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ABSTRACT {TL
e

The bracketing theorem in the partitioning technique for solving
the Schr¥ddinger equation may be used in principle to determine upper
and lower bounds to energy eigenvalues. Practical lower bounds of any
accuracy desired may be evaluated by utilizing the properties of
"“inner projections" on finite manifolds in the Hilbert space. The
method is here applied to the ground state and excited states of a

amiltonian ~§& = 4329 +‘\7 having a positive definite perturbation
"V . Even if inspiration is derived from the method of intermediate
Hamiltonians, the finmal results are of bracketing type and independent
of this approach. The method is numerically illustrated in some

accompanying papers. (



I. INTRODUCTION

The problem of evaluating lower bounds to the energy eigenvalues
E. to the Schrodinger equation éﬁ _l_é\ Eé is of great importance
and, in a previous paper ', we have given a short survey of the history
of the problem and a summary of the results obtained so far. The funda-
mental importance of the work by Alexander Weinsteine) and his schootl,
Aronszajn ), Fox and Bazleyh) et. al., and the strength of the idea of
the "intermediate Hamiltonians" were emphasized. At the same time, it
was shown that the prcblem could be approached in un ent‘irely different
way by using the so-called "bracketing function” 6 =4 (£ ) , which
is such that every interval (8 ,Q ) contains at least one true eigen-
value E . If & is chosen as an upper bound and &‘< &
quantity (S q is hence going to provide a lower bound to L7, .

The main problem in this approach is tc evaluate the bracketing
function 81 =4 (& ) or a lower bound to this function for a given
value of the varfiable 6 . In this connection, it may be convenient to
put the Hamiltonian in the form 3@ =3 + V , where the "unperturbed"
Hamiltonian 880 has the eigenvalues ﬂ; and eigenfunctions ’?é‘wo ; and
"V is a not necessarily small "perturbation". In PT X, we studied the
problem of evaluating a lower bound to the ground-state energy of 8{) in

case the conditions

V>0, E< x, (1)

were fulfilled. The first implies that the "perturbation" V should be
positive definite, and the second that the ground-state energy of %

should be situated between the twc lowest eigenvalues of é{io, . In this
paper, we are going to make ourselves free from the second restriction

and to extend the treatment also to the excited states.




i, TROPERTIES OF RRACFETING FUNCTION

The partitioning technique:’) for solving the Schridinger equaticn
Q&‘, = T is based on the use of a variable 6/ s, 4 normalized

reference function ¢ having {(Pi(?) = 1, and a reduced resolvent
'Tl . If (D = H’})(c;)! is the projection operator on the ore-

dimensional "reference space™ and P = 1 -‘@ is the prejection operator

for the orthcgonal complement, one has the definition

T=-Plx0+PE®Pl P, @

for any O3 0 . This operator satisfies the following algebraic
relations

OT=T0O =0, (3)

PE~-R)T = P, (3
%%E(—- = 0 JVWQ(#O)‘ (5)

T o 2 (6)
VE

and it has become customary to use the symbolic notation

‘T’ - T m (1)

The fundamental properties of n;" are astudied in Appendix A. In order

{
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to proceed, it is convenient to introduce the "trial" wave function ée)
associated with the variable &, by the definition: '

ng& = ¢+ THe , (&)

It satisfies the intermeaiate normalization <(P ‘ §8> = 1 useful
in all parts of the spectrum and, according to (4), the relation

PLE-R)E, = 0 - T nsiios sha

(e~2) 3, = (0+PIe-2) Y, =
O(e-%)F, = P<ple-%lP, > ©

= P (E—<PIRI>) = P(E-E,)

(

where we ha\g used the notation 5‘ = <P i 3L i é\& > . It is

clear that ¢ & satisfies an inhomogeneous differential equation closely

associated with the Schrldinger equation and with a right-hand member
proportional to the reference function LP :

(%"6)_%56 = (=&)< (10)

0f particular interest is the quantity 61 given by the relation

= 4P| R+RTXR] P> = ()
IR+ L ie> = (),

i




and defining a function 81 = (E ) of the variable & s which
will be studied over the real axis, — 90 < & < + o0 . 'The

values .é/ s for which (S =& = .E » are of special importance,
gince the trial function & will then satisfy the original Schr¥dinger

equation (JIf,—FE )égg =0.

From now on, we will ‘concentrate our interest to regions where the

trial function (8) is normalizable, so that
Be 18, > =
4 6’ é& > =<LP|Pp>+ <'T’%‘CCP, T%ﬁq>> (12)

exists. According to (6), one obtains further

db&y 20 | _
o = — L RTR|e)

= —<TRP | THY> < O, (13)

so that the derivative /( &) is negative. The curve for

& (&) is hence monotonously decreasing, and has further a
series of vertical asymptotes for such E; values as are eigenvalues of
the operator I = PIP, T different from the eigenvalues of the

lLet us now consider a continuous part of the curve 81 j(&)
associated with the eigenvalue X . Putting 6 .+ é‘ an

& =E+€ , one obtains £+€
= 1{I(}z\» €)= %(£)+ ¢ % (Zr0€)

/(80) \ /& where (< 9(1 , and this gives



Yo

€ = €4/ (mroe) (1)

which implies that the "errors” £ and € 4 have differsnt signs and
that the numbers & and 5 < bracket at least one _true eigenvalue

¥, . For this reason, the function 81 = 4 (& ) will in the follow-
ing be called the "bracketing function". For ' & = — o0 , one has
e.g. 81 = <CP ‘Q{e ‘c{)> , and the bracketing theorem says that
there is at least one eigenvalue between —©O and <<P|IH iCP> --

a result familiar from the variation principle,

A study of the relations (12) and (14) shows that (9 is a better
bound to T3 than &, , if and only if i»%/(z-{-ee)\( 1 . t.e.

TR TReY < <Ple) (15)

According to (12), this means that the reference function <f must give

a larger contribution than the ort%qgonal complement n %QP to’ the
Ay

normalization integral < 3 P & > » Le€. (P must contribute more

than 50% of the wave function _ZK* .

The bracketing procedure breaks down only if the reference function
happens to be orthogonal to specific eigenfunction , in which case
the associated eigenvalue Y., docs not show up at all, Otherwise the
reference function CP may be chosen quite arbitrarily, but it is clear
that, if one wants a good upper bound é:, to give an even better lower
bound 6,1 , the function (' has te be carefully chosen., In the per-
turbation theory developed in PT ¥, the reference function cf was
chosen to be an eigenfunctica to {f:é and, if the perturbation V is
large, the condition (15) may not be satisfied at all. Since our practical

evaluation of (S is associoted with writing the Hamiltonian in the
,(
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form {&{Z

modification of perturbation theory in which one can use an arbitrary

n
.;“Bo + V s it is hence desirable to try to develop a

reference function C.P as a starting point and improve the bounds

by improving this function itself,

III. PERTURBATION THEOKRY WITH ARBITRARY REFERENCE FUNCTION
Wave and Reaction Operatcrs
If the Hamiltonian QQ, is written as the sum of two teims % =

é}{o+ "V , it is convenient to introduce a generalized reaction operator

A and a wave operator W through the relations:
W = 4+TV, (16)
d = VW=V+VTV , ()

Whereas in conventional perturbation theory, one tries to hit the true
cigenvalue I, at once, we will here only try to "bracket" such an eigen-

value in an intexval ( é g > (?/) , and the operators ! and Woowill
Py

In order to proceed, it is now convenient to introduce the reduced
resolvent 'T; associated with the operator Qeo through the symbolic

relation

(1)

0 T e,
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analogous to (2) and (7) Using the operator identity (q ,B)

q +R«B(R 3) » one obtains M}7 = T + ‘T’V‘T’ 'T(H'VT),
TV =TA s 2=VeVTA » (=070 % =V e

= (VT V= V(=T

W= (1—~‘“T;’\7')'4 (20)

-

If the perturbation V has a product form, V: .-\Z‘ * Vg, » one gets

further the more general expression

4=V (1-V, TV, ) \7;, (21)

which is easily sho m to satisfy the basic equation )& V+ ’V'T’ >8—

even if th2 factors 7‘ and \7 would not have any inverse operatora

If finally v has an inverse, one obtains the simple relation

- -4
A =V — 0 ) (22)

which forms the stsrting point for PT X. For the reduced resolvent 'T, ’

one obtains simila.lvw ‘r = 'T; + ’TO'V'T', (1"’rr0'\7 ) ‘Tr = FTB ’

and

T = (4- ‘T;V)q'To , (23)
T AT,

(24)




It should be observed that all the relatioms (16) - (24) are valid
irrespective of the choice of the reference function QP which enters
only through the projection operator P = 4~ ‘q)><cp3 for the orthoge

onal complement.
Transformation of the Wave Function § &
According to (8), the trial wave function assaciated with the

variable a may be written in the form gg& =(4 +TH) P

For the operator ( 1 + 'T’% ), one gets now according to {£3) and
(20) the following transformation:

1+TR =+ (-T,V)'T 3 =
=TV {1-T,V+ T, %} = ‘
= (IFTV (- TR) = Wi T, )

A
Because of the factor ( 1 + 'TBS&O )}, which is going to occur frequently
in the following, it is now convenient to introduce a modified reference

cP through the relation

P = (1+TH,)P

~y
hY,
O

The problem of calculating this function is treated in Appendix B.
Combination of (25) and (26) gives finally

§&. = W$ (27)

i.e. the trial wave function is obtained by letting the wave operator
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W work on the modified reference function CP « If the original
0

reference function QP is chosen to be an eigenfunction §(° of ée 0

one has immediately E = _é‘: , and one is back to the treatment in

PT X.

Transformation of the Bracketing Function 8{ = i. (6 ).

According to (11), the bracketing function is defined by the expres-

sion (31 = <Qp l%*—%r\_’% ‘q)) . For the operator %+%T%,
one obtains, by using the relations _§ =V + VTV, TV = T; £,

VT - }'TG’ ,and T = T;+ q;,g'ro treated above, the following

Y +RTH = % +V+ (R+V)T (V)=
=,V + QTR+ YTV VTR +VTV=
= ¥+ 4+ (T+TAT )L+%, T4+ 4T, =

= (ggo‘fé‘foﬁg@o) + (1+X,T,) 4 {1+ %) e

Substituting this expression into (11), we obtain
E,= <PHKITY +<P|41F )=
=<3 le) +<F 419> @
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which is an expression closely anal‘ogous to the corresponding formula
in PT X. Since P = (4 +TpH,) <P , one obtains further

& =<F| Ut c A7y, @

which gives the bracketing function as an expectation value with respect
to P . In this connection, however, it should be observed that the

modified reference function < 1is not properly normalized:
PP =LK1+ HT Xi|9>, @

and that further < depends on the variable & » In the following,
we will hence mainly use the form (29) for practical purposes.

IV. CASE OF POSITIVE DEFINITE PERTURBATION
Effect of Inner Projection

In this section, we will try to evaluate a lower bound to the
bracketing function 81 = )v (&) defined by (29) in the case of a
3

positive definite perturbation \',r > O . Por this purpose, we will

utilize the method of forming"inner project:ions"l’3 ’b').

Inner Projections

1f J’ = (\‘f‘”\f,‘ yreoo jen ) is a set of n linearly independent
functions in Hilbert space having the metric A = <j'j> , Llee.

Akl, = (jb lj.b> , and spanning a subspace Q\,tm , then the
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For the inner projection, one obtains according te {32) and (35) the
following alternative expressicns:

I

i H%’Lf><jlj‘;(<jiﬁ}ém (36)
H!‘j><«3%ﬂiﬁ> <¢3]H = (57)

= > <A |hY <)

(i

The first form will be denoted as the standard imner projection, whereas

the second will be called an Aronszajn projection, snd the third a Bazlev

projection., It may also be convenient to refer to the manifold j
\j\)jg_ [ J"ﬁ ) as the "standard space", to the menifold @f} =
((3” %ﬂ . @\m ) as an "Aronszajn space', and to the manifold %}& =
&)) m ) as a "Bazley space"™. It should be azserma that the
form (37) was the first one to be introduced by Avonszain”’, and some

additional features of this prejection are treated in Appendix C.
. 50 X y & .
In PT X, it was shown that, if C? = 15& and £ < E:.,g s Ebhe

reaction operator t itself was positive definite and satisfled the in~

equality

0< 4 < V

Pait
[#V]
G
s

Accordlng to (36) - (38), it was then easy to conmstruct an inner projection

Ex3
P

3

&, .
t t?Q"'- satisfying the inequality t < t, which could be used to avsiust
s
a lower bound to (S 4 and hence also %o the ground state emergy Yo . In
the general case, however, & is not positive definite, and the preblem wast

be approached in another way.
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Treatment by an Interwedizte Hamilfenian

Let us first gee what happens, if the problew is femvorariio

treated by meang of the method of intermediate Bemiltomiaus., In addition
to :ét, qp\,o + V , we will then consider az: :’:.Lerms “e Yamilitopian
5{3,/ %Q + .‘J , Where _,,«; «\.7/ Q‘Q \] 13 an innew projevtion
of the perturb ation Vo edafived by the relatiens (36) - {35} T
has %8/43-8 , from which follows the theorea E&" (_i; g, o
the eigenvalues taken in order. If the ordering condition is fui.rilled,

el
the eigenvalues of ‘17/ are hence lower bounds to the eigtavalees of W@: N
The solution of the eigenvalue problem for «g{(, is briefly surveycd in

Appendix D.

P
1
tan ¢

Here we will instead proceed by brackeiing the cigeavalues to <3
s
and it is then necess 1y to evaluate the agsociauec reaction opurator t

For the perturbation '\/ , we will use the form (37):

/ i h i \.M" ¢ -
V= Viay <g|Vigy. 441V (i)

s LT P .
which is considered to consist of twe factors _\. *,’i ’ \/L ., We

note that V’ has no inverse. Subatitution irto (21) glves lmmeiiately

/ ~/ O A SN
47 = V4 {1”‘ \7;‘20“\.;\;@ Vo 7

{\

it

Vig? 1 <<f(§ v i@&)—- f\ﬁa VTV lﬁd?}_ ng IV -

-’,.,

v !43> 4&3 V-V,

it

o T
Vias <«iv

V\‘Zj> <43!'\7!%>'13L ‘ <f~d§ T "«a\@@; o z Qd 1
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which is a practically very useful form. Using (22) and introducing the ‘.}|.LL'

Bazley space by = —\T(} » one obtains further the relation

4/ = Vig><g \w“vl‘a;«ésv.-.-
[ > < | 47 Y <)

showing that t/ has actually the same form as the Bazley projection of

(42)

However, since t is not positive definite, one must not draw any

t.
Substitution of

conclusions which later camnot be properly verified.

(41) and (42) into (29) gives
E1 = KPR P> + KPP D=
= <919, l$>+<<?m¢3><ci|v-vrr\7l331<ﬁ Vig)=
4918, 195+ <T[AD<H [VE T (45 (7 >}‘
<Pl lP >+ 0<7Lﬂ o (13)

]

I

where

Q
v
.

ﬂ % > } (45)

I
B
T
<
<
-

One has hence the theorem that, provided 8/ is a proper upper bound,

61 is a lower bound to an eigenvalue of 23 and hence also to an

eigenvalue of 8& It seems simple and straightforward to apply this j
. I

approach, but there is an inherent difficulty connected with the "ordering

)

- e T
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theorem", which is at first sight not so obvious, but which shmrs‘ up
very strongly in the applications, particularly if &{ has a low-lying
limiting point.

It has been shown by Gay5 ) that under the condition ¢ < _J:.A!o ,
the substitution A = (& — 3?0 ) greatly simplifies the study of
the intermediate Hamiltonian and the evaluation of a lower bound for the )
ground state, and this approach has been further extended by Bright wilseon.'a}.
However, depending on the difficulties with the ordering theorem, there is
for the moment no method to generalize this a2pproach also to the excited
states or to ground state levels situated ahove 31 A good test case
is the ground state of the H ion which, for V-¢€ /)L(l , has four

unperturbed energy levels situated below the ground state energy.

The bracketing theorem tells us here that there is at least cne
eigenvalue to %e/ situated between 8/1 and &, , but, unless one has
additional information about the lower eigenvalues, it seems impossibie
" to say whether the interval contains also an eigenvalue to S . At thie
point, we will leave the method of "intermediate Hamiltonians™ and try a

I more direct approach,

g Direct Treatment Without an Intermadiate Hamiltonian

In connection with the inner projections, it is interesting to
observe that the form {3€) exists only for a positive definite H
whereas the forms (37) and (38) may exist even if this is act the case,
In (42), there appears actually a "Bazley projection" of the reaction
operator t , in spite of the fact that this operator may not be
positive definite. It may hence be worthwhile to study the reaction
operator ¢’ agsociated with the perturbation ‘\7/ ’\]/Z' Q'\]/‘l” to
see whether one can find gsome simple sufficient conditions for the in-
equality t:)< t , which would then enable us to say that thera is at
least one eigenvalue to % situated in the interval botween 4 and

& .
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| y -/
Let us introduce the notation V/ = V""V > 0 . 3By using (19)
and (22), we obtain

A / _ (1__1\7/,}?0)-‘;.&7/:
= $4-(v-v)T }"“ (V-v") =
= {1+ (VY ETY T (=)=
= A V-V (1=7) ] (v vV YY)
= & = AV e () VYT -
= & —AV {4V T Vv -

i

A - AV OV
(46)

where

W= (1=+ ’V”"T’)”4 v’ (1)

I: is clear that ti< t , if u) is positive definite. Iet us n'¥ .
' " -V// V/;’ v 4
as'me that V' can be written in product form, so that =V PR

by iwing the same arguments as were used in transforaing (13) into (21),

one C tains

y -l_ 5
W = '\7:/ (’H*V_Z 'T’V(/) V, (48}
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Since v// —V— -\7 -\7 V/Z’QV& V/l (1 Q)v/*?)
(94— Q ) is idempotent, one can put '\7 =V 2 (1 Q) and V”
( 1—Q)V/Z' ('V” T. This implies that u)} 0 , if

4 +’V//'T'V//7 0. Using (17) and (21), one obtains t:he transforma-
tion 'v’/z.rr-v 72: = 2-,}.'\7 %2 1 = ( ”“;VVQ‘T\T/‘Q') — 4, which

4+ VTV
1+ (1=Q) VAT V™ (1-@) =
Q-+ (1-Q) (1=VT, V) (1-0) > 0. asy

This implies that ¢t < t , if the operator ( “’ v/z-rrv/z) is
positive definite for the given value of (C/ within the subspace of
(1— Q ), i.e. within the orthogonal complement to the standard mani-

fold J— =(j‘)j1)...jm).

It is perhaps interesting to observe that perturbation expansions
of the Brillouin-tupe for t and W are possible, if and only if the
convergence criterion

-1 < Vyz"—l—'o‘vyz’ < +1

(50)

Yo 7 ~7%2
is fulfilled. Since in such a case " V 2 l —\7 70 , one has

; i
further ( 4 —V% 'T;V/ 2 ) > 0 over the ent:ire space, and the
condition (49) is automatically fulfilled,
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0
Case of CS < E@H
€

Let us now consider an energy level of 2’3*3. such that there is an
upper bound E, satisfying the irecuality

for a finite value of 63 . In such a case, it seems couvenient to
choose a minimum Aronszajn space consisting of all the unperturbed

functions

8 878", ... 8" 1
‘3*{ 0 )F1 )X,y )t ‘f ; (52)
and an arbitrary reference function <P within this space:

£ ZS | (53)

k=0 e 46

For ’T7 , one obtains a spectral resclution of the form (see Appendix A):

0
1B <%e g 19>,

P
Z — T+ <0 5

(54)

/!
,T’o,*' Uy

fl

7

4
where the second term is certainly negative definite: ‘T’O < 0




We note that the Aronszajn space has been chosen so that the functions

"V/l }g > for {e, = O by -- - r all belong to & , whereas
the functions V 2i§2°> for Je= QO-H)f'\'Z,) ... all belong to (“i""Q ).

This gives

(1-Q) VAT, V™ - VAT VA
(55)

_ —v/z -\]/z, (1 )

By using the operator idemtity ( §~B ; = -H..L R:’é( R-B ;1 , We

‘ v\~ 1
<11""62:> ( 1__fV7/ilT;'\7/Qi) -
Yo ~7Y2 Z oy
= (=) + (=R TV* (1=VET V™) =
= (@) VET V2 (@) - TV )

(=) (- VATV = (AT (0

and

(- Q) (-VET VA (1-8) =
(@) (- VATV (1= @) >0

(58)




The condition (U9) is hence fulfilled, and one has consequently
W>() and t/< t . This implies also that, in the interval between
8/1 and &~ , there is situated at least one eigenvalue of the operator
3?, itself, and no further ordering theorem is required. The lower

bound 8_/‘ is conveniently calculated by one of the relations (43).

Let us now keep the reference function CP fixed, but extend the
Aronszajn space to a larger manifold 4 » which contains the minimum
space (52) previously defined. For the associated projection operator

Q1 for the "standard space", one has

Q1>Q ) QR =Q , (59)

which gives the relatioms ( “'-—Qi )< ({~-— Q ) and

-Q)H-Q) = (1-&, ) (60)

s

Multiplying (58) to the left and right by ( {— Ql ), one obtains -

(=R (A=V2T V™ ) (1-Q) > 0,

which shows that QO >0, t/< t and 6{( &1 also for the extended
space, We note finally that () goes to zero as Q approaches the
identity, and that the convergence is essentially monotonous as soon ar
the space is extended, function for function, beyond the minimum space.
Formula (43) provides hence a lower bound which can be indefinitely
improved by choosing a better and better upper bound 6 and by properly
extending the finite subspace used in the inner projection.
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n’
The practical treatment of the operator \0 is outlined in

Appendix A, and one may further simplify the calculations by some of
the transformations described in PT X.

V. PERTURBATION EXPANSIONS
W
- In conventional perturbation theory, the operators t and ‘\\7’ are
expanded in terms of infinite power series in the operator V . In

PT X, we have studied the corresponding finite expansions with an estimate

of the remainder term, and we will here briefly consider these expansions
in the case of V> ( and £<.‘.E’_f+‘: . By a proper choice of
reference function ¢f and minimum Aronszajn space according to (52),
one obtains a lower bound t/ for the reaction operator t , so that

t’< ¢t Here t’ is defined by the expressions (41) and (42).

Using (22) and the symmetric expansion of the inversel), one obtains
directly

4= (vETy-
= v—kvrrov -l'-V‘T;).mQ Tov )

(62)

and the lower bound

A4 > V—\—'\ﬂ;'\f + '\77}1”)‘;*\7 (63)

fw‘ o

More generally one has the finite expansion

20-1

, % '
4= (TV) %+ (V)4 ()" >

2m~( b — o) / mM
>V (TV) "+ (VT) (V)




=23~

and substitution into (43) gives the estimate

20|

E, > <P, 19y +<FIVE (TV)" |5 7+

(65)

<V 9><8 \v-vq;v@' 1 (VTY'VI$D>

This formula is a direct generalization of the corresponding relation in
PT X to the case of an arbitrary reference function, and it remains still

to be seen how useful expansions of this type can be.

VI DISCUSSION

In this paper, we have discussed the application of the partitioning
technique and the evaluation of the bracketing function 8 4= (é/ )
in the case when the Hamiltonian can be written as the sum of twd terms
g—(’, = 880 + V , one of which is positive definite. If the variable

é is chosen as an upper bound, the quantity (‘31 will provide a-
lower bound to an eigenvalue . situated between 81 and 8/ . In
PT X, the case 8 < 3_:,’10 was studied in greater detail, and the treat-
ment has here been extended to the case & < Ef’ﬂo o It has been
shown that, if the Aronszajn space 63/ contains all the eigenfuncticns

éoo s :é1° s o o o é ° ,» and the reference function @ is a

linear combination of them, the quantity

Ef = <PI1%\F >+
+ <F|Vigy<a [VITVI95 <4 VIF >

(66)
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provides a lower bound to 51 and hence also to E . In PT X, we
have discussed some transformaticns and methods which may be useful in
evaluating quantities of this type. In arriving at the final results,
we have not explicitly used the idea of the intermediate Hamiltonians
and the associated ordering requirement as to the eigenvalues, which
seems to be an advantage. However, the study of formula (46) should be
considered only as a first rough approximation, and there is little
doubt that the discussion of the conditions for the inequality tj< t
can be greatly refined., It is also desirable to vemovae the present

restrictions on the reference function cP to be a finite sum of eigen-
functions to a{o

In conclusion, an alternative approach based on the use of a multi-

dimensional projection @ of order {Y{1 should be briefly mentioned.s )
The operator

= O(R+raTR)O =F (&) (&

may be reprosented by a finite matrix of order (Y] having elements
which are ¢1l1 functions of the variable & . The secular equation for

2{’/ of order ™M -defines a multi-valued functiom LSA; s CS;,:_ s e e e

6('1\ of rle variable (E/ , and there is again a brackeiing theorem
saying that each interval between é’_, and é:k; cont&irzs at least one
true eigenvilue X of X, . In the caze E < EZPH , it 1is con-
venient to define @ so that the subspace contains ‘tﬁe functicns 0 >

§1° s s e w EJ-S(,D , and the technique developed in PT X can then be
applied, 1t should be observed that, even if the secular equation renders
M  roots ior every value of S , there is usually only one interval
at a time which is of practical importance for bracketing an eigenvalue.

This approach will be studied in greater detail iu a forthcoming paper.

Some numerical applications of formula (66) and the technique

developed in this paper are published in the accompanying papers by some
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of my.colleagues and co-workers, and the results seem to be very encourag-
ing. The author is greatly indebted to Prof. Charles Reid, Prof. Darwin

Smith, Dr. Jack Gay, and Mr. Osvaldo Goscinski for many interesting and
valuable comments about this problen,

In conclusion the author would also like to express his sincere
gratitude to Prof, Robert S, Mulliken for many fruitful discussions
about the fundaments of quantum mechanics, including the problem of

finding lower bounds to the energy levels,
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APPENDIX A. PROPERTIES OF THE REDUCED RESOLVENTS '| AND TW:)'

The reduced resolvent rr is defined by (2) and characterized by

the relations (3) - (6). One has further PT = TP = :Tr . The
operator '|” has been evaluated if, for any given function j , one
can determine the function

%:‘TJ[ ) (a1)

satisfying the relation .P% = % . This problem can be attacked

in several ways.

Spectral Resolution of I"r' .

Let us assume that % has the eigenfunctions and eigenvalues
‘Ek satisfying the resolution of the identity 1 = Z.“ ‘é“>< w\
and the spectral resolution ée = Zec E‘b\§k’><§k“ . Let )

— 1

us further consider the "outer projection" 3¢, defiped by the relation’

H = PHT, (42)

The reference function QP is an eigenfunction of & associated with
the eigenvalue O , which is of little interest to us, and instead we
will con:intrate on the eigenfunctions 5'& associated with the eigen-
values Ek situated in the subspace of = ., One has the resolutions

P o= % 'g&o><§k)\ )

K =2 B, 18,545,

(43)

(A%)
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Let us now study the transformation (Al). Applying the operator

P (E~J ) to both sides and using (4), ome obtains
PE-®)X=Pf
Ple-F)x=PF ;

(E-F )N p<ple-F|x> = :Pj,
(e-@)y - 75
X=(&-2)Pf =

= > ’§k><§klp\f =

= (Z ’§w><§§ml > j—

Y e -F, (45)
W E — Ek, , (46)

where \ §k><§k ®k is a positive definite projection operator,

This is the spectral resolution of s in which one sums over all

elgenfunctions e, tO 2‘;{3 within the subspace of P 1f the eigen-
values of- 3(’, in increasing order are .'E1 < E < E <
one obtains, for £< "_E_'1 , the estimate:

P
€*E1 (A7)

0>



‘”a..8“"

and more generally, for 5 < Efﬂ .

e 0 - L 0, T {{f? {/“
S > > 2L
&=\

[4

‘ 3 —FF (a8)
& _T]_ =y @S ~E. 0 ‘E ™ ﬁp-ﬁ"e
W

s

It is evident that the eigenvalues and eigenfunctions of

<3, play a large
role in determining the properties of '’

Eigenvalue Prcblem of 3, = P+,

Let us now study the eigenvalue problem

£L-E2

{A9)

p—"

where all the eigenfunctions § should belong to the subspace T s

so that :Pgé § This is a typical Weinstein proble‘nﬂ)» Tha
eigenfunctions are also orthcgonal to CP go that <\<{)‘ (} From
(A9), one obtains

(@“f>£* )
P (st E) $=0 ",
(2-5)% = 0(%-E)®;
($-E) 8 = <QIR-E1 @ >,

L= (@-EY <% B

Py
%a
[
<

-
s




0=<PI1R D= <PI(R-EY [P<plaei By, o

At this point, it is convenient tec intrcduce the so-called Weingteln
function: .

W(/‘) = <P | (2"59)“1 v >, (a11)

which is a simple special case of the Weinstein deceminantl) It

L 4

follows from (Al10'®) that, if <<Plzﬁl.:(§ > > O , the associated

eigenvalue . 1is a zero-point of the Weinstein determinant. Since

W)= =<2 (-%T*e> <0, w2

the Weinstein function is monotonously decreasing with 2, , but it

should be cbserved that the curve for W (A ) has a series of vertjcal
asymptotes.

Expanding the given reference function CP in terms of the eigen-

functionsﬁ l«off % , one has cp:: 1(‘) = (% !§'§J-a><§b@‘ ) (? =
= % §%<§W‘@> , L.e,

'Cp:zz“go%

=g —HO

) do= <§e@‘““c’> N (413)

where the coefficients G’k, are well-def ed snd satisfy the relation
2
2‘ T= e 34 o sgolutd f the resclvent:
e, ‘Q’KJ 1. Using the spectral :soluticon ¢ ragsolven

it Lyl




~—

L ) {Alk)

e e 3
(A~ %@-—4 = 1@ K@ !
=0 1“" £&

one obtains thus Jor the Woinstein function

a1/

- T \
W ( A = = (A15)
” kao 2"-" E‘U )
showing that the curve hes a vertical asymptota for all waluoe :., ~:‘E %

for which ak/= <é“0 ‘€P>=‘F0 . The curve is illustrated bolcy,
)
N

‘.‘i

il
K
i
l//

, - L o} i i
l.g - e d-z oy

. Lo
Pig. 2. Grarhical illustration of the behsovioux

-

[}

of the Veinstein functiom.

S

= P&V  n ords~ o

[w .
uppey bounds to the eigenvaluzs of vﬁéa ; ¢f. reference 1.

and we observe that the eligeavalues to

) L o P -~ o i i -~
It A :Eu"ﬂ » one ovtalny dizmcelly the followin: catimate Jov
the Vielustein functicn:




e 2

2 b U L
. }QK‘ IQ’%I ;:‘f:@“’ih P p
W (826

=0 1— o > ( > > =0 .).-— “ler | %h}z"ﬁ“i

-~

If one puts the left-hand side equal to zero, the function Wﬁ A ) will
be negative, and the corresponding /) - values will then be upper
bounds to the eigenvalues :'E . On the other hand, if one puts the
right-hand side equal to zero, the function W (A ) will be positive,
and the corresponding ), ~ values will be lower bounds to f‘i .

As an example of this technique, we will bracket the lowest eigen-
value _E_{ of X, . For 'A,(E.‘ , one has according to (Al6) for

¢>=1 and G)= 0 , respectively:

10,° a5 10> | A=)
x—£0+ A—E, > W > A—E, " A=E, ()

Putting the bounds equal to zero, one obtains the following bracketing:

—_— =y ~
~{a,|*t+E 1<« E - ' '
350311 .l o\} ¢ 191 ;< THErSTNESS (418)

If (.P is a mixture of é. and 25 only, these two l'oun"s will
coincide, and _:4 is exactly deiermined., In the cas: of a general

reference function, the bounds may be improved by ir :reasing the valuez
of used in the estimate (Al16), until one reac es the accuracy

desired,
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It is interesting to observe that, according to the Eckart criterion,
one has the operator inequality

C s t%{,"‘;g:_,\
{~l§0><'§§ai =~ TE-E, (a1)

which applied to the reference functiem CP glives

s | ARINRiQY-IT, |
1= la, 1" < - = (229

Substitution into the lowar bound %2 (818) gives

.T“:; 5 g Lo il \ \ e v o . 3 .-
<= 7 E1_’ (E1“‘.t'o>(/i“ iyl j = J:_iﬁ:,,i;_g-- LG (ant )

=
and a rough but simple lower estimzte of :EUA

e
: A .
Let us fina2lly considar the eigenfuncticus @ of the eprrater

% '-PQ{? in the case when (C?‘%{ Z(\>q-—(} . lceordiug

to (A10'), é is proportional to ( .-;,8-—:& ) 'q, and, veing tne
spectral resolution (Alk), ome obtaius

ZS towid: 3 .?5.%,

) Eb&

It is clear that all the quantities _?§, and :Eb rey e evpyececd dn
terms of the quantities ':Zgw ’ _'-E_w ’ :nd Q% , and, azcoraing Lo
(A6), it should then be possible to express also ‘T’ in terms of tha
latter quantities. We will now try to determine this expresciou
directly. '
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Alternative Form of

Let us return to the basic relation (Al). Since )C =TT,
one has {q) lx> = . According to (1), one gets further

Ple-2)x = Pf,
(E-) X — <P R XD = f—pLolf>,
(=R = J~P LU >+LRIR XD =
:j-@u;
%= (-2 f— (- P (1)
0=<| D= <P|E-H)'|fY — <l (&) lppo @

This implies that, for the constant Q(: (c{)lj+€€%,> , one gets

the value

<pl(E~)' £ > ,
<@l (e-wy o> | (e

Substitution into (A23) gives the explicit solution

PR W (N S N R 2
= (E-R - (a2
%= (&%) 5 D 2

For the reduced resolvent- rr , one obtains hence the following Ircrmula

oot (e o(e-w
T= (&%) lol(e-sey ey P
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We note that the quantity in the denominator iz nothirg but the ﬁeinstein
function W (& ) defined in (All).

Let us now transform this expression. By using the spectral resolu-
tions (AlL4) and (Al5), one obtains for the numerator of (A27):

(-2 <1 (%) 9> = (e-)'0 (-9 -

_ © 2 Ot @
- (22222 - (e E)

> Ola=0,00,

W (e-E,)(E-E,)
(O?zo'a’f/i +© iak,\ @m@@ @@@@1@
Kt (E-E,L)E-E)

o

(428)

For the numerator of each term, one has further

0, 10y 1%+ O |2~ 0,,00,— 0,00, =
= B0 10,[<8, |+ 18, 10l (8, | -
18> 0058, | = 18,0 0,0y (B, =
- (»zsm*—- 18,505 ) (848, |- 4,45, 1 ) =
T-Qw, , &)




where we have used the notation

Dy = G<E, | — 0,4, | = <GB %Y, |-
A30)

(
< <&, |9><B, | LB 10> L, | =Dy,

Substitution into (A27) gives finally

o Ol 04y
ket (e-Ee)(EEy) >

which is the explicit expression desired. The operator _(2_ k& ‘Qk L
is positive definite and satisfies the relations

(a31)

=1
T= el g

7z X -Q-Lzﬁub =P,

2 %0 (a32)

(—(ﬂkg_(lm)z)r- i \(lml?'-i—lab{"} (_o_tb_ka)‘ (a33)

The latter implies that, except for a constant factor, the operator
( “Oikb _(2_;&2/ ) is also a projection operator. The form (A31l) is

L3 B4 <
such that one can easily give upper and lower estimates to | analogous
to (A8).

We have here gone into some details to study the properties of the
reduced resolvent rr , which is the basic operator of the entire
partitioning technique. We note that, at the same time, we have obtained
a set of formulas for the operator 'T; which occurs in all the appli-
cations to perturbation theory. The only thing one has to do is to
replace 3?, by &EO and to add an upper index 0 to all the eigenfunctions
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ﬁg,& » all the eigenvalues ’Ek , .and to all the coefficiensg a&,‘ .
In these applications, it is hence convenient to specify the reference
function cP in terms of the eigenfunctions to éeo s 80 thst

o~

¢ = % é{oa’@ :

Pait
5
5




APPENDIX B, CALCULATION OF THE MODIFIED
REFERENCE FUNCTION

The simple formulas (27) and (29) for the trial wave function
and the bracketing function 6 4 = (& ) are both based on the use
of the modified reference function ¢ff defined by (26) or

-C-PT_ = ('H’ 'T;%’fo)ﬁp . - (31)

It should be observed that QP depends only on 6 , <P , and geo
and is entirely independent of the perturbation V' . rNote that

(CP[ P > =1 . Letting the operator 1~ ( 6—380 ) work on both

sien of (26) and. sppiying (), one abtats
PE-X)P = P(EY,) P+PHP=0;
(E-H)F = 9<9/&-%,)7 >~ P,
= (2T P8, o)
1=<9lF 7= <@(e-%) 19> e,
SECICEANTIR o
Substitution of this /& - value into (B2) gives the explicit formula:

- _ (8""3805 'CP
L&~y 1) (31
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which is also easily derived from (Bl) by using the explicit evprersion

(a27) £oxr T .

The denominator is simply the Weinstein functicn

Sﬂo (&) associated with the operater 380 . Usirg (A3L4) and the

spectral resolution for ( &-geo )

o
SN
A
k=0

)
3.0,
E—E; >

o

>

£=0

(@, |*
E-E,;

s one chtaine:

(B5)

which may be useful for practical purposes, If (? containg only a
finite number of eigenfunctions to 3{0 , the same appliecs o 2{')' .

It is interesting to observe that, if one could solve the imhomd-

genous differential equation

-

(=) % = @,

—

and find a quadratically integrable solution P(f 0
one would aimply have

o~/
-

S S

{91

P

- (& R,

The problem of evaluating C.P is hence closely 15~ ciated with crdinnory

perturbation theory; see PT IX.8) If the function ’:/0 is introduced

into the expression (AZ27) for <, = S-eo
formula for ’To :

T i1“'W0@“
0

(P Xey

» one obi:i1g the following

| -1
}(“1'-&)‘) ) (B)
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which shows that any function 'T;:f may be evaluated eithir by
using a suitable expression for the resolvent ( éi-':3eo ) or

by solving an inhonogeneous equation of the same type as occurs in
perturbation theorye).




APPENDIX C., SOME PROPERTIES OF THE ARONSZAJN PROJECTION

Since Aronszajn3 ) and Fox and Bazleyh) use projection operators
which are not self-adjoint and hence of a rather different type, it is
perhaps worthwhile to point out the main differences in terminology.
The Aronszajn projection R~ of a positive definite operator H 7 0

on a manifold = 81 . 82, s o o o ’8.“ ) is defined by (37).
Introducing the operator pair

O, F}\ap«aml«af‘«al, (c1)
04 = \g><qlRlg7'QlR |

it

~~

c2)

one can write the definition in the form

A= R lg><q|Rlq7 <gln =
= @gq = R@pj

It is easily seen that (DH is a projection operator

(c3)

2
@R - @Q | (c4)

but we note that ®H —ad @RT , which means that one is considering
a non-orthogonal projection. Instead of (C3), ome can then also use
the more symmetric form

M-0,R= BOT-QR0]
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The Aronszajn projection satisfies hence the characteristic relations
Oy R (1“(I>;¢,)Jr = (1-0q )R Off =0 .

Using the resolution of the idemtity 1 = ©H + ( “"" (DR ), one

R=1-81= [ 04+(1-0g)] A L0+ (-0~
(c7)
= 0,A01 + (1-0g )R (1-0d)

A—n= (1=G)A (1-01) >0

which gives another derivation of the fundamental inequality fulfilled

by the Aronszajn projection R/ . In conclusion, we note that

R'ley = Rley )

/
which means that, within the manifold , the operator R has the

same effect as H- .« Since further v
M (1=08Yy=0 | -

/ .
the operator R has the effect of a zero-operator within the entire in-

finite subspace defined by the projection operator (41— (DR Y.




Lo

APPENDIX D, SECULAR EQUATION IN METHOD OF
INTERMEDIATE HAMILTONTANS.

Let us consider an intermediate Hamiltonian2’3’h) of the type

/ /
= %eo + V/ , where \/ ' 1is an Aronszajn projection of the per-
turbation |/ which is assumed to be positive definite. One has

QQ/( % , and the eigenvalues 3':1«, of qe/ are lower bounds
to the eigenvalues E e of % s 1f they are arranged in order from
below, According to (L40) and (C5), one has the definition

V= Vig><g (Vi) @]V -
=0,V = Vo, = <0\,“\/'©\;r

and, since V/I%> = VI > , one has further %(?,/lﬂi> =
Qfe\ > . From the relation V/( {— @J) = () follows that
V/ has the effect of a zero-operator within the entire subspace defined

by the projection operator ( 4— (DVT ) and, since V/ is thus different

from zero only within a finite subspace, it seems natural to approach the

(p1)

solution of the eigenvalue problem for %‘{’, by means of "localized
w9)

perturbation theory". There is a close resemblance between this technique
developed to treat impurities in solid-state physicslo) and the methods
used by the Weinstein school,.

/5C7 /C/ |
The eigenvalue problem é‘e é =X é may be modified in the
following way:

(#+V)E =2,
3= (=lay'v'y’

(92}
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This is the basic equation in localized perturbation theory9’10). In

. . . /
substituting the expression (D1) for AV , it is convenient to introduce

the notation @@ = <% l’\]’i‘a 71<ﬂ i-—v' } §/> , and one

8= (B Vigr<qlvias v 18-

= (-%,) Vigra .

(53
acspyios o e tete vy <5[V1G7 ‘<@% [V one gete urther
= <43 Y lfﬂ@% 1\7(1{4—%5\7 }apm ,

{ <41Vig> - <g lV(Ei/*ﬁ(?o)"'Vlﬁ?}@ =0,

and, for @, F () , the condition
A
dad { <@5 | V-~V(E/"%‘t”o) LY [@%7}: O) (o)

which is the fundamental secular equation of the problem,

It should be observed that the operators "'38/ and ‘380 are actually
the same within the entire infinite subspace defined by the projection
operator ( 4— (OV ). The solution of the secular equation (Dh) gives
only those eigenvalues .3::’./ of 'ge ’ as are different from the eigen-
values of %QO , but we note that, in oxder to be able to apply the

ordering theorem used in the inequality




/
. < E (05)

)

/
one has to know all eigenvalues of 438 in order from below up to the
level under consideration. For a more complete discussion of this impor-

tant problem, we will refer to the original paper82’3’h).

Instead of solving the secular equation (D%), we have here tried
to bracket the eigenvalues of 438” . However, since the influence of
the ordering theorem is such that an eigeavalue :Ei/ may be a lower
bound not to a close-lying level but to an eigenvalue ;E: rather far
away, we have here tried to avoid the idea of the intermediate Hamil-
tonian as far as possible and instead tried to bracket the eigenvalues
of éﬁi directly. In connection with this change of approach, it
seems particularly important to give full credit to the pioneering work

carried out by Prof. Alexander Weinstein and his co-workers.
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