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ABSTRACT

The Space Trajectories Program for the IBM 7090 computer is

described in comprehensive detail, with emphasis on the development

of the equations. Equations of motion for both the Cowell and Encke

methods are given. Numerical experience with the class of trajectories

encountered in practice is included to compare the Cowell and Encke

method_, and to obtain an estimate of the over-all accuracy of the

program. Sources of error are pointed out, consistent with the precision

of th_ ntmJerical methods. Operating instructions and descriptions of

input and output are provided for the successful running of trajectories.

Flow charts presented serve as a guide to the understanding of the

internal sequence of events and control methods. Major subroutines

used in the program are contained in the Appendix. The program is

written in the FORTRAN Assembly Program language.

I. INTRODUCTION

The Space Trajectories Program originated in the need positions and velocities of the bodies in the form of
to study trajectories of high precision formed by the planetary and lunar ephemerides in some convenient ref-
transit of a space probe from the Earth to one of the three erence frame. Since the coordinates have been tradition-
targets technologically feasible at present--the Moon, ally referred to the Cartesian system based on the mean
Venus, or Mars- under the influence of gravitational equator and equinox of 1950.0, the ephemerides used by
forces described by Newton's law alone. Although the the program have been uni_.onnly expressed in the same
major programming effort has gone into obtaining a cool dinate system. The collection of ephemerides was
solution for which the accuracy is consistent with the systematically done on magnetic tape. 1
singl,, "_reeision arithmetic used, and which requires a

reas hie amount of computer time (about 30 seconds), Having expressed the coordinates of the bodies in the
the program may be used for study of general inter- 1950.0 reference, it was nab.lral to write the equations of
planetary flight where it is sufficient to include the bodies motion il_the same coordinate system. But it was immedi-
Sun, Venus, Earth, Moon, Mars, and Jupiter for their ately necessary to obtain expressions for the precession
gravitational influence.

IAdescriptionof thestandardsourcetape withorigins is given in
Since the program solves the equations of motion for "SubtabulatedLunarandPlanetaryEphemerides,"by B. H. Hud-

the probe only, and ignores the negligible perturbations son, TechnicalRelease No. 34.239, Jet PropulsionLaboratory,
of the probe on the bodies, it is sui_cient to obtain the Pasadena,Calif.,November2, 1960.

!
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md nutation of the Earth's equator so that the oblateness arising from the deviation of a true orbit from a fixed
perturbation of the Earth might be properly assessed in reference two-body orbit and the equations of mo_Aon
the 1950.0 frame and that injection conditions referenced are referred to the deviation, then the method is called
to tF,e Earth's true equator of date resulting from pew- an Encke scheme. Either the Cowell or the Encke scheme
ered-flight arcs might be rotated to the fixed system. To may be used in the program, although the latter is gen-
assist in the latter transformation, the hour angle at erally preferred in practice because of a small advantage
Greenwich of the true vernal equinox was obtained by i.1speed and accuracy. But for the powered flight option,
the synthesis of a calculated mean value and the nutation which simulates the burning of a constant-thrust motor, a
in right ascension formed from the nutations and the Cowell scheme is generally advisable because the rapid
obliquity of the ecliptic, deviation from the reference two-body orbit would force

frequent recalculation of the reference if the Encke

As the planetary-position ephemerides are tabulated at scheme were used. The motor is assumed to be of high
four-day intervals and the lunar at one-day intervals on thrust since the attitude is forced to remain fixed in space,
the ephemeris tape, it was necessary to use an interpola- a restriction which is unrealistic for a low-thrust motor.
fion scheme to obtain intermediate values of positions
and velocities. An Everett's formula which utilizes second The solution to the trajectory problem is obtained by a
and fourth central differeuces was chosen for the posi- stepwise numerical integration of the equations of motion
tions; to obtain the velocities, the Everett's interpolating appropriate to either the Cowed or Encke scheme accord-
polynomials were differentiated to obtain polynomials to ing to an Adams-Moulton predictor-correcter method
be applied to the tabulated positions. It was found con- which retains the sixth differences of the derivatives; a
venient to tabulate the necessary differences on the Runge-Kutta method accurate through fourth order is
ephemeris tape along with the positions, and to arrange used to obtain starting values for the Adams-Moulton
the tape in 20-day records to permit efficient tape scan- method. An additional refinement is the fact that the
ning in either the forward or the backw_u.d direction, and ordinates are accumulated in double precision to control
to avoid excessive tape reference; thus lunar trajectories the growth of roundoff error. To obtain the solution at
require, at most, two records, and interplanetary on the desired points, the subroutine MARK is employed. (For
order of ten, which keeps tape-handling time within details of subroutines, see Appendix.)
reasonable limits. Additionally, for the Moon, the sixth
and eighth central differences have been throv._a back on For purposes of control, the trajectory has been divided
the second and fourth, since the fo,'_n.erare not negligible, into segments which are r_ferred to as "phases." Usually
To handle long flight times, the argument is carried in a phase is characterized by a dominant central body, and
double precision; this technique also allows for smooth integration step siz._ is determined by the distance of tho
interpolation, probe from that body. Thus a normal Venus trajectory

which ._njects near perigee and terminates with Venus
The equations of motion have been written to take imp,tct wouid consist of three phases: phase one, integra-

advantage of the fact that usually a central body may be tion to 2.5 × 10_ kin from the Earth, with the Earth as
found, and the coordinates relative to that body expressed the central body; phase two, Sun-centered integration to
s9 that the dominant term it, the acceleration arises from 2.5 × 10e km from Venus; and phase three, Venus-
the chosen body, and the remaining terms are relatively centered integration to the surface of Venus at 6100 kin.
small perturbations acting to displace the two-body orbit In addition, the phase may be used for the auxiliary
forme.'l by the trajectory of the probe in the field of the function of controlling the density, type, and incidence
central body alone. Thus the remaining gravitational of output.
bodies give rise to what is known as the n-body perturba-
tion; the perturbation arising from the oblateness of the The program operates internally in laboratory units,
Earth and expressed by the second, third, and fourth i.e., in kilometers and seconds, rather than the elassieal
harmonics is included when the probe is near the Earth; units utilized in celestial mechanics. Universal Time (U.T.)
in a similar manner, the pert'lrbation derived froni the is used, although provisions have been made to augment
triaxial figure of the Moon and represented through a U.T. by a constant to obtain Ephemeris Time (E.T.) for
second harmonic term is included when the probe is in use as the argument of the epbemerid_. For purposes of
the vicinity of the Moon. The above method of represent- high resolution, time is carried in double-precision see-
ing the equations of motion is known as a Gowdl scheme, ends past 0h January 1, 1950. This choice also makes for
If the central-body term is replaced by the acceleration consistent results, even though the phase-transfe_ points

2
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may be changed somewhat for a particular trajectory; epoch, and stepwise numerical integration of the equa-
otherwise, the interpolated values of the coordinates tions of motion appropriate to either a Cowell or an
might not be a smooth function of time, and hence give Eneke scheme serves to step the probe along its flight
rise to systematic errors at the transfer point, path to one of the bodies, which then serves as a target.

Standard-type trajectories injecting near the Earth, and
The motion of the Moon s true equator has been accu- iic,:,,.'ngas target one of the bod_ Earth, Mc-_n, Venus, or

rately represented by the program to provide for seleno- Mars, have been given spedal _eatment i; reduce the
graphic coordinates to be used for both input and output, volume of input necessary for _tecution. '7_1einjection
The rotation necessary to transform from the 1950.0 conditions may be input in Cartesian or spherical coordi-
reference to selenographic Cartesian coordinates is also nares based on one of four reference frames: mean equator
needed to represent the perturbation arising from the and equinox of 1950.0, mean equinox and eeliptie of
nonspherieal figure of the Moon. The description of me 1950.0, true equator and equinox of date, and the true
selenographic quantities may be found in the discussions equinox ar d ecliptic of date. For the Earth as injection
of subroutines NUTATE, MNA, MNAMD, and XYZDD 2 body, the Earth-fixed spherical set, based on a rotating
given in the Appendix. Earth, is available; for the Moon as injection body, the

In summary, the Space Trajectories Program in its selenographic (Moon-fixed spherical) coordinate set,
present form is the culmination of three years of work in which takes into account the rotation of the Moon, may
the space trajectory field at the Jet Propulsion Laboratory, be used. For injection conditions taken with reference to

the Earth, a quasi-orbital element set for escape hyper-and is designed for the study of the motion of a space
probe confined to the solar system and influenced by the bolas, known as the energy-asymptote option, has Leen

made available. For output, any of the above quantitiesnonspherieal Earth and Moon, and the point masses
defined by the Sun, Venus, Mars, and Jupiter. The pro- may be obtained at will, along with ephemeris informa-
gram may also be employed in other applications, of tion expressed in any one of the four Cartesian or spheri-
which the following aro some examples. A simplified cal coordinate systems; conic ouwut may be called for

which expresses the osculating two-body orbit in manypowered-flight arc may be simulated which assumes a
constant-thrust, constant-burning-rate motor with thrust sets of orbital elements referred to one of the standard
direction fixed in space. Any of L,.e above-mentioned Cartesian frames; all manner of the princival angles be-
bodies may serve as the reference body at the injection tween the probe and the bodies may be displayed; up to

a maximum of 15 tracking stations may be used to observe
the probe in topocentric spherical coordinates; or view

Whesesubroutineswere programmed with minorrevisionsfrom the periods of the stations may be determined by the pro-equations described in "Selenograpbic Coordinates,"by B. E.
Kalensher, Technical Beport No. 32-41, Jet Propulsion Laboratory, gram and displayed in the fore, of rise, maximum eleva-
Pasadena,Calit.,February24, 1961. tion, and set prints.

t
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II. EQUATIONS OF MGTION

A. Cowell Scheme ever, in practice it is convenient to rewrite Eq. (2) so

Let there be a small probe, body 0, in the gravitational that the coordinate system is referred to one of the n
field of n other bodies. Choosing an inertial frame of ref- bodies, usually the dominant one.
erence results, according to Newton, in

Using Eq. (_.) above with l _ 1 as the central body

"P,=-k'_ra_ PJi i=O n (1)..... _ Rio,:o iio+ = - k, m,
where pj_ = pi - Ps; P_ = IPs_ J;i, ] = 0.... , n; and k is with
the gaussian gravitational constant (Sketch 1).

"J/_ P0 _t_j= R: - R, = pj - p_= p.,, i,j = O,...,n
/ \ R,; = [R,j l

m/ defined in the new coord_:.,atesystem.
0 To obtain Ro from the above expression, calculate pz

with the aid of Eq. (1):
Sketch!. Relationshipof ith anti i_h body . n

in an inertial frame centered e pz = -- k 2 _'_" _ _ 'f_ " ' = k_ mJ R_

.1=0 S:0

Observe that s_z s/
Sof}

1
P =_'_mjPs

the center of mass, has the interesting property that _[

brief
p_j

1:0 t:o

= -- _'_"_r - m + (3)
p,j = _ ,,j, _:_ \ R]_

and J/_

with R = 11o= Rp, Rsp = Rio, p denoting the probe, andpij = PS_ with bl = ms /_j = k 2ms; f = 1,..., n.
J=o

Therefore P is constant and the barycehter is an inertial In Eq. (3), the summation on the right will be known
frame, as the n-body perturbation which may be resolved into

the direct terms, - _/_s Rs_/R]_, and the indirect terms,
Were it sufficient to express the motion of the prove, - _ t_sRs/R] ; the latter sum represents the accelerating

body O,in an inertial coordinate system, the result would effect of the n - 1 noneentral bodies on the central body
i be and is what distinguishes Eq. (3) from Eq. (2). The

;_ _ effect of the central body has been deliberately isolated
i Po=--&_=_m_ p_o (2)
,_" _=_ P_o because normally it is the dominant term in the expres-
_ sion for the aec,'leration. In particular, in the ease that all

_ where the coordinates are eeferred to the bawcenter, perturbations vanish, Eq, (3) may be solved completely
Such a representation would naturally ewugh be called for the geometric orbit, a conic. Even when the perturba-

L the barycentric form of the equations of motion. How- tions are small, the above conic solution may be used to

I1_ 4 ,,:
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rewrite the equations of motio,_ as in Encke's methed _7 U¢ may be fourd in subroutine XYZDD de.scribed in
described in Section IIB. the Appendix; the body-fixed coordinate system for the

Moon is given in the discussions of subroutines XYZDD,
When the probe is in the vicinity of an oblate body, a MNA, and M_A_dl3 in the Appendix.

perturbing term is added to the differential equations
which may be described by the corresponding potential At times it may be necessary to simulate the perform-
function, anee of a small midcourse motor which burns with con-

stant _rust with an attitude fixed in the 1956.0 reference

_'or the Earth, use is made of the second, third, and system. Thrust duration is handled as a function of time
fourth harmonics: alone: :

__ F ':- -(3-Ssin')sin, a= C ro r_<rl (4): U¢ = t, SR_' (1-3sin 2_)+ 5R_ mo-_(T-To) -- -- -_::-c_

Da_ ,_ where C is "he spin-axis vector of the p__be fixed in space, .... _:

+ _ (3 - 30 sin2_ + 35 sin' q) _ Fistheconstantthrust, istheconstantmassaowrate,and me is the initial ma_s. L-_-_%

where t_e is the gravitational coeflleient of the Earth, " ": |_
ae is the equatorial radius of the Earth, and _bis the During burning, Eo. (4) represents the !argest contri-
geocentriclatitude. The perturbing acceleration is then bution to the acCel_,ration and Encke's method is not

given by used. In general I' "

ii= - +P (5)v % = , .
where R = (X, Y, Z) and the coordinate system is ori- where t_ = m a_,d P represents the contributions to the
ented in the fixed 1950 0 system described in Section IVB. acceleration arising from the abo_,e-mentioned perturba- ,_-J-'-.--i_:
Th. precise form of _/U¢ is given in the subroutine tions and any thrust which may be considered. The direct _.......
HARMN described in the Appendix. numerical integration of Eq. (5) is here defined ac a

Cowell integration, although the latter te, a is used dff-

The Moon may be regarded as a triaxial ellipsoid with ferently by other authors. .-_
the explicit expansion for the oblate potential being

= c('A + n + c - 31_ ':": -U¢ /, 2R3 B. $ncke's Method L:'b:_.
where Let theprobe be near a central body so that P becomes "-_"_=:'

small compared to the central body term in Eq. (5). At _ __'
G = _ = k2 the epoch To the two-body problem may be solved with

me suitable initial conditions. The defining equations of
I = d + B + C motion for the unperturbed el oit are .....

IL (5) _
A, B, and C are moments of inertia about the three prin- i_ -'- - t_ R'-_o
cipal axes of the ellipsoid and R = (x, y, z) is the position _:_! ,
of the probe expressed in the orthogonal right-handed Thus, Re is available and, ff necessary, 11o= Voas a time- >.",....
coordinate system defined by the aforementioned prin- tion of time. Next, consider the differential exluatior_ _or ..... _
eipal axes. Specifically, the x-g plane defines the Moon's p --- It - lie, the Encke displacement, where 11 is from
true equator, the x axis eman_te_ from the longest _is the perturbed orbit defined in Eq. (5): I '_-''/ 'i, 'I'

whichisconstrainedto pointin the generaldirectionofthe (_ _'_ [ '_ ' /"_'-''''':
Earth,while the z axis lies in the direction of the Moon's _; -= - _ \x" _q/ _ P (7)
spin vector; the figure may be likened to a distort_l oblate * _'_:<_';
spheroid, disfigured because of the Earth's proximity. At ,}'Jspoint, the difference between the central.body I _, ,,_,,_,::,:

l _ , :,?'t-}%,,

terms must be expanded by means of the small parameter :"-;,£:._;,b-_::'_'_.-'_:

To obtain the acceleration, again form _ U¢, with Q; otherw_e, num_ differencing will result in sig. ,4:i!_ "
, X, ¥, Z given in the 1950.0 system. The explicit form of Id_cant error_ introduced in the accelerations. So i ¢_

s
• . . I_T I o,l_,_iIl_II_
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R Re 1 {(_.: ) _ the limitations of the numerical calculation. For the- R-= -- R-_o - 1 R + p (8) Encke initial conditions at the epoch To, useJ /

Define, as with Encke, Q by the relation 1 �2Q= p (To) = R (To) -- Re (To)
R'/R_; Ln general, when the method is applicable, Q b (To) = !_ (To) -i_ (To)

will be a small parameter. Now If the Ferturbation P is large enough, both Q and p/Re
R: will grow with time; Q may be small while p/Ro is tel-

l R_ - 1 - (I 4- 2Q)-_ ativdy large, since Q is defined by the dot product in
Eq. (10). Under these circumstances it bec_omesn_

and the. difference may be expanded into the se:ies to r..-_ify the reference orbit and restart the numerical

_ integration p/Re is t,_ed to assess the numerical accu-P (Q) = 1- (1 + 2Q) "_= _ zs_ j (9) racy. d F_.q. (10), ,'rod an empirical bound has been
I=. applied as indicated in the discussion of the control

section o_ the program (see Section V).
where m is chosen so that the rentainder in the sum stays

smaller than a, × 10-"wbenvvez [Q [ __ Q.. The use d the Encke method is advan_agenus becaL_e

An accurate numerical value for Q must be obtained in the perturbation P ent,_:; the derivatives in Eq. (11) to
• more significant digits thaninthecorresponding onto in

order to jmti_/the egpe_Je d the series expansion in Eq. (5), and hence the effect of P is more accurately
Eq (9): represented; step size may Le increased by about a factor

l(X_ ) of two over Cowell ff a dominant c.ntral body is chosen; =Q=T -1 and the differential equations are such that numerical

1 (Re d- P)" (Red- p) - R : stability of the Adams-Moulton predictor is not quite the
= -- problem that it is when Cowell derivatives are used, even

2 R_ though both methods use one application of Ada_s-

= 1 R: d- 2p- Re + p" p - R_ Moulton corr_4or to insure ul_-nate stability. A corn-
2 R: parison of the numerical results appears in Section III.

P" (Re + 2£') C. So/ut/ons to the Two-Body Problem

Q = R: (10) As mentioned in the preceding section, for Encke's
- method it is necessary to obtain a _olution to the two-

.*thas been found that the above dot product is well body problem as a function of time. At epoch 7',, in
defined numerically for most cases: further numerical general, a set of osculating elements is required, defined
safeguards which have been added to control Be accu- by IL, V_ and the equations of motion
racy of Q are given in subroutine ENCKE, described in
theApp_x, ii=- _B

R--3- (12)

If the difference appearing in Eq. (7) is evaluated, Observe that R X V is a constant vector since

using Eq. (8) and Eq. (9), the final equations (d motion d (R X V) _ d (R X It) _ _ X R t R X
the Fm&e method become _

- ,,_= - (p- PJ_(Q)) +P (.,1) - --k-_ (RXR) =o

To start the integration at the epoch To_an arbitrary cs = I R X V ]. the angular momentum, is defined as a
] constant of the motion. In the exposition below, Cs_f:0 isI set of dements is chosen to describe the two-body motion;
! in all instances, judicious _iection must be made so that assumed; if the oscuLdng elements give c, -.. 0, then

the Encke term in gq. (11) does not become large nonosculating set is used for the Encke program so that
rapidly and so destroy the advantageovertheCowell c, is dearly defined. Next

method, which uses Eq. (5). In most cases the elements W R × V
wmbeoscuhUng,sothatp (1".),,.o and_ (1",)-..0to =

!
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is defined so the motion is constrained to the plane de- Making the classical change of variables, 1/u = r, and _;
fined by W. The quantity c, = V'- - 2l_/a is another solving for the geometric orbit with the true anomaly v,

constant of the motion d-'u _-0
dt d; where p = cZ,/t,.

it += 2 -- _ _f Measuring the initial conditions at epoch Tp, wh_e

= 2{ - sR.R.k + k.j ,, = 0,the,oh tionhasthelform,B -- CO_; f,/

=0 P P

Thus, c3= V2 - 2/_/R is definedas the "energy"constant, sincedu/do = 0 at o = 0. In termsof r, the fundamental
geometricsolution becomes

It is possible now to _olve the problem of the motion P (13)
in the orbital plane defined by W. r = 1 + • cos¢

while q (1 + e) = p; • _ Osincep > q.
Z

! An expre_i_n for • is now obtained:

, W Q • i,n =;_ + ____;_ =_ t casinv

• ¢3= It_ 2.p _ /_(e:sin",."-I-e"cos"u -- 1)

r p (14)
_1_ 1 = p¢*

p

x _=_-_

Sketch2. Two-body orbit

The solution may then be expressed as

Belerrir.g to Sketch _ let the closest approach distance p cos¢ p + p sinv
he q at the epoch T_ and Pdefmed as R.,_ = qP; d_fine R= I + ecosv 1 +ecm¢ Q
Q = W X P so that a Cartosi_n coordinate system de- (15)
fined by P and Q may be set up in the orbital plane. If V = -c,sin............_p + ct (e + cosy) Q
R = constant, then Tp = To. Polar coordinates may be P "P
used to write r = (x,g)= re _', where v is the true
anomaly. Note that since At the osculation epoch To, from Eq. (18)

• *(_-1)r = ;s t"+ ioi'rb = _s:"+ ri,e"'_'1" cmv, = -_ R,
calculate c, = r2 c.,since the component _e_"of the veloc-

and by manipulation of Eq. (15)
it}, lies along r and, hence, does not contribute to the

cross product, which defines c_. Finally, by differentiating sin _o = 1 _ lie- V,/"and comparing with Eq. (12), RoCz

"r= \(_ - r'/e_ #_, = _ _'_ #_, Inverting EK (15) gives the vector exprezdous

wx_6P = cos,_o - sin,_, _,or
(_6)

i WX_
i:+ -_--t' _"¢_'= 0 Q = sinvo "_o ' cos_o --R,

] 966007303-0 ] 2
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Equation (16) is satisfactory only ¢or r--._ 0; ff • = 0, appears at c3 = 0 which is adequately handled by the
it is customary to take perieenter method, as c3 = 0 implies 7, = 0. Otherwise,

IL the elliptical case is distinguished with c3 < 0 and its
P = -- eccentric anomaly E, while for c3 > 0 and the eccentric

Ro anomaly F, the hyperbolic case is considered.
0=wxp

If cs < 0, _ is defined by
To solve the dynamics, one approach is to work with v,

the true anomaly, in the form w = tan v/2. R = a (1 - ecosE),0 < {El _ !80 °

R - q (1 + w2) a -- t_ (19)¢3

1 +Aw 2 _>0sothatE_0ifT>_Tpwhere A= (1 -- ,)/(1 + ,), in terms of the new variable w.

From the relation ct = R2 6, By substitution into the equation ca = V 2 - 2t_/R,
t----

1 + w' (1 -, cosE) E= X/--_=nc.._.._d T = dw
2q 2 (1 +Xw') 2

or

,3r E -- esinE = n (T -- Tp) (20)

• ! + u2 which is Kepler's equation for an ellipse.

g(T-T_,) = (1 4-Xu_} _d_ (17)
Observing that

=
where g = ct/2q*. R = a (1 - • cosE) 1 + • cosv

In practice, the quadrature on the right side of Eq. (17) and
is obtained for small values of A by expanding the hate-

• 1_ £:1

grand as a power series in x and u= and integrating term 1_= a, sin E E = -7 sin vby term. The resultant form appears in the discussion of
leads tosubroutine PERI (see Appendix). Equation (15) may

be rewritten in terms of w as cos v - cosE - •
1 -- EcosE

1 -- w* 2w (21)
R= 1 +Xw* qP+ 1 + Aw----'-T q _ vti - e2sinB

(18) sin v-- 1 - ecosB
V= --ct(l+X) w ct(l--Aw z)

q(1 +w*) P+ Qq (1 + w')
Substitution of Eq. (21) into Eq. (15) yields

To complete the solution, it is necessary to obtain Tp. If

we = sin v,/( 1 + cos Vo) and x are not too large, then Xw_ 11= a (cos/] - ,) P + a X/T- •_sin P-Q

will be sufficiently small so that Tp may be calculated -an sin E p + _n V_ -• _cosE (22)
from Eq. (17) with the series expansion. It may turn out V 1 - eco, E 1 - ecos f Q
that Xwo_ is not suitable, in which case Tp is computed
using the eccentric anomaly which is described below. Eo is determined at epoch To I_y

But once Tp is obtained, Eq. (17) may be solved at epoch 1 ( .._)T by iteration to give w, used to obtain tl,,_coordinates as cos/_o = "- 1 --£

in Eq. (18). Since Av.'_ must be a small parameter for the 1 l_- Vo
method to work, the principal application come._ when sin fo =

;• either 7, is quite small or th_ motion is confined to a

region near closest approach; the latter alternative gives so that Tp may be determined using these equations along
! rise to the name =pericenter" method applied to the above with Eq. (20).
! process involving w or v.
:- To obtain the coordinates at epoch T for the eniptical

,tmother way to obtain the dynamics is through the orbits, Eq. (20) is solved by iteration given in the dis-
introduction of the eccentric anomaly. A singularity eussion of subroutine KEPLER (see Appendix). |

L6
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The hyperbolic case defined by c_ > 0 aomits a similar Beplacing the quantifies in Eq. (15) by those in Eq
solution. Start with the definition for F (25), the expressions for the coordinates become

R = a (_ coshF -- 1) 11= a (e -- coshF) P + avr-_ - 1siahF Q

a = --_ (25) (26)
-- a n ve-_ - 1 coshF Ac3 a n shah F p +

i:>OsothatF>_OiiT_T " V- ecoshF -- 1 e--c--_h_'----l" V

To obtain the form of Ke:_ler's equation for the hyper-
bola. use c3 as with the eIliptiea, _ease, and obtain At the epoch To, T. may be determined from Eq. (24),

when Fo is obtained fron

(ecoshF-- 1)/_= _'_ = n

and Kepler's equation c°shF" = i ( 1e -t--_)

esinhF -- F = n (T - Tp) (24) 1 R,- */'o i
sighFo -

Comparing expressions for R and/_, v and F are re- • a _ :
lated by

• -- coshF The iterative solution of Kepler's equation at epoch T is i
cosv -- • cosh F -- 1 used to obtain the coordinates; the discussion of subrou- i

' slav = V_ - lsinhF (25) fine QUADKP (see Appendix) describes the numerical
• coshF -- l technique used for the hyperbohe case.

..

i
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III. NUMERICALEXPERIENCE

Trajectories computed using single-precision deriva- Encke schemes; additional information was obtained by
tires calculated in the Enck_ manner should be slightly sucoes_,ively chopping the last and the last two bits in
more accurate than those generated using the Cowell each coordinate of the acceleration vector at each inte-
form of the equations of motion, provided that a proper gration step. A comparison of the effect on the orbital
choice of central body h_ bccr, a_ade. The difference elements at the first perigee point appears in Table 1.
between the two methods arises from the fact that thc

relat;,,o!y small size of the perturbing acceleration, as As a measure of the over-all difference in the Irajec-
compared with the central body acceleration, permits the tories, comparison of the difference in range 8R may be
En-ke scheme to retain more significance in the total made near the perigee. Under the assumption that Tp is
acceleration, as compared with the corresponding aeeel- the only orbital element to be affected, then
oration term in the Cowell scheme. It is assumed that the

reference orbit for the Eneke scheme lies su__cienfly close 8R = R_ -- R1 = _ R* _1 -- _2sinEs
to the true orbit so that the quantity p/Re < 0.00. where t - • cos/: °
Ro i_ the position m the reference orbit while p is the dif- where
ference between IL the position in the true orbit, and IIo. 1

Under this assumption, the main term in the acceleration E* = 2 (_1 +/L-)
for the Encke method, viz., - t_/R_o (p - F(Q)R), will

in general be at least an order of magnitude smaller than satis6es the equation
the corresponding Cowell term, - tdR/R _, for F (Q) _ 3Q

= 3p. (1¢, + p/9.)/R_ _ 3pl_ at worst; thus I P/_ - E" - esinE a = n (T- T,'),

F(Q)R/Ro ] _ 4p/Re and as R2o/R_ _ 1 - 2Q, the ratio 1 T_,_)of acceleration terms will never exceed 0.12. The ultimate TP* = T (T_'_ +
accuracy of the Encke scheme is tied to the accurate

gnE

solution of the two-body problem for obtaining the ref- $ R" V_----'_: 8T_erence orbit; less accuracy in the reference orbit would

be sufficient for computation of the main Encke accelera- 8Tp = T_2t - T__tion term and a less accurate solution than this would

suttee for the perturbations, where the superscrfpt 1 refers to a comparison trajectory
while the superscript 2 refers to a perturbed trajectory.

Rounding error in the computation of the main Cowell 8R" is the extreme value of 8R ocournng at n ( T - Tpe) =
aeceleration term propagates into the numerical solution ± (cos -_ e - • _). A summary of results in Table 2
in a strikingly simple fashion_Tp, the epoch of pericenter serves to demonstrate the adequateness of the conic
passage, alone of the orbital elements is significantly per- approximation. The small perturbation in Tp eontribut_
turbed. To demonstrate the effect of roundoff, a high only a small difference in the coordinates, ff a comparison
Earth-satellite trajectory was run with both Cowell and ._smade at a greater time from perigee.

Table 1. Orbital elementsat perigee

i

Case q" e r,s i w O
km _K dog dog dog

Normal Encke 8901.362 0.98534697 69.077 19.599986 200.94431 222.1f_236

Encke with lost blt chopped 8901.362 0.98534687 69.074 19.599986 200.94431 222.1P236

Encke with last two bits chopped 8901.362 0.98534697 69.088 19.599986 200.94431 22%182_L5

Normal Cowell 8901.425 0.98534641 22.029 19.600052 200.94427 222,18245

Cowell with last bit chopped 8901.420 0.98534644 27.063 19.600039 200.944211 222.18243

Cowoll with last Iwo blts chopped 8901.402 0.98534650 38.793 19,600027 200.94429 222.18241
n ._

aCI0_t opproechdistance.

bTlmeof porlc_n_r 10aua0e,ilcul41d 12* S8mafter the InlectlonePOch.

!0

I I II II r

- I
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As a further comparison of the Encke and Cowell of-date system must be rotated to the mean equator and

methods, three hmar trajectories were selected which had equinox of 1950.0 for integration in the normal ease. Such
flight times of 85 hr, 45 hr, and 66 hr, respectively. The an operation introduces a small variation in the injection

trajectories were characterized by an injection altitude of coordinates which propagates under integration into the

about 200 km near perigee arid a termination of 1738.09 numerical solution, thus partially masking the difference
krn from the center of the Moon. Table 3 compares results between the two coordinate systems. However, an esti-

obtained by the running of each trajectory four different mate of the variational effect was made which could

ways: (1) Eneke, Moon-centered second phase; (2) account for about half of the observed difference in the
Encke, Earth-centered second phase; (8) Cowell, Moon- Cartesian coordinates at lunar encounter. The perturba-

centered second phase; and (4) Cowell, Earth-centered tions in these coordinates, arising solely from the two
second phase. In all instances the second phase was different coordinate systems for integration, seem there-

started at a distance of 80,000 krn fr¢,n the center of the fore to amount to about 1 km; in addition, the flight time

Moon. It appears from the data that all four methods are received a perturbation amounting to about 0.6 sec, These
consistent and yield results of satisfactory accuracy, differences appear to be significant when viewed in the

light of the data in Tahk- .q
The fia-hr !un_ _ajccto_ was used to estimate the

effect of integrating in a coordinate system based on the As interplanetary trajectories are usually run in three
true equator and equinox of date. A precise comparison phases--phase one Earth-centered, phase two Sun-

is impossible, since injection conditions expressed in the centered, and phase three target-centered--it is necessary

Table 2. Range differences near perigee

8R at 45 v 12 h M at 45 _ 14 h Maximum 811

Case km km km
m -

Computed" ] Obsmvec_ C.omputed e Olbservecl_ Computed" Observed b

Encke with last bit chopped minus normal Encke --0.014 --0.014 0.014 0.010 0.014 0.014

Enckn with two bits chopped minus normal Encke 0.050 0.052 --0.050 0.052 0.051 0.053

Normal Cowell minus normal Encke --215.028 --214.943 213.824 213.705 220.168 220.064

Cowell with last bit chopped minus normal Cawell 23.025 23.017 --22.860 --22.850 23.557 23.548

Cowell with two bits chopped minus normal Cowell 76.661 76.631 --76.1:4 --76.103 78.450 78.413

eYalues derived from the orbital elements.

bVcllues derived from the normal trajectory output.

Table 3. Comparison of lunar tmiectodes

I
Case Lunar impact Time It • '1" It • Its I is

km I.. I des
35 u Encke E-M ! v I0' 53" 08._619 44.129 9.785 27.3,

35 s Encke E-E I v 10 h 53" 08'.624 44.142 9.785 27.3384

35 b Cownll E,M I v 10 b 53" 08;620 44.139 9.737 27.3347

35bCowell E-E I v 10 h 53 _ 08-'625 4 ..149 9.787 27.3341

4$bEncke E-M I v 20 j 51" 32'279 19.017 14.500 46.86_'3

45 b Enckn E-E I v 20 _ 51'* 32;284 19.042 14.499 46.8322

45 _ Cowell E-M I v 20 h 51'* 32;279 1_.031 14.499 46.8475

45SCawell |oE 1v 20 I' 51" 32'°287 19.047 14.500 46.8408

66 b Encke E-M 2 d 17' 49" 03'028 270.281 --88.532 37.1|64

66 s Encke E-E 2 v 17. 49' 03_047 270.324 --88.536 37.1548

66 b Cowell E-M 2v 17. 49" 03'064 270.300 --88.565 37.1906

66 b Cawell E-E 2d 17* 49" 03'.078 270.339 --88.571 37.1894

• The orbital olemenh B . T and Ill * It am computed oluns with i, the Inclination, at the tl**ro the distance 1735.09 km from the ce_h_r of the Moon Is roached.

!1
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at the change into phase two to compute the velocity of tories in which the transfer point from phase one to phase
the Sun by numerical diffcrentiatiGn of position coordi- two was kept fixed for the respective trajectories. Evi-
nares, which is inaccurate on two counts: first, the position dently, the difference between the two methods shows up
ephemeris of the Sun disvlays noise in the seventh fig- more distinctly the longer the flight time, but is of accept-
ure of the positions, which gives rise to inconsistencies able magnitude, as Table 5 indicate_.
in the velocities as obtained from neighboring segments
of the ephemeris; second, even with eight-figure accuracy In summzry, the trajectory program gives consistent
in the position data, ealeuiation of the velocities entails single-precision results for the Encke and Cowell meth-
differencing so that significant figures are lost.

Table4. Differencesat transferto Venus-centeredphase
To determine the magnitude of the error introduced in

the velocity coordinates as used for vormal eases, an 80-
ax _Y 8z 8TF

day are of the Earth's orbit was smoothed by a least- Transfer time" Mmb Mm' Mmb slc
squares fit which utilized a numerical integration of the
equations of motion. Resid,al_ on the order of two u,,ib v3.50 0.6 o.1 0.o 75
in the seventh figure of the position coordinates were 93.75 -0.1 0.0 0.0 -15
obtained by the fitting process. As a by-productof the fit, 94.00 -0.7 -0.1 0.0 -5794.25 -- 1.2 --0.1 0.0 -- 140

smooth velocity coordinates were obtained which were 94.50 -I.2 -0.1 0.1 -132
therefore consistent with the new position co,)rdmates. 94.75 --1.4 --0.2 0.1 --155
Intermediate values of the velocities were then obtained 9s.oo -1.6 -0.2 o.1 -181

by both a numerical differentiation of the new position 9.5.25 --1.8 --0.3 0.I --211
ephemeris and a direct interpolation of the velocity 95.50 -1.9 -0.4 0.0 -23495.75 -- 2.2 -- 0.5 0.0 -- 370

ephemeris; a comparison of the results revealed maximum 96.00 --2.3 --0.7 --0.1 --503

differences of about 0.02 m/see, or discrepancies in the 96.25 -?.4 -0.9 -0.2 -332
seventh figure. Next, the o-:ginal noisy position c_ordi- 96.50 -2.7 -1.1 --0.2 --3111
nates were differentiated and compared with the inter- 96.75 -2.7 -1.3 -0.3 -403
polation in the velocity ephemeris. In this ease, the 97.00 -2.7 -1.4 -0.4 -42097.25 --2.7 --1.5 --0.4 --434

maximum differences were observed to be about 0.15 97.50 --2.9 --1.6 --0.5 --461
m/see, or a reLtive error of about 5 × 10-L 97.75 -2.11 -!.7 -0.6 -467

98.00 -- 2.7 -- 1.8 -- 0.7 -- 470

An actual Venus trajectory with a flight time of 108 98.25 -2.6 -I.9 -0.7 -472
days was studied for the effect of inaccuracies introduced 98.5o --2.0 --1.9 --0.7 --417

by the velocity transformation in the transfer to phase i'_o A, geocentric 0.6 -- 1.0 --0.5 -- 37
by the systematic variation of the epoch of the coo, "linate ,r_, transfer llme re_'_mMs the Jullon dote In E.?. ot wMth entry w.... de

change, and also by running a trajectory which integrated v.,.th. h.,,,,.,m ph.,,.
geocentrically all the way to Venus encounter. The results _M,,=._.,.
are summarized in Table 4, which gives the deviation of

the coordinates at the fixed epoch of transfer into phase Table 5. Comparisonof interplanetarytralectories
three, and of the time of Venus encovnter, all referred to

a standard tra|eetory which used the ordinary phasing, r_" 3.1" II. it' i,
The di_erences in the coordinates may be explained c_ ,oc _ _
fairly well by the known magnitude of maximum error in
the velocity of the Sun and the value of the appropriate 10s'Ven,,,Encke 51.279 --4120.9 1694.4 153.9196
variational coefficients. The trajectory, which was into- 1os'v.,,, c.,,.. 56.636 --4120.5 1693.2 153.9295
grated all the way to Venus in phaseone,doesnot suffer ! 18dVenus,Encks 25.236 249632.1 -630020.9 76.8357

from the velocity problem, but because the noisy position 118'venus,Cowell 26.827 249629.9 --630022.0 76.8359
coordinates used in the calculation of the now large per-
turbations in the acceleration undoubtedly contribute a 231'M0,, Entke 9.743 -50153.6 --4537.4 173.4127
significant amount of error in the solution, this technique 231"Mars,Cowell 34.938 -50205.4 --4541.3 173.4134
does not solve the accuracy problem.

JTke timeof fllllkt Is mumd froman arbitrary egeck.

The Encke and Cowe" methods for the interplanetary ,r,., .,m,, .s...,_ _-. c.,¢.,._ .,_., ,t ,,..._ .=.._,, ., ., ,v..._
case were compared _y _nning Venus and Mars trajee- .p,..,h.

i

q966007303-017



)PL TECHNICAL REPORT NO, 32-223

ods, but the ephemeris problem for interplanetary flight Jet Propulsion Laboratory to obtain smoothed position
presents a source of systematic error. This problem will and velocity ephemerides which are gravitationally
be largely eliminated by a study now in progress at the consistent.
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IV. OPERATINGINSTRUCTIONSAND DESCRIPTIONOF INPUT

A. Operation of the Space Trajectories Program equator, and the Y axis in a direction to complete the
on the IBM 7090 usual right-handed coordinate system. The auxiliary ref-

erence frame based on the Earth's mean equator of date,
The Space Trajectories Program is designed to accept and the mean equinox of date defined by the Sun's mean

offlme card input in BCD on tape A2, to prepare an offliiJe orbit about the Earth (ecliptic of date), may be obtained
BCD output tape on A3, and to obtain ephemeris infor- from the 1950.0 system by the application of the preces-
mation from a tape mounted on A8 assumed to be written sion as described in the discussion of subroutine ROTEQ
in high density. For operational convenience, the off- (see Appendix).
line output may be monitored on the online printer by
depressing sense switch 6, which _.uilt_ ..........._..u,.. ..... Reference to the Earth's true equator of date is obtained
off- and online output. I_e other sense switches, the sense by the rotation of the mean equator of date about the
lights, the panel keys, and the sense indicator register are mean equinox of date to the ecliptic of date via the mean
not used; additionally, the floating-point trapping mode obliquity of date, rotation in the ecliptic to form the true
of execution is not used. equinox of date via the nutation in longitude, and, finally,

the rotation about the true equinox by means of the true
A machine run usually consists of several cases which obliquity of date formed by augmenting the mean obliq-

are defined by the appropriate case parameters punched uity by the nutation in obliquity, .The three rotations
on cards in a format accepted by the 7090 version of described result in bat a small ch_.nge, hence the mean
NYINP1, a SHARE input routine. The sets of cards which and true coordinates in general agree through the first
define individual cases are separated by TRA 3,4 cards, four figures. The description of subroutine NUTATE (see
and each set may be trailed by its package of phase cards Appendix) contains formulas for the rotation matrix which
to complete the input for running the trajectory, A performs the necessary transformation from mean coordi-
description of the available case parameters appears in nates to true.
Sections IVD-1 and D-2.

For the normal type r.i "minimum print" trajectory, a
set of phase parameter., suitable for the case may be C. Coordinate Systems for Input

selected from the parameters assembled in the program Provisions have been made to input directly into the
to be used for the standard targets Earth, Moon, Venus, Cartesian equatorial system of 1950.0 the basic coordi-
and Mars. The values of the stored parameters appear nate frame for the numerical integration. A simple rota-
in Section IVF. Complete control over the trajectory may tion abouf the mean vernal equinox of 1950.0, with
be obtained by the appropriate choice of phase param- magnitude the mean obliquity of 1950.0, permits input
eters for each sequential phase belonging to the case; the in the mean equinox and ecliptic of 1950.0. With the
phase parameters readin are saved and may be used for aid of the nutations in longitude and obliquity, along
subsequent cases so that one run might consist of several with the general precession, it becomes possible to input
cases, all using a common set of phase cards which is in either the true equator and equinox of date or the
read in but once. The functions of the specific param-
eters used in a phase are described in Sections IVE-2 true equinox and ecliptic of date. The Cartesian coordi-
and E-3. nates expressed in any one of the above four systems

may refer to one of the six available bodies Earth, Moon,

B. Basic Coordinate Systems Sun, Venus, Mars, and Jupiter,

The fundamental coordinate system used by the Space It is convenient to input the injection conditions in a
Trajectories Program for referenc_ of the equations of spherical set associated with one of the Cartesian coordi-
motion is the Cartesian frame formed by the mean equator nate systems which describes the position vector in terms
and equinox of 1950.0; the position of the mean equator of range and two angles, and the velocity vector corre-
of the Earth and the ascending node of the mean orbit sponding as velocity (speed) and two angles. For this
of the Sun on that equator, taken at the beginning of the purpose, the Ca_esian frame is regarded as being at rest
Besselian year 1950, serve as the definition. The X axis is in the case of the true of-date systems; the reference
directed along the node, the Z axis northward above the frame may be thought of as being "osculating" rather than

! ,
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undergoing a slow rotation in inertial space and thus Given :_L,the azimuth at the launch site, as in Sketch 3,
forming a rotating coordinate system. The set of equa-

tions necessary for the transformation from sphericals l_z = cos i = sin:_LCOS4'L
to Cartesian, along with the defiz:itions of the angles,
may be found in the description of subroutine RV_N
(AppendLx). where 4,,. = 28.309 deg, the latitude of the launch site,

a program parameter.
The Earth-fixed spherical set of injection conditions is

based on a Cartesian coordinate system assumed to rotate
with the Earth: the x-.y plane coincident with the S =(cos_scos®_,cos_ssinOs, sinq,s),

Earth's true equator of date, the x axis lying in the Green- the as,.ending asymptote
with meridian, and the z axis along the Earth's spin axis.
As described in subroutine GHA (Appendix), a formula is

- IVz sinOssin _s - cosOs_ cos__s - IV_
furnished which gives the Greenwich hour angle of the IVy =
true vernal equinox of date so that the Earth-fixed Car- cos_s
tesian coordinates may be referred to the true equator
and equinox of date v_a a simple rotation. Of course, If the radieand is negative, the error message
the velocity vector in the Earth-fixed system is affected
by the Earth's rotational rate; appropriate formulas for ".DECLINATION OF ASCENDING ASYMPTOTE
the velocity transformafion to the nonrotating system are OUT OF RANGE"

given in subroutine EARTH (Appendix). is printed and the trajectory is aborted.
A similar treatment of the Moon gives rise to injection

conditions expressed in selenographic (Moon-fixed spheri-

eals) coordinates; formulas for the position of the Moon's 1V, = - SvlP'v+ $_IP'z
true equator, the prime meridian of selenographic longi- _ '
tude reference, and the rotation of the Moon ,-re con-

tained in the discussion of subroutines XYZDD, MNA, completing the construction of W, the unit angular
and MNAMD (Appendix). momentum vector.

A final input coordinate system, based on orbital ele-

ments of an escape hyperbola from the Earth, completes V = _ + _ thevelocitythe number of options. The hyperbola has been charac-
terized by its ascending asymptote given by right ascen-

cx= IR × V [= RV cos P, the angular momentum
sion and declination, by the energy, and by the constraint

Cat' _

that the launch site lie in the orbital plane. The actual •• -- 1 = .-_--, for the eccentricity
shape of the hyperbola and the injection point are given /_
by the remaining two parameters, the path angle and
the range at the injection time. W

The equations for the energy-asymptote input option

may be developed as illustrated in the following: _ $
W Z

Sketch4. Relationshipof ascending

__ _ )" asymptoteand perigee

From sin 1"= e sin (v- 1"), invert to obtain -90 °
< v - 1"< 90° and v, the true anomaly. In particular, for
1"= 90°, an expression for v,j,, the maximum true anomaly

Sketch3. Launchgeometry (Sketch 4) is

15
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R = R {cos (*'max-- v) S + sin (Vma_-- v)S X W} WXR

The velocity vector (Sketch 5) is given by _._f V

L7 _R

V = V cos F-----if--- + sin 1'
Sketch 5. Description of the velocity vector

i

1966007303-021



J

JPL TECHNICAL REPOr(T NO. 32-2_2

D. Relationship Between Case Analysis and Phase Analysis

Store REPEAT
in REPFG

l

by1 ]

Set PH1 to read Set PH1 to read !
-- from SAVE 1; setfrom internal ,_ REPEAT"_- --0 REPEAT"_ -I-0 :_ ,_

phase cards as
determined by SAVE 1 :_
TARGET; set PH3
to read into
SAVE 1 _ _

To phase [
analysis J

For CASE ANALYSIS, input desired value of CASE and REPEAT.

If REPEAT = +0, all phase cards are read in and buttered at the same time.

P_ase I cards

TRA 3,4

Stack of phase cards for an phases
• to be read in for the present case

Last phase carr]s

TRA 3,4

Observe that the symbolic address card

CASE O - I

may be used to effect (CASE) = 0 at the phase-analysis point d the program.
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D. iCont'd)

1. Case Parameters

I_ Chin Program

(decimal) _Id ,,_.0_

I00 109 BCD 00-character cmament field printed at top of each page of output

110 BCD TARGET BCD name of target body
lIl BCD KERN BCD name of central body at injection
112 OCT REPEAT Phase input control word
H3 OCT INJECT Injection input type

114-115 DEC T1 Injection epoch in sexagesimal format

116-118 DEC X1, Y1,ZI Injection coordinates identified by INJECT
119-121 DEC XL, YI., Z1.

122 DEC GAMMAC Thrust attitude angles giving, fixed direction of thrust vector
123 DEC SIGMAC

124 DEC ACC1 Thrust magnitude in Ib force
125 DEC MASS1 Initial mass in lb

126 DEC MASS.1 Mass flow rate in lb/sec
127 DEC TBO1 Duration of blmdng in sec
128-129 DEC TGO1 Epoch for i__ition of motor

136 DEC I_J,DP Coefficient for radiation pressure

137 OCI' FLAGS Bit 34 = integrate frequencf equations
Bit 35 = integrate variational t.?uations

138 DEC T (K) Single-precision floating-point time

139 BCD EQUNOX Injection equator and equinox

2. Detailed Descriptioa of Case Parameters

Program Explanationname

TARGET May be Earth, Moon, Sun, Venus, Mars, or Jupiter. It is used to define the target
quantifies in the various print groups and to select the appropriate set of minimum
phase ear& when REPEAT --_ -0 and the target i_ neither the Sun nor Jupiter.

KERN May be any of the bodies as used with TARGET. KERN defines the central body
i of tile coordinate system at injection and may be distinct from the central body
| of integration for phase one.

REPEAT Determines whether or not phase input cards are to follow:

Value of Effect
! REPEAT

i - 1 Does not input phase cards but uses one of the four internal
f sets as determined by TARGET.

J 18
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D2. ICont'd)

Program E_'p_ionname

-0 U_es the interval sets of phase cards as with REPEAT = -1;
modifications are read in on top of working buffer, and altered
phase parameters are stored in a special buyer to be used
later. After last cards for the last phase have been read in,
REPEAT is set to + 1.

+0 Similar to REPEAT = -0 but does not make use of any
internally stored phase cards.

+1 Assumes all phases have been previously loaded and uses
appropriate buffer for input.

INJECT The sevep available types are as follows:

Value of

INJECT Coordinate System

+0 Inertial Cartesiar., equatorial

--0 Inertial Cartesian, ec]ip_c !

+1 Inertial spherical, equatoria' i

--1 Inertial spherical, eclipt/e

+2 E'_-th-fixedspherical

+ 3 Selenographie (spherical)

+4 Energy-asymptote Earth-centered equatorial

Note: For INJECT=-+-0 or __+1, coordinate system may be modified by
EQUNOX

TI Double precision epoch of injection in the two-word luted-point decimal format
which is denoted by "sexagesimal format."

Format of the two words is

yymmoddhh,nnssfff

where the fields are

yy = year, e.g., 61 for 1901

mm = month, e.g., 11 for November

odd = day, 3-digit field, where zero must appear before digits for day of month

hh = hours past start of day

nn = minutes

ss ----seconds

_. fff = milliseconds

Note: This epoch is modified by T(K).

; 19
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D2. tCont'dJ

Program Exp/anat/onname

Xl, Y1, Z1, Value of
XI., YI., Z1. INJECT Interpretation

+0 R and Y in equatorial Cartesian coordinates

-0 R and V in ecliptic Cartesian coordinates

+ 1 R, _, e; V, P, _ inertial equatorial spherical coordinates

- 1 R, t, X; V, r, _ inertial ecliptic spherical cooR1;-_ttes

+2 r, _, 0; v, _,, (rEarth-tLxed spherical

+ 3 r(, _{, 0( ;_, "r(, _¢ seler_ographie (spherical) coovtinates

+4 _, R, r; c,, _, Os energy-asymptote in Earth-centered equa-
torial system

Interpretation is modified by F.QUNOX below. Position units are kin, velocity
units are km/sec, and angles are in (leg.

GAMMAC, At injection the position vector R is formed. A _xed-thrust attitude vector C is
SIGMAC characterized by the path angle yc and the azimuth angle ¢c with respect to a plane

perpendicular to R and the Z axis as a reference direction. R may be a body-fixed
vector so that 7c and ¢c would have a different interpretation ff the selenographic
input optiou were used rather than Moon-centered Cartesian for instance.

For powered-flight computation the following formula is used for the accelera-
tion with the parameters described below:

-F

a =mo - th (T - To) C for To --_T-----To + t)

ACC1 F, thrust in Ib force; internally multiplied by g = 0.0098 to obtain a in km/sec'

MASS1 .h, initial mass in Ib

MASS.1 _h,mass flow rate in lb/sec

TBO1 tb, duration of burning in floating-point sec

TGO1 To, epoch of motor ignition in sexagesimal format as with TI, or the medilled
sexagesimal format as with _PRTENP in Section IVE-3.

Further phase control must be provided for the powered flight as indicated in
the flow diagrams of the ph- e logic (Section V) and the description of the phase
parameters; i.e., there must be a phase to start the motet.

For radia_on pressure calculation the following equation/s u_l:

a = I_. :_a
where

a = number of km/A.U., included to make dR,p/RS,_ dimensionless
i

.... ,- .._ , I I IIi i i
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D2. (Cont'd)

Program Explanation

R,p = the Sun-probe vector

K -- 1.03034 × 10.6 ]b force/m _, the solar-flux _nstant

/1 = effective area in mz

IF = mass of spacecraft in lb

g = 0.0098, conversion factor to express acceleration in km/sec 2internally

RADP Ag/W with units as above, mZ-km/sec: Ib force

FLAGS The two low-order bits are used to control the introduction of the 10 frequenc7
equations _fbs,= 1) and the 36 variaffonal equations (b. = 1) for numerical
integration in the Jet Propulsion Laboratory tracking program.

T(K) After T1 is converted internally to double-precision lloating-point sec past 0b
January I, 1950, T(K) is added on to give the effective injection time.

[

EQUNOX If the BCD field is all blanks, then the input is regarded as being expressed in i
the true equator and equinox of date or the true ecliptic and equinox, of date.
Otherwise the reference is the mean system of 1950.0. As EQUNOX is displayed
along with the injection conditions, it is customary to use the six characters
u1950.ff"for the latter case.

The data for ease parameters describing the injection conditions and powered-

_ight parameters and the associated control is terminated by the card TF _,3,4.

Further eases may follow unless the phase-card input is triggered via
REPEAT = __0. In that event, of course, all the necessary cards for the various

pha,,;esmust follow, then the subsequent cases.
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E. Phase-Card Reading and Buffering

1. Storage Layout of Internal Buffers

Input locations USE buffer
140 to 179 mapped onto SAVE

buffers _ REPEAT = ±0

I USE buffer ] SAVE,

10 buffers

SAVEIo

Nominal phase cards stored in core:

phase 2 I phase 2 Q phase 2 phase 2

phase 3 _ phase 3 phase 3

Moon

Q Sun

9 Venus

o_ Mars

Earth

2. Phase Parameters

Type Program D_tlonf_Id name

140 OCT LAST Controls last phase and some of the print

141 BCD REND Body used to foml R.p
142 DEC Value of R_, used to terminate phase

143 BCD REND. Body used to form/},,
144 DEC Suppression distance from central body

i ,z i
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E2. fCont'd)

Type Program
Location field name Description

145 OCT MODE Integrate Encke or Cowell

146 BCD CENTER Central body for integration

_147-148 DEC H Initial step size, modified sexagesimal format

149 OCT DOUBLE Number of initial doubles

150 BCD HKERN Body from which to compute step sizes

151-162 DEC PRTEND, DEIA'RT 3 print end times and intervals

163-166 DEC ODDPRT 2 odd-print epochs

167 OCT GROP 12-octal-character field to control print groups

168-169 OCT CODE1 24-octal-character field for station prints

170-171 OCT VIEW 24-octal-character field for stations for view periods

178 OCT ORBETT Reference for B •T and B •R in conic output

179 BCD EQUNXl Output equator and equinox

3. Detailed Description of Phase Parameters

Program E:cplarmtionrifflme •

{._ : call PRINTD at T_LAST sgn = don't call PRINTD at T4,

0 = reset TPaTto T_, at start of phasebit 33 I = use old TpaT from previous phase

0 = call PRINTD at end of phasebit 34 I = don't call PHINTD at end of phase

0 = last phasebit 35 1 = more phases to follow

PRINTD is the subroutine which prints the selected groups.

Tpar is the print epoch constructed in the previous phase which would have been
reached for printing had the previous phase extended in time to Tpa_.

When new phase cards are being read, bit 35 -- 0 also flags the end of the read-
ing process.

! T_ is the epoch at change of phase.

23
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E3. (Cont'dJ

Program Explanation

REND End-of-phase devices:
REND.

A phase may be terminated by one of the following three conditions:
1. REND

2. RBNt_

3. TE_,,

_- I. RE._D:The BCD name of the body to which RENDrefers is input in 141; the
desired value R.p = RENDis input in 142. RENDis USed as a dependent variable

top.

2. RzND:The BCD name of the body from which/_._-e is measured is input in 143;
144 is interpreted as:

(1) (REND. + 1) = 0: suppress h test

(2) (REND. + 1)-_ 0: test effective in the following ways:

a. If CENTER = TARGET, stop at _*:-- 0 via a dependent variable stop

-_ b. If CENTER =/=TARGET, suppress test until:

1. R > (REND. + 1) ff (REND. + 1) > 0; or

2. R < I(REND. + 1)l ff (REND. + 1) < 0

R refer:: to the central body.

3. TEND:TEND= max (T_, TE.,CD,,T_ND2, TEsD3) where the TEr_Di'sare the end of
print times input in 151, 155, and 159 and T_ is the epoch of phase change.

MODE 0 = integrate the equations of motion as developed ior a Cowell scheme

1 = integrate Encke's modification of the equations of motion

CENTER Any of the six bodies may be used as the central body; but for RENDand tIE_-D
the following bodies are available:

Central Body Perturbing Bodies

Earth MooP, Sun; Jupiter ff B > l0 s km

Moon Earth, Sun

Sun

Venus
All remaining bodies

Mars

Jupiter

H Adams-Moulton step size in modified sexagesimal format: yy = 0 and mm = 0,
so that the ;mainder is converted to see. If (H), (H + 1), and (DOUBLE) = 0,
the step s'.._ is selected automatically as a function of HKERN and is halved or
doubled under program control as the need arises.

Z4

,
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Program Explanation

DOUBLE If (H) or (H + 1) =/=0, a fixed-point number in thi,_field gives the.number of times
the step is to be doubled consecutively.

HKERN Selects the body from which the step size is to be computed; resultant calculated
step size is used for other purposes so that HKERN is effective even though
(H) or (n + 1) =#:0.

PRTEND, The 12 input locations are divided into three 4-word fields giving control over ,
DELPRT print intervals:

TZND a, ATpI_T1; TZND2, ATpRT2; TEND 3, ATpRT_

The TEr_Di may be input as epochs in the usual sexagesimal format or as intervals

past injection expressed in the modified sexagesimal format in which yy = mm = 0.
In the latter event, the epoch TEsD_is formed by augmenting the injection epoch
by the interval. The ATFRT_are intervals as represented in the modified sexagesi-
mal folmat.

If T_D_ is input as zero, it is replaced by a large number but is ignored in the
calculation of TI_ND. Finally the T_:Di are internally sorted and consequently ':
need not be ix: mt in ascending sequence.

The location for TESD2 is PRTEND + 4 or DELPRT + 2, since PRTEND and
DELPRT define the first of the two words in TENo_and ATpRT_respect',vely.

ODDPRT TODDtand Tom,2 are input to provide execution of PRINTD without interrupting
the main printing sequence. The format is the same as for TEND_and the two
resultant epochs are sorted as before. TODD,= 0 is replaced by a large number.

Treatment of print times:
I

phase n - 1 _-j_ phase n
I
, ATparz

I i I I I I I
A_'PRT T_ Tp_T T-Not TEND,

At time of entry to the new phase, TPRT is the next print time as determined

by phase n - I. If the print reset option is chosen, TpRT o = T_ will be the first
print time. Otherwise,

TP.To= rain {Tpar, TsNva}

No matter how TPRTois chosen,

= /rain {TpRT o + ATPnTt, TttNOa}, ff TllsV t > TPnTo;

TpRr_ train {T=m,t + ATF.T,, T_r_.,,} otherwise

Thus the T_Noi's function is to reset the printing interval and print epoch. T¢ is
the time at which the ntb phase starts.

,_ 25
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E3. (Cont'd)

Frograra
name Explanation

GROP The 12 octal characters of CROP are mapped onto the 12 words CROPS + 0,
• • • ,CROPS + II:

GROPS +0 geocentric

+ 1 geocentric COllie
+ 9, heliocentric

+3 heliocentric conic

+4 spacecraft and powered flight

+ 5 target

+6 target conic

+ 7 print at lq = 0 (central body only)

+9 not used
-rlO

+11/

The 3 bits of the octal digits have the following use:

bit 1 _ 0 = print effective whenever called
1 = print effective as a function of the status of phase

holds for

bit 2 / 0 = print only when the start-of-phase condition holds ! bit 1 = 1;
1 print only when the end-of-phase condition holds _ ignore if

bit 1 = 0

bit 3 / 0 = ecliptic output
1 = equatorial output

Special eases are:

1. All bits zero-* don't print group

2. Cop_guration = 3)s, same as (1) above

At/_ = 0 print, the value in GROPS + 7 is mapped onto the cell for the central
body conic and PBINTD is executed.

Start of phase means the first time that PRINTD is called in the phase unless the
end-of.phase condition has been met at that time.

End of phase means that phase has been terminated by one d the following
conditions:

1. Rssv attained

2. 1_ test fulfilled

3. Tmsv attained

1
i ............L._,., _.,
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Program Explonationflame

CODE1 Only the ldtmost 15 oc_'alcharacters of the two input words are used. 0 = suppress
station, 1 = include station. At print time, station print is suppressed if 7_<-107

The 15 stations are, in order:

1. Antigua 9. Grand bahama Island

2. Ascension 10. Johannesburg
3. Millstone Hill 11. Hawaii

4. Mobile Tracker 12. ]odrell Bank
5. A.M.R.G.E. Tracker 13. Puerto Rico

6. Bermuda ]4. San Salvador

7. Goldstone Receiver 15. Woomera

8. Goldstone Transmitter

VIEW Printouts of the station occur at _ = 0, provided _,_---__,o,and at 7_ = To, where
_o may be input by the symbolic card

STACRDD-O01 _o

Enough triggers have been provided to take care of a maximum of five stations.

Provisions have been made for symbolic card input of station coordinc'es and
names if necessary.

STABCD STACRD

0-3} Station I name 0 ffl

4-7} Station o name 1 #a

• 2 rt Station 1

• 3f,,

• 4fc_

ORBETr If 0, uses T lying in the orbital plane d body concerned. If 1, uses T lying either
in the equatorial or ecliptic, as called for by the conic GROPS location.

The orbital planes are defined as follows:

Body: Orbital Plane With Respect to:
Earth Sun

Moon Earth

Sun Earth

Venus Sun

Mars Sun

Jupiter Sun

i
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Program Explanationnom_

EQUNX1 If blank, output is referred to true equator or ecliptic and equinox of date; other-
wise, the reference is to the mean equator or ecliptic and equinox of 1950.0.
Normal!y the BCD "1950.0" is used here when mean equator or ecliptic and
equinox of 1950.0 is desired.

The cards representing input for the phase parameters for a given phase are
terminated by a TRA 3,4 card. The last phase cards read in are indicated by a
zero in the low-order bit of the parameter LAST.

Phases

Standard phases are available for the Moon, Earth, Venus, and Mars as the target. The words TARGET
REPEAT in the case parameters control the use of the stored parameters.

REPEAT = -1, the standard phases are used.

REPEAT = -0, the standard phases are used but modifications may be read in to replace the stored
parameters.

stored values of the standard phases are listed in the following:

Cards for Moon as Target

Location Type field Phase I Phase 2

140 OCT - 1 0

141 BCD MOON MOON

142 DEC 30E3 1738.09

143 BCD MOON MOON

144 DEC 330E3 1E3

145 OCT 1 1

146 BCD EARTH MOON

t47 DEC 0,0,0 0,0,0
150 BCD EARTH MOON

151 DEC 15 00,0 20 00,0

153 DEC 15 00,0 20 00,0

155 DEC 0,0,0,0 0,0,0,0

159 DEC 0,0,0,0 0,0,0,0

163 DEC 0,0,0,0 0,0,0,0
_ OCT 550000O000O0 1120111oo ooo
163 OCT 0,0 o,0
170 OCT 0,0 0,0
178 OCT 0 0

179 BCD blank blank
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Cards for Earth as Target

Location Type field Phase 1 Phase 2 Phase 3

140 OCT - 1 - I 0

141 BCD _ARTH EARTH EARTH

142 DEC 2.5E6 2.4EG 6378.

143 BCD EARTH EARTH EARTH

144 DEC 0 152E6 1E3

145 OCT 1 1 1

146 BCD EARTH SUN EARTH

147 DEC 0,0,0 0,0,0 0,0,0
150 BCD EARTH SUN EARTH

151 DEC 140 00,0 190 00,0 200 00,0

153 DEC 140 00,0 190 00,0 200 00,0

155 DEC 0,0,0,0 0,0,0,0 0,0,0,0

159 DEC 0,0,0,0 0,0,0,0 u,0,0,0

163 DEC 0,0,0,0 0,0,0,0 0,0,0,0
167 OCT -5.50000000000 002200000000 102000100000

168 OCT 0,u 0,0 0,0

170 OCT 0,0 0,0 0,0
178 OCT 0 0 0

179 BCD blank blank blank

Cards for Venus as Target

Location Type field Phase I Phase 2 Phase 3

140 OCT - 1 - 1 0

141 BCD EARTH VENUS VENUS

142 DEC 2.5E6 2.5E6 6100.

143 BCD 'VENUS VENUS VLNUS

144 DEC 0 - I10E6 1E3

145 OCT 1 1 1

148 BCD EARTH SUN VENUS

.147 DEC 0,0,0 0,0,0 0,0,0
150 BCD EARTH SUN VENUS

151 DEC 20 00,0 190 00,0 200 00,0

153 DEC 20 00,0 190 00,0 200 00,0

155 DEC 0,0,0,0 0,0,0,0 0,0,0,0

159 DEC 0,0,0,0 0,0,0,0 0,0,0,0

163 DEC O,O,O,O 0,0,0,0 0,0,0,0

167 OCT 550000000000 002200000000 102002200000

168 OCT 0,0 0,0 0,0

29
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_70 OCT o,o o,o o,o
178 OCT 0 0 1

179 BCD blank blank blank

Cards tot Mars m Target

T_ _ Phmw I Pha_ _ Pha_ 3

140 OCT --1 --I 0

141 BCD EARTH MARS MARS

142 DEC _,E6 _ 3415.

143 BCD MARS MARS MARS

144 DEC 0 240E6 1E3

145 OCT 1 1 1

146 BCD EARTH SDN MAltS

147 DEC 0,0,0 0,0,0 0,0,0
150 BCD EARTH SUN MARS

151 DEC 2000,0 25000,0 '27000,0

153 DEC 20 00,0 250 00,0 2"/000,0

155 DEC 0,0,0,0 0,0,0,0 0,0,0,0

159 DEC 0:0,0,0 0,0,0,0 0,0,0,0

163 DEC 0,0,0,0 0,0,0,0 0,0,0,0

167 OCT 550000000000 00 c_'20 0000 000 10_00 -7-0-00000

108 OCT o,o o,o o,o
17o OCT 0,0 0,0 0,0
178 OCT 0 0 1

179 BCD blank blank blank

.._-
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V. FLOW CHARTSAND METHOD OF CONTROL

A. Control in the Space Trajectories Program

After the necessary transformation of the injection conditions to the Cartesian
coordinates based on the mean equator and equinox of 1950.0, the Space Trajec-
tories Program is controlled primarily by the subroutine MARK (see Appendix)
which performs the stepwise numerical integration of the equations of motion
to obtain the solution at desired points along the trajectory. The trajectory is
divided into phases to permit control of output format and print frequency and
of the numerical integration process itself. Each phase is characterized by a set of
phase parameters which are interpreted before the numerical integration proceeds.

During numerical integration in a phase, the derivatives are requested by
MARK; the derivative routine provides the necessary information and also per-
forms the calculation of the attx_aw dependent variables which MARK might
need as requested by the associated dependent variable triggers. The end-of-step
routine monitors the numerical process by computing the step size and com-
municating this information to MARK, by control of reci_fication, and by deter-
ruination of closest approach to a noneentral body.

At the print times, as determined by the triggers to MARK, the requested
output groups are printed as described in Section VI.

31
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B. General Flow in Space Trajectories Program

linitial c°ndil'i°ns /i R"dcardsf°rL----J'ransf°rm'n't'a'c°"di_°n't° _ Read'"phaseparametersv'°/ 1950.OCart_iansystem cards if necessary

I

Transformphase J Read in pha'.e parameters

Iparameters for current phase

I

1
Set up MARK Rectify

for integration reference orbit

i

r'n''iaJ ICall MARK
time stop

,lume_ical integration of

Calculate End-of-step control for

Printvia/_ = 0 trigger rectification,end-of-phasederiv_tives

conditions, step-size

control

_r

Exit from MARK ___ !

Endof phase
Endof case via end-of-phase End-of-phase print

i triggers

'_ 32
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C. Flow During Transformation of Injection Conditions

Read in initial conditions CASE by ! for reading iniection onvert powered.

phase cards J -Iflight parameters

Cartesian frame via rtesian Fvaluale n stations,- _" Set up variational
RVOUT, RVIN precession GHA via

MNA, ROTI.:Q,GHA I I equati°ns buffer I
T \csymptote

_ _r ISpherical'_ / Conv,ert

{_L, R,_, c3._8,®e}
Rotate R, V, C to to Cartesian

equatorial via ECLIP 5elenographic

' Earth-fixed Convert

Inertial to Moon-fixed Cartesian

_ _ r(, v( via RVIN II
R.v,c to I Convert Convert |Rotate

equator and equinox of I--1 {R, ¢,, e, V, T',Y_ to {r, ¢, 8, v, 7, J} to _

! 950.0 if input is / Cartesian via RVIN Cartesian via EARTH Convert r(, v( to R, V,
true of-date / Moon-centered

1 Cartesian, equator

and equinox of 1950.0via MNA and MNAMD

--c-I i I
for variational equations _ p

to equator and equinox Convert ¢( to C, I Convert ¥c, crcto

of 1950.0 equator and equinox Moon-fixed Cartesian

l of 1950.0 via MNA (( via RVOUT, RVIN

Initialize BODY, HARMN

and VARY

astronomical parameters =1 nt injection conditions To phase logic
' , J

33
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D. Flow During Transfer of Phase Parameters

i BeginphaselogicJ

SE=_O
I

Readbuffer J " Clearprintend
asspecified i _ timesand print

I

I-byPill intoUSE intervalsinUSE

IJ I

- I low-orderbit of
t LAST= 0

LPZm,,T:#o

1-
@ REW_T_-----0._ Low-orderbit Jof LAST:_ 0

JstoreUSEin SAVE,,I

REPEAT"_:--1 J appropriateto J

J n-phase J

-- - _jcurrentphase

-_2
ResetPHi to SetREPr-G=_:O

referenceSAVE! SetREPEAT= I
iF--re.ResetPH3to

: referenceSAVE1

i .:_l=:' 't _ I
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E. Flow in Phase Setup

I I
If necessary,read in Pick out correct set of Change central body J J Activate J_trigger

phase cards and _ phase parameters from _ for integration if _-_ only if target is

_toro in buffers appropriate buffer necessary central bedy and
(RB_ID.)= (TARGET1

i
_\ I'.,°_,r,oo.r_--,"_"n'at'----O_omI F,,,:.,O0.°ot..,..I

phase at desired R_r as central body is desired, I _ I elec" bad from "E"D _r I
I determined by REND _ " s y x r4 . To

I and REND Jr ! then ac.tivatePRTR. _ cl(_sestapproach test I..er I I I|

Encku | _.__. Cowell

oooo_h,sta.-tingvalues for Set up view Convert and sort Convert the print end
Enckescheme period triggers the odd print _ timesand intervals;

.:f necessary times; set _,igger sort end times

......Yes Generate first print

_°pfr_.m:: _ _l°2_h_rea_ "_'=; ac,;d°rs_tn:r::t _'-_ ends;ft tPr,.hgg:rand

' !.ol ! ;-,-.-.,1/ $et up MARK for I CollMARKt°integratel
I ; b,m in equations I-----']_ number of equations, _ equations of motion; I

V _ nextph_ / _ n /
Y_s "_ /Y" I I I

I _ A .I Set phaseto end at I /

l '_rt°'bu'nin'P'ri°dl j
I set phase end at end I

I of burning period I

* I Jo,.--,,,,,,LJ
.-, ] .°.o°.,.ro..,/ ,

i

i ss
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F.End-of-StepLogic

argest time t/ | T=.o =T I Isteppri°g:acmnmtredlif '_L Doay, cnec._for ,/_
ched by / / I J called for "_ proaeoelOW /

MARK - J 6" "#% surtace/

i' • • i,.._,,.,,:... I •
ReturntoMARK 1 _:_,::._,;o._o_I /l_dyondMoc-, ,_, ' Printoutgeocentric II ......... I (. ,s.no_ttarget, / t gru,p a_d geocentric I
via a TRA 1, 4 j J Inal¢ote c_ose I _ check for fl_sttime / I conic with e,ror

encounter with I %- -robe near / t '
Moon I \ la MoonUrZ J message I

I. I ._ ..... /\ J I

j _ppr.each test_" _ trigger /- I by calling ABORT J

No On

for probe
in proper zone
_romcentral

body by No Check Encke Check "_ 0.025 i

REND. -F mode p/Re I

Yes

0025

Set time

larger than Store current Returnto MARK _ 0.025 0 to perform
Rxe J via Tl_ 1,4 Q, Encke's rectification I

I parameter at current I
Ym

Set time stop to
terminate phase ._ _

7, at current time

_. 36
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G. Function of the Derivative Routine

The ,terivative routine DOT assumes the COMMON storage layout for the
following quantities; coordinates are in the mean equator and equinox of 1950.0.

Symbol Storage Explanation i

T BSS 2 Double-precision time in sec past 0h January 1, 1950, U.T. :,

CX }

CY R if Cowell, p if Encke
CZ

cx. } i
CY. V ff Cowell, lb ff Encke "_

C'Z, _

VAR BSS 36 Solution Of the variational equations

&_aa___ha_na... _Rah
_X.' _Xo' aYo ' ' aZo' aZo _°

,!

BSS 3 Derivative of R if Cowell, of p ff Eneke; placed in buffer by DOT from CX., 1

C¥., C'Z. !

CX.. }

CY.. i_ if Cowell, i5 if Encke; computed by DOT and placed in buffer

CZ, •

VAR. BSS36 Derivatives of quantities appearing in the VAR buffer; OR/OXo,''', Ogt/OZo ,
computed by DOT and placed in buffer; remaining quantities are selected from
the 'CAR buffer; final order is

_ aii aft aii af_aii
aXo'aXo'Oro' '_fo' a2,o'a2o

Qx _ R = Ro + p if Encke, same as conte_,,'s of CX, CY, C'Z ff Cowell; placed in

QY j buffer by DOTQZ ._

QX. }
Qy. V = Vo + fi if Eneke, same as the contents of CX., CY., CZ. if Cewell; placed
QZ. in buffer by DOT only if veloc'.'tyneeded

QX0 "1 Ro, positio 9 solution to the two-body orbit; calculated by ENCKE only when inQY0
QZO f Eneke mode ..

!

Qxo.} i
QY0, Vo, velocity solution to the two-body orbit; calculated by SPEED only when
QZO. velocity is necessary in the Eneke mode !I

37' ! :) .... :,_':" ,
k'
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H. Fiow it:. the Derivative Routine

ForrnoondoEnci aEoorm_R/_Xo, • • " , _R/_Zo by exchange of buffers _ _ i_/RSo(F (Q) R -- p)

_ow.,,
Form --I_R/R 8 _ Call INTR for positionsof noncentral

bodies; call INTR1 for velocities of

noncentral bodies if needed

I
Call VARY for FormI_ in true
coefficients in Co._,pute thrustfor

equator and equinox Call BODY| for n-body
variational _ _ powered flight if ¢.----

of date if close to perturbation
equations necessary
if needed Earth by NUTAT¢_

Obtain E_rth oblateness Call XYZDD1 to obtain

perturbation via ---_ luncr oblateness _ FormR (_) from terms
HARMN1 if close perturbation if close previouslycomputed

to Earth to Moon

Formderivatives for use J_ #//__ _____ _
Formv®,,in true

equator and I No Yes

equinOXneededOfdate if ¢P"---" in variationalifneededequati°nsj__ _body_eede_Veloclty//" vA"_/ _..K__made_/

/ I Call SPEED

i tot°i
Calculate R/_if Compute so_ar

Call LOOP if _,tand "_iare needed for J} _ radiation term Exit

needed for view-period triggers trigger if needed

t 38
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I

I. Automatic Step-Size Control stability of the numerical solution in all the practical

Step-size control is provide,.: as a function of the range cases which have arisen. Each hml, for the planets has
from a selected body during a particular phase. For this been chosen to give good results for a low-altitude satel-

" lite whose orbit is to be calculated using an Encke
purpose each body has associated with it a list of range scheme.
intervals; the step size remains constant during a par-
ticular interval and is doubled for the next higher inter-

val. For the lowest interval there is defined an hmta; all If a Cowell scheme is to be used, the program setsother step sizes chosen will therefore be of the form
h = 2"hml,. h',,t, = hm_,/2; thus the step-size regimen consists of a

precise and uniform halving of all step sizes in the range

At the start of the integration MARK uses Runge- intervals; automatic halving and doubling are conse-
quently executed in general in a shorter time span in

Kutta for the first m steps. Therefore, at the onset, the Cowell mode.
ho = Y4hc is set in HBANK while HBANK1 is set to 2;
after m Runge-Kutta steps and 2m Adams-Mouhon steps,

bIARK would be using h = 4ho fgr its next step. The con- The base step,size and range lists are ac_'essible via
trol section permits the Runge-Kutta steps to be carried the symbolic input location H((0)). The exact internal
out before attempting to modify the step size to new he. struc_re follows:

Assuming MARK is using Adams-Mouhon for the inte-
gration, h_ is computed at the end of each step and com-

pared with h, the value MARK is using. If hi = 2_h, where Location Value, Explanation
k is the number of uncompleted doubles, then the fogow- see
ing tests are made: - 6 120

- 5 not used
1. ha = ht: No action to be taken

-4 60 o"
2. h_ > hi: Augment HBANX1 by the number of -3 60 9
;, additional doubles necessary to make

/ h = hc and call ABTB to let MARK -2 43,200 O

pick up the additional doubles. Record - 1 60

the change. H((0)) - 0 60
3. hc < h = hi: Augment HBANK2 by number of

halves necessary to make h = h_ and
call ABTB to let MARK pick up the Range list for Earth and Venus
additional halves. Record the change.

h = ha was indicated by the fact that Va/ue,
HD = 0. Location Ion

4. h_ -----h < hi: Set ND = HBANK1 = 0 and wait until H((0)) + 1 1020
HD = 0 at a later integration step.
Save number of necessa_. '_alves and + 2 2.8 × I(P
execute (3) when h = ha, i.e., when + 3 1.8 X 1_0_

HD = O. -' 4 '0 6

5. h < h, < ht: Let MARK double up to h_ by alter. + 5 600,000

ing both HBANK1 and ND. Recold + 6 400,000
change and continue, but do not call
ABTB. + 7 120,000

+ 10 80,00O

It is to be noted that controlling step size in the above + 11 30,000
manner does not produce instantaneous changes in the
current MARK step h. Timrefore, a conservative choice + 12 16,000
of values has been made in the range lists to insure LST00 = H((0))+ 13 8,000

39
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Range list for Mars Range list for Jupiter (cont'u)

Value, Value,
Locotion km Location km

H((0)) + 14 10z° + 47 300,000

+ 15 2 × 106 + ,50 200,000

+ 16 1.2 × 10e LST06 = H((0)) + 51 100,000

+ 17 800,000

+ 20 500..000

+ 21 300,000 Range list for Sun

+ 22 I00,000 Location Value,kn'J
+ 23 60,000

H((0,, ± 52 lO'
+ 24 25,000

+ _5 12,000 ]- - "_ 600 × 106

LST04 = H((0)) + 26 6,000 + 54 300 X 106
+ 55 I00 × I0 _

LST02 = H((0)) + 56 40 X 10'

Range list for Moon It would probably be worthwhile to conduct analytic

Location Value, and experimental stadies to redistribute the rang_ inter-
km vals to reduce machine running time.

H((O)) + 27 10z°

+ 30 70,000 1. MARK locations used

+ 31 45,000 HD: Flag: 0 = no uncompleted double

+ 32 30,000 1 = doubling not completed
+ 33 20,000

+ 34 12,000 ND: If HD = 0, is 0. Otherwise number of doubles to

LST01 = H((0)) + 35 5,000 be completed - 1.

j: Number of Runge-Kutta steps completed + 1.

Range list for Jupiter J -_ m + 1, where m = order of the highest differ-

Location Va/ue, enee retained in the Adams-Moulton integration.
km

H((0)) + 36 102° ABTB: MARK subroutine which inspects HBANK1 and

+ 37 5 X 10_ HBANK2 to determine need for additional halv-

+ 40 3 X 106 ing or doubling.
+ 41 2 × 10e

+ 42 i.2 X I0'
2. Contents of I-IBANK

+ 43 I0 a

+ 44 800,000 HBANK2 address = number of halves

+ 45 O00,000 HBANK1 address = number of doubles

+ 48 400,000 HBANK he: initial step for Bunge-Kutta

4O
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3. Flow Chart for the Step-si_ Control

I J 7__ I

HDFG=0 HDFG_0 ._ HD=0 q SetHDFG

H_HD =_0 to zero

1 Calculate hc hc=/'_l c he-_ hi Continue

and_ave _ j E.O.S.

hc <_ hi , hc _> hi Augment HBANK1 by n where

HP----0

:_:0 hc-_ 2h _ Compute n where

2" = h:/2h

hc_h _r

I ResetHBANK1 andIND to zero ResetHBANK1 andJNDto n I i!

Save n where2m= 2h/hc _ "

When halving is [ Augment HBANK2 by n,
executed, hi = 2h where 2s = hl/hc

.ll _ i

...... 1

4!

t I
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Vl. DESCRIPTION OF THE OUTPUT FOR THE SPACE
TRAJECTORIESPROGRAM WITH INTERPRETATION

OF THE MNEMONIC CODES

A. Output Philosophy

The output of the SpaceTrajectories Program displaysfor each trajectory the
fundamental astronom/ca] constants used in the c_leulat/on, tho injection con-
ditiens which serve as a starting point for the trajectory, and desired output
groups which are requested prine/pally as a function of time. The select/on of the
groups and the print times is phase-dependent "s described in Section IVE-2.
The start of the phase in which power_l flight is used is herald_J by the
powered-flight header.

To facilitate identiEeation of the output quantities, a lottered nmemonic code
prccedes the floating-point re_'esentation of the quantity printed; each outpat
group consists of an array of pairs and fails into one of the classifications: geo-
cen*rie, geoeentri'e con/e, hel/ocentric, he]/ocentrie conic, spacecraft and powered
flight, target, and target conic. Each output groLp is further identified by a header
wh/,-h gives the reference body for the group and the class of output, and wh/,
flu" .er identifies the group in addition to the mnemonic codes.

As a further class of output: each tracking station has for identification a unique
na-ae which _.ppears in its output group; all station output is d the same forma*.
except for the station name which there[ore functions as an identi[ying header.

B. E::planation of Output and Mnemonic Codes

A sample output ot the Space Trajectories Program is given in Exhibit A,
followed by explanati3ns of related output groups and interpretation of the
mnemonic codes.

./
/

t

m
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APPENDIX

Description of Major Subroutines

INDEX

1. Input-Output Routines ................... r

_gCLIP Rotates equatorial Cartesian coord,.'nates to ecliptic
and vice versa ................. 56

GHA Calculates Greenwich hour angle of the vernal equinox . 56

GEDLAT Computes geodetic latitude as a function of the
geocentric latitude ................ 56

JEKYL Provide orbital elements for output as a function of
SPECL rectangular coordinates .............. 57
CLASS

EARTH Transforms Earth-fixed spherical to space-fixed Cartesian
co,ordinates for input ............... 60

SPACE Transform_ sl_ace-fixed Cartesian to Earth-fixed spherical
coordinates for output ........... 60

RVIN Transforms spherical to Cartesian coordinates ..... 61

RVOUT Transforms Cartesian to spl,erical coordinates ...... 61

LOOP G:;nerates station-fixed or topocentric coordinates as a
function of space-fixed Cartesian coordinates .... ". . 63

2. BasicCoord;nateTransformations ...............

ROTEO Transforms Cartesian coordinates from the mean equator
and equinox of date to the meal_,equator and equinox of
1950.0 and vice versa ............... 66

NUTATE Transforms Cartesian coordinates from the true equator
and equinox of date to the mean equator and equinc,x of
date and vice ver_.a ............... 67

MNA Calculate the nutations t_ and 8_ for NUTATE; trans-
MNA1 form Moon.fixed Cartesian position coordinates to the

mean equator and equinox of 1950.0 and vice versa .... 68

MNAMD Transfo_TnMoon-fixed Cartesian vebcity coordinates to
MNAMD1 the mean equator and equ;aox of 1950.0 and ,ice versa. . 59

3. Ephemeris ....................... 70

INTR Bead ephemeris tab ._,interpolate on coordinate_ o obtain
IN'FR1 intermediate values of the posit_ons and velocities .... 70

4. EnckeMethodCalculations ................. 72

ENCKE Calculates the Encke _;ontribution to the a;_.eler,tion

instead of the central-body term .......... 72
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INDEX (CoM'd?

ORTHO Obtains initial conditions for integration in the
Encke mode .................. 72

CONIC Obtains orbital elements suitable for the Encke method

fTOmrectangular coordinates at the initial point d
integration in the Encke mode ........... 73

QUADI_" Obtains solution to Kepler's equation for the hyperbolic
case .......... o , , , o _ . . . . .74

KEPLER Obtains solution to Kepler's equation for the elliptic case
and generates the corresponding Cartesian position
coordinates for either the ellipse or the hyperbola .... 78

PERI Solves the pericenter equation for the tree anomaly and
obtains the Cartesian position coordinat,-s in the
two-body orbit ................. 76

SPEED Calculates the Cartesian velocity coordinates in the
two-body orbit ................. 76

$. Perturbations ............. ......... 77

HARMN Calculate .contribution to acceleration arising from the
HARMN1 oblate figure of the Earth ............. 77

XYZDD Calculate contribution to acceleration arising from the
XYZDDI triaxial ellipsoidal figure of the Moon ......... 78

BODY Calculate contribution to acceleration from the influence
BODY1 of the noncentral bodies ............. 80

6. Vodatlono! I:quofion$ ................... 80

VARY Calculate coefficients for derivatives to he used for the

SVARY variational equations ............... 80

7. Numerical Intogrotion ................... 82

MARK Obtains numerical solution of the equations of motion for
evaluation at specific times and for specified values of
chosen dependent variables ............ 82

55
I •
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I. Input-Ou;put RouJine$ The subroutineusesnine cellsof erasablestoragestart-

ECLIP ing at COMMON.

The ecliptic plane is characterized by its inclination to GHA

the equator, ¢, the obliquity f the ecliptic, and its For purposes of calculafing T (T ), the Greenwich hour
ascending node on the equator, the vernal equinox, angle of the vernal equinox at epoch T, the following

mean value is assumed:

Z_ Z ff'x (T) _ 100707554260 + 079856473460d

_ _../_ + (2"_9015)10-'sd=a- "t (m°d 3600)

c _ _= (T) < 36O°

r_ where T is the epoch under consideration in U.T.; d is
integer days past 0_ January 1, 1950; t is seconds past 0h
of the epoch T.., the Earth's rotation rate, is assumed

:. y to be a function of time:

__ 0.00417807417 Jeg/sec

w= 1 + (5.21)10-aSd

x, x Given 8a, the nutation in right ascension, the true value

_'#/ of the hour angle is computed:_' (T) = _'j,(T) + 8a

Sket:hA-I. Relatio-Ibetween ecliptic
The calling sequence consists ofand equatorial planes

CALL GHA,

In Cketch A-l, X, Y, Z is the equatorial frame; Xc, YE'Z there it is assumed that the U.T. epoch appears in dou-
the ecliptic. _P is the vernal equinox. The coordinates are ble-precision seconds past 0h January 1, 1950, in the
related by COMMON cells T, T + 1, and that _a has been corn-

/ / / i /:/ puted and appears in NUTRA. T(T) is stored in the

XE 1 0 0 X COMMON location GHA(T), while o, is placed in
YE = 0 cos • sin • OMEGA and ,o in rad/sec is stored in LOMEGA.

Z, 0 - sin • cos_ / The subroutine uses seven cells of erasable storage

The calling sequence is given by starting at COMMON.

CALL ECLIP GEDLAT

(OP) X,Y To obtain an accurate numerical expression for the
small difference between the geodetic latitude _, and

X - 3, X - 2, X - 1 contain the input vector; Y - 3, the geocentric latitude _, a Fourier series expansion is
Y - 2, Y - 1 contain the output vector; X = Y is per- resorted to. The geometry appears in Sketch A-2:
mitted. OP = PZE assumes equatorial input to be rotated
to ecliptic; O£ = MZE regards input as ecliptic and
rotates to equatorial. P/

Normally X, Y, Z is regarded as the true equator and Z__._...__
equinox of date and _ the true obliquity; however, for
some applications it is necessary to rotate between the b
mean equator end equinox of 1950.0 and the ecliptic of

1950.0; for the latter purpose _,,:.o.o, the mean obliquity
of 1950.0, is used. To provide for this flexibility, ECLIP 0 )" o x
assumes that the desired obliquity has been placed in the
COMMON location ET. SketchA-2. Geodeticand geocentriclatitudes

B6
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Confider a point P above the Earth and extend a line The arc of the ellipse may be described by the param- ..
to the center of the Earth O. If a spheroidal Ea.,th is eter _, where x = a cos ¢,, y = b sin _ for O(x, y). Then
assumed, then let OZ be the spin axis of the Earth and ihe expression for pis
the plane ZOX contain the line OP with Q the inter-
section of OP with the surface; OX lies m the equatorial p = a_/1 - E_sin__

plane. Then the angle 4', the geocentric latitude. /LSthe Actually, the formula programmed for p differs in that
angle between th_ lines OQ and OX. If the normal YQ 4, was used for _:
to the surface is constructed at Q to intersect OX at Y,
then _', the geodetic latitude, is the angle between the p' = a _/1 - _=sin2
lines YQ and YX. The ellipse of cross section is character-
ized by a, the semimajor axis, and b, the semiminor axis. The numerical difference between the two formulas
It is convenient to introduce _-"= 1 - b:/a _ to describe may be assessed by expanding p and p' in power series

4' - 4" by a Fourier series, in e2 and using the relation
(I -- f) sin_

sin'-6 =
As the defining relation, tan 4, = (1 - _=) tan 4' is 1 - _=sin:_

1 _.,
adopted which leads to the series in 9_k'for ¢ - q/: --=aa 1 - 21--E_sins ¢, - -_- _ sm# - 16 _6sin' ¢ + O (es)

o0

q_ 4,' /_, aj sin 2 j(k' p' _ 1 z.... ,--, 1 -- _-_-"sina
al=l

(1, 1 lwhere + _' - -_-sm _ (sin*¢ - 1) - _-sin'_

",-(-1)'( e' ¥

j \2----_/ + e6{---_sin', (sin',--I)- l-6Sine,}-l- 0 (. ',

Alternatively, 4,' -- _ may be expanded as a Fourier so

series in 2@: p' - p = a --_ e' sin220 + "i_-E sm 0sin2 2_/,-t-O (es)
oO

-- 4, = Y, bi sin 2 j _ Thus the maximum difference, occurring near ff = 45 o4,'
j=a should be about a,,'/8 _ 0.06 kin.

where the bj are obtained by replacing 1- •2 by The calling sequence is given by
1/(1- _z) in the expression for the a_. Incidentally,
b_ = ( - 1 )_ a_ is obtained by performing the substitution. (AC) = 4,

CALL GEDLAT

Using the Clarke spheroid of 1866 with a = 6378.2064 and upon return
krn, b = 6356.5888 km, and the derived value ez =
0.006768657997, the following numerical formula results: (AC) = 4,', (MQ) = p'

The subroutine uses 10 words of erasable storage start-

if' - _ = b_sin 24, + b_ sin 44, + b_sin 64' ing at COMMON.
where

bi = 0°19456624 JEKYL

b_ = 0.°00033036 JEKYL is the subroutine which is used to generate

bs = 0°.00000075 orbital elements to be used either as input to the sub-
routines CLASS and SPECt, or for printed output. The
equations used are similar in most respects to those

An auxiliary problem is the determination of the alti- described in the discussion of CONIC (Section 4, Appen-
rude of P above the spheroid. An approximate solution dix) and are listed here for compa,;zon.
is obtained by regarding QP = h as the desired altitude.

= R _W- - (R R) _ the semilatus rectum,If R = OP is given, then if p Oi_ is calculated, h p = ,
would be given by h = R - p.

_7 _ :
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where tl_=E--esinE if1-- e > 0.1

RR = R-V, orif 1 - c _0.1and IsinE I > 0.1
/__

3 sinSE_
c, _IR'V= (i_k) _ the angular momentum * = (l- _)sine + _si--6_ += - , 40 /

1 2_,--RV 2 if 1 -- e _--"0"1and c(_L_> 0'1 sine I< 0"1
a RI, _I = u (T - T_) where _:= Vr_a-s/:

c_ = - _---, the "energy." or v_"_'/va integral If a < 0:
" Rk

siahF. -
At this point a test is made with the help of the 1.D. _3_'[_

input to determine whether or not a is an acceptable bf = • sich F - f if r -- 1 > 0.1 orif • - 1 _ 0.1
parameter, a* is defined by and Isinh F i> 0.1

10_°kmfor theplanets N= ('- 1) sinhF- ( 3_;nhSF40 sit'F)
a• = 109 km for the Sun ife- l_0.1andlsinhFi_0.1

10" km for the Moon _ = n (T -- Tp) whexen = v_[a I-s/'

If cs ---0, the formula for the parabola is used:The motion is considered parabolic and c3 is set to zero

! s
whenever [a I > aS. ,;t = V_ (T -- Tp) = q D + _- D

a where D = R RIV'_ = V_ ranv/2

• = _/I -- ( 1 - •2) , the eccentricity
JEKYL may he called by the sequence

c°sv= -P__ CALL JEKYLk _ PZE 0,,A
I sin v "_ 3_" , true anomaly PZE B,, C

P closest approach distance PZE D,, 0
q- I+E' PZE E,,F

B×V
W - , unit angular momentum vector PZE G

Cl

R (ERROR RETURN)
Ux -- -4-

The locations A, A + 1 contain for input _ and an I.D.
V1 = ff V - £ R number:

Cx Cx

P = cosv Ux - sin v V_ 0 = planets

Q = sin v U, + cosv Vx 1 = Moon

2 = Sun

If c3 :/= 0, T - T, is computed from Kepler's equation The cells B, B + 1, B + 2 contain the input position
according to the sign of ¢: vector R, and the locations C, C + 1, C + 2 contain the
If a > 0: input velocity vector V; the vectors P, Q, and W are

output to the locations D, D + 8. The single-pre-

I R "'''

cosE = _-- (cosy + e) cision epoch T is input to location E. w-_o the single-
precision epoch of closest approach Tp is output to location

sin E R _ sinv F. Finally, the lo,_Jt,'ionsG.... , C + 2 are used to output
F the quantities 4T = T - Tp, cz, and Ca.

58
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Additional quantises are stored at the COMMON SPECL is cadlcdaccordingto the sequence

locations (AC) = a, a < 0 for hyperbola :

ECCEN e (MQ) =

1MINE 1 - • CALL SPECL

AVAL a PZE A,, n i

FVAL p PZE B

NORB n (ERROR RETURN)
NU v

The locations A..... A + 8 cor_ain the vectors P, Q,
JECAN E (or F) W; n = 0 is a flag for output to be referenced to an
MENAN M incoming asymptote while n = 1 references the output to

an outgoing asymptote. The output is placed in the table

The subrouti_m uses 15 words of erasable storage start- B..... B + 14 where the assignment is in sequence
ing at COMMON. B. T, B. R, S, B, T, R.

The error return will only be used in the case that Ia I
SPECL is so laige that as exceeds the machine capacity, an event

The subroutine SPECL is used to calculate the auxiliary which may happen only for wild _rajectories resulting
impact parameters B" T and B- R along with reference f--,_T an input error.
unit vectors B, S, T and also B itself. Two cases arise

aeccrding to the value of _: The subroulSne uses four words of erasable storage
beginning at COMMON.

(1) • _ 1, the hyperbolic case with a < 0

CLASS

l p + y_ Q CLASS was written as a subroutine to calculate addi-for the incoming asymptote tional orbital elements from those provided by JEKYL.S= Z

for the outgoing asymptote
O M

I1,1 (_'-1)p I,I,/_ Q "_e

for the incoming asymptote Y

B= lal(,__l)p+lajV?____yQ, /
for the outgoing asymptote Nx

(2) e < 1, the elliptic case with a > 0 SketchA-3. Descriptionefff, e Eulerangles
for the orbital pPane

S = P _ for both the incoming and
B = a,V/_(e2---_Q [ outgoing asymptote options

The formulas that may be deduced from Sketch A-8
are as follows:

The remaining two reference wctors T and R are given
in either the hyperbolic or elliptic case by i = co_-alF,, where 0 _ i --<180° for the inclination

T (_S__ -$. 0) Isinf_= IF"

= , ' sin i

$I _ _cc_n - IF'. , where 0 _ t3 < 360" fo,the riglat I
R = S × T sin i ascension of the ascending node [

51J
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. P_ PZE C

(ERROR RETURN)

s_n: ' where 0 -<-_ -<.360° for the argu-cos_ - _ ment of the perieenter (ERROR RETURN FOR PARABOLA)

The formulas for fl may be derived by constraeting the Input locations A,..., A + 8 contain the vectors P, Q,
unit vector N at the ascending node: W, while the table composed of ci, c3,/L, e, i - e, a, p,

a,d n is used as input from the cells B..... B + 7. The

N - U XW output is stored in the cells C,..., C + 9 forming the
!U × W [ table

where U: (0, 0, 1) and sin i= [UXW[. Nis then i
projected onto the X and Y axes to give the formulas fl
for the cosine and the sine.

ca

Next, the auxiliary unit vector M = W × N is con- q
strutted so that o, is given by V_

sino = P-M = P" (W X N) = -N- (W X P) = -N" Q v. (or Vh ff ca > 0)
coso P" N q, (o5 zero if ¢_> 0)

P (or zero if c3 > O)
The conic parameters are given by the standard formu-

las for c, =_=O: ;'
fi

P , the closest approach distance
In the event c3 = 0 at enby, the parabola error return is
given.

V_ - _ ( 1 + e) , the velocity at closest approach
Ct

The subroutine uses four cells of erasable storage start-
V_ - _( I - e) , velocity at farthest departure (c3 < 0) ing at COMMON.

¢1

Vh = V_3 , hyperbolic excess velocity (ca > 0) EARTH, SPACE

q2 = a(1 + _), farthest departure distance (c._ < 0) At the epoch T a "space-_xed" Cartesian coordinate

p = 2._._, the period system is defined, centered at the Earth with the X - Y
n plane the equator, the X axis the direction of the vernal

equinox, and the Z axis the spin axis of the Earth. The
For an Earth satellite, the quantities ,5 and fi are also "Earth-_xed" frame is obtained from the space-fixed by

computed: rotating about the Z axis by an angle _ (T), the Green-

( ) wieh hour angle of the vernal equinox, to bring the x#2 2 - -_- sin2i axis in coincidence with the Greenwich meridian (SketchA4).

h = _ cosi _z,:

where ] is the coefficient of the second harmonic in the

Earth's oblateness and a¢ is the value of the Earth radius

in km. The subroutine assumes that n has been given in _ )'
rad/sec and p in km so that ,; and fi may be converted _ -' '_ r

to deg/day for output.

The subroutine is called aeeording to the sequence

CALL CLASS X x

! _ A,, B Skeh:hA-4. Earth-fixed equatorial coordinatesystem
[

j eo
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The coordii_ates are then related by local horizontal, a plane perpendicular to r. v is the
magnitude, ), the path angle or the elevation angle

y = --sin T (T) cos T (T)/ of the velocity vector. The transformation betweenspherical and Cartesian coordinates, and '.he inverse, are
z = Z, described in the discussions of suhrsutines RVIN and

and RVOUT, respectively, wbAch tollow.

(_)=( cost (T)slaT (T)_(_) EARTH is thesubroutine which makesthe transforma-\-sin T (T) cos q' (T)/ tion from Earth-fixed spherical to Earth-fixed Cartesian

/ _(_) via RUIN and then rotates to sPace-fixed Cartesian.

-sin T (T) co_.T (T) SPACE manages the inverse transformation by first rotat-

+ <o\-cos T (T) -:in q' (T)/ ing from space-r':.cd Cartesian to Earth-fixed Cartesian
z = 7., and obtainang the spherical set with the aid of RVOUT.

Both EARTtl and SPACE assume that the subroutine
where (ois the rotation rate of the Earth. GHA has been called and that the COMMON locations

CHA(T) and LOMEGA contain, respectively, T (T) in
The coordinates may be inve_ed to give deg and _ in rad/sec.

= The calling sequence for EARTH is
\sin w(r) cos_,(T)/ y

Z = z CALL EARTH
and PZE A

= \sin q' (T) cos T '_T)/ A,. , A + 5 contain the spherical set r, _, 0, v, y, _,.

(-_inT(T)-cosT(T)_(:) X,Y, Z are placed in thecells B, B+I,B+2;X,',+ _o\ cos T (T) -sin T (T) ] Z are placed in the cells C, C + 1, C + 2. ""

Z = z The ca?ling sequence for SPACE is

CALL SPACE '_
Z

/_ ..#v:( i, ), ,;) FZE A,, B

PZE C,,D

A, A.+ I ,.A + 2 containX,Y,Z;B,B + I,B + $ con-

r=(x,& z)-_._ [ / tain X,Y,Z.

The Earth-fixed spherical set r, _, 0, v, -/, _, is deposited

\'_x set x, y, ::, _, _, _ is placed in the locations D ..... D + 5.X _

J The subroutines use four words of erasable storage
t

starting at COMMON.
SketchA-5. An Earth-fixed sphericalset

of coordinatesystem
RVIN, RVOUT

InSketchA-5,:istheradius,_ thenorthlatitude,and TransformationsbetweenCartesianpositionand veloc-
0theeastlongitudeoftheEarth-fixedpositionvector.It it),R and V and thesphericalset(R,_,O, V,F,_) are
isconvenienttotranslatetheEarth-fixedvelocityvector providedforby RVOUT, whiletheinversetransforma-

v totheend ofthepositionvectorand projectiton the tionfromsphericaltoCartesianisobtainedwithRVIN.
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z

2' Z"

I / Y"

/ 4. -. " ei x I

" "--.I // \ Y
X

SketchA-7. Rotutiontothe local plane

SketchA-6, Inertialsphericalposition coordinates

Evidently

mo urooo.°*oro]ooso.X / •
4, is the elevation of R above the X - Y plane (Sketch = |cosCsinO c @ -sin4,sine] Y'

A-e). The formulas are \sin (I, cos4) / Z'

/i / _R/Rcos4, cosO_] Representing thevelocityvectorVintheX',Y',Z'

R = = cos4,sinO/ system, the path angle r is the elevation of V above the
Y' - Z' plane, positive in the radial outward or X' diree-

\R sin4, / tion; the azimuth _ is the angle measured clockwise from
the Z' axis to the projection ol V on the Y' - Z' plane.

and inversely, Tl,e geome_y appears in Sketch A-8.

X'

4,= .., -90 ° 4, 90°

O=arg(X,Y), 0_0 < 360° Y'

tan xy-..- ifx>O I

_g (x,y) = Z'
tan-x-7y- + 180° ifx<_ - 0

SketchA-8. Inertial velocityvectorin the
local horizontal plane

To describe the spherical coordinates for the velocity

vector V, it is convenient to construct a new reference Regarding the X', Y', Z' frame as nonrotating, V may
tzame obtained by first rgtating about the Z axis by an be expressed as
amount 0 so that the new ,'Caxis lies along tlae projection

intermediate Y axi_ by the angle 4, completes the coordi- / V sin

nate change. The resultant X' axis lies along 11,the Z' axis V = _,, = _ V cos l"sin I
lies in the plane formed by the Z axis and R, and the Y' 7/ \ V cosI_cos I
axis completes the right-handed system and thus remains
in the X - Y plane (Sketch A-7). and rotate to the original frame to obtain X, Y, 7-.

6&
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Inversion may be obtained as follows: Z, z

F = sin-1 --#-, -90 ° _--F_90° ri:(xi, Yl, zi)

Of courseV expressedin the X', Y', Z' system is given by
Y

tZ:) = --sinO cosO--sia*cosO -sin¢sinO cos*/ "_',,

The calling sequence for R_(JN is x x
CALL RVIN

FZE ,,A SketchA-9. Earth-fixed station coordinates

PZE ,,B T (T) is the Greenwich hour angle of vernal equinox

PZE ,,C at epoch T or alternatively, the right ascension of the
Greenwich meridian. It is assumed that GHA has com-

A.... , A + 5 contaLi the spherical coordinates R, _, O, puted T (T) and the correct value appears in the
V, F, :_;X, Y, Z are placed in the locations B, .B + 1, COMMON location GHA(T). r_ is the distance of the
B + 2, while the Cartesia a velocity components X, Y, Z station from the center of the Earth, _ is the geocentric
are stored in the cells C, C + 1, C + 9.. north latitude, and O_is the east longitude.

For RVOUT, the calling sequence is The Earth-fixed Cartesian coordinates of the station

CALL RVOUT are

PZE 1,,A x_ = n cos_ cosO_

PZE 1,,B y_= n cos¢t sin0¢
zl = rt sin _i

PZE 1,,C Those for the probe are
X, Y, g are contained in the cells A, A.+.I, A + 2, while

x = Xcos q' (T) + Ysin q' (T)
the locations B, B + 1, B + 9 contain X, Y, g. The spheri-
cal set R, O, O, ,z, p, :_is placed in the cells C.... , C + 5 y = - Xsin _ (T) + Ycos q' (T)
as ou_ut. • = Z

= ,_cos_' (T) +/"sin _' (T) + .,y
The subroutines use four words of erasable storage

starting at COMMON. _ = - Xsin if' (T) + }'cos _P(T) - wx
i=z

LOOP /'= (k,_,t)

Let R = (X, Y, Z) and V = (J(, _', 7.) be the Earth- where w is the retention rate of the Earth.
centered "spaee-fixed" Cartesian coordinates of the probe

referenced to the true equator and equinox of date. For Thus the topocentric Cartesian coordinates of the
a given station with Earth-fixed spherical coordinates probe are
(r_, h), it is desired to compute a number of topocen-
tric quantifies as given below, The basic coordinate sys- r_. = (x - x.y - y.z - zt)

terns are shown in Sketch A-9. _,, = (k,j,i) = t

e$
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The slant range rip is then given by [rip l, v,hile the z

slant.range rate flp may be obtained from the formula L i'

2r'"_;'P= d(r_)-d(r'p'r'p)-2r'_'i%dtdt 1_ /'_Y"
I/

Provisions have been made to compute 'lip, the slant- /x_/" _-a .v
range acceleration, when the Earth is the central body.

The pertinent formulas may be developed as follows: / 8," ",

= cos _' (T) ,4a _ _T)
--sin 'r (T) cosT (T) SketchA-1C. Rotationto the station meridian

c ! f ,.,o -sin q_ (T) cos 'P (7')

+ k-cos T (r) -sin _ (r)/

= I

i k-sin T (r) cosT (r)/ _" \\
X4

X _ + 2_ -- t02 SketchA-1 1. Localhour-angle declination
_ coordinatesystem

i _ = Z The x-y plane has been translated to the station and
_ rotated through the angle O_so that x' lies along the

From meridian; the z' axis remaips parallel to .ae z axis. The
declination 8i is given by

rip_'_p= rip"I_0 = rip'

obtain , BI = sin-x z_..._p, -90 ° _--<8i =< 90°
f'ip

r,p_ + P_ = rtp'i: +/'ip'/',p and the hour angle may be computed from

or a_-----Ot - arg (Xiv,yip) (mad 360°), 0 _ at < 360°

"rlp= rl-"p'ltriP'F +/;' -- ;'_ } where

t tan-XZ ifx > O, - 900_ mn-_u _ 90°where v = Ji'l,k; = (_,_,) arg (_,y) = x

tan-a Yx + 180° otherwise
Co,tributions to R are obtained from COMMON

2,,_tions where they have been deposited by DOT and From the above formulas, the :ngular rates follow:
are only valid for the Earth as a central body.

The topocentric hour-angle declination system is de-
scribed in Sketches A-10 and A-12. _ = _le "- _xox_:.- + Y*t_

04
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To co.struct the azimuth-elevation topocentric coordi- The program uses an in.erse function "efined for
hate system, rotate the x' and z' axes about the y' axis so 0 < cos-1u _ 180 ° so that
that the resultant x'-y" plane is perpendicular to ri and

the z" axis points to the zenith; the x" - z" p!:ne is still cos-1 - x_) if sin _, > 0
the meridian plane as ilhlstrated in Sketches ' .2 and \r,_cos]q/ =

A-m. _'= I' - " _-x;; .
360° - cos-1 \r,vc°syi/ otherwise

z'j Thus 0 =<ai =<360 °.

z" The angular rates are calculated from the formulas

= x' _+= r," i"- ri i%sin yt

_90 r+ r_p cos yiO. (_1/ • I;,

o'i _¢ip "_ COScri (t'iPCosy, --rioZ'*s'*nY i )
: _, -- rip cos7+sin o'i

O

where x+p""= k sin +i cos Oi+ _ sm +_sin O+-/: cos@_.
SketchA-12. Rotationto station latitude

The look angle ;,i is the angle between the spacecraft
'" attitude vector C and the slant-range vector where C is

specified by the calling sequence and is a unit vector
expressed in the true equator and equinox of date. It is

i PVlp convenient to const.uct Rip in a topocentric system
i -- parallel to the X, Y, Z axes:

,i _ i_ff xl =,,,cos'r (T)--y, sin_ (T)

: _l Yi = x+sin T (T) + Yi cos T (T)
I I - Z; = Zi

i _Z Y" Riv = (X-X.Y--Yi, Z-Zt)

SketchA-13. Azimuth elevation coord" ate system Then X+is obtained from

(a+.c_ 0=<_,<+.s0"
The elevation angle y_may be obtained immediately by x_= cos-x \ R_p j' =

sin y_ = r+'ri___.£_,-90°_ _'t--<:90° The polarization angle pi is defined as
rt r_

1( R×Rt. C×R+p
The component of r,p which lies in the x'-y" plane is p, =cos- <_[RXRtpl ' [CX_'_-[], 0 --<p+ --<180°

r_, cos yt so that the azimuth c,t is diven by

,, An expression for the measured received frequency,

_ -x_p including a scaled doppler shift, appears as
cos o'i -- rip cos y'-_-_

{sin,,.,-- _'_; t :--'i.,- I,,,;t,- rh,cosy---'--_ where [_+represents a bias frequency in the receiver and
re, includes the velo.+t_ of light and may be adjusted to

By performing the rotations to transform the coordi- represent either two-way or normal doppler.
hate systems, r_ may be determined in the x"-y'-z"

reference: The caging sequence is

x[_ = x+_sin_ cosO++ y_psin_,; sinOt - z+_cos¢_ CALL LOOP

y_ = - xi_sinO+ + y+_cosO+ PZE X,,Y

z" = x,_cos¢, cosO_+ y.,cos ¢_sin0_ + z _sin¢t OP B,,Ctp

611 • +?++:+_
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X, X + 1, X q- 2 contain R; Y, Y + 1, Y + 2 contain V. The elevation condition is met tar rise or set with respect

to the station whenever [_,_- "fo] _ 7B; at this time the
B contain,- the binary control word which selects the station quantifies are printed and fmther testing, is sup-

appropriate stations from among the available 13. The pressed for one integration step. The elevation-rate con-
small subroutine CWI transforms the octal input to the dition/s met for extreme elevation whenever [ -_ [ <=--"-_
required binary format which per.nits LOOP to scan and 7i _ _,o. Upon success, the station quantities are
the stations from bit 35 to bit 21. printed and the test is suppressed for ave integration

step.

C, C + 1, C + 2 contain the unit vector C.
The subroutine uses 100 words of erasable storage

If OP ----I'ZE, LOOP will compute the quantities for staxting at COMMON.
each station in turn and will print out whenever _

-- 10°. If OP --- MZE, _,_and _, for eachstation up to a 2. Basic Coordinate) Transformations
maximum of five, will be stored in a buffer to be used

by MARK as 4.,_endent variables for the view-period ROT[Q
computation.

The general precession of the Earth's equator and the

• The parameters describing the stations are ._tcred ;n consequent retrograde motion of the equinox on the
the following sequence: ecliptic may be represented by the rotation matrix:

STA BC'D +0_ X' /all al_

station I name Z' asl as.- as,

where X, 1r, and g are expressed in the mean equator
and equinox of 1950.0 and X', Y', Z' are the coordinates
in the mean equator and equinox of date. The geometry

70_ of the precession has been represented by the three small
1 4 BCD words for parameters _o, z, and 0 in Sketch A-14:{

,2( station 15 name
73J /

__ECLIPTIC OF
STACRD +0 :1 _ coordinates for _" ',/X" 1950.0

1 -- t station I _..._-'" __.._,x/_'-EQJPTIC OF DATE

3 f,.'_ frequency parameters _'_, "_,,_ -'_gEz__ [0UATOR
4 rely for station ] _m _90"+z _ " OF 1950.0
• _ _MEAN ECRJATOROF

DATE

SketchA-14. Relationshipbetweenfundamental

106 4'x5), coordinates for rei_ren¢eequators107 01_ station 15
110 "15

T 195o.ois the mean equinox of 1950.0:_o50.0 is the mean
111 ]fn_,'_frequency parameters obliquity of 1950.0; _ .... is the mean _-quinox of date;
112 fc:sf, for station 15 g is the mean obliquity of date. Measured in the mean

equator of 1950.0 from the mean equinox o_ 1950.0,
To describe '.he view periods for the stations, three 90° - ¢0is the right ascension of th,. ascending node of

other parameters art: used: the mean equator of date on the mean equator of 1950.0.
STACRD -3 _,a 90_ + z is the right ascension of the no".e measured

in the mean equator of date from the mean equinox of
-2 -_, date. 0 is the inclination of the mean equator of date to

i -1 yo the mean equator of 1950.0.

t
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In terms of to, z, and 0, (a_j) is given by The subroutine uses three cells of erasable storage

a:l --=- sin to s'a z + cos to cos z cos 0 starting at COMMON.

al, = - cos to sin z -- sin _ocos z cos 0

a. = - cosz sin 0 NUTATE
To describe the nutation of the Earth about it.; pre-

_ = sin to cosz _- cos to sin z cos 0 cessing mc,m equator, it is convenient to construct the

_._ = cos to cosz - sin to sin z cos 0 nutaticn matrix N which relates the Cartesian coordinates
expressed in the true equator and equinox to those in the

a, = - sin z sin 0 _Jean equator and equinox (Sketch A-15).

a3,= costo sin 0

a32= - sin t0 sin 8 Z

#aa= Cose
a/- EC[ tPTIC

to = 2304':997T + 0".'502T_ + 0':0179T s __/_...."GE)"
z = 2304':997T+ 1':095T_ -b0'.'0192Ts AN EOUATOR

O 2004':298T - 0'.'426T2 -- 0'.'0416T8 -_-

withtheepochTthe1950.0.numberof Julian centuries of 86,525 day._past /_/)
TRUE EQUATOR

The actual computational form of (a_j) is obtained by //x_x_-
expanding the ao in power series in to, z, 0 and replacing
the arguments by the above time series. The result,_ are

x"
_ = 1 - 0.00029697T z - 0.0000001ST'

a_2= -- a=_= -- 0.02234988T -- 0.00000676..'Cz Sketch A-15. Relationship between true equator
+ 0.00000221TS and mean equator of date

a. = - _sl = -- 0.00071711T -k 0.00000207T2
+ 0.00000096T _ 8¢ is the nutation in longitude measured from the true

vernal equinox at the X' axis to the mean vernal equinox_2 = I - 0.00024976T _ - 0.0000001YP
at the X axis. i is the mean obliquity, while • = _ + _ is

_s = asz = - 0.00010859Tz - 0.000000057_ the true obliquity where _• is the nutation in obliquity.

ass = 1 -- 0.00004721T _ + 0.00000002T _ Numerical expressions for the above quantifies appear in
the discussion of subroutine MNA following.

The calling sequence has theform
If N is defined in the sense

(AC) = day; past 0_ January 1, 1956, E.T.

(or) x,,Y z,

X-3, X-g, X-1 contain the input vector; Y-3, Y-2, where the primed system is the true equator and equinox
Y- 1 contain the output vector; X = Y is permitted, and the unprimed is the mean equator and equinox, then

the N,j are given by
OP -- PZE regards X as 19,50.0 and rotates to date in N. = cosS$

Y; OP = MZE regards X asof date and rotates to 1950.0
in Y. N_, = - sin _ $ cos

Nls = - sin 8 ¢ cos _"
The matrix (alt) is saved in theCOMMON locations

AA,..., AA + 8 and recomputed only when the time has N, = sin_ $ cos
changed by 1/64 day. N,, = cos_,pcos_c_ _ + sia_siu/
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Nz3 = cos8 ¢coscsin_ - sin ecos _" de = 0?2456 X 10" cos2 _ + 0?0508 _< 10_ cos (2 g - fl)

+ 0?0369 X 10-_cos (3 _ - l-v)

N31 = sinS_in_ - 070139 X 10-4cos ( _ + 1-v)

N_ = cos$_sin_cos_- cos_sin_ -- 0?0086 Y 10-4cos ( _ -- I_ + O)

N33 = cesS_sin_sin_: + cosecos_ + 0.°0083 X 10-4cos ( _ -- W - O)

+ 0.°0061 X 10-4cos (3 ( -b 1-"-- 2L)
Since [8_-] < 10' and [$_[ < 10-', the N'i, are ex-

panded to first order in _ and SEto obtain a form which + 0?0064 X 10-' cos (3 _ - I"v- f_)

is better behaved for numerical calcu]ation: A_ -- - (4778927 + 0?0482 T) × 10 ' sin fl
+ 0.°5800 X 10*sin2f_ - 375361 X 10-_sin2L

N= Ocosg 1 -- _ + 070594 X 10`sin (L + r')

_sin e" 8E + 0?0344 x 10"sift (2L -- fl)

+ 0.°0125 X 10-4sin (21" -- t'l)
NUTATE is used as a utility routine to generate the

matrix product NA, where A is obtained by calling + 0?3500 × lO-'sin (L- F)
ROTEQ; the resultant NA is used to rotate from the + 0.00125X 10-_sin (2L--21")

equator and equinox of 1950.0 to the true equator and d_ = - 0°.5658 X 10-4sin2
equinox of date and is saved in the COMMON cells
(NA),..., (NA) + 8. As N is a slowly varying matrix, -- 0?0950 X 10"sin (2 _ -- fl)
it is saved and reeomputed only ff the time has changed - 0?0725 X 10_ sin (3 _ - I_)
by at least 0.1 day. The generation of N is effeeted by + 070317 × 104sin ( _ + I"v)
calling MNA which also internally stores N. + 070161 X 10-4sin ( _ - l-" + fl)

+ 070158 X 10-' sin ( g - I_ - a)

MNA, MNAI - 070!44 X 10-_sin (3 ¢ + I_ -- 2L)

It is the pri,mipal function of MNA to provide the -070122 X 10`sin( 3 _- I_ -_)
rotation matrix MNA which allows vectors in the 1950.0 + 071875 X 10-_sin ( ¢ - rv)

system to be expressed relative to the Moons true equator + 0?0078 X 10` sin (2 _ - 21")
and conversely. + 0.00414× 10-_sin ( _ + r v -2L)

+ 070167 X 10-_sin (2 _ - 2L)

For this purpose it is assumed that the matrix A has - 0?0089 × 10-' sin (4 _ - 2L)
been formed by ROTEQ and appears in the COMMON
locations AA..... AA + 8. The form of the matrix N (see fl = 1271127902 - 0.°0529539222 d + 20.°795 .',( 10-' T
preceding discussion of NUTATE) depends upon the + 20.°81 X 10` Tz + 0?02 X 10-' T_
nutations Sq,and _. In the discussion of XYZDD to fol-
low, M is identified as (b_). _ = 64?37545167 + 1371763965268d- 11731575 X 10`T

- 1173015 >( 10-_T_ + 07019 X 10`T _

The numerical expressions for the necessary quantifies P' = 208?8439877 + 0?1114040803 d - 07010334T
appear below:

- 07010343 T _ - 0712 X 10`T _

_ = A_ + d_, where _ denotes the long-period and g = 280?08121009 + 079856473354d + 3?03 × 10"_T

de the short-period terms for the nutation in obliquity. + 3o.03× 10`T _
In a similar manner the nutation in longitude _ is #ven
with long-period and short-period terms A¢ and de. I_= 282?08053028 + 0?470684 X 10-_d + 4?5525 × 10-'T

+ 4?575 X 10" _/n+ 0.003X 10" T_
A_ = 25?5844 X 10"cos fl -- 072511 X 10-_cos2fl

+ I?5336 X 10"_cos2L + 0°0666 × 10-' ¢0*(3L - 1") T is the number of Julian centuries of 86,525 days past
- 0?0258 x 10` cos (L + P) the epoch 0_ January 1, 1950, E.T., while d is the number
--070183 × 10-_co, (2L-- fl) of days past the same epoch. The program uses d in
- 0*.0067X 10-' cos (2I" - fl) double precision. Themean obliquity is calculated from

6O
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= 23?4457587 -- 0701309404T -- 0?0088 X 10-_T" The cells A, A + 1, A 4 2 contain the 1050.0 position
+ 0?0050 X 10-_T_ vector R = (X, Y, Z), while the output vector r = (x, y, z)

in the Moon-fixed coordinate system is placed in the loea-
The quanti,"y _a = _ cos _ is computed and stored in tions B, B + 1, B + 2. The coordinate transformation is

the COMMON cell NUTRA for the GHA routine to use given by
as the nutation in right ascension for calculation of the

equinox.truevalue of the Greenwich hour angle of the vernal (i) = MNA (!)The 1/brations are given by /

_,sin I = - 0?0302777 sin g + 0?0102777 sin (g + 2 o) The inverse transfmmation
- 0700305555 sir, (2g + 2`0)

+ 0?005sin2_o = (MNA)' y

p = - 0?0297222 cosg + 0_.0102777cos (g + 2 `0) . z

-- 0?00305555 cos (2g + 2,0) is indicated by

I = 1.°535 CALL MNA
The following expressions l,,av,*been programmed for

g, g', and o,: PZE 1,,A

PZE 0,,B
g = 215754013 -F 137064992d

g' = 358?009067 + 0?9856°.,0.5d A, A + 1, A + £ contain r and the output R is placed

w = 1960745637 F 071643586d in B, B + 1, B +

Evidently g = _ - P, the mean anomaly of the Moon;
g' = L - F, the mean anomaly of the Sun; and `0= I_ - _, If MNA1 is caged instead of MNA, the matrices are
the argument of the perigee of the Moon. All quantities not reeomputed unless time has changed by 0.01 day.
relate to mean motions of the Sun and the Moon.

The subroutines use four cells of erasable storage
cosi = cos (O + _,+ 8_) sin esin (I + p) starting at COMMON.

+ cos_cos (l + p), 0<i<90 °

sine' = - sin (1"_+. + _) sin (I + p) csci,
- 90° < o' < 90° MNAMD, MNAMD1

sin_ = -- sin (O + _,+ 8_) sin_caci As it is necessary to form the Moon-flxc3 velocity, the
subroutine MNAMD has been provided to accomplish

cosA = - sin ¢f/+ a + _¢) sin_'cosE this task. As in the preceding discussion of MNA, the
- cos ( O + v + 8_) coso', 0 =<A < 360° formulas for transforming positions are

= _ + _ y = MNA y

The calling sequence to MNA is \ z / Z

(AC) = fractional day past Ohof epoch T in E.T. for the transformation from 19,50.0position to Moon-_xed
position and inversely,

(MQ) = integer days past 0_ January I, 1950 of the

CALL MNA y = (MNA)'_ Y

PZE 1,,A Z z

PZE I,,B for the position transformation in the other direction.

i "
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To obtain velocity transformations, the above formulas b = - 0.520642191 )< 10-'cosg

are differentiated and the approximation is made that + 0.1811774451 X 10-' cos (g + 20,)

fit =/i = 0 -0 1064057858 X 10-7cos (2_ + 2g) rad/sec

Thus The calling sequence to MNAMD has the form

/xl_ /X/z (X/_Z (AC) =fracti°naldaypast0h°fepechTunder

= ,MNA _, + i(4NA y consideration

\ (MQ) = integer days past 0_ January 1, 19,50, E.T.

and for the inverse transformation to T in E.T.

CALL MNAMD

? = (Mt,_A)' + (_NA)' y
z z PZE 1,,B

PZE I,,C

In computing/_/the rates for the slowly varying angles The 1950.0 position vector R = (X, Y, Z) is input to cellsa' and i are taken to be zero.
A, A +. 1, A + 2,, while the 1950.0 velocity vector V =

/_1= (,glit) (X, Y, Z) occupies loca_ons B, B + 1, B + 2. The output
where vector v = (k, 0, z) is placed in C, C + 1, C + 9..

/_t_, = ( - sin A cos fg - cosA sin fl' cosi) A If the inverse transformation is desired, the calling
21_, : (- sinAsin f/' + cos Acos_' cos i) A sequence is modified to read

/_11_= (cos Asin i) ,[ CALL MNAMD

_21 = ( -- cosAcosW + sin A sin fY cos i) A lrZE 1,,A

_22 = (-- cosAsinW -- sinAcosfl'cosi) _ PZE 1,,B

_2s = ( -- sin Asin i) A PZE 0,,C

/¢1_.,= 0

/¢I3,= 0 The Moon-fixed position vector r = (x, y, z) occupies
cells A, A + 1, A + $ as the Moon-fixed velocity vector

_lss = 0 v = (3:,_, _) uses B, B. +. 1_B + 2 for input. The 19,50.0
velocity vector V = (X, Y, Z) is the output and is placed

From the formula in locations C, C q- 1, C + 2.
A=a+ (_ +,) - (a+_)

obtain The alternate entry MNAMD1 differs from the entry _
MNAMD in that the matrices M and/f/are recomputed I

71,= ;_ + _ + _ - t_ - & only ff time has changed by 0.01 day. ;

The adopted numerical expressions for t'ae rates are The subroutines use four words of erasable storage I

h = - cos (Q + _, + 8_) sin_ (_ + b) starting at COMMON, I
si_ i cosA

= 0.266170762 X 10-s -- 0.12499171 X 10-aSTrad/sec 3. Ephemeris

{1 = - 0.1069698435 × 10-' -',-0.2.5015529X 10-"Trad/sec
INTR,INTRI

= - 0.15._5272946× 10-' ¢osg The subroutine INTR assure _ a high-density ephem-
+ 0.569494067 X 10-aOco_5' eris tape on A8 with on a.v records of 596 words in the/..n/-_#

i + 0.579475484 × t_ _xcos_ ®.'adA:.c following format:

i 70
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To integer days past 0_ Beginning at GRAV, a list of gravitational coe_cients
Januaxy1,1950, E.T. for the bodies appears in the units kmS/secL As a h'mc-
(floatiag point) tion of the central body, _,-t._Ja sets of these coefficients

X _ (T j), 8_X_ (T j), 8'X _ (T j) 1 are provided for the subroutine BODY in the COMMONlist KB0, , KB6. The following illustrates the transfers:

Y_ (T.D, 82y_ (T,), 8_Y_ (Tj) ] geocentric block "'"

Z ¢ (TD, 82Z_ (T_), 84Z¢ (Tj) ) = 0..... 20 Central body Effective noncentrai bodies

Xo(Tj) ' _2Xo(TD, _,Xo(T;) time interval is 1 day Eart_ Moon, Sun; Jupiter ff R_a t -----I(Pimi
Yo(TD, 82Yo(Tj), 8'Yo(Tj) 378 words Moon Earth, Sun

Z 0 (Tj ), 8*Zo (Tt), 8'Z 0 (TJ) Stm Earth, Moon, Venus, Mars, Jupiter

X_ (TD, S=X_ (Tj), 8_X_ (Tj) Venus Earth, Moon, Sun, Mars, Jupiter

Y_ (TD, 8_Y_ (TD, _'Y_ (T_) Mars Earth, Moon, Venus, Sun, Jupiter

"¢,_(Tj), 82Z_ (Tj), _4Z_ (Tj) Jupiter Earth, Moon, Venus, Mars, Sun

X¢ (TD, _X¢ (TD, 8'X_ (TD The entry INTB takes as argument the double-precision
Y,t (Tj), 8_Ye (Tj), 8"Ye (Tj) heliocentric block seconds past (P January 1, 1950, U.T., stored in T, T + 1,
Z e (T:), _-_Ze (T j), _'Ze (T_) _ = 0, 4, 8,12,16, 20 makes th ,_ conversion to E.T., and interpolates as a _nc-

(Nine words per time point ' time interval is4 days tion of the central body on the required coordinates for
representing what was the 216 words the bodies listed above. There are two conditions under
Earth-Moon barycenterused which actual interpolation takes place:in an older version)

X_ (T_), _Xat (T_), _X_ (T_) 1. Central body has changed

Y a_(T_), _aY.4 (T_), _'Ya_ (TD 2. Time has changed

Zat (T_), _2Zat(T_) , _'Z_(T_) If neither (1) nor (9.) is satisfied, then INTB gives an
immediate return.

The last word of the record is the check sum for the

previous 595 words. In contrast with INTB, the entry INTR1 always inter-
polates; in addition, this entry obtains the positions of all

From record to record the time must be incremented the bodies in terms of the central body instead of the
by 20 days. In addition, the time on the first record Tr selective list used with BODY. The positions appear in
and the time on the last record T_ are subroutine param- the COMMON bank XN. Additional?y, INTR1 numeri-
eters which give the base point of the ephemeris and eally differentiates the positions to obtain the v_,lovities
also a check for time out of the range of the ephemeris, which are deposited in the bank XN. in COMMON.
The symbolic locations are TFIRST and TLAST for Tr

and T,. respectively. Positioning of the ephemeris tape on A8 is acoom-

The lunar coordinates are assumed to use the Earth plished b/the following scheme:

radius as a unit of length, while all other coordinates are 1. If T < Tr or T --> T_, an error point is given and
expreased in terms of the Astronomical Unit. As the pro- ABORT is called.

gram runs in kin, conversion factors are provided at 2. If T _ Ts + 20, where Ts is the time on the record
SCALEI for the Earth radius and SCALE2 for the Astro- currently in core, the tape is searched in a forward
nomical Unit. The rectangular coordinates are assumed direction until the correct record is found. If the
to be expressed in the mean equator and equinox of the
epoch 1950.0 E.T., the beginning of the Besselian year.: tape has not been previously read, a dummy Tscauses a forward search.

As the argument of the tables is E.T. (Ephemeris 3. If Ts --<T < Ts + 20, inte ,r!m.Aationproceeds.
Thne) and the program uses U.T. (Universal Time) ,he
subroutine E.T. is used to form the double-precP, Vm 4. If T < T_, th_ correct number m of backspaces is

calezhtted.ephemeris time in see E.T. = U.T. + aT, where the con-
stant AT appea_ at GBAV-2 and thus may be input a. If m _ 15, the tape is backspaced m tim_s _nd
via INF1 in the symbolic mode. proceeds to do a forward search_

71
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b. If m > 15, the tape is backspaced 1 file and a t__ = 0.3986032 X 106
forward search is undertaken.

t*¢ = 0.4900759 × 104

After the correct record has been found, i' is read into _ ® = 0.132715445 X 10m km3/sec 2
"ore and both check-summed and redundancy-tested. _ = 0.3247695 × 106
Reading of the desired record is attempted a maximum of t*o"= 0.4297780 × 105

10 times, after which an error comment is printed and txu = 0.1267106 )< 109
ABORT is called. In the forward search the above two
tests are not made. The subroutine uses 20 cells of erasable storage starting

at COM/vION.

The following Everett's formula is used for the inter-
polation:

{ } /u(u2"- 1)[ 3! t(F1)} 4"EnckeMeth°dCalculatiOns_.
y(t) = uyo + ty, + _2y° + _ _2y,

ENCKE, ORTHO

+ lu(u"- l) (u2--4) t(F--1)(tz--4) }5! _4Y°+ 5! _y_ The subroutine ENCKE has been provided to per-
forra the calculation of the Encke contribution to the

where acceleration

yo=y(Tj) _--_---(RF(Q)-p)
y, = y(Tj + h) R3°

: h = ephemeris interval where R = Ro + p. The solution Ro for the position in
the two-body orbit is provided by KEPLER, and is saved

t - T - Tj from step to step so that a new Ro is calculated only when
h the time has changed; thus KEPLER is called normally

u = 1 - t once per integration step while using the Adams-Moulton

Tj <_T < T + h predictor-corrector.

: To obtain a formula for the velocity, the above Everett's F (Q) = 1 - (1 + 2Q ) -_'_is calculated trom the series
t form is differentiated and scaled: expansion

6

_(T,-- hl dYO' - 1{ -y°+yl}dth 17(Q'=QXalQ',=o

+hl 3u37"1_,yo+ 3t3_'1 _2yt} where
a0 _

+h{ 5u4--15uZ+'4,,y ° 5#-- 15t+4-" 5! + 5! 8'y, at = --7.5
/

a._ -_- 1"/.5

Tb_*ephemeris tape currently used has the folbwing ,, = -39.375
modified differeitces for the Moon: a, = 86.625

8=2y= _2y_ 0.0131.286y + 0.0043 83y a5= - 187.6875
a6= 4021875

8=4y= 8*y-- 0.2782;' 8'y + 0.0685 88y
and

, ,Thus 8_ and $_ are used in the Everett s formula "in_.tead
of _2 and _' to provide for the influence of the higher p" Bo +

difference _-. Q = R_

The following constants are used: The expansion $ives accurate results for I Q ] <_ 0.08; ff
the limit is exceeded, an error print will be given and the

'. KR. = 6378.165 ) trajectory will be terminated. Normally, Q grows slowly

. AM. = 0.149599 × 109 _ km enough so that rectification may be performed at the end

_ 72 -,
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of the integration step; however, for wild trajectories the _/1 - (1 - E_) ifradicand > 0,

error procedure has been observed to occur. • = IO otherwise

ENCKE deposits the true positior R in the COMMON If the computed e is smaller than 0.01, then a circular
cells QX, QX + I, QX + 2 and the acceleration term orbit is assumed and the remaining elements are made
_//_ _ (R F (Q) - p) in the cells CX.., CX.. + 1, CX.. + 2. consistent with the assumption of _ = 0. There follows in

At the osculation epoch To the subrolatine ORTHO quick succession . _._

provides the Encke scheme with initial conditions: P the closest approach distance
q--l+e"

p (To) = R(To) - Ro(To _
1 -- e 2

1_ (To) = V(To) - Vo(To) X-- (1 + ,)2 , the pericenter parameter
p (To) is placed in the COMMON cells CX, CX + 1,

Ct

CX + 2, while # (To) is placed in storage locations CX.. g = _, the mean motion for the pericenter methodCX. + 1, CX. + 2.

/L the semimajor or transverse axis
CONIC a= Ic-_'_'

The subroutine CONIC supplies the Encke machinery _ the mean motion
with the necessary orbital elements given an epoch To n = a '

and the Cartesian position and velocity vectors Ro and Vo. b = a _/[-i'-_, the semiminor or conjugate axis
Under certain circumstances described below the derived

elements are nonosculating, and finally,
1 -- $2

1 --£--

The computation starts with the formation of the angu- 1 + e
lax momentum cI given by

It remains to calculate P and Q along with AT = To -- Tp
el W = Ro X Vo and to make the two sets agree sufllciently so that the

If cl > (0.99c)RoVo, where e = 0.5 × 10-.3, the orbit is Eneke starting values will not be too large.
considered nonrectilinear and the subroutine proceeds in

the normal case. However, for ct _ (0.99e)RoVo, Vo is If _ = 0,
replaced by V o*given by

Ro W >( Ro with AT = 0

[ Ro ; P='_o andQ=JW×Ro[v _ = Vo _/_ sgn(no. Vo)_o + dn
Otherwise, the vectors are constructed:

where
eRo_ P = (ERocoSvo) Ro-- (_Rosin¢o) W × Ro1

M = VX] + Y] (Yo, - Xo, 0) ifXo + Yo_#0, eRg Q = (,Rosinvo) Ro + (eRocosvo) W × Ro

(1,0,0) otherwise Divide by Ro, and normalize the resultant vectors to
obtain P and Q. The expressions involvir. :_the true anom-

and the routine cycles back to recompute the angular
momentum. Observe that c 1"=eRoVo so that Vo*is accept- aly at epoch are calculated from

able; of course, V o*= Vo and c_ = ca. e RocosVo= p - Ro

Next come the elements e Rosin Vo= ca Ro"Vo

P = c_ , the semilatus rectum To obtain AT, the applicability of the pericenter

t' method for [x [ < 0.45 is tested, w0 is formed accord-
_ _2_ the "energy" or vis viva integral hag toc_= Vo_ Ro '

t smVo- c_c......2s '1 "_"_Vo ifc°*v°-->0

1--e s= p_ Wo=,_l_ cos f/o
At this point the eccentricity • is computed and tested: (, si-'nv"_

otherwise

t
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and tested. Ix IWe I_ w .... thex. Then AT is obtained from Kepler's equation:
6

_aj (X) Wozj nAT :: _sinhFo -- Fo -- RoVr_V_7 FogAT
1.4
J=o

where the coefficients aj (;t) along with w .... are given in
the discussion of the subroutine PERI. QUADKP

The subroutine QUADKP was written to provide an
Whenever I We I > w .... the eccentric anomaly and iterative solution to Kepler's equation for the elliptic and

Kepler's equation are resorted to. The scheme is divided hyperbolic cases using a second-order gradient method.
into two cases according to the value of e: However, only the machinery for the latter case has been

utilized in the main program for the Encke solution.
(1) e < 1, elliptic case

The following expressions are constructed _gr the Let Kepler's equation be represented in the hyperbolic
eccentric anomaly: case by

Ro f(F) =esinhF--F-M, M = n (T- Tv)
ecOSEo----1 - m

a Then for the approximate solution Fj the Taylor series
Ro'Vo expansion through second-order tex".ns may be used toesinEo--
a_/_ obtain a new estimate Fm of the root f(F) = O.

from which E0 is determined. 0 = f (Fj + 8Fj) = f(F) _-f(F_) !

__ _F_
If [_ sin Eo I < l* cos Eo l, then the auxiliary vari- + 8Pj f'(Fj) + --_ _"(Fj)able E* is constructed:

E* = sin-t Ro-Vo _r _r Solving directly for the roots of the quadratic,

_' - T < P < T 2f(F,)
Then Eo is given by 8Ft _ F_+x- Fj = -f'(Fj) - X//'a(Fj) -- 2](Fj)f"(Fj)

* if l _Re > 0 where the minus sign i_ taken before the radical to insureBe = a that BFj --, 0 as f(Fi) --->0; for a wild guess, however,
[,rsgn (E '_) -E* otherwi_ the radicand may become negative, in which case the

On the other hand, if I e sin Eo I '_ I e cos Eo I' then radical is replaced by zero. With a good initial approxi-
mation the latter case arises only infrequently.

E'=cos-'+(1---_), 0<E'<,r, A similar result may be obtained for the elliptic ease,
with namely

Eo = sgn (Ro 'V_ E s f(E) = E - esinE - M

Finally, AT is calculated from Convergence in either the hyperbolic or elliptic case is
evidently given by

Ro"Vo

_r = _0-,sinB0 =Eo ,VI77T F,,I -F = o((Fj -F).)
The program is made complex by the attention neees-

(9.) e > 1, hyperbolic case sarily paid to obtaining a good initial approximation for
The eccentric anomaly Fo is found from the re- starting the higher order iteration scheme and the be-

lation havior of Kepler's equation when e is near 1 and M is
small.

Re.V0
zsinhFo = _ = ea The initiel approximation is obtained as a function of

Fo= sgn (Re' Vo) In ( Ia + VT + a_) e and M:

,°
74
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,M The power series developments are employed since the
(1) • > 1.1, F-1-- E-- 1 quantity 1 --, is regarded as an independent orbital ele-

2___eM} ment and, is made consistent with this choice. For small!sgn (M) rain _1, In if ]F-I I > l values of Fj, undertow is avoided by choosing fewer terms
in the expansions.

F-st + F_I
Fo= 3! 5!

F-I -- = _ if IF-11 _ 1

- 1 + 2F--tl F_I -- Additionally, if M = 0, F is set to zev and no iteration---- - -" + 4-"_. is performed. The calling sequence has the form£

( 1iteration byNewton's method)
(AC) = M

(2) 1_<,_1.1 (MQ) = 1-,
/ / ")l/tffl'_

Fo = ]sgn (M)min_l, in--%LT-Ls"_ fflM,>l CALL QUADKP
(6M) _' otherwise

DEC

(3) 0.9 < , _1 FZE A

Eo = (6hi) _
(ERROR RETURN)

bl
(4) 0<_<0.9, E-l-

1 --, For the elliptic case, it is assumed that M h_s been

'2.5 X sgn (,M) if I/L_ I > 3 normalized so that ] M ] --<_r.
e_ e4

Eo= E-1 - 3! 5!
F._ _ E._ if [E__l -------3 The location A contains a positive number for the ellip-

1 -e e --t-2! 4! tic case and a negative number for the hyperbolic case to
choose the correct form of Kepler's equation for the reeti-

( 1 iteration by Newton's method) linear orbit.

(_)e=O
As a convergence criterion, • = 5 × 10-s has been£o=M=E

chosento apply suohthat the normal return is given with
(AC) = F or E whenever If(F/) I< elm I and F = Fj

In the iteration scheme, a modification occurs in the for the hyperbolic case, or If(E [ < _ [M ] and E = Ej
numerical evaluation of _, f', and f" for the hyperbolic for the elliptic case. However, if the process hils to con-
case. verge to within e in N = 50 iterations, the following com-

ment is printed:

(I)[ForIFj I< 1.98
e sinhP/- Pj = (sinhP/- Pt) 4- (e- 1)sinhPt QUADRATIC METHOD FAILED

5

F,s _ (3!) '+t (F,*_' U • F, (orE/) [(F,) [orf(E,)]si_ Fj - Fj = T (_ ¥ T___,T_'.,/
_=o and the error return is given with (AC) ---F_or E_.

siah P/= F/+ (sinh F/- F/) Generally, convergence is obtained in five or fewer itera-
tions. After the first time QUADKP has boon caned in a

(2) For IP.J[ < 2.28 phase, subsequent initial approximations are obtained by
, using the solution at the previous time point.

(2i+ 2)t \2t I
i., The subroutine uses eleven words of erasable storage

- c_',&P_= (e - 1) - (cmhF_ - 1) starting at COMMON.t

i 'MI '
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KEPLER, PERI, SPEED Iteratiov proceeds by Newton's method:

KEPLER is the subroutine which provides the solution [ (wj)
to the two-body problem at the epoch T. The necessary wj+_ = wj F (wj)
elements are assumed to have been provided at the oscu- where
lation epoch by ORTHO and CONIC. Different methods

of solution are chosen according to the following criteria: f (w) _ w _ aj w2j - WO

1. The pericenter method is used whenever and

a. IX [ < 0.45 and l-t-w 2
b. Iwol<gaT_. '"(_) = (1+xwO"

2. QUADKF is used for • > 1 and ff item 1 is not
satisfied. Convergen_.e 1: usually obtained in a maximum of four

iterations for cases which have arisen in practice, assuming
3. If the conditions in item 1 are not met and if e < 1,

then the methods described below for the ellipse are a crit _rion of ][(wj) ] < 5 × 10-s ]Wo 1.

used. Vehel; cow_crgence has been obtained the coordinates
way be calculated trnm the formulas

As the orbital elements furnished by CCNIC are no:l-
1 - w_ 2w

osculating if true osculating elements give aearly recti- a = 1 + _ w--''--_ q P '" w--'-'7 q Qlinear results, the case for e = 1 and c_ _ 0 ut ed not b_ ' _ + _

treated. (1 + x) wc,_ , -t- (1 - Xwz) c_
V-- q(l +w_ , q(l +w 2) Q

Pericenter Method

_ The first problem to be solved in the per,_ ._. methGd Hyperbolic Case
is the determination "_fw from the forrntr_, If method 2 is to be us, .... : _e subroutine QUADKP is

called and returns ?ith - ",:+-solution to Kepler's equa-

l 1 + uz tion. The coordinate, ,_,,' then calculated from the
wo=g(T--Tv) = (l+Xu_)2au e,xpresslons

where g = c_/2q 2. The quadrature is approximated by R =: a (_- _ _ " _ + a _ sinhf Q

the expansion a \ '.:i, ,;_P p + a V_s _/e'T--1 coshf
v ....... _-.-- R Q

W _ _/W aJ
j =o Elliptic Case

where the coefficients are a tu'netion of 7,: Begin by defining the auxiliary quantity M* by

,_ = 1 bt* _ M = n(T - Tp) (rood 2_) - ,_ < hi* --<

= (_l)J_.l [(/+l)X j-ix _-_] andaj
,.i-1-, ,,_--. +

win,., = max '/"' \_"_,} t' Then for [M* I -< _/6 - ,/2, take

where • = 0.5 × 10-s. B_ = M8

= w,,,, '_aj u,_._, E, = _ - h,g &Tm,,
J:o Bo= M + h+

w_, the initial approximation, is given by and for IM* I > _,'6 - _/2 the approximations are

(3wo)_/a if[ wel>3 E_=M-h,

w,= 1/2Wo ifl<lwo]_5 Et =M-2hz

, _o ifo<= Iwol=< z _o=

i 7t1 +"
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Now ff M* [ _ 0.25, iteration is performed using (i) For IE j [ < 1.98

Newton's method with E2 a_ the initial approximation: E_ -e sinEj = (E'j -sin Bj) + (1 -e)sin Ej ,!
)

I(Ej)
Ej+I Ej @/,(/_:)

Ej-sinEf= _: (2i+5)! "_-./
where f (E) = E - _ sin E - M. Convergence for New- _=o

ton's method is evidently given by (2) For IEj [ < 2.28

t--cos_j = (2.; + 2)[ 21/where f (E) = 0. _=o

Whenever I M* [ < 0.25 Muller's method 2is used: cosEj - e = (t - e) - (1 - cosEj)

Ej+l =/_j + b_,_ Here e is made consistent with the chcice of 1 - e as

bj+, = Xj+abj an indenendent orbital element.

28t f(E_) The coordinates are obtained after convergence by use
_d+a= -"

gj + {sgn (gJ)}V/_ of the formulas

aj=g_-4Xtgjf(E_) R = a(cosE- _) P q- a_/T - e'sinEQ

× [Xj/(E_-2) --gjI(Ej__) +/(E_)] V= a_T_'_sinEp + a_/T_-v/1-_,oa;E- e R Q

i + (Xj + 8j) f (Bj) /,s usually only the position is required for the two-
! body orbit in th,_ Encke scheme, KEPLER is additionally

8j = 1 + ),_ used to calc,:iate R. Wh_ne,,er V is needed, the subrou-

; Initially, of course, tine SPEED is called upon, which makes use of the pre-
vious -_olutionE, F, or w. R is placed in the COMMON

B2- B_ 1 cells QX0, QX0 + 1, QXO + 2 by KEPLER, _vhile
: E_ - Eo 2 SPEED places V in the cells QX0., QX'_. QXO. + 2

and also celculates the true velocity V + I_ which is
i The convergence rate is given by
_ placedinthecells QX., QX. + 1,QX. + 2.

E_+,- E = O (_)
AfterthefirstuseofKEPLER ina phase,furthertime

whe_ e_ = max {iT. - El, [E___- El. IE__2- E 1} pointsuse asinitialapproximationthesolutionatthe

and f(E) = 0.The methodowesmuch ofitsusefulness precedingtimepoint.
totheobtainingofE_+aby interpolation,whichmakesit
relativelyinsensitiveto_'(E)_,0.

5. Perturbations
For both the Newton and Muller methods, convergence

is defined by HARMN, HARMN1
The oblate potential of the Earth is assumed to contair

If (ED I _ _ 1_ ] the second, third, and fourth spherical harmonics:

where _ = 5 X 10-s or until E_+_ and E_ agree to '/.6 _ ]a_

bits. In practice, for the values of M and • encountered, U_ Pe t. _ (1 - 3 sin__) + 5Rs (5 -" 5sin__) sinthree or four iterations are usually su_cient for conver- = R
gence.

(_ - ._0sin__ + 35sin' _) I+
Whenever 0.5 < _ < 1, the following series expansions 35R'

are resorted to: wb_re _e is the gravitational coefficient of the Earth and
ae ._-the equatorial radius of the Earth.

-*DavidE. Muller, "A Method for Solving Algebraic Equations
Usingan AutomaticComl_uter,"Mathematlc4dTablesand Othm" R = (X, Y, Z) is the position vector Irom the Earth's
A/d#to Compcdaflon, 19,_, pp. 20_-2]._. center of mass expressed in the mean equator and eoui-
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nox of 1950.0. To obtain _, the geocentric latitude, r = Location Quantity Nominal value Explanation

(x, y, z), the position vector expressed in the true equator HARMN + 2 ] 1.62345 X 10-2 Coeflqcient
and equino:r of date, must be obtained. NUTATE pro- for second
vide; the n_ rotation matrix A: harmonic

/i ) _,, a,_. a,_.) /i) +3 H -0.575×10 -2 Coeflqcient

=/a,, a.. _ for tldrd
-" harmonic

\a, a__. a_3 + 4 D 0.7875 × 10-s Coefficient

Thus sin 4, = z/R. for fourth
harmonic

To obtain the perturbing acceleration, VU_ is formed: -_ 5 a_ 6878.165 km Earth radius

VU e
• i9z= ' _ H, ] press secondharmonic

where u, = X, u2 = Y, and u, = Z. + 7 Rs 200,000 km R > R3, sup-

_zi - R-''T" R_ "R- + 2 _a_j harmonic
+ I0 R, I00,000 km R > R,, sup-

l( ,r.,o hR' R 3 ----R" harmonic

(3 ___2) t As HARMN is contained in the symbol table for INP1,+ - _- + a3j the above parameters may be input in the symbol;c mode

: D'" a__ !(¢ _ 6 z2 _______L of INP1.R_ K* _ + 9 R'I R The subrotitLne uses 15 cells of erasable storage starting

+(__- 4 ff__i)._ a_, t at COMMON.

where j = 1, 2, 3. XYZOD, XYZDD1

The calling sequence for the setup entry is For purposes of computing the oblate potential, the
Moon is assumed to have a triaxial ellipsoidal figure. The

CALL HARMN moments of inertia A, B, and C are taken about the prin-

PZE X,,B eipal axes of the ellipsoid x, y, and z originated at the
Moon's center of mass.

PZE K._T

IrZE tt

X, X + 1, X + 2 contain the vt_tur R = (X, Y, Z); B, _2_ '

B + 1, B + 2 will contain - _U,_, the negative of the Z.lr._ _

perturbing acceleration; Kcontains t_ the Earth's gravity y
coefficient; ZT contains z, the distance above the _rue

equatOr of the Earth; and R contains R, the distance to
the center of _ Earth. I

-HARMNI is the execution enhy which assumes the __,. _/ "_F' |
above storage layout. In addition, provisions have been
made to omit the calculation of the various harmonics as

a fm,etion of the geocentric range. The internal param-
_'(ersare listed in the following: SketchA-16. Geometryof the h'ueequatorof the Moon
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In Sketch A-16, the X'. Y', Z' frame is the Ea.,_th's true where X, Y, and Z are the 1950.0 coordinates.
equator and equinox; the x - y plane h'cs in Moon's true
equator with z completing thp right-hand system by lying The following form of the potential function which
along the Moon's -_F.fi,axis. i is the inclination of the accounts for a second h,rmonic has been adopted:
Moon's _e equator to the Earth's true equator; .q' is the

G (A+Bq-C-3I)
right ascension of the ascending node of the Moon's true U_
equator; A is the anomaly from the node to the x axis; = -_- 2R2
A is the anomaly from the node to the ascending node of

G -- F¢ - k2, the universal gravitational constant
the Moon's _ue equator on the ec}iptic; ¢ is the true me
obliquity of the ecliptic; 8_ is the nutation in longitude;

t_ is the mean longitude of the descending node of the I = A --ff + 8 + C
Moon's mean equator on the ecliptic; _ is the mean
longitude of the Moon; I is the inclination of the Moon's
mean equator to the ecliptic; ¢ is the libration in the To obtain an expression for the perturbing acceleration

node; r is the libration in the mean longitude; and p is ( _..__.U.._ _ U¢ _. U_ )the libration in the inclination. The anomalies are related VU_ = \ _ut ' _' _3u3
by A -- n = (_ + r) -- (fl + _). Expressions for the
above quantities appear in the discussion of subroutine is formed, where u, = X, us = Y, and u3 = Z.
MNA.

_U' -- G _r 3 A + B + C 15 _L./]us
Pus R_" tL- 2 Ri +--2- R2 J R

The two rectangular system; are related through A, fY,

3 [A_,i,sx + Bm2j y + Cm_j z]and i by the rotation: _ -R;-
/

where A = 0.88746 × 1029kg-km_

b,, = cosAcos f/" -- sinAsinWcosi B = 0.88764 X 10Z_kg-km2

b,z = cosAsin fI' + sinAcosfYcosi C = 0.88801 X 1029kg-km2

b,_ = sin Asin i The calling sequences are

b2a = - sin A cos fl' -- cosA sin O' cos i (AC) = fractional days past 0h of epoch

b22= - sin Asin fY + cosAcosfl' cos i (MQ) = integer days past 0" Januat3' 1, 1950, E.T.

b,3 = cosA sin i CALL XYZDD (or XYZDD1 for time change check)

bs. = sin fY sin i PZE 1,,X

ha, -= - cos fl' sin i PZE ,,X..

ba3= cosi X, X + 1, X + 2 contain R in the 1950.0 system; X..,
X.. + 1, X.. + 2 will contain the perturbing acceleration.

Combining the above rotation with the one to rotate
1956.0 coordinates to true of-date, as described in If the entry XYZDD1 is used, the matrix (m,_) is re-
NUTATE, derives the additional relation computed or'), after time has changed by d = 0.01 day,

where d is a program parameter. On the other hand, thp

/ '_/ It has bcen determined by .,lumerical experimPntation
s =/"" "" "J/Y thatd -- 0.01daygivesthe perturbingaccelerationto
z \-_, mn m_s/\ I sufficient accuracy to represent faithfully the motion of a

t
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low-_ltitude satellite in the field of an oblate Moon. a._ The subroutine uses 14 cells of erasable storage start-
eempared with an evaluation of (m.,) at each integration ing at COMMON.
step.

If R > Ro : 40,000kin, then the contribution from the 6. Variational Equations
oblateness is set to zero. Ro is a program i_ara.-neter.

VARY, SVARY

The subroutine uses six cells of erasable storage start- The subroutine VARY has been _a'itten to provide for
ing at COMMON. the calculation of the derivatives of the first-order vari-

ational coet/icients, i.e., of the patti.a1 derivatives "dR/_)uj
where {uj} - {Xo, Yo, Zo, J_o, Yo, Zo} and _l quantifiesBODY, BODY1
are referred to the mean equator and equinox of 1950.0.

The subroatine BODY has been provid_ to perform The 3i_/_t:j may be expressed in the form 31l/i_uj =
the calcadation of the n-body perturbat/on term (_, + B) 3R/3uj where the matrix A arises from the

central-body term and the n-body perturbation and B
11

_R,p .j_ R_ u_edappr°ximatesthethe effect of the Earth's oblateness to be
P

m _,RS "J/ only in vicinity of the Earth.
]=x

where R j, = R - R_. The form of A is obtained by differentiating i_ with
respect to ul and exchanging the order of differentiation
where

The subroutine ha._ the exec,_J_oncnh-y

CALL BODY1 R R _ _R.. I_ IP*tR:,
and the setup entry _=_

CALL BODY _R _ i i /SR 3 ( i3R) }a,,
PZE X,,n _=o

FZ_E XN,,KJ with m = _, and IL, = R. Expanding the dot products,
the computational form of A results:

PZE RJ,,RJP

PZE X.. A_t = - m 1

where the locationsX, X + 1, X + 2, contain the vector
R, the position of the probe with respect to the central _ X,p Y,p
body. The maximum number of noneentral bodies is A,2 =At2 = 3 2j m,
given by n; the gravitational coefficients m for the .'.,on- ._.--o R_,

central bodies are assumed to be stored in t.g,elist KJ..... _._ X_pZ_p
KJ + (n- 1 ) with the convention ;hat a cell containing Aa3 = A_ = 3/..¢ mzero means that the ten,pending body is not used in _o
the formation of P. The vectors Rj, the positions of the n

bodi_ with respect to the central body, are assumed to A2_ = - /q -
be stored in the bank XN, ..., XN + 3(n - 1) + 2 where R_k=0
the ordering is the same as for the/_.

Y_ Z_,The execution entry results in three types of output: d_s = As_ = 3 I_ R_,
- P is stored in the cells X.., X.. + 1, X.. + 9.;the R_ for _=o
the effective bodies are stored in locations BJ..... RJ + ,,

(n - 1), while the R_ for the same bedies are placedin A,=- _ -3 R_the list RJP,. RJP + (n - 1).'_ /_=0

i "
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c_ntr/bution B, choose the perturbaZio-, which retains just B.__= g, _-- "_" _ + 2_'S R3 R' 1 -- _R, /
the second lmmlonie term:

e,,--g-,g,-_., g: n:,= g.Y - -m-. +2_o R----r-_r 6--_-w}

where

SZ-" B3,= _ -- + 3--g, = -- 1 -- -

(Z 3Y YZ ]a_o 3-
_;" -= g*-R - + 21_S'-_ R" R* /

At this point a further appreximation is made in that the
coordinates are regarded as being expressed in the _efer-

enee system, the mean cxluato_ and equinox of 1950.0. B_=:g,.R____Z[ 1 _3Z)_ + ztt_-_-_ _tl -_/- Z* ] a_ /. I0 .Z*_

Forming the partial derivatives

The vector (gt X/R, gt Y/R, g, Z/R ) is assumed to be

i3X X(.I_X 3 3___.7) calcolated e (ternally while the parts of B which do not3 ui - gt -_" X _ u_ _ R. contain _, or g2 are replaced by zero whenever R > 3 as-

t,_Ia_{ 3Z ( 1OZ', 3R)
+ R' R' 10Z _., + 2 1 - "-_')R-_-_j_ The execution entry VARY is preceded by the setup

Y t./ 1 3Y 3 3 "X entrySVARY:
"T _, Y 3uj "_, )3 uj - g_" R_ R"

CALL SVAR¥, A, B, C, D, E, F, G, H, I, J, K

+ R-"-;" 10Z _ + 2 I - R' } _-'_/) where R, the position of the probe with respect to the
central body, is contained in the cells A - 3. A - 2, A -- l

Z Z (.__ _Z 3 R" _"_7) The block B-3n ..... B- 1 contains the noncentral_j -- g2 "R __ _ ui R" -., body position vectors Rt ..... R_; R is contained in loca-

i_,zia_{ _3Z (10Z_R. DR} tion C while the block D-n .... , D-1 contains4- -R-S R-----i- 10Z _ + 2 3 - RZ / _ the quantities Rap .... Rap. t*iS in location E and the ceils
F - n.... , F - 1 are occupied by t_t.... , m; a zero

where _ fl/3 uj :'epresents the contribution arising from in one of the latter cells is used as a flag to skip the
the oblateness only. The final form of B is obtained by corresponding body in the calculation of A. The oblate-
the expansion of the dot products: ness perturbation is assumed to be stored in the locations

G - 8, G - 2, G -- 1; an internal test is made to deter-

X(1 _) Xz.la_( 10Z*\ minewhethertheEarthistbecentralbody, sineeBissetBtt = gt _- + 2t*S R; R' 1 - "-_T'] to zero whenever the calculation is not centered at the
Earth. To determine the maximum number of perturbing

- - oblateness parameters as and ] occupy the locations I
B_ = g_ _ _ + 2t*s _" R' _) _nd J respectively.

B_s = gt _ - + 21,_ Ra R' 6 - ---_-1 As output from the execution entry, the matrix A + B
is deposited in the storage locations K - 9..... K - 1.

Y(_-7,) XY._( 10Z'_ Execution of tbe subroutine requires 80 edls of erasableB,t = ga _" - + 2t,. R* R' 1 - --_;-] storage starting at COMMON.

r

, 8!
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7. Numerical Integration where the differential equation to be solved has the form
g = f(t, g). The ordinate y. is accumulated double ple-
cision, while the ks are evaluated and summed in single

NL_RK precision to be added to g, in double-precision form. The
MARK is the subroutine 'hich obtains the numerical solution at inte_.,_.,ediate times is obtained by altering h

stepwise solution of a set of linear first-order differential to stop forward to the desired time and resuming the
equations by employing an Adams-Moulton predictor- integration with the old step size h upon return from the
corrcctor of vl.,'tually arbih,ary order which utilizes back- trigger execution; wldle homing in on a 7_erooFa depend-
wards differences; a Bunge-Kutta scheme is used to form ent variable, the step size may even become negative.
the nec_sary differences of the derivatives to start the The collecting of the derivatives for the difference tables
integration for the multistep method. The step size is is accomplished by the setting up of internal time stops
halved or doubled upon external request by subtabula- at the necessa.,y mesh points; thus the Bunge-Kutta sec-
tion of tho dorivati:,_ in the fi_rmer case and by elimi- tion will obtain the solution at the necessary times for the

•-'-'-- while _rry. ing on the ordinary functions of MARK.nation oF intermediate points in the latter; hence it is not u=u,,_
necessary to restart with Runge-Kutta to effect a step-size
change. MARK has been designed to carry out the aux-
iliary functions of obtaining the numerical solution at The Runge-Kutta formulas give results which agree
specified values of the double-precision independent through fourth order in h with a Taylor series expansion
variable; i.e., for desired times, or doing the same job as may be seen £om the following development:
whenever a specified dependent variable attains a null

value. To permit the main program to determine the kl = b/
desired times and to define the dependent variables, a

list of _ntrol words called triggers is appended to the s _ri_ / , J

calling "equence; the stnlet,,.trc of the triggers is described kl =h h +ki_l /+O(hS), i=2,3,4
in the explanation of the calling sequence to follow, j=o

_1 for i=4

To allow the main program to ...o...._,,,,";"- the n_,,,_,.._,'-" x_'_ = tsolution, EOS, a supervisory routine provided by the . 2-j ior i = 2, 3
main program, is called at the end of each step by MARK.
Additionally, M&RK must be g/yen access to a subrou-
tino for thc evaluation of the cl_o.,_.'vati:,csand ihe eaicuia- Expanding the operato, and using the notation

tion of all necessary dependent variables so that isolated 3 _/D tJ D _/t-j __ ft, v*-,'there results
zeros may be iterated down upon and captured.

b,l-3 ]If m is the highe_t-or_,:r difference retained for the k_ = b f + _-. (/t + f[_) + _'. [.7 (f t, + 2[ /,y + fz ]_, )
&dm;;..-Moulton method, then for starting purposes the

,,r,. ]Runge-Kutta portion of MARK must integrate ahead m + _.'___ (#t, + 3#ft_ + 3['#t_, + Ply,) + 0 ( t: ,steps of h, at which time the necessary backwards differ-
ence tables for the derivatives will have been completed.

Assuming one variable for simplicity, the Runge-Kutta /_ ¢
formulas are /h= b/+ _'. (tt + f/_)

, }y,.,=y.+g(k,+2k,+2k,+ + 3• 3_L2 #'(#' +//') + _ (#'' + 2##,,+ #.#,,)

k, = h/(t.,y.) + _ 3 (f, + ff,) (#,,+ #f,,)

( , ,)k,=h# t.+-_,s.+ Tk, + #,(1,,+ 211,,+ p#,,)

(, ,) , ]i, =/,f t. + T,_,. + -_ /,s + -£ (f,, + 3##,,,+ 3P/,,, -_P#,,)
I. = b#(_,+ #_,_,+ ks) + o (P)

i 81t
x,- _"t" i- 0t
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_,=/,f+-_-. ['_(f, �ff,)]k==by. 1+ _ [31,(h + if,) _-3 (l,, + 2If,, +/'f,,)] k, = by,, 1 + T +

hi

+ _-[6_(f, + ff,) 412 ,,f,+ #,) (f,, + flv) k,=_. t+h+T+
+ 3h (f,,+ 2If,, +/'f,,)

+ 4(f,,+ 3f/,,,+ 3pf,,,+ Pf_)] 1 [ _ P h__,"I.Lo (P) -_ (k, + 2k=+ 2k,+ k,) = 7...h + T + _ + 4_..I
1

_" (kt + 2k. + 2k_ + k,) Thus the two series disagree begin;ring with terms of h_'.
b'

= h/+ -_7(h + ][,) The formulas used for the Adams-Moulton integration
are derived from the expression

b=
+ Tf.U, (f, + If,) + (f,,+ 2If,, +/'tv)] 7.. = y. + h (t - V), - i.-h(I- _7) _"

h'
+ _ [f_ (It + lib) + 3 (h + if,) qt, + fly') If a seriesexpansion is obtained and differences through ,

order m are retaim_L, then the truncation error is evi-
+ f, (f,+ 2/f=, + Pt..) dent]y O(h "+=) since

+ (It,+ 3]]ow+ 3I'],v.-l-,/_tv.)] b V'y.= b {b'+'D'*'_. + O (b--_z)} i+ o (t_)
The predictor formula results from/_ = -- 1:

But y.. is given explicitly by the series
y,.x=y.-I-h (l-V) --1 .-h(t-V) _"4

y.+_= y. + _._ _ yoJ + O (P) The computational form is obtained by expanding into a
J=_ series and retaining differences up through ruth order.

whel'_

\at,It.

In particular, where the first few coefficients are

y(_= f a, = 1
1

y"_= f, (h + if,) + (f,, + 2If,, +/'/,,)
5

P" = f_(I, + if,) + 3 (f, + If,) (f,, + fl,,) _'= z"T i
+ ]u (f,. + 2If,, + flt_,) 3
+ (f. + _ff,_,+ 3Pf,v + Ply) '_ -- T •

Thus the two _eriesexpansions agree through terms of 251
720

95
To show that the truncation error is, in general, at least as - 288

O(hs), consider as an ex_anple the simple differential 19087
equation _, =

_=_
with solution As the predictor is relatively unstable for m-----5, an

h' ha P _-_-_l option has been provided in MABK for the use of a cor-y_.t = y. 1 + h + _ + _-. + _. + 5l J + O (h _) rector formula whi.ch may be obtained by setting/_ = 1

In comwtson, the Runge-Kutta formulas yield in the general expression h _'
,t,=,_, Y-= Y"-'+ -h(z - _) _"
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For purposes of computation this becomes Each time a double is called for, MARK sets internal time
stops to save the nece;_ary information for doubling dur-

(_) ing the ncxt m steps as measured from the end of the
y. = y.-1 + b bt _TJ _. current step; of course, the necessary past information is

\j=o regenerated at this time and saved to be adjoined to the

where the low-order coefllcients are future information to form a difference table of deriva-
tives with twice the step size. At the completion of first

bo = 1 doubling, further doubles may be executed in sequence

1 as called for by the main program.
bl- 2

1 Halving is aecomplisned by the subtah,da."ioii of the
- -- _ .,_wton s formula:b2 = derivatives according _o x,12

b,= - e-_ _.__= (1 - V)_._- (- 1)J V_ _.
19

b, = 720 for p = 1/2, 1.... , m/2.
3

b5 = 160 At this point new differences of the derivatives corre-

863 sponding to half the step size may be generated, and
b6= 60480 further halving may be accomplished ff called for by the

main program.

The predictor and corrector each require sepazate eval- Step-size changes by doubling or halving are executed
uations of the derivatives; after at;plication of the oar- only at the end of an Adams-Moulton step and after allrector and the calculation of the derivatives at the new

time stops and dependent variable stops occurring at
time station t., the solution may be obtained at intermedi- times inside the current interval have been executed.

ate points t by choice of t_ = (t. - t)/h, where t. - h < While integration is being carried out by the Runge-
t < t.: Kutta section, the doubling and halving signals are

y.__ = y. + b cj V j _. internal confusion.
\J=0

where the cj are obtained by the convolution of the series MARK has the calling sequence

,o CALL MARK

(1--_])_--1 _-¢ (j 1)
V = (-1)J+' t, V_+ PZE HBANK,T, EOS

jfo FZE DERI,,DER2
with the series for the correetor

(ERROR RETURN)
QO

_bj (FIRST TRIGGER)
VJ

1=o

The interpolated solution may then be used either for an
intermediate time stop or to help find the zero of a de-

pendent variable. (LAST TRIGGER)

At the return from the execution of a trigger, MARK HTR End of call;rig sequence
may be signal_d to change step size by powers of g over

the nominal value; any other type of step-size change Most of the information to be shared by the main pro-
must be etiected by restarting the numerical solution, gram and MARK is organized in the followiag buffer:

i
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Z,,

HBANK -3 PZE m Adams-Moulton Each trigger has the structure "_:
order _-

OP A,,B i_
-2 PZE NH Number of

initial halves ZZE C ._

--1 PZE ND Number of The trigger is a'five whenever _e sign bit of the first k_
initial doubles word i_ plus, otherwise, a minus sign will cause MARK

-kO DEC h Initial Runge- to ignore the trigger, At location A is a subroutine in _
Kutta step the main program which MARK calls whenever the con-

dition defined by the trigger has been met. This subrou-
+1 PZE N,,n Total and effec- tine retluns via TRA 1, 4; ff the trigger is not disabled

tire variables by the subroutine at execution time, then the value of
+2 DEC T_ Double pre- the variable must in general be changed, .l_t MARK

eision attempt to execute the trigger again upon return of con-

+3 DEC T__ Time trol. The tag of the first word of the trigger is used as a
flag by MARK in the case of a dependent variable so that

BSS n y, solution of many triggers may be worked on in a single interval.
differential

equations The variable defined by a trigger may be of two types-- ;
BSS h - n Expansion for indeppcdent (time-stop) or dependent. The former case

more equations is flagged by B = 0 and C is then the location of the
desired doable-precision l_e for execution of the trigger. |

BSS n y, derivatives In the latter ease, the dependent variable is defined to be

BSS N-n Expansion for the difference between the contents of B (B _ 0) and
more equations the contents of C. In practice, the quantity in C is the _.

BSS (2m + 5)N Working area desired value of the variable which is computed in the
for MARK derivative or the end-of-step routine and stored in the :_

location B.
T _ 0 flags time as double precision; otherwise, com-

putation would be with single-precision interpretation. At the end of each step MARK scans the list of triggers
At the end of step, MARK calls the routine EOS; return is and determines the smallest time which will result in a
via TRA 1, 4. For the calculation of the derivatives, time stop; all the active dependent variable triggers are
MARK calls a routine which may be divided into two inspected to determine those variables which have ex-
parts: DERI for thne-dependent derivatives and DER2 hibited a sign change over the preceding step. A linear
for the other derivatives. If time has just changed, MARK approximation is made to the root of each variable and
calls the first entry, while the second entry is called ff the variable wl_eh apparently has _. root at the earliest
time remains the same as a previous evaluatian. The time in the interval is iterated upon; a new set of linear
return device is provided by TRA 1, 4. estimates of the roots for all the pertinent variables is

formed at each step of the iterative solution. At conver-

A generation of a time which is smaller than the current gence, the time stops and the dependent variable stops
time will cause MARK to give the error return; ff the are executed in proper time sequence.
number of active dependent variables exceeds 20, the
error return is likewise given. Normally, the main routine For purposes of convergence, two times are considered
controls the integration by means of the subroutine EOS the same whenever agreement is obtained out to approxi-
and by the triggers, but MARK does most of the detail mutely the last two bits; the same test is applied to the ,
work. ° sequence of times formed by the iteration process i,_

finding the zero of a dependent variable. Each new time
While in the Adams-Moulton mode, the main routine generated requires the calculation of the derivatives ap-

must determine how many times the corrector formula is propriate to the new time solution. After all the triggers
to be applied; the symbolic location NI in MARK must in an interval have been cleaned up, the information
have in its address the desired number of applications of at the end of step is restored and the derivatives are
the corrector, recalculated.
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