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ABSTRACT y L t/j X

Mathematical difficulties in calculetions of the central
regions of a stellar model are shown to be due to a wrong choice
of variables. New variables are derived which permit outward
integration to commence at the center of a model. They appear

to lead to the highest attainable central accuracy for a given

integration process in a digital computer. c! t/*-—D /



I. INTRODUCTION

In many investigations of stellar structure it has been found necessary
to commence outward integrations at a position somewhat removed from the
center of the model. The values of the dependent variables at this position
have been determined by series expansions to the desired order of accuracy.
Such expansions are tedious to derive beyond the first terms if complex
physical laws are used.

It is the purpose of this paper to show that the technique described
above is not necessary. We demonstrate that there exists a natural expansion
parameter (the square of the radial distance) at the center of a star. Bearing
this in mind, one can then construct a set of variables in terms of which the
integrations can begin at the center. Explicit knowledge of the expansions is
not required. The new variables are also optimal for accuracy when used in an
integration process of a given order.

Throughout the discussion, we bear in mind the application of a digital
computer to the calculations, and in particular to the calculation in the

central regions of the model.

II. THE USUAL DIFFICULTY

For spherically symmetric models in quasi-static equilibrium, the basic

equations of stellar structure teke the following form:
= lmRap (1)
= lmRepe (2)

(3)

Gl &l& &g

"

[}
ol

©



R . (1a)

dR 16nac R° T°
or
4T T -1 T &P
aR ° T P &R (4v)

The alternative equations (l4a) and (4b) cérrespond to the case of radia-
tive or convective equilibrium respectively. At each point the right-hend
sides are computed, the least in modulus being teken for the true temperature
gradient in the usual manner.

The notation in equations (1) to (4) is essentially that of Schwarzschild
(1958, §12), with the exceptions of R, the radial coordinate, and T, the
second adiabatic coefficient of Chendrasekhar (1939).

Schwarzschild remarks (Schwarzschild 1958, §1k) that a numerical step-by-
step integration procedure cannot start at the center because vanishing de-
nominators occur in the basic differential equations (1)-(4). This is not the
case. It is for quite the reverse reason that difficulty is experienced.
Equations (1) and (2) show that both M and L are of order R® near the center.
Thus the limiting wvalues of dP/dR and dT/dR at the center are zero. The
reason it is pointless to commence at the center with the equations (1) to (&)
is that all four differential coefficients are zero. Nor is the situation
improved by teking M as independent veriable, a natural choice for evolution-
ary purposes. The limiting values of dP/dM and 4T/dM then behave as 1/R.

The zero denominator presents a genuine difficulty in this case.

III. THE CENTRAL EXPANSION

The correct approach is in fact suggested by the expansions at the center,



which lead to

> (5)
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From the third and fourth of relations (5) we see that differentials of
P and T will be proportional to the differential of R2 near the center. The
relations (5) suggest that one should choose variables which are linearly
dependent on R2 in this region. Thus r = R2, m = M2 /3 and !/ = L2/ 3 are
indicated. This choice also has desirable computational features. If the
variasbles are almost linearly related near the center, a finite integration
process will be more accurate. The integration scheme can be started with
precisely evaluated central gradients. (That the latter may have to be
specially "set" is not a particularly awkward feature -- it is often the case
with automatic integration schemes that one must first define the initial
derivatives.) The central point can thus be included in the whole integration
scheme whatever i1ts nature, as a matter of course.

Before accepting the above conclusions however, one must check to make
sure that an automatic integration will not produce spurious results. let us
suppose for a moment that the expansion for M contained a term in Rh. Then
in terms of the new independent variable r (= Ra) , we might have m (= Mz/ 3)
glven by

3/2

m = Ar + Br +Cr2+--~ (s)

The expression calculated for dm/dr would yield

- A+%Br%+20r+ (7)
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Now suppose the usual second order integration process is used (Schwarzschild

1958, §1k) to integrate equation (7) awsy from the origin. One obtains

3/2

m = Ar+%Br -|-(!r2 see (8)

One quarter of the second term is lost. The reason ies of course clear --
dam/ ar® 1s unbounded in the initial interval and the Taylor expansion, upon
vhich the integration scheme depends, is invalid. A small point perhaps, but
one which might be overlooked with inadequate investigation.

Does this invelidate the use of the variables suggested above? Fortunately,
no. The suggested variables will clearly be satisfactory if the physical
variables have the form of the relevant leading term multiplied by an expansion
in even powers of R. That this is indeed the case will now be shown by two
quite independent arguments, the first the application of the concept of
parity, the second from the equations themselves.

(a) Take Cartesian axes with origin at the center of the star. Let
scalar quantities (e.g., pressure, density, element conceniration, cic.j at
positions on the x-axis be considered as functions of x and let vector
quantities (e.g., gravity, energy flux) be taken as positive when pointing in
the +x direction. As the scalars do not change sign under reflection, while
the vectors must, the former are even functions of x, the latter odd.
Gravity and energy flux are proportional to M/R2 and L/R® respectively.

Thus our required property is established.

The argument is nothing more than an application of parity. It is so
general that any physical processes (including dynamical changes) can be in-
cluded in the equations without affecting the conclusion.

(b) The second method is to argue directly from the equations (1) to

() » and cannot be s0 genersl as the above since specific physical relations



must be used. There is, however, one point of special interest. We illustrate
this by supposing, as is frequently the case, that the energy generation is a
function of composition parameters, density and temperature, and also that the
pressure is a sum of perfect gas and radiation pressures. We shall now sketch
the proof.

Relations (5) are quite general. However, a difficulty arises when trying
to obtain the next term in equation (l). It would appear that we cannot know
whether the next term is of order Rh or RS since this depends upon the expan-
sion for p. The latter, although a function of P and T, depends also on u,
the mean molecular weight, which itself involves }the composition parameters.

We have no a priori reason for assuming that the composition parameters possess
an expansion in even powers of R.

However, consider the initial homogeneous state. Then u 1is constant
and the whole proof follows quite easily. Now consider subsequent times.
Either the center is convecting, so that the result is again true, or it is
radiative. If the latter, the first move away isuw uvimge.. ') *=~1vac the
rates of nuclear transmutation, which possess the required expansions. Thus
the initial homogeneous model generates subsequent models with the required
expansions. Within the confines of this argument, 1t seems necessary to appeal
to evolution to prove the result obtained so easily in (a).

The property established above is well-known for polytropes (Chandrasekhar
1939) although it was derived only by expanding the equations. We are not
awvare of it having been previously established for all physical variables in
any stage of a star's evolution. Given this property, we may now usefully

express the equations of stellar structure in terms of our new variables.



IV. THE EQATIONS IN TERMS OF THE NEW VARIABLES

As P and T vary by meny orders ¢of magnitude over the whole star, it
has been found convenient to use their logarithms as integration variables.

Thus the variables we adopt are the set
a = M3
(9)

r = R2
I'2/3

P =
iIn P

inT
For convenience in evolutionary calculations, we take m to be the
independent variable, although the form of the variables is such that any
one of the five may be 8o chosen. Iet & = 4x/3. Throughout the body 6f the

star we have
2 2 /\%
dm'ap\r/
a (o)}
dm 2
¢ P _ G _n_12
dm P \r
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At the center, the following limiting forms hold,

(dr)c - (ap:)a; 8

(10)

(11)

(12)

(13a)

(13b)

(14)
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In situations where L may be temporarily negative (for example, during
the helium flash), it may be more convenient to use RLl/3 in place of L2/3.

The appropriate modifications to the above equations are easily made.

V. MAXIMAL CENTRAL ACCURACY

We have already shown that quite general considerations lead to the
natural expansion parameter r = Ko. FTacuival vuusaucaooi2n2 »eamiira that
adventage be teken of this fact. The second order integration process refer-
red to previously gives accurate results to order ra, i.e., Ru. Similarly,
for each increase in order of the scheme used, the new variables attain accuracy
to two more powers of R. In a computer, each increase of the integration
order requires an extra entry to a generally lengthy subroutine which calculates
the derivatives. The latter calculation takes most of the time in integrations.
Integration of the equations (1) to (i) as they stand requires twice the time
needed to integrate equations (10) to (13) to the same order of accuracy.

We therefore consider our variables to represent an optimum choice in the

central regions of a star. In their recent discussion, lLarson and Demarque

(1964) recognized that the central expansions contained different leading



powers of R. For example, s luminosity variable q =L (l+a/R2) with a a
small number was constructed. Thus q oc R near the center. However, as

the integrations were effectively in terms of R, they were not quite as accurate
as they might be. We feel our variables would be very useful in the difference
equation approaches to stellar structure. Such equations, normally accurate

to second order in R, would then give accuracy to 4th order in R in a region
where accuracy is highly desirable.

We emphasize that our discussion has dealt entirely with the central
variables, and is valid whatever the physical laws might be. For the outer
regions the variables can be teilored in the manner of Larson and Demargue to
fit the conditions there. Such choices however, seem to depend upon simple
expressions for the opacity which may not approach the accurate values as

closely as one might wish.

VI. CONCLUSIONS

It has been shown that there exists a natural expansion parameter (the
square of the radial distance) at the center of a star. Variables which take
advantage of this lead to maximum central accuracy for ean integration process
of a given order. Integration can be started at the center in terms of these
variables. The mathematical difficulties encountered by previous authors are
simply due to the wrong choice of variables. The present variables show the
central regions for what they are -- both physically and methematically the

best behaved regions of a star.
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