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Abstract \ b‘YI

The spin-lattice Hamiltonian first proposed by Van Vleck to
3 explain electronic spin-lattice relaxation has been experimentally
determined for Cr3+ ions in ruby single crystals. Its magnitude was
obtained through measurements on the effect of applied uniaxial
stress on the ESR spectrum of the Cr3+ lons. The spin-lattice
Hamiltonlan was found to be a quadratic spin operator, in agreement
with Van Vleck's prediction, with no evidence for any other spin

dependence. It was also determined through these measurements that

the Cr3+ ions can be considered, for interactions with lattice modes,

to occupy two inequivalent types of site in the A1203 lattice.
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I. Introductilon

The spin-lattice interaction for an 1insulating paramagnetlc
crystal was first treated successfully by Van Vleckl)in terms of
an interaction Hamiltonian derived from crystal-~fleld theory. In
Van Vleck's treatment the interactlon between the magnetic moment
of an ion and vibrations of the crystal lattice comes about in-
directly: the lattice vibrations modulate the crystal field,
thereby perturbing the orbital state of the 1on; spin-orbit coupling
then transmits thils perturbation of the orbital electronic moticn
tc the spin of the ion. Because this interaction between the lattice
vibrations and the spin of the ion is a second-order process, Van
Vleck found for the iron-group lons that he considered, which have
strongly quenched orbital angular momentum, that the dominant part
of the interaction can be expressed as an operator quadratic in the
effective spin of the lon. This spin operator, the spin-lattice
Hamiltonian, is also, to flrst order, linearly dependent on the
Jattice strain, and 1t therefore leads to the one-phonon spin-
lattice relaxaticn which dominates relaxation processes at low
temperature.

Using microwave-ultrasonic techniques Shiren and Tuckere)
verified Van Vleck's prediction of the quadratic spin dependence of
the spin-lattice Hamiltonian, and they determlned the magnitude of
the interacftion for several iron-group ions3’4). It was shown by
ShirenB) and by Donoho6) that one-phonon relaxation times predicted

from experimentally measured values of Van Vleck's spin-lattice

Hamiltonian are in gcod agreement with observed relaxation times.
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An excellent review of experimental and theoretical work on spin-
lattice interactions for iron-group ions has recently been published
by Tucker7).

This paper descrlibes a measurement of the spin-lattice

Hamiltonlan for Cr'3+

lons 1In ruby. In thls experiment uniaxial
stress was applied to single crystals of ruby along various crys-
tallcegraphic directions, and the resulting changes in the ESR
spectrum were measured accurately at a frequency of approXimately
10.0 GHz. These changes are interpreted as being due to a spin-
lattice Hamiltonlan quadratic in spin and linear in the lattice
strain due to the applied stress. This stress-induced spin-lattice
Hamiltonlan 1s regarded as a perturbation added to the normal spin
Hamliltonian of the Cr3+ lon; this perturbation causes a shift in
the energy levels of the ion. From the measurements described here,
most of the quantities characterizing the spin-lattice Hamiltonian
were determined to an accuracy of several per cent. In addition it
was determined that no additional terms in the spin-lattice
Hamiltonlan, such as terms linear in the spin, are present to any

3+

appreciable extent, It was further determined that the Cr ions in
ruby occupy two inequivalent sites with respect to their interaction
with lattice strain, resulting in different values for the spin-
lattice Hamiltonlan constants for the two sites. This result is

8) In studying the

similar to that obtained by Royce and Bloembergen
effect of an applled electric field on the ESR spectrum of ruby.,
Measurements similar to those reported here have been carried out by

Feher and watkinsg) and by Feherlo) for several iron-group ions in MgO.
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The results reported here are in good agreement with ultrasonic-

4), and Dobrovll)°

paramagnetic-resonance measurements of Tucker
II. Theory
In order to facilitate understanding of the eXxperimental
method used here and the analysis of the results, certaln agpects
of the theory of spin-lattice interactions and its appllcation to
the eXxperimental situation studied here must be considered. Only a
rather phenomenoclogical treatment is undertaken, however, since a
detailed derivation of the spin-lattice Hamiltonian has been glven

1) 2)

1
by Van Vleck and, more recently, by Mattuck and Strandberg .
3+

The Cr ion in ruby is in a trigonal environment which leads
to an axially symmetric spin Hamiltonlian

H, = 3“@tg514-3L@(H,&-+H35m) +—D(S;-5%+) (1)
where the g-tensor is nearly equal to that for a free electron be-
cause of the strong orbital quenching. The effect of a crystal-
fie’d compcnent of symmetry lower than trigonal would be to introduce
additicnal quadratic spin terms, but such a fleld would have only a
very small effect on the value of the g-tensor. Thils fact is clearly
exhibited in a comparison of the spin Hamlltonian of the Cr3+ ion in
ruby with that in MgO. The large trigonal field introduces a zero-
field spilitting, 2D, in the case of ruby, but the g-tensors in the
twe cases are only slightly different. Consequently, when the

lattice 1is strained, resulting in the production of crystal-field

components ¢f lower symmetry than in the unstrained crystal, it can
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reasonably be expected that the strain-induced perturbatlon to the
spin Hamiltonian would be predominantly quadratic 1in the spin.
Although a term linear in both spin and magnetic-fleld strength might
alsc be present, it should be qulte small in 1ts effect compared to
the quadratic term. Mattuck and Strandberglz) have, in fact, shown
that the ratio of the term linear in spin to the quadratlc term is
approximately the ratio of the Zeeman energy to the spin-orbit
energy. The linear term In this case should, therefore, be roughly
two orders of magnitude smaller than the quadratic term, and it 1s
not ccnsidered further in this discusslon.

The most general quadratic, Hermitian spin operator which can

be used for the perturbing spin-lattice Hamiltonlan is
=> F..S,8 (2)

where F 13 a second-rank, symmetric, traceless tensor which depends

cn the lattice strain., For a linear strain dependence, E~can be

represented in the following way:

Fij= 2 Gigke ®kq (3)

In the above expression, e 1s the conventional strain tensor, and
Eiis a fourth-rank tensor symmetric to the interchange of 1 and j
cr k and 1, but not necessarily symmetric to the interchange of any
other pairs of indices. Because of this symmetry it is possible to
use ths familisar six-dimensional Voigt notation, in which the number
cf incdices is contracted in a manner widely used In the study of the

elastic properties of solids. In this notation, F becomes a sixX-
A
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dimensional vector, and G becomes a second-rank six-dimensional
tensor. It should be noted that the contracted form of G does not
necessarlily possess the symmetry of elastic-constant tensors which
would require that G =G, .

i3 Ji 34
Since the symmetry at each Cr is C3, the number of inde-

pendent components of G is reduced from 36 to 10, and the tensor can

be written in the following way:

e, G, -G33/2 Gy Gy O
G, Gy, 63,2 -G, G25 -G
lsl -»
(G %650 =(G)1+G ) G33 0 0 0
G =
G -G 0 G G G
41 n T
-G G 0 -G G G
52 52 45 By oyl
-G G 0 G G G -G
16 16 25 14 ( 11 12)/2

(4)

3+
Although the point-group symmetry at the Cr site 1s only C3,
the maXximum point-group symmetry of the A1203 crystal lattice is

D If the symmetry operations of D not included in C3 are

2a° 3d

applled tongﬁ it is found that all components of (4) are unchanged,

except for G G G and G which merely change sign under
259 52° 16’ §5° y £ g

any of the two=fold rotations of D Such a rotation will change

3d°
G for each ion in the manner described above, but will have no

g
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effect on the spin Hamiltonlan, Thus, the Cr3+ lons can be regarded
as occupying two non-equivalent types of site, each of which leads
to the same spin Hamlltonian, but to different spin-lattice
Hamiitonians., As a result, although all ions exhiblt the same ESR
spectra in an unstrained crystal, ions in the different types of
site will, in general, exhibit different spectra in a strained
crystal. The ESR spectrum for such a stralned crystal can, there-
fore, be expected to consist of a number of split lines. This split-
ting i1s observed experimentally in the work reported here, and its
presence actualily simplifies the analysis of the data, rather than
Intrcducing any complication.

Experimentally it is desired to perform measurements which
permit the deduction of the components of EX This can be accomplished
by measuring the magnetic-field shifts of the observable ESR
absorption lines as functions of applied uniaxial stress. Extraction
of the values of the components ofiilis, however, somewhat compllcated
in this case by the fact that there are ten independent compcnents of
fifbr Cr3+ ions in ruby and by the fact that the application of
unlaxial stress generally produces an effect on the ESR spectrum
dependent on several of these components simultaneously. It is
necessary, therefore, to perform measurements on a number of 4if-
ferent crystals stressed along carefully chosen directions such that
a sufficient number of independent relations between the observed
line shifts and splittings and the components of‘gﬁcan be obtained,
It is necessary, therefore, to consider the choice of appropriate

crystallographlc directions for the application of uniaxial in order
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to clarify the experimental technique and the analysis of the data
to be described in the following sections,

If the total spin Hamiltonlan, the sum of equations (1) and
(2), is diagonalized under the assumptlion that the compcnents °f,£L
are small compared to both the Zeeman erergy and the zero-field
splitting energy, 2D, a linear relationship between the shift or
splitting of any resonance line and the components of’gﬂcan be
derived. Combination of this relationship with equaticn (3) then
gives the dependence of the line shift or splitting cn the components
cf gﬁand on the straln resulting from the applied uniaxlal stress.

The diagonallzation of the spin Hamiltonian 1s first considered.

The secular equation for the eigenvalues of the spin Hamiltonian
is a quartic equation in the energy whose solution provides four
allowed values of the energy, Ei' Because of the zero-field splitting,
all six of the possible transitions between these levels are generally
allowed, resulting in six observable resonance lines. The transitlon
between levels 1 and 2 will be designated the }i transition, wlth

corresponding transition freguency ) = (EioE )/h. The value of the

magnetic=field strength at resonance ;gll be deiignated Hij' The
value ¢f the resonance field for a particular transition is a

function cf the angle between the field and the c-axis of the crystal.
Experimentally, the resonance lines are observed at a fixed transition
frejuency by varylng the magnetic-field strength thrcugh the reso-
nance value, 80 that the effect ¢f applied uniaxial stress, which

varies the energy levels, 1ls most conveniently described in terms of

the shift in the resonant magnetic-field strength when stress is
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applied. If the stress-dependent line shift is dencted, for the 1j
transition, by A H1 s Then the shift at constant transltion
frequency \)ij can bg expressed as

O H
1J

=2, (3H,,/OF ) F_ (5)

where the partial derivatives of the resonance field, Hij’ with

respect to the components of'g'are evaluated at constant ) 13

from the Impllcit solution of the secular equation fcr the rescnance

field, If the X-z plane 13 chosen as the plane containing the

c-aXls of the crystal and the magnetic field, then it is found that
BEHJ/QDFK is zero unless k =1, 2, 3, or 5. These derivatives are

functions of the angle between the c-axis and the magnetic field,

and are plotted in figures 1 and 2 for the more important transitions

observed in this experiment. In these figures and 1n all subsequent

discussion, the energy levels are numbered from 1 to 4 in order

of decreasing energy. The derivative ;DHij/biFE is not plotted,

since it is just the negative of bHij/b F .

The dependence cf L)Hij on the components of/g\can ncw be
calculated if the dependence of the components offgvcn the components
of’gwand on the strain can be evaluated. As explained in Section
II1, 1t was necessary experimentally to measure the component of
the strain along the axlis of uniaxial stress rather than tc measure
the stress itself. It 1s, therefore, most convenient to express the
depencdence thg_on G 1n terms of this measured strain. In the

diagonalization of the spin Hamiltonian and the computation of the

derivatives, QH;./bij, it 1s most convenient to use the coordinate
1J
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system already described, %%_WPiCh the z-axis iIs the c-axis of
the crystal and the magnetic;igis in the x-z plane at an angle 8
to the z-axis. Conseguently, in equation (5) the components of
'flare also evaluated in this coordinate system. However, as ex-
plained in what follows, the crystal may be rotated so that its
a-gxis lies at any angle to the x-z plane. It is most useful
tc express the compbnents oflgkin some coordinate system fixed in
the crystal, preferably the same coordinate system normally used
for the evaluation of the elastic constants. In the following con-
siderations, therefore, both the elastic compliance and E;are
evaluated in a coordinate system whose x-axis 1s the crystallographic
+a-axls and whose z-axis 1s the c-axis., With reference now to the
original coordinate system used in the dlagonalization of the spin
Hamiltonian, let the crystal be oriented with its +a-axis at an
angile =¢ to the x-axls. Let the uniaxial stress be applied in the
X-z plane at an angle ©& to the z-axis. Then, 1f the elastic com-

pliance 1365? and :the component of the strain along the stress axis

1s e, the components of F can be written as follows:

(F1=F2 }/e = (GH— 6“_\[(5“—5‘1_) S;“L@ - S\*, S“'\Z@ Sth}@]/s,

+ Gl 2Sy s @ - Seesin1® sinad /s’ (6)

+(G1s - 0.010610) (544 i ©® cos Q)/SI

Fi/e = Gy, (Sa sV @ + S, Cos” @) /s’

(Gt 5, ) Lisits) sin™ @ + S s @1/s
(7)
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F /e = Ga LC8=30) 50n @ 5103 - S 5in2 81 /5
t G (Sie i@ 53 _ 5, Sin2 8)/’

- (Crg,L +0:.159G,,) (S“-sn_) Sin @ cos 3@_/5'

(8)

In the above expressions the quantity s' is the component of the
elastlc compllance tensor in a ccordinate system whose Xx-axis is the
stress aXxis. The values for the components of the elastic com-
pliance used in the analysis of the data in this experiment were thos
obtained by Wachtmann 93_31}3.

It can be seen from expressions (6)-(8) that if the stress is
applied in the m-c plane, & = 90°, there is no dependence of the
components °f,§~°n those components oflgﬂwhich change sign between
the two non-equivalent sites discussed previously. Consequently,
for stress applled in the m-c plane the stress-dependent line shifts

will depend cnly upon Gll’ G , and GMM, and there

G G G
127 7337 14’
will be no line splitting. For stress applied in any other plane,
however, there will occur both line shifts and splittings, but the
splittings wlll depend only upon G G G and G ., It is
p g p y up o5’ 52, 16° 45

important to observe, however, that the components of G which lead to
line splitting cccur in equations (6)-(8) only in the combinations
(925=O°OYO G16)and(g52+0.159 Gug. This fact means, of course, that
measurement of the line splittings can only provide the values of

these two combinations of these four components of,gd and not all

four individual values.

e



The combination of equation (5) with equations (6)-(8)
provides the desired relationship between the line shifts and
splittings and the components of_g; Inspection of these equations
shows that a sufficlent number of independent relations will be
obtalned for the determination of all the components of gz with
the excepticn noted above, 1f the line shifts are measured for
three different directions of the appiied stress in the m-c
plane {& = 90° ) and the line splittings are measured for twoc dif-

ferent directions of stress in the a-c plane (& = 0°).

III. Experimental Procedure

Experimentally it was necessary to apply stress in the hori-
zontal plane, which was the plane containing the magnetic field,
in order to avoid complication of the analysis described in the
preceding section. In such a situation it is difficult to measure
stress directly, as would be possible if, for example, the stress
were applied In the vertical direction so that known welghts could
be used to produce the stress. It is possible, however, to measure
the stress indirectly by measuring the component of strain along
the stress directlon. Actually, because of the treatment of the
spin=lattice Hamiltonian in terms of the lattice strain, it is
necessary to obtain the strain components in any event. The measure-
ment of any one of these components, under the condition of uniaxisl
stress, permits the computation of all the other components. There-
fore, the measurement of strain is actually a more direct

measurement of the desired quantity than would be the measurement
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of stress. Consequently, the straln along the stress axis was
measured by means of straln gages cemented to the ruby crystal, and
the stress could then be applied in the horizontal plane by means
of a simple screw mechanlsm,

The experimental arrangement for the application of uniaxial
stress is shown schematically in Figure 3, where the coordinates
defined in the previous section are also shown, for clarity. The
crystal was In the form of a rectangular rod, of sguare cross
section. It was sltuated in the center of a TE20l rectangular
cavity, whose dimensions were such that approXximately 20 per cent of
the rod was located inside the cavity. Attached to the crystal but
outside the cavity were four straln gages, one on each side of the
crystal. These strain gages were simple resistance gages (Baldwin-
Lima-Hamilton Type SR-4) and were attached to the sample with
Eastman 910 cement. All four gages were taken from the same pro-
duction lot and were stated by the manufacturer to have the same
gage factor within one per cent. Stress was applied by a screw
mechanism not shown in Figure 3 in such a way that the stress axis
could be adjusted slightly. This adjustment of the stress axis was
found to be necessary 1n order to insure that the stress be truly
uniaxial and uniform, with no shear components. Early measurements
on rubqu) were found to be nonreproducible to some extent because
of ncnuniformity of the stress and because of some bending of the
crystal. It was found, for example, that unless the stress axis
was very carefully adjusted the straln measured con cne side of the

rod could differ greatly from that measured on the other sides.
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This effect was apparently due to the fact that the ends of the
sample against which the screw mechanlsm pressed could not be
made exactly parallel and flat. It was necessary, therefore, to
adjust the direction of the stress axis untll all four gages indi-
cated the same strain within * 5 x 107®. once this alignment was
accomplished, a number of measurements at strains as high as
400 x 10-6 could be made without requiring further realignment. The
reprcducibility of the results and the good agreement with theory
which is discussed in the following section indicated that this
method of aligning the stress axis was adequate.

The ruby crystals used in this experiment were stated by the
manufacturer to be low-strain laser-quality crystals containing

3+ ions

0.05 per cent Cr3+ ions. Silnce the concentration of Cr
was nct important for this experiment, no attempt was made to de-
termine it more accurately. The samples were oriented by means of
a Laue back-reflection X-ray camera to an accuracy of approximately

-0

0.3 and were cut with a precision saw into rectangular rods of
length 1.5 cm and 0.3=cm square cross section. The orientaticns
for the five samples used were the followlng:

Sample No. 1: Stress along c-axis ( @ = 0°).

Sampie No. 2: Stress in m-c plane at 45 to c-axis
(® =145, 8 =90°).

Sample No. 3: Stress along m-axis ( @ = 90°, & = 90° ).

Sample No. 4: Stress in a-c plane at 45° to c-axis
(®@=145",8 =0).

Sample No. 5: Stress along a-axis (@ = 90°, & = 0°).
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The first three samples were used for line-shift measurements, and
the last two were used for line-splitting measurements.

The ESR measurements were made at room temperature with a
conventional X-band spectrometer operating at a frequency of
approximately 10.1 GHz. The magnetic-field strength at the center
of each line was measured as a function of measured strain using
an NMR gaussmeter. Line shifts in the range 10 to 50 oersteds
wara observed typically, and 1t was estimated that they could be
measured to an accuracy of approximately 0.25 oersted. The data
were recorded in the form of line shift (or splitting) from the
unstrained position versus strain. Measurements were made for each
observable transition at several values of the angle between the
field and the c-axls. For each transition and angle the quantity

z;Hij/é was obtained. Through the use of equations (5)-(8) a
set of relations between this quantity and the components of G_
was obtained. The components of‘gycould then be obtained by a

stralghtforward least-squares analysis of the data.

IV. Results
The analysis of the data by least-squares techniques ylelded

the following results:

G = 45T 0.3 em™?t G, = -0-43 £ 0.13 em™t
G, = -1.9% ¥ 0.3 em™? G, = -0.63 ¥ 0.30 em™

+ -1 + + =1
G33 = 6.4 - 0.13 cm G25-0.070 G16 = =1,50 =0.2 cm
G =1.97 £ 0.15 em™t G_+0.159 G = *1.43 ¥0.3 em™?

b 52 45
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Curves computed from these least-squares values of the components
of’§~are compared in Figures 4-7 to the data. The extremely good
fit, with no systematic deviations between the curves and the data
points, is very good evidence that the predicted form of the spin-
lattice Hamiltonian, given in equation (2), is the correct form.
If there were an appreciable term in the spin-lattice Hamiltonlan
linear in spin, then the computed curves would show a systematic
devistion from the data points,

As observed previously, it is impossible tc obtain the
individual values of G_ , G52, G16’ and G45 using uniaxial stress
alone. The application of some other type of stress would perhaps
permit the determination of these quantities separately, but 1t
was felt that the application of any type of stress other than the
uniaxial stress employed here would be very difficult and would not
yield information of great enough importance to warrant the effert.

Although there seems to be no theoretical basis for assuming
a symmetry to’gvof the form G1j = Gji’ such a symmetry 1s not in-
consistent with the experimental results. In fact, if the data are
analyzed with the requirement of this form of symmetry, which re-

quires that 6., =6 _=0,G =G , G _ =G __, and G__+G /2,

16 - 45 1y oy’ 25 52 11 %2 = %33
then the values obtained by the least-squares analysis are changed
only slightly, and the fit of the computed curves to the experimen-
tal points is almost as good. The results, as presented here, do
not exhibit this symmetry, but the degree of asymmetry 1s, perhaps

accidentally, slight.
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The value for G33 reported here is in agreement with the value
- 11
obtained by Tuckeru), 5.7 cm 1, and that obtained by Dobrov ),

=1
5.9 ecm , by the method of ultrasonic magnetic resonance. Dobrov's

1

, 18 not, however, in agreement with the

value for G 1.55 cm”~

14’
value reported here. Although Tucker's measurement of G33 was

the first measurement of the spin-lattice Hamlltonlan, the accuracy
of ultrasonic measurements should not, in general, be as good as
that which can be obtained by the method of unlaxial stress; because
the ultrascnic measurement requires, amcng other things, an accurate
knowledge of the rescnance line shape and the lonlc concentration.
Ultrasonic measurements in a trigonal crystal such as ruby are

particularly complicated by the large number of constants to be

determined in the spin-lattice Hamiltonlan.

V. Discussion

This experiment has demonstrated the validity of Van Vleck's
theory of the spin-=lattice interaction. In particular, the quadratic
dependence of the spin-lattice Hamlltonlan has been quite well
demonstrated. Although the data do not permlt the determination of
the magnitude of any term linear in spin, it is eXxpected that such
a term should be about 10C times smaller than the quadratlc term,
&nd this magnitude is certainly too small to be detected 1n this
experiment. It should be pointed out that the presence of a term
linear in spin could best be detected by observing the effect of
stress on the +1/2-> =1/2 transition, where the quadratic term would

have nc effect, Since it is difficult to obtaln a pure +1/2-> -=1/2
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transition in ruby, an attempt was made to observe this effect in
MgO. No line shift was observed, leading to the conclusion that the

3+ ions 1is indeed

linear term iIn the spin-lattice Hamiltonlan for Cr
negligible. A linear term does appear in the spin-lattice
Hamiltonlan for ions with an i1solated Kramers-doublet ground state,
as shown by the work of Black and Donohols), so that the question
of whether such a term appears here is of some importance.
Preliminary values of the components of the G-tensor not dif-
fering apprecliably from those reported here have been used by

6)

Dcnoho to compute the low-temperature one-phonon relaxation times

+
for the Cr3 lon in ruby. These calculations have been found by

6)

Standley and Vaughan1 to be in good agreement with experimental
values for the relaxation times.

We have made no attempt to compute the value of the G-tensor
using crystal-field theory because of the complexity of the problem.
The caiculation of G in ruby should be closely related to the
prcblem of calculating the zero-fleld splitting 2D, which arises
from the trigonal distortion of the field from cubic symmetry and
the spin-orblt coupling. A calculation of thls splitting was made by

Sugano and Peter17)

> who found it necessary to assume substantial
cenfiguration mixing, covalency, and anisotropic spin-orbit ccupling
in order to obtain reasonable accuracy in their value for the zerc-

field splitting. More recent work by Macfarlane18:19)

has, however
yilelded an even better value for 2D without intrcducing the complica-
ticns used by Sugano and Peter. In his work, Macfarlane dlagocnalizes

the crystal fleld accurately for the entire d3 configuration, and
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finds that the principal contribution to 2D comes from the off-
diagonal elements of the matrix, and not from the diagonal elements
as assumed by Sugano and Peter. It seems qulite reasonable that
Macfarlane's procedure is appropriate for the computation of the
G-tensor, and a calculation based on this method should yleld
reasonably accurate results. In fact, Sturgego) has shown that
in a uniaxial stress experiment & D/D, which is equal to G e/D,
is equal within experimental error to av'/v', the ratio o%3the
change in off-diagonal matrix element to the unperturbed value of

the matrix element. Thls result seems to indicate that’g_will

depend strongly also on the off-diagonal components of the matrix

of the perturbing field due to applied stress. It should be polnted

21)

++
out that Blume and Orbach have computed’g~for Mn ions in MgO,
obtaining the correct order of magnitude, but the wrong sign for

the components.
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Figure Captions
Rate of change of resonance field with respect to
spin-lattice interaction parameters; 12 and 23 (high

field) transitions at frequency 10.1 GHz.

Rate of change of resonance fleld with respect to

spin-lattice interaction parameters; 23 (low fleld)

and 34 transitions at frequency 10.1 GHz.

Experimental arrangement showing orientation of ruby
sample and stress axis with respect to crystallographic

axes.

Experimental data on llne shifts for Sample No. 1
(® = 0°), showing curves computed from least-squares

analysis of data.

Experimental data on line shifts for Sample No. 2
(@ =145, ® = 90°), showlng curves computed from

least-squares analysis of data.

Experimental data on line shifts for Sample No. 3
(®@=90°, ® =90°), showing curves computed from

least-squares analysis of data.

Experimental data on line splittings for Sample No. &4
(® =145, & =0°), showing curves computed from

least-squares analysis of data.
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