

radius is not sensitive to small time errors in the vicinity of apogee.

In conclusion it can be stated that the modified Encke approach can be
used to increase the accuracy of solutions without resorting to double

precision arithmetic. In the comparisons made, the more lengthy calculations
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per step were offset by the larger allowable step-size, so that running
time was reduced by nearly a factor of four over the double precision

Cowell program and was essentially the same as the single precision Cowell
program, To achieve the utmost accuracy from such a program for production
purposes, the analytic solution should be cancelled analytically to order
epsilon when forming the Encke equations, or this portion of the calculation
should be done in double precision., Furthermore, for long time predictions

a rectification capability would be a necessity.
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